
Testing object Interactions
Grüner, A.

Citation
Grüner, A. (2010, December 15). Testing object Interactions. Retrieved from
https://hdl.handle.net/1887/16243

Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/16243

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16243

Chapter 3

The test specification
language

In this chapter we will develop a test specification language which allows to specify
unit tests for the Java-like programming language Japl introduced in the previous
chapter. From the unit testing point of view, Japl components can be considered
to be the smallest testable constituents of a Japl program, as one can test a Japl
component without the need to modify its code but by providing a test program
which imports the component and investigates its behaviour by means of method
invocations. Therefore we will identify test units with Japl components. That is,
a unit test always represents a test of a Japl component and in the following we
will use the terms unit and component and, respectively, unit test and component
test interchangeably.

A test specification shall stipulate a desired behavior to be shown by the
unit under test to its environment. Equating units with components of our lan-
guage, this means that such a specification talks about the communication which
is captured by the communication labels of the external semantics introduced in
Section 2.4.3. Thus, a first approach could be, to use the trace, i.e. the sequence
of communication labels, itself as a test specification. Or, if one wants more ex-
pressiveness, also regular expressions of communication labels could form a test
specification language. However, we want to ensure that the language provides
some additional features which has an impact on the language design. In partic-
ular, we want that specifications of the language are:

interaction-based As mentioned above, the language shall allow for specifying
the desired behavior of the unit in terms of the interactions that occur at
the interface between the unit and its environment. More precisely, these
interaction specifications represent the fundamental elements from the test-
ing point of view and thus they deserve a correspondingly prominent role
within the specification language from the language designing point of view.

57

58 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

executable The idea is to use a specification as a basis of an executable test
program, or test driver, which, together with the component under test, ac-
tually performs the test that was specified. In other words, the test program
has the task to determine whether the unit under test passes the specified
test or not. As a consequence, a specification must not describe tests which
cannot be implemented in the Japl programming language. This restriction
has two aspects. On the one hand, a specification must not mention fea-
tures of the unit under test which cannot be observed by a test program,
which imports the unit as an external component and which therefore has
no access to the internals of the unit. As an obvious example a specification
must not include references to variables of the component under test, since
its variables are not accessible, hence not observable, by the test program.

Another aspect of executability is given by the fact that in general a test
specification does not only include observations but also stimuli of the unit
under test. These stimuli are to be implemented by the test program and
will show up in terms of interface communication during the test execu-
tion. Therefore, the sequence of stimuli and observations must comply to
the control flow policy of the programming language. For instance, due to
the sequential flow of control, a specification must not include two con-
secutive calls of a component method, as the test program cannot realize
these method calls without accepting an incoming method call or return in
between.

satisfiable While the executability criterion ensures the existence of a test pro-
gram that can execute the specified test, satisfiability, in contrast, ensures
that for each specified test a Japl component exists which can pass the test.
For, in general, it is possible to write down sequences of interface interactions
which could not be implemented by any component of our programming lan-
guage. Let us consider again an example specification with two consecutive
method calls — but this time let us assume that the specification requires
the component under test to realize these calls. Again due to the sequential
flow of control, no Japl component could fulfill such an expectation. The
specification language should identify these faulty specifications and this
should be performed preferably statically. In particular, syntax and type
system should filter them out. Alas, in some cases this is not possible. For
instance, a specification may require the evaluation of a Boolean expression
to true. But in general it is impossible to decide statically whether a Boolean
expression can be evaluated to true, at all. In Section 4.5 we will discuss in
more detail that unfortunately there exist situations where we cannot even
at runtime identify a specification as faulty. However, at least, we want to
design our specification language such that we can single out as many faulty
specifications as possible.

complete This is actually not a requirement regarding a single specification but
rather concerns the specification language itself. That is, the language should

3.1. EXTENSION BY EXPECTATIONS 59

be complete in the sense that every interaction-based, executable, and sat-
isfiable behavior should be expressible within the language.

accessible We want to encourage software developers to perform unit tests. Thus,
software developers should be able to quickly learn the language. Moreover,
testing should not break the rhythm of the short test-and-develop cycles
which many programmers embark on due to extreme programming or other
agile software development approaches.

It turns out that using traces, as defined in Definition 2.5.1, or regular expressions
on communication labels do not meet most of the criteria. Indeed, not all sequences
of labels described by a regular expression are satisfiable or executable. A trace,
in contrast, satisfies most of the criteria by definition. However, a pure trace
language is rather not accessible and in particular it is not very practical to use
interaction traces as specifications since a trace does not entail any generalization
but covers exactly only one specific behavior. Finally, it is difficult to define a
specification language whose elements are only sequences of interactions which
indeed represent a proper trace.

Our basic idea of meeting these requirements is to define a test specification
language by extending the programming language with additional constructs that
ease the specification of interactions. A specification represents a desired interac-
tion trace (or a set of traces) to be shown by the unit under test. Extending the
programming language means that developers only have to learn the additional
constructs. Furthermore the design of the new constructs will exclude many faulty
specifications on the syntax and type level already.

3.1 Extension by expectations

In Chapter 2 we have first defined a simple “monolithic” object oriented language
which later has been extended to Japl by incorporating the notion of components.
In this chapter we will in turn extend Japl in order to get a test specification
language for testing Japl components. Again we will extend the original syntax
and correspondingly extend and adapt the type system as well as the operational
semantics. The formal definition of both, the Japl language and its extension, will
allow for a formal definition of the test pass criteria and of the meaning of a test
itself, too. For, an important consequence of our approach is that the extended
operational semantics will provide a trace semantics for specifications similar to
the trace semantics for Japl components defined in Section 2.5. Thus, it is natural
to consider a specification’s trace semantics to be the meaning of the test and it
suggests itself to define the test pass criteria in terms of a relation regarding
the test specification’s trace semantics and the trace semantics of the component
under test. Then, a strict and straightforward test pass criterion would be to
demand trace inclusion: for each of the specification’s traces there must exist
a corresponding trace within the trace semantics of the component under test.
Assuming that we use for the trace semantics of both, specifications and Japl
components, the same notation [[·]], we can also rephrase this test pass criterion

60 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

more formally by saying that a Japl component p satisfies a test specification s if
the following holds:

[[∆ ` s : Θ]] ⊆ [[∆ ` p : Θ]]

Although the above formulated test pass criterion demonstrates the general
idea of our approach, we will decide to slightly deviate from this relation in two
aspects due to certain design decisions regarding the specification language.

First, a simple but crucial deviation comes from the fact that we will formal-
ize specifications not from the point of view of the unit but of its environment.
Thus, for instance, a call of a method of a unit class invoked by the unit’s en-
vironment is expressed in a test specification in terms of an invocation of that
method resulting in an outgoing call label within the external semantics of the test
specification language. Within the trace semantics of the component under test,
in contrast, this call shows up in form of an incoming call. The complementary
viewpoints regarding the unit and the test specification resembles the situation of
a programmer who is writing unit testing code for testing frameworks like xUnit.

Second, the detailed discussion about the extension below will show that our
language will support relaxed specifications in that a specification may let the
unit under test to chose from several admissible behaviors. For instance, instead
of expecting exactly one specific incoming call1 at a certain point of time, a
specification may list several acceptable incoming calls. Providing alternatives
regarding incoming communications likewise result in multiple traces within the
semantics of the specification. A specification-conform component, however, needs
only to realize one of these traces.

