
Testing object Interactions
Grüner, A.

Citation
Grüner, A. (2010, December 15). Testing object Interactions. Retrieved from
https://hdl.handle.net/1887/16243

Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/16243

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16243

Chapter 5

Further possible
extensions

Within the last chapters we have provided a basic framework for testing compo-
nents of object-oriented class-based languages like Java and C]. A main contribu-
tion was the development of a test specification language which allows to specify
a desired interface trace in order to stipulate the expected interface behavior of an
object-oriented component under test. As mentioned earlier, however, some of the
common features of object-oriented programming languages have been omitted.
In this chapter we want to discuss some of these features. In particular, we sketch
possible approaches to incorporating certain features into our programming lan-
guage. We also investigate the extension’s impact on our testing approach and
correspondingly suggest additional modifications of the specification language, if
necessary. Furthermore, we discuss some extensions concerning the specification
language only, that is, language features that may facilitate writing test specifi-
cation.

5.1 Specification classes

We have introduced a test specification language which can be used to describe
expected interface interactions of communicating objects. The specification lan-
guage itself, however, is not object-oriented. Extending the specification language
with classes and objects may allow for reusing and parameterizing specifications.

Specifically, in this section we want to investigate an extension of the specifi-
cation language with specification classes. Method bodies of specification classes
consist of specification statements. An invocation of such a specification method
gives rise to the expectation of the interface interaction sequence given by the
method’s body. A specification statement within a method body might contain
reference to fields and to parameters of the method as well as calls to other spec-
ification methods. In particular, a specification method may call itself, i.e., the
extension of the language introduces recursion. Summarizing, a method body of

115

116 CHAPTER 5. FURTHER POSSIBLE EXTENSIONS

s ::= cutdecl T x; mokdecl cldef { stmt } specification

cutdecl ::= test class C; test unit class

mokdecl ::= mock class C{C(T, . . . , T); T m(T, . . . , T)}; mock class

cldef ::= class C{T f ; con mdef } class def.

con ::=C(T x){T x; stmt ; return} constructor

mdef ::=X m(T x){T x; stmt ; return} meth. def.

stmt ::=x = e | x = new C() | ε | stmt ; stmt | {T x; stmt} statements

| while (e) {stmt} | if (e) {stmt} else {stmt}
| stmt in | stmtout | case { stmt in ; stmt }
| f = e | e.m(e, . . . , e) | x = new C(e, . . . , e)

stmt in ::= (C x)?m(T x).where(e) {T x; stmt ; !return e} incoming stmt

| new(C x)?C(T x).where(e) {T x; stmt ; !return}
stmtout ::= e!m(e, . . . , e) {T x; stmt ; ?return(x).where(e)} outgoing stmt

| new!C(e, . . . , e) {T x; stmt ; ?return(x).where(e)}
e ::=x | f | this | null | op(e, . . . , e) expressions

X ::= ? | ! control context

Table 5.1: Extension by specification classes: syntax

a specification class represents a trace specification which is possibly abstracted
over parameters, variables, and sub-traces.

Note that introducing specification classes, renders it necessary to distinguish
them from mock classes. While mock classes are still given in terms of their sig-
nature only, specification classes in contrast are fully-fletched classes similar to
the programming language classes except that their method bodies may contain
expectation statements. Furthermore, mock objects still neither provide fields nor
do they allow for internal method calls. On the contrary, specification classes and
their objects must not show up at the interface trace, hence, they can be consid-
ered as hidden classes with respect to the specification program’s environment.
We will capture these requirements by the type system, which we will explain
somewhat later.

Table 5.1 suggests a grammar extension of the specification language regarding
specification classes. We have extended the grammar of the original specification
language given in Table 3.1 by constructs for class definitions and by statements
for method and constructor calls as well as field updates. The definition of specifi-
cation classes resembles the definition of conventional classes in the programming
language but differs in two aspects. First, for simplicity reasons, method defini-
tions do not include return values and therefore not a return type either. Second,
instead of a return type, method definitions state the control context X of the
body statement. Note, that a method call statement does not entail an assign-
ment, due to the lack of a return value. Finally, we have added rules for expressions
that yield the current object’s name or the value of one of its fields, respectively.

5.1. SPECIFICATION CLASSES 117

We said earlier, that we have to distinguish mock and specification classes.
The proper differentiation will be carried out by the type system. In particular,
internal method calls as well as field accesses may only be targeted at instances of
specification classes, while interface communication statements may only involve
external or mock classes.

Additionally, we have to ensure that the new constructs do not allow to spec-
ify an inconsistent control flow. For, in general we want to allow invocations of
specification methods to appear within, both, passive and active control context,
yet we have to check that a specification method’s body complies with the con-
trol context of its call. In account of this, we extend the type definition given in
Definition 2.2.1 by adding the rule

T ::= (MNames ∪ CNames) ⇀ (U × . . .× U)γ .

The new type is used for specification classes. It yields the parameter types and
the control context γ of each of the specification class’s methods and constructor,
allowing to check for control flow consistency. At the same time, it also allows to
distinguish mock and specification classes, as mock classes will be associated with
the usual class types.

The type system of the original specification language is extended by rules for
the new constructs. These new rules resemble the corresponding typing rules of
the programming language as given in Table 2.2 and Table 2.3. Besides adding
new rules we only have to modify the Rule T-Spec in order to deal with the new
class definitions. Thus, Table 5.2 only shows the new version of Rule T-Spec as
well as the new rules concerning the new class definition constructs and the new
statements. All other rules that were given in Table 3.2 are inherited without any
modifications and are, therefore, left out. We also omit the straightforward typing
rules for the new expressions.

