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Chapter 4

Code generation

This chapter describes how to generate a test program of our Java-like program-
ming language Japl, introduced in Chapter 2, from a test specification given in
terms of our test specification language, introduced in Chapter 3. The generation
of proper programming language code that implements the specified test is a vital
aspect of our testing approach, which is depicted in Figure 4.1. In the left upper
corner, the figure sketches a Japl component and some environmental Japl code
which complement one another forming a closed Japl program. Component and
environment are assumed to communicate, which is represented by the double ar-
row. Due to the closeness, however, the communication is hidden inside the code.
This is indicated by the question mark.

In order to verify, that the component shows the desired behavior to its envi-
ronment, we first write a specification in terms of our test specification language.
The specification represents a simple environment for the component and, at the
same time, it phrases the desired behavior by stipulating a required component-
environment interaction. This is sketched in the bottom part of the figure, where
an exclamation mark within the double arrow indicates that the communication
represents a requirement.

As a final step, the test specification is used to generate a Japl program
which, again, represents an environment for the component and in particular tests
for the component’s behavior by observing and checking the actual component-
environment interaction against the specified behavior.

To understand the general strategy for the generation, it is useful to reca-
pitulate the nature of the specification language and especially, what are the
differences to (or additions to) the original programming language. The abstract
goal of the specification language is the specification of interaction traces used
for testing and employing programming-like structuring such as statements, ex-
pressions, and method invocations. As far as the interaction is concerned, i.e.,
the calls and returns exchanged at the interface of the unit under test, there is
a strong duality between incoming and outgoing communication, seen from the
perspective of the tester. Outgoing calls and returns must be carried out by the
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Figure 4.1: Testing framework

tester, and incoming communication must be checked by it, and both adhering to
the linear order as given by the specification language, specifying a set of traces.
It suggests itself, to realize the interaction labels as given on the specification level
by corresponding method calls and returns at the program level. Obvious as it is,
however, to do so requires to tackle the following two points:

control flow: The code at the level of the Japl programming language must be
contained in bodies of methods, corresponding to the incoming method call
specifications of the test specification, i.e., the test-code must be appropri-
ately “distributed” over different method bodies and classes. Furthermore
and as mentioned, the order of accepting incoming communications and
generating outgoing ones must be realized as given by the specification. We
use a dynamic labeling mechanism to assure proper interaction sequencing.

variable binding: As a consequence of the above mentioned code distribution,
we have to deal with the two different scoping mechanisms of method call
statements within the specification language on the one hand, and method
definitions within Japl on the other hand. Although the parameters of an
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incoming method call statement at the specification level introduce a scope
that resembles the scope of the formal parameters introduced by a method
definition at the Japl level, there is a crucial difference. For instance, within
a specification of two nested incoming call statements1 the inner call state-
ment may refer to parameters of the outer incoming call statement. At the
Japl level, however, the two incoming call statements correspond to two
method executions which cannot mutually access their formal parameters
or variables.

In the following, we will present a code generation algorithm which transforms
a test specification of the specification language into Japl code. In particular,
the algorithm will produce method bodies of tester classes, which implement the
specified test. For a better understanding, the algorithm consists of two steps. The
first step modifies the specification, in order to introduce the labeling mechanism
and to deal with the variable binding problem, respectively. Since the outcome of
the transformation is still a specification, it is rather a preprocessing step. The
second step, in contrast, will generate method body code from a specification that
has been preprocessed already, hence, we can assume certain properties.

4.1 Preprocessing

4.1.1 Labeling mechanism

The programming language Japl does not provide language constructs for stat-
ing the expectation of a certain incoming communication at a certain point of
the program execution. The specification language in contrast provides special
expectation statements for this purpose. Recall that the introduction of incoming
call statements entails a relaxation of the strict sequential control-flow policy, as
these statements are to be processed after realizing an outgoing communication.
In Japl an outgoing communication always leads to a control context, where the
execution of a statement is impossible as the Japl program is blocked until an in-
coming communication occurs. Thus, to stress this specific feature of specification
statements that are executed between an outgoing and an incoming communica-
tion we introduced the notion of a passive control context in Section 3.3 and we,
correspondingly, called these statements passive statements. Further, recall that
apart from incoming call statements we additionally allow while-loops and condi-
tional statements to appear in a passive control context, in order to increase the
expressiveness of the specification language.

In particular, the introduction of passive while-loops and conditional state-
ments leads to a dynamic evaluation of the incoming communication expecta-
tions. That is, the next expected incoming communication is determined at run-
time, possibly depending on previous incoming values. This is the basic language

1The satisfiability requirement demands an outgoing call statement to occur between the
outer and the inner incoming call statement. Though, the outgoing call does not play a role in
this example.
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disparity that we have to overcome if we want to generate a proper test program
in Japl that results from a specification of the test specification language.

Our first step on the way to the test program is to introduce the basic frame-
work for ensuring that the external steps carried out by the final test program
will occur in the same order as stipulated in the specification. To this end, we tag
all incoming communication terms of the specification with a unique identifier.
We will use these ids in the final test program in order to match the interface
communication steps that occur during the test execution with the corresponding
communication statements of the specification. Moreover, the labeling mechanism
will enable us to dynamically determine the next expected incoming communi-
cation without the need for passive while-loops and conditional statements. This
paves the way for generating proper code in the final code generation step, which
does not support passive statements.

For a better understanding of the labeling idea, let us take a look at a simple
specification snippet:

Listing 4.1: Preprocessing: specification snippet
1 u!doSomething(x) {
2 if(e) {
3 (C t)?meth1() { !return(y1); }
4 } else {
5 (C t)t?meth2() { !return(y2); }
6 }
7 ?return(z)
8 };

In this example, the method doSomething of unit object u is called by the tester
and is expected to react with an incoming call of either method meth1 or method
meth2, depending on the value of expression e. Both tester methods, meth1 and
meth2, immediately return and finally the incoming return from the first method
call is expected. For the sake of simplicity, we do not use where-clauses here.

If we want to translate this specification fragment to proper test code of the
programming language, we have to face two problems. First, in the operational
semantics of the specification language, it is possible to invoke the unit method
doSomething of u and proceed internally by executing the following conditional
statement such that afterwards either the incoming call term of method meth1 or
of meth2 is on top of the call stack. In the resulting test program, however, reduc-
ing the conditional statement right after giving away the control is not possible.
Second, in the specification language the incoming call terms express the expec-
tation of either of the methods meth1 or meth2 . The programming language, in
contrast, does not provide expectation terms but an incoming method call always
leads to the execution of the corresponding method body. In particular, basically
every method provided by the test program can be called. It is important to un-
derstand that, due to this input-enabledness of the programming language, we
won’t be able to generate a program that prevents the tester’s environment from
showing an undesired behavior. However, the idea is to write a test program, that
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is, we do not want to prevent the component under test from doing something
wrong but we want to detect an unexpected behavior. Thus, at least, immedi-
ately after the call has been accepted, conformance to the specification should be
checked, i.e., the invoked method should find out whether it was expected to be
called.

Our approach to tackle these problems involves a preprocessing of the spec-
ification which is explained in the following by means of the example. First, we
annotate the terms for incoming communication with unique ids i1, i2, and i3:

Listing 4.2: Preprocessing: annotated specification
1 u!doSomething(x) {
2 if(e) {
3 [i1 ](C t)?meth1() { !return(y1); }
4 } else {
5 [i2 ](C t)?meth2() { !return(y2); }
6 }
7 [i3 ]?return(z)
8 };

Furthermore, we introduce a global variable next which is used to store the iden-
tifier of the next expected incoming communication. Then, in order to determine
the next expected call without the passive conditional statement, we have to an-
ticipate the conditional statement such that it is implicit decision regarding the
next expected call is carried out right before the control is given away to the
external component. In this example this means we evaluate the conditional ex-
pression e and, correspondingly, set the global variable next to the identifier of
the next expected incoming call term before we call doSomething.2 When the ex-
pected method meth1 or, respectively, meth2 is invoked then the corresponding
expectation body realizes, first, a test on next to determine whether this call was
expected, i.e., whether it is conform to the specification, and, second, an update of
the next variable right before the method returns the control back to the tester’s
environment. In our example both methods have to update next to i3.

