Universiteit

w4 Leiden
The Netherlands

Testing object Interactions
Gruner, A.

Citation
Gruner, A. (2010, December 15). Testing object Interactions. Retrieved from
https://hdl.handle.net/1887/16243

Version: Corrected Publisher’s Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/16243

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16243

CHAPTER 1

INTRODUCTION

On Wednesday, the 30th September 2009, at 3.46am a data transmission problem,
caused by a routine software update, resulted in a crash of an airline company’s
software system [58]. Specifically, the check-in systems of the airline and of some
partner companies at more than 200 airports around the world were affected. The
ground staff had to fall back on an older system of the 1970’s — which basically
consisted of writing passenger lists, boarding passes, and luggage tags, manually.

This system crash example joins a long list of more or less well-known soft-
ware failures. Although the recent crash does not represent an overly spectacular
software failure, yet it demonstrates that, on the one hand, developing complex
software systems is still error-prone and, on the other hand, that the economy
highly and increasingly depends on such software systems. Indeed, already in the
late 1960’s, software developers and scientists were aware of the discrepancy be-
tween the need for complex software systems and the difficulty of writing correct
and reliable computer programs. It was F. L. Bauer who coined the term “soft-
ware crisis” at the first NATO Software Engineering Conference in 1968 [52], in
order to refer to the above mentioned software development dilemma. And in [23]
Edsger W. Dijkstra stated in 1972:

The major cause of the software crisis is that the machines have
become several orders of magnitude more powerful! To put it quite
bluntly: as long as there were no machines, programming was no prob-
lem at all; when we had a few weak computers, programming became
a mild problem, and now we have gigantic computers, programming
has become an equally gigantic problem.

Since then various software development approaches, methodologies, and pro-
cesses have been developed to come out of the crisis. Indeed, although the “silver
bullet” has not been found yet, some progress has been made. The development of
high-level programming languages, for instance, is based on the idea that language
constructs abstracting from the details of the computer hardware allow a more
efficient and less erroneous software development process. In particular, object-

2 CHAPTER 1. INTRODUCTION

oriented programming languages enjoy great popularity, as the object-oriented
approach also facilitates the re-use of software components due to encapsulation
and information hiding.

Moreover, to cope with the software dilemma, several standardized software
development process models have emerged promising more predictable and more
successful software projects. To achieve this, they subdivide the project into sev-
eral smaller tasks and activities by the help of management and engineering tech-
niques.

Besides efficiency, one key aspect of the software development processes in
general is quality assurance. Although there has been much progress in recent
years, proving the correctness of a software system by means of formal verification
is still not feasible for most of the real world software products due to its high
complexity. Thus, testing is still of prime importance in assuring the quality of
software. In contrast to exhaustive methods for system verification and validation,
testing aims at detecting faults, thus increasing confidence in the system under test
[65, [7T]. However, testing a complex product en bloc at the end of the development
process, as it has been done in the early days of software testing, is not feasible
anymore, either. In fact, to manage the complexity of modern software, testing
has become a systematic operation, conducted on different levels and integrated
into the software development process [33].

This thesis deals with testing at its lowest level, i.e., unit testing, of object-
oriented software. In the remainder of this chapter, we first introduce the context
of this work. Specifically, in the following sections, we will say some preliminary
words regarding object-oriented languages, software development process models,
and software testing. In particular, we will have a close look at some existing
unit testing approaches for object-oriented languages. Finally, we will give a short
overview of our testing approach and of the thesis.

1.1 Object-oriented programming languages

In object-oriented programming languages, a key concept is to encapsulate imple-
mentation details within so-called objects which represent an association of data
with its operations. Specifically, the operations provide an interface between the
object’s data and its user rendering it unnecessary for the user to access the data
directly. Due to this information hiding, the developer of the object, on the one
hand, is free in choosing (or even in changing) the appropriate implementation
for the data as well as the operations and, on the other hand, the user does not
have to rely on a specific implementation but only on the interface. This idea can
be traced back to the early 1960’s. One of the first and probably most influen-
tial object-oriented languages was Simula [22], developed by Ole-Johan Dahl and
Kristen Nygaard. Simula did not only introduce the concept of objects but also
the notion of classes, used as “blue-prints” from which new objects can be instan-
tiated. Moreover, the language supported sub-classing and overriding. That is, a
class can inherit the data types and operations of another class and, beyond that,

1.1. OBJECT-ORIENTED PROGRAMMING LANGUAGES 3

it may re-define such an inherited operation by providing a new implementation.

Inspired by Simula, Alan Kay led the development of Smalltalk in the 1970’s [30].
With Smalltalk Kay introduced the term object-oriented programming to express
the pervasive use of objects and messages passing. Indeed, in Smalltalk everything
is an object, including classes which can be created and modified dynamically.