In the remainder of this section we will develop appropriate syntactical ex-
tensions of the test specification language along with an informal description of
their meaning. For this, we will in particular account for the desired interaction-
basedness and accessibility of the language. The subsequent three sections will
then provide a formal definition of the syntax, the type system, and the oper-
ational semantics, respectively. Before we deal with the new constructs that we
want to add, however, let us first see why it is necessary to define a specification
language in the first place. That is, why is the original programming language
Japl not expressive enough to formulate a specification (program) whose trace
semantics can be used as a test specification for another component. According
to the definition of the external semantics given in Table 2.12, we can identify
the desired behavior of the unit as desired incoming communication steps of the
external semantics. In particular, consider a Japl program ps representing a test
specification with

∆0 ` cinit(ps) : Θ0
tγ1!
=⇒ ∆1 ` c1 : Θ1,

that is, the specification program is executed and produces a trace which ends
with an outgoing communication label γ1!. Now, the specification of the desired

1Note that we already use the xUnit perspective here. That is, the specified incoming call is
to be implemented by the unit in terms of an outgoing call.

3.1. EXTENSION BY EXPECTATIONS 61

behavior could entail the fact that a certain incoming communication γ2? is ex-
pected to occur right after γ1!:

∆0 ` cinit(ps) : Θ0
tγ1!
=⇒ ∆1 ` c1 : Θ1

γ2?−−→ ∆2 ` c2 : Θ2.

However, again according to the rules of the external semantics, the outgoing
communication step represented by γ1 either leads to an empty call stack or
it puts a type-annotated receive statement on top of the call stack (CallO,
NewO, and RetO). Thus, in the former case it is not determined whether the
next incoming communication is an incoming method or constructor call (CallI,
NewI) and in the latter case additionally an incoming return is possible (RetI).
Moreover, the Japl program ps has no influence on the input values, namely
on the incoming return value or the input parameters of the call, respectively.
We say a Japl program that has just given away the control to some external
component is generally input-enabled meaning that it cannot decree a specific
incoming communication to occur next but it accepts several different incoming
calls and returns. This under-specification resulting from the openness of the
program restrains us from stipulating the next expected incoming communication.

On account of this, we extend the language by expectation statements which
determine the next expected incoming communication. This way, we will restrict
the application of the semantics’ incoming communication rules such that an
application of a rule is only possible if the corresponding expectation statement
is on top of the call stack.

Since we want to change the “look-and-feel” of the programming language as
little as possible, the question arise how should these new statements look like
and how to integrate them into the language. In order to specify incoming com-
munication, we need statements for incoming method calls, incoming constructor
calls, and incoming returns. The original programming language already provides
statements for the outgoing counterparts: an outgoing method call is caused by
a call statement, which includes the term e.m(e), an outgoing constructor call
includes the term new C(e), and an outgoing return results from return e. It sug-
gests itself that the terms for the incoming communication look similar. Thus, as
a first approach we could, for instance, introduce a term for an incoming method
call which resembles the conventional method call, except that it has a question
mark instead of the usual dot for the method selector:

e?m(e).

The usage of a question mark for expressing an incoming communication is in-
spired by CSP and other process calculi where a question mark describes the
input of a value. An informal description of the term’s semantics would be: wait
for an incoming method call of method m of object e with actual parameters e.
However, sometimes we might want to give a more loose specification in that we
don’t want to stipulate the exact values of the actual parameters but only want
to ensure that certain conditions for the values hold. It could be even the case

62 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

that we don’t want to be specific regarding the callee object. As a consequence,
the term for an incoming method call expectations has the following form:

(C x)?m(T1 x1, . . . , Tk xk).where(e) .

The callee and parameter expressions in our first approach are now replaced by
variable declarations which play the role of formal parameters expressing that
the expectation is not specific regarding the incoming values. However, the new
where-clause narrows down the possible incoming method calls, as the values
of the parameters and of the callee must satisfy the condition e. Note, that a
loose where-clause leads to many different possible incoming method calls, such
that the specification does not only describe a single interaction trace (and its
prefixes) anymore. However, it is certainly still possible to restrict the incoming
communication to a distinct incoming method call by means of an appropriate
where-clause which fixes the callee and incoming parameters to specific values,
that is,

(C x)?m(T1 x1, . . . , Tk xk).where(x==v && x1==v1 && . . . xk==vk) .

We add syntactic sugar for this kind of restrictions on incoming values, so that
the last example can also be written as:

v?m(v1, . . . , vk),

which resembles a usual method call a bit more, again. Moreover, it is allowed to
omit the where-clause where(true).

Similar to the terms for incoming method call expectations, we introduce terms
for incoming constructor call and incoming return expectations, which are

new?(C x)C(T x).where(e) and x =?return(T x′).where(e).

As in the case with incoming call specifications we likewise add syntactic
sugar for incoming return terms. The term ?return(v) represents a shortform for
x =?return(T x′).where(x′ == v) where x is a local variable which is not used
somewhere else.

Using an extension of the programming language in order to specify test cases,
may make the specification language more accessible for software developers. At
the same time, it eases to satisfy the executability requirement, as we only have
to ensure that the new statements can be translated to semantical equivalent
program language code. All other statements can remain the same.

Moreover, it will become obvious that the specification language also meets
the satisfiability requirement. For, the extension of the operational semantics will
show, that we basically only introduce new premises in the incoming communica-
tion rules. Since we add only further restrictions it is easy to see that the extension
of the language does not allow new traces that could not have been produced by a
program of the original language already. However, adding restrictions could raise

3.1. EXTENSION BY EXPECTATIONS 63

the risk to produce faulty traces, that is, one could write specifications which
could get stuck.

In particular, a specification gets stuck, if an incoming communication term
represents an expectation which is inconsistent with the requirements for incoming
communication that we introduced in Section 2.4.3. Fortunately, we can identify
statically many of the specifications that would cause faulty traces. Specifically,
we will explain in the following how we restrict the specification language, such
that incoming communication expectations of a valid specification always comply
with three of the four requirements, namely with well-typedness, control-flow
consistency, and balance. The type system will ensure that a valid specification
only contains expectations of incoming communication which is well-typed and
consistent regarding the control flow. As for the balance requirement, we filter
out undesired specification statically by introducing appropriate statements which
incorporate the above mentioned expectation terms.

The balance condition stipulates that an incoming return may only occur if
a corresponding outgoing call was processed previously. Since test specifications
must not contain expectations that do not satisfy this requirement, we have to
make sure that the term for incoming returns may only appear in certain situa-
tions. Remember, the argument for introducing the balance condition was that an
outgoing return is always preceded by an incoming method call. This property in
turn was due to the fact that return terms may only occur at the end of a method
body, hence, it is actually caused by the syntactical structure of the code. The
idea is to mirror the syntactical structure such that incoming return terms comply
with the balance condition. More specifically, we define a new statement by com-
bining the term for an (outgoing) method call with the corresponding incoming
return, forming a dual version of a normal method definition, that is

e!m(e){Tl xl; stmt ; x =?return(T x′).where(e′)}.

