
Testing object Interactions
Grüner, A.

Citation
Grüner, A. (2010, December 15). Testing object Interactions. Retrieved from
https://hdl.handle.net/1887/16243

Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/16243

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16243

Chapter 2

Java-like sequential
programming language –
Japl

This chapter introduces a Java-like programming language which we will use
for further investigations. The intention is to provide a language that, on the
one hand, captures a reasonable subset of features many modern object-oriented
general-purpose programming languages like Java and C] have in common and
that, on the other hand, comes with a formal semantics which allows to reason
about the language.

Certainly there exist a couple of formal languages already aiming at Java
or Java-like languages. For instance, in [1] Abadi and Cardelli suggested a core
calculus for object-oriented languages. In addition they provide several extensions
and modifications that deal with certain language features. Their typed imperative
object calculus impς has been extended by Gordon and Hankin with concurrency
[31] and a modification of the concurrent object calculus in turn was extended
with classes in [5, 4], and in particular in [64]. The above mentioned calculi can
be considered as an object-oriented counter-part to the family of λ-calculi. In a
very concise way, they capture certain general features that almost all object-
oriented languages have in common. Although these approaches represent a very
good basis for investigating object-oriented languages in general, the (intended)
generalization has its price. For, the provided abstract syntax is quite different
from Java or C]. Hence, it is sometimes not easy to find a Java program that
corresponds to a given program of one of these object calculi and vice versa.
Moreover, some language features are considered as special cases of other features.
For example, in [1] there is no distinction between fields and methods which means
that not only fields but also methods can be updated. Again, aiming at object-
oriented languages in general, this represents an elegant unification. Since we
restrict our approach to C]-like and Java-like languages, however, this kind of

23

24 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

design decisions entails unnecessary complications.
However, there exist other approaches for capturing object-oriented languages

which are closer to Java. Two prominent examples are Featherweight Java (FJ)
[34] and Middleweight Java (MJ) [15]. The original FJ does not deal so much
with Java’s operational aspects but rather captures Java’s type system. Thus, it
is mainly used for investigating subtyping, inheritance, generics, and the like. MJ,
in contrast, can be seen as an extension of FJ with respect to many of Java’s
operational features most notably MJ introduces many imperative features.

The language that we propose here lies somewhere between FJ and MJ. In
particular, our language is class-based, i.e., a program basically consists of a set of
class definitions from which objects can be instantiated at runtime. Each object
comprises a set of fields (also known as instance variables) and a set of methods.
Objects are referenced by names which can be passed around giving rise to alias-
ing. The language is imperative, fields and variables allow for destructive updates.
Furthermore, recursive method calls are possible.

To simplify matters, we do not consider, however, subtyping and inheritance.
We will discuss these features and other possible extensions of the programming
language in Chapter 5. We also omit more specific concepts like interface defi-
nitions, anonymous classes, generics, delegations, and reflection. Furthermore, in
this part we focus on a sequential setting, that is, the language only allows for a
single-threaded flow of control.

The rest of this chapter is structured as follows. In the first three sections,
we will present the syntax, the type system, and, respectively, the operational
semantics of closed programs of our language. A closed program is a self-contained
entity in the sense that its possible behavior is completely determined by the given
program code. In Section 2.4, in contrast, we will extend the language with the
notion of components which will allow programs to contain references to classes
that are not defined within the program code but are assumed to be provided by
the program’s environment. Finally we will conclude this chapter by presenting our
testing approach in context of the new language and compare it with traditional
unit testing.

2.1 Syntax

The grammar of the Java-like programming language is given in Table 2.1. A
program consists of a list of global variables, a set of classes, and a main program
(or main body). Note, that due to simplicity, our language slightly differs from
Java already on the program level in two aspects: first, Java does not provide
a designated construct for specifying global variables but rather requires them
to be introduced by static fields. Second, in Java also the main program is not
represented by a special construct on the program level but is given by a static
method with a special name. However, to keep the language small and simple, we
omit static fields and methods. Adding special constructs also allows for a clearer
separation of concerns.

2.1. SYNTAX 25

p ::=T x; cldef {stmt ; return} program
cldef ::= class C{T f ; con mdef } class definition

con ::=C(T x){T x; stmt ; return} constructor
mdef ::=T m(T x){T x; stmt ; return e} meth. definition
stmt ::=x = e | x = e.m(e, . . . , e) | x = new C(e, . . . , e) statements

| f = e | ε | stmt ; stmt | {T x; stmt}
| while (e) {stmt} | if (e) {stmt} else {stmt}

e ::=x | f | null | this | op(e, . . . , e) expressions

Table 2.1: Simple Java-like language: syntax

The language is strongly typed, in the sense that the definitions of variables,
formal parameters, and methods always include a type. The set of possible types is
denoted by T . The details about the type system will be given in the next section.
Here it suffices to say that T comprises class names and additionally some base
types like Booleans and integer, if necessary.

We assume a number of meta-variables: C,D, . . . range over the set of class
names CNames; x, y, . . . range over the set of variables VNames; f ranges over the
set of field names FNames; and m ranges over the set of method names MNames.
To keep the definitions compact, we use C (or, respectively, f or cldef , . . .), for
the, possibly empty, sequence C1 . . . Cn. Similarly we use e for the comma-
separated sequence e1, . . . , en and T x; to abbreviate the sequence T1x1; . . . ;Tnxn.
In slight abuse of the sequence notation, we sometimes also use it within function
applications (or judgments) to denote the sequence or the set which results from
applying the function on each element of the original sequence.

A class is given by its name, its field declarations, exactly one constructor, and
a set of method definitions. Again, for simplicity we do not deal with subtyping
or inheritance here. We assume, furthermore, that all fields are private, i.e., every
object can directly access its own fields, only.1

Like in Java, both constructor and method definitions provide a list of formal
parameters as well as a body which in turn may introduce new local variables
and which ends with a return term. The return term of a method always includes
a return value (possibly the undefined reference null) whereas a constructor’s
return term never does. Consequently, the method definition is not only equipped
with a name but also with a return type. Note, that, as in Java, the name of the
constructor is always the name of the class itself.

A statement is either an assignment, the empty statement (denoted by ε), a
sequential composition, a block statement, a while-loop, or a conditional state-
ment. Only expressions can be assigned to fields. Variables can additionally be
updated by the result of a method or a constructor call.

An expression, finally, is either a variable, a field, the undefined reference null,

1Note that Java’s accessibility modifier private has a slightly different meaning.

26 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

the self reference this or a built-in operation. We do not deal with the details
of the built-in operations but we only assume them to exist and to be side-effect
free. Furthermore, we consider constants to be built-in operations with arity zero.

Remark 2.1.1 (Set notation): Although we write classes, fields, and method definitions
in a sequential way, their order has no meaning. Thus, we treat some constructs rather as
sets. In particular, we will sometimes use set operations like mdef ∈ mdef or fdef 1 ∪
fdef 2 or even cldef ∈ p.

We conclude this section with a small example program written in our lan-
guage. The program is given in Listing 2.1. It consists of a global variable, two
class definitions for binary trees, and a short main program. The first class Data is
used to represent some data. The second class BinTree represents the binary tree
structure. The main program first creates a data and a tree node object. The data
is stored in a locally and the tree node instance in the globally defined variable.
Afterwards another data and another tree node object are created, where the first
tree node is passed to the constructor of the second tree node building the left
branch of the new tree node.

2.2 Static semantics

Our programming language is statically typed. Thus, well-formedness of a pro-
gram implies that we can associate a type with each of the program’s variables
and names such that the type assignments are consistent with regards to certain
typing rules. We use type mappings, Γ and ∆, to denote these type assignments;
for instance Γ(x) either yields the type associated to variable x or is undefined.
The mapping Γ provides the typing information of names which only have a local
scope like variables and fields. It has a stack structure: appending a typed vari-
able x:T to an existing local mapping Γ, separated by a comma, creates a new
mapping equal to Γ but extended by the new x which might shadow a possibly
existing x in Γ.

In contrast, the mapping ∆ contains the typing information of globally ac-
cessible constructs, namely of classes. Also for global mappings, we express its
extension by appending typed names. However, the global mapping is not stack
structured, since all names of classes are assumed to be different, hence, we don’t
have to deal with shadowing.

To express well-typedness, we introduce two kinds of typing judgments. Well-
typedness of an expression e is denoted by a judgment of the following form:

Γ; ∆ ` e : T .

