
Testing object Interactions
Grüner, A.

Citation
Grüner, A. (2010, December 15). Testing object Interactions. Retrieved from
https://hdl.handle.net/1887/16243

Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/16243

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16243

Testing Object Interactions

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus prof. mr. P.F. van der Heijden,
volgens besluit van het College vor Promoties
te verdedigen op woensdag 15 december 2010

klokke 13.45 uur

door

Andreas Grüner
geboren te Nettetal, Duitsland

in 1974

Promotiecommissie

Promoter: Prof. dr. Frank S. de Boer
Co-promoter: Dr. Marcello Bonsangue

Dr. Martin Steffen (Universitetet i Oslo)
Referent: Dr. Bernhard Aichernig (Technische Universität Graz)
Overige leden: Prof. dr. Farhad Arbab

Prof. dr. Joost N. Kok

Contents

1 Introduction 1
1.1 Object-oriented programming languages 2

1.1.1 Java . 3
1.1.2 C] . 4

1.2 Testing in the software development life-cycle 4
1.3 Unit testing object-oriented software 7

1.3.1 JUnit . 7
1.3.2 jMock . 10
1.3.3 JMLUnit . 14

1.4 Testing approach in this thesis . 16
1.5 Structure of the thesis . 17
1.6 Relation to my previous scientific work 18

I Testing Sequential Components 19

2 Java-like programming language – Japl 23
2.1 Syntax . 24
2.2 Static semantics . 26
2.3 Operational semantics . 31
2.4 Extension by components: the Japl language 37

2.4.1 Syntax . 38
2.4.2 Static Semantics . 40
2.4.3 Operational Semantics . 41

2.5 Traces and the notion of testing . 51

3 The test specification language 57
3.1 Extension by expectations . 59
3.2 Syntax . 64
3.3 Static semantics . 66
3.4 Operational semantics . 73
3.5 Example . 76
3.6 Executability and input enabledness 79

iii

iv CONTENTS

3.7 Satisfiability and completeness . 81

4 Code generation 83
4.1 Preprocessing . 85

4.1.1 Labeling mechanism . 85
4.1.2 Variable binding . 93

4.2 Japl code generation . 95
4.3 Generation of the test program. 102
4.4 Correctness of the code generation 103
4.5 Failure report and faulty specifications 111

5 Further possible extensions 115
5.1 Specification classes . 115
5.2 Programming classes . 122
5.3 Subtyping and inheritance . 126

II Testing Multi-threaded Components 135

6 Concurrent programming language – CoJapl 139
6.1 Syntax . 139
6.2 Static semantics . 140
6.3 Operational semantics . 141

7 Specification language and code generation 151
7.1 Syntax . 154
7.2 Static semantics . 157
7.3 Operational semantics . 158
7.4 Test code generation . 159

8 Concluding remarks 163

Bibliography 167

III Proofs 173

Appendices 175

A Subject reduction 177

B Compositionality 181

CONTENTS v

C Code generation 191
C.1 Preprocessing . 191
C.2 Anticipation . 198
C.3 Correctness of the generated code 207

Summary 223

Samenvatting 225

Curriculum Vitæ 227

List of Tables

2.1 Simple Java-like language: syntax 25
2.2 Simple Java-like language: type system (program parts up to stmts) 28
2.3 Simple Java-like language: type system (exprs) 30
2.4 Variable evaluation . 33
2.5 Expression evaluation . 33
2.6 Auxiliary notations . 34
2.7 Simple Java-like language: operational semantics 36
2.8 Japl language : syntax . 39
2.9 Japl language: type system (stmts) 40
2.10 Label check for incoming communication 45
2.11 Free variables . 47
2.12 Japl language: operational semantics (ext.) 48
2.13 Japl language: traces . 51

3.1 Specification language for Japl: syntax 65
3.2 Specification language for Japl: type system (stmts) 69
3.3 Specification language for Japl: operational semantics (external) . 74

4.1 Preprocessing: labeling and anticipation (prepout) 89
4.2 Preprocessing: labeling and anticipation (prepin) 90
4.3 Initial method and constructor code 99
4.4 Code-generation: method extension 99
4.5 Generation of Japl code (codeout) 101
4.6 Generation of Japl code (codein) 102

5.1 Extension by specification classes: syntax 116
5.2 Extension by specification classes: type system (stmts) 118
5.3 Extension by specification classes: operational semantics 119
5.4 Extension by programming classes: syntax 123
5.5 Extension by programming classes: type system (stmts) 125
5.6 Japl with subclassing: syntax . 127
5.7 Japl with subclassing: type system (stmts) 129
5.8 Japl with subclassing: operational semantics (int.) 131
5.9 Example: cross-border inheritance 132

vii

viii LIST OF TABLES

5.10 Japl with subclassing: operational semantics (ext.) 133

6.1 CoJapl language: syntax . 140
6.2 CoJapl language: type system (stmts) 142
6.3 CoJapl language: type system (exprs) 143
6.4 CoJapl language: operational semantics (internal, part 1) 145
6.5 CoJapl language: operational semantics (internal, part 2) 146
6.6 CoJapl language: operational semantics (external) 148
6.7 CoJapl language: traces . 150

7.1 Specification language for CoJapl: syntax 155
7.2 CoJapl example specifications . 156
7.3 Specification language for CoJapl: type system (stmts) 157
7.4 Specification language for CoJapl: operational semantics (external) 159
7.5 CoJapl code generation: mutual exclusion 162

C.1 Anticipation-valid code (static) . 199
C.2 Anticipation-valid configurations (dynamic) 201
C.3 Simulation relation for statements 207
C.4 Well-typedness of dynamic specification code mcsl 211

List of Figures

1.1 Software development process and testing levels 6
1.2 Novel testing approach . 17

2.1 Notion of component . 39

4.1 Testing framework . 84

ix

Chapter 1

Introduction

On Wednesday, the 30th September 2009, at 3.46am a data transmission problem,
caused by a routine software update, resulted in a crash of an airline company’s
software system [58]. Specifically, the check-in systems of the airline and of some
partner companies at more than 200 airports around the world were affected. The
ground staff had to fall back on an older system of the 1970’s – which basically
consisted of writing passenger lists, boarding passes, and luggage tags, manually.

This system crash example joins a long list of more or less well-known soft-
ware failures. Although the recent crash does not represent an overly spectacular
software failure, yet it demonstrates that, on the one hand, developing complex
software systems is still error-prone and, on the other hand, that the economy
highly and increasingly depends on such software systems. Indeed, already in the
late 1960’s, software developers and scientists were aware of the discrepancy be-
tween the need for complex software systems and the difficulty of writing correct
and reliable computer programs. It was F. L. Bauer who coined the term “soft-
ware crisis” at the first NATO Software Engineering Conference in 1968 [52], in
order to refer to the above mentioned software development dilemma. And in [23]
Edsger W. Dijkstra stated in 1972:

The major cause of the software crisis is that the machines have
become several orders of magnitude more powerful! To put it quite
bluntly: as long as there were no machines, programming was no prob-
lem at all; when we had a few weak computers, programming became
a mild problem, and now we have gigantic computers, programming
has become an equally gigantic problem.

Since then various software development approaches, methodologies, and pro-
cesses have been developed to come out of the crisis. Indeed, although the “silver
bullet” has not been found yet, some progress has been made. The development of
high-level programming languages, for instance, is based on the idea that language
constructs abstracting from the details of the computer hardware allow a more
efficient and less erroneous software development process. In particular, object-

1

2 CHAPTER 1. INTRODUCTION

oriented programming languages enjoy great popularity, as the object-oriented
approach also facilitates the re-use of software components due to encapsulation
and information hiding.

Moreover, to cope with the software dilemma, several standardized software
development process models have emerged promising more predictable and more
successful software projects. To achieve this, they subdivide the project into sev-
eral smaller tasks and activities by the help of management and engineering tech-
niques.

Besides efficiency, one key aspect of the software development processes in
general is quality assurance. Although there has been much progress in recent
years, proving the correctness of a software system by means of formal verification
is still not feasible for most of the real world software products due to its high
complexity. Thus, testing is still of prime importance in assuring the quality of
software. In contrast to exhaustive methods for system verification and validation,
testing aims at detecting faults, thus increasing confidence in the system under test
[55, 71]. However, testing a complex product en bloc at the end of the development
process, as it has been done in the early days of software testing, is not feasible
anymore, either. In fact, to manage the complexity of modern software, testing
has become a systematic operation, conducted on different levels and integrated
into the software development process [33].

This thesis deals with testing at its lowest level, i.e., unit testing, of object-
oriented software. In the remainder of this chapter, we first introduce the context
of this work. Specifically, in the following sections, we will say some preliminary
words regarding object-oriented languages, software development process models,
and software testing. In particular, we will have a close look at some existing
unit testing approaches for object-oriented languages. Finally, we will give a short
overview of our testing approach and of the thesis.

1.1 Object-oriented programming languages

In object-oriented programming languages, a key concept is to encapsulate imple-
mentation details within so-called objects which represent an association of data
with its operations. Specifically, the operations provide an interface between the
object’s data and its user rendering it unnecessary for the user to access the data
directly. Due to this information hiding, the developer of the object, on the one
hand, is free in choosing (or even in changing) the appropriate implementation
for the data as well as the operations and, on the other hand, the user does not
have to rely on a specific implementation but only on the interface. This idea can
be traced back to the early 1960’s. One of the first and probably most influen-
tial object-oriented languages was Simula [22], developed by Ole-Johan Dahl and
Kristen Nygaard. Simula did not only introduce the concept of objects but also
the notion of classes, used as “blue-prints” from which new objects can be instan-
tiated. Moreover, the language supported sub-classing and overriding. That is, a
class can inherit the data types and operations of another class and, beyond that,

1.1. OBJECT-ORIENTED PROGRAMMING LANGUAGES 3

it may re-define such an inherited operation by providing a new implementation.
Inspired by Simula, Alan Kay led the development of Smalltalk in the 1970’s [30].

With Smalltalk Kay introduced the term object-oriented programming to express
the pervasive use of objects and messages passing. Indeed, in Smalltalk everything
is an object, including classes which can be created and modified dynamically.

As for the mainstream software application development, the object-oriented
programming approach had its break-through in the early 1990’s largely due to
C++, developed by Bjarne Stroustrup [67]. The programming language C++, orig-
inally named “C with Classes”, can be considered as an extension of the language
C by object-orientation. Stroustrup developed C++ with the intention to make
Simula’s object-oriented features available for real word software applications,
since Simula was too slow for practical use. In fact, C regarded as a middle-level
language, was and still is one of the most popular programming languages due to
its execution speed.

The high performance of nowadays computer hardware, however, allows to
use more high level computer languages also for most of the mainstream soft-
ware applications. As a consequence, lots of high level programming language
and scripting language with support for object-orientation have been developed.
In the following, we will discuss two widely used representatives in more detail,
namely Java and C].

