
Testing object Interactions
Grüner, A.

Citation
Grüner, A. (2010, December 15). Testing object Interactions. Retrieved from
https://hdl.handle.net/1887/16243

Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/16243

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16243

Chapter 6

Concurrent programming
language – CoJapl

6.1 Syntax

As mentioned in the introduction, we incorporate concurrency into the program-
ming language Japl of Chapter 2 by means of thread classes. The corresponding
syntactical modifications are rather straightforward. The grammar for the result-
ing concurrent Java-like language, CoJapl, is given in Table 6.1. Once again, to
emphasize the extending character, we grayed out the constructs that are inher-
ited from the sequential programming language Japl. The grammar shows that
a thread class definition resembles the definition of an object class constructor.
That is, we do not embark on the strategy of Java or C], where thread classes
are realized by means of designated object classes. Instead, introducing a new
kind of classes allows for a clear separation of concerns, as object classes are the
generators of state while thread classes are used to generate activity.

The signature of a thread class provides a thread class name C and a list of
formal parameters. The body of a thread class consists of a body statement stmt
and a concluding return. Thus, a CoJapl program p does not only provide a
sequence of class definitions cldef but additional it allows to define a sequence of
thread class definitions tdef .

The counterpart of a thread class definition is the spawn statement, which is
used to create a new thread instance from a thread class and which, thus, has
some similarities with the new statement. It specifies the name of the thread class
which serves as the code template for the new thread. A sequence of expressions
e represent the actual parameter of the new thread. The spawn statement is an
assignment. It allows to store the thread identifier of the new thread in a variable
x. A thread identifier is comparable with an object name insofar as it uniquely
identifies a thread. Note however, that a thread is not allocated on the heap.
Specifically, we assume the existence of another infinite set thread which serves

139

140CHAPTER 6. CONCURRENT PROGRAMMING LANGUAGE – COJAPL

p ::= impdecl ; T x; cldef tdef { stmt ; return } program

impdecl ::= import C import declaration

cldef ::= class C{ T f ; con mdef } class definition

con ::=C(T x){ T x; stmt ; return } constructor

mdef ::=T m(T x){ T x; stmt ; return e } meth. definition

tdef ::= thread C(T x){ stmt ; return } thread class definition

stmt ::=x = e | x = e.m(e, . . . , e) | x = new C(e, . . . , e) statements

| f = e | ε | stmt ; stmt | {T x; stmt}
| while (e) {stmt} | if (e) {stmt} else {stmt}
| x = spawn C(e, . . . , e)

e ::=x | f | null | this | op(e, . . . , e) | tid | tclass expressions

Table 6.1: CoJapl language: syntax

as the domain of thread identifiers. For the sake of simplicity we do not allow to
pass around thread identifiers in terms of a parameter or a return value. Within
the thread itself, its thread identifier can be found out by means of the new
expression tid. Moreover, a thread may also identify the name of its thread class
using the expression tclass.

6.2 Static semantics

Similar to the syntax definition, also the type system needs only small changes
regarding the concurrency extension. Concerning the typing rules for the syntac-
tical constituents up to statements, given in Table 6.2, we only have to modify
Rule T-Prog and to add two rules for the two new constructs, namely for thread
definitions and for the spawn statement. Apart from these changes, we keep the
rules from Table 2.2 and, respectively, Table 2.9 without any changes.

As for the Rule T-Prog, we only have change the definition of the commit-
ment context Θ, as not only the object classes but also the thread classes are
provided to the program’s environment. This is essential as it enables an external
component to instantiate a thread class defined in the program. On account of
this, we have to extend the definition of the auxiliary function cltype. While in the
sequential setting the function cltype was used in order to extract the typing infor-
mation of a class from the corresponding object class definition, in the concurrent
setting it additionally has to extract the typing information from thread class
definitions. Thus, we extend the definition given in Section 2.2 by the following
definition:

cltype(thread C(T x){ stmt ; return}) def= C : T

Therefore, in contrast to the type of an object class, a thread class type consists
of its parameter type list T , only. Note, specifically, that a thread class type is not

6.3. OPERATIONAL SEMANTICS 141

a functional type because a thread does not provide a return value. Furthermore,
note in this context that we use the same domain CNames for, both, object classes
and thread classes. Hence, we assume all names of object classes and thread classes
to be unique within the program. In particular, a class name C is at most either
typed as an object class or as a thread class.