More precisely, the judgment states that, under the assumption of some type as-
signments given by Γ; ∆, the expression e is well-typed and, additionally, that e
itself is of type T . In this regard, the pair of type mappings Γ; ∆ represents an
assumption about the typed names provided by the environment of the expression
e and we will refer to it as a typing context. The second kind of typing judgments

2.2. STATIC SEMANTICS 27

Listing 2.1: Simple example: Binary tree
BinTree s ;

class Data {
Data () { return }

}

class BinTree {
BinTree lbranch ;
BinTree rbranch ;
Data value ;

BinTree (Data v , BinTree l , BinTree r) {
value = v ;
lbranch = l ; rbranch = r ;
return

}

BinTree ge tLe f t () { return lbranch ; }

BinTree getRight () { return rbranch ; }

Data getData () { return value ; }

BinTree setData (Data v) {
value = v ;
return this ;

}
}

{
{ Data v ;

v = new Data () ;
s = new BinTree (v , null , null) ;
v = new Data () ;
s = new BinTree (v , s , null)

} ;
return

}

28 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

is used for expressing well-typedness of entire programs and its syntactical con-
stituents up to statements. Well-typedness of such a code fragment s is denoted
by a judgment of the following form:

Γ; ∆ ` s : ok .

Note that, in contrast to expressions, s does not provide a type.
Finally, we use the typing judgments to formalize the typing rules of our

language. We provide the typing rules in the form of inference rules where each

[T-Prog]

Γ′ = Γ, x:T
∆′ = ∆, cltype(cldef) Γ′; ∆′ ` cldef : ok Γ′; ∆′ ` stmt : ok

Γ; ∆ ` T x; cldef {stmt ; return} : ok

[T-Class]
Γ′ = Γ, f :T , this:C Γ′; ∆ ` con : ok Γ′; ∆ ` mdef : ok

Γ; ∆ ` class C{T f ; con mdef } : ok

[T-Con]
Γ′ = Γ, x:T , x′:T ′ Γ′; ∆ ` stmt : ok

Γ; ∆ ` C (T x){T ′ x′; stmt ; return} : ok

[T-MDef]
Γ′ = Γ, x:T , x′:T ′ Γ′; ∆ ` stmt : ok Γ′; ∆ ` e : T

Γ; ∆ ` T m(T x){T ′ x′; stmt ; return e} : ok

[T-VUpd]
Γ; ∆ ` e : Γ(x)

Γ; ∆ ` x = e : ok
[T-FUpd]

Γ; ∆ ` e : Γ(f)

Γ; ∆ ` f = e : ok

[T-Call]
Γ; ∆ ` e : C Γ; ∆ ` e : ∆(C)(m).dom Γ; ∆ ` x : ∆(C)(m).ran

Γ; ∆ ` x = e.m(e) : ok

[T-New]
Γ; ∆ ` x : C Γ; ∆ ` e : ∆(C)(m).dom

Γ; ∆ ` new x = C(e) : ok

[T-Seq]
Γ; ∆ ` stmt1 : ok Γ; ∆ ` stmt2 : ok

Γ; ∆ ` stmt1; stmt2 : ok

[T-Block]
Γ, x:T ; ∆ ` stmt : ok

Γ; ∆ ` {T x; stmt} : ok

[T-While]
Γ; ∆ ` e : bool Γ; ∆ ` stmt : ok

Γ; ∆ ` while (e) {stmt} : ok

[T-Cond]
Γ; ∆ ` e : bool Γ; ∆ ` stmt1 : ok Γ; ∆ ` stmt2 : ok

Γ; ∆ ` if (e) {stmt1} else {stmt2} : ok

Table 2.2: Simple Java-like language: type system (program parts up to stmts)

2.2. STATIC SEMANTICS 29

rule’s conclusion consists of a specific judgment. If an instance of a typing rule is
derivable then the corresponding code fragment in the conclusion is well-typed.

Before we introduce the typing rules, we make up for the missing definition of
the types T .
Definition 2.2.1 (Types): The set of types T of the programming language is given by
means of the following grammar:

T ::= U | (MNames ∪ CNames) ⇀ (U × . . .× U → U)
U ::= C | bool | B

Thus, the set of types comprises class names, class types, a Boolean type and,
if necessary , some additional base types B. Class names are used as types for
objects whereas classes are typed with regards to their provided interface: a class
type T is a partial function that maps each of the class’ method and constructor
name to a pair consisting of the parameter types and the return type. For methods
m of the corresponding class, we will use T (m).ran and T (m).dom to denote the
projection onto the first and, respectively, onto the second element of the pair,
i.e., on the method’s parameter types and, correspondingly, its return type. We
use the same notation for the constructor name C of the class, where T (C).ran
always equals C.

Let us now discuss the typing rules in detail. Table 2.2 deals with the typ-
ing rules for programs and their syntactical constituents up to statements. Rule
T-Prog stipulates that a program is well-typed if its class definitions and its main
statement are well-typed. The set of premises representing the type checks of the
class definitions is subsumed by using the sequence notation. The assumed typing
contexts of both, the class definitions and the main statement, are enriched by the
typed global variables and classes. Note, in order to carry out the class definitions’
type-checks it is necessary to extend the type context by all class types already,
as the method bodies might contain references to program classes. To this end,
the type of a class is determined by the auxiliary function cltype(cldef) which
extracts the type from the class definition’s signature. It is defined as follows:

cltype(class C{ T f ; con mdef }) def= (C:fC) , with

fC : (MNames ∪ CNames) ⇀ (U × . . .× U → U);

n 7→

{
(T ,C) if n = C and C(T x){T ′ x′; stmt ; return} ∈ mdef
(T , T) if n = m and T m(T x){T ′ x′; stmt ; return e} ∈ mdef

We assume that all method names of a class are distinct and that no method
has the name of its class. This ensures that the function cltype is well-defined.

Rule T-Class deals with well-typedness of a class. A class is well-typed if
its constructor and method definitions are well-typed. The type context of the
constructor and method type-checks are enriched by the fields defined within the

30 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

[T-Var]
Γ(x) = T

Γ; ∆ ` x : T
[T-Field]

Γ(f) = T

Γ; ∆ ` f : T

[T-Null] Γ; ∆ ` null : C [T-This]
Γ(this) = C

Γ; ∆ ` this : C

[T-Op]
Γ; ∆ ` e : dom(∆(op)) ran(∆(op)) = T

Γ; ∆ ` op(e) : T

Table 2.3: Simple Java-like language: type system (exprs)

class as well as by the special name this, typed by the corresponding class, since
this can be used for self references within the constructor and method bodies.

According to the rules T-Con and T-MDef, a constructor as well as a method
definition is well-typed if the body statement is well-typed assuming a type context
that is extended by the local variables and the formal parameters. For methods
additionally the type of the returned expression is checked.

Regarding all the variants of assignments, we have to check that the left-
hand side and the right-hand side of the equals sign are of the same type. As for
method and constructor calls we additionally have to check the types of the actual
parameters. The parameter checks are expressed in slight abuse of the sequence
notation: the elements of the parameter sequence and the elements of the method’s
parameter type tuple are matched concerning their order, such that each pair gives
rise to a corresponding typing judgment. In particular, both sequences have to be
of the same length. The typing rule for constructor calls (T-New) stipulates that
objects are typed by the name of their class.

A sequence of statements is well-typed if each sub-statement is well-typed.
Similarly, a block statement is well-typed if its body statement is well-typed where
the local typing context is extended by the new variables declared by the block
statement.

While statements and conditional statements are well-typed if their sub-state-
ments are well-typed and if their conditional expressions are Boolean expressions.

Table 2.3 deals with the typing of expressions. Types of variables, fields and
this can be directly looked up in the local type context Γ. The empty reference
null is of any class name type. As for the built-in operations, we assume a typing
to be already included in the global context ∆. Applications of these operations
are only well-typed if the actual parameters conform to the domain type of the
operation. If so, the application is of the range type of the operation.
Definition 2.2.2 (Well-typedness): A program p is well-typed if there exist a type map-
ping ∆ such that the judgment

; ∆ ` p : ok

is derivable by means of the deduction rules given in Table 2.2 and 2.3. In particular,

2.3. OPERATIONAL SEMANTICS 31

the deduction starts with an empty local type mapping. Therefore, well-typedness of a
program p regarding a certain type context ∆ is denoted by

∆ ` p : ok .

2.3 Operational semantics

Operational semantics [59] is a way to express the meaning of a programming
language: for each language construct, the effect of its execution on an abstract
machine is formalized. The operational semantics of our language will be given in
form of a small-step semantics. This kind of semantics is based on the idea that
a program execution is considered as a sequence of indivisible steps that manifest
themselves in form of changes in the program’s configuration. The small-step
semantics stipulates what kind of changes may happen in a certain situation. It is
often represented by a transition relation which in turn is described by an inference
system where the conclusion of each inference rule determines a (parameterized)
transition between two configurations. The concept of using an inference system to
describe the computation step, also called structural operational semantics, goes
back to Plotkin [56]. Before we take a closer look at the operational semantics’
transition rules let us first discuss the constituents of a program configuration.
A program configuration (h, v,CS) is a triple consisting of the current state of
the heap h, the global variables v, and the call stack CS. The details about the
elements of a program configuration are given in the following definition.
Definition 2.3.1 (Configuration): Let the set of all possible values be denoted by Val
including null as the semantical representation for null. We use partial functions from
field names to values to represent the state of an object. More specifically, an object
consists of the value of its fields and a reference to its class. Thus, we define

Obj def= CNames × F with F
def= FNames ⇀ Val

as the set of all possible objects. For an object o ∈ Obj we use o.class and o.fields to
denote the projection onto the first or, respectively, the second element of the pair.