Thus, the original statement of an (outgoing) method call, x = e.m(e), is now
split into the actual outgoing call and its corresponding incoming return such
that the new construct indeed resembles a method definition: instead of a method
signature we have an outgoing method call term and instead of the ususal return
term we have an incoming return term. Combining the call and its return into
one statement ensures that, assuming a syntactical valid specification, an incoming
return term will never be executed without a preceding outgoing method call. At
the same time the expectation body in between the outgoing call and the incoming
return term makes it possible to define local variables xl and a statement stmt
in order to specify further interface interactions that are expected to happen in
between the outgoing call and its return. Note, that we use the exclamation mark
instead of a dot in the outgoing method call, which resembles the syntax of an
output in CSP. Using an exclamation mark emphasis the duality to incoming
method calls and makes the actual trace specification more explicit.

Using the same pattern we introduce a statement for the combination of an

64 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

outgoing constructor call and its return:

new!C(e){Tl xl; stmt ; x =?return(C x′).where(e′)}.

The remaining incoming communication terms that we still have to incorporate
into our language are the incoming method and constructor call expectations. For
similar reasons it again makes sense to use the same pattern, that is, to combine
the incoming call term with a body that ends with an outgoing return. Thus, we
introduce another statement that combines an incoming call expectation with an
outgoing return:

(C x)?m(T x).where(e′) { Tl xl; stmt ; !return(e); }

Finally, we define a similar statement for incoming constructor calls:

new(C x)?(T x).where(e′) { Tl xl; stmt ; !return; }

Note, in contrast to the incoming method call, the return term of an incoming
constructor call does not include an expression for the returned value. For, a
constructor always returns the name of the created object x.

Since we define all these constructs as statements, we can compose them in a
nested and sequential way such that the resulting sequence of interface commu-
nication terms satisfies the balance condition.
Remark 3.1.1: Regarding incoming call statements, one could think that we actually do
not need to introduce a completely new statement, since it might be sufficient to adapt
the usual method definition. Indeed, an incoming call statement is almost identical to a
method definition of a class — apart from the where-clause and the “formal parameter”
for the callee object. But an incoming method call expectation is not only more specific
regarding the expected values but, in contrast to a conventional method definition, it also
is interpreted within a certain interaction context. More specifically, an incoming method
call expectation deals with an incoming call resulting in a communication label which
is expected to occur at a certain place within the interface trace while a conventional
method definition is rather a template of a behavior shown by the method whenever it is
called.

After this conceptional overview which also included an informal introduction
of the interface communication statements, the following sections provide the de-
tails of the syntax, type system, and operational semantics of our test specification
language.

3.2 Syntax

The syntax of the test specification language is given by a grammar as shown
in Table 3.1. In general, the grammar of the test specification resembles that of
the programming language given in Table 2.1 with small replacements and some
extensions. To stress the extending character of the specification language the

3.2. SYNTAX 65

s ::= cutdecl T x; mokdecl { stmt } specification

cutdecl ::= test class C; test unit class

mokdecl ::= mock class C{C(T, . . . , T); T m(T, . . . , T); }; mock class

stmt ::=x = e | x = new C() | ε | stmt ; stmt | {T x; stmt} statements

| while (e) {stmt} | if (e) {stmt} else {stmt}
| stmt in | stmtout | case { stmt in ; stmt }

stmt in ::= (C x)?m(T x).where(e) {T x; stmt ; !return e} incoming stmt

| new(C x)?C(T x).where(e) {T x; stmt ; !return}
stmtout ::= e!m(e, . . . , e) {T x; stmt ; x =?return(T x).where(e) } outgoing stmt

| new!C(e, . . . , e) {T x; stmt ; x =?return(T x).where(e) }
e ::=x | null | op(e, . . . , e) expressions

Table 3.1: Specification language for Japl: syntax

extensions are highlighted in the grammar definition. Similar to the original defi-
nition of a program p which consists of class import declarations, global variable
definitions, class definitions, and a main body, the definition of a specification s
consists of unit class declarations, global variable definitions, class declarations,
and a specification body. In particular the class import declaration is replaced by
the unit class declarations which also mention the names of the classes only. The
class definition of a program is replaced by the mock class declaration where only
the signature of the classes are specified. The method bodies are omitted since the
specification body basically consists of the interaction trace and therefore implic-
itly stipulates the behavior of the classes, rendering the method body definitions
unnecessary. As the classes do not provide method bodies or field declarations it
wouldn’t make sense to internally call their methods. Thus we omit the statements
for (internal) method calls and field updates. For the same reason, the specifica-
tion language only provides a simplified new construct which actually does not
entail a constructor call but rather merely specifies the creation of a new object
of a tester class. Furthermore, the specification language also provides sequential
composition of statements, block statements, conditional statements, while loops,
and the empty statement.

Finally, the language allows for explicitly specifying the interaction sequence
between the tester program and the unit under test. To this end, we introduce
dedicated statement for each type of interaction as discussed previously.

By introducing formal parameters in an incoming communication term we
provided the possibility to relax a specification in terms of the expected incoming
values. A case statement, where each branch consists of a sequence of statements
which all start with an incoming call statement, enables a further relaxation with
respect to the callee class and the called method or constructor, respectively:
the tester’s environment (i.e. the unit under test) chooses a branch by provid-
ing an incoming communication that matches the branch’s leading incoming call
statement.

66 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

Again, due to the lack of field declarations, we exclude field names from the
set of possible expressions. Furthermore, due to the nested structure of the expec-
tation specifications, the use of this would be ambiguous, hence is not supported.
Instead, if we want to refer to the callee object of an incoming method call, we
use the formal callee parameter of an incoming call term.

Remark 3.2.1: Although the intention of the specification language is to describe the
interface interaction between an object-oriented component and its environment by spec-
ifying method calls, the specification language itself is not object-oriented. In particular,
the language does not support the definition of (specification) classes but only the dec-
laration of test class names and mock class signatures. An extension of the specification
language with classes is discussed in Chapter 5.

3.3 Static semantics

Once we had developed useful syntactical constructs for specifying interface com-
munication, defining the specification language’s syntax was straightforward: ba-
sically, we just extended the statement definition of Japl by the new specification
statements. In order to meet the language requirements from the beginning of this
chapter, however, we have to further confine the valid specifications by means of
the type system.

Recall, in particular, that executability requires a specified test to be imple-
mentable in terms of a Japl program and, respectively, satisfiability demands the
existence of a Japl component which passes the test. With these requirements in
mind consider the following specification snippet consisting of two nested outgoing
method call statements:

o1!m1(v1) {
o2!m2(v1) { ... }
...
};

Although this specification snippet represents a syntactical valid specification
fragment, it must be considered as an invalid specification, as it cannot fulfill
the executability requirement. For, as we have already pointed out, there exists
no Japl program that implements the specified test: we cannot write a Japl pro-
gram that realizes two consecutive outgoing method calls without an incoming
communication in between, as the first outgoing method call passes the control
to an other component rendering it impossible to invoke the second method call
immediately afterwards. It is obvious that we can construct a dual example con-
sisting of two nested incoming call statements which must be deemed an invalid
specification too as it is not satisfiable.