1.1.1 Java

Java is an object-oriented class-based general-purpose programming language
which was developed at Sun Microsystems by a team headed by James Gosling. It
was first released in 1996 [21]. Aiming at embedded systems, Java’s predecessor,
Oak, was considered to be derived from C++. Due to the lack of portability, how-
ever, the team decided to design a completely new language. Though, the syntax
of Java is still inspired by C and C++.

In contrast to the lower-level language C++, Java does not allow pointer arith-
metics. Specifically, a reference to an object is not represented by a pointer to a
specific memory cell. Moreover, the language supports automatic garbage collec-
tion, i.e., the programmer needs not to allocate or de-allocate memory for objects,
explicitly. Java is not fully object-oriented as it supports base types for integer
or boolean values, for instance. However, for each base type there exists a corre-
sponding class in Java, as well.

Java class definitions can be bundled to so-called packages which facilitate the
re-use of class libraries [66]. In particular, the Java runtime environment comes
with a huge class library including, among other things, thread classes allowing
for a concurrent flow of control.

A Java program is compiled to Java bytecode which is executed by the Java
virtual machine (JVM). Java bytecode is generally platform-independent. There
exist JVM implementations for many computers and devices. For instance, today
almost every cell phone is equipped with a JVM.

4 CHAPTER 1. INTRODUCTION

1.1.2 C]

The programming language C] [25], first released in July 2000, can be considered
as Microsoft’s answer to Java. Developed by Anders Hejlsberg, the author of
Turbo Pascal and chief designer of Delphi, C] is also an object-oriented class-
based general-purpose programming language whose syntax likewise resembles
that of C++. Beyond that, it shares many other features with Java, like automatic
garbage collection and the support for multi-threading. A C] program, too, is
compiled to bytecode, called Common Intermediate Language (CIL), which is to
be executed by the Common Language Runtime (CLR).

Apart from many similarities, C] provides some additional features which do
not exist in Java. In contrast to Java, for instance, C] does support memory ad-
dress pointers in order to increase execution speed in time critical applications.
However, to prevent pointers from becoming a general security leakage, they may
only be used within blocks which are to be marked as unsafe; unsafe blocks, in
turn, need appropriate permissions to run. In this context, C] developers distin-
guish code which exclusively relies on automated garbage collection from code
which includes user-allocated memory usage by the terms managed and unman-
aged code.

Furthermore, C] introduces the concept of delegates. A delegate is a reference
to an object’s method which, in particular, can be passed around via method
call parameters and return values. Consequently, a delegate may be invoked like
a conventional method, although the caller need not to know the object of the
method. However, the invoked delegate itself may access the object’s fields and
other methods.

Though, summarizing, there certainly exist some differences between Java and
C], currently their similarities prevail. Aiming at object-oriented language more
generally, in this thesis, we want to abstract from specific, distinguishing features
but concentrate on the common characteristics of both languages. To this end,
we will define and use a small object-oriented language intended to capture the
object-oriented concepts that both languages have in common.

1.2 Testing in the software development life-cycle

It has been said, that several models regarding the software development process
have been developed. Let us quickly discuss the basic idea of these models where
we are specifically interested in the involved testing activities. Generally, the goal
is to find repeatable and predictable processes that improve productivity and
quality. In particular, to get a grip on the complexity of such a project, it is divided
into smaller tasks. To this end, most models distinguish roughly the following
phases:

• planning phase

Usually, a software development project starts with a planning phase. The
most important task within this phase is the requirements analysis where

1.2. TESTING IN THE SOFTWARE DEVELOPMENT LIFE-CYCLE 5

the customer’s needs and requests are gathered in a systematic way. This
may lead to feasibility studies and first estimations regarding the effort,
costs, and time needed.

• design phase

Within the design phase, the overall architecture of the software system is
to be determined. A hierarchy of subsystems and components is identified,
such that the development processes can be divided into smaller manageable
parts. The results includes a specification for each of the system’s component
capturing its requirements and its collaboration with other components.

• implementation and testing phase

Based on the specification results of the design phase, the components are
implemented. Furthermore, the specification of a component should be used
as reference for a component or unit test where the component is tested
in isolation. Following the hierarchy of the architecture, components are
integrated resulting into larger components which in turn have to be tested
by means of integration test activities. The idea of integration testing is
to check whether the integrated components interact with each other as
specified. The final integration test is called system test where the complete
system is integrated.

• deployment and maintenance phase

After completing and integration-testing the system, it is subject to an ac-
ceptance test with the customer. By this test, the customer checks whether
the software meets the original requirements. Finally, if the acceptance test
was successful, the software has to be integrated into the customer’s pro-
duction environment. However, in general this is still not the end of the
software life cycle. For, often problems or improvement suggestions arise
only during the daily operational use resulting into bug tracking or further
software enhancement tasks.

A good example of a software development model demonstrating the relation
between the actual development acitivities and the correpsonding testing activities
is represented by the V-model (also: VEE model). The origins of the V-model
can be traced back to the early 1980’s [19]. Compared to its predecessor, the
waterfall model, it has an emphasize on quality assurance aspects. Specifically,
for each development phase it introduces a testing phase in which the results of
the corresponding development phase are tested. As can be seen in Figure1.1,
the V-model’s course of action is often graphically represented in form of a V,
hence, the model’s name. The horizontal dashed lines indicate that test cases of
a specific development phase should be formulated during the development phase
itself, already.

As mentioned earlier, this thesis focuses on unit testing. For, a common state-
ment is the later a software failure is observed during the software development

6 CHAPTER 1. INTRODUCTION

Requirement
Analysis

Architectual
Design

Subsystem
Design

Implementation Unit Test

Integration Test

System Test

Acceptance
Test

Figure 1.1: Software development process and testing levels

life cycle the more cost effect is the finding of the corresponding defect. For in-
stance, B. Boehm and V. Basili state in [18] that finding and fixing a software
problem after delivery is generally 100 times more expensive then finding and
fixing it earlier. On the other hand, according to Jones, 85% of software failures
are introduced during the design and the (low-level) implementation phase [39].
Therefore, low-level testing, i.e., unit testing, seems to have a key position for effi-
ciency and quality in the software development process. This may be a reason why
unit testing enjoys such a prominent role in agile software development processes
like extreme programming [11]. For instance, concerning the extreme program-
ming methodology, all code must have unit tests and all code must pass all unit
tests before it can be released. In the following we will discuss three existing unit
testing frameworks.

Before we discuss some exemplary unit testing approaches of the object-
oriented world in the next section, however, let us first fix a terminology per-
taining to testing that we will use in this thesis. Specifically, we will resort to
corresponding definitions given in [61] (see also [63]).

Definition 1.2.1 (Errors, defects, and failures): If a software developer makes an error
(mistake), this results in a defect (fault, bug) in the code. If a defect in the code is exe-
cuted, it may become observable in terms of a failure, i.e., the system may fail to do what
it should do (or do something it should not do).

1.3. UNIT TESTING OBJECT-ORIENTED SOFTWARE 7

1.3 Unit testing object-oriented software

Unit testing in general represents the idea of automatically testing small pro-
gram fragments, i.e., a unit or component, by executing a test program which
incorporates the unit under test [62]. In the context of procedural or functional
programming languages, a unit is often considered to be a procedure or, respec-
tively, a function. Concerning object-oriented languages the smallest unit is used
to mean an object or a class (depending on whether one wants to refer to dy-
namical, or respectively, static aspects). To test a unit, a test program interacts
with the unit and possibly investigates the resulting change of the program state.
While in a procedural or functional language these interactions are usually car-
ried out in terms of function or a procedure calls, an object-oriented test program
investigates the unit by means of method calls. A central aspect of object-oriented
programming, however, is that objects heavily rely on the interaction with other
objects. Thus, most often, an object-oriented unit test program has to ensure the
existence of several collaborator objects that are required to cooperate as assumed
by the unit in order to enable the unit to fulfill its tasks. Due to this fact, it is
generally accepted that, regarding object-oriented systems, unit testing coincides
with integration testing or, at least, that the dividing line between the two testing
activities is blurred (cf. [6] and [16], for instance). As a consequence, writing unit
tests in an object-oriented setting is usually considerably more complex. However,
a couple of testing frameworks exist that aim at unit testing object-oriented com-
ponents. We will have a closer look at three of these frameworks. The first two
frameworks are widely used, specifically by the extreme programming community.
Despite its usefulness, the third framework is not so commonly accepted. All three
frameworks aim at the Java programming language. However, similar approaches
do exist also for C] and other related object-oriented programming languages.

To allow for comparison, each framework is illustrated by a simple example,
realizing the test of a voting system. The voting system is a component that, when
activated by an initiator, collects a vote from a group of external voter objects,
compiles a report, and returns it to the initiator. It can be used, for example,
to detect termination of a group of objects.1 In our example, the voter system is
implemented by means of a class Census defining a method conductVoting which
realizes the above mentioned voting procedure. In particular, the method expects
a list of Voter objects which, in turn, yield their vote in terms of a return value
of a method vote. An exemplary implementation is sketched in Listing 1.1.

1.3.1 JUnit

JUnit [41] is a unit and regression testing framework written by Kent Beck and
Erich Gamma. It has its origin in Kent Beck’s SUnit [10], a unit testing framework
for Smalltalk, and by now many adoptions to other languages exist. The collection
of JUnit derivatives is often referred to as xUnit.

1We will, however, restrict our considerations on sequential programs until Part II of the
thesis.

8 CHAPTER 1. INTRODUCTION

Listing 1.1: The voter system
1 class Voter {
2 public Boolean vote() {
3 ...
4 return(value)
5 }
6 }
7

8 class Census{
9 public Boolean conductVoting(List voters) {

10 Boolean result = true;
11 for (Voter v : List) {
12 result = result && v.vote();
13 }
14 return(result)
15 }
16

17 }

The intention behind JUnit is to encourage software developers to write and
execute tests themselves instead of shifting the responsibility on to some other
software tester [12]. Software testing small units of code should become part of the
code writing process. To integrate unit testing into the code writing process, Beck
and Gamma suggest a development paradigm which is often called test-driven de-
velopment (TDD). TDD represents a cornerstone of Extreme Programming [11]
and other agile development approaches. In TDD developers write code incremen-
tally by extending the unit only by one small feature at a time. More specifically,
first small test cases for the new feature are written and afterwards the corre-
sponding code is implemented. This is followed by exercising the unit tests. Only
if all tests terminate successfully, the developer goes on to extend the unit with
the next feature. It is worthwhile to say that the unit should not only pass the
new tests but also all the other test cases of previously implemented features are
executed, i.e., after extending the unit with a new feature, the developer does
regression testing.

