
Testing object Interactions
Grüner, A.

Citation
Grüner, A. (2010, December 15). Testing object Interactions. Retrieved from
https://hdl.handle.net/1887/16243
 
Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/16243
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16243


Part II

Testing Multi-threaded
Components

135





137

In the previous part of this thesis we presented a formal framework for testing
object-oriented components in a sequential setting. That is, the language allowed
for a single-threaded flow of control, only. In the following part, we suggest an
extension of the framework regarding multi-threaded components. In particular,
we will extend the underlying programming language with the notion of threads.
In languages like Java and C] objects are passive entities residing in the heap of
the program – instantiated from classes that serve as “generators of state”; the
active part of the program is represented by threads. Indeed, in a multi-threaded
setting, there is also a mechanism for “generating new activity”, i.e., for creating
new threads. Thus, we extend our previous work by thread instantiation from
thread classes, meaning that new activities can be dynamically spawned from
“templates”.

Correspondingly, we have to adapt the test specification language. The un-
derlying idea is that we cope with multi-threading by providing a specification
statement for each thread. Hence, only the order of interactions which belong to
the same thread is specified.

Finally, we sketch how the code generation algorithm of the single-threaded
setting can be modified in order to generate test programs also for multi-threaded
components.