As shown below, this leads to an extension of the code by three next update
statements and three next check statement:

Listing 4.3: Preprocessing: anticipation
1 if(e) { next = i1 } else { next = i2 };
2 u!doSomething(x) {
3 if(e) {
4 [i1 ](C t)?meth1() { check(i1); next = i3; !return(y1); }
5 } else {
6 [i2 ](C t)?meth2() { check(i2); next = i3; !return(y2); }
7 }
8 [i3 ]?return(z)

2Note, it is possible to evaluate the expression e earlier, as we assume expressions to be
side-effect free.
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9 };
10 check(i3);

In this example three patterns regarding the code generation become apparent:

• Every term which implements an outgoing communication step is immedi-
ately preceded by an update of next . This applies to outgoing method calls
and outgoing returns. The update can be a simple assignment or a rather
complex evaluation.

• A passive conditional statement leads to the situation that the preprocessed
code contains an equivalent anticipatory conditional statement which imple-
ments the update of the next variable.

• Every term which implements an incoming communication step is immedi-
ately succeeded by a check of next . This applies to incoming method calls
and incoming returns. We use an auxiliary notation, check, for this.

In the final program code, the auxiliary notation check will be replaced by a certain
statement which implements the test regarding next . However, in the specification
language it is impossible that the external component implements an unexpected
call, anyway. So for the time being we can consider the statement check to be
equal to ε. Yet, we added the check statement in this step already as the check
represents the counterpart of the update statement. It also makes the idea of
the labeling mechanism more clear. Note, furthermore, that we did not remove
the passive conditional statement. The reason is that the preprocessing step shall
yield valid specification code. The final program code, naturally, won’t contain
the passive conditional statement anymore.

Now let us describe a general algorithm for a preprocessing step which trans-
forms test code as sketched in Listing 4.1 into test code as sketched in Listing 4.3.
The basic idea is to inspect the passive conditional statements and while-loops
of the original code in order to determine a corresponding anticipated update
statement of the variable next . The resulting code then will consist of the origi-
nal code, equipped with theses update statements and their corresponding check
statements. We define the preprocessing step by a syntax-directed code transfor-
mation. The transformation determines all the necessary next update statements
and, at the same time, inserts these statements, as well as the corresponding
checks, into the code. A next update statement is an assignment statement of the
following form:

snxt ::= next =e | if(e) {snxt} else {snxt}

Remark 4.1.1: Within a specification that provides the global variable next , the exe-
cution of a next update statement snxt always terminates. Specifically, apart from the
assignment to next , it is free of side-effects.
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Since the specification language allows nestings of passive conditional and
while statements, a next update statement might equally consist of nested condi-
tional statements. During the preprocessing’s recursive descent through the speci-
fication an update statement might evolve until it is finally inserted at its intended
position in the code. We define two mutually recursively applied functions

prepin : spsv × snxt → snxt × spsv and

prepout : sact → sact ,

given in Table 4.1 and Table 4.2, respectively. Both functions expect a statement
as argument which is in passive or, respectively, active control context. They
return the same statement but annotated with ids as well as extended by checks
and next update statements. Additionally, as a second argument, prepin expects
a next update statement which determines the identifier of the next incoming
communication that is expected to happen after statement spsv has been executed.
The update statement is inserted in spsv in front of its last outgoing return. Dually,
prepin also yields a new next update statement which describes the next expected
incoming call of spsv itself, i.e., which has to be carried out before spsv is executed.

prepout(e!m(e, . . . , e){T x; spsv1 ; x =?return(T x′).where(e′) }) def
=

snxt ; e!m(e, . . . , e){T x; spsv2 ; x = [i ]?return(T x′).where(e′)}; check(i, e′);
where (snxt , s

psv
2 ) = prepin(spsv1 , next = i)

prepout(new!C(e, . . . , e){T x; spsv1 ; x =?return(C x′).where(e′) }) def
=

snxt ; new!C(e, . . . , e){T x; spsv2 ; x = [i ]?return(C x′).where(e′)}; check(i, e′);
where (snxt , s

psv
2 ) = prepin(spsv1 , next = i)

prepout(if (e) {sact1 } else {sact2 })
def
=

if (e) {prepout(s
act
1 )} else {prepout(s

act
2 )}

prepout(while (e) {sact}) def
= while (e) {prepout(s

act)}

prepout(s
act
1 ; sact2 )

def
= prepout(s

act
1 ); prepout(s

act
2 )

prepout({T x; sact}) def
= {T x; prepout(s

act)}

prepout(x = e)
def
= x = e

Table 4.1: Preprocessing: labeling and anticipation (prepout)

The definition of prepout is straightforward. Its solely interesting case deals
with an outgoing call statement. The call’s incoming return term is annotated
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with a new identifier i3. The return value of prepout comprises not only a mod-
ified version of the call statement but it represents actually a sequence of three
statement: the call statement is framed by an anticipating next update statement
and a check statement. In order to find out the proper update statement, however,
the function prepin must be applied on the body of the call expectation state-
ment. The application of prepin also inserts the return term’s update statement
into the expectation body, which is merely an assignment of i to next . For all
other active statements, prepout is either the identity or, in case of a composite
statement, prepout is applied recursively.

prepin((C x)?m(T x).where(e){T x; sact ; !return e′}, snxt)
def
=

(next = i, [i ] (C x)?m(T x).where(e){T x; check(i, e); prepout(s
act); snxt !return e′})

prepin(new(C x)?C(T x).where(e){T x; sact ; !return}, snxt)
def
=

(next = i, [i ] (C x)?m(T x).where(e){T x; check(i, e); prepout(s
act); snxt !return})

prepin(ε, snxt)
def
= (snxt , ε)

prepin(if(e){spsv1 } else {spsv2 }, snxt)
def
= (if(e){s1nxt} else {s2nxt}, if(e) {s̃p1} else {s̃

p
2})

where
(s1nxt , s̃

p
1) = prepin(spsv1 , snxt) and (s2nxt , s̃

p
2) = prepin(spsv2 , snxt)

prepin(spsv1 ; spsv2 , snxt)
def
= ( s1nxt , s̃

p
1 ; s̃p2 )

where
(s2nxt , s̃

p
2) = prepin(spsv2 , snxt) and (s1nxt , s̃

p
1) = prepin(spsv1 , s2nxt)

prepin(while(e){spsv}, snxt)
def
= ( if(e) {s1nxt} else {snxt}, while(e) {s̃p} )

where
(s1nxt , ) = prepin(spsv , snxt) and (s2nxt , s̃

p) = prepin(spsv , if(e){s1nxt} else {snxt})

prepin(case {stmt in ; spsv}, snxt)
def
= ( next = i, case { ˜stmt in ; s̃p} )

where for each stmt lin ; spsvl ∈ stmt in ; spsv

stmt lin = (C x)?m(T x).where(e){T x; sact ; !return e′} it is

(slnxt , s̃
p
l ) = prepin(spsvl , snxt) and

˜stmt
l
in = [i ](C x)?m(T x).where(e){T x; check(i, e); prepout(s

act); slnxt !return e′}

Table 4.2: Preprocessing: labeling and anticipation (prepin)

As shown in Table 4.2 the function prepin , applied to an incoming method or
constructor call, annotates the call with a new identifier, puts the given update
statement snxt in front of the outgoing return, and yields an assignment to i as
its own update statement. Moreover, it applies prepout to the expectation body.