Let N be the set of object names. The heap is represented by a partial function from
object names to objects. We use

H
def= N ⇀ Obj

to denote the set of heaps.

Let V
def= VNames ⇀ Val be the set of variable functions, i.e., partial functions from

variables to values. The state of a program’s global variables is represented by an element
v of V.

The call stack consists of a list of activation records each capturing the local variables
as well as the code fragment of a method instance that still has to be executed. More
precisely, an activation record’s code fragment is of the form:

mc ::= stmtx; mc | return [e],

32 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

where the square brackets denote optional terms. The non-terminal stmtx represents an
extension of the non-terminal stmt given in Table 2.1 in that it includes a new auxiliary
statement BE which is needed for a proper processing of block statements. The details
will be explained later. If a method is about to return the control back to the method’s
callee then the corresponding method fragment of the activation record consists of the
return term only. Moreover, the very first activation record might represent the execution
of the main body, which explains the square brackets around the return expression (as the
main body does not return a value).

The state of the local variables of a method instance is given by a list of variable
functions µ. Each variable function v of that list represents the state of the variables of a
single block statement. Additionally, the local variable function list of a method instance
always includes a variable function for the method’s parameters, which is the empty
function v⊥ if the method does not provide any parameter:

µ ::= v·µ | ε.

For the time being, we can distinguish two kinds of activation records. The top-most
activation record of a call stack represents the method instance which is currently active,
i.e., which is in fact currently in execution. These activation records are always of the
form:

ARa ::= (µ,mc).

All other activation records within a call stack represent method or constructor instances
which haven’t finished their execution but which have called another method or con-
structor that hasn’t returned yet. Thus, the calling method instance is blocked waiting for
the return value of the called method or constructor. These activation records carry an
auxiliary statement in front of the actual code fragment:

ARb ::= (µ, rcv x; mc).

The receive statement is accompanied by the variable that is to be updated by the return
value of the called method or constructor.

Finally, we can give a definition for the call stack:

CSa ::= ARa ◦CSb

CSb ::= ARb ◦CSb | ε
CS ::= CSa

The set Conf is the set of all configurations, i.e.

Conf def= H× V × CS.

Before we discuss the transition rules of the operational semantics we intro-
duce some auxiliary functions. The first group of auxiliary functions deals with
evaluating and updating the variables of a program. The definitions are given in
Table 2.4. The function evalm looks up the value of a variable accessible within

2.3. OPERATIONAL SEMANTICS 33

evalm(v · µ, x) def=

{
v(x) if x ∈ dom(v)
evalm(µ, x) otherwise

eval(v, µ, x) def= evalm(µ · v, x)

vupdm(v · µ, x 7→ v) def=

{
v[x 7→ v] · µ if x ∈ dom(v)
v · vupdm(µ, x 7→ v) otherwise

vupd(v, µ, x 7→ v) def= (v′, µ′)
where µ′ · v′ = vupdm(µ · v, x 7→ v)

Table 2.4: Variable evaluation

a method instance. Following the structure of the nested scopes of the local vari-
ables, evalm recursively walks through the list of variable functions and returns
the first defined value of the variable. The function eval evaluates a variable in
the context of, both, a global variable function and the local variable function
list. To this end, it appends the global variable function to the local variable func-
tion list, and passes the result as input parameter to evalm. This way, the local
variable context is extended by the global variables while respecting the possible
shadowing effect by some local variables.

Similarly, we introduce two functions for updating the variable state. The first
function vupdm takes a local variable function list as well as a variable-value pair
and updates the first variable function within the list which defines a value for
this variable. The second function vupd updates a variable of a program by, again,
extending the local variable function list with the global variables and applying
vupdm. Then it takes the result and separates the global variables from the local
variable list again, in order to return the updated variable pair.

The variable evaluation functions are used in the definition of the semantics

[[x]]v,µh
def= eval(v, µ, x)

[[this]]v,µh
def= eval(v, µ, this)

[[f]]v,µh
def= F(f) with (C,F) = h(eval(v, µ, this))

[[null]]v,µh
def= null

[[op(e)]]v,µh
def= op([[e]]v,µh)

Table 2.5: Expression evaluation

34 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

of expressions in Table 2.5. For each expression the semantics either is undefined
or yields an element of Val depending on a given heap h and variable context
represented by the global variable function v and a local variable function list µ.
The evaluation of a variable and the self reference this is realized by just applying
the aforementioned evaluation function. A field is evaluated by looking up the
value of the self reference this which, in turn, is used to get the corresponding
object; then the object’s field function yields the desired value. The keyword null
and the built-in operations are evaluated to their semantic representations. Note
that the semantical representation null of the keyword null must not be an object
name, i.e., we require null 6∈ N .

The last group of auxiliary notations, given in Table 2.6, are simple functions

classesp
def
= {C1, . . . , Ck}

where

p = T x; class C1{. . .} . . . class Ck{. . .} {stmt ; return}

fieldsp(C)
def
= T f

where class C{T f ; con mdef } ∈ p

cbodyp(C)
def
= stmt ;

cparamsp(C)
def
= T x

cvarsp(C)
def
= T ′ x′

where class C{T f ; con mdef } ∈ p
and con = C(T x){T ′ x′; stmt ; return}

mbodyp(C,m)
def
= stmt ; return e

mparamsp(C,m)
def
= T x

mvarsp(C,m)
def
= T ′ x′

where class C{T f ; con mdef } ∈ p

and C′ m(T x){T ′ x′; stmt ; return e} ∈ mdef

ObjCp⊥
def
= (C,F) with dom(F)

def
= {f1, . . . , fk} and

F(fi)
def
= ival(Ti) for all, 1 ≤ i ≤ k

where T1 f1; . . . ; Tk fk = fieldsp(C)

Table 2.6: Auxiliary notations

2.3. OPERATIONAL SEMANTICS 35

that extract certain syntactical fragments of a given program. They are used in the
definition of the operational semantics to keep the notation clear and concise. All
functions have in common that they expect a well-formed program p as argument
written as an index of each function. The function classes yields the set of class
names defined in the program. Similarly, the functions fields yields the sequence of
field names of a given class along with their types. The functions cbody , cparams,
and cvars return the body of a class’ constructor, its parameters, and its local
variables, respectively. The functions mbody ,mparams, and mvars do the same
for methods. Note that the body of a method but not the body of a constructor
includes the return term. The function ObjCp⊥ returns an object of class C where
all the fields declared within C are set to the initial value of the corresponding
type. We assume that for each base type T of our language there exists a certain
constant, ival(T), of type T which represents the initial value for variables of that
type. In particular, we assume ival(bool) def= false, ival(int) def= 0, and ival(C) def=
null for all class names C. Whenever we will use these auxiliary functions in the
following, the considered program p will always be clear from the context, such
that we will leave out the index notation.

The transition rules of the operational semantics are given in Table 2.7. Most of
the rules share the same pattern. The leftmost statement of the topmost activation
record is reduced which might cause a change of the heap and/or the values of
the variables. Some of the rules can only be applied under certain conditions,
represented by corresponding premises. The rule Ass deals with the assignment
to a variable by merely updating the variable state. The rule FUpd updates a
field. To this end, it looks up the object name currently stored in this. The
name is used to get the corresponding object in the heap and to update its field
function. The updated object in turn is used to update the heap. For functions
f we use the notation f [x 7→ y] to denote a new function f ′ which is identical to
f for all z ∈ dom(f) \ {x} but which additionally maps x to y. Note, that this
means either an extension of the original domain of f by the new element x or a
modification of the image of x.

The rule Call extends the call stack by a new activation record consisting of
the method body of the called method as well as of a new variable function. The
variable function assigns the callee object name to this, the actual parameters
to the formal parameters and it initializes the local variables. Moreover, the rule
adds an auxiliary statement rcv x to the activation record of the calling method.
After returning from the called method, this statement determines the variable
which is to be updated by the return value. Note, that our language does not
support the notion of exceptions. Thus, a method call whose callee expression
evaluates to null gets stuck, as null is never part of the domain of the heap.

Processing a constructor call resembles very much the method call, but we
have to add a new initial object to the heap and associate it to an object name
which is not already in use. Moreover, we do not only copy the constructor body to
the new activation record but we also add a return term with a return expression
that yields the new object.