The nested call statement example showed that we cannot use arbitrary state-
ments as expectation body of a call statement, so considering an outgoing method
call statement sout with

sout = o1!m1(v){ Tl xl; stmt1; x =?return(T x′).where(e) },

3.3. STATIC SEMANTICS 67

as well as an incoming method call statement sin with

sin = o2?m.where(e)(T x){ Tl xl; stmt2; !return(v) },

the question arises what kind of statements may be used for stmt1 and, respec-
tively, stmt2 in general, in order to fulfill executability and satisfiability. To answer
this question, it is important to understand the discrepancy between Japl and the
specification language regarding their corresponding control flow policies. Due to
the sequential flow of control, a Japl program is always blocked right after it has
realized an outgoing communication and it may only proceed when the external
semantics provides it with an incoming communication. This strict control flow
policy does not hold for the specification language anymore. The above outgoing
call statement sout , in particular, indicates that a specification may proceed with
the processing of stmt1 after it has realized the outgoing call label 〈call o1.m1(v)〉!
due to the execution of the term o1!m1(v). We refer to statements, like stmt1, that
occur between an outgoing communication and an incoming communication term
as passive statements and we say they appear in passive control context . For, a Japl
program that corresponds to the outgoing call statement gets blocked, hence it
becomes passive, right after it has realized the outgoing call label 〈call o1.m1(v)〉!.

A Japl program that corresponds to the incoming call statement sin , however,
may proceed, i.e., it is active, right after it has realized the incoming call label
〈call o2.m2(v)〉?. Thus, we refer to statements, like stmt2, occurring between an
incoming and an outgoing communication term, as active statements and we say
they appear in active control context .

Specifically, an incoming communication can “re-activate” a previously blocked
Japl program again, hence, it is easy to see that we may use incoming call state-
ments or the empty statement for passive statements, like stmt1 in sout , without
breaking executability. In order to increase the expressiveness of our specification
language, however, we will permit also other statements to appear in a passive
control context. Consider, as an example, a specification where the expectation
regarding incoming calls depends itself on an incoming value. More specifically,
after performing an outgoing call o!m(v), the specification expects a sequence of
invocations of method m1 of object o1, where the exact number of invocations
is determined by a Boolean input parameter x of method m1. Then this can be
expressed by the following specification snippet:

1 b = ...;
2 o!m() {
3 while(b) {
4 o1?m1(bool x) { b=x; ... }
5 }
6 o2?m2() { ... }
7 ...
8 };

The example demonstrates that the specification languages allows for a straight-
forward formalization of this kind of specifications. Note, however, it needs a

68 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

while-loop to appear in a passive control context therefore lacking a direct cor-
respondent in Japl. Nevertheless, in Chapter 4 we will provide a code generation
algorithm which allows to determine a Japl program that implements this test
specification snippet. The algorithm’s key concept for translating passive state-
ments like the above mentioned passive while-loop is based on a reordering of the
involved statements. Thus, we will allow statements to appear in passive control
context if they do not entail side-effects as a reordering of these statements is not
critical.

Considering the incoming call statement sin with its active statement stmt2

again, the situation is more relaxed, since in general stmt2 can also be processed
in Japl. As already mentioned above, the only exception is a statement which
entails another incoming communication, because the sequential control flow of
Japl does not allow two or more consecutive incoming call labels.

Be it as it may, regarding the typing system, it suffices to conclude that only
incoming call statements, the empty statement, and side-effect-free statements,
may appear in a passive control context. If a statement does not entail an incoming
communication as the next interface communication, then it may appear in an
active control context. This has to be checked by the type system.

The type system of the specification language is based on the type system
of the Japl programming language which was introduced in Section 2.2 and Sec-
tion 2.4.2. Recall, that in Japl well-typedness of a statement stmt was evaluated
in context of a local type mapping Γ and a global type mapping ∆ expressed by
the typing judgment:

Γ; ∆ ` stmt : ok.

As for the specification language we have to implement two modifications on the
typing judgments for statements. First, we have to equip the typing judgments
with an additional flag γ in order to implement the control-flow related checks
that we have discussed above. The flag γ represents the considered control context
of the statement and correspondingly ranges over the set {act , psv}.

Second, we have to ensure that a callee of an outgoing or incoming call state-
ment indeed belongs to an external component or, respectively, to the program.
To this end, we have to distinguish component and program classes in the typing
judgments. In the Japl typing rules for statement, both, component and program
classes, were included in the global type mapping ∆. Consequently, we split the
global mapping into a global mapping ∆ regarding component types and a global
mapping Θ for program types.

Considering the two modifications, the specification language’s type judgments
for statements are of the following form:

Γ; ∆; Θ ` stmt : okγ .

The type system of the specification language is given in Table 3.2. As men-
tioned earlier, it is based on the type system of Japl. Apart from the two modifi-
cations regarding the judgments, we introduce new rules for the new specification

3.3. STATIC SEMANTICS 69

[T-Spec]

Γ; ∆ ` cutdecl : ok
Θ = cltype(mokdecl) Γ′ = Γ, x:T Γ′; ∆; Θ ` stmt : okγ ;

Γ; ∆ ` cutdecl mokdecl T x; {stmt ; return} : Θγ

[T-CallIn]

Θ(C)(m).dom = T Γ, x:C, x:T ; ∆,Θ ` e : Bool Θ(C)(m).ran = T

Γ′ = Γ, x:C, x:T , x′:T ′ Γ′; ∆; Θ ` stmt : okact Γ′; ∆,Θ ` e′ : T

Γ; ∆; Θ ` (C x)?m(T x).where(e){T ′ x′; stmt ; !return e′} : okpsv

[T-NewIn]

Θ(C)(C).dom = T Γ′ = Γ, x:C, x:T , x′:T ′

Γ′; ∆; Θ ` stmt : okact Γ, x:C, x:T ; ∆,Θ ` e : Bool

Γ; ∆; Θ ` new(C x)?C(T x).where(e){T ′ x′; stmt ; !return} : okpsv

[T-CallOut]

Γ; ∆,Θ ` e : C Γ′(x) = ∆(C)(m).ran Γ; ∆,Θ ` e : ∆(C)(m).dom

Γ′ = Γ, x:T Γ′; ∆; Θ ` stmt : okpsv Γ′; ∆,Θ ` e′ : Bool

Γ; ∆; Θ ` e!m(e){T x; stmt ; ?return(x).where(e′)} : okact

[T-NewOut]

Γ′(x) = C Γ; ∆ ` e : ∆(C)(C).dom

Γ′ = Γ, x:T Γ′; ∆; Θ ` stmt : okpsv Γ′; ∆,Θ ` e : Bool

Γ; ∆; Θ ` new!C(e){T x; stmt ; ?return(x).where(e)} : okact

[T-VUpd]
Γ; ∆,Θ ` e : Γ(x)

Γ; ∆; Θ ` x = e : okact
[T-Block]

Γ, x:T ; ∆; Θ ` stmt : okact

Γ; ∆; Θ ` {T x; stmt} : okact

[T-NewInt]
C ∈ dom(Θ) Γ(x) = C

Γ; ∆; Θ ` x = new C() : okact

[T-Seq]
xΓ; ∆; Θ ` stmt1 : okγ Γ; ∆; Θ ` stmt2 : okγ

Γ; ∆; Θ ` stmt1; stmt2 : okγ

[T-While]
Γ; ∆; Θ ` e : Bool Γ; ∆; Θ ` stmt : okγ

Γ; ∆; Θ ` while (e) {stmt} : okγ

[T-Cond]
Γ; ∆; Θ ` e : Bool Γ; ∆; Θ ` stmt1 : okγ Γ; ∆; Θ ` stmt2 : okγ

Γ; ∆; Θ ` if (e) {stmt1} else {stmt2} : okγ

[T-Case]
Γ; ∆; Θ ` stmt in : okpsv Γ; ∆; Θ ` stmt : okpsv

Γ; ∆; Θ ` case { stmt in ; stmt } : okpsv

Table 3.2: Specification language for Japl: type system (stmts)

statements and we skip the rules that deal with class definitions and other omitted
constructs of the original language. A specification is type-checked by using rule
T-Spec. The rule determines the committed type context Θ by extracting the
class types from the specification’s mock class signatures. Moreover, it checks if

70 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

the classes of the component under test are among the types of the assumed type
context ∆. Finally, it type-checks the body statement within a typing context that
is given by the assumption context, the commitment context, as well as the local
context enriched by the global variables. The type-check of the body statement
yields a control context γ which is also used to annotated the committed types
of the specification, indicating that the specified test starts in passive or in active
control context, respectively.