3We assume a unique name generation scheme here which guarantees that the new identifier
is indeed not used within the rest of the program.
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As we have seen in the example, regarding the update statement to be cal-
culated, a passive conditional statement leads to a conditional update statement.
Note that prepin is applied recursively to the conditional’s branches which yield
to corresponding next update statements that have to be incorporated into the
conditional update statement. Moreover, the given update statement that is to be
inserted, has to be inserted in both branches of the passive conditional statement.

Regarding sequential composition, the given update statement snxt has to
be inserted in spsv2 since snxt determines the next incoming communication that
happens after the sequential composition. The processing of spsv2 yields a new
update statement that has to be inserted in spsv1 whose transformation, in turn,
yields the final update statement for the whole sequence.

Processing of the while-loop leads to two recursive applications of prepin . The
first call is used to find out the update statement solely for the while-body. In
particular, we are not in interested in the resulting code transformation. This is
indicated by the symbol. However, if the expression e is false then the body of
the while-loop would be skipped. Thus the update statement of the while-loop
is a conditional statement, where one branch consists of the update statement of
the while-loop body and the other one of the update statement of the consecutive
statement. The resulting update statement has to be inserted also in the body
statement itself which is done by the second application of prepin .

The processing of the case statement, finally, follows the pattern of the pro-
cessing of an incoming call. Nevertheless, we do not apply prepin recursively, as
we want to equip every call of the case statement with the same expectation iden-
tifier. This way, we express that each branch of the case statement represents an
expected interface communication.

Note that the transformation functions are well-defined. More specifically,
prepin is defined for all statements that may occur in a passive context and prepout

for all statements that may occur in an active control context. The mutual recur-
sion regarding the body of call statements is justified by Remark 3.3.2. Moreover,
it is easy to see that the resulting code is syntactically correct and well-typed
(under the assumption that the original statement was syntactically correct and
well-typed and that the resulting program is extended by the global variable next).

A specification that results from the preprocessing step mentioned above has
the following properties:

• Each incoming method call statement is of the following form:

[i ] (C x)?m(T x).where(e){T x; check(i, e); sact ; snxt !return e′},

that is, the call is annotated with an identifier, the body starts with a
corresponding expectation check, and the return term is preceded by an
expectation update statement. The identifier is unique unless the call is
a branch of a case expression, where other calls with the same identifier
annotation could exist.

The incoming constructor call has the same features.
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• Each outgoing call statement is transformed into code of the following form:

snxt ; e!m(e, . . . , e) {T x; spsv ; [i ]x =?return(T x′).where(e′)}; check(i, e′),

where i is a unique identifier. Moreover, within the specification, each oc-
currence of an outgoing call statement is preceded by an update statement
snxt and followed by an expectation check check(i, e′).

The same properties hold for an outgoing constructor call.

Remark 4.1.2 (Adjustment of initial expectation identifier): Consider, we want to pre-
process a specification

s = cutdecl T x; mokdecl { stmt },

where the body statement stmt is passive. Applying prepin to stmt yields not only the
new statement, stmt ′, but also a next update statement snxt . In order to anticipate the
next incoming communication of stmt ′, the update statement snxt has to be executed at
the very beginning of the specification. Since the specification body appears in a passive
control context, however, this is not possible.

The solution is as follows. Assume T to be the type of the expectation identifiers
as well as of the variable next and i0 = ival(T ). That is, the operational semantics
initializes each variable of type T to i0. Within the preprocessed specification, we replace
all occurrences of identifier i by the initial value i0 where i is determined by the execution
of snxt :

cinit(T x; T next ; {snxt ; return}) −→∗ (h, v, (µ, return)) and
i = [[next ]]v,µh .

Renaming the identifier of the first expected incoming communication to the initial value
i0 leads to the fact that we do not need to explicitly initialize next with a specific value.

Note, that snxt always consists of conditional statements and assignments to next ,
only. In particular, it does not involve any loops or method or constructor calls. Thus,
the small program above that executes snxt for determining the very first expectation
identifier always reaches the terminal configuration.

The main idea of the preprocessing is the following. Whenever an incoming
communication expectation term is about to be executed, its associated identifier
is indeed stored in the global variable next . In other words, whenever an incoming
call or return occurs the variable next indicates whether this call or return was
expected. This is formalized by the following lemma.

Lemma 4.1.3 (Anticipation): Let s be a valid specification and stmt its body statement.
Then let s′ be the specification that results from the preprocessing step such that we in-
troduce a new global variable next and the body statement of s is replaced by either
prepout(stmt) or prepin(stmt), depending on whether stmt is an active or a passive
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statement. (If stmt is passive additionally consider an adjustment of the initial expecta-
tion identifier according to Remark 4.1.2). Let, in particular, c = (h, v, (µ,mc) ◦CS) be
a configuration such that

∆ ` cinit(s′) : Θ t=⇒ ∆′ ` c : Θ′ .

Then the following holds:

1. if mc = [i ] (C x)?m(T x){. . .}; mcact then [[next ]]v,µh = i,

2. if mc = [i ] new(C x)?(T x){. . .}; mcact then [[next ]]v,µh = i

3. if mc = case {[i ] stmt }; mcact then [[next ]]v,µh = i, and

4. if mc = [i ]?return(T x).where(e); mcact then [[next ]]v,µh = i.

Remember, however, that the variable next does not have any influence on
the behavior of the preprocessed specification. For, no statement but only the
new check statements evaluates next in order to test if the actual incoming com-
munication matches with the specification. Since the preprocessed specification
still contains the original expectation statement, which do not accept a wrong
behavior anyway, these checks are always positive. As mentioned early, we will
need next in the final Japl program due to the general input-enabledness of the
programming language.

4.1.2 Variable binding

The specification language supports nested incoming and outgoing call statements
such that formal parameters and local variables of outer statements are accessible
also within the inner statements. This supports the look-and-feel of the origi-
nal programming language where also static scopes for local variable declaration
exist. Since we have to move and distribute most of the specification code into
method bodies, however, the original local scopes do not exist in the resulting
code anymore, rendering it impossible to access certain local variables or formal
parameters. Listing 4.4 shows a small specification snippet which has been already
preprocessed regarding the expectation identifiers, i.e., the code is already anno-
tated with identifiers. The example shows two nested incoming call statements.
For the sake of simplicity, both calls address the same class and method. The
first incoming call defines a formal parameter xp as well as a local variable xl and
the second one only a parameter yp. Thus, the body of the second call statement
has access to both the parameters xp and yp as well as to the local variable xl.
The inner call statement, indeed, makes usage of the outer call’s local variable xl
within its where-clause and also it accesses the outer call’s formal parameter xp
within a conditional statement.

In order to get valid test code, we have to translate the two incoming call
statements into code which will reside in the method body of method meth. In
particular, the translation of the sketched conditional statement will be part of
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Listing 4.4: Formal parameters and local variables
[i ] (C x)?meth(C xp) {

C xl;
· · ·
[j ] (C y)?meth(C yp).where(yp > xl) {
if(xp < yp) { . . . }
· · ·
}
}

the method’s body. However, the second invocation of meth won’t be aware of the
variable xp. In order to make it accessible, we have to make the variable globally
accessible. To this end we extend our preprocessing step with the introduction of
global variables xgp, x

g
l , and ygp representing the counterpart of the local variables

xp, xl, and yp, respectively. Additionally, we introduce global counterparts xg

and yg for the callees of the two incoming calls. Right after the first invocation
of meth, the expectation body has to assign the values of its actual parameters
to xg and xgp. When the method is called a second time, the global variable xgp is
used to access the value of the formal parameter of the first call. Furthermore the
global variable xgl is used in the where-clause. The result is shown in Listing 4.5.
Note that we still use the “local” parameter yp in the where-clause as its value
has not been copied to ygp when the clause is evaluated.