36 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

[Ass]
(v′, µ′) = vupd(v, µ, x 7→ [[e]]v,µh)

(h, v, (µ, x = e; mc) ◦CSb) (h, v′, (µ′,mc) ◦CSb)

[FUpd]
o = [[this]]v,µh (C,F) = h(o) h′ = h[o 7→ (C,F[f 7→ [[e]]v,µh])]

(h, v, (µ, f = e; mc) ◦CSb) (h′, v, (µ,mc) ◦CSb)

[Call]

o = [[e]]v,µh C = h(o).class T x = mparams(C,m) Tl xl = mvars(C,m)
vl = {this 7→ o, x 7→ [[e]]v,µh , xl 7→ ival(Tl)}

(h, v, (µ, x = e.m(e); mc) ◦CSb) (h, v, (vl,mbody(C,m)) ◦ (µ, rcv x; mc) ◦CSb)

[New]

o ∈ N \ dom(h) h′ = h[o 7→ ObjC⊥] T x = cparams(C) Tl xl = cvars(C)
vl = {this 7→ o, x 7→ [[e]]v,µh , xl 7→ ival(Tl)}

(h, v, (µ, x = new C(e); mc) ◦CSb)
(h′, v, (vl, cbody(C); return this) ◦ (µ, rcv x; mc) ◦CSb)

[BlkBeg]
vl = {x 7→ ival(T)}

(h, v, (µ, {T x; stmt}; mc) ◦CSb) (h, v, (vl·µ, stmt ; BE mc) ◦CSb)

[BlkEnd] (h, v, (vl·µ, BE mc) ◦CSb) (h, v, (µ,mc) ◦CSb)

[Whl1]
[[e]]v,µh

(h, v, (µ, while (e) {stmt}; mc) ◦CSb) (h, v, (µ, stmt ; while (e) {stmt}; mc) ◦CSb)

[Whl2]
¬[[e]]v,µh

(h, v, (µ, while (e) {stmt}; mc) ◦CSb) (h, v, (µ,mc) ◦CSb)

[Cond1]
[[e]]v,µh

(h, v, (µ, if (e) {stmt1} else {stmt2}; mc) ◦CSb) (h, v, (µ, stmt1; mc) ◦CSb)

[Cond2]
¬[[e]]v,µh

(h, v, (µ, if (e) {stmt1} else {stmt2}; mc) ◦CSb) (h, v, (µ, stmt2; mc) ◦CSb)

[Ret]
(v′, µ′2) = vupd(v, µ2, x 7→ [[e]]v,µ2

h)

(h, v, (µ1, return e) ◦ (µ2, rcv x; mc) ◦CSb) (h, v′, (µ′2,mc) ◦CSb)

Table 2.7: Simple Java-like language: operational semantics

The rules BlkBeg and BlkEnd deal with the introduction and removal of
block variable functions due to a block statement. The rule BlkBeg does not
only add a new variable function to the variable function list of the top most
activation record but in the code of the record it also puts an auxiliary symbol
(BE) at the end of the block statement, in order to mark the end of the block’s
scope. Then the counterpart of BlkBeg, namely BlkEnd, removes BE and its
associated variables function when it is the topmost statement.

2.4. EXTENSION BY COMPONENTS: THE JAPL LANGUAGE 37

The while-loop is processed by either removing the while-loop from the active
activation record or by extending it with a copy of the while-loop’s body state-
ment – depending on the evaluation of the while-loop’s condition expression. In a
similarly straightforward manner, the conditional statement is reduced to one of
its sub-statements.

The Ret rule is applied when the topmost activation record consists of a return
term, only. The record as well as the receive statement of the calling activation
record is removed such that the calling record becomes the topmost active record.
Moreover, the caller’s local variable list and the global variable list is updated by
the return value.
Remark 2.3.2: Some rules of the operational semantics depend on the program code.
Rule CALL, for instance, extends the call stack by the method body of the callee class.
Thus, the transition rules are to be understood in context of a given program p and con-
sequently the transition arrow should be annotated by the program: p. In most cases,
however, we omit the annotation.
Definition 2.3.3 (Program execution): Let

p ≡ T x; cldef {stmt ; return}

be a syntactically correct and well-typed program of our language. A program execution
of p is a finite sequence of reduction steps starting from the initial configuration of the
program

cinit(p)
def= (h⊥, {x 7→ ival(T)}, (v⊥, stmt ; return)),

where h⊥ denotes the empty heap and v⊥ the empty local variable function. That is, both
functions are completely undefined.

If we are interested neither in the exact length of a finite reduction sequence nor in its
intermediate configurations we use a transition arrow annotated with the Kleene star,

cinit(p) ∗ c,

expressing that there exists a finite sequence of reduction steps from the initial configura-
tion to the configuration c or that both configurations are identical. In other words, we use
the Kleene star annotation to refer to the reflexive and transitive closure of the semantics
transition relation. If the call stack of c consists only of the last return statement of the
main body, then we call c a terminal configuration. If otherwise c cannot be reduced any
further, we call the configuration faulty.

2.4 Extension by components: the Japl language

As mentioned in the introduction, the basic idea for unit or component testing
is to test the component in isolation. The production code that represents the
environment of the component is replaced by some test code which investigates
the component by interacting with it. Since we aim at a model-driven component
testing approach where component tests are usually derived from formal, hence

38 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

rather abstract, specifications, we are in particular interested in testing techniques
where a test does not rely on or aim at implementation details of the component
but where a test only deals with the component’s effects on its environment.
In order to investigate the means by which a component might have an effect
on its environment, we extend our Java-like language with constructs that allow
for discriminating component and environment code. This is done by integrating
a notion of components into our language. A component is basically a set of
classes. Classes of one component can be imported by another component (or by
the program). A crucial point is here that importing a class is not realized by
importing the code of the class definition. Instead, we formalize the operational
semantics of a program in absence of the code of imported classes. This enables
us to identify the most general characterization of a component’s influence on its
environment, only assuming the interfaces of its classes.

In this section we will extend the Java-like language with the notion of com-
ponents. The extended language will be used in subsequent chapters where we
will refer to it as the Japl programming language. Conceptually, Japl supports
components, in that it allows programs to import externally defined classes. This
means, a program might instantiate and call methods of classes which are not part
of the program’s code but are assumed to exist in some other component. While
the entailed syntax and typing modifications are quite simple, the operational
semantics has to be given in form of an open semantics. In other words, we have
to formulate the operational semantics without the code of the externally defined
classes. The section is followed by a formal description of our testing approach
given in context of our extended language.

2.4.1 Syntax

The extension of the syntax is very simple and straightforward, as can be seen in
Table 2.8. We merely add a construct for declaring imported classes which intro-
duces the name of the class only. For the sake of simplicity we do not introduce
name spaces, but instead we assume that the names of all imported and all locally
defined classes are different. The grammar introduces a new non-terminal symbol
p′ which replaces p of the former grammar. An element of p′ is called a compo-
nent. Thus, the program does not only import classes of other components but it
constitutes a component itself. In particular, all components contain a main body.
This is again due to simplicity, because otherwise we would have to differentiate
components and programs (and in this case only component classes could be im-
ported but a component could not import a program class). However, we will see
in the operational semantics that only the main body of one single component is in
execution.2 In the following we will use the word program in order to refer to the
component whose code is given and processed in the operational semantics. Note

2Assuming that each component provides its own main body is comparable to the widely
used technique to equip a Java package with a static main method allowing for the stand-alone
execution of the package due to testing or demonstration purposes.

2.4. EXTENSION BY COMPONENTS: THE JAPL LANGUAGE 39

external component classprogram
se

m
an

tic
s'

 s
co

pe import D;

class C1 {
 C1() { stmt; return }
 D(int x) { D y; stmt; return y }
 ...
}

...

class Cn { ... }

{ stmt; return }

class D : {
 D: int → D;
 meth int*int → bool;
 ...
}

Implementation y

import E;

class D {
 D(int x) { ... }
 bool(int x, int y) { ... }
 ...
}

...

{ stmt; return }

Several possible
implementations

Figure 2.1: Notion of component

that this doesn’t necessarily mean that the main body of the program is executed,
but maybe only the code of its classes is subject of the operational semantics. The
program (component) might use classes of some external components. However,
if the context is clear or if we don’t want to be specific we sometimes speak only
of components. The notion of components is depicted in Figure 2.1. It shows a
program which defines classes C1 to Cn as well as a main body and it additionally
imports another class D from an unspecified external component. Thus, executing
the given program, the operational semantics does not know the implementation
but only the type of D.

p′ ::= impdecl ; p program/component
impdecl ::= import C import

Table 2.8: Japl language : syntax

40 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

[T-Prog’]

Γ′ = Γ, x:T Θ = cltype(cldef)

Γ; ∆ ` impdecl : ok Γ′; ∆,Θ ` cldef : ok Γ′; ∆,Θ ` stmt : ok

Γ; ∆ ` impdecl ; T x; cldef {stmt ; return} : Θ

[T-Import]
C ∈ dom(∆)

Γ; ∆ ` import C : ok

Table 2.9: Japl language: type system (stmts)

2.4.2 Static Semantics

We want to allow “cross-importing”, i.e., components should be able to mutually
import their classes. To this end, we have to reformulate the typing judgment
on the program/component level such that it does not just state the program’s
well-typedness but it also explicitly mentions the program’s classes committed to
its environment in terms of a type mapping Θ. Moreover, we require that the
assumed type context ∆ of a program’s type check already includes the types of
the imported (assumed) classes. In other words, a program is now type-checked in
an assumption-commitment context as it can be seen in typing rule T-Prog’ in
Table 2.9. This is closely related to the required and provided interfaces in UML
compoment diagrams[65].