Rule T-TDef deals with the syntax check of thread class definitions. Again,
the rule is almost identical to the corresponding rule for constructors T-Con.
The local type context is extended by the formal parameters which is then used
to type check the body statement stmt of the thread class.

The spawn statement is type-checked by means of Rule T-Spawn. Such a
statement is well-typed if the variable x is a thread variable and if the class name
C, indeed, refers to a thread class definition such that the thread class’s formal
parameters and the actual parameters match regarding their types.

Table 6.3 deals with the typing rules for expressions. According to Table 2.3,
we only add two new typing rules and keep the rest unchanged. Both the new
expression, tid and tclass, are well-typed in any type context, as a statement is
always executed in context of a specific thread. Specifically, we will see in the next
section concerning the operational semantics that also the main body statement
of the program will be provided with a thread identifier nmain and a designated
thread class name Main.

6.3 Operational semantics

As mentioned earlier, thread classes serve as generators of activity. Indeed, the
required modifications of the operational semantics due to the introduction of
thread classes mostly affect the call stack, as it represents the active code. Recall,
that in Japl the call stack captures the sequential flow of control by means of a
list of activation records. That is, in the sequential setting, a call stack is of the
form

CS = AR0 ◦ARb1 ◦ARb2 . . . ◦ARbn,

where the activation records ARb1 to ARbn are either externally or internally blocked.
Hence, they are of the form

ARb ::= (µ, rcv x; mc) | (µ, rcv x:T ; mc).

The topmost activation record AR0, however, is either currently in execution or
it is externally blocked, i.e., in the latter case the program waits for an incoming
communication from the environment. Summarizing, we can say that the form
of the call stack as well as the rules of the operational semantics of Japl allow
to reduce only the topmost statement of the topmost activation record, if at all.
This way, the sequential flow of control is ensured. In particular, the operational
semantics adheres to the order of the sequentially composed statements.

Regarding the multi-threaded setting, it is natural to use the above mentioned
call stack mechanism for each thread, as each thread on its own shall adhere

142CHAPTER 6. CONCURRENT PROGRAMMING LANGUAGE – COJAPL

[T-Prog]

Γ′ = Γ, x:T Θ = cltype(cldef), cltype(tdef) Γ; ∆ ` impdecl : ok

Γ′; ∆,Θ ` cldef : ok Γ′; ∆,Θ ` tdef : ok Γ′; ∆,Θ ` stmt : ok

Γ; ∆ ` impdecl ; T x; cldef tdef {stmt ; return} : Θ

[T-Import]
C ∈ dom(∆)

Γ; ∆ ` import C : ok

[T-Class]
Γ′ = Γ, f :T , this:C Γ′; ∆ ` con : ok Γ′; ∆ ` mdef : ok

Γ; ∆ ` class C{T f ; con mdef } : ok

[T-Con]
Γ′ = Γ, x:T , x′:T ′ Γ′; ∆ ` stmt : ok

Γ; ∆ ` C (T x){T ′ x′; stmt ; return} : ok

[T-MDef]
Γ′ = Γ, x:T , x′:T ′ Γ′; ∆ ` stmt : ok Γ′; ∆ ` e : T

Γ; ∆ ` T m(T x){T ′ x′; stmt ; return e} : ok

[T-TClass]
Γ′ = Γ, x:T Γ′; ∆ ` stmt : ok

Γ; ∆ ` thread C(T x){stmt ; return} : ok

[T-VUpd]
Γ; ∆ ` e : Γ(x)

Γ; ∆ ` x = e : ok
[T-FUpd]

Γ; ∆ ` e : Γ(f)

Γ; ∆ ` f = e : ok

[T-Call]
Γ; ∆ ` e : C Γ(x) = ∆(C)(m).ran Γ; ∆ ` e : ∆(C)(m).dom

Γ; ∆ ` x = e.m(e) : ok

[T-New]
Γ(x) = C Γ; ∆ ` e : ∆(C)(C).dom

Γ; ∆ ` x = new C(e) : ok

[T-Seq]
Γ; ∆ ` stmt1 : ok Γ; ∆ ` stmt2 : ok

Γ; ∆ ` stmt1; stmt2 : ok
[T-Block]