As for the mainstream software application development, the object-oriented
programming approach had its break-through in the early 1990’s largely due to
C** developed by Bjarne Stroustrup [67]. The programming language C* 7, orig-
inally named “C with Classes”, can be considered as an extension of the language
C by object-orientation. Stroustrup developed C** with the intention to make
Simula’s object-oriented features available for real word software applications,
since Simula was too slow for practical use. In fact, C regarded as a middle-level
language, was and still is one of the most popular programming languages due to
its execution speed.

The high performance of nowadays computer hardware, however, allows to
use more high level computer languages also for most of the mainstream soft-
ware applications. As a consequence, lots of high level programming language
and scripting language with support for object-orientation have been developed.
In the following, we will discuss two widely used representatives in more detail,
namely Java and C¥.

1.1.1 Java

Java is an object-oriented class-based general-purpose programming language
which was developed at Sun Microsystems by a team headed by James Gosling. It
was first released in 1996 [2I]. Aiming at embedded systems, Java’s predecessor,
Oak, was considered to be derived from C*". Due to the lack of portability, how-
ever, the team decided to design a completely new language. Though, the syntax
of Java is still inspired by C and CT7.

In contrast to the lower-level language C*, Java does not allow pointer arith-
metics. Specifically, a reference to an object is not represented by a pointer to a
specific memory cell. Moreover, the language supports automatic garbage collec-
tion, i.e., the programmer needs not to allocate or de-allocate memory for objects,
explicitly. Java is not fully object-oriented as it supports base types for integer
or boolean values, for instance. However, for each base type there exists a corre-
sponding class in Java, as well.

Java class definitions can be bundled to so-called packages which facilitate the
re-use of class libraries [66]. In particular, the Java runtime environment comes
with a huge class library including, among other things, thread classes allowing
for a concurrent flow of control.

A Java program is compiled to Java bytecode which is executed by the Java
virtual machine (JVM). Java bytecode is generally platform-independent. There
exist JVM implementations for many computers and devices. For instance, today
almost every cell phone is equipped with a JVM.

4 CHAPTER 1. INTRODUCTION

1.1.2 ¢

The programming language C* [25], first released in July 2000, can be considered
as Microsoft’s answer to Java. Developed by Anders Hejlsberg, the author of
Turbo Pascal and chief designer of Delphi, C¥ is also an object-oriented class-
based general-purpose programming language whose syntax likewise resembles
that of CTT. Beyond that, it shares many other features with Java, like automatic
garbage collection and the support for multi-threading. A C* program, too, is
compiled to bytecode, called Common Intermediate Language (CIL), which is to
be executed by the Common Language Runtime (CLR).

Apart from many similarities, C* provides some additional features which do
not exist in Java. In contrast to Java, for instance, C* does support memory ad-
dress pointers in order to increase execution speed in time critical applications.
However, to prevent pointers from becoming a general security leakage, they may
only be used within blocks which are to be marked as unsafe; unsafe blocks, in
turn, need appropriate permissions to run. In this context, C# developers distin-
guish code which exclusively relies on automated garbage collection from code
which includes user-allocated memory usage by the terms managed and unman-
aged code.

Furthermore, C* introduces the concept of delegates. A delegate is a reference
to an object’s method which, in particular, can be passed around via method
call parameters and return values. Consequently, a delegate may be invoked like
a conventional method, although the caller need not to know the object of the
method. However, the invoked delegate itself may access the object’s fields and
other methods.

Though, summarizing, there certainly exist some differences between Java and
C¥, currently their similarities prevail. Aiming at object-oriented language more
generally, in this thesis, we want to abstract from specific, distinguishing features
but concentrate on the common characteristics of both languages. To this end,
we will define and use a small object-oriented language intended to capture the
object-oriented concepts that both languages have in common.

1.2 Testing in the software development life-cycle

It has been said, that several models regarding the software development process
have been developed. Let us quickly discuss the basic idea of these models where
we are specifically interested in the involved testing activities. Generally, the goal
is to find repeatable and predictable processes that improve productivity and
quality. In particular, to get a grip on the complexity of such a project, it is divided
into smaller tasks. To this end, most models distinguish roughly the following
phases:

e planning phase

Usually, a software development project starts with a planning phase. The
most important task within this phase is the requirements analysis where

1.2. TESTING IN THE SOFTWARE DEVELOPMENT LIFE-CYCLE 5

the customer’s needs and requests are gathered in a systematic way. This
may lead to feasibility studies and first estimations regarding the effort,
costs, and time needed.

e design phase

Within the design phase, the overall architecture of the software system is
to be determined. A hierarchy of subsystems and components is identified,
such that the development processes can be divided into smaller manageable
parts. The results includes a specification for each of the system’s component
capturing its requirements and its collaboration with other components.