The rules T-CallIn and T-NewIn deal with the incoming method and con-
structor call statements and resemble the now unnecessary rule T-MDef for
method definitions of Table 2.2. After extending the local type context with the
“formal parameters”, the local variables, and the callee object, we have to type-
check the body statement and, in case of a method call, the return expression.
Moreover, a call statement is only well-typed if it appears in a passive control con-
text and if the callee class C is an element of the program context Θ. Right after
the incoming call, the program has gained control and thus the body statement
is correspondingly checked in an active control context.

In a similar way, outgoing method and constructor call statements may only
appear in a situation where the program has the control which is again ensured
by an exclamation mark in the context of the judgment that forms the conclusion.
Thus, the body statement in turn has to be checked in a passive control context.

We want to allow sequential composition of incoming call statements. There-
fore, the rule T-Seq can be applied in an active as well as in a passive control
context. This is done by using a variable γ for the control context. However, both
sub-statements have to be well-typed regarding the same control context. We simi-
larly proceed with while loops (T-While) and conditional statements (T-Cond).
Allowing the latter two kind of statements to appear in a passive control context
considerably increases the expressiveness of the specification language, as we have
shown already. However, the rules T-Block and T-VUpd show that we allow
block variable declarations and assignments in an active control context only, be-
cause they involve a side-effect. The case statement is only well-typed in a passive
control context and also all its sub-statements have to be well-typed in a passive
control context.

Finally, we have to carry out minor adaptions to transform the rule T-Prog’
for open programs of Table 2.9 to T-Spec for specifications. The import declara-
tion check of rule T-Prog’ is replaced by a unit declaration check. Furthermore,
the function cltype has to be adapted, as the mock class declarations consist only
of the method signatures but do not provide method bodies.

Definition 3.3.1 (Well-typedness): A specification s is well-typed if there exist an as-
sumption/commitment context ∆,Θ and a control context γ such that the judgment

; ∆ ` s : Θγ

is deducible by means of the deduction rules given in Table 3.2 and 2.3. In particular,
the deduction starts with an empty local type mapping. Therefore, well-typedness of the

3.3. STATIC SEMANTICS 71

specification s is denoted by
∆ ` s : Θγ .

However, sometimes we will omit the control context annotation meaning that s is well-
typed either in a passive or in an active control context.

Note, although some statements can in general occur in a passive or in an
active control context, they are always well-typed within either a passive or an
active control context, only, depending on the code context. If, for instance, a
conditional statement forms the body of an outgoing call statement, then it is
well-typed in a passive control context. If, in contrast, it forms the body of an
incoming call statement, then it appears in an active control context.
Remark 3.3.2: Incoming call statements are well-typed in passive control context, only.
Their bodies in turn are only well-typed in active control context. The dual holds for
outgoing call statements. Together with the nested nature of the call statements, this leads
always to executions with interaction sequences that are consistent regarding the control-
flow at the interface.

The grammar given in Table 3.2 was motivated to show that the specifica-
tion language indeed represents basically a simple extension of the programming
language. Due to the relaxed control flow policy of the specification language,
however, we had to add some extra checks within the type system in order to en-
sure executability and satisfiability. Specifically, we added the notion of active and
passive control contexts as well as active and passive statements. It is also possible
to implement the control-flow related checks in the syntax definition already. In
particular, we can distinguish active and passive statements on the syntax level.
For this, consider the following definition.
Definition 3.3.3 (Active and passive statements: sact , spsv): The syntax for active and
passive statements, sact and spsv , respectively, is given in terms of the following gram-
mar where e refers to expressions as defined in Table 3.2:

spsv ::= if(e) {spsv} else {spsv} | while(e) {spsv} | spsv ; spsv

| stmt ′in | case stmt ′in ; spsv

stmt ′in ::= (C x)?m(T x).where(e) {T x; sact ; !return e}
| new(C x)?C(T x).where(e) {T x; sact ; !return}

sact ::= if(e) {sact} else {sact} | while(e) {sact} | sact ; sact

| x = e | {T x; sact} | stmt ′out
stmt ′out ::= e!m(e, . . . , e) {T x; spsv ; x =?return(T x).where(e) }

| new!C(e, . . . , e) {T x; spsv ; x =?return(T x).where(e) }.

The fact that conditional statements, while-loops, and sequential composi-
tions may appear in active and in passive control context is reflected within Def-
inition 3.3.3, in that parts of the original definition of stmt are duplicated to
corresponding parts in spsv and sact . The side-effect entailing assignments and

72 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

block statements, however, are always instances of sact . Note that we also had
to redefine the syntax definition for the incoming and outgoing communication
statements, as the new versions, stmt ′out and stmt ′in , account for the control-flow
policy. That is, an incoming call statement now has always an active statement
as expectation body and an outgoing call statement a passive statement.

The following lemma will relate the syntax definition for active and passive
statements with the original definition of the specification language. More specif-
ically, the lemma will show that all statements within a syntactical valid and
well-typed specification are instances of either sact or spsv .
Lemma 3.3.4: Let

s = cutdecl T x; mokdecl { stmt }

be a well-typed specification such that ∆ ` s : Θ. Then stmt is either of the form sact

or of the form spsv .

Proof. By structural induction. We show that Γ; ∆; Θ ` stmt : okpsv implies that
stmt is of the form spsv and that Γ; ∆; Θ ` stmt : okact implies that stmt is of the
form sact . We show some cases regarding the form of stmt :

Case (C x)?m(T x).where(e){T ′ x′; stmt ; !return e′}
Well-typedness of s yields

Γ; ∆; Θ ` (C x)?m(T x).where(e){T ′ x′; stmt ′; !return e′} : okpsv

and thus Γ; ∆; Θ ` stmt ′ : okact . Due to the induction hypothesis we know that
stmt ′ is of the form sact . And this in turn implies that stmt is of the form spsv .

Case x = e

We know that Γ; ∆; Θ ` x = e : okact . Moreover, x = e is an instance of sact .

Case stmt1; stmt2

Subcase
Assume Γ; ∆; Θ ` stmt1; stmt2 : okact . Then also Γ; ∆; Θ ` stmt1 : okact and
Γ; ∆; Θ ` stmt2 : okact . The induction hypothesis yields that both, stmt1 and
stmt2, are of the form sact . Thus, also the sequence is an instance of sact .

Subcase A
ssume Γ; ∆; Θ ` stmt1; stmt2 : okpsv . Then also Γ; ∆; Θ ` stmt1 : okpsv and
Γ; ∆; Θ ` stmt2 : okpsv . The induction hypothesis yields that both, stmt1 and
stmt2, are of the form spsv . Thus, also the sequence is an instance of spsv .