Γ, x:T ; ∆ ` stmt : ok

Γ; ∆ ` {T x; stmt} : ok

[T-While]
Γ; ∆ ` e : bool Γ; ∆ ` stmt : ok

Γ; ∆ ` while (e) {stmt} : ok

[T-Cond]
Γ; ∆ ` e : bool Γ; ∆ ` stmt1 : ok Γ; ∆ ` stmt2 : ok

Γ; ∆ ` if (e) {stmt1} else {stmt2} : ok

[T-Spawn]
Γ(x) = thread Γ; ∆ ` e : ∆(C)

Γ; ∆ ` x = spawn C(e) : ok

Table 6.2: CoJapl language: type system (stmts)

6.3. OPERATIONAL SEMANTICS 143

[T-Var]
Γ(x) = T

Γ; ∆ ` x : T
[T-Field]

Γ(f) = T

Γ; ∆ ` f : T

[T-Null] Γ; ∆ ` null : C [T-This]
Γ(this) = C

Γ; ∆ ` this : C

[T-Op]
Γ; ∆ ` e : dom(∆(op)) ran(∆(op)) = T

Γ; ∆ ` op(e) : T

[T-Tid] Γ; ∆ ` tid : thread [T-Tclass] Γ; ∆ ` tclass : CNames

Table 6.3: CoJapl language: type system (exprs)

to the order of the statements. Therefore, in the concurrent extension of our
programming language, we will make use of a set of call stacks. To this end, we
will use thread configuration mappings. A thread configuration mapping tc is a
function of the type

TC = thread⇀ (CNames × CS)

which maps a thread identifier to its call stack, if the program configuration
contains a thread with the thread identifier. Otherwise the mapping is undefined
for this identifier. In addition to the call stack, however, a call stack mapping
provides the thread class name of the thread. We use

tc(n).tclass and tc(n).cs

in order to refer to the thread class and to the call stack of a thread identifier n,
respectively. As for other mappings, we denote the thread configuration mapping
that results from modifying tc by mapping the thread identifier n to the thread
class C and call stack CS with

tc[n 7→ (C,CS)].

Recall, that this means either an extension of the original domain of tc by the
new element n or an update of tc concerning the image of t. In the latter case,
we often write

tc[n 7→ CS] as a short form for tc[n 7→ (tc(n).tclass,CS)],

as the execution of the thread may change its call stack but not its thread class,
anyway.

Therefore, a configuration of the multi-threaded language CoJapl only differs
from configuration of the sequential language Japl in that the call stack is replaced

144CHAPTER 6. CONCURRENT PROGRAMMING LANGUAGE – COJAPL

by a thread configuration mapping. We redefine the set of configurations Conf to

Conf def= (H× V ×TC).

In our concurrency model, not all threads are executed in parallel, but the oper-
ational semantics implements a scheduler allowing only one thread at a time to
exercise an undetermined number of computation steps. That is, the execution of
threads is interleaved. Note, that we embark on a preemptive concurrency model.
We do not provide specific language constructs like wait or notify by which a
thread could influence the actual scheduling. In particular, neither can a thread
explicitly give away the control to another thread nor can it claim execution time.

Now let us discuss the rules of the operational semantics that deal with inter-
nal computation steps. They are defined in Table 6.4 and Table 6.5. Regarding
the internal rules, the transition from Japl’s sequential setting to CoJapl’s multi-
threaded setting basically consists of the above mentioned replacement of the
call stack by the thread configuration mapping within the configurations. Hence,
within each transition rule, the call stack is replaced by a thread configuration
mapping. Each rule non-deterministically chooses a thread identifier n of the
thread configuration mapping’s domain. Then the associated call stack is reduced
much like in the corresponding rules of the sequential setting. Finally, the re-
sulting thread configuration replaces the original configuration within the thread
configuration mapping. Note, non-deterministically choosing a thread represents
a very simple scheduling policy which, specifically, does not guarantee fairness.
In other words, theoretically it may happen that a specific thread never gets any
execution time.

As for Rule Call, the transition from Japl to CoJapl does not only entail the
above mentioned call stack replacement, but additionally we have to provide the
method with values for the expressions tid and tclass. In order to find out the
thread class of the thread n, we do not only look up the thread’s call stack in the
thread configuration mapping tc but also its thread class CT .