To avoid obstruction of the developers flow of work, xUnit tests are written
in the same programming language as the production code, hence, JUnit tests
are written in Java. A test (case) in JUnit is basically a Java program which
incorporates and executes the code of the unit under test to decide on success
or failure. To this end, the JUnit framework consists of a small and simple set
of Java classes which expedites and unifies the recurring tasks when writing test
code. The recent transition from version 3.8.1 to 4.0 entailed some major changes
concerning the implementation and the usage of JUnit. As the former version is
still widely-used, we will sketch both versions in the following.

The developer writes tests in terms of Java methods. Typically she or he

1.3. UNIT TESTING OBJECT-ORIENTED SOFTWARE 9

implements

• an (optional) setup method which initialises the data needed for the test
case (in JUnit terms: the test fixture),

• the actual test case methods consisting of the interaction with the unit under
test and the test evaluation,

• and an (optional) tear down method to free resources which possibly have
been reserved by the setup method.

In version 3.8.1 and former versions of JUnit, the above mentioned methods
have to be implemented in a subclass of org.junit.Test.TestCase. The setup and
the tear down method are realized by overwriting the methods setUp() and tear-
Down(). The test case methods are methods with an arbitrary name2 and without
any parameters. JUnit allows for defining several test case methods within a single
test case class, which therefore share the same tearDown() and setUp() methods,
i.e. all test case methods of one test case class will be executed against the same
test fixture. However, every instance of a test case class always executes only one
test case method. Thus, for each instance the developer has to designate the de-
sired test case method. This can be done either statically or dynamically. In the
first case, the developer has to overwrite the TestCase’s method runTest() which
is expected to call the designated test case method. In the latter case the name
of the desired method is passed to the test case instance via a parameter of the
constructor. JUnit uses reflection to find and execute the corresponding method.

With JUnit it is possible to execute a batch of test case methods to realize
automated regression testing. To this end, test case instances can be grouped to
test suites (which again can be grouped to other test suites, allowing for a tree
structure of test cases). Again, JUnit supports a static and a dynamic way to
add test cases to a test suite. Either the developer adds a test case by passing a
corresponding test case instance to an instance of JUnit’s TestSuite or he passes
a test case class to a test suite which then will, again, use reflection to create and
add instances of that class for every test case method within the class. In that
case, however, JUnit uses a naming convention to find all test cases at runtime by
name, i.e., all test case methods must start with test. Finally, one has to implement
a static method suite() which returns a test suite that contains all test cases to
be executed.

A test case method typically calls a method of the unit under test and checks
afterwards the return value or the resulting side effect of the method call. For this
purpose, TestCase provides a set of assertion methods with a boolean parameter
which is used to decide on success or failure. The method assertTrue, for instance,
expects a boolean expression that has to evaluate to true, otherwise the test is
considered as failed.

2However, to be able to use some test automation provided by JUnit, methods names have
to obey certain naming conventions discussed later.

10 CHAPTER 1. INTRODUCTION

The biggest change that came with version 4.0 was the usage of Java’s annota-
tions [36]. By using these annotations, developers need not to subclass TestCase,
anymore. Instead, they mark a method as a test case, a tear-down, a setup, or a
suite method by annotating them with a certain keyword. Moreover, additional
keywords for new features have been introduced. For instance, apart from the
tear-down and setup keywords which enables one to create and, resp., remove a
fixture for every instance of a test case class, there exist new keywords which allow
to create and remove parts of the fixture only once for all instances of a single
class.

One criticism on JUnit 3.8 was the poor support for testing exceptions. If one
wanted to ensure that a certain exception is raised in a certain situation, it was
necessary to write a test case method which catches the corresponding exception
if it has been raised. On the other hand, if the exception was not raised, one had
to call the fail method of the JUnit framework manually to indicate that the test
has failed. In JUnit 4 this is no longer necessary. Instead one can annotate a test
method with the expectation of a certain exception.

Listing 1.2 and Listing 1.3 show the voter example for the test framework of
JUnit 3.8.x and JUnit 4.x, respectively. The test fixture consists of three voters,
instances of anonymous sub-classes of Voter to allow for different voting results,
and one census object which is the actual unit under test. The sole test case
method calls conductVoting of the census object and passes the above mentioned
voters. After that it checks whether the result of the method call is as expected.

Essentially, the JUnit framework knows only one test pattern: call a method,
wait until it returns and check the outcome. However, sometimes the developer
wants to test not only the outcome at the end of a method call but also wants
to ensure some features about the interaction in between the invocation and the
return. For instance, in our example, we would like to ensure that conductVoting
does not come to the right voting result only by chance, but that it indeed inquired
the involved voting objects, i.e., we would like to test, whether conductVoting calls
the method vote of the voter objects. This is not possible to test with JUnit3.

There exist other unit testing frameworks in the style of JUnit. For instance,
currently the strongest competitor of JUnit is most likely TestNG [68]. However,
all these frameworks suffer from the lack of interaction test support.

1.3.2 jMock

The Java library jMock [38], developed by Nathaniel Pryce et alia, is also used
for unit and regression testing of Java programs.

The jMock approach follows the idea that for testing object oriented systems
it is more appropriate to test the interactions among objects rather than to test

3Actually, it certainly is possible to test this with JUnit, as a JUnit test is a normal Java
program. Hence, every test that one can write in Java in general, can be embedded in the JUnit
framework. But the test of interactions is not supported by JUnit directly, which means that
one has to write additional code to realize this kind of tests

1.3. UNIT TESTING OBJECT-ORIENTED SOFTWARE 11

Listing 1.2: Voter example: JUnit 3.8.x
1 import org.junit.Test.TestCase;
2

3 class CensusTestCase extends TestCase {
4 Vector voters;
5 Census census;
6

7 protected void SetUp() {
8 voters = new Vector({
9 new Voter { Boolean vote() { return true } },

10 new Voter { Boolean vote() { return false } },
11 new Voter { Boolean vote() { return true } }
12 });
13 census = new Census();
14 }
15

16 public void testVoting() {
17 Boolean result = census.conductVoting(voters);
18

19 Assert.assertTrue(result == false);
20 }
21

22 }

the change of the program state caused by the interactions [28]. For, in object
orientation it is often not possible to observe the state due to encapsulation.
Moreover, even if an undesired state change has been observed then in many
cases one has to identify the causing interaction, anyway.

For interaction-based testing [27], the developer has to identify the interaction
partners of the unit under test and replace them by so-called mock objects [45]
(regarding interaction-based testing, see also [57] and [8]) The task of these mock
objects is to mimic the original environment objects of the unit and at the same
time to verify assertions about the occurring interactions. Replacing the environ-
ment object by tester objects also makes sure that the unit is tested in isolation,
i.e. the test is insulated from other possible failures caused outside of the com-
ponent. Finally, this approach supports TDD, as even units can be tested whose
final environment objects do not yet exist in the production code.

Usually jMock is applied on top of the JUnit testing framework which means
that the developer writes JUnit test but utilizes the jMock library to formalize
a behaviour-based testing with mock objects. Thus, one writes JUnit test case
classes (if used with JUnit 3.8 or less) as described above with the following
differences:

• Within the setup method, instead of setting up the test fixture by construct-
ing the unit’s environment by means of objects of the production code, one

12 CHAPTER 1. INTRODUCTION

Listing 1.3: Voter example: JUnit 4.x
1 import org.junit.Test.TestCase;
2

3 class CensusTestCase {
4 Vector voters;
5 Census census;
6

7 @Before
8 protected void createVotersAndCensus() {
9 voters = new Vector({

10 new Voter { Boolean vote() { return true } },
11 new Voter { Boolean vote() { return false } },
12 new Voter { Boolean vote() { return true } }
13 });
14 census = new Census();
15 }
16

17 @Test
18 public void conductVotingAndCheckResult() {
19 Boolean result = census.conductVoting(voters);
20

21 Assert.assertTrue(result == false);
22 }
23

24 }

creates mock objects correspondingly. However, as in common JUnit tests
the object under test is certainly instantiated from a class of the production
code.

• Within the test case method, one, firstly, formalizes the expected interac-
tions between the component under test and the mock objects. Then, second,
the unit’s method to be tested is invoked and, finally, the expectations are
verified.

The jMock library’s basic idea is to support the creation of mock objects and
the formalization of the expectations. However, the authors soon realized that
in particular the design of the API for the formalization of the expected behav-
ior has to be chosen carefully, as otherwise formalizations easily become tricky
and error-prone. Thus, the design of the library is based on what the authors
call an embedded domain-specific language [29] (EDSL). The idea is to provide
developers a language for specifying interface behavior (hence, a domain-specific
language) in terms of Java expressions. A key concept for this is jMock’s call chain
syntax, where each method call to a jMock object yields another jMock object
(or even the callee itself) such that another method invocation can be appended

1.3. UNIT TESTING OBJECT-ORIENTED SOFTWARE 13

without the need of prefixing the callee’s name. A small example might clarify
this. Suppose, one wants to formalize the expectation that the unit under test
calls a method buy of object mainframe exactly once with parameter equal to the
constant QUANTITY. Moreover, buy shall return the object ticket. Then one can
write

mainframe.expects(once())
.method(”buy”)
.with(eq(QUANTITY))
.will(returnValue(ticket));

Note, that the determination of the return value ticket does not represent an
assertion on the behavior of the unit but stipulates the committed mock object’s
behavior towards the unit.

Listing 1.4 shows the voter example in terms of a behavior-based testing ap-
proach formalized with the help of the jMock library on top of the JUnit 4 frame-
work. First, a Mockery object, context, is created which represents the entry point
to the library. Moreover, an array of three mock objects of the Voter class is
created. In the test case method conductVotingAndCheckBehaviorAndResult the
expectations are formalized; the method vote of every voter (mock) object has to
be called once. Additionally the return values are stipulated. After a call to the
object under test census the result is checked.

With the help of the jMock library, the previous JUnit test example (List-
ing 1.3) has been improved in that now also the calls to the voter objects can be
checked. However, although the authors put much effort into the design of the
library, even this small example shows that there is still much “syntax noise”, as
Freeman and Pryce called it. In [29] they investigated the possibilities to create an
EDSL for a more abstract description of the unit’s behavior in context of a general
purpose language like Java and concluded that “on the whole, it’s too hard to
extend conventional host languages, the syntax and the low-level operations get
in the way”.

Nevertheless, the mock object approach seems promising and by now several
other implementations for Java exist. For instance, EasyMock [24] is also a well-
known mock object library for Java. EasyMock tries to reduce the syntax noise
by following the record-play idea. To formalize the expectations one calls first
the mock objects methods as it is expected from the unit under test. After this
“recording” step, the mode of the mock object is changed such that the mock
object now expects (and realizes) the same interaction again. A drawback of
this approach is that EasyMock by default only supports the generation of mock
objects for interfaces. Moreover, this approach suffers from less expressiveness
compared to the jMock approach.