Listing 4.5: Variable globalization
[i ] (C x)?meth(C xp) {
xg=x; xgp=xp;
· · ·
[j ] (C y)?meth(C yp).where(yp > xgl ) {
yg=y; . . .
if(xgp < ygp) { . . . }
· · ·
}
}

Since the general “variable globalization step”, as it has been explained by the
example above, is rather straightforward, we don’t want to introduce it in all its
formal details but we sketch the basic idea. In general we extend our preprocessing
of specification programs by the following steps:

• For each local variable and formal parameter that occur in the original
specification, a new global variable is added.4

4We assume all local variables and formal parameters of the original specification to be
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• Each incoming call or return term is followed by a sequence of statements
that copy the values of the formal parameters to their global correspondent.
In the following we will refer to this sequence by the auxiliary statement
svinit if needed.

• Each occurrence of a local variable or parameter within the specification is
replaced by its global correspondent. This, of course, neither applies to the
occurrences of formal parameters in the incoming call or return term itself
nor to the occurrences in svinit .

• A consequence is that local variable are of no use anymore, hence, we re-
move all local variable declarations within expectation statements and block
statements. Specifically, block statements { T x; stmt } are resolved in that
they are replaced by their wrapped statement stmt .

Having explained separately the two main aspects of the preprocessing step
we bundle them by means of a definition.
Definition 4.1.4 (Preprocessing): Consider

s = cutdecl T x; mokdecl {stmt},

to be a valid specification. Then with prep(s) we denote the specification

s′ = cutdecl T x; T ′ x′; mokdecl {stmt ′},

that results from preprocessing s. In particular, depending on the control context, the
body statement stmt ′ results from either applying prepout or prepin to stmt followed by
a variable globalization as explained above. Hence, the new variables x′ comprise next
as well as the global counterparts of the formal parameters and local variables defined in
stmt . In case that stmt is passive we additionally consider an adjustment of the initial
expectation identifiers as explained in Remark 4.1.2.

4.2 Japl code generation

We have seen that the preprocessing step results in a specification which con-
tains a global variable next that is updated to the identifiers of the next expected
incoming communication — right before the specification passes the control to
the component through an outgoing communication. Moreover, due to variable
globalization the specification is free from variable accesses crossing an outgoing
communication. These were important steps towards the final test program. How-
ever, the preprocessed specification still contains expectation statements, which do
not exist in the programming language Japl. In the next step we finally translate
these statements to syntactic valid Japl code.

Before we start, let us summarize the features of a specification which results
from the preprocessing step that was described above.

different. Otherwise we can accomplish this by a proper renaming as we consider Var to be
infinite.
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1. The list of the specification’s global variables includes the variable next and
global correspondents for all formal parameters and local variables of the
original specification.

2. All accesses to local variables and formal parameters within the original
specification are “redirected” to the corresponding global variable, i.e., all
occurrences of local variables and formal parameters within assignments
and expressions of the original specification are replaced by their global
counterparts.

3. The specification is free from local variables and free from block statements.

4. An incoming method call statement always has the following form:

[i ] (C x)?m(T x).where(e){svinit ; check(i, e); sact ; snxt ; !return e′}.

That is, the body consists of a statement svinit that assigns the values of
the actual parameters to global variables, a check whether this call was
expected, the actual body sact , an expectation update statement snxt , and
finally the return term. In particular, the body does not introduce any local
variables. Incoming constructor call statements and case statements have a
similar form.

5. Each outgoing method call statement always appears in following form:

snxt ; e!m(e, . . . , e){sact ; [i ]x =?return(x′).where(e′)}; check(i, e′),

such that each call statement is preceded by an expectation update state-
ment and followed by a check. Outgoing call statements do not introduce
local variables either.

As mentioned before, the last thing that remains to be done is to remove the
passive statements and to translate the expectation statements into valid code of
the programming language. As for the incoming call statements, the basic idea
is to move the expectation body into the method body of the callee method.
However, in order to do so, we have to consider the following:

• If the specification contains two or more incoming call statements that ad-
dress the same method, then we have to add all the corresponding expec-
tation bodies to the same method body. Thus, we have to make sure that
the corresponding Japl code of either of the expectation bodies is executed
each time the method is called. In particular, exactly the expectation body
must be chosen that matches with the specification at the specific situation
where the call occurs. Moreover, if the method is called but no matching
expectation statement of the specification can be found, the test program
should realize this and consider it to be an unexpected behavior.
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Listing 4.6: Code generation: method body scheme
T meth( T1 x1, . . . , Tn xn ) {

T retVal;

expectation1

...
expectationk
fail;

return(retVal);
}

• In the specification, each incoming call statement introduces its own set
of formal parameters. A method definition, however, provides only one set
of formal parameters. Since more than one incoming call statements might
flow into a single method definition, the call statement’s formal parameters
have to be unified.

• Certainly, we cannot merely copy an expectation body into the correspond-
ing method body, as in general an expectation body might contain a nesting
of other expectation statements, which have to be translated as well. More-
over, the programming language does allow exactly only one return term at
the end of a method definition. Thus we cannot add a return term for each
expectation body.

Listing 4.6 sketches our approach for the generation of method code. A method
body always starts with the definition of a local variable retVal which is used for
the return value. For each of the method’s call expectation statements we put the
corresponding method code, represented by the expectationi boxes, between the
variable definition and the return statement. More precisely, the expectation boxes
are actually nested and this nesting ends with the pseudo statement fail which
represents the error handling in case of an unexpected call. Listing 4.7 sketches
the Japl code that implements an incoming call statement, that is, it shows how
the expectation boxes of Listing 4.6 look like. The nesting arises from the fact that
each expectation handler is wrapped into a conditional statement which checks
whether the actual call of the method matches with the incoming call expectation
statement. Thus the corresponding code is executed only if the variable next holds
the identifier of the incoming call statement and if the expression of the where-
clause evaluates to true. In this case the actual code of the expectation body is
executed and finally the return variable retVal is set to the return value of the call
statement. Otherwise, we have to check the other expectation handlers. If even
the inner-most expectation does not match with the actual call, then the call was
unexpected, that is, the else-branch of the inner-most expectation box consists of



98 CHAPTER 4. CODE GENERATION

Listing 4.7: Code generation: code for expectationk−1

1 if((next == id ) && check-where-clause ) {
2 body

3 retVal = ret-val ;

4 } else { expectationk };

the fail statement.
The constructor of a class has a similar pattern. As the return value of a

constructor is always the new instantiated object, however, we do not have to
provide a return variable in the constructor body. In exchange we have to deal
with internal object creation. Thus, constructor bodies differ from method bodies
in that they additionally contain a conditional statement which enables internal
calls:

if(internal == true) {
skip;
} else { fail };

Thus, if no matching incoming call expectation can be found, then, before we
consider the constructor call to be unexpected, we additional check if an internal
object creation was expected. To this end, we consult a dedicated global Boolean
variable internal. A value of true indicates an internal constructor call that corre-
sponds to an equivalent call within the specification. In this case the constructor
has to do nothing but solely return the new object since the specification language
does not allow to provide specific code for internal object creation. Accordingly,
every internal object creation, x = new C, within the specification program will
be translated to a similar object creation framed by assignments to the new global
variable internal:

internal = true;
x = new C(v1, . . . vk);
internal = false;

This way, the constructor can distinguish internal calls from unexpected incoming
calls. Note that due to typing issues it might be necessary to provide some dummy
parameter values v1 to vk. As shown above, the internal object creation always
results in the execution of the empty statement skip only, such that actual values
of the dummy parameter have no influence on the new object.