Regarding Rule Spawn some more words are in order. We assume that a
thread with thread identifier n1 is about to spawn a new thread of thread class
C. To this end, we choose a new thread name n2 which is not already in use,
hence, which is not in the domain of the thread configuration mapping tc, already.
The new thread identifier n2 is returned to the call stack of thread n1 which
correspondingly updates the value of variable x by modifying the local variable
function list and the global variables. As for the new thread, we create a new
call stack CS2 which consists of a single activation record, only. In particular,
the activation record code is represented by the body of thread class C and its
local variable function list consists of the variable function vl only, capturing the
thread’s identifier, its class name, and the parameters x of the spawn statement.
Finally the thread configuration mapping is updated in that, on the one hand, it
gets extended regarding thread identifier n2 and, on the other hand, the entry of
thread identifier n1 is updated.

6.3. OPERATIONAL SEMANTICS 145

[Ass]

tc(n).cs = (µ, x = e; mc) ◦CSb

(v′, µ′) = vupd(v, µ, x 7→ [[e]]v,µh) CS = (µ′,mc) ◦CSb

(h, v, tc) (h, v′, tc[n 7→ CS])

[FUpd]

tc(n).cs = (µ, f = e; mc) ◦CSb CS = (µ,mc) ◦CSb

o = [[this]]v,µh (C,F) = h(o) h′ = h[o 7→ (C,F[f 7→ [[e]]v,µh])]
(h, v, tc) (h′, v, tc[n 7→ CS])

[Call]

tc(n) = (CT , (µ, x = e.m(e); mc) ◦CSb)
CS = (vl,mbody(C,m)) ◦ (µ, rcv x; mc) ◦CSb

o = [[e]]v,µh C = h(o).class T x = mparams(C,m) Tl xl = mvars(C,m)
vl = {this 7→ o, tid 7→ n, tclass 7→ CT , x 7→ [[e]]v,µh , xl 7→ ival(Tl)}

(h, v, tc) (h, v, tc[n 7→ CS])

[New]

tc(n).cs = (µ, x = new C(e); mc) ◦CSb

CS = (vl, cbody(C); return this) ◦ (µ, rcv x; mc) ◦CSb

o ∈ N \ dom(h) h′ = h[o 7→ ObjC⊥] T x = cparams(C) Tl xl = cvars(C)
vl = {this 7→ o, x 7→ [[e]]v,µh , xl 7→ ival(Tl)}

(h, v, tc) (h′, v, tc[n 7→ CS])

[BlkBeg]

tc(n).cs = (µ, {T x; stmt}; mc) ◦CSb CS = (vl·µ, stmt ; BE mc) ◦CSb

vl = {x 7→ ival(T)}
(h, v, tc) (h, v, tc[n 7→ CS])

[BlkEnd]
tc(n).cs = (vl·µ, BE mc) ◦CSb CS = (µ,mc) ◦CSb

(h, v, tc) (h, v, tc[n 7→ CS])

[Whl1]

tc(n).cs = (µ, while (e) {stmt}; mc) ◦CSb

CS = (µ, stmt ; while (e) {stmt}; mc) ◦CSb [[e]]v,µh
(h, v, tc) (h, v, tc[n 7→ CS])

[Whl2]
tc(n).cs = (µ, while (e) {stmt}; mc) ◦CSb CS = (µ,mc) ◦CSb ¬[[e]]v,µh

(h, v, tc) (h, v, tc[n 7→ CS])

Table 6.4: CoJapl language: operational semantics (internal, part 1)

Also the interface communication rules of the operational semantics basically
result from the rules of Table 2.12 by exchanging the configuration’s call stack
with a thread configuration mapping. Additionally, we extend the communication
labels a concerning incoming and outgoing calls and returns with the thread n

146CHAPTER 6. CONCURRENT PROGRAMMING LANGUAGE – COJAPL

[Cond1]

tc(n).cs = (µ, if (e) {stmt1} else {stmt2}; mc) ◦CSb

CS = (µ, stmt1; mc) ◦CSb [[e]]v,µh
(h, v, tc) (h, v, tc[n 7→ CS])