As mentioned earlier, we extend Rule T-Spec with a judgment for type check-
ing the specification class definitions. Additionally, we have to ensure that spec-
ification types do not show up in the interface communication. That is, the sig-
natures of methods and constructors of both, mock classes and imported classes,
must not include class names of specification classes. This check is abbreviated
by the new premise ∆ ` Θ : ok, which stands for:

∀C ∈ dom(∆). ∀C ′ ∈ commedCl(C,∆). C ′ ∈ dom(Θ)⇒ isMockCl(C ′)
∧
∀C ∈ dom(Θ). isMockCl(C)⇒ ∀C ′ ∈ commedCl(C,Θ).
C ′ ∈ dom(Θ)⇒ isMockCl(C ′),

where we use the following two auxiliary functions in order to determine the set
of communicated class names within the signature of a given class and to find out
if a class is a mock class but not a specification class:

commedCl(C,χ) def= ∪m∈dom(C){χ(C)(m).dom ∪ χ(C)(m).ran} and

isMockCl(C) def= Θ(C) ∈ (FNames ∪ CNames) ⇀ (T × . . .× T → T)

118 CHAPTER 5. FURTHER POSSIBLE EXTENSIONS

[T-Spec]

Γ; ∆ ` cutdecl : ok Θ = cltype(mokdecl), cltype(cldef)

∆ ` Θ : ok Γ′ = Γ, x:T Γ′; ∆; Θ ` cldef : ok Γ′; ∆; Θ ` stmt : okγ

Γ; ∆ ` cutdecl mokdecl T x; cldef { stmt } : Θγ

[T-SClass]
Γ′ = Γ, f :T , this:C Γ′; ∆; Θ ` con : ok Γ′; ∆; Θ ` mdef : ok

Γ; ∆; Θ ` class C{T f ; con mdef } : ok

[T-Con]
Γ′ = Γ, x:T , x′:T ′ Γ′; ∆; Θ ` stmt : okact

Γ; ∆; Θ ` C(T x){T ′ x′; stmt ; return} : ok

[T-MDef]
Γ′ = Γ, x:T , x′:T ′ Γ′; ∆; Θ ` stmt : okγ(X)

Γ; ∆; Θ ` X m(T x){T ′ x′; stmt ; return} : ok

[T-CallSCl]
Γ; ∆,Θ ` e : C Θ(C)(m) = T

γ
Γ; ∆ ` e : T

Γ; ∆; Θ ` e.m(e) : okγ

[T-NewSCl]

Θ(C)(C) = T
act

Γ; ∆,Θ ` e : T

Γ; ∆; Θ ` x = new C(e) : okact
[T-FUpdSCl]

Γ; ∆,Θ ` e : Γ(f)

Γ; ∆; Θ ` f = e : okact

Table 5.2: Extension by specification classes: type system (stmts)

In words, each externally defined class shall communicate only instances of tester
classes that are indeed mock classes. Likewise, each mock class shall only commu-
nicate instances of tester classes that are mock classes, too.

The new typing Rule T-SClass deals with specification classes and is almost
identical to Rule T-Class for programming classes except that the assumed typ-
ing context is conformed to the typing context of the specification language’s type
system. Note, that a class definition is well-typed in a passive and in an active
control context. Also constructor and method definitions are well-typed in any
control context as can be seen from Rule T-SCon and Rule T-SMDef, respec-
tively. The body of a constructor definition, however, is only well-typed in an
active control context; a method body is type-checked in the control context that
has been stated in the method definition. Consequently, an internal method call is
only well-typed if it occurs in a control context which corresponds to the control
context of the called method (T-CallSCl). This check also ensures that no mock
method can be called internally, as mock classes do not provide control contexts
for their methods at all. An instantiation of a specification class is handled in
Rule T-NewSCl. It may only occur in an active control context as it involves a
side-effect in form of a variable update. For the same reason, also field updates are
only allowed in an active control context, as can be seen in Rule T-FUpdSCl.

5.1. SPECIFICATION CLASSES 119

Concerning the operational semantics, we can leave the rules regarding the
interface communication as given in Table 3.3 in Section 3.4. For, the specification
classes must not make any contributions to the interface communication. As for
the internal computation steps, the operational semantics has to be extended by
new rules for the three new statements, namely for field updates, method calls and
constructor calls of specification classes. Additionally, we have to add rules for the
return from internal method and constructor calls. Fortunately, we can borrow
the corresponding internal rules of the programming language of Table 2.7 with
almost no modifications. We only have to simplify Rule Call and Ret, since in
the specification language the internal calls do not return values. The new rules are
given in Table 5.3. Finally, the new constructs do not entail new types of interface
communications, hence, we do not have to extend or modify the transition rules
dealing with the interface communication.

[FUpd]
o = [[this]]v,µh (C,F) = h(o) h′ = h[o 7→ (C,F[f 7→ [[e]]v,µh])]

(h, v, (µ, f = e; mc) ◦CSb) (h′, v, (µ,mc) ◦CSb)

[Call]

o = [[e]]v,µh C = h(o).class T x = mparams(C)(m) Tl xl = mvars(C)(m)

vl = {this 7→ o, x 7→ [[e]]v,µh , xl 7→ ival(Tl)}
(h, v, (µ, e.m(e); mc ◦CSb) (h, v, (vl,mbody(C,m)) ◦ (µ, rcv; mc) ◦CSb)

[New]

o ∈ N \dom(h) h′ = h[o 7→ ObjC⊥] T x = cparams(C) Tl xl = cvars(C)

vl = {this 7→ o, x 7→ [[e]]v,µh , xl 7→ ival(Tl)}
(h, v, (µ, x = new C(e); mc) ◦CSb)
(h′, v, (vl, cbody(C); return this) ◦ (µ, rcv x; mc) ◦CSb)