e implementation and testing phase

Based on the specification results of the design phase, the components are
implemented. Furthermore, the specification of a component should be used
as reference for a component or unit test where the component is tested
in isolation. Following the hierarchy of the architecture, components are
integrated resulting into larger components which in turn have to be tested
by means of integration test activities. The idea of integration testing is
to check whether the integrated components interact with each other as
specified. The final integration test is called system test where the complete
system is integrated.

e deployment and maintenance phase

After completing and integration-testing the system, it is subject to an ac-
ceptance test with the customer. By this test, the customer checks whether
the software meets the original requirements. Finally, if the acceptance test
was successful, the software has to be integrated into the customer’s pro-
duction environment. However, in general this is still not the end of the
software life cycle. For, often problems or improvement suggestions arise
only during the daily operational use resulting into bug tracking or further
software enhancement tasks.

A good example of a software development model demonstrating the relation
between the actual development acitivities and the correpsonding testing activities
is represented by the V-model (also: VEE model). The origins of the V-model
can be traced back to the early 1980’s [I9]. Compared to its predecessor, the
waterfall model, it has an emphasize on quality assurance aspects. Specifically,
for each development phase it introduces a testing phase in which the results of
the corresponding development phase are tested. As can be seen in Figurel.l
the V-model’s course of action is often graphically represented in form of a V,
hence, the model’s name. The horizontal dashed lines indicate that test cases of
a specific development phase should be formulated during the development phase
itself, already.

As mentioned earlier, this thesis focuses on unit testing. For, a common state-
ment is the later a software failure is observed during the software development

6 CHAPTER 1. INTRODUCTION

Requirement | | Acceptance
Analysis Test

\ /

Ar%hlt(?ctual - — — — — — — SystemTest
esign
Subsystem - .
Design Integration Test
Implementation — — Unit Test

Figure 1.1: Software development process and testing levels

life cycle the more cost effect is the finding of the corresponding defect. For in-
stance, B. Boehm and V. Basili state in [I§] that finding and fixing a software
problem after delivery is generally 100 times more expensive then finding and
fixing it earlier. On the other hand, according to Jones, 85% of software failures
are introduced during the design and the (low-level) implementation phase [39].
Therefore, low-level testing, i.e., unit testing, seems to have a key position for effi-
ciency and quality in the software development process. This may be a reason why
unit testing enjoys such a prominent role in agile software development processes
like extreme programming [I1]. For instance, concerning the extreme program-
ming methodology, all code must have unit tests and all code must pass all unit
tests before it can be released. In the following we will discuss three existing unit
testing frameworks.

Before we discuss some exemplary unit testing approaches of the object-
oriented world in the next section, however, let us first fix a terminology per-
taining to testing that we will use in this thesis. Specifically, we will resort to
corresponding definitions given in [61] (see also [63]).

Definition 1.2.1 (Errors, defects, and failures): If a software developer makes an error
(mistake), this results in a defect (fault, bug) in the code. If a defect in the code is exe-
cuted, it may become observable in terms of a failure, i.e., the system may fail to do what
it should do (or do something it should not do).

1.3. UNIT TESTING OBJECT-ORIENTED SOFTWARE 7

1.3 Unit testing object-oriented software

Unit testing in general represents the idea of automatically testing small pro-
gram fragments, i.e., a unit or component, by executing a test program which
incorporates the unit under test [62]. In the context of procedural or functional
programming languages, a unit is often considered to be a procedure or, respec-
tively, a function. Concerning object-oriented languages the smallest unit is used
to mean an object or a class (depending on whether one wants to refer to dy-
namical, or respectively, static aspects). To test a unit, a test program interacts
with the unit and possibly investigates the resulting change of the program state.
While in a procedural or functional language these interactions are usually car-
ried out in terms of function or a procedure calls, an object-oriented test program
investigates the unit by means of method calls. A central aspect of object-oriented
programming, however, is that objects heavily rely on the interaction with other
objects. Thus, most often, an object-oriented unit test program has to ensure the
existence of several collaborator objects that are required to cooperate as assumed
by the unit in order to enable the unit to fulfill its tasks. Due to this fact, it is
generally accepted that, regarding object-oriented systems, unit testing coincides
with integration testing or, at least, that the dividing line between the two testing
activities is blurred (cf. [6] and [I6], for instance). As a consequence, writing unit
tests in an object-oriented setting is usually considerably more complex. However,
a couple of testing frameworks exist that aim at unit testing object-oriented com-
ponents. We will have a closer look at three of these frameworks. The first two
frameworks are widely used, specifically by the extreme programming community.
Despite its usefulness, the third framework is not so commonly accepted. All three
frameworks aim at the Java programming language. However, similar approaches
do exist also for C* and other related object-oriented programming languages.