In the following, we assume a set of class definitions cldef which consists of
the classes to be provided by the tester program. Each of the classes’ methods
is of the structure as shown in Listing 4.6. We will present an iterative trans-
formation algorithm which will extend the method bodies piece by piece but we
will start with classes where each method and constructor body does not contain
any expectation code so far. That is, we assume a set of initial class definitions
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method code:

T meth(T1 x1, . . ., Tk xk) {
T retVal;

fail;

return(retVal);
}

constructor code:

C(T1 x1, . . ., Tk xk) {

if(internal == true) {
skip;
} else { fail; }

return;
}

Table 4.3: Initial method and constructor code

cldef init where each method and constructor of the classes is of the form as shown
in Table 4.3.

As mentioned above, starting from these initial class definitions we gradually
extend the method and constructor bodies in order to add code that deals with a
certain call expectation. Table 4.4 introduces an auxiliary notation which describes
the modification of a class definition set by extending a method body with call
expectation code. The notation

cldef .C.m
(i,ew)→ stmt : e

represents a sequence of class definitions which is identical to cldef except that
the method body of method m of class C is extended by the statement stmt. More
precisely, a new conditional statement as sketched in Listing 4.7 is created where
i represents the expected communication identifier and ew is the expression of
the where-clause. Along with a return value assignment, the new statement stmt
is inserted as the main branch of the conditional statement whereas the original

cldef .C.m
(i,ew)→ stmt : e

def
= cldef ′ where

cldef = class C {T f mdef } ∈ cldef ,

mdef = T ′ m(T ′ x′){Tl xl; stmtb; return(retVal)} ∈ mdef ,

mdef ′ = T ′ m(T ′ x′){ Tl xl;
if((next == i) && (ew)){

stmt ; retVal = e;

} else { stmtb; };
return(retVal) },

cldef ′ = class C {C x mdef ′} ∈ cldef ,

cldef ′ = cldef \ {cldef } ∪ {cldef ′}.

Table 4.4: Code-generation: method extension
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method body statement forms the else-branch. That is, in the definition we exploit
our knowledge about the structure of the method bodies. Note, that the meaning
of the notation is not defined for sequences of class definitions where class C does
not exist or where class C does not provide an appropriate method definition.

We use cldef .C.C
(i,ew)→ stmt for the extension of a constructor body which only

differs from the definition given in Table 4.4, in that we do not add a return value
assignment.

The final code generation step is carried out by two mutual recursive functions,
which are pointwise defined in terms of simple functional programming code for
the sake of clarity. The function

codeout : cldef × sout ⇀ cldef × stmtpl ,

given in Table 4.5, generates code only from specification statements which are in
active control context. It yields a statement of the programming language equiv-
alent to the original specification statement.5 However, the function additionally
returns a new class definition sequence. For, the specification statement could in-
corporate an expectation statement resulting in the extension of the corresponding
callee class. The function

codein : cldef × sin ⇀ cldef

transforms statements that are in passive control context into method body code,
modifying the given set of class definitions. The function’s definition is given in
Table 4.6.

Let us have a closer look at the codeout definition. The first two definitions
of Table 4.5 deal with outgoing method and constructor call statements. When
we translate such a call statement of the specification language into proper pro-
gramming language code, we have to merge the expectation statement’s call term
with its return term to get a call statement of the programming language. More-
over, the specification body must be processed. As the specification body might
contain incoming call expectations, its processing potentially leads to a modifica-
tion of the given class definitions. Note, that we assume a specification which has
been preprocessed, that is, we do not need to add a check regarding the expecta-
tion identifier or regarding the where-clause, since the preprocessing has already
added it. Moreover, we can assume that the specification code does not contain
declarations of local variables.

The transformation does not need to modify assignments. As explained above,
internal object creations have to be distinguishable from unexpected incoming
constructor calls. Thus, the translation uses a corresponding flag to indicate an
internal instantiation. Moreover, we have to add dummy parameters to the con-
structor call, in order to get a well-typed call. For each parameter of type T we

5We use the superscript pl to indicate that the resulting statement is an element of the
programming language.
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codeout( cldef, e!m(e) {stmt ; [i ]?return(x).where(ew)} )
def
=

let cldef ′ = code in(cldef , stmt) in ( cldef ′, x=e.m(e) ).

codeout( cldef , new!C(e ){stmt ; [i ]?return(x).where(ew)}) def
=

let cldef ′ = code in(cldef , stmt) in ( cldef ′, x=new C(e) ).

codeout( cldef , x=e )
def
= ( cldef , x=e )

codeout( cldef , new C() )
def
=

let T x = cparams(C) in

let stmt = intern =true; x = new C(ival(T )); intern =false in ( cldef , stmt ).

codeout( cldef , stmt1; stmt2 )
def
=

let (cldef 1, stmtpl
1 ) = codeout(cldef , stmt1) in

let (cldef 2, stmtpl
2 ) = codeout(cldef 1, stmt2) in ( cldef 2, stmtpl

1 ; stmtpl
2 ).

codeout( cldef , while (e) {stmt} )
def
=

let (cldef ′, stmtpl) = codeout(cldef , stmt) in ( cldef ′, while (e) {stmtpl} ).

codeout( cldef , if (e) {stmt1} else {stmt2} )
def
=

let (cldef 1, stmtpl
1 ) = codeout(cldef , stmt1) in

let (cldef 2, stmtpl
2 ) = codeout(cldef 1, stmt2) in (cldef 2, if(e) {stmtpl

1 } else{stmtpl
2 })

Table 4.5: Generation of Japl code (codeout)

pass its initial value ival(T ) to the constructor. The parameter types can be looked
up in the class definition of the corresponding class.

A sequence of two active expectation statements is processed by transforming
each statement, i.e. a sequence is processed in terms of two recursive applica-
tions of codeout . We pass the original class definitions to the codeout application
regarding the first statement and we use the resulting class definition for the
transformation of the second statement. The class definitions that result from the
second transformation then represents also the result of the sequence’ transfor-
mation. While-loops, and conditional statements are processed similarly, that is,
we have to process their sub-statements, recursively.

Now let us discuss the definitions of codein of Table 4.6. Again the process-
ing of incoming method and incoming constructor calls are similar. One common
task is to substitute the expectation statement’s formal parameters by the for-
mal parameters of the corresponding method or constructor definition and the
expectation’s callee names by the special self reference symbol this, respectively.

The remaining passive statements are compositions of other passive state-
ments, hence, the transformation is realized by recursive applications of codein .
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code in(cldef, [i ] (C x)?m(T x).where(e){check(i, e); stmt ; !return er})
def
=

let (cldef ′, stmtpl) = codeout(cldef , stmt) in
let T xp = mparams(C,m) in

let (e′, e′r, stmtpl ′) = (e, er, stmtpl)[this/x, xp/x] in cldef ′.C.m
(i,e)→ stmtpl ′ : e′r.

code in(cldef, [i ] new(C x)?C(T x).where(e){check(i, e); stmt ; !return}) def
=

let (cldef ′, stmtpl) = codeout(cldef , stmt) in
let T xp = cparams(C) in

let (e′, stmtpl ′) = (e, stmtpl)[this/x, xp/x] in cldef ′.C.C
(i,e)→ stmtpl ′.

code in(cldef , stmt1; stmt2)
def
=

let cldef 1 = code in(cldef , stmt1) in

let cldef 2 = code in(cldef 1, stmt2) in cldef 2.

code in(cldef , if(e) {stmt1} else {stmt2})
def
=

let cldef 1 = code in(cldef , stmt1) in

let cldef 2 = code in(cldef 1, stmt2) in cldef 2.

code in(cldef , while(e) {stmt}) def
=

let cldef 1 = code in(cldef , stmt) in cldef 1.

code in(cldef , case { stmt1 stmt2 . . . stmtn})
def
=

let cldef 1 = code in(cldef , stmt1) in
. . .

let cldef n = code in(cldef n−1, stmtn) in cldef n.