[Retm] (h, v, (µ, return) ◦(µ′, rcv; mc) ◦CSb) (h, v, (µ′,mc) ◦CSb)

[Retc]
(v′, µ′′) = vupd(v, µ′, x 7→ [[e]]v,µh)

(h, v, (µ, return e) ◦(µ′, rcv x; mc) ◦CSb) (h, v′, (µ′′,mc) ◦CSb)

Table 5.3: Extension by specification classes: operational semantics

Although extending the specification language by specification classes was
more or less straightforward, the code generation algorithm gets considerably
more complex. This has three reasons. First, introducing recursion entails the
possibility that several instances of an expectation statement’s local variable exist
in the variable stack at the same time, rendering it impossible to replace them by
global variables. The same applies to the parameters of an expectation statement.
Consider for instance a specification that contains the following method definition:

?specMeth(C o1) {
o1?mockMeth(C o2, D o3){

o3!unitMeth(){

120 CHAPTER 5. FURTHER POSSIBLE EXTENSIONS

this.specMeth(o2);
?return()
};
!return(o3)
};
return

}

The body of the specification method specMeth represents the expectation of an
incoming call of mockMeth, which is not answered with an immediate return but
provokes a call-back of method unitMeth to the component under test. The body
of the call-back specification, in turn, contains a recursive call of the specification
method specMeth.

This example makes clear, that introducing global variables for the incoming
call’s parameters o2 and o3 is not sufficient, as the execution of the specification
may lead to two instances of the incoming call statement of mockMeth on the
call stack, where each instance needs its own parameter representation in the
variable stack. As a consequence, the parameters and local variables of interaction
statements cannot be replaced by global variables anymore but one has to emulate
the variable stack of the called methods.

The second complication concerns the update of the global variable next which
we used to anticipate the next incoming communication. A specification program
may contain several internal call statements referring to the same specification
method, such that each call statement requires a different update of next after
the specification method has been processed. For a better understanding, consider
the following specification snippet:

?specMeth() {
(C x)?mockMeth1(){ !return() };
return

}
...
{ // main body of specification :

specMeth(); (D y)?mockMeth2() { !return() };
specMeth(); (E z)?mockMeth3() { !return() }
}

Thus, we have defined a specification methods specMeth, which is called by the
main body twice, such that each call is followed by the incoming call statement of
another mock method (namely mockMeth2 and mockMeth3, respectively). Follow-
ing the labeling approach suggested in Chapter 4, we would equip the incoming
call of mockMeth2 and mockMeth3 with expectation ids, say, i2 and i3. Moreover,
we would have to insert an update of next in front of the last outgoing communi-
cation term that precedes the incoming call statements. In our example, however,
both the incoming call statements, mockMeth2 and mockMeth3, are preceded by
the outgoing return term in the specification method specMeth. Thus, we cannot
determine the identifier of the next expected incoming call statically, as specMeth

5.1. SPECIFICATION CLASSES 121

is called more than once. A solution to this problem is to adapt the preprocessing
steps such that we add a parameter to each specification method for incoming
communications. The parameter is used to determine the desired update state-
ment for next . Thus, regarding our example, the outcome of the preprocessing
could be sketched in the following way:

?specMeth(int updatebranch) {
[i1](C x)?mockMeth1(){
if (updatebranch == 1) { nxt = i2 }
else { };
if (updatebranch == 2) { nxt = i3 }
else { };
!return };

return

}
...
{ // main body of specification :
. . .
specMeth(1); [i2](D y)?mockMeth2() { . . . !return };
specMeth(2); [i3](E z)?mockMeth3() { . . . !return }
}

The third complication arise from the fact that specification methods for pas-
sive control contexts, i.e., a specification method whose body starts with an in-
coming call statement, cannot be translated to a corresponding method in the
programming language. Again consider a small example

?specMeth(C x) {
x?mockMeth(){ . . . !return };
return

}
...
{ // main body of specification :
. . . o1!unitMeth() { specMeth(o2); . . . ?return }
}

In this example, a specification method specMeth is given whose body consists
of an incoming call statement where the expected callee is determined by the
specification method’s parameter x. An invocation of method specMeth happens in
the main body right after an outgoing call term. Thus, this internal call cannot be
carried out in the programming language as it does not allow internal computation
steps right after an outgoing communication. Moreover, we know from Chapter 4
that the incoming call statement in specMeth will be translated to a fragment
of the method definition of method mockMeth. However, certainly the method
mockMeth won’t have direct access to parameters of the specification method.

To overcome these problems, we suggest the following approach. According to
Rule Call in Table 5.3, the invocation of a specification method results into a

122 CHAPTER 5. FURTHER POSSIBLE EXTENSIONS

new activation (vl,mbody(C)(m) which may evolve to some (µ,mc), in general.
In the translated code, we emulate the call of a specification method that ap-
pears within passive control contexts by providing a global variable specMethVars
which captures the variable function lists µ of its activation records. Since passive
specification methods do not contain active statement that have to be carried out
by the specification method, we do not need a representation of the activation
record’s code mc. The variable specMethVars consists of a list of structures where
each structure contains the a specification method’s local variable list µ including
its actual parameters as well as a reference to the corresponding specification ob-
ject. Accesses to the parameters and local variables of a specification method are
replaced by accesses to the structure. Accesses to fields of a specification object
are replaced by calls to designated access methods.