To allow for comparison, each framework is illustrated by a simple example,
realizing the test of a voting system. The voting system is a component that, when
activated by an initiator, collects a vote from a group of external voter objects,
compiles a report, and returns it to the initiator. It can be used, for example,
to detect termination of a group of objects.! In our example, the voter system is
implemented by means of a class Census defining a method conductVoting which
realizes the above mentioned voting procedure. In particular, the method expects
a list of Voter objects which, in turn, yield their vote in terms of a return value
of a method wote. An exemplary implementation is sketched in Listing [1.1l

1.3.1 JUnit

JUnit [41] is a unit and regression testing framework written by Kent Beck and
Erich Gamma. It has its origin in Kent Beck’s SUnit [I0], a unit testing framework
for Smalltalk, and by now many adoptions to other languages exist. The collection
of JUnit derivatives is often referred to as xUnit.

IWe will, however, restrict our considerations on sequential programs until Part [II of the
thesis.

© 0 N o ook W N =

I B Y O S
o o A W N R O

[
Q3

8 CHAPTER 1. INTRODUCTION

Listing 1.1: The voter system

class Voter {
public Boolean vote() {

return(value)

}
}

class Census{
public Boolean conductVoting(List voters) {
Boolean result = true;
for (Voter v : List) {
result = result && v.vote();

}

return(result)

}

The intention behind JUnit is to encourage software developers to write and
execute tests themselves instead of shifting the responsibility on to some other
software tester [12]. Software testing small units of code should become part of the
code writing process. To integrate unit testing into the code writing process, Beck
and Gamma suggest a development paradigm which is often called test-driven de-
velopment (TDD). TDD represents a cornerstone of Extreme Programming [11]
and other agile development approaches. In TDD developers write code incremen-
tally by extending the unit only by one small feature at a time. More specifically,
first small test cases for the new feature are written and afterwards the corre-
sponding code is implemented. This is followed by exercising the unit tests. Only
if all tests terminate successfully, the developer goes on to extend the unit with
the next feature. It is worthwhile to say that the unit should not only pass the
new tests but also all the other test cases of previously implemented features are
executed, i.e., after extending the unit with a new feature, the developer does
regression testing.

To avoid obstruction of the developers flow of work, xUnit tests are written
in the same programming language as the production code, hence, JUnit tests
are written in Java. A test (case) in JUnit is basically a Java program which
incorporates and executes the code of the unit under test to decide on success
or failure. To this end, the JUnit framework consists of a small and simple set
of Java classes which expedites and unifies the recurring tasks when writing test
code. The recent transition from version 3.8.1 to 4.0 entailed some major changes
concerning the implementation and the usage of JUnit. As the former version is
still widely-used, we will sketch both versions in the following.

The developer writes tests in terms of Java methods. Typically she or he

1.3. UNIT TESTING OBJECT-ORIENTED SOFTWARE 9

implements

e an (optional) setup method which initialises the data needed for the test
case (in JUnit terms: the test fizture),

e the actual test case methods consisting of the interaction with the unit under
test and the test evaluation,

e and an (optional) tear down method to free resources which possibly have
been reserved by the setup method.

In version 3.8.1 and former versions of JUnit, the above mentioned methods
have to be implemented in a subclass of org.junit. Test. TestCase. The setup and
the tear down method are realized by overwriting the methods setUp() and tear-
Down(). The test case methods are methods with an arbitrary name? and without
any parameters. JUnit allows for defining several test case methods within a single
test case class, which therefore share the same tearDown() and setUp() methods,
i.e. all test case methods of one test case class will be executed against the same
test fixture. However, every instance of a test case class always executes only one
test case method. Thus, for each instance the developer has to designate the de-
sired test case method. This can be done either statically or dynamically. In the
first case, the developer has to overwrite the TestCase’s method runTest() which
is expected to call the designated test case method. In the latter case the name
of the desired method is passed to the test case instance via a parameter of the
constructor. JUnit uses reflection to find and execute the corresponding method.

With JUnit it is possible to execute a batch of test case methods to realize
automated regression testing. To this end, test case instances can be grouped to
test suites (which again can be grouped to other test suites, allowing for a tree
structure of test cases). Again, JUnit supports a static and a dynamic way to
add test cases to a test suite. Either the developer adds a test case by passing a
corresponding test case instance to an instance of JUnit’s TestSuite or he passes
a test case class to a test suite which then will, again, use reflection to create and
add instances of that class for every test case method within the class. In that
case, however, JUnit uses a naming convention to find all test cases at runtime by
name, i.e., all test case methods must start with test. Finally, one has to implement
a static method suite() which returns a test suite that contains all test cases to
be executed.

A test case method typically calls a method of the unit under test and checks
afterwards the return value or the resulting side effect of the method call. For this
purpose, TestCase provides a set of assertion methods with a boolean parameter
which is used to decide on success or failure. The method assertTrue, for instance,
expects a boolean expression that has to evaluate to true, otherwise the test is
considered as failed.