Finally, although testing the observable interface behavior of a unit means also
a higher, more abstract approach, by now no mock object implementations for
Java support the use of the results for further analyses.

14 CHAPTER 1. INTRODUCTION

Listing 1.4: Voter example: jMock

1 import org.jmock.Expectations;
2 import org.jmock.Mockery;
3 import org.jmock.integration.junit4.JMock;
4 import org.jmock.integration.junit4.JUnit4Mockery;
5

6 @RunWith(JMock.class)
7 class CensusTestCase {
8 Mockery context = new JUnit4Mockery();
9 final Voter voters[] = {context.mock(Voter.class),

10 context.mock(Voter.class), context.mock(Voter.class)}
11

12 Census census;
13

14 @Before
15 protected void createVotersAndCensus() {
16 census = new Census();
17 }
18

19 @Test
20 public void conductVotingAndCheckBehaviorAndResult() {
21 context.checking(new Expectations() {{
22 one(voters[0]).vote(); will(returnValue(true));
23 one(voters[1]).vote(); will(returnValue(false));
24 one(voters[2]).vote(); will(returnValue(true));
25 }};
26

27 result = census.conductVoting(voters);
28 Assert.assertTrue(result == false);
29 }
30

31 }

1.3.3 JMLUnit

By using the Java Modeling Language (JML) [44], the unit testing tool JMLUnit
[37] allows for specifying unit tests on a higher and more abstract level than JUnit
or jMock do. In particular, developers need not to write the test code on their
own but it is generated by JMLUnit.

JML is a specification language for Java programs which is used to formally
specify the interface behavior of a Java module. It is based on the design-by-
contract [46] (DBC) approach in the style of the Eiffel programming language [26].
Eiffel provides language constructs for defining contracts between method callers
and method callees. These constracts consist of program code stating pre- and
postconditions of methods and invariants of classes. Formalizing contracts in terms

1.3. UNIT TESTING OBJECT-ORIENTED SOFTWARE 15

of executable code, firstly lowers the burden on the programmer who does not need
to learn an additional specification language, and secondly, it means that viola-
tions of the contracts can be detected at runtime. Since Java does not support
DBC originally, JML specifications are stated in terms of special Java annota-
tions embedded in the unit under test. The JMLUnit tool, in turn, extracts these
annotations in order to generate code for JUnit test cases.

To allow for more formal specifications than it is possible in Eiffel, JML ad-
ditionally builds on ideas from model-based specification languages like VDM-
SL [40] (see also [7]) and the Larch family [32]. In particular, JML enables one
to define abstract models of classes and objects by declaring model (and ghost)
variables and methods. These variables and methods are not accessible by the
actual unit code but can only be referred to within the JML annotations. Usage
of these abstract models within the contract definitions leads to more abstract,
more formal specifications.

Typically, a method’s JML specification precedes the actual method declara-
tion; class invariants precede the field declarations of a class. All JML specifica-
tions are Java comments which start with the at sign (@). Essentially, a method
specification consists of a precondition and a postcondition. Preconditions are
boolean predicates that must hold before the method is called; postconditions
must hold after the execution of the method call. This means, the responsibility
for establishing the precondition lies with the caller of the method – the respon-
sibility for establishing the postcondition lies with the method itself. In JML
preconditions and postconditions consist of the JML keyword requires, respec-
tively, ensures followed by a boolean expression. Boolean expressions in JML are
similar to normal Java boolean expressions. However, within a boolean expression
one may only call methods that are declared as pure methods, i.e. methods that
have no side effects. Moreover, JML provides additional construct which allow for
more abstract specifications. For instance, one can quantify expressions by using
\forall or \exist.

Listing 1.5 shows the voter unit code annotated with JML specifications. Line
5-6 formalize the required postcondition: method conductVoting may only yield
true if, and only if, all voter objects likewise yield true. We have to assume,
however, that vote is a pure method. Moreover, note that we cannot express the
requirement that conductVoting must call the vote method of each voter object.
Nevertheless, compared to JUnit, the example test specification is rather clear
and concise. So the question may arise why JUnit is much more often in use than
JML. One fact which might prevent JML from gaining more acceptance is its use
of mathematical expressions. That is, although embedded into the Java code, the
requirements are formalized in terms of mathematical formulas. Thus, despite the
advantages of a more abstract specification, software developers seem to become
reluctant, when likewise rather formal expressions come into play.

16 CHAPTER 1. INTRODUCTION

Listing 1.5: Voter example: JMLUnit

1 class Census {
2

3 /∗@ public behavior
4 @ requires voters != null && voters.length() != null;
5 @ ensures \result == true <==>
6 @ (\forall int i; 0<= i && i < voters.length();
7 voters[i].vote() == true)
8 @∗/
9 public void conductVoting(Voters[] voters) {

10 result = true;
11

12 for (int i=0; i++, i <= voters.length()) {
13 result = result && voters[i].vote();
14 }
15 }
16 }

1.4 Testing approach in this thesis

This thesis proposes a novel approach for unit testing object-oriented components.
The idea is to combine the benefits of the aforementioned existing testing frame-
works. In particular, similar to the JUnit framework, the new approach should be
accessible for software developers, it should allow for behavior-based testing like
the jMock framework, and, finally, similar to the JML framework it shall allow
for more abstract, hence, clear and concise, formalizations of the test cases where
the underlying framework is based on a formal background.

However, we neither want to define an EDSL nor do we want to embed a formal
language by means of annotations into the programming language. Instead, we
embark on a language extension strategy. That is, we define a new test specifica-
tion language by extending the original programming language of the production
code with additional specification constructs. The intention of these tailor-made
specification constructs it to provide the possibility for specifying a desired be-
havior of the unit under test in an abstract way. Moreover, in order to get an
executable program that realizes the corresponding unit test, the test framework
proposal comes with a test code generation algorithm that automatically gen-
erates programming language code from a specification of the test specification
language. The testing approach is sketched in Figure 1.2.

The new specification constructs should not allow to specify aspects of the
unit’s behavior that has no impact on the unit’s environment anyway. In other
words, the constructs must aim at the observable behavior (cf. [49] and [53]) of the
unit, only. To investigate the observable aspects of a unit’s behavior in general, we
provide a formally defined object-oriented programming language that is derived
from Java and C]. Specifically, the language will serve as the formal bedrock

1.5. STRUCTURE OF THE THESIS 17

unit under test test code

test specification

unit test

code
generation

specification language

programming language

Figure 1.2: Novel testing approach

of our testing approach. For, apart from the features inspired from the above
mentioned unit testing frameworks, we additionally want to support the unit
testing of concurrent components which makes a formal context essential.

1.5 Structure of the thesis

The structure of this thesis is as follows. After this introductory chapter, the
thesis consists of three parts. The first part deals with unit testing in context of
a sequential object-oriented programming language. In particular, in Chapter 2 a
formal definition for the Java-like object-oriented programming language Japl is
developed. This is followed by the introduction of the test specification language
for Japl in Chapter 3 and the code generation algorithm in Chapter 4. Finally,
the first part concludes with the discussion about possible extensions of, both,
the programming language and the test specification language.

The second part suggests a concurrency extension of the testing introduced
in the first part. Specifically, Chapter 6 proposes an extension of the Japl pro-
gramming language with thread classes. Correspondingly, Chapter 7 deals with
an extension of the test specification language and, additionally, it sketches a sug-
gestion on how to adapt the code generation algorithm of Chapter 4 in order to
account for the concurrency extension. Finally Chapter 8 presents a conclusion of
the thesis.

The third part of the thesis consists of the proofs. A central contribution of
the thesis is the correctness proof of the code generation algorithm of Chapter 4.
Although the Java-like language Japl covers only some basic aspects of typi-
cal object-oriented programming languages, still supported features like object-
orientation and classes considerably increase the complexity of the proofs, already.

18 CHAPTER 1. INTRODUCTION

Thus, instead of embedding the proofs into the text they are presented separately
in order to improve readability. In particular, it should be possible to understand
and follow most of the ideas in this thesis without the need to understand all
proofs in their details.

1.6 Relation to my previous scientific work

Many ideas of this thesis are based on or have been drawn from ideas related to
my scientific work carried out and published during my Ph.D. studies.

In [2] a sequential class-based object calculus is introduced where programs
consist of class definitions and a single thread definition. Considering compo-
nents as sets of class definitions (and possibly a thread definition), the calculus
serves as the mathematical vehicle for investigating the possible interaction traces,
i.e., sequences of interactions that may take place between a component and its
environment. The class-based setting makes instantiation a possible component-
environment interaction which allows to create unconnected groups of objects,
called cliques. Regarding a simple notion of observability, a notion of equivalence
on these interaction traces is formalized which captures the uncertainty of obser-
vation caused by the fact that the observer may fall into separate cliques.

A similar class-based object calculus but additionally equipped with the sup-
port for multi-threading and re-entrant monitors has been proposed in [4]. The
idea is to capture re-entrant monitor behavior, the basic synchronization and
mutex-mechanism of, e.g., multi-threaded Java. A main result is that re-entrant
monitors entail additional uncertainty of observation wrt. monitor operations at
the interface which are captured by may- and must-approximations for potential,
respectively, necessary lock ownership.

In [5] a class-based object calculus is introduced which allows dynamic thread
instantiation by the support of thread classes. Similar to object instantiation,
thread instantiation, occurring as a component-environment interaction, may lead
to unconnected groups of objects which again increases the uncertainty of observa-
tion. The work formalizes a trace semantics with a notion of observable equivalence
which accounts for the observational blur due to cliques.

In place of the thread-based concurrency model propagated by languages like
Java and C], the work in [3] deals with object-oriented languages that introduces
concurrency by means of asynchronous message passing. A corresponding object
calculus is introduced capturing, furthermore, futures and promises which act as
proxies for, or reference to, the delayed result from some piece of code. This allows
to compare the concurrency model based on asynchronous message passing with
the thread-based approach on a solid mathematical basis.

Based on the idea that the trace of interface interactions between a compo-
nent and its environment may serve as a specification for the desired behavior
of a component under test, in [20] an automated test driver generation for Java
components is proposed. In particular, a specification language for specifying the
desired behavior of a Java component is introduced. Moreover, the paper sketches
an algorithm which allows to generate a Java test driver from such a specification.

Part I

Testing Sequential
Components

19

21

In this main part of this thesis we will propose a component testing approach
for Java components. The contribution is threefold. We will define a test spec-
ification language which allows to specify the desired behavior of a component
in terms of expected communication with its environment, i.e., in terms of its
interface behavior. Moreover, we will present an algorithm for automatically gen-
erating a test program from a given specification such that the program tests
for a component’s conformance to the specified interface behavior. To this end,
we will first present a formally defined programming language which captures a
subset of the Java language. In particular, we will provide a formal semantics for
components of this language. This enables us to investigate and characterize the
possible observable interface behavior of a component.