Now, a call of a passive specification method has to be anticipated such that a
corresponding structure is created right before the preceding outgoing communi-
cation happens. Correspondingly, prior to the last outgoing communication term
within the specification method the structure of the specification method has to
be deleted. Hence, we have to extend the anticipation mechanism of Section 4.1
such that is does not only handle the anticipation of incoming call expectations
but also the anticipation regarding invocations of specification methods that entail
an incoming call expectation.

5.2 Programming classes

The previous section has shown that extending the specification language with
specification classes requires a complex adaption of the code generation process.
Extending the specification language with programming language classes, in con-
trast, only involves a rather moderate adaption. More specifically, we want to
allow the usage of classes whose method bodies do not contain any specification
statements but only programming language statements. Calls to these methods
may only occur within an active control context. Instances of these classes may
show up at the interface only in object position, i.e., as a parameter or return
value but not as a callee. Additionally, we want to support the import of pro-
gramming language classes. This facilitates writing a specification program, as
it allows, for instance, to import standard library classes implementing common
data structures as sets or lists or the like.

Table 5.4 shows the grammar for a specification language extended by pro-
gramming language classes. Actually, the syntactical extension of the specification
language is very similar to the modification of the last section. Again we borrow
the class definition constructs from the grammar of the programming language but
this time we don’t have to adapt the original method definition but we keep the
return expression and the type in the corresponding construct. We furthermore
extend the specification construct with the support for import declarations.

The idea is to embed the class concept of the programming language in the
specification language, such that classes of programming language components can

5.2. PROGRAMMING CLASSES 123

s ::= cutdecl impdecl mokdecl T x; cldef { stmt } specification

cutdecl ::= test class C; test unit class

impdecl ::= import C; imported class

mokdecl ::= mock class C{C(T, . . . , T); T m(T, . . . , T)}; mock class

cldef ::= class C{T f ; con mdef } class def.

con ::=C(T x){T x; stmt ; return} constructor

mdef ::=T m(T x){T x; stmt ; return e} meth. def.

stmt ::=x = e | x = new C() | ε | stmt ; stmt | {T x; stmt} statements

| while (e) {stmt} | if (e) {stmt} else {stmt}
| stmt in | stmtout | case { stmt in ; stmt }
| f = e | x = e.m(e, . . . , e) | x = new C(e, . . . , e)

stmt in ::= (C x)?m(T x).where(e) {T x; stmt ; !return e} incoming stmt

| new(C x)?C(T x).where(e) {T x; stmt ; !return}
stmtout ::= e!m(e, . . . , e) {T x; stmt ; ?return(x).where(e)} outgoing stmt

| new!C(e, . . . , e) {T x; stmt ; ?return(x).where(e)}
e ::=x | f | this | null | op(e, . . . , e) expressions

Table 5.4: Extension by programming classes: syntax

be used within specifications. Thus, it is important that class definitions which
represent syntactically correct and well-typed definitions regarding the program-
ming language are also syntax valid and well-typed regarding the specification
language. Moreover, such a class definition executed within a specification should
gives rise to the same semantics as in the programming language. A comparison of
the extended grammar of the specification language, given in Table 5.4, with the
grammar of the programming language, given in Table 2.1 and Table 2.8, shows
that indeed all instances of cldef in the grammar of Table 2.1 are also instances of
cldef in the grammar of Table 5.4: The grammar rules for the class, constructor,
and method definitions are identical; moreover, all statements of the programming
language are statements of the specification language, too. The converse, however,
does not hold, since the statements in the specification language also comprise the
interaction statements, which do not exist in the programming language.

We want to restrict the class definitions of the specification language to class
definitions of the programming language. In particular, a class’ method definitions
must not contain expectation statements. This restriction has to be carried out
by the type system. To this end, we introduce a new kind of control context int ,
called internal control context, which represents a subset of the active control
context. That is, every statement which is considered to occur in internal control
context is also in active control context. A statement is in internal control context
if the specification has the control and if the statement is also represented in the
syntax of the programming language. In particular, outgoing call statements may
occur in active control context but never in internal control context. Finally, in

124 CHAPTER 5. FURTHER POSSIBLE EXTENSIONS

order to restrict the class definitions to the desired ones, the type system will allow
method body to contain only statements which are in internal control context.

Furthermore, the type system has to ensure that the new programming lan-
guage classes do not occur as callee in specification statements. This is done by
introducing another typing context, Π, which includes all typed programming
language classes. Specifically, it contains the locally defined classes as well as im-
ported classes. This way, we can distinguish programming language classes from
mock classes and from the external classes that represent the component under
test.

Table 5.5 shows most of the typing rules for the specification language extended
with programming language classes. Rule T-Spec ensures that the classes of the
component under test are included in the type context ∆ and that the imported
programming language classes are included in the type context Π. Furthermore,
the class definitions appearing in the specification are type-checked, where the
assumed local type context is extended by the global variables and where the
type context for programming language classes is enriched by the defined classes
themselves. Finally, regarding the same type context, also the main specification
statement is checked, which again yields its control context γ.

Rule T-Class equals its pendant of the programming language apart from
the necessary adaption of the judgments regarding the the new type context Π.
Likewise, the rules T-Con and T-MDef resemble the corresponding program-
ming language rules. Except for the extended assumption context, however, they
additionally restrict the body statement of the method or constructor definition
to statements that are well-typed in an internal control context. That is, it en-
sures that the statement is also a syntactical valid statement of the programming
language.