2However, to be able to use some test automation provided by JUnit, methods names have
to obey certain naming conventions discussed later.

10 CHAPTER 1. INTRODUCTION

The biggest change that came with version 4.0 was the usage of Java’s annota-
tions [36]. By using these annotations, developers need not to subclass TestCase,
anymore. Instead, they mark a method as a test case, a tear-down, a setup, or a
suite method by annotating them with a certain keyword. Moreover, additional
keywords for new features have been introduced. For instance, apart from the
tear-down and setup keywords which enables one to create and, resp., remove a
fixture for every instance of a test case class, there exist new keywords which allow
to create and remove parts of the fixture only once for all instances of a single
class.

One criticism on JUnit 3.8 was the poor support for testing exceptions. If one
wanted to ensure that a certain exception is raised in a certain situation, it was
necessary to write a test case method which catches the corresponding exception
if it has been raised. On the other hand, if the exception was not raised, one had
to call the fail method of the JUnit framework manually to indicate that the test
has failed. In JUnit 4 this is no longer necessary. Instead one can annotate a test
method with the expectation of a certain exception.

Listing [1.2| and Listing [1.3| show the voter example for the test framework of
JUnit 3.8.x and JUnit 4.x, respectively. The test fixture consists of three voters,
instances of anonymous sub-classes of Voter to allow for different voting results,
and one census object which is the actual unit under test. The sole test case
method calls conductVoting of the census object and passes the above mentioned
voters. After that it checks whether the result of the method call is as expected.

Essentially, the JUnit framework knows only one test pattern: call a method,
wait until it returns and check the outcome. However, sometimes the developer
wants to test not only the outcome at the end of a method call but also wants
to ensure some features about the interaction in between the invocation and the
return. For instance, in our example, we would like to ensure that conductVoting
does not come to the right voting result only by chance, but that it indeed inquired
the involved voting objects, i.e., we would like to test, whether conduct Voting calls
the method wvote of the voter objects. This is not possible to test with JUnit3.

There exist other unit testing frameworks in the style of JUnit. For instance,
currently the strongest competitor of JUnit is most likely TestNG [68]. However,
all these frameworks suffer from the lack of interaction test support.

1.3.2 jMock

The Java library jMock [38], developed by Nathaniel Pryce et alia, is also used
for unit and regression testing of Java programs.

The jMock approach follows the idea that for testing object oriented systems
it is more appropriate to test the interactions among objects rather than to test

3 Actually, it certainly is possible to test this with JUnit, as a JUnit test is a normal Java
program. Hence, every test that one can write in Java in general, can be embedded in the JUnit
framework. But the test of interactions is not supported by JUnit directly, which means that
one has to write additional code to realize this kind of tests

© W N e ;oA W N =

1.3. UNIT TESTING OBJECT-ORIENTED SOFTWARE 11

Listing 1.2: Voter example: JUnit 3.8.x

import org.junit. Test. TestCase;

class CensusTestCase extends TestCase {
Vector voters;
Census census;

protected void SetUp() {
voters = new Vector({
new Voter { Boolean vote() { return true } },
new Voter { Boolean vote() { return false } },
new Voter { Boolean vote() { return true } }

Bk

census = new Census();

}

public void testVoting() {
Boolean result = census.conduct Voting(voters);

Assert.assert True(result == false);

}

the change of the program state caused by the interactions [28]. For, in object
orientation it is often not possible to observe the state due to encapsulation.
Moreover, even if an undesired state change has been observed then in many
cases one has to identify the causing interaction, anyway.

For interaction-based testing [27], the developer has to identify the interaction
partners of the unit under test and replace them by so-called mock objects [45]
(regarding interaction-based testing, see also [57] and [8]) The task of these mock
objects is to mimic the original environment objects of the unit and at the same
time to verify assertions about the occurring interactions. Replacing the environ-
ment object by tester objects also makes sure that the unit is tested in isolation,
i.e. the test is insulated from other possible failures caused outside of the com-
ponent. Finally, this approach supports TDD, as even units can be tested whose
final environment objects do not yet exist in the production code.