Table 4.6: Generation of Japl code (codein)

As for the transformation of a case statement, for instance, the branches are trans-
formed subsequently, such that one branch uses the updated class definitions of
the previous transformation.

4.3 Generation of the test program.

In the previous section we introduced the algorithm for generating class defini-
tions from a given specification statement. Let us now summarize and complete
the necessary steps for generating a complete test program from a specification
program. Assuming that we have a valid specification program

s = cutdecl T x; mokdecl {stmt ; return},

such that ∆ ` s : Θ for some name contexts ∆ and Θ, we can generate a corre-
sponding test program in the following way:
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1. We preprocess the specification s according to Definition 4.1.4 which results
in a new specification

s′ = prep(s) = cutdecl T ′ x′; mokdecl {stmt ′; return},

which is, in particular, equipped with the anticipation code and which is
free of local variables.

2. Now we translate the sequence cutdecl into an import declaration sequence
impdecl . To this end, each declaration test C defined in cutdecl is translated
to import C, that is, we only have to replace the keyword test by the
keyword import.

3. For each class definition of mokdecl we define an initial class definition with
method and constructor code as given in Table 4.3 respecting the param-
eter and return types of the corresponding class. This results in an initial
sequence of class definitions cldef 0. If stmt ′ is a passive statement we define

cldef = codein(cldef 0, stmt ′) and stmtpl = ε,

and otherwise we define

(cldef , stmtpl) = codeout(cldef 0, stmt ′).

4. The resulting test program is defined by

p = impdecl ; T ′ x′; cldef ; {stmtpl ; return}.

4.4 Correctness of the code generation

The programming language, the test specification language, and the code genera-
tion algorithm are given in terms of formal definitions. This allows us to formally
prove the correctness of the code generation algorithm. Although the language
represents a relatively small subset of Java or C] the correctness proof turns out
to be quite complex already. While the complete proof is given in the appendix,
this section provides a discussion of the proof idea. After introducing some fun-
damentals regarding correctness proofs in general we will point out some specific
characteristics of the test code generation. Based on this, we will outline the proof
with references to the corresponding details in the appendix.

Before we deal with the actual correctness proof, we should first clarify the
meaning of correctness in this context. Correctness of an algorithm in general is
always to be understood with respect to a specific specification. That is, an algo-
rithm is considered as correct if it meets its specification. Usually, the specification
of an algorithm captures its functional aspects only, such that the specification
stipulates a desired relation between an input to the algorithm and its generated
output. As for our code generation algorithm, its input values are test specifica-
tions of the test specification language and its corresponding output values are
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represented by the generated Japl test programs. Intuitively, the desired input-
output relation between a test specification and the resulting Japl program is
clear, as well:
Algorithm specification (informal): For each valid test specification s, the Japl
program p, generated by the algorithm, has to test whether the component’s behavior
exposed to its environment conforms to the behavior specified by s. This has two aspects:

1. The generated test program p has to provide a proper environment for the compo-
nent under test. In particular, it must not prevent a specification-conform compo-
nent from showing the desired behavior.

2. Program p must detect undesired behavior.

For a formal correctness proof we likewise need a formal algorithm specifica-
tion too. To this end, we have to bring the informal algorithm specification into
the context of the formal language and algorithm definitions. Recall that the trace
semantics of a Japl component consists of communication traces, where each trace
captures, both, the behavior of the component exposed to its environment but also
the behavior of the environment exposed to the component. Correspondingly, we
defined the test specification language basically as an extension of the program-
ming language, such that a specification’s trace semantics serves as a description
of a desired component’s behavior to be exposed to its environment if reciprocally
the environment exposes a certain behavior to the component. Thus, in our set-
ting the first requirement of the informal specification above can be formalized in
terms of a trace inclusion. For, each trace of the specification represents a valid
behavior of the component which, therefore, must be realizable by the generated
program as well. Otherwise it would prevent a specification-conform component
from showing the desired behavior. Moreover, the trace inclusion ensures that
the test program provides a proper environment in that it exposes the specified
behavior to the component under test.
Requirement 1 (Provide a proper environment): For each well-typed speci-
fication s with ∆ ` s : Θ the generated test program p must have the following property:

[[∆ ` s : Θ]] ⊆ [[∆ ` p : Θ]],

This means that the test program may behave in the same way as the spec-
ification in that the test program simulates the specification. Indeed, originally
introduced by Milner in [47] as a means to compare programs, simulation has
become a standard proof technique for correctness proofs.6 For systems that are
given in terms of a labeled transition systems the notion of simulation is commonly
defined as follows.
Definition 4.4.1 (Simulation): Assume a labeled transition system (Conf , a,→). A sim-
ulation relation is a binary relation S ∈ Conf × Conf such that for each pair of config-
urations c, d ∈ Conf the following holds: if (c, d) ∈ S then for all c′ ∈ Conf and for all

6For a detailed discussion of simulation relations see also [48].
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transition labels a
c
a−→ c′

implies that there is a d′ ∈ Conf such that, using the same label a, also

d
a−→ d′ and (c′, d′) ∈ S.

Given two configurations c and d, we say d simulates c if there is a simulation S such
that (c, d) ∈ S.

Thus, intuitively, a configuration d simulates another configuration c, if all the
behavior that can be shown by c can also be shown by d such that d’s successor
again simulates the successor of c. If we relate this to the execution of the generated
test program this means that, indeed, the test program must be able to realize each
communication trace that is realized by the specification as well. The advantage
of the simulation definition given in Definition 4.4.1 is that the trace inclusion is
broken down to single transition steps only.

The definition of simulation that we gave above, however, requires that all
transitions are observable, i.e., all transitions are labeled. According to the oper-
ational semantics of the specification and the programming language, in contrast,
we distinguish external, i.e., labeled, from internal, i.e., unlabeled, transitions.
Specifically, as for our testing approach, the generated test program need to sim-
ulate the interface communication of the specification only, because they represent
the desired observable behavior. But we don’t have to be so strict regarding the
internal transitions. Hence, we need a slightly more relaxed simulation definition,
called weak simulation.
Definition 4.4.2 (Weak simulation): Assume a labeled transition system

(Conf , a,→)

which also allows for unlabeled transitions. A weak simulation relation is a binary re-
lation S ∈ Conf × Conf such that for each pair of configurations c, d ∈ Conf the
following holds:

1. if (c, d) ∈ S then c′ ∈ Conf with

c c′

implies that there is a d′ ∈ Conf such that

d ∗ d′ and (c′, d′) ∈ S.

2. if (c, d) ∈ S then c′ ∈ Conf and a transition labels a with

c
a−→ c′

implies that there is a d′ ∈ Conf such that, using the same label a, also

d
a=⇒ d′ and (c′, d′) ∈ S.
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Given two configurations c and d, we say d weakly simulates c if there is a simulation S
such that (c, d) ∈ S.

Note, in the implication of the definition’s first requirement we used the star
annotated internal transition arrow ( ∗) for the transition from d to d′ allowing
for more than one internal transition steps but it also includes the case where d
equals d′. Furthermore, the double arrow ( a=⇒) in the implication of the second
requirement states that the overall transition from d to d′ may consist not only
of the transition step labeled with a but it may be preceded and followed by a
sequence of internal transitions.