The characterization will help us to find an appropriate design of the specifi-
cation language, which will be a careful balance between two goals: we will use
programming constructs in Java-like notation that help the programmer to specify
the interaction without having to learn a completely new specification notation.
On the other hand, additional expressions in the specification language will al-
low to specify the desired interface behavior in a concise, abstract way, hiding
the intricacies of the required synchronization code at the lower-level program-
ming language. Moreover, the formal language will be used to formalize the code
generation algorithm and to proof its correctness.

Chapter 2

Java-like sequential
programming language –
Japl

This chapter introduces a Java-like programming language which we will use
for further investigations. The intention is to provide a language that, on the
one hand, captures a reasonable subset of features many modern object-oriented
general-purpose programming languages like Java and C] have in common and
that, on the other hand, comes with a formal semantics which allows to reason
about the language.

Certainly there exist a couple of formal languages already aiming at Java
or Java-like languages. For instance, in [1] Abadi and Cardelli suggested a core
calculus for object-oriented languages. In addition they provide several extensions
and modifications that deal with certain language features. Their typed imperative
object calculus impς has been extended by Gordon and Hankin with concurrency
[31] and a modification of the concurrent object calculus in turn was extended
with classes in [5, 4], and in particular in [64]. The above mentioned calculi can
be considered as an object-oriented counter-part to the family of λ-calculi. In a
very concise way, they capture certain general features that almost all object-
oriented languages have in common. Although these approaches represent a very
good basis for investigating object-oriented languages in general, the (intended)
generalization has its price. For, the provided abstract syntax is quite different
from Java or C]. Hence, it is sometimes not easy to find a Java program that
corresponds to a given program of one of these object calculi and vice versa.
Moreover, some language features are considered as special cases of other features.
For example, in [1] there is no distinction between fields and methods which means
that not only fields but also methods can be updated. Again, aiming at object-
oriented languages in general, this represents an elegant unification. Since we
restrict our approach to C]-like and Java-like languages, however, this kind of

23

24 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

design decisions entails unnecessary complications.
However, there exist other approaches for capturing object-oriented languages

which are closer to Java. Two prominent examples are Featherweight Java (FJ)
[34] and Middleweight Java (MJ) [15]. The original FJ does not deal so much
with Java’s operational aspects but rather captures Java’s type system. Thus, it
is mainly used for investigating subtyping, inheritance, generics, and the like. MJ,
in contrast, can be seen as an extension of FJ with respect to many of Java’s
operational features most notably MJ introduces many imperative features.

The language that we propose here lies somewhere between FJ and MJ. In
particular, our language is class-based, i.e., a program basically consists of a set of
class definitions from which objects can be instantiated at runtime. Each object
comprises a set of fields (also known as instance variables) and a set of methods.
Objects are referenced by names which can be passed around giving rise to alias-
ing. The language is imperative, fields and variables allow for destructive updates.
Furthermore, recursive method calls are possible.

To simplify matters, we do not consider, however, subtyping and inheritance.
We will discuss these features and other possible extensions of the programming
language in Chapter 5. We also omit more specific concepts like interface defi-
nitions, anonymous classes, generics, delegations, and reflection. Furthermore, in
this part we focus on a sequential setting, that is, the language only allows for a
single-threaded flow of control.

The rest of this chapter is structured as follows. In the first three sections,
we will present the syntax, the type system, and, respectively, the operational
semantics of closed programs of our language. A closed program is a self-contained
entity in the sense that its possible behavior is completely determined by the given
program code. In Section 2.4, in contrast, we will extend the language with the
notion of components which will allow programs to contain references to classes
that are not defined within the program code but are assumed to be provided by
the program’s environment. Finally we will conclude this chapter by presenting our
testing approach in context of the new language and compare it with traditional
unit testing.

2.1 Syntax

The grammar of the Java-like programming language is given in Table 2.1. A
program consists of a list of global variables, a set of classes, and a main program
(or main body). Note, that due to simplicity, our language slightly differs from
Java already on the program level in two aspects: first, Java does not provide
a designated construct for specifying global variables but rather requires them
to be introduced by static fields. Second, in Java also the main program is not
represented by a special construct on the program level but is given by a static
method with a special name. However, to keep the language small and simple, we
omit static fields and methods. Adding special constructs also allows for a clearer
separation of concerns.

2.1. SYNTAX 25

p ::=T x; cldef {stmt ; return} program
cldef ::= class C{T f ; con mdef } class definition

con ::=C(T x){T x; stmt ; return} constructor
mdef ::=T m(T x){T x; stmt ; return e} meth. definition
stmt ::=x = e | x = e.m(e, . . . , e) | x = new C(e, . . . , e) statements

| f = e | ε | stmt ; stmt | {T x; stmt}
| while (e) {stmt} | if (e) {stmt} else {stmt}

e ::=x | f | null | this | op(e, . . . , e) expressions

Table 2.1: Simple Java-like language: syntax

The language is strongly typed, in the sense that the definitions of variables,
formal parameters, and methods always include a type. The set of possible types is
denoted by T . The details about the type system will be given in the next section.
Here it suffices to say that T comprises class names and additionally some base
types like Booleans and integer, if necessary.

We assume a number of meta-variables: C,D, . . . range over the set of class
names CNames; x, y, . . . range over the set of variables VNames; f ranges over the
set of field names FNames; and m ranges over the set of method names MNames.
To keep the definitions compact, we use C (or, respectively, f or cldef , . . .), for
the, possibly empty, sequence C1 . . . Cn. Similarly we use e for the comma-
separated sequence e1, . . . , en and T x; to abbreviate the sequence T1x1; . . . ;Tnxn.
In slight abuse of the sequence notation, we sometimes also use it within function
applications (or judgments) to denote the sequence or the set which results from
applying the function on each element of the original sequence.

A class is given by its name, its field declarations, exactly one constructor, and
a set of method definitions. Again, for simplicity we do not deal with subtyping
or inheritance here. We assume, furthermore, that all fields are private, i.e., every
object can directly access its own fields, only.1

Like in Java, both constructor and method definitions provide a list of formal
parameters as well as a body which in turn may introduce new local variables
and which ends with a return term. The return term of a method always includes
a return value (possibly the undefined reference null) whereas a constructor’s
return term never does. Consequently, the method definition is not only equipped
with a name but also with a return type. Note, that, as in Java, the name of the
constructor is always the name of the class itself.

A statement is either an assignment, the empty statement (denoted by ε), a
sequential composition, a block statement, a while-loop, or a conditional state-
ment. Only expressions can be assigned to fields. Variables can additionally be
updated by the result of a method or a constructor call.

An expression, finally, is either a variable, a field, the undefined reference null,

1Note that Java’s accessibility modifier private has a slightly different meaning.

26 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

the self reference this or a built-in operation. We do not deal with the details
of the built-in operations but we only assume them to exist and to be side-effect
free. Furthermore, we consider constants to be built-in operations with arity zero.

Remark 2.1.1 (Set notation): Although we write classes, fields, and method definitions
in a sequential way, their order has no meaning. Thus, we treat some constructs rather as
sets. In particular, we will sometimes use set operations like mdef ∈ mdef or fdef 1 ∪
fdef 2 or even cldef ∈ p.

We conclude this section with a small example program written in our lan-
guage. The program is given in Listing 2.1. It consists of a global variable, two
class definitions for binary trees, and a short main program. The first class Data is
used to represent some data. The second class BinTree represents the binary tree
structure. The main program first creates a data and a tree node object. The data
is stored in a locally and the tree node instance in the globally defined variable.
Afterwards another data and another tree node object are created, where the first
tree node is passed to the constructor of the second tree node building the left
branch of the new tree node.

2.2 Static semantics

Our programming language is statically typed. Thus, well-formedness of a pro-
gram implies that we can associate a type with each of the program’s variables
and names such that the type assignments are consistent with regards to certain
typing rules. We use type mappings, Γ and ∆, to denote these type assignments;
for instance Γ(x) either yields the type associated to variable x or is undefined.
The mapping Γ provides the typing information of names which only have a local
scope like variables and fields. It has a stack structure: appending a typed vari-
able x:T to an existing local mapping Γ, separated by a comma, creates a new
mapping equal to Γ but extended by the new x which might shadow a possibly
existing x in Γ.

In contrast, the mapping ∆ contains the typing information of globally ac-
cessible constructs, namely of classes. Also for global mappings, we express its
extension by appending typed names. However, the global mapping is not stack
structured, since all names of classes are assumed to be different, hence, we don’t
have to deal with shadowing.

To express well-typedness, we introduce two kinds of typing judgments. Well-
typedness of an expression e is denoted by a judgment of the following form:

Γ; ∆ ` e : T .

More precisely, the judgment states that, under the assumption of some type as-
signments given by Γ; ∆, the expression e is well-typed and, additionally, that e
itself is of type T . In this regard, the pair of type mappings Γ; ∆ represents an
assumption about the typed names provided by the environment of the expression
e and we will refer to it as a typing context. The second kind of typing judgments

2.2. STATIC SEMANTICS 27

Listing 2.1: Simple example: Binary tree
BinTree s ;

class Data {
Data () { return }

}

class BinTree {
BinTree lbranch ;
BinTree rbranch ;
Data value ;

BinTree (Data v , BinTree l , BinTree r) {
value = v ;
lbranch = l ; rbranch = r ;
return

}

BinTree ge tLe f t () { return lbranch ; }

BinTree getRight () { return rbranch ; }

Data getData () { return value ; }

BinTree setData (Data v) {
value = v ;
return this ;

}
}

{
{ Data v ;

v = new Data () ;
s = new BinTree (v , null , null) ;
v = new Data () ;
s = new BinTree (v , s , null)

} ;
return

}

28 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

is used for expressing well-typedness of entire programs and its syntactical con-
stituents up to statements. Well-typedness of such a code fragment s is denoted
by a judgment of the following form:

Γ; ∆ ` s : ok .