Usually jMock is applied on top of the JUnit testing framework which means
that the developer writes JUnit test but utilizes the jMock library to formalize
a behaviour-based testing with mock objects. Thus, one writes JUnit test case
classes (if used with JUnit 3.8 or less) as described above with the following
differences:

e Within the setup method, instead of setting up the test fixture by construct-
ing the unit’s environment by means of objects of the production code, one

I N T

I I S T N T v S S S~ S Y T S
wW N R O © ® N O A W N = O

N
=

12 CHAPTER 1. INTRODUCTION

Listing 1.3: Voter example: JUnit 4.x

import org.junit. Test. TestCase;

class CensusTestCase {
Vector voters;
Census census;

@Before
protected void create VotersAndCensus() {
voters = new Vector({
new Voter { Boolean vote() { return true } },
new Voter { Boolean vote() { return false } },
new Voter { Boolean vote() { return true } }

I3E

census = new Census();

}

@Test
public void conductVotingAndCheckResult() {
Boolean result = census.conductVoting(voters);

Assert.assert True(result == false);

}

creates mock objects correspondingly. However, as in common JUnit tests
the object under test is certainly instantiated from a class of the production
code.

e Within the test case method, one, firstly, formalizes the expected interac-
tions between the component under test and the mock objects. Then, second,
the unit’s method to be tested is invoked and, finally, the expectations are
verified.

The jMock library’s basic idea is to support the creation of mock objects and
the formalization of the expectations. However, the authors soon realized that
in particular the design of the API for the formalization of the expected behav-
ior has to be chosen carefully, as otherwise formalizations easily become tricky
and error-prone. Thus, the design of the library is based on what the authors
call an embedded domain-specific language [29] (EDSL). The idea is to provide
developers a language for specifying interface behavior (hence, a domain-specific
language) in terms of Java expressions. A key concept for this is jMock’s call chain
syntax, where each method call to a jMock object yields another jMock object
(or even the callee itself) such that another method invocation can be appended

1.3. UNIT TESTING OBJECT-ORIENTED SOFTWARE 13

without the need of prefixing the callee’s name. A small example might clarify
this. Suppose, one wants to formalize the expectation that the unit under test
calls a method buy of object mainframe exactly once with parameter equal to the
constant QUANTITY. Moreover, buy shall return the object ticket. Then one can
write

mainframe.expects(once())
.method(”buy”)
.with(egq(QUANTITY))
.will(return Value(ticket));

Note, that the determination of the return value ticket does not represent an
assertion on the behavior of the unit but stipulates the committed mock object’s
behavior towards the unit.

Listing |1.4/ shows the voter example in terms of a behavior-based testing ap-
proach formalized with the help of the jMock library on top of the JUnit 4 frame-
work. First, a Mockery object, context, is created which represents the entry point
to the library. Moreover, an array of three mock objects of the Voter class is
created. In the test case method conductVotingAndCheckBehaviorAndResult the
expectations are formalized; the method wvote of every voter (mock) object has to
be called once. Additionally the return values are stipulated. After a call to the
object under test census the result is checked.

With the help of the jMock library, the previous JUnit test example (List-
ing|1.3) has been improved in that now also the calls to the voter objects can be
checked. However, although the authors put much effort into the design of the
library, even this small example shows that there is still much “syntax noise”, as
Freeman and Pryce called it. In [29] they investigated the possibilities to create an
EDSL for a more abstract description of the unit’s behavior in context of a general
purpose language like Java and concluded that “on the whole, it’s too hard to
extend conventional host languages, the syntax and the low-level operations get
in the way”.

Nevertheless, the mock object approach seems promising and by now several
other implementations for Java exist. For instance, EasyMock [24] is also a well-
known mock object library for Java. EasyMock tries to reduce the syntax noise
by following the record-play idea. To formalize the expectations one calls first
the mock objects methods as it is expected from the unit under test. After this
“recording” step, the mode of the mock object is changed such that the mock
object now expects (and realizes) the same interaction again. A drawback of
this approach is that FasyMock by default only supports the generation of mock
objects for interfaces. Moreover, this approach suffers from less expressiveness
compared to the jMock approach.

Finally, although testing the observable interface behavior of a unit means also
a higher, more abstract approach, by now no mock object implementations for
Java support the use of the results for further analyses.

© 0 N O ;s W N e

WO N N NN N NN N N R R R s R R e e e
S © ®» N & @ A W KN = O © W N O ;A W N R O

w
ot

14 CHAPTER 1. INTRODUCTION

Listing 1.4: Voter example: jMock

import org.jmock. Exzpectations;

import org.jmock. Mockery;

import org.jmock.integration.junit4.JMock;

import org.jmock.integration.junity.JUnit4 Mockery;

@RunWith(JMock.class)
class CensusTestCase {
Mockery context = new JUnit{Mockery();
final Voter voters|| = {context.mock(Voter.class),
context.mock(Voter.class), context.mock(Voter.class)}

Census census;

@Before
protected void create VotersAndCensus() {
census = new Census();

}

@Test
public void conductVotingAndCheckBehaviorAndResult() {
context.checking(new Expectations() {{
one(voters[0]).vote(); will(returnValue(true));
one(voters[1]).vote(); will(returnValue(false));
one(voters[2]).vote(); will(return Value(true));

s
result = census.conductVoting(voters);
Assert.assert True(result == false);

}

1.3.3 JMLUnit

By using the Java Modeling Language (JML) [44], the unit testing tool JMLUnit
[37] allows for specifying unit tests on a higher and more abstract level than JUnit
or jMock do. In particular, developers need not to write the test code on their
own but it is generated by JMLUnit.