As for our code generation algorithm, the generated program p must be able
to weakly simulate the specification: it must be able to produce the same ob-
servable behavior in terms of sequences of interface interactions but in between
of these interactions it may perform different internal computation steps. But,
intuitively, the generated code should not only support the behavior that is given
by the specification but beyond that it must not support any additional behavior.
This is in general captured by the notion of bisimulation. Bisimulation has been
introduced by Park [54] for testing observational equivalence of the calculus of
communicating systems. A simulation relation S is a bisimulation, if the inverse
relation S−1 is a simulation relation as well. An equivalent definition is given in
the following.
Definition 4.4.3 (Bisimulation): A binary relation S ∈ Conf × Conf is a bisimulation
if for all pairs of configurations c, d ∈ Conf the following holds:

If (c, d) ∈ S then for all transition labels a it is:

1. For all c′ ∈ Conf
c
a−→ c′

implies that there is a d′ ∈ S such that, regarding the same label a,

d
a−→ d′ and (c′, d′) ∈ S,

2. and, symmetrically, for all d′ ∈ S

d
a−→ d′

implies that there is a c′ ∈ S such that, regarding the same label a,

c
a−→ c′ and (c′, d′) ∈ S,

Given two configurations c and d in S, c is bisimilar to d, written c ∼ d, if there is a
bisimulation S such that (c, d) ∈ S.

The bisimilarity relation is the largest bisimulation relation of the given labeled
transition system. Note, the bisimilarity relation ∼ is an equivalence relation. In
particular, if c is bisimilar to d then d is also bisimilar to c. Note, moreover, that
two configurations are not necessarily bisimilar if one configuration simulates the
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other and vice versa, but instead it is important that they simulate each other
regarding the same simulation relation.

Corresponding to the simulation relation, we can define a weak bisimulation
which also allows internal steps.
Definition 4.4.4 (Weak bisimulation): A binary relation S ∈ Conf ×Conf is a bisimu-
lation if for all pairs of configurations c, d ∈ Conf the following holds:

Assume (c, d) ∈ S.

1. For all c′ ∈ Conf we have:

(a) If
c c′

then there is a d′ ∈ Conf such that

d ∗ d′ and (c′, d′) ∈ S.

(b) If, for some communication label a,

c
a−→ c′

then there is a d′ ∈ Conf such that, regarding the same label a,

d
a=⇒ d′ and (c′, d′) ∈ S.

2. Symmetrically, for all d′ ∈ Conf we have:

(a) If
d d′

then there is a c′ ∈ Conf such that

c ∗ c′ and (c′, d′) ∈ S.

(b) If, for some communication label a,

d
a−→ d′

then there is a c′ ∈ Conf such that, regarding the same label a,

c
a=⇒ c′ and (c′, d′) ∈ S.

Given two configurations c and d in S, c is weakly bisimilar to d, written c ≈ d, if there
is a weak bisimulation S such that (c, d) ∈ S.

Note, that also a weak bisimulation relation is an equivalence relation. Hence,
c is weakly bisimilar to d exactly if d is weakly bisimilar to c.

Be it as it may, it is important to understand, that the generated test program
is in fact not (weakly) bisimilar to the specification. This is due to a crucial
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difference between a test and a specification: while a specification describes only
the desired behavior of the component, a test, in contrast, has additionally to
reckon with components that do not conform to the specification. That is, a test
can fail. This is reflected by the fact that the test program’s trace semantics
also includes traces which entail an undesired behavior of the component under
test. In particular, the trace semantics of the generated program is not equal to
the trace semantics of the test specification. However, the test program should
detect an undesired behavior of the component as soon as possible and react
with a failure report. Correspondingly, a trace of the generated test program may
only deviate from the specification due to an undesired behavior caused by the
component under test but the observable behavior of the test program itself must
be always as specified. As a consequence, the second requirement for a correct code
generation algorithm cannot be expressed by a simple trace inclusion statement
but it has to account for the possibility of undesired incoming communication.
This can be formalized as follows.

Requirement 2 (Detect undesired behavior):

1. sγ! ∈ [[∆ ` p : Θ]] implies sγ! ∈ [[∆ ` s : Θ]]

2. sγ? ∈ [[∆ ` p : Θ]] implies either sγ? ∈ [[∆ ` s : Θ]]

or ∆ ` cinit(p) : Θ
sγ?
=⇒↓fault .

We said that intuitively the test program should support the specified interface
behavior – but nothing more. Indeed, the second requirement for a correct code
generation algorithm resembles the first requirement, in that the trace inclusion
is split into two parts regarding the last communication label — the first part
does demand trace inclusion and only the second part adds some extra behavior:
All traces of the program that end with an outgoing communication must be
included in the specification’s trace semantics, as well. Traces of the program that
end with an incoming communication, however, must either be included in the
specification’s trace semantics or otherwise the program must report a failure after
realizing the trace. For, the latter case represents a program execution where the
last interface communication due to the component under test was not expected
according to the specification.

Thus, as mentioned above already, the second requirement cannot be formu-
lated in terms of the usual simulation relation but we have to come up with a
similar yet slightly different definition.

Definition 4.4.5 (Testing simulation): Assume a labeled transition system

(Conf , a,→)

which also allows for unlabeled transitions. A testing simulation relation is a binary
relation S ∈ Conf × Conf such that for each pair of configurations c, d ∈ Conf the
following holds:
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1. if (c, d) ∈ S then c′ ∈ Conf with

c c′

implies that there is a d′ ∈ Conf such that

d ∗ d′ and (c′, d′) ∈ S.

2. if (c, d) ∈ S then c′ ∈ Conf and a transition labels a with

c
a−→ c′

implies that

(a) either there is a d′ ∈ Conf such that, using the same label a, also

d
a=⇒ d′ and (c′, d′) ∈ S

(b) or otherwise there exist no such d′ ∈ Conf but instead

c′ ↓fault .

Given two configurations c and d, we say d simulates c up to test failures if there is a
testing simulation S such that (c, d) ∈ S.

As a consequence, the desired input output relation for our code generation
algorithm is not captured by a bisimulation relation but we have to combine the
simulation aspect with the testing simulation.
Definition 4.4.6 (Testing bisimulation): A simulation relation S ∈ Conf × Conf is a
testing bisimulation if S−1 is a testing simulation. Given two configurations c and d, we
say d is testing bisimilar to c (or: d is weakly bisimilar to c up to testing failures), written
c - d, if there exists a testing bisimulation S with (c, d) ∈ S.

Note, in contrast to bisimulation, testing bisimulation is not symmetric: the
generated test program simulates the specification, but the specification simulates
the test program up to test failures only.

Summarizing, we state the correctness of the generated test program and we
subsequently sketch the proof.
Lemma 4.4.7 (Correctness of the test program generation): Let s be a well-typed test
specification and, correspondingly, let p be the Japl program that results from s accord-
ing to the test program generation algorithm given in Section 4.3. Then p fulfills Require-
ment 1 and Requirement 2.

The complete proof of Lemma 4.4.7 is given in the appendix. Yet, in the follow-
ing we present the general proof idea. We have to show that for each specification
s and for the correspondingly generated program p we can provide a relation S
such that S represents a testing bisimulation for s and p. More precisely, we have
defined the different simulation and bisimulation relations for configurations, only.
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Therefore, we actually have to provide a testing bisimulation relation Rb which
includes the pair consisting of the initial configurations regarding s and p, respec-
tively, i.e.,

(cinit(s), cinit(p)) ∈ Rb.

For the sake of brevity, however, we will use in this context the specification and
the program as a shorter representation for their initial configurations, such that
we can also write

(s, p) ∈ Rb.