Finally, we have to add a new rule for the import construct. However, since
the import construct only mentions the name of the class but no further typing
information, we only have to check whether the imported class name is in the
domain of ∆. All other rules of Table 2.2 and Table 2.3 remain the same.

As open programs are now typed in an assumption-commitment context, we
have to reformulate the well-typedness definition for program.

Definition 2.4.1 (Well-typedness): An open program p′ is well-typed if there exist type
mappings Θ and ∆ such that the judgment

; ∆ ` p′ : Θ

is derivable. Similar to Definition 2.2.2, we demand an empty local type context for p.
Therefore, well-typedness of a program p regarding the assumption-commitment context
∆,Θ is denoted by

∆ ` p′ : Θ .

Remark 2.4.2 (Accessibility of global variables): The global variables of a component
are not “published” in the component’s commitment context. The important consequence
is that global variables of a component are not accessible by other components but they
are always global with respect to the defining component, only.

2.4. EXTENSION BY COMPONENTS: THE JAPL LANGUAGE 41

2.4.3 Operational Semantics

The introduction of the import construct leads to an under-specification of the
program: only the names and the types of the imported classes are given but not
the code. The consequence is that the semantics definition of a component now
consists of two parts. The first part, called internal semantics, deals with internal
computations only, i.e., computations which are completely independent of the
imported classes but solely determined by the program’s code. This part is given
in form of a transition semantics which is almost identical to the one already given
in Table 2.7. We only add a premise in rule Call and in rule New which ensures
that the called method or constructor, respectively, indeed belongs to a class of
the given program code. As for rule New, this additional check is very simple,
since the class name itself is part of the new statement. As for the method call,
we have to find out, if the callee object, named o, is an instance of a program
class. We will see later, however, that the heap function stores information about
objects of program classes, only. Therefore, the check can be easily realized by
adding the premise o ∈ dom(h).3

Labeled transition system. The second part of the operational semantics is
called external semantics. It deals with computation steps that involve an (in-
stance of an) external class. These steps must be handled differently as we do
not have the code of the external classes: if, for example, the program calls a
method of an external class, then we cannot use rule Call, because lacking the
method’s code we cannot copy its body on the call stack in order to execute it
afterwards. Instead, due to synchronous message passing, no further internal com-
putations are possible right after the corresponding transition has been taken, as
the transition gives away the control to an external component. We call this kind
of transitions outgoing communication or computation steps. Right after an out-
going computation step, no transition can be taken unless it involves the return
of the control back to the program. Generally speaking, we call transitions that
entail the transition of control from an external component to the program incom-
ing communication or incoming computation steps. In our method call example
such an incoming communication could be either an immediate return from the
called method of the external component or a call of a method of the program.
Intuitively speaking, outgoing communication is due to a program statement, in-
coming communication is caused by an external component.

The external semantics is formalized by a labeled transition system, that is, a
transition system where each transition is annotated with a label. Each transition
of the external semantics represents an interface communication, i.e., a commu-
nication between the program and an external component and the transition’s
label holds the details about this communication. We have already seen that the

3In fact, it is not even necessary to add these checks, as h(o).class in rule Call and
cparams(C) in rule New are anyway undefined for an external object o, and, resp., class C.
Adding the premises though makes the requirement more explicit.

42 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

different kinds of interface communications can be divided up into two groups.
On the one hand, outgoing communications are provoked by the program giv-
ing the control to the external component. There exist three constructs in the
programming language that may cause a hand-over of the control:

• a method call of an instance of an imported class,

• a constructor call of an imported class, and

• a return from a program method that was previously called by an external
component.

To indicate the outgoing character, the transition labels of these communications
are decorated with an exclamation mark (!). On the other hand, there are three
possible kinds of communication that pass the control from an external component
on to the program:

• a method call of an instance of a program class,

• a constructor call of a program class, and

• a return from a method of an imported class which was previously called
by the program.

The labels of these incoming communication steps are decorated with a question
mark (?). Summarizing, the possible interface interactions are method calls and
returns as well as constructor call and returns which are either outgoing or in-
coming. Additionally, for each interface communication we explicitly have to point
out the involved object names which pass the interface for the first time during
the program execution. To this end, each communication label that propagates
new names is equipped with a ν-binder indicating the new names introduced by
the label. In particular, the ν-binder provides these names in terms of a type
mapping Θ, since we are also interested in their types. The reason for this will
be given later. Thus, the set of communication, or transition, labels a is given by
the following grammar:

a ::= γ? | γ!
γ ::= 〈call o.m(v, . . . , v)〉 | 〈new C(v, . . . , v)〉 | 〈return (v)〉 | ν(Θ).γ,

where o ∈ N , v ∈ Vals, and Θ is a type mapping.

Restrictions due to realizability. The outgoing method call example above
has shown, that the exact reaction of the external component is not determined;
in general it is not known whether the component immediately returns a value
or calls back a program method. Apart from the types, the program also has
no control on the values that are involved in an incoming communication. In

2.4. EXTENSION BY COMPONENTS: THE JAPL LANGUAGE 43

fact, this is why we need a labeled transition system to formalize the external
semantics: the details about an incoming communication cannot be deduced from
the program code but are introduced by the communication label. More generally
speaking, regarding incoming communications, the operational semantics is non-
deterministic – although the programming language Japl in itself is deterministic.
Despite the absence of the code of the external components, however we want to
restrict the non-determinism of the operational semantics such that we exclude
incoming communication which could not be carried out by any component that
is written in our language Japl. This entails a number of requirements which have
an influence on the structure of the transition rules:

well-typedness: Since Japl is strongly typed, a valid program written in Japl
could never implement a wrongly typed method or constructor call. This
fact implies a dual requirement for communication imposed by an external
component. Specifically, the semantics shall only permit incoming calls of
methods and constructors that are indeed provided by the program code.
This requirement is often phrased as “no message-not-understood error”.
Also the number and the types of the incoming call’s actual parameters
must comply with the method or, respectively, constructor definition.

Likewise, the typing rules of our language ensure that the return value pro-
vided by a method body is always of the return type stipulated in the
method’s signature. Again, the dual requirement is that the semantics has
to exclude wrongly-typed incoming return values.

consistent information flow: Components do not share variables but values
can only be communicated between two components via method or con-
structor calls (and its corresponding returns). In particular, a component
can only use an object if either it is an instance of one of the component’s
own classes or if the class-providing component has previously passed the
corresponding object name in context of a method or constructor call be-
tween the two components. Thus, the external semantics has to ensure that
an incoming communication may mention an object name of a program class
only if previously the program has passed the name to the component by
means of an outgoing communication.

consistent control flow: We have explained that an outgoing communication
disables the reduction of the program unless an incoming communication
occurs. Dually, the external semantics may only allow an incoming commu-
nication if the external component indeed has the control at that moment.

balance: The syntax definition of our language allows a return term only to
appear exactly once at the very end of method and constructor bodies.
That is, the execution of such return term is always preceded by a call of
the corresponding method or constructor. For the external semantics, this
means that an incoming return may only happen, if previously a matching
outgoing call was invoked.

44 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

To meet the first two requirements, transitions of the external semantics are
formalized in an assumption-commitment context, similar to the program’s typing
judgments of the static semantics. In the external semantics, however, the contexts
also have a dynamic aspect, in the sense that the commitment context Θ does
not only include the committed class names but also the names of their instances
that have been passed on to the component during the execution of the program.
Dually, the assumption context ∆ consists of the component’s class and object
names passed on to the program. Thus, transitions representing computation steps
of the external semantics will follow the following scheme:

∆ ` c : Θ a−→ ∆′ ` c′ : Θ′,

where a is the label describing the communication and c is the configuration of
the program prior to the transition. We used primed versions of ∆,Θ , and c in
the transition scheme to indicate that the configuration as well as the context
might change due to the transition. In particular, since the name contexts, Θ and
∆, keep track of the object names that passed the interface, each transition of
the external semantics causes an extension of the context by exactly the names
that are mentioned in the ν-binder of the transition’s communication label. The
transition rules of the external semantics are again formalized in terms of a de-
duction system where the conclusion of each rule consists of a transition scheme.
Moreover, most of the rules are equipped with some premises defining the rule’s
application condition. In particular, we have to add certain premises to meet the
realizability requirements regarding incoming communication.