JML is a specification language for Java programs which is used to formally
specify the interface behavior of a Java module. It is based on the design-by-
contract [46] (DBC') approach in the style of the FEiffel programming language [26].
Eiffel provides language constructs for defining contracts between method callers
and method callees. These constracts consist of program code stating pre- and
postconditions of methods and invariants of classes. Formalizing contracts in terms

1.3. UNIT TESTING OBJECT-ORIENTED SOFTWARE 15

of executable code, firstly lowers the burden on the programmer who does not need
to learn an additional specification language, and secondly, it means that viola-
tions of the contracts can be detected at runtime. Since Java does not support
DBC originally, JML specifications are stated in terms of special Java annota-
tions embedded in the unit under test. The JMLUnit tool, in turn, extracts these
annotations in order to generate code for JUnit test cases.

To allow for more formal specifications than it is possible in Eiffel, JML ad-
ditionally builds on ideas from model-based specification languages like VDM-
SL [0] (see also [7]) and the Larch family [32]. In particular, JML enables one
to define abstract models of classes and objects by declaring model (and ghost)
variables and methods. These variables and methods are not accessible by the
actual unit code but can only be referred to within the JML annotations. Usage
of these abstract models within the contract definitions leads to more abstract,
more formal specifications.

Typically, a method’s JML specification precedes the actual method declara-
tion; class invariants precede the field declarations of a class. All JML specifica-
tions are Java comments which start with the at sign (@). Essentially, a method
specification consists of a precondition and a postcondition. Preconditions are
boolean predicates that must hold before the method is called; postconditions
must hold after the execution of the method call. This means, the responsibility
for establishing the precondition lies with the caller of the method — the respon-
sibility for establishing the postcondition lies with the method itself. In JML
preconditions and postconditions consist of the JML keyword requires, respec-
tively, ensures followed by a boolean expression. Boolean expressions in JML are
similar to normal Java boolean expressions. However, within a boolean expression
one may only call methods that are declared as pure methods, i.e. methods that
have no side effects. Moreover, JML provides additional construct which allow for
more abstract specifications. For instance, one can quantify expressions by using
\forall or \ exist.

Listing |1.5/ shows the voter unit code annotated with JML specifications. Line
5-6 formalize the required postcondition: method conductVoting may only yield
true if, and only if, all voter objects likewise yield true. We have to assume,
however, that vote is a pure method. Moreover, note that we cannot express the
requirement that conductVoting must call the vote method of each voter object.
Nevertheless, compared to JUnit, the example test specification is rather clear
and concise. So the question may arise why JUnit is much more often in use than
JML. One fact which might prevent JML from gaining more acceptance is its use
of mathematical expressions. That is, although embedded into the Java code, the
requirements are formalized in terms of mathematical formulas. Thus, despite the
advantages of a more abstract specification, software developers seem to become
reluctant, when likewise rather formal expressions come into play.

© 0 N O ook W N =

10

11

13

14

15

16

16 CHAPTER 1. INTRODUCTION

Listing 1.5: Voter example: JMLUnit

class Census {

/*@ public behavior
@ requires voters != null €& voters.length() != null;
@ ensures \result == true <==>
@ (\forall int i; 0<= 1 €& i < voters.length();
votersfil.vote() == true)
@x/
public void conductVoting(Voters|] voters) {
result = true;

for (int =0; i++, i <= voters.length()) {
result = result && wvoters[i].vote();
}
}
}

1.4 Testing approach in this thesis

This thesis proposes a novel approach for unit testing object-oriented components.
The idea is to combine the benefits of the aforementioned existing testing frame-
works. In particular, similar to the JUnit framework, the new approach should be
accessible for software developers, it should allow for behavior-based testing like
the jMock framework, and, finally, similar to the JML framework it shall allow
for more abstract, hence, clear and concise, formalizations of the test cases where
the underlying framework is based on a formal background.

However, we neither want to define an EDSL nor do we want to embed a formal
language by means of annotations into the programming language. Instead, we
embark on a language extension strategy. That is, we define a new test specifica-
tion language by extending the original programming language of the production
code with additional specification constructs. The intention of these tailor-made
specification constructs it to provide the possibility for specifying a desired be-
havior of the unit under test in an abstract way. Moreover, in order to get an
executable program that realizes the corresponding unit test, the test framework
proposal comes with a test code generation algorithm that automatically gen-
erates programming language code from a specification of the test specification
language. The testing approach is sketched in Figure 1.2

The new specification constructs should not allow to specify aspects of the
unit’s behavior that has no impact on the unit’s environment anyway. In other
words, the constructs must aim at the observable behavior (cf. [49] and [53]) of the
unit, only. To investigate the observable aspects of a unit’s behavior in general, we
provide a formally defined object-oriented programming language that is derived
from Java and C*. Specifically, the language will serve as the formal bedrock

1.5. STRUCTURE OF THE THESIS 17

test specification

specification language

programming language code
generation
unit test
unit under test test code

Figure 1.2: Novel testing approach

of our testing approach. For, apart from the features inspired from the above
mentioned unit testing frameworks, we additionally want to support the unit
testing of concurrent components which makes a formal context essential.