Since the code generation algorithm is given in two parts, namely the prepro-
cessing step and the actual Japl code generation step, we will break down the
proof into two parts, as well.

The preprocessing step results in a new specification which must not show a
different behavior than the original specification. In particular, it does not entail
the above mentioned specification-test discrepancy but the result of the prepro-
cessing step still represents a specification. Therefore, we have to show that the
original specification and the preprocessed specification are indeed (weakly) bisim-
ilar. Regarding the actual Japl code generation step, however, we have to deal
with the discrepancy between a specification and a test. Thus, we have to show
that the preprocessed specification and the resulting Japl code are related with
respect to a testing bisimulation. The combination of both proofs yield the re-
sult that the original specification and the Japl code are testing bisimilar. The
correctness proof of the code generation algorithm can be sketched as follows.
For a given specification s we first provide a weak bisimulation relation Rb with
(s, prep(s)) ∈ Rb where prep(s) is the specification that results from preprocessing
s. Second, we give a testing bisimulation relation Rt with (prep(s), p) ∈ Rt where
p is the Japl program that results from generating Japl code from prep(s). Thus,
we will prove

s ≈ prep(s) - p

for each input output pair, s and p of the code generation algorithm.
Section C.1 of the appendix deals with the bisimulation proof regarding the

preprocessing step, i.e., we prove s ≈ prep(s). More specifically, the proof of
Lemma C.1.3 shows that the specification which results from applying the pre-
processing functions prepin and prepout , defined in Section 4.1, is bisimilar to the
original specification. In fact, the proof does not take the variable globalization
step into account. However, due to the absence of recursion it is obvious that the
variable globalization does not affect the observable behavior of the specification,
hence, we can derive from the proof that a specification s and its preprocessed
version prep(s) are bisimilar.

Next, we have to prove that prep(s) - p where p represents the Japl program
which has been generated from prep(s) according to Section 4.2 and 4.3. This is
subject to Section C.3. Regarding this testing bisimilarity proof, two complications
arise. First, the operational semantics of the Japl language is formalized in context
of a specific program p. For instance, Rule Call refers to the implementation of
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the corresponding method in p. As a consequence, we have to include the program
p into the definition of the testing bisimulation relation. More specifically, for each
program p we provide a corresponding relation Rpb .

Second, as mentioned in Section 4.1, the transition from a specification s to a
corresponding Japl program p renders it necessary to distribute the originally se-
quential specification over several method bodies and classes. On the other hand,
testing bisimilarity certainly entails the requirement that p sticks to the originally
specified order of interactions. This is were the anticipation mechanism comes into
play. That is, in Section C.1 we prove that already the preprocessed specification
is equipped with properly anticipating code regarding the next incoming commu-
nication step.

4.5 Failure report and faulty specifications

Up to this point, we assumed that a test program just stops execution, if the
unit under test shows an undesired behavior. More precisely, we assumed that
the abstract code check(i,e) and assert(e) diverge, if it detects an unexpected
incoming communication. This was sufficient for the theoretical considerations so
far, but in practice such a reaction certainly isn’t very helpful. Instead, a test
program should report if the behavior of the unit under test does not comply
with the specification. To this end, we assume an additional external component
which allows for printing error messages. If an expectation identifier check or a
where-clause assertion fails, the external component is used to report a failed test
run. Afterwards, since the language does not provide a statement for an abnormal
termination, we can stop the program with an infinite empty while-loop.

Clearly a test run fails if the unit under test implements an interface communi-
cation which is unexpected according to the specification. But what are actually
the criteria for passing a test? A straightforward and intuitive criterion for a
successful test run would be a test program execution that reaches a terminal
configuration such that the corresponding interface trace is also an element of the
specification’s trace semantics. Due to while-loops, however, a specification can
specify desired interface traces of arbitrary length. This allows to specify and test
the interface behavior of reactive systems which usually do not terminate with
a final result but are expected to interact with their environment continuously.
Thus, not only a test run that ended in a terminal configuration is considered to
be successful but also all (possibly ongoing) executions — unless the unit under
test shows an undesired interface communication. The only trivial difference be-
tween a successful terminated test run and an ongoing test run is that a ongoing
successful test run can still become a faulty test run due to an undesired behav-
ior of the unit, whereas the terminated successful test run cannot become faulty
anymore. In cases where we want to emphasis the latter kind of successful test
runs we speak of an irrevocably successful test run.

In classic state-based testing usually only terminating test runs can be as-
sessed. For, at the very end of the test program, a test verdict is derived from
the final program state. It wouldn’t make sense to say anything about test suc-
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cess or failure for an ongoing test execution. In our testing approach, however, a
test verdict is spread on the complete interface trace: each occurrence of an ex-
pected incoming communication represents a desired behavior of the unit under
test. Thus, we do not only increase confidence on the unit with each terminated
successful test run, but we increase confidence already during a test execution.
This justifies our decision to count ongoing test runs as successful test runs.

With this notion of success, we do not need to add any code for success re-
ports: we assume that a termination of the program is visible, which indicates an
irrevocably successful test run; likewise a program which is still in execution, but
in absence of failure reports so far, is considered to be successful.

Nevertheless, again in the real world, this notion of success is also not always
useful. A diverging unit would be considered as successful, although this seldom
complies with the desired behavior. On account of this, we additionally assume
that the system provides the possibility to implement a time-out, such that an
expected incoming communication has to occur within a certain time period,
otherwise the test program reports a time-out failure and stops. In a simpler
setting, the test program continuously reports on the progress and the software
tester can decide to stop the program if he or she notices that the program hasn’t
made any progress for a longer time.

Note, that as in other testing approaches, a failed test execution does not
necessarily result from a faulty unit but it also may indicate a faulty specification.
To understand this, consider the following specification snippet.

Listing 4.8: Faulty traces: specification snippet
1 count = 1; lastval = 1000;
2 while(count <= 10) {
3 (C x)?meth(int i).where(i > 0 && i < lastval) {
4 count = count + 1;
5 lastval = i;
6 !return(null)
7 }
8 }

In the example, a while-loop expresses the expectation of 10 consecutive incoming
calls, all addressing the same class and method. Moreover, a global variable lastval
is used within the call statement’s where-clause in order to assure that the value
of the call’s parameter is greater than zero and less than the parameter’s value of
the last call or, in case of the first call, less than the initial value of 1000.

Now, let us assume a deduction in the operational semantics of the specifi-
cation language where the parameter of the first incoming call is 5. Although
this call is satisfying the where-clause it makes, at the same time, a complete
processing of the specification program impossible, since for each of the expected
consecutive calls the value of the parameter has to be decreased at least by one.
Thus, the deduction gets stuck meaning that the specification program cannot
reach the terminal configuration. However, the first call could have had a differ-
ent value, such that in this case finishing the program would have been possible.
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In other words, the feasibility for reaching a terminal configuration depends on
the behavior of the external component. For this reason, we consider the behavior
shown by the external component of our example as incorrect.

However, if we modify the specification example such that the initial value
of the variable lastval is not 1000 but 5, then things are different. In this case,
no matter what the incoming behavior is, it is not possible to reach a terminal
configuration. Therefore, we call the modified specification a faulty specification.
A trace of a specification which cannot be extended by further communication
steps due to unsatisfiable where-clauses is called a faulty trace. Note, that a single
trace can be faulty due to a faulty specification or due to an incorrect behavior
of the external component. A specification is exactly a faulty specification if all
of its traces are faulty traces.

Note, that also faulty specifications are satisfiable, as the operational seman-
tics of a faulty specification cannot produce a matching incoming communication
label, either. In particular, also regarding the specification language, a faulty spec-
ification can never reach a terminal configuration.
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