As for the statements, on the one hand we introduce new rules dealing with
field updates (T-VUpdPCl), method calls (T-CallPCl), and the new class instan-
tiation statement (T-NewPCl). On the other hand, the remaining typing rules
regarding other statement, are borrowed from the original specification language.
The new rules are again almost identical to the corresponding rules of the pro-
gramming language’s type system. Only the control context is added, putting
the new statements in internal control context. Besides that, the type context
is extended by Π, which is used to verify the correct types of a constructor or,
respectively, method call’s parameters. In case of a method call, it is also con-
sulted regarding the return type. Since mock classes and classes of the component
under test do not provide access to their fields, it is ensured that the three new
statements indeed can only be addressed at programming language classes and
their instances.

As for the remaining inherited typing rules regarding statements, they are
again extended by the new name context. Some of them are also adapted regard-
ing the control context. A block statement, for instance, may appear within a
method body but also within a specification statement. The control context of
a block statement’s body determines also the control context of the whole block

5.2. PROGRAMMING CLASSES 125

[T-Spec]

∆ ` cutdecl : ok Π ` impdecl : ok Π′ = Π, cltype(cldef) Γ′ = Γ, x:T

Θ = cltype(mokdecl) Γ′; ∆; Π′; Θ ` cldef : ok Γ′; ∆; Π′; Θ ` stmt : okγ

Γ; ∆; Π′ ` cutdecl impdecl mokdecl T x; cldef {stmt} : Θγ

[T-Class]
Γ′ = Γ, f :T , this:C Γ′; ∆; Π; Θ ` con : ok Γ′; ∆; Π; Θ ` mdef : ok

Γ; ∆; Π; Θ ` class C{T f ; con mdef } : ok

[T-Con]
Γ′ = Γ, x:T , x′:T ′ Γ′; ∆; Π; Θ ` stmt : okint

Γ; ∆; Π; Θ ` C(T x){T ′ x′; stmt ; return} : ok

[T-MDef]
Γ′ = Γ, x:T , x′:T ′ Γ′; ∆; Π; Θ ` stmt : okint Γ′; ∆,Π,Θ ` e:T

Γ; ∆; Π; Θ ` T m(T x){T ′ x′; stmt ; return e} : ok

[T-VUpd]
Γ; ∆,Π,Θ ` e : Γ(x)

Γ; ∆; Π; Θ ` x = e : okint

[T-Block]

γ ∈ {act , int}
Γ, x:T ; ∆; Π; Θ ` stmt : okγ

Γ; ∆; Π; Θ ` {T x; stmt} : okγ

[T-NewInt]
C ∈ dom(Θ) Γ(x) = C

Γ; ∆; Π; Θ ` x = new C() : okint

[T-NewPCl]
Γ(x) = C Γ; ∆,Π,Θ ` e : Π(C)(C).dom

Γ; ∆; Π; Θ ` x = new C(e) : okint

[T-CallPCl]
Γ; ∆,Π,Θ ` e : C Γ(x) = C Γ; ∆,Π,Θ ` e : Π(C)(m).dom

Γ; ∆; Π; Θ ` x = e.m(e) : okint

[T-FUpdPCl]
Γ; ∆,Π,Θ ` e : Γ(f)

Γ; ∆; Θ ` f = e : okint

[T-Seq]
Γ; ∆; Π; Θ ` stmt1 : okγ Γ; ∆; Π; Θ ` stmt2 : okγ

Γ; ∆; Π; Θ ` stmt1; stmt2 : okγ

[T-CtrlSub]
Γ; ∆; Π; Θ ` stmt : okint

Γ; ∆; Π; Θ ` stmt : okact

Table 5.5: Extension by programming classes: type system (stmts)

statement, which thus can be now an active or an internal control context. The
instantiation of a mock class as well as incoming call and outgoing call statements
are still considered as passive or, respectively, active statements which are only
well-typed if the corresponding callee can be found in the commitment context
Θ or the assumed test component context ∆, respectively. This way, it is assured

126 CHAPTER 5. FURTHER POSSIBLE EXTENSIONS

that a programming language class may not occur as a callee within a specifica-
tion statement. Sequential composition, while-loops, and conditional statements
are well-typed within any control context. However, as in the block statement
case, the control context of each of these statements is determined by the control
context of their sub-constituents. In particular, the conditional statement and the
sequential statement are only well-typed if their sub-statements share the same
control context. For the sake of brevity, we have omitted some of the rules which
are transfered from the original specification language with only minor adaption
as mentioned above.

Finally, we need a subsumption rule, T-CtrlSub, regarding the active and
internal control context, as each internal statement, i.e., a statement which is
also part of the programming language, may also occur in an active specification
statement.

The grammar and the type system ensure that class definitions appearing
within a well-formed specification also represent well-formed class definitions re-
garding the programming language. This eases the extension of the operational
semantics. For, we can borrow the internal rules for internal method and con-
structor calls as well as for field updates from the operational semantics of the
programming language without the need for any modifications. Since the exten-
sion only concerns internal computations, we do not have to extend the external
transition rules.

Also the extension of the code generation is straightforward: the class defini-
tions can be transfered to the test program without any adaption. Moreover, the
newly introduced statements may only occur in active control context. In partic-
ular, they may only occur within an incoming call statement such that the code
generation algorithm will let them become part of the corresponding method or
constructor body. Hence, the statements can be copied into the corresponding
method or constructor definition of the resulting test program.

5.3 Subtyping and inheritance

Two important concepts of object-oriented programming languages are inheri-
tance and subtyping. The concept of inheritance facilitates the re-use of code.
In the context of class-based object-oriented languages, code re-use operates on
classes, i.e., one class can inherit the field and method definitions of another class.
Subtyping refers to the concept where types are put into a partial order relation
giving rise to type compatibility. More specifically, within a program, an expres-
sion of a certain type can be replaced by an expression of a smaller type without
compromising well-typedness. Although inheritance and subtyping actually rep-
resent two different concepts, most of the mainstream class-based programming
languages merge them to one concept that we will refer to as subclassing : A class
that inherits the code from another class represents a smaller, i.e. a subclass, of
the code-donating superclass. Integrating subtyping and inheritance is possible
due to the fact that classes represent types.