1.5 Structure of the thesis

The structure of this thesis is as follows. After this introductory chapter, the
thesis consists of three parts. The first part deals with unit testing in context of
a sequential object-oriented programming language. In particular, in Chapter 2| a
formal definition for the Java-like object-oriented programming language Japl is
developed. This is followed by the introduction of the test specification language
for Japl in Chapter |3| and the code generation algorithm in Chapter 4. Finally,
the first part concludes with the discussion about possible extensions of, both,
the programming language and the test specification language.

The second part suggests a concurrency extension of the testing introduced
in the first part. Specifically, Chapter 6| proposes an extension of the Japl pro-
gramming language with thread classes. Correspondingly, Chapter |7| deals with
an extension of the test specification language and, additionally, it sketches a sug-
gestion on how to adapt the code generation algorithm of Chapter |4 in order to
account for the concurrency extension. Finally Chapter 8| presents a conclusion of
the thesis.

The third part of the thesis consists of the proofs. A central contribution of
the thesis is the correctness proof of the code generation algorithm of Chapter 4.
Although the Java-like language Japl covers only some basic aspects of typi-
cal object-oriented programming languages, still supported features like object-
orientation and classes considerably increase the complexity of the proofs, already.

18 CHAPTER 1. INTRODUCTION

Thus, instead of embedding the proofs into the text they are presented separately
in order to improve readability. In particular, it should be possible to understand
and follow most of the ideas in this thesis without the need to understand all
proofs in their details.

1.6 Relation to my previous scientific work

Many ideas of this thesis are based on or have been drawn from ideas related to
my scientific work carried out and published during my Ph.D. studies.

In [2] a sequential class-based object calculus is introduced where programs
consist of class definitions and a single thread definition. Considering compo-
nents as sets of class definitions (and possibly a thread definition), the calculus
serves as the mathematical vehicle for investigating the possible interaction traces,
i.e., sequences of interactions that may take place between a component and its
environment. The class-based setting makes instantiation a possible component-
environment interaction which allows to create unconnected groups of objects,
called cliques. Regarding a simple notion of observability, a notion of equivalence
on these interaction traces is formalized which captures the uncertainty of obser-
vation caused by the fact that the observer may fall into separate cliques.

A similar class-based object calculus but additionally equipped with the sup-
port for multi-threading and re-entrant monitors has been proposed in [4]. The
idea is to capture re-entrant monitor behavior, the basic synchronization and
mutex-mechanism of, e.g., multi-threaded Java. A main result is that re-entrant
monitors entail additional uncertainty of observation wrt. monitor operations at
the interface which are captured by may- and must-approximations for potential,
respectively, necessary lock ownership.

In [5] a class-based object calculus is introduced which allows dynamic thread
instantiation by the support of thread classes. Similar to object instantiation,
thread instantiation, occurring as a component-environment interaction, may lead
to unconnected groups of objects which again increases the uncertainty of observa-
tion. The work formalizes a trace semantics with a notion of observable equivalence
which accounts for the observational blur due to cliques.

In place of the thread-based concurrency model propagated by languages like
Java and C*, the work in [3] deals with object-oriented languages that introduces
concurrency by means of asynchronous message passing. A corresponding object
calculus is introduced capturing, furthermore, futures and promises which act as
proxies for, or reference to, the delayed result from some piece of code. This allows
to compare the concurrency model based on asynchronous message passing with
the thread-based approach on a solid mathematical basis.

Based on the idea that the trace of interface interactions between a compo-
nent and its environment may serve as a specification for the desired behavior
of a component under test, in [20] an automated test driver generation for Java
components is proposed. In particular, a specification language for specifying the
desired behavior of a Java component is introduced. Moreover, the paper sketches
an algorithm which allows to generate a Java test driver from such a specification.

	1 Introduction
	1.1 Object-oriented programming languages
	1.1.1 Java
	1.1.2 C

	1.2 Testing in the software development life-cycle
	1.3 Unit testing object-oriented software
	1.3.1 JUnit
	1.3.2 jMock
	1.3.3 JMLUnit

	1.4 Testing approach in this thesis
	1.5 Structure of the thesis
	1.6 Relation to my previous scientific work