Assuming a well-typed specification, it is often more convenient to use the
syntax definition for active and passive statements instead of the general state-
ment definition stmt within proofs and definitions. In particular, we will use sact

and spsv in the following section which deals with the definition of the operational
semantics.

3.4. OPERATIONAL SEMANTICS 73

3.4 Operational semantics

In general the operational semantics of the specification language is very similar
to the operational semantics of the original programming language. In particular,
the internal steps remain the same. Regarding the inference rules of the external
steps, the crucial point is that we have to narrow down the communication steps
such that the resulting trace semantics of the specification consists only of the
specified traces (and their prefixes). This is implemented, on the one hand, by
additional premises and, on the other hand, by allowing incoming communication
only if a corresponding communication term is on top of the call stack.

The different handling of interface communication as well as the absence of
internal method and constructor calls also leads to a somewhat different, i.e.,
simpler, form of the call stack of a specification. For, the execution of a program
never adds or removes an activation record but each inference rule only modifies
the topmost activation record. Although this means that the call stack does not
consist of several blocked and possibly one active activation record, we still dis-
tinguish activation records which only allow incoming communication as the next
interface communication from activation records which only allow outgoing com-
munication as the next interface communication. Thus, for the activation records
of the specification language we define

AR ::= ARa | ARp

ARa ::= (µ,mcact)
ARp ::= (µ,mcpsv)

mcact ::= sact | sact ; !return(e); mcpsv

mcpsv ::= spsv | spsv ; x =?return(T x).where(e); mcact

The rules of the operational semantics are given in Table 3.3.
The rules CallO and NewO deal with outgoing method and, respectively,

constructor call statements. Just as the corresponding rules of the programming
language, the expressions within the actual call term are evaluated and the transi-
tion is labeled with an outgoing call label. However, in the resulting configuration,
the call stack is not blocked by a receive statement but instead only the actual
call term of the statement is removed leaving the body of the call statement on
top of the call stack. For, the body of the call statement comprises the desired
tester/environment interactions that should occur until the call’s incoming return
occurs. The variable structure is extended by a variable function for the local
variables of the call statement. Note that, although CallO and NewO resemble
the corresponding rules of the programming language we do not add an activa-
tion record as we did in the semantics of the programming language. Otherwise
the local variables of this call statement wouldn’t be accessible by the body state-
ment. Finally, the return statement is annotated with the return type of the called
method or, respectively, the callee’s class name.

74 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

[CallO]

sact = e!m(e) {T x; spsv ; x =?return(T x′).where(e′)}
a = ν(Θ′).〈call o.m(v)〉! o ∈ dom(∆)

∆ ` (h, v, (µ, sact ; mc
act

) ◦CS) : Θ
a−→

∆ ` (h, v, (vl·µ, spsv ; x=?return(T x
′
).where(e

′
); mc

act
) ◦CS) : Θ,Θ

′

where o = [[e]]v,µh ,
v = [[e]]v,µh ,
T = ∆2(o)(m).ran,
Θ′ = new(h, v,Θ), and

vl = {x 7→ ival(T)}

[NewO]

sact = new!C(e) {T x; spsv ; x =?return(C x′).where(e′)}
a = ν(Θ′).〈new C(v)〉! C ∈ dom(∆)

∆ ` (h, v, (µ, sact ; mc
act

) ◦CS) : Θ
a−→

∆ ` (h, v, (vl·µ, spsv ; x=?return(C x
′
).where(e

′
); mc

act ◦CS) : Θ,Θ
′

where v = [[e]]v,µh ,
Θ′ = new(h, v,Θ), and

vl = {x 7→ ival(T)}

[RetO]
a = ν(Θ′).〈return(v)〉!

∆ ` (h, v, (vl·µ, !return e; mc
act

) ◦CS) : Θ
a−→

∆ ` (h, v, (µ,mc
act

) ◦CS) : Θ,Θ
′

where

v = [[e]]
v,vl·µ
h and

Θ′ = new(h, v,Θ)

[CallI]

spsv = (C x)?m(T x).where(e′) {Tl xl; sact ; !return e}
a = ν(∆′).〈call o.m(v)〉? C = Θ(o) Θ ` a : ∆

[[e′]]
v,vl·µ
h = true

∆ ` (h, v, (µ, spsv ; mc
psv

) ◦CS) : Θ
a−→

∆,∆
′ ` (h, v, (vl·µ, sact ; !return e; mc

psv ◦CS) : Θ

where
vl = {x 7→ o, x 7→ v,

xl 7→ ival(Tl)}

[NewI]

spsv = new?(C x)C(T x).where(e′) {Tl xl; sact ; !return}
a = ν(∆′).〈new C(v)〉? C ∈ dom(Θ) Θ ` a : ∆

[[e]]
v,vl·µ
h = true

∆ ` (h, v, (µ, sact ; mc
act

) ◦CS) : Θ
a−→

∆,∆
′ ` (h

′
, v, (vl·µ, sact ; !return x; mc

act
) ◦CS) : Θ

where
o ∈ N \ dom(h),

h′ = h[o 7→ ObjC⊥],
and
vl = {x 7→ o, x 7→ v,

xl 7→ ival(Tl)}

[RetI]

a = ν(∆′).〈return(v)〉? ∆ ` a : Θ ∆,∆′,Θ ` v:T

[[e]]
v,{x′ 7→v}·vl·µ
h = true

∆ ` (h, v, vl·µ, x =?return(T x
′
).where(e); mc

act ◦CS) : Θ
a−→

∆,∆
′ ` (h, v′, (µ′,mc

act
) ◦CS) : Θ

where
(v′, v′l·µ

′) =
vupd(v, vl·µ, x 7→ v)

[CaseIC]

stmt in = (C x)?m(T x).where(e′) {Tl xl; sact ; !return e}
a = ν(∆′).〈call o.m(v)〉? C = Θ(o) Θ ` a : ∆

[[e′]]
v,vl·µ
h = true

∆ ` (h, v, (µ, case {stmt}; mc
psv

) ◦CS) : Θ
a−→

∆,∆
′ ` (h, v, (vl·µ, sact ; !return e; stmt

′
; mc

psv ◦CS) : Θ

where
stmt in ; stmt′ ∈ stmt

T x = mparams(C,m),
and
vl = {x 7→ o, x 7→ v,

xl 7→ ival(Tl)}

[CaseIN]

stmt in = new?(C x)C(T x).where(e′) {Tl xl; sact ; !return}
a = ν(∆′).〈new C(v)〉? C ∈ dom(Θ) Θ ` a : ∆

[[e]]
v,vl·µ
h = true

∆ ` (h, v, (µ, case {stmt}; mc
psv

) ◦CS) : Θ
a−→

∆,∆
′ ` (h

′
, v, (vl·µ, sact ; !return x; mc

act
) ◦CS) : Θ

where
stmt in ; stmt ∈ stmt

T x = mparams(C,m),
and
v = {x 7→ o, x 7→ v,

xl 7→ ival(Tl)}

Table 3.3: Specification language for Japl: operational semantics (external)

3.4. OPERATIONAL SEMANTICS 75

The rule RetO is almost identical to the former version, except that we do
not have to remove an activation record from the call stack. Likewise, we only
remove a variable function but not a method variable structure.

The rules CallI and NewI can only be applied if the statement on top of
the stack frame is indeed an incoming method call statement or an incoming
constructor call statement, respectively. Additionally, we add a premise which
asserts that the where-clause condition evaluates to true. The evaluation uses a
variable context which is already extended by the formal parameters of the call
terms, as the where-clause expression might contain references to parameters.
Again, only the call term is removed from the call stack.