Note that, in contrast to expressions, s does not provide a type.
Finally, we use the typing judgments to formalize the typing rules of our

language. We provide the typing rules in the form of inference rules where each

[T-Prog]

Γ′ = Γ, x:T
∆′ = ∆, cltype(cldef) Γ′; ∆′ ` cldef : ok Γ′; ∆′ ` stmt : ok

Γ; ∆ ` T x; cldef {stmt ; return} : ok

[T-Class]
Γ′ = Γ, f :T , this:C Γ′; ∆ ` con : ok Γ′; ∆ ` mdef : ok

Γ; ∆ ` class C{T f ; con mdef } : ok

[T-Con]
Γ′ = Γ, x:T , x′:T ′ Γ′; ∆ ` stmt : ok

Γ; ∆ ` C (T x){T ′ x′; stmt ; return} : ok

[T-MDef]
Γ′ = Γ, x:T , x′:T ′ Γ′; ∆ ` stmt : ok Γ′; ∆ ` e : T

Γ; ∆ ` T m(T x){T ′ x′; stmt ; return e} : ok

[T-VUpd]
Γ; ∆ ` e : Γ(x)

Γ; ∆ ` x = e : ok
[T-FUpd]

Γ; ∆ ` e : Γ(f)

Γ; ∆ ` f = e : ok

[T-Call]
Γ; ∆ ` e : C Γ; ∆ ` e : ∆(C)(m).dom Γ; ∆ ` x : ∆(C)(m).ran

Γ; ∆ ` x = e.m(e) : ok

[T-New]
Γ; ∆ ` x : C Γ; ∆ ` e : ∆(C)(m).dom

Γ; ∆ ` new x = C(e) : ok

[T-Seq]
Γ; ∆ ` stmt1 : ok Γ; ∆ ` stmt2 : ok

Γ; ∆ ` stmt1; stmt2 : ok

[T-Block]
Γ, x:T ; ∆ ` stmt : ok

Γ; ∆ ` {T x; stmt} : ok

[T-While]
Γ; ∆ ` e : bool Γ; ∆ ` stmt : ok

Γ; ∆ ` while (e) {stmt} : ok

[T-Cond]
Γ; ∆ ` e : bool Γ; ∆ ` stmt1 : ok Γ; ∆ ` stmt2 : ok

Γ; ∆ ` if (e) {stmt1} else {stmt2} : ok

Table 2.2: Simple Java-like language: type system (program parts up to stmts)

2.2. STATIC SEMANTICS 29

rule’s conclusion consists of a specific judgment. If an instance of a typing rule is
derivable then the corresponding code fragment in the conclusion is well-typed.

Before we introduce the typing rules, we make up for the missing definition of
the types T .
Definition 2.2.1 (Types): The set of types T of the programming language is given by
means of the following grammar:

T ::= U | (MNames ∪ CNames) ⇀ (U × . . .× U → U)
U ::= C | bool | B

Thus, the set of types comprises class names, class types, a Boolean type and,
if necessary , some additional base types B. Class names are used as types for
objects whereas classes are typed with regards to their provided interface: a class
type T is a partial function that maps each of the class’ method and constructor
name to a pair consisting of the parameter types and the return type. For methods
m of the corresponding class, we will use T (m).ran and T (m).dom to denote the
projection onto the first and, respectively, onto the second element of the pair,
i.e., on the method’s parameter types and, correspondingly, its return type. We
use the same notation for the constructor name C of the class, where T (C).ran
always equals C.

Let us now discuss the typing rules in detail. Table 2.2 deals with the typ-
ing rules for programs and their syntactical constituents up to statements. Rule
T-Prog stipulates that a program is well-typed if its class definitions and its main
statement are well-typed. The set of premises representing the type checks of the
class definitions is subsumed by using the sequence notation. The assumed typing
contexts of both, the class definitions and the main statement, are enriched by the
typed global variables and classes. Note, in order to carry out the class definitions’
type-checks it is necessary to extend the type context by all class types already,
as the method bodies might contain references to program classes. To this end,
the type of a class is determined by the auxiliary function cltype(cldef) which
extracts the type from the class definition’s signature. It is defined as follows:

cltype(class C{ T f ; con mdef }) def= (C:fC) , with

fC : (MNames ∪ CNames) ⇀ (U × . . .× U → U);

n 7→

{
(T ,C) if n = C and C(T x){T ′ x′; stmt ; return} ∈ mdef
(T , T) if n = m and T m(T x){T ′ x′; stmt ; return e} ∈ mdef

We assume that all method names of a class are distinct and that no method
has the name of its class. This ensures that the function cltype is well-defined.

Rule T-Class deals with well-typedness of a class. A class is well-typed if
its constructor and method definitions are well-typed. The type context of the
constructor and method type-checks are enriched by the fields defined within the

30 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

[T-Var]
Γ(x) = T

Γ; ∆ ` x : T
[T-Field]

Γ(f) = T

Γ; ∆ ` f : T

[T-Null] Γ; ∆ ` null : C [T-This]
Γ(this) = C

Γ; ∆ ` this : C

[T-Op]
Γ; ∆ ` e : dom(∆(op)) ran(∆(op)) = T

Γ; ∆ ` op(e) : T

Table 2.3: Simple Java-like language: type system (exprs)

class as well as by the special name this, typed by the corresponding class, since
this can be used for self references within the constructor and method bodies.

According to the rules T-Con and T-MDef, a constructor as well as a method
definition is well-typed if the body statement is well-typed assuming a type context
that is extended by the local variables and the formal parameters. For methods
additionally the type of the returned expression is checked.

Regarding all the variants of assignments, we have to check that the left-
hand side and the right-hand side of the equals sign are of the same type. As for
method and constructor calls we additionally have to check the types of the actual
parameters. The parameter checks are expressed in slight abuse of the sequence
notation: the elements of the parameter sequence and the elements of the method’s
parameter type tuple are matched concerning their order, such that each pair gives
rise to a corresponding typing judgment. In particular, both sequences have to be
of the same length. The typing rule for constructor calls (T-New) stipulates that
objects are typed by the name of their class.

A sequence of statements is well-typed if each sub-statement is well-typed.
Similarly, a block statement is well-typed if its body statement is well-typed where
the local typing context is extended by the new variables declared by the block
statement.

While statements and conditional statements are well-typed if their sub-state-
ments are well-typed and if their conditional expressions are Boolean expressions.

Table 2.3 deals with the typing of expressions. Types of variables, fields and
this can be directly looked up in the local type context Γ. The empty reference
null is of any class name type. As for the built-in operations, we assume a typing
to be already included in the global context ∆. Applications of these operations
are only well-typed if the actual parameters conform to the domain type of the
operation. If so, the application is of the range type of the operation.
Definition 2.2.2 (Well-typedness): A program p is well-typed if there exist a type map-
ping ∆ such that the judgment

; ∆ ` p : ok

is derivable by means of the deduction rules given in Table 2.2 and 2.3. In particular,

2.3. OPERATIONAL SEMANTICS 31

the deduction starts with an empty local type mapping. Therefore, well-typedness of a
program p regarding a certain type context ∆ is denoted by

∆ ` p : ok .

2.3 Operational semantics

Operational semantics [59] is a way to express the meaning of a programming
language: for each language construct, the effect of its execution on an abstract
machine is formalized. The operational semantics of our language will be given in
form of a small-step semantics. This kind of semantics is based on the idea that
a program execution is considered as a sequence of indivisible steps that manifest
themselves in form of changes in the program’s configuration. The small-step
semantics stipulates what kind of changes may happen in a certain situation. It is
often represented by a transition relation which in turn is described by an inference
system where the conclusion of each inference rule determines a (parameterized)
transition between two configurations. The concept of using an inference system to
describe the computation step, also called structural operational semantics, goes
back to Plotkin [56]. Before we take a closer look at the operational semantics’
transition rules let us first discuss the constituents of a program configuration.
A program configuration (h, v,CS) is a triple consisting of the current state of
the heap h, the global variables v, and the call stack CS. The details about the
elements of a program configuration are given in the following definition.
Definition 2.3.1 (Configuration): Let the set of all possible values be denoted by Val
including null as the semantical representation for null. We use partial functions from
field names to values to represent the state of an object. More specifically, an object
consists of the value of its fields and a reference to its class. Thus, we define

Obj def= CNames × F with F
def= FNames ⇀ Val

as the set of all possible objects. For an object o ∈ Obj we use o.class and o.fields to
denote the projection onto the first or, respectively, the second element of the pair.

Let N be the set of object names. The heap is represented by a partial function from
object names to objects. We use

H
def= N ⇀ Obj

to denote the set of heaps.

Let V
def= VNames ⇀ Val be the set of variable functions, i.e., partial functions from

variables to values. The state of a program’s global variables is represented by an element
v of V.

The call stack consists of a list of activation records each capturing the local variables
as well as the code fragment of a method instance that still has to be executed. More
precisely, an activation record’s code fragment is of the form:

mc ::= stmtx; mc | return [e],

32 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

where the square brackets denote optional terms. The non-terminal stmtx represents an
extension of the non-terminal stmt given in Table 2.1 in that it includes a new auxiliary
statement BE which is needed for a proper processing of block statements. The details
will be explained later. If a method is about to return the control back to the method’s
callee then the corresponding method fragment of the activation record consists of the
return term only. Moreover, the very first activation record might represent the execution
of the main body, which explains the square brackets around the return expression (as the
main body does not return a value).

The state of the local variables of a method instance is given by a list of variable
functions µ. Each variable function v of that list represents the state of the variables of a
single block statement. Additionally, the local variable function list of a method instance
always includes a variable function for the method’s parameters, which is the empty
function v⊥ if the method does not provide any parameter:

µ ::= v·µ | ε.

For the time being, we can distinguish two kinds of activation records. The top-most
activation record of a call stack represents the method instance which is currently active,
i.e., which is in fact currently in execution. These activation records are always of the
form:

ARa ::= (µ,mc).

All other activation records within a call stack represent method or constructor instances
which haven’t finished their execution but which have called another method or con-
structor that hasn’t returned yet. Thus, the calling method instance is blocked waiting for
the return value of the called method or constructor. These activation records carry an
auxiliary statement in front of the actual code fragment:

ARb ::= (µ, rcv x; mc).

The receive statement is accompanied by the variable that is to be updated by the return
value of the called method or constructor.

Finally, we can give a definition for the call stack:

CSa ::= ARa ◦CSb

CSb ::= ARb ◦CSb | ε
CS ::= CSa

The set Conf is the set of all configurations, i.e.

Conf def= H× V × CS.

Before we discuss the transition rules of the operational semantics we intro-
duce some auxiliary functions. The first group of auxiliary functions deals with
evaluating and updating the variables of a program. The definitions are given in
Table 2.4. The function evalm looks up the value of a variable accessible within

2.3. OPERATIONAL SEMANTICS 33

evalm(v · µ, x) def=

{
v(x) if x ∈ dom(v)
evalm(µ, x) otherwise

eval(v, µ, x) def= evalm(µ · v, x)

vupdm(v · µ, x 7→ v) def=

{
v[x 7→ v] · µ if x ∈ dom(v)
v · vupdm(µ, x 7→ v) otherwise

vupd(v, µ, x 7→ v) def= (v′, µ′)
where µ′ · v′ = vupdm(µ · v, x 7→ v)

Table 2.4: Variable evaluation

a method instance. Following the structure of the nested scopes of the local vari-
ables, evalm recursively walks through the list of variable functions and returns
the first defined value of the variable. The function eval evaluates a variable in
the context of, both, a global variable function and the local variable function
list. To this end, it appends the global variable function to the local variable func-
tion list, and passes the result as input parameter to evalm. This way, the local
variable context is extended by the global variables while respecting the possible
shadowing effect by some local variables.