5.3. SUBTYPING AND INHERITANCE 127

p ::= impldecl; T x; cldef {stmt ; return} program
impdecl ::= import C import

cldef ::= class C extends C{T f ; con mdef } class definition
con ::=C(T x){T x; stmt ; return} constructor

mdef ::=T m(T x){T x; stmt ; return e} method definition
stmt ::=x = e | x = e.m(e, . . . , e) | x = new C(e, . . . , e) statements

| f = e | ε | stmt ; stmt | {T x; stmt}
| while (e) {stmt} | if (e) {stmt} else {stmt}
| x = super.m(e) | super(e)

e ::=x | f | null | this | op(e, . . . , e) expressions

Table 5.6: Japl with subclassing: syntax

We want to investigate the impact of introducing subclassing into our test-
ing approach. To this end, we extend our programming language with single-
inheritance and single-subtyping by introducing the notion of subclassing. That
is, a class may have at most one superclass. In particular, we do not account
for additional concepts that would introduce polymorphism, like, for instance,
Java’s notion of interfaces. Subclasses may provide new implementations of inher-
ited methods. In one word, we want to allow for overriding. To keep the extension
simple, however, we restrict overriding, such that the signature of the new method
definition entails exactly the same parameter and return types. In particular we
do not allow covariance on return types and we do not deal with overwriting
either. However, within a redefining method body we provide a keyword super
which allows to execute the implementation of the inherited method definition.
Finally, the extension of our language shall implement dynamic method dispatch,
meaning that the method body to be executed due to a method invocation is
determined not statically but at runtime.

The syntactical extension of the programming language is shown in Table 5.6.
Class definitions include a reference to the superclass. Furthermore, the set of
statements is extended by a method call statement and a constructor call state-
ment addressing the method implementation of the superclass. We assume the
existence of a class Object which provides no fields, no method definitions, and
only an empty constructor body. Thus, all classes imported or defined within the
program have at least class Object as superclass.

As for the type system, we have to incorporate the subtyping relation. To this
end, we extend the type of a class with the class name of its superclass:

T ::= clnames× ((MNames ∪ clnames) ⇀ (U × . . .× U → U))

Likewise, we have to adapt the auxiliary function cltype. Recall that cltype is
used to extract the type of a class from its definition. We modify the original

128 CHAPTER 5. FURTHER POSSIBLE EXTENSIONS

definition, given in Section 2.2, in that the type of a class shall also include the
typing information regarding its inherited methods. Thus, the function cltype
needs to consult the typing context in order to find out the method types of the
superclass:

cltype(∆, class C extends D{ T f ; con mdef }) def= C:(D, I) , where

I : (MNames ∪ CNames) ⇀ (U × . . .× U → U);

n 7→


(T → C) if n = C and C(T x){T ′ x′; stmt ; return} ∈ mdef
(T → T) if n = m and T m(T x){T ′ x′; stmt ; return e} ∈ mdef
(T → T) if ∆(D) = (E, I ′) and I ′(n) = (T , T)

We show in Table 5.7 new and, respectively, modified typing rules according to
the typing rules of Table 2.2 and Table 2.9. As mentioned above, the domain of
the auxiliary function cltype has been adapted, such that also rule T-Prog has
to be changed correspondingly. Note, that a class definition might use a class as
its superclass whose definition was given ahead within the program code. Thus,
the commitment context is determined incrementally. Specifically, we assume that
cldef consists of the sequence cldef 1 cldef 2 . . . cldef n.

The rule T-Class is merely modified in that we adapted the class definition
code in the conclusion judgment. In particular we didn’t change the handling
of the fields. It is a crucial point that still only the fields of the defining class
are incorporated into the local type context. For, the consequence is that the
constructor and the method bodies do not have access to fields provided by the
superclass. This way we stipulate a field access policy where all fields are consid-
ered as private in the sense that they can be accessed by instances of the defining
class, only. We will see later that this decision influences the observability of some
interaction.

The rules T-SupCall and T-SupNew implement the type check for the new
statements, namely for the call statements that address inherited method or con-
structor code. Since a class type also incorporates the type information of inherited
methods, we do not need to descent the type succession but we can check well-
typedness directly by consulting the type of the class that contains the super call.
To determine the class in question we only have to lookup the type of this. All
other premises are equal to the corresponding premises of the typing rules regard-
ing the conventional method and constructor calls. This entails a slight abuse of
notation, since now the type of a class does not only consist of the method and
constructor type function but it is now a pair consisting of the class name of the
super class and the mentioned type function. However, we keep the notation, that
is, although the type of a class C is now of the form ∆(C) = (D, I), we still write

∆(C)(m).dom and ∆(C)(m).ran

to denote the domain and, respectively, the range of the type function I. Similarly,
we write

∆(C).supcl

5.3. SUBTYPING AND INHERITANCE 129

[T-Prog]

Γ′ = Γ, x:T
Θ1 = cltype(∆, cldef 1) . . . Θn = cltype(∆,Θn−1, cldef n)

Γ; ∆ ` impdecl : ok Γ′; ∆,Θn ` cldef : ok Γ′; ∆,Θn ` stmt : ok

Γ; ∆ ` impdecl ; T x; cldef 1 . . . cldef n {stmt ; return} : Θn

[T-Class]
Γ′ = Γ, f :T , this:C Γ′; ∆ ` con : ok Γ′; ∆ ` mdef : ok

Γ; ∆ ` class C extends D{T f ; con mdef } : ok

[T-SupCall]
Γ(this) = C Γ(x) = ∆(C)(m).ran Γ; ∆ ` e : ∆(C)(m).dom

Γ; ∆ ` x = super.m(e) : ok

[T-SupNew]
Γ(this) = C Γ; ∆ ` e : ∆(C)(C).dom

Γ; ∆ ` super(e) : ok

Table 5.7: Japl with subclassing: type system (stmts)

to denote the superclass D of C.