Rule RetI deals with the incoming return term, which has been annotated
with the proper return type. After the transition, the variable context is shortened
by the top most variable function, since it represented the variables of the call
statement which the return term belonged to. Note, that we first updated the old
variable context with the incoming return value since we do not know whether
the target variable was part of the call statement’s variables.

The last rules CaseIC and CaseIN deal with the case statement. These rules
are applicable exactly if rule CallI or rule NewI is applicable for at least one
of its branches. One might think, it would be more straightforward to provide an
internal rule which just reduces the case statement non-deterministically to one
of its branches. However, not the specification but the external component should
non-deterministically choose a branch.

Leaving a statement on top of the stack frame after an outgoing call term has
been processed, results in a crucial change of the language. Right after the call,
the program is not blocked waiting for an incoming communication but it still
can proceed. Although the type system ensures that assignments may not occur
right after an outgoing call, still while-loops and conditional statements may be
processed by means of internal communication steps. Thus, regarding internal
computation steps, the specification language breaks the control flow requirement
here. However, concerning the interface communication, also a specification still
sticks to this requirement. For, the typing rules do not allow a nesting of statement
which results in two consecutive incoming or two consecutive outgoing commu-
nication terms. As a consequence, the traces of a specification program always
satisfy the control flow requirement.

Allowing while-loops and conditional statements in a passive control context,
however, eases the definition of trace-based specifications. A while-loop in a pas-
sive control context allows to specify repetitions of incoming calls where the exact
number of repetitions depends on the incoming values and is, thus, not known
statically. Conditional statements in a passive control context allow to specify
different expectations depending on conditions unknown statically.

Remark 3.4.1: Note, the lack of class definitions implies that all transition rules do not
depend on the specification code. That is, we do not have to index transition steps by a
specification.

76 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

Finally, we give a definition for test specification executions and traces that
corresponds to Definition 2.4.8. Moreover, we expand the trace semantics defini-
tion given in Definition 2.5.1 in order to include specifications.
Definition 3.4.2 (Specification execution; specification traces): Let

s ≡ cutdecl T x; mokdecl {stmt ; return}

be a specification with ∆ ` s : Θ. We, again, broaden the application of cinit , defined in
Definition 2.3.3 and Definition 2.4.8, such that we also apply it to specifications s.

The execution of a specification is represented by a finite, possibly empty, sequence
of internal and external transitions starting from its initial configuration. The sequence
of communication labels arising from an execution is called an (observable interaction)
trace of the specification. As in the case of program executions, we use an annotated
arrow t=⇒ to represent a specification execution that implements the trace t. The corre-
sponding rules are given in Table 2.13. Thus, the execution of a specification represents
the reflexive transitive closure of the internal and external transitions.

Note, that due to the relaxed control-flow policy, specifications do not have
passive but only active initial configurations. For, not a passive initial configu-
ration but a passive main statement is used to express a specification execution
that starts with an incoming communication. Similarly, the following definition
for the trace semantics of specifications gets by with only one semantic function.
Definition 3.4.3 (Trace Semantics): We expand the domain of the semantic function [[·]],
given in Definition 2.5.1, to ∆ ` s : Θ, where s represents a well-typed specification. In
particular, assuming ∆ ` s : Θ, we define

[[∆ ` s : Θ]] def= {s ∈ a∗ | ∆ ` cinit(s) : Θ s=⇒ ∆′ ` c′ : Θ′}

3.5 Example

Having defined the test specification language, let us have a look at two small
example specifications. The first example specifies the proper usage of a simple
file system library. The second example represents a test specification for the voter
system introduced in the Chapter 1.

Consider a system’s library for handling files equipped with a specific appli-
cation programmer’s interface (API). Usually, such an API entails a reasonable
orders of file operations that may be invoked by a program. In particular, let us as-
sume that the operations for writing strings to a file consists of an open-for-writing
operation, a sequence of write-string operations, and a final close operations. Fur-
ther, let us assume that a class File encapsulates these operations, such that they
are accessible via method calls. The class’ constructor is equipped with a string
parameter for specifying the file name. A method openWrite allows to request
for opening the file for writing. The method’s Boolean return value indicates a
successful or a failed execution of the file operation. Further, the class provides
a method writeStr which writes its string parameter to the corresponding file.
It returns the string that actually has been written to the file (which could be,

3.5. EXAMPLE 77

for instance, a prefix of the method’s parameter due to the lack of disk space).
Finally, an invocation of the close method closes the file and possibly allows to
release system resources that were used for handling the file. Again, a successful
execution of the underlying file close operation is committed with true.

The valid order of file-writing operations therefore corresponds to a sequence
of constructor and method calls regarding class File. Calling the method writeStr
before the file has been opened via openWrite, for instance, doesn’t make sense.
Instead, ignoring the method returns, the valid sequences can be depicted by the
following graph:

• new File // • f .openWrite // •

f .writeStr

DD
f .close // •

where we assume f to be the object that has been created by the constructor call
at the beginning of the sequence.

Knowing about the interface of File and the valid method invocation order,
we can specify the behavior to be shown by a program that uses File for writing
string files. The corresponding example specification is given in Listing 3.1.

The specification starts with the declaration of global variables. Since the
specification does not contain callbacks to the component under test we do not
need to specify its class names, hence we dropped the test class declaration. Lines
4 to 8 deal with the interface declaration of the File class as described above.

While the interface declaration stipulates the static aspects of the interface, the
behavior specification given in Lines 10 to 30 deal with its dynamic aspects. Lines
11 to 14 represent the expectation of an incoming constructor call: a file-write task
always starts with the creation of a File object. The expectation’s where-clause
checks whether the string represents a valid file name. Here, we just ensure that
the parameter is not the empty string. We store the name of the created object f
in the global variable file as the scope of the constructor call expectation ends in
Line 14.

After the object creation, we expect the object’s openWrite method to be
called. This is expressed in Line 15 to 18. Within the incoming call term in Line
15, we use the global variable file to ensure that indeed exactly the object is
called that just has been created.2 The actual file-operation for opening the file
is replaced by an assignment to the global Boolean variable writing. It encodes
the file state regarding write operations, in that the value true indicates the file’s
readiness for writing. Correspondingly, the value is passed as the return value to
the component under test.

Once the file is ready for writing, the component under test may write an
arbitrary number of strings to the file until it finally calls close to close it. This is
implemented in terms of a passive while-loop in Line 19 to 29. As long as writing is
true, the component under test is allowed to call the method writeStr for writing

2In this simple example, however, there exists no other instance of class File anyway.

78 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

Listing 3.1: Specification example: file-io
1 File file;
2 bool writing;
3

4 mock class File{ File(string);
5 bool openWrite();
6 string writeStr(string);
7 bool close()
8 }
9

10 {
11 new(File f)?File(string fname).where(fname != ””) {
12 file = f;
13 !return;
14 };
15 file?openWrite() {
16 writing = true;
17 !return(writing);
18 };
19 while (writing) {
20 case {
21 file?writeStr(string s) {
22 !return(s);
23 }
24 file?close() {
25 writing = false;
26 !return(true)
27 }
28 }
29 }
30 }

strings to file. A case construct, however, allows the component to alternatively
close the file by calling method close. This method sets the writing status-flag to
false which causes the specification to leave the while-loop. As a consequence,
in particular the component under test must not call writeStr anymore.