Similarly, we introduce two functions for updating the variable state. The first
function vupdm takes a local variable function list as well as a variable-value pair
and updates the first variable function within the list which defines a value for
this variable. The second function vupd updates a variable of a program by, again,
extending the local variable function list with the global variables and applying
vupdm. Then it takes the result and separates the global variables from the local
variable list again, in order to return the updated variable pair.

The variable evaluation functions are used in the definition of the semantics

[[x]]v,µh
def= eval(v, µ, x)

[[this]]v,µh
def= eval(v, µ, this)

[[f]]v,µh
def= F(f) with (C,F) = h(eval(v, µ, this))

[[null]]v,µh
def= null

[[op(e)]]v,µh
def= op([[e]]v,µh)

Table 2.5: Expression evaluation

34 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

of expressions in Table 2.5. For each expression the semantics either is undefined
or yields an element of Val depending on a given heap h and variable context
represented by the global variable function v and a local variable function list µ.
The evaluation of a variable and the self reference this is realized by just applying
the aforementioned evaluation function. A field is evaluated by looking up the
value of the self reference this which, in turn, is used to get the corresponding
object; then the object’s field function yields the desired value. The keyword null
and the built-in operations are evaluated to their semantic representations. Note
that the semantical representation null of the keyword null must not be an object
name, i.e., we require null 6∈ N .

The last group of auxiliary notations, given in Table 2.6, are simple functions

classesp
def
= {C1, . . . , Ck}

where

p = T x; class C1{. . .} . . . class Ck{. . .} {stmt ; return}

fieldsp(C)
def
= T f

where class C{T f ; con mdef } ∈ p

cbodyp(C)
def
= stmt ;

cparamsp(C)
def
= T x

cvarsp(C)
def
= T ′ x′

where class C{T f ; con mdef } ∈ p
and con = C(T x){T ′ x′; stmt ; return}

mbodyp(C,m)
def
= stmt ; return e

mparamsp(C,m)
def
= T x

mvarsp(C,m)
def
= T ′ x′

where class C{T f ; con mdef } ∈ p

and C′ m(T x){T ′ x′; stmt ; return e} ∈ mdef

ObjCp⊥
def
= (C,F) with dom(F)

def
= {f1, . . . , fk} and

F(fi)
def
= ival(Ti) for all, 1 ≤ i ≤ k

where T1 f1; . . . ; Tk fk = fieldsp(C)

Table 2.6: Auxiliary notations

2.3. OPERATIONAL SEMANTICS 35

that extract certain syntactical fragments of a given program. They are used in the
definition of the operational semantics to keep the notation clear and concise. All
functions have in common that they expect a well-formed program p as argument
written as an index of each function. The function classes yields the set of class
names defined in the program. Similarly, the functions fields yields the sequence of
field names of a given class along with their types. The functions cbody , cparams,
and cvars return the body of a class’ constructor, its parameters, and its local
variables, respectively. The functions mbody ,mparams, and mvars do the same
for methods. Note that the body of a method but not the body of a constructor
includes the return term. The function ObjCp⊥ returns an object of class C where
all the fields declared within C are set to the initial value of the corresponding
type. We assume that for each base type T of our language there exists a certain
constant, ival(T), of type T which represents the initial value for variables of that
type. In particular, we assume ival(bool) def= false, ival(int) def= 0, and ival(C) def=
null for all class names C. Whenever we will use these auxiliary functions in the
following, the considered program p will always be clear from the context, such
that we will leave out the index notation.

The transition rules of the operational semantics are given in Table 2.7. Most of
the rules share the same pattern. The leftmost statement of the topmost activation
record is reduced which might cause a change of the heap and/or the values of
the variables. Some of the rules can only be applied under certain conditions,
represented by corresponding premises. The rule Ass deals with the assignment
to a variable by merely updating the variable state. The rule FUpd updates a
field. To this end, it looks up the object name currently stored in this. The
name is used to get the corresponding object in the heap and to update its field
function. The updated object in turn is used to update the heap. For functions
f we use the notation f [x 7→ y] to denote a new function f ′ which is identical to
f for all z ∈ dom(f) \ {x} but which additionally maps x to y. Note, that this
means either an extension of the original domain of f by the new element x or a
modification of the image of x.

The rule Call extends the call stack by a new activation record consisting of
the method body of the called method as well as of a new variable function. The
variable function assigns the callee object name to this, the actual parameters
to the formal parameters and it initializes the local variables. Moreover, the rule
adds an auxiliary statement rcv x to the activation record of the calling method.
After returning from the called method, this statement determines the variable
which is to be updated by the return value. Note, that our language does not
support the notion of exceptions. Thus, a method call whose callee expression
evaluates to null gets stuck, as null is never part of the domain of the heap.

Processing a constructor call resembles very much the method call, but we
have to add a new initial object to the heap and associate it to an object name
which is not already in use. Moreover, we do not only copy the constructor body to
the new activation record but we also add a return term with a return expression
that yields the new object.

36 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

[Ass]
(v′, µ′) = vupd(v, µ, x 7→ [[e]]v,µh)

(h, v, (µ, x = e; mc) ◦CSb) (h, v′, (µ′,mc) ◦CSb)

[FUpd]
o = [[this]]v,µh (C,F) = h(o) h′ = h[o 7→ (C,F[f 7→ [[e]]v,µh])]

(h, v, (µ, f = e; mc) ◦CSb) (h′, v, (µ,mc) ◦CSb)

[Call]

o = [[e]]v,µh C = h(o).class T x = mparams(C,m) Tl xl = mvars(C,m)
vl = {this 7→ o, x 7→ [[e]]v,µh , xl 7→ ival(Tl)}

(h, v, (µ, x = e.m(e); mc) ◦CSb) (h, v, (vl,mbody(C,m)) ◦ (µ, rcv x; mc) ◦CSb)

[New]

o ∈ N \ dom(h) h′ = h[o 7→ ObjC⊥] T x = cparams(C) Tl xl = cvars(C)
vl = {this 7→ o, x 7→ [[e]]v,µh , xl 7→ ival(Tl)}

(h, v, (µ, x = new C(e); mc) ◦CSb)
(h′, v, (vl, cbody(C); return this) ◦ (µ, rcv x; mc) ◦CSb)

[BlkBeg]
vl = {x 7→ ival(T)}

(h, v, (µ, {T x; stmt}; mc) ◦CSb) (h, v, (vl·µ, stmt ; BE mc) ◦CSb)

[BlkEnd] (h, v, (vl·µ, BE mc) ◦CSb) (h, v, (µ,mc) ◦CSb)

[Whl1]
[[e]]v,µh

(h, v, (µ, while (e) {stmt}; mc) ◦CSb) (h, v, (µ, stmt ; while (e) {stmt}; mc) ◦CSb)

[Whl2]
¬[[e]]v,µh

(h, v, (µ, while (e) {stmt}; mc) ◦CSb) (h, v, (µ,mc) ◦CSb)

[Cond1]
[[e]]v,µh

(h, v, (µ, if (e) {stmt1} else {stmt2}; mc) ◦CSb) (h, v, (µ, stmt1; mc) ◦CSb)

[Cond2]
¬[[e]]v,µh

(h, v, (µ, if (e) {stmt1} else {stmt2}; mc) ◦CSb) (h, v, (µ, stmt2; mc) ◦CSb)

[Ret]
(v′, µ′2) = vupd(v, µ2, x 7→ [[e]]v,µ2

h)

(h, v, (µ1, return e) ◦ (µ2, rcv x; mc) ◦CSb) (h, v′, (µ′2,mc) ◦CSb)

Table 2.7: Simple Java-like language: operational semantics

The rules BlkBeg and BlkEnd deal with the introduction and removal of
block variable functions due to a block statement. The rule BlkBeg does not
only add a new variable function to the variable function list of the top most
activation record but in the code of the record it also puts an auxiliary symbol
(BE) at the end of the block statement, in order to mark the end of the block’s
scope. Then the counterpart of BlkBeg, namely BlkEnd, removes BE and its
associated variables function when it is the topmost statement.

2.4. EXTENSION BY COMPONENTS: THE JAPL LANGUAGE 37

The while-loop is processed by either removing the while-loop from the active
activation record or by extending it with a copy of the while-loop’s body state-
ment – depending on the evaluation of the while-loop’s condition expression. In a
similarly straightforward manner, the conditional statement is reduced to one of
its sub-statements.

The Ret rule is applied when the topmost activation record consists of a return
term, only. The record as well as the receive statement of the calling activation
record is removed such that the calling record becomes the topmost active record.
Moreover, the caller’s local variable list and the global variable list is updated by
the return value.
Remark 2.3.2: Some rules of the operational semantics depend on the program code.
Rule CALL, for instance, extends the call stack by the method body of the callee class.
Thus, the transition rules are to be understood in context of a given program p and con-
sequently the transition arrow should be annotated by the program: p. In most cases,
however, we omit the annotation.
Definition 2.3.3 (Program execution): Let

p ≡ T x; cldef {stmt ; return}

be a syntactically correct and well-typed program of our language. A program execution
of p is a finite sequence of reduction steps starting from the initial configuration of the
program

cinit(p)
def= (h⊥, {x 7→ ival(T)}, (v⊥, stmt ; return)),

where h⊥ denotes the empty heap and v⊥ the empty local variable function. That is, both
functions are completely undefined.

If we are interested neither in the exact length of a finite reduction sequence nor in its
intermediate configurations we use a transition arrow annotated with the Kleene star,

cinit(p) ∗ c,

expressing that there exists a finite sequence of reduction steps from the initial configura-
tion to the configuration c or that both configurations are identical. In other words, we use
the Kleene star annotation to refer to the reflexive and transitive closure of the semantics
transition relation. If the call stack of c consists only of the last return statement of the
main body, then we call c a terminal configuration. If otherwise c cannot be reduced any
further, we call the configuration faulty.

2.4 Extension by components: the Japl language

As mentioned in the introduction, the basic idea for unit or component testing
is to test the component in isolation. The production code that represents the
environment of the component is replaced by some test code which investigates
the component by interacting with it. Since we aim at a model-driven component
testing approach where component tests are usually derived from formal, hence

38 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

rather abstract, specifications, we are in particular interested in testing techniques
where a test does not rely on or aim at implementation details of the component
but where a test only deals with the component’s effects on its environment.
In order to investigate the means by which a component might have an effect
on its environment, we extend our Java-like language with constructs that allow
for discriminating component and environment code. This is done by integrating
a notion of components into our language. A component is basically a set of
classes. Classes of one component can be imported by another component (or by
the program). A crucial point is here that importing a class is not realized by
importing the code of the class definition. Instead, we formalize the operational
semantics of a program in absence of the code of imported classes. This enables
us to identify the most general characterization of a component’s influence on its
environment, only assuming the interfaces of its classes.