[Cond2]

tc(n).cs = (µ, if (e) {stmt1} else {stmt2}; mc) ◦CSb

CS = (µ, stmt2; mc) ◦CSb ¬[[e]]v,µh
(h, v, tc) (h, v, tc[n 7→ CS])

[Ret]

tc(n).cs = (µ1, return e) ◦ (µ2, rcv x; mc) ◦CSb

CS = (µ′2,mc) ◦CSb (v′, µ′2) = vupd(v, µ2, x 7→ [[e]]v,µ2
h)

(h, v, tc) (h, v′, tc[n 7→ CS])

[Spawn]

tc(n1).cs = (µ, x = spawn C(e); mc) ◦CSb CS1 = (µ′,mc) ◦CSb

n2 ∈ N \ dom(tc) (v′, µ′) = vupd(v, µ, x 7→ n2) CS2 = (vl, tbody(C))
T x = tparams(C) vl = {tid 7→ n2, tclass 7→ C, x 7→ [[e]]v,µh }

(h, v, tc) (h, v′, tc[n1 7→ CS1][n2 7→ CS2])

Table 6.5: CoJapl language: operational semantics (internal, part 2)

that carries out the communication step:

a ::= γ? | γ!
γ ::= n〈call o.m(v)〉 | n〈new C(v)〉 | n〈return (v)〉 | ν(∆,Θ).γ,

where o ∈ N , v ∈ Vals and where ∆ and Θ are type mappings.

To understand the reason for the extension of the labels, recall that a com-
munication label shall consist of exactly the information that is passed to the
receiver by the corresponding communication step. Now if, for instance, an in-
coming method call occurs, then the program does not only recognize the method
m, the callee o, and the actual parameters v of the call but it can also find out the
corresponding thread identifier by means of the expression tid. The same applies
to constructor calls and to returns.

Note, in particular, that the thread of an incoming call may show up for the
first time. Hence, the thread identifier may be included in the type mapping
of the ν-binder. Since the program may inquire the thread class via tclass,
such a new thread is typed with its class name. In contrast to the ν-binder of
the sequential setting, the ν-binder of the multi-threaded setting consists of two
mappings, representing the assumed and the committed types. For, in Japl an
interface communication may only update either the commitment context or the
assumption context. In CoJapl this is not always the case, anymore. The reason
will become clear soon.

6.3. OPERATIONAL SEMANTICS 147

Apart from the program configuration modifications and from the above men-
tioned label extension, we have to deal with a new kind of interface communi-
cation, namely cross-border thread spawning. More specifically, the program may
spawn a thread of an externally defined thread class provoking an outgoing thread
spawn label. Likewise, the environment may spawn a thread concerning a thread
class of the program resulting in an incoming thread spawn label. Again, the jus-
tification for dedicated labels regarding thread spawning is that the spawn is
obviously an observable interaction: the new thread itself is aware of the fact that
it just has been spawned. In order to find out the constituents of a spawn label, let
us assume that the program spawns a new thread of an externally defined thread
class. Such a spawn is certainly implemented in terms of a spawn statement

x = spawn C(e),

where we consider C to be an externally defined thread class, i.e., a thread class
of the program’s environment. Similar to the cross-border constructor call, the
name of the class and the actual parameters are part of the communication label.
In contrast to a constructor call, where the calling thread is blocked until the en-
vironment yields the new object name, a thread spawn immediately returns and,
thus, immediately yields the new thread identifier. As a consequence, the outgoing
spawn label is equipped with the new thread identifier, such that the communi-
cation step provides both the communication partners with the new identifier.
Symmetrically, an incoming spawn label includes the new thread identifier, as
well. Therefore, we extend the above communication label definition as follows:

γ ::= 〈spawn n of C(v)〉.

Note that the spawn label γ provides the identifier n of the newly created thread
only but not the thread identifier of the thread that has executed the spawn
statement, as it is unknown to the new thread and, thus, unknown to the receiver
of the communication step.

