Universiteit

w4 Leiden
The Netherlands

Testing object Interactions
Gruner, A.

Citation
Gruner, A. (2010, December 15). Testing object Interactions. Retrieved from
https://hdl.handle.net/1887/16243

Version: Corrected Publisher’s Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/16243

Note: To cite this publication please use the final published version (if
applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16243

Part 1

Testing Sequential
Components

19






21

In this main part of this thesis we will propose a component testing approach
for Java components. The contribution is threefold. We will define a test spec-
ification language which allows to specify the desired behavior of a component
in terms of expected communication with its environment, i.e., in terms of its
interface behavior. Moreover, we will present an algorithm for automatically gen-
erating a test program from a given specification such that the program tests
for a component’s conformance to the specified interface behavior. To this end,
we will first present a formally defined programming language which captures a
subset of the Java language. In particular, we will provide a formal semantics for
components of this language. This enables us to investigate and characterize the
possible observable interface behavior of a component.

The characterization will help us to find an appropriate design of the specifi-
cation language, which will be a careful balance between two goals: we will use
programming constructs in Java-like notation that help the programmer to specify
the interaction without having to learn a completely new specification notation.
On the other hand, additional expressions in the specification language will al-
low to specify the desired interface behavior in a concise, abstract way, hiding
the intricacies of the required synchronization code at the lower-level program-
ming language. Moreover, the formal language will be used to formalize the code
generation algorithm and to proof its correctness.