To ensure a consistent information flow, the transition rules for incoming com-
munication require that each object name mentioned in the call or return, respec-
tively, is either included in the commitment context, in the assumption context
or in the name context of the communication label’s ν-binder. The first two cases
indicate that the program and the component have communicated the object ear-
lier already; the third case represents the situation where the object name shows
up at the interface for the first time. Since all names in the contexts are also ac-
companied by their types, the contexts can be used the check for well-typedness
as well. To keep the definition of the external semantics concise we encapsulate
the type and information flow check in an auxiliary notation of the following form:

∆ ` a : Θ,

which expresses that, within a context represented by ∆ and Θ, the computation
step represented by a conforms to well-typedness and a consistent information
flow. The definition is given in Table 2.10. The rule T-CallI deals with the type
and information flow check of a label that represent an incoming method call. This
is basically carried out by the premises of the first row: the first premise states
that the callee object is indeed an object of the program; the second and the third
premise ensure the existence of the method within the callee class as well as the
well-typedness of the actual parameters. Since we use the name contexts for the
type check we ensure at the same time that all object names of the communication

2.4. EXTENSION BY COMPONENTS: THE JAPL LANGUAGE 45

[T-CallI]

C = Θ(o) T = Θ(C)(m).dom Θ,∆,∆′ ` v:T
dom(∆′) ⊥ dom(∆,Θ) dom(∆′) ⊆ v

∆ ` ν(∆′).〈call o.m(v)〉? : Θ

[T-NewI]

Θ(C)(C).dom = T Θ,∆,∆′ ` v:T
dom(∆′) ⊥ dom(∆,Θ) dom(∆′) ⊆ v

∆ ` ν(∆′).〈new C(v)〉? : Θ

[T-RetI]
dom(∆′) ⊥ dom(∆,Θ) dom(∆′) ⊆ v

∆ ` ν(∆′).〈return(v)〉? : Θ

Table 2.10: Label check for incoming communication

label are mentioned in one of the name contexts, hence, a consistent information
flow is assured. The premises of the second row check for well-formedness of the
ν-bound name context ∆′: first, the names which are claimed to pass the interface
for the first time, must not be included in ∆ or Θ. We use ⊥ to express that two
sets are disjunct. Second, the name context ∆′ must not include more names than
actually communicated by this interface communication.

The rule T-NewI deals with an incoming constructor call and follows the
scheme of rule T-CallI. However, we need not to look up the name of the invoked
class. Finally, the check of an incoming return label even only consists of the well-
formdness check of the ν-bound name context.

Configurations. We have learned that extending the language with the notion
of components leads to a new kind of method (and constructor) calls: besides
internal calls, where caller and callee belong to the same component, we now
also have external (or cross-border) calls, where caller and callee sit in different
components. With respect to the configurations of a program, this means, we also
have to introduce a second receive statement enabling us to distinguish activation
records that are blocked due to an internal call from activation records that are
blocked due to an external call. More precisely, regarding internal calls we keep
using the receive statement that we have introduced previously. As for the external
calls we use a similar receive statement but which is additionally annotated with
the return type of the expected return value. Thus, we now have three types of
activation records:

ARa ::= (µ,mc) ARib ::= (µ, rcv x; mc) AReb ::= (µ, rcv x:T ; mc).

For the sake of convenience we will also use AR for activation records in general
and ARb for internally or externally blocked activation record. Moreover, we will
use ARi for ARa and ARib records, i.e., for activation records whose next upcoming
reduction will be due to an internal step.

46 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

We redefine the call stack structure of configurations of components:

CSa ::= ARa ◦CSb CSb ::= CSib | CSeb

CSeb ::= AReb ◦CSb | ε CSib ::= ARib ◦CSb

CS ::= CSa | CSeb

Contrary to the call stack of a closed program, a call stack of an open program
does not necessarily have an active activation record on top but the call stack can
also be externally blocked due to an outgoing call. Note that externally blocked
call stacks also include the empty call stack. The reason is that in some cases not
the main body of the program but the main body of an external component is
executed. Then, for instance at the very beginning of the execution, we start with
a configuration that entails an empty call stack.

Furthermore, we introduce the notion of well-typedness of configurations. Sim-
ilar to the typing judgments of open programs, well-typedness of a configuration
is expressed by writing the configuration in an assumption-commitment context
consisting of type mappings ∆ and Θ. Before we present the definition for well-
typed configurations, we define the free variables of activation record code.
Definition 2.4.3 (Free variables): Assume code mc of an activation record. The expres-
sion fvars(mc) denotes the set of free variables within mc. The function fvars is given
for activation record code by the recursive definition shown in Table 2.11.

Definition 2.4.4 (Well-typed configuration): Let (h, v,CS) ∈ Conf be a configuration
and ∆, Θ typing contexts. We say the configuration (h, v,CS) is well-typed in context
of the assumed type mapping ∆ and the committed type mapping Θ if the following
properties hold:

1. For all (C, f) ∈ ran(h), it is Θ ` C[(. . .)].

2. For all (µ,mc) ∈ CS and for all x ∈ fvars(mc), it is x ∈ dom(v) ∪ dom(µ).

3. For all µm ∈ CS, it is [[this]]µm, ∈ dom(h).

Thus, well-typedness of configurations ensures that the class names of objects
in the heap are indeed committed as names of classes. The second statement en-
sures that each variable mentioned in the code of an activation record is either a
global variable or a local variable of the record. We use dom(v1·. . .·vk) as abbrevi-
ation for dom(v1)∪ . . .∪ dom(vk). Finally, we are assured that the local variables
of each activation record representing a method instance provide a value for the
self-reference this which in turn refers to an object in the heap.

2.4. EXTENSION BY COMPONENTS: THE JAPL LANGUAGE 47

fvars(rcv x; mc) def= {x} ∪ fvars(mc)

fvars(rcv x:T ; mc) def= {x} ∪ fvars(mc)

fvars(x = e) def= {x} ∪ fvars(e)

fvars(f = e) def= fvars(e)

fvars(x = e.m(e1, . . . , ek)) def= {x} ∪ fvars(e) ∪i=1,...,k fvars(ei)

fvars(x = new C(e1, . . . , ek)) def= {x} ∪i=1,...,k fvars(ei)

fvars(stmt1; stmt2) def= fvars(stmt1) ∪ fvars(stmt2)

fvars({T x; stmt}) def= fvars(stmt) \ x
fvars(while(e){stmt}) def= fvars(e) ∪ fvars(stmt)

fvars(if(e){stmt1} else {stmt2})
def= fvars(e) ∪ fvars(stmt1) ∪ fvars(stmt2)

fvars(BE) = ∅
fvars(return e) = fvars(e)

fvars(return) = ∅
fvars(x) def= {x}

fvars(this) def= ∅
fvars(f) def= ∅

fvars(null) def= ∅
fvars(op(e1, . . . , ek)) def= fvars(e1) ∪ . . . ∪ fvars(ek)

Table 2.11: Free variables

Transition rules. After this somewhat longer preliminary explanation, let us
now have a closer look at the rules of the external semantics. They are given in
Table 2.12. To improve readability, we distinguish conditions that express a real
limitation of the rule’s application from conditions that only introduce variables
used to keep the definition short. The first kind of conditions are written as
premises, the latter are written as side conditions. An exception is the introduction
of the communication label a which is always listed as the first premise in every
rule.

The first rule, CallO, implements an outgoing call. This rule must be applied
only if the callee of the method is indeed an object of an external component. This
is checked by assuring that the callee object name is an element of the domain of
the name context ∆. In this sense, rule CallO is the counterpart of rule Call
which deals with internal method calls, only. However, we do not put a method
body on the call stack but instead we add a rcv statement to the current activation

48 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

[CallO]
a = ν(Θ′).〈call o.m(v)〉! o ∈ dom(∆)

∆ ` (h, v, (µ, x = e.m(e); mc) ◦CSb) : Θ
a−→

∆ ` (h, v, (µ, rcv x:T ; mc) ◦CSb) : Θ,Θ
′

where o = [[e]]v,µh , v = [[e]]v,µh ,
T = ∆2(o)(m).ran, and
Θ′ = new(h, v,Θ)

[NewO]
a = ν(Θ′).〈new C(v)〉! C ∈ dom(∆)

∆ ` (h, v, (µ, x = new C(e); mc) ◦CSb) : Θ
a−→

∆ ` (h, v, (µ, rcv x:C; mc) ◦CSb) : Θ,Θ
′

where v = [[e]]v,µh and
Θ′ = new(h, v,Θ)

[RetO]
a = ν(Θ′).〈return(v)〉!