Now let us get back to the ν-binder. In the sequential setting a new name
communicated in terms of an incoming communication represents always an ob-
ject of an environment class, that is, the ν-binder of incoming communication
always consists of an assumption type mapping ∆′, only – objects of program
classes are always created by the program itself. We have just seen, however, that
regarding the multi-threaded setting an incoming spawn provides the identifier
of the new thread already, even though the thread class is part of the program.
Consequently, the thread identifier of the incoming spawn is typed with the pro-
gram class such that the ν-binder includes a commitment type mapping Θ′. The
parameters e of the spawn, yet again, may entail the propagation of new environ-
ment objects as well, thus, the spawn label is equipped with, both, a commitment
and an assumption type context.

After this general introduction, the interface communcation rules of the op-
erational semantics are given in Table 6.6. Similar to the internal computation

148CHAPTER 6. CONCURRENT PROGRAMMING LANGUAGE – COJAPL

[SpawnO]

a = ν(Θ′,∆′).〈spawn n of C(v)〉! C ∈ dom(∆)
tc(n′) = (µ, x=spawn C(e); mc) ◦CS

tc′ = tc[n 7→ (µ′,mc) ◦CS]

∆,∆′ ` (h, v, tc) : Θ
a−→ ∆ ` (h, v′, tc′) : Θ,Θ′

where v = [[e]]v,µh ,
n ∈ N \ dom(tc),
(v′, µ′) = vupd(v, µ, x 7→ n),
∆′ = (n:C), and
Θ′ = new(h, v,Θ)

[SpawnI]

a = ν(∆′,Θ′).〈spawn n of C(v)〉? ∆ ` a : Θ
tc′ = tc[n 7→ (C, (vl, tbody(C))]

∆ ` (h, v, tc) : Θ
a−→ ∆,∆′ ` (h, v, tc′) : Θ,Θ′

where T x = tparams(C) and
vl = {tid 7→ n, tclass 7→ C,

x 7→ v}

[CallI]

a = ν(∆′).n〈call o.m(v)〉? ∆ ` a : Θ

tc(n) = (CT ,CSeb)

tc′ = tc[n 7→ (vl,mbody(C,m)) ◦CSeb]

∆ ` (h, v, tc) : Θ
a−→ ∆,∆′ ` (h, v, tc′) : Θ

where Θ ` o : C,

T x = mparams(C,m),

T ′ x′ = mvars(C,m), and
vl = {tid 7→ n, tclass 7→ CT ,

this 7→ o, x 7→ v,
x′ 7→ ival(T ′)}

[NewI]

a = ν(∆′).n〈new C(v)〉? ∆ ` a : Θ

tc(n) = (CT ,CSeb)

tc′ = tc[n 7→ (vl, cbody(C)) ◦CSeb]

∆ ` (h, v, tc) : Θ
a−→ ∆,∆′ ` (h′, v, tc′) : Θ

where o ∈ N \ dom(h),

h′ = h[o 7→ ObjC⊥],

T x = cparams(C),

T ′ x′ = cvars(C), and
vl = {tid 7→ n, tclass 7→ CT ,

this 7→ o, x 7→ v,
x′ 7→ ival(T ′)}

[CallInt]

a = ν(∆′).n〈call o.m(v)〉? ∆ ` a : Θ
∆′ ` n : CT

tc′ = tc[n 7→ (CT , vl,mbody(C,m)))]

∆ ` (h, v, tc) : Θ
a−→ ∆,∆′ ` (h, v, tc′) : Θ

where Θ ` o : C,

T x = mparams(C,m),

T ′ x′ = mvars(C,m), and
vl = {tid 7→ n, tclass 7→ CT ,

this 7→ o, x 7→ v,
x′ 7→ ival(T ′)}

[NewInt]

a = ν(∆′).n〈new C(v)〉? ∆ ` a : Θ
∆′ ` n : CT

tc′ = tc[n 7→ (CT , (vl, cbody(C)))]

∆ ` (h, v, tc) : Θ
a−→ ∆,∆′ ` (h′, v, tc′) : Θ

where o ∈ N \ dom(h),

h′ = h[o 7→ ObjC⊥],

T x = cparams(C),

T ′ x′ = cvars(C), and
vl = {tid 7→ n, tclass 7→ CT ,

this 7→ o, x 7→ v,
x′ 7→ ival(T ′)}

Table 6.6: CoJapl language: operational semantics (external)

6.3. OPERATIONAL SEMANTICS 149

rules, most of the external rules are similar to their sequential counterparts of
Table 2.12. As mentioned above, however, we additionally introduce two rules
concerning incoming spawns and, respectively, outgoing spawns. Rule SpawnO
deals with a spawn statement that results in an outgoing spawn label, i.e., the
corresponding thread class C is in the domain of the assumption context ∆. We
said already that the ν-binder of a spawn label provides an assumption and an
commitment update context. The commitment context Θ′ is determined by means
of the auxiliary function new introduced in Section 2.4.3. The assumption context
consists exactly of the thread identifier n which is used for the newly spawned
thread.