As mentioned above, the second example, given in Listing 3.2, illustrates a
test specification regarding the voter system. Due to the simplicity of the spec-
ification language, however, we have to use some additional constructs in the
example which are actually not provided by the original specification language.
More specifically, we import and use the Java classes HashMap and Vector in order
to define the test specification. That is, we assume that the specification language
is object-oriented – an extension which is actually discussed in Chapter 5. Recall
that the class Census is put to test. To this end, a list of Voter objects is passed

3.6. EXECUTABILITY AND INPUT ENABLEDNESS 79

to an instance of Census via method call conductVoting. Afterwards we expect
the Census object to enquire the vote of each of the Voter objects by calling their
method vote. Finally, it should return the conjunction of collected votes.

Similar to the jMock specification, we have to create a list of Voter objects by
means of the standard library class Vector. Actually, the specification language
does not support the import of library classes. We ignore this problem but initial-
ize the list with three internally created Vector objects in Line 6 to 8. Moreover, we
define a mapping votes which provides the vote for each Voter object in terms of
Boolean values. For the sake of brevity, we skipped the details of the initialization
of the mapping votes, but we assume that for each Voter object v of voters, the
expression votes.get(v) yields a Boolean value which will be used for the object’s
vote. Furthermore, we create an empty list called. During the voting procedure,
it will store the object names of the Voter object that have been called by the
Census instance, already.

The main specification statement, starting in Line 17, creates a Census object
c and calls its method census afterwards, passing a copy of the voters list to the
unit under test. The expectation body of this outgoing method call consists of
a while-loop which loops until each voter object has been called by c. The body
of the while-loop consists of an incoming call expectation of method vote of an
instance of the Voter. Specifically, the where-clause ensures that each Voter object
is called once, at most. In this case, the object yields its vote consulting the votes
mapping. Moreover, it calculates the outcome of the voting. Finally, it adds itself
to the list called.

3.6 Executability and input enabledness

As mentioned earlier, we want to generate an executable test program from a spec-
ification. More precisely, for every specification we should be able to automatically
derive a Japl program which checks whether the unit under test shows the desired
behavior at its interface as described by the specification. An important difference
between the specification and the resulting test program is that the test program
can not enforce the external component to show a certain behavior but instead
it tests for it. If the unit shows a behavior that deviates from the specification
then the test failed. In particular, we assume that a test program provides some
failure handling code which is only executed when the test program detects an
unexpected behavior of the unit under test. We don’t need to be specific regarding
the failure handling code but we only require the code to stop the program from
making any progress. Hence, it could merely consist of a diverging while-loop but
in real life it would probably report the failure to the user. May it as it be, we
refer to the failure handling code by the pseudo statement fail . Based on this, we
define

Definition 3.6.1 (Test failure detection): Assume c = (h, v, (µ, fail ; mc) ◦CS to be a
Japl configuration whose topmost statement is the pseudo statement fail . Then we denote

80 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

Listing 3.2: Specification example: voter system
1 import java.util.HashMap
2

3 test class Census;
4

5 Census c;
6 Vector voters = new Vector({
7 new Voter(); new Voter(); new Voter();
8 });
9 HashMap votes = ...

10 Vector called = new Vector();
11 Boolean conj = true;
12

13 mock class Voter {
14 Boolean vote();
15 }
16

17 new!Census() {
18 c=?return()
19 };
20 c!conductVote(voters.clone()) {
21 while (called.size() < voters.size()) {
22 (Voter v)?vote().where(called.contains(v) == false) {
23 Boolean myvote = votes.get(v);
24 called.add(v);
25 conj:=conj && myvote;
26 !return(myvote);
27 }
28 }
29 x=?return(Boolean y).where(y == conj)
30 }

this with
c ↓fault .

Moreover, if p is a well-typed Japl program with

∆ ` p : Θ s=⇒ ∆′ ` c : Θ′ and c ↓fault,

then we also may write
∆ ` p : Θ s=⇒↓fault .

Due to possible test failures, the test program does not have the same trace
semantics as the specification. For, as we have seen already, a test program which
gave away the control to an external component cannot restrict the incoming
communication but is generally input enabled. Therefore, executability means
that we can generate a test program which implements the specified outgoing

3.7. SATISFIABILITY AND COMPLETENESS 81

communication and which, at the same time, detects the first deviation from the
specified incoming communication.

Lemma 3.6.2 (Executability): Let s be a specification of our test specification language
and let ∆,Θ be an assumption-commitment context such that ∆ ` s : Θ. Then there
exists a Japl program p such that ∆ ` p : Θ and

1. for every trace t ∈ [[∆ ` s : Θ]] also t ∈ [[∆ ` p : Θ]] as well as

2. (a) for every trace tγ! ∈ [[∆ ` p : Θ]] also tγ! ∈ [[∆ ` s : Θ]], and

(b) for every trace tγ? ∈ [[∆ ` p : Θ]] either tγ? ∈ [[∆ ` s : Θ]]

or ∆ ` p : Θ
tγ?
=⇒↓fault .

Note that within 2.(b) of Lemma 3.6.2, we use an exclusive-or for the two
possible cases. That is, the test program p reports a failure if, and only if, the
specification did not expect the last incoming communication γ?. We will prove
the executability property in the next chapter by proposing a code generation
algorithm which generates a program with the desired properties.

3.7 Satisfiability and completeness

The traces of a test specification’s trace semantics describe the behavior that we
expect from the unit under test and thus determines what we want to test. But a
test which cannot be passed by any program is useless. Therefore, a specification
should always describe only traces with incoming communication that is indeed
implementable by a program of the programming language. Before we formalize
this feature it is important to realize that a change of the viewpoint is involved:
in the specification the expected behavior is given in terms of incoming commu-
nication carried out by an (absent) external component. In contrast, saying that a
program should exist which shows the desired behavior means that the communi-
cation shows up in terms of outgoing communication within the semantics of the
program.

Thus, in order to formalize the satisfiability requirement, we use the dual of a
given trace t, denoted by t̄, where in each label question marks and exclamation
marks are exchanged, such that each incoming communication label becomes an
outgoing communication label and vice versa.

Lemma 3.7.1 (Satisfiability): Let s be a specification of our test specification language
with ∆ ` s : Θ. Then for every trace t ∈ [[∆ ` s : Θ]] there exists a Japl program p such
that Θ ` p : ∆ and t̄ ∈ [[Θ ` p : ∆]].

Note, that executability requires the existence of a single program, whereas
satisfiability involves the existence of a program for each trace. This is a conse-
quence of the input non-determinism introduced by the formal parameters in the
incoming communication terms. That is, allowing different incoming values means
also allowing different components to pass the test.

82 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

The completeness requirement demands that each possible behavior of a Japl
component can be formulated as a desired behavior in terms of a specification of
the test specification language.
Lemma 3.7.2 (Completeness): Let p be a Japl program with ∆ ` p : Θ. Then for
every trace t ∈ [[∆ ` p : Θ]] there exists a specification s such that Θ ` s : ∆ and
t̄ ∈ [[Θ ` s : ∆]].

	I Testing Sequential Components
	3 The test specification language
	3.1 Extension by expectations
	3.2 Syntax
	3.3 Static semantics
	3.4 Operational semantics
	3.5 Example
	3.6 Executability and input enabledness
	3.7 Satisfiability and completeness