As mentioned earlier, an instance of a class has only access to the fields that
are defined in that class. This is a central aspect for the operational semantics.
First of all, however, we should have a look at a small example which will reveal
that the above statement is actually not completely true, if sub-classing comes
into play. Consider a code fragment which consists of the definition of two classes
C and D.

1 C extends object {
2 T x;
3 T meth1() { x = . . . }
4 }
5

6 D extends C {
7 T y;
8 T meth2() { y = . . .; z = super.meth1(); . . . }
9 }

Each class definition consists of a variable declaration and a method definition.
Furthermore, class D is a subclass of class C. Now assume that we have an
instance o of class D and we call its method meth2. According to the method
body of meth2, its execution will change the value of the variable y. This is fine,
as the variable y is declared within class D. Moreover, it is true that the method
body of meth2 must not access the variable x, as it is not declared within the
definition of D. However, meth2 may call the method meth1 inherited from class
C. Method meth1, in turn, may access and even change the variable x. Therefore,
although object o is an instance of class D, it may access the inherited variable x
– but only by means of an invocation of an inherited method.

130 CHAPTER 5. FURTHER POSSIBLE EXTENSIONS

The consequence regarding the operational semantics is that object o is repre-
sented twice in the heap h of the program: one entry in h stores the value of x, the
other entry the value of y. The idea is that one entry represents o as an object of
class C and the other entry represents o as an instance of class D. Regarding the
execution of method meth2, o can be considered as an object of class D, hence it
may access the corresponding entry in h, only. Similarly, during the execution of
meth1 we may access o via the other entry only.

On account of this, we have to change the heap function in that it does not
only map object names o to objects (C,F) consisting of the object’s class C and
the object’s field values F (cf. Definition 2.3.1), but the domain of the heap is
extended by class names. Thus, a heap maps pairs of object and class names to
objects. That is, the set of heap functions is redefined to:

H
def= (CNames ×N) ⇀ Obj .

Note, that an object still is represented by a pair (C,F) consisting of the object’s
field function F but also of its class C. The class C is the class from which the
object has been instantiated. For instance, regarding the above example object o
of class D has two representations in the heap h. In particular, it is

h(D, o) = (D, {y 7→ vx}) and h(C, o) = (D, {x 7→ vy}).

Moreover, we introduce a new auxiliary variable cls which is used to determine
the class of the currently executed method body. Specifically, assuming a heap h,
a global variable function v, and a local variable function list µ it is

C = [[cls]]v,µh
the class that implements the currently executed method body. Therefore, we can
access the currently executed object as it is presented to the currently executed
method by means of the expression h([[cls]]v,µh , [[this]]v,µh).

Apart from the field access mechanism, the above example additionally demon-
strated the invocation of the inherited methods meth1 by using the keyword
super. Since the class type provides the name of its superclass, extending the
operational semantics with the super calls is straightforward: instead of looking
up and expanding the method body of the executing class we use the method
body that is provided by the superclass.

In the example, we actually didn’t need to explicitly choose the inherited
method implementation by calling super.meth1() but, since D does not over-
ride meth1, we could have called this.meth1(), as well, getting the same result.
Hence, we assume a dynamic dispatching of method invocations. This dispatching
mechanism is realized as follows. Within a sub-class D, for each inherited method

T m(T x)

which is not replaced by new code in terms of a new method definition, we assume
an invisible method definition as follows:

T m(T x){ x = super.m(x); return(x) }.

5.3. SUBTYPING AND INHERITANCE 131

As for the above example, for instance, we assume a hidden method definition of
the form

T meth1() { T x; x = super.meth1(); return(x) },

extending the explicitly given class definition of class D. Thus, in general, the
execution of a method this.m(e) does not require a complicated look-up mecha-
nism in order to find the class that actually implements the method. Instead, the
corresponding implementation is always provided by the calling class which then
might possibly call the inherited method explicitly by means of a super call – if
it didn’t override it by real user code.

Having discussed the underlying modifications of the operational semantics,
let us have a look at the corresponding rules. Regarding the internal steps, we
only have to change the rules of Table 2.7 that deal with field updates, internal
method calls and internal object creation. Moreover, we have to add new rules for
calling methods or constructors of the superclass. The rules are given in Table 5.8.