Dually, Rule SpawnI deals with an incoming spawn label. The domain of the
thread configuration mapping is extended by the thread class name C and a new
call stack consisting of the thread class’s thread body.

The environment can create threads by means of externally defined thread
classes, hence, the corresponding thread creation process is not observable by
the program. As a consequence, an incoming call via a new thread may occur,
i.e., a thread which is unknown to the program so far. On account of this, the
operational semantics of CoJapl provides two rules for incoming method calls and,
respectively, for incoming constructor calls. Rules CallI and NewI deal with
incoming calls by means of a thread n which is known to the program already.
In particular, the rules’ original thread configuration mapping tc maps n to a
thread class CT and a call stack. Thus, the incoming call causes an extension of
the existing call stack by a new activation record.

On the other hand, Rule CallInt and Rule NewInt are used for incoming
calls via an unknown thread n. The novel character of n is indicated by the fact
that n is bound in the communication label a such that is included in the label’s
type context ∆′. Consequently, the thread configuration mapping is extended by
the new thread n, where n is mapped to its thread class and a new call stack
consisting of the method or, respectively, the constructor body of the call.

Note, in contrast to the previous incoming communication rules, the three new
rules SpawnI, CallInt , and NewInt dealing with new threads do not require an
externally blocked call stack in the original configuration.

We conclude this section with a definition of the program execution, the initial
configurations, and the trace semantics of a CoJapl program. It is no big surprise
that these definitions resemble the corresponding definitions of the sequential
language.

Definition 6.3.1 (Execution, initial configurations, and trace semantics): Let

p ≡ impdecl ; T x; cldef tdef {stmt ; return}

be a syntactically correct and well-typed CoJapl program. A program execution of p is
a finite sequence of reduction steps, according to the rules of Table 6.4, Table 6.5, and

150CHAPTER 6. CONCURRENT PROGRAMMING LANGUAGE – COJAPL

[Intern]
c ∗ c′

∆ ` c : Θ ε=⇒ ∆′ ` c′ : Θ′

[Single]
∆ ` c : Θ a−→ ∆′ ` c′ : Θ′

∆ ` c : Θ a=⇒ ∆′ ` c′ : Θ′

[Seqnc]
∆ ` c : Θ s=⇒ ∆′ ` c′ : Θ′ ∆′ ` c′ : Θ′ t=⇒ ∆′′ ` c′′ : Θ′′

∆ ` c : Θ st=⇒ ∆′′ ` c′′ : Θ′′

Table 6.7: CoJapl language: traces

Table 6.6, starting from an initial configuration of the program

cinit(p)
def= (h⊥, {x 7→ ival(T)},
{ nmain 7→ ({tid 7→ nmain , tclass 7→ Main}, stmt ; return) }),

or, respectively,

cinit(p)
def= (h⊥, {x 7→ ival(T)}, ε).

Correspondingly, by means of the rules of Table 6.7, we define three semantic func-
tions

[[·]]atrace , [[·]]
p
trace , [[·]] : ∆ ` p : Θ ⇀ P(a∗),

such that for ∆ ` p : Θ it is

[[∆ ` p : Θ]]atrace
def= {s ∈ a∗|∆ ` cinit(p) : Θ s=⇒ ∆′ ` c′ : Θ′},

[[∆ ` p : Θ]]ptrace
def= {s ∈ a∗|∆ ` cinit(p) : Θ s=⇒ ∆′ ` c′ : Θ′}, and

[[∆ ` p : Θ]] def= [[∆ ` p : Θ]]atrace ∪ [[∆ ` p : Θ]]ptrace .

	II Testing Multi-threaded Components
	6 Concurrent programming language – CoJapl
	6.1 Syntax
	6.2 Static semantics
	6.3 Operational semantics