∆ ` (h, v, (µ, return e) ◦CSeb) : Θ
a−→

∆ ` (h, v,CSeb) : Θ,Θ
′

where
v = [[e]]v,µh and
Θ′ = new(h, v,Θ)

[CallI]
a = ν(∆′).〈call o.m(v)〉? ∆ ` a : Θ

∆ ` (h, v,CSeb) : Θ
a−→

∆,∆
′ ` (h, v, (vl,mbody(C,m)) ◦CSeb) : Θ

where C = Θ(o),

T x = mparams(C,m),

T ′ x′ = mvars(C,m),
and
vl = {this 7→ o,

x 7→ v, x′ 7→ ival(T ′)}

[NewI]
a = ν(∆′).〈new C(v)〉? ∆ ` a : Θ

∆ ` (h, v,CSeb) : Θ
a−→

∆,∆
′ ` (h

′
, v, (vl, cbody(C)) ◦CSeb) : Θ

where o ∈ N \ dom(h),

h′ = h[o 7→ ObjC⊥],

T x = cparams(C),

T ′ x′ = cvars(C), and
vl = {this 7→ o,

x 7→ v, x′ 7→ ival(T ′)}

[RetI]
a = ν(∆′).〈return(v)〉? ∆ ` a : Θ ∆,∆′,Θ ` v : T

∆ ` (h, v, (µ, rcv x:T ; mc) ◦CSb) : Θ
a−→

∆,∆
′ ` (h, v′, (µ′,mc) ◦CSb) : Θ

where
(v′, µ′) = vupd(v, µ, x 7→ v)

Table 2.12: Japl language: operational semantics (ext.)

record which is annotated with the return type of the called method. Thus, the
activation record becomes an externally blocked activation record. To determine
the return type, we consult the name context ∆. Since, however, the object’s type
is a class name, we have to apply ∆ twice to get the corresponding class type
which in turn yields the return type of the method. We use ∆2 to express the
double application of ∆. The return type will be needed in rule RetI to check
that the incoming return value matches the outgoing call.

Apart from modifying the call stack we also have to update the committed
name context, since the outgoing call might involve the propagation of names of
some program objects which haven’t passed the interface previously. In order to
find out these new object names we use an auxiliary function new(h, o,Θ). For a
given set of objects o it consults the heap h in order to create a subset of o which
consists only of instances of program classes accompanied by their types. Finally
the current committed name context Θ is subtracted leaving only the new object
names. Its definition is as follows:

2.4. EXTENSION BY COMPONENTS: THE JAPL LANGUAGE 49

Definition 2.4.5 (New names propagation):

new(h, o,Θ) def= {(o:C) | o ∈ o ∧ o ∈ dom(h) ∧ C = h(o).class} \Θ.

The rule NewO deals with the instantiation of a class of an external compo-
nent. It resembles rule CallO but it is a bit simpler, as there is no need to look
up the return type. Rule RetO processes a return statement. More specifically,
it must only deal with outgoing returns, i.e., it must only be applied if the cor-
responding method has been called by an external component. This, however, is
the case, if the next activation record on the call stack is an externally blocked
record but, in particular, not an internally blocked record that waits for an inter-
nal return. Thus, the rule expects that the topmost activation record is followed
by an externally blocked call stack.

The next three rules deal with incoming communications, namely with in-
coming method calls (CallI), incoming object creation (NewI), and incoming
returns (RetI). All three rules implement the type and information flow consis-
tency check as it has been previously explained. Moreover, all three rules assert
consistency of the control flow, in that they start from a configuration with an
externally blocked call stack. In Rule RetI, however, we do not use CSeb in the
judgment to express this requirement but we explicitly demand the annotated
rcv statements on top of the call stack, as we use its annotated return type to
check well-typedness of the return value in the communication label. Second, an
annotated rcv statement on top also ensures the balance condition, as it indicates
a preceded outgoing call (cf. rules CallO and NewO). After all, CSeb also com-
prises the empty statement, hence, in contrast to Rule RetI, the Rules CallI
and NewI can also be applied when the call stack is empty. This allows to execute
the program through the use of an external main body.

Note that our approach for defining the external semantics of Japl is closely
related to Tretmans’ input-output transition systems[69]. This kind of labeled
transition systems also distinguishes input and output labels in order to deter-
mine the direction of communication occurring between a component and its
environment. Moreover, input-output transition systems are input-enabled which
reflects the fact that an exact behavior of the environment is not specified. How-
ever, although Japl components are generally input-enabled as well we have made
clear that realizability demands some restrictions regarding the possible interface
communication. For instance, as already mentioned the balance condition forbids
transitions with incoming return labels in certain situations.

Remark 2.4.6 (Renaming): The introduction of new objects of an external class by
means of an incoming communication is actually carried out by passing the object’s
name to the program. Although the label check for incoming communication ensures
that the name of such an object indeed hasn’t shown up at the interface previously, there
might exist an internal object of the same name within the program already. In this case,
we assume an implicit ad hoc renaming of the internal object. More precisely, we rename
the object in the heap and at the same time change all corresponding references within

50 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

fields or variables of the component. As an important consequence in the following we
will consider configuration equality always up to renaming of objects, only.

Note, that we do not have to arrange for capture-free renaming as object names are
globally4 unique.

An important feature of the operational semantics is that it preserves the
well-typedness of configurations. This is formalized in the following lemma.

Lemma 2.4.7 (Subject reduction): Assume ∆0 ` p′ : Θ0 and ∆ ` c : Θ for a configu-
ration c such that ∆ and Θ represent extensions of ∆0 and Θ0, respectively.

1. If c p c
′ then also ∆ ` c′ : Θ.

2. If ∆ ` c : Θ a−→p ∆′ ` c′ : Θ′ then ∆′ ` c′ : Θ′. Moreover, ∆′ and Θ′ again
represent extensions of ∆0 and ΘO.

Thus, the subject reduction lemma justifies the use of typing judgments for
transition states of the external operational semantics.

Definition 2.4.8 (Program execution; program traces): Let

p′ ≡ impdecl T x; cldef {stmt ; return}

be an open program with ∆ ` p′ : Θ. We broaden the application of cinit , defined in
Definition 2.3.3, such that we also apply it to open programs p′. However, in the context
of open programs we call cinit(p′) an active initial configuration. Dually, we introduce a
passive initial configuration

cinit(p′)
def= (h⊥, x 7→ ival(T), ε),

where the call stack is not initialized with the main body of p′ but it is empty, meaning
that the main body of an external component is to be executed.

The execution of an open program is represented by a finite, possibly empty, se-
quence of internal and external transitions starting from one of its initial configurations.
The sequence of communication labels arising from a program execution is called an
(observable interaction) trace of the program. We use an annotated arrow t=⇒ to repre-
sent a program execution that implements the trace t. The corresponding rules are given
in Table 2.13. Thus, the execution of an open program represents the reflexive transitive
closure of the internal and external transitions.

From now on, we deal with open programs only. Specifically, a closed program
is considered to be an open program which does not import external classes.
Therefore, the syntactical discrimination between open and closed programs by
using different non-terminal symbols p and p′ is not necessary anymore, instead
we will use p also for open programs.

4With “global” we always mean global with respect to a certain component only, but not to
the whole system consisting of all components that might be involved in a program execution.

2.5. TRACES AND THE NOTION OF TESTING 51

[Intern]
c −→∗ c′

∆ ` c : Θ ε=⇒ ∆ ` c′ : Θ

[Single]
∆ ` c : Θ a−→ ∆′ ` c′ : Θ′

∆ ` c : Θ a=⇒ ∆′ ` c′ : Θ′

[Seqnc]
∆ ` c : Θ s=⇒ ∆′ ` c′ : Θ′ ∆′ ` c′ : Θ′ t=⇒ ∆′′ ` c′′ : Θ′′

∆ ` c : Θ st=⇒ ∆′′ ` c′′ : Θ′′

Table 2.13: Japl language: traces

2.5 Traces and the notion of testing

We have seen that the execution of an open program gives rise to a sequence of
its interface interactions that occur during the execution. We use these sequences,
called traces, to define a semantics of a program which characterizes the program’s
possible effect on its environment, i.e. on other, external components. Based on
this trace semantics, we will formalize a notion of testing that builds the formal
basis of our testing approach.
Definition 2.5.1 (Trace Semantics): We introduce three semantic functions

[[·]]atrace , [[·]]
p
trace , and [[·]] : ∆ ` p : Θ ⇀ P(a∗),

such that for well-typed open programs p with ∆ ` p : Θ we define

[[∆ ` p : Θ]]atrace
def= {s ∈ a∗|∆ ` cinit(p) : Θ s=⇒ ∆′ ` c′ : Θ′},

[[∆ ` p : Θ]]ptrace
def= {s ∈ a∗|∆ ` cinit(p) : Θ s=⇒ ∆′ ` c′ : Θ′}, and

[[∆ ` p : Θ]] def= [[∆ ` p : Θ]]atrace ∪ [[∆ ` p : Θ]]ptrace

Thus, the first two semantics definitions yield the set of traces that can be
implemented by a program p with some interacting external components, where
the program is either considered as a passive or as an active component, respec-
tively. The third definition then consists of all traces that can be realized by the
program with any external component.