[FUpd]

o = [[this]]v,µh C = [[cls]]v,µh (C ′,F) = h(C, o)
h′ = h[(C, o) 7→ (C ′,F[f 7→ [[e]]v,µh])]

(h, v, (µ, f = e; mc) ◦CSb) (h′, v, (µ,mc) ◦CSb)

[Call]

o = [[e]]v,µh C = h(, o).class T x = mparams(C,m) Tl xl = mvars(C,m)
∆ 6` C : [(. . .)] vl = {cls 7→ C, this 7→ o, x 7→ [[e]]v,µh , xl 7→ ival(Tl)}

(h, v, (µ, x = e.m(e); mc) ◦CSb) (h, v, (vl,mbody(C,m)) ◦ (µ, rcv x; mc) ◦CSb)

[New]

o ∈ N \ dom(h) h′ = h[(C, o) 7→ ObjC⊥] T x = cparams(C) Tl xl = cvars(C)
vl = {cls 7→ C, this 7→ o, x 7→ [[e]]v,µh , xl 7→ ival(Tl)}

(h, v, (µ, x = new C(e); mc) ◦CSb)
(h′, v, (vl, cbody(C); return this) ◦ (µ, rcv x; mc) ◦CSb)

[SupCall]

o = [[e]]v,µh C = [[cls]]v,µh C ′ = Θ(C).supcl
T x = mparams(C,m) Tl xl = mvars(C,m)

∆ 6` C ′ : [(. . .)] vl = {cls 7→ C, this 7→ o, x 7→ [[e]]v,µh , xl 7→ ival(Tl)}
(h, v, (µ, x = super.m(e); mc) ◦CSb)
(h, v, (vl,mbody(C,m)) ◦ (µ, rcv x; mc) ◦CSb)

[SupNew]

o = [[e]]v,µh C = [[cls]]v,µh C ′ = Θ(C).supcl
T x = mparams(C,m) Tl xl = mvars(C,m)

∆ 6` C ′ : [(. . .)] vl = {cls 7→ C, this 7→ o, x 7→ [[e]]v,µh , xl 7→ ival(Tl)}
(h, v, (µ, super(e); mc) ◦CSb)
(h, v, (vl, cbody(C,m); return this) ◦ (µ, rcv ; mc) ◦CSb)

Table 5.8: Japl with subclassing: operational semantics (int.)

Rule FUpd is modified in that we explicitly have to look up the class C whose
method body is currently in execution. For, as mentioned above, the class and

132 CHAPTER 5. FURTHER POSSIBLE EXTENSIONS

program:

C2 extends C1 {

. . .

}

C4 extends C3 {

. . .

}

environment:

C1 extends Object {

. . .

}

C3 extends C2 {

. . .

}

Table 5.9: Example: cross-border inheritance

the object name are needed to get the corresponding object representation (C ′,F)
from the heap. Finally, as in the original rule, first the field function F and then,
correspondingly, the heap is updated.

Regarding an internal method call, we have to find out the class from which the
callee object o has been instantiated. To this end, we consult the heap regarding
o. Note that for all entries of o in the heap, the yielded class is the same. The rest
of the rule is quite similar to the original rule. However, the new local variable
function vl additionally stores the class C in cls, as its method is about to be
executed. Moreover, we have to consult the assumption context ∆ in order to
check that C is indeed not an external class.

The modification regarding Rule New are similar to the modifications of
Rule Call. Though, we do not have to look up the type C.

In order to call an inherited method via the keyword super, we first have to
find out the caller class C via the variable cls. This is shown in Rule SupCall.
Afterwards, we can look up C’s superclass C ′ and, if C ′ is also a program class,
then we can execute its method implementation as it has been explained for
Rule Call, already.

Again, similar to the Rule SupCall, Rule SupNew finds out the superclass
of the caller class and executes its constructor, if the superclass is a program class.

It may happen that the program extends a class of the environment or vice
versa meaning that sub-class and super-class are defined on different sides. This
has the effect that calls of inherited methods or constructors may cross the inter-
face. To understand the consequences, consider the example given in Table 5.9.
In the example, some environment class C1 is extended by a program class C2.
Class C2 is again extended by an environment class C3 which in turn is extended
by a program class C4. Now let us assume that an instance o of C4 calls an
inherited method m3 of C3. This results in a cross-border method call, where
the environment executes the method body of m3 provided by C3. In order to

5.3. SUBTYPING AND INHERITANCE 133

[CallO]
a = ν(Θ′).〈call C.o.m(v)〉! ∆ ` o : C

∆ ` (h, v, (µ, x = e.m(e); mc) ◦CSb) : Θ
a−→

∆ ` (h, v, (µ, rcv x:T ; mc) ◦CSb) : Θ,Θ′

where o = [[e]]v,µh , v = [[e]]v,µh ,
T = ∆2(o)(m).ran, and
Θ′ = new(h, v,Θ)

[CallI]
a = ν(∆′).〈call C.o.m(v)〉? ∆ ` a : Θ

∆ ` (h, v,CSeb) : Θ
a−→

∆,∆′ ` (h, v, (vl,mbody(C,m)) ◦CSeb) : Θ

where C = Θ(o),

T x = mparams(C,m),

T ′ x′ = mvars(C,m),
and
vl = {cls 7→ C, this 7→ o,

x 7→ v, x′ 7→ ival(T ′)}

Table 5.10: Japl with subclassing: operational semantics (ext.)

potentially access fields of C3, object o is considered as an object of C3 during
the execution of m3 as we have explained above. However, m3 may itself call an
inherited method m2 of C2 which, in turn, may call an inherited method m1 of
C1. Again, object o has to be considered as an object of C1 in order to access
fields of C1. Summarizing, object o shows up twice as callee object in the envi-
ronment – however, the first call needed to consider o as an object of C3 and
the second call casted o to an object of C1. Therefore, regarding the external
steps, we have to equip the communication labels a for method calls with a class
type C of the callee object o, such that a = ν(Θ′).〈call C.o.m(v)〉! and, respec-
tively, a = ν(∆′).〈call C.o.m(v)〉?. Apart from that, we only have to implement
minor adaptions regarding the rules for incoming and outgoing method calls of
the external semantics. The rules are given in Table 5.10.

	I Testing Sequential Components
	5 Further possible extensions
	5.1 Specification classes
	5.2 Programming classes
	5.3 Subtyping and inheritance