We want to use the notion of traces to formalize what it means to test a com-
ponent on the basis of its interface behavior. However, for a better understanding
of the differences between a more traditional testing approach and the testing
approach we want to embark on, we first will give a definition of a traditional
testing approach in the context of our language.

Testing a component, in general, means to execute the component in order
to increase confidence in its quality by inspecting the execution. In most cases, a
component tester aims at only one feature to be tested at a time. Test cases are

52 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

specified each describing a specific execution of the program along with certain
expectations related to the feature to be tested. In particular, traditional test
case specifications basically consist of certain input data and the corresponding
anticipated output data. Both, input and output data, may comprise not only
values directly communicated between the component and its environment but
also the component’s states. For this reason, this testing approach is sometimes
called state-based testing [28]. If the feature to be tested covers only functional
requirements, the test case’s pass and fail criteria are often completely confined to
the specification of the input and output data: the component passes the specified
test case if, and only if, its execution with respect to the specified input data leads
to the desired output data. Moreover, the expected output data is often not given
explicitly but instead a so-called test oracle is provided, i.e., a Boolean function of
the input and output data determining whether the component passed or failed
the test. This testing approach can be formalized in terms of our formal setting
as follows:

Definition 2.5.2 (State-based testing): For a given component under test p with Θ ` p :
∆, a state-based test case specification can be represented by

• input data (hin , vin , ac) consisting of a heap function hin , a global variable func-
tion vin , and an incoming method call label ac = ν(Θ′).〈call o.m(vin)〉? as well
as of

• a test oracle function success : (H × V × a) → (a × H × V) → bool which
yields for each input data a Boolean function of the resulting outgoing return label
ar = ν(∆′).〈return(vout)〉! and the final state of the component.

The component p passes the specified test case if:

∆ ` (hin , vin , ε) : Θ acar=⇒ ∆′ ` (hout , vout , ε) : Θ′

such that success(hin , vin , ac)(ar, hout , vout) holds.

In order to carry out a state-based test case execution, we have to write a test
program which implements a set-up, assuring that the component’s configuration
corresponds to the specified input data, and which furthermore implements the
method call ac as well as the evaluation of the oracle function success afterwards.

Unfortunately, as the test program is itself a Japl component it can modify
neither the global variables of the component under test nor its heap directly, but
the test program has to drive the component to the desired input configuration
by means of method calls. However, it is often not clear which calls should be
made to reach the input configuration or if the configuration can be reached at
all. For, it might be that there exists no trace in the component’s trace semantics
that leads to the desired configuration. Summarizing, the test set-up, initiating a
state-based test execution, is difficult or sometimes even impossible to realize in
a component-based setting, as the component’s state is usually not accessible due
to information hiding and encapsulation.

2.5. TRACES AND THE NOTION OF TESTING 53

Besides that, according to Definition 2.5.2, state-based testing does not allow
for call-backs which might occur between the specified method call and its return.
More general, sometimes it might be necessary to specify a test execution which
entails a longer communication sequence s in between the original call and its
return:

∆ ` (hin , vin , ε) : Θ acs ar=⇒ ∆′ ` (hout , vout , ε) : Θ′ .

Even if we relax the criteria for passing the test by allowing the component to
produce more interface communication than merely the return label, then this
requires at least additional declarations of the reaction that has to be carried out
by the test program.

In a testing approach that is based on the component’s interface behavior,
in contrast, the component’s internal state is not specified but only its behavior
which is observable by a test program. This approach is therefore called behavior-
based testing. In our setting, the observable behavior consists of method calls
and returns occurring at the component’s interface, thus, a test case specification
stipulates a sequence of interface interactions.

Definition 2.5.3 (Behavior-based testing): For a given component under test p with Θ `
p : ∆ a behavior-based test case specification can be represented by a sequence of
communication labels, that is, a trace s ∈ a∗.

The component p passes the specified test case if:

∆ ` cinit(p) : Θ s=⇒ ∆′ ` c : Θ′

or ∆ ` cinit(p) : Θ s=⇒ ∆′ ` c : Θ′ .

In other words, we actually test for s ∈ [[∆ ` p : Θ]]. Note that this approach
also allows for test cases which are initiated by the component under test, that is,
we also can execute and test the component’s main body. A test trace s generally
describes communication steps which are expected to be carried out by the com-
ponent under test as well as communication steps that have to be carried out by
the component’s environment. Thus, when conducting behavior-based testing, a
test program need not to take care for establishing a specified input configuration
of the component under test but in exchange it has to implement several calls
and returns along the test execution as stipulated by the specified test trace. At
the same time, the test program has to check that the component’s contribution
to the interface communication complies with the trace specification.

Specifically, in order to test for s ∈ [[∆ ` p : Θ]] for a component p and a
test trace s, we need a test program which can implement the complementary
trace s̄ of s that results from s by replacing question marks with exclamation
marks, and vice versa; hence, we require a test program ptp with Θ ` ptp : ∆
and s̄ ∈ [[Θ ` ptp : ∆]]. Then, a test execution can be considered as the execution
of actually both programs p and ptp, such that ppt’s outgoing communication
represents the incoming communication of p and vice versa such that ppt reports
a successful test run if it observes trace s̄ at its interface. One question that may

54 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

arise from this testing approach is how to find an appropriate test program for
a given test case specification. In fact, the following two chapters will deal with
the introduction of, both, a test specification language that is built on the basis
of interface traces and a test program generation algorithm.

But first it remains to show, that our language represents a sound framework
for further investigations. More precisely, the semantics’ extension by interface
communication rules should represent a sound extension with regards to the se-
mantics of the internal computation. In context of the above mentioned test ap-
proach, this means that, under the provision that the program p passes the test,
the two programs p and ppt can be merged to a single program that gives rise to
a sequence of internal computation steps containing internal call and return steps
that correspond to the labels of the trace s. This is more general formalized in
the following lemma.
Definition 2.5.4 (Merge of components): Let

p1 = impdecl1; T1 x1; cldef 1 {T ′1 x′1; stmt1; return}
and

p2 = impdecl2; T2 x2; cldef 2 {T ′2 x′2; stmt2; return}

be two components such that Θ2 ` p1 : Θ1 and Θ1 ` p2 : Θ2. Then the merge of the two
components is defined as follows,

p1 E p2
def= cldef 1 cldef 2 T1 x1; T2 x2; {T ′1 x′1; stmt1; return},

where we assume an ad-hoc renaming of global variables to prevent name clashes if
necessary.

Note that the merge p of the two components p1 and p2 does not contain
their mutual import declarations and only the main body of p1. In particular, the
merge is therefore not symmetric. The intuitive motivation for the drop of one
main body is that one component represents the (“main”) program and the other
one is incorporated as some kind of a passive library. For, we have seen in the
operational semantics that always exactly one main body is executed.
Lemma 2.5.5 (Compositionality): There exists a merge function on configurations

· E · : Conf × Conf ⇀ Conf

with the following two properties:

1. For two components p1 and p2 with Θ2 ` p1 : Θ1 and Θ1 ` p2 : Θ2, such that

Θ2 ` cinit(p1) : Θ1
t=⇒p1 Θ′2 ` c′1 : Θ′1

and

Θ1 ` cinit(p2) : Θ2
t̄=⇒p2 Θ′1 ` c′2 : Θ′2 ,

and for p = p1 E p2 such that ` p : Θ1,Θ2 the following holds:

cinit(p) −→∗p c′1 E c′2 ,

2.5. TRACES AND THE NOTION OF TESTING 55

We annotated the transition arrows to indicate the context in which the respective
transition rules are applied.

2. Assume a closed program p with ` p : Θ. For every two components p1 and p2

with Θ2 ` p1 : Θ1 and Θ1 ` p2 : Θ2 such that p1 E p2 = p and Θ1,Θ2 = Θ the
following holds:

cinit(p) −→∗p c implies the existence of a trace t ∈ a∗ such that:

• Θ2 ` cinit(p1) : Θ1
t=⇒p1 Θ′2 ` c′1 : Θ′1 ,

• Θ1 ` cinit(p2) : Θ2
t̄=⇒p2 Θ′1 ` c′2 : Θ′2 and

• and c′1 E c′2 = c.

In words: Feeding a component p1 with the interface communication carried
out by p2, and vice versa, has the same effect as syntactically merging the two
programs, such that the communication is carried out internally. On the other
hand, a closed program can be torn into two components which can communi-
cate via interface communication reaching configurations that correspond to the
configurations reachable by the original component.

	I Testing Sequential Components
	2 Java-like programming language – Japl
	2.1 Syntax
	2.2 Static semantics
	2.3 Operational semantics
	2.4 Extension by components: the Japl language
	2.4.1 Syntax
	2.4.2 Static Semantics
	2.4.3 Operational Semantics

	2.5 Traces and the notion of testing