In this section we will extend the Java-like language with the notion of com-
ponents. The extended language will be used in subsequent chapters where we
will refer to it as the Japl programming language. Conceptually, Japl supports
components, in that it allows programs to import externally defined classes. This
means, a program might instantiate and call methods of classes which are not part
of the program’s code but are assumed to exist in some other component. While
the entailed syntax and typing modifications are quite simple, the operational
semantics has to be given in form of an open semantics. In other words, we have
to formulate the operational semantics without the code of the externally defined
classes. The section is followed by a formal description of our testing approach
given in context of our extended language.

2.4.1 Syntax

The extension of the syntax is very simple and straightforward, as can be seen in
Table 2.8. We merely add a construct for declaring imported classes which intro-
duces the name of the class only. For the sake of simplicity we do not introduce
name spaces, but instead we assume that the names of all imported and all locally
defined classes are different. The grammar introduces a new non-terminal symbol
p′ which replaces p of the former grammar. An element of p′ is called a compo-
nent. Thus, the program does not only import classes of other components but it
constitutes a component itself. In particular, all components contain a main body.
This is again due to simplicity, because otherwise we would have to differentiate
components and programs (and in this case only component classes could be im-
ported but a component could not import a program class). However, we will see
in the operational semantics that only the main body of one single component is in
execution.2 In the following we will use the word program in order to refer to the
component whose code is given and processed in the operational semantics. Note

2Assuming that each component provides its own main body is comparable to the widely
used technique to equip a Java package with a static main method allowing for the stand-alone
execution of the package due to testing or demonstration purposes.

2.4. EXTENSION BY COMPONENTS: THE JAPL LANGUAGE 39

external component classprogram
se

m
an

tic
s'

 s
co

pe import D;

class C1 {
 C1() { stmt; return }
 D(int x) { D y; stmt; return y }
 ...
}

...

class Cn { ... }

{ stmt; return }

class D : {
 D: int → D;
 meth int*int → bool;
 ...
}

Implementation y

import E;

class D {
 D(int x) { ... }
 bool(int x, int y) { ... }
 ...
}

...

{ stmt; return }

Several possible
implementations

Figure 2.1: Notion of component

that this doesn’t necessarily mean that the main body of the program is executed,
but maybe only the code of its classes is subject of the operational semantics. The
program (component) might use classes of some external components. However,
if the context is clear or if we don’t want to be specific we sometimes speak only
of components. The notion of components is depicted in Figure 2.1. It shows a
program which defines classes C1 to Cn as well as a main body and it additionally
imports another class D from an unspecified external component. Thus, executing
the given program, the operational semantics does not know the implementation
but only the type of D.

p′ ::= impdecl ; p program/component
impdecl ::= import C import

Table 2.8: Japl language : syntax

40 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

[T-Prog’]

Γ′ = Γ, x:T Θ = cltype(cldef)

Γ; ∆ ` impdecl : ok Γ′; ∆,Θ ` cldef : ok Γ′; ∆,Θ ` stmt : ok

Γ; ∆ ` impdecl ; T x; cldef {stmt ; return} : Θ

[T-Import]
C ∈ dom(∆)

Γ; ∆ ` import C : ok

Table 2.9: Japl language: type system (stmts)

2.4.2 Static Semantics

We want to allow “cross-importing”, i.e., components should be able to mutually
import their classes. To this end, we have to reformulate the typing judgment
on the program/component level such that it does not just state the program’s
well-typedness but it also explicitly mentions the program’s classes committed to
its environment in terms of a type mapping Θ. Moreover, we require that the
assumed type context ∆ of a program’s type check already includes the types of
the imported (assumed) classes. In other words, a program is now type-checked in
an assumption-commitment context as it can be seen in typing rule T-Prog’ in
Table 2.9. This is closely related to the required and provided interfaces in UML
compoment diagrams[65].

Finally, we have to add a new rule for the import construct. However, since
the import construct only mentions the name of the class but no further typing
information, we only have to check whether the imported class name is in the
domain of ∆. All other rules of Table 2.2 and Table 2.3 remain the same.

As open programs are now typed in an assumption-commitment context, we
have to reformulate the well-typedness definition for program.

Definition 2.4.1 (Well-typedness): An open program p′ is well-typed if there exist type
mappings Θ and ∆ such that the judgment

; ∆ ` p′ : Θ

is derivable. Similar to Definition 2.2.2, we demand an empty local type context for p.
Therefore, well-typedness of a program p regarding the assumption-commitment context
∆,Θ is denoted by

∆ ` p′ : Θ .

Remark 2.4.2 (Accessibility of global variables): The global variables of a component
are not “published” in the component’s commitment context. The important consequence
is that global variables of a component are not accessible by other components but they
are always global with respect to the defining component, only.

2.4. EXTENSION BY COMPONENTS: THE JAPL LANGUAGE 41

2.4.3 Operational Semantics

The introduction of the import construct leads to an under-specification of the
program: only the names and the types of the imported classes are given but not
the code. The consequence is that the semantics definition of a component now
consists of two parts. The first part, called internal semantics, deals with internal
computations only, i.e., computations which are completely independent of the
imported classes but solely determined by the program’s code. This part is given
in form of a transition semantics which is almost identical to the one already given
in Table 2.7. We only add a premise in rule Call and in rule New which ensures
that the called method or constructor, respectively, indeed belongs to a class of
the given program code. As for rule New, this additional check is very simple,
since the class name itself is part of the new statement. As for the method call,
we have to find out, if the callee object, named o, is an instance of a program
class. We will see later, however, that the heap function stores information about
objects of program classes, only. Therefore, the check can be easily realized by
adding the premise o ∈ dom(h).3

Labeled transition system. The second part of the operational semantics is
called external semantics. It deals with computation steps that involve an (in-
stance of an) external class. These steps must be handled differently as we do
not have the code of the external classes: if, for example, the program calls a
method of an external class, then we cannot use rule Call, because lacking the
method’s code we cannot copy its body on the call stack in order to execute it
afterwards. Instead, due to synchronous message passing, no further internal com-
putations are possible right after the corresponding transition has been taken, as
the transition gives away the control to an external component. We call this kind
of transitions outgoing communication or computation steps. Right after an out-
going computation step, no transition can be taken unless it involves the return
of the control back to the program. Generally speaking, we call transitions that
entail the transition of control from an external component to the program incom-
ing communication or incoming computation steps. In our method call example
such an incoming communication could be either an immediate return from the
called method of the external component or a call of a method of the program.
Intuitively speaking, outgoing communication is due to a program statement, in-
coming communication is caused by an external component.

The external semantics is formalized by a labeled transition system, that is, a
transition system where each transition is annotated with a label. Each transition
of the external semantics represents an interface communication, i.e., a commu-
nication between the program and an external component and the transition’s
label holds the details about this communication. We have already seen that the

3In fact, it is not even necessary to add these checks, as h(o).class in rule Call and
cparams(C) in rule New are anyway undefined for an external object o, and, resp., class C.
Adding the premises though makes the requirement more explicit.

42 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

different kinds of interface communications can be divided up into two groups.
On the one hand, outgoing communications are provoked by the program giv-
ing the control to the external component. There exist three constructs in the
programming language that may cause a hand-over of the control:

• a method call of an instance of an imported class,

• a constructor call of an imported class, and

• a return from a program method that was previously called by an external
component.

To indicate the outgoing character, the transition labels of these communications
are decorated with an exclamation mark (!). On the other hand, there are three
possible kinds of communication that pass the control from an external component
on to the program:

• a method call of an instance of a program class,

• a constructor call of a program class, and

• a return from a method of an imported class which was previously called
by the program.

The labels of these incoming communication steps are decorated with a question
mark (?). Summarizing, the possible interface interactions are method calls and
returns as well as constructor call and returns which are either outgoing or in-
coming. Additionally, for each interface communication we explicitly have to point
out the involved object names which pass the interface for the first time during
the program execution. To this end, each communication label that propagates
new names is equipped with a ν-binder indicating the new names introduced by
the label. In particular, the ν-binder provides these names in terms of a type
mapping Θ, since we are also interested in their types. The reason for this will
be given later. Thus, the set of communication, or transition, labels a is given by
the following grammar:

a ::= γ? | γ!
γ ::= 〈call o.m(v, . . . , v)〉 | 〈new C(v, . . . , v)〉 | 〈return (v)〉 | ν(Θ).γ,

where o ∈ N , v ∈ Vals, and Θ is a type mapping.

Restrictions due to realizability. The outgoing method call example above
has shown, that the exact reaction of the external component is not determined;
in general it is not known whether the component immediately returns a value
or calls back a program method. Apart from the types, the program also has
no control on the values that are involved in an incoming communication. In

2.4. EXTENSION BY COMPONENTS: THE JAPL LANGUAGE 43

fact, this is why we need a labeled transition system to formalize the external
semantics: the details about an incoming communication cannot be deduced from
the program code but are introduced by the communication label. More generally
speaking, regarding incoming communications, the operational semantics is non-
deterministic – although the programming language Japl in itself is deterministic.
Despite the absence of the code of the external components, however we want to
restrict the non-determinism of the operational semantics such that we exclude
incoming communication which could not be carried out by any component that
is written in our language Japl. This entails a number of requirements which have
an influence on the structure of the transition rules:

well-typedness: Since Japl is strongly typed, a valid program written in Japl
could never implement a wrongly typed method or constructor call. This
fact implies a dual requirement for communication imposed by an external
component. Specifically, the semantics shall only permit incoming calls of
methods and constructors that are indeed provided by the program code.
This requirement is often phrased as “no message-not-understood error”.
Also the number and the types of the incoming call’s actual parameters
must comply with the method or, respectively, constructor definition.

Likewise, the typing rules of our language ensure that the return value pro-
vided by a method body is always of the return type stipulated in the
method’s signature. Again, the dual requirement is that the semantics has
to exclude wrongly-typed incoming return values.

consistent information flow: Components do not share variables but values
can only be communicated between two components via method or con-
structor calls (and its corresponding returns). In particular, a component
can only use an object if either it is an instance of one of the component’s
own classes or if the class-providing component has previously passed the
corresponding object name in context of a method or constructor call be-
tween the two components. Thus, the external semantics has to ensure that
an incoming communication may mention an object name of a program class
only if previously the program has passed the name to the component by
means of an outgoing communication.

consistent control flow: We have explained that an outgoing communication
disables the reduction of the program unless an incoming communication
occurs. Dually, the external semantics may only allow an incoming commu-
nication if the external component indeed has the control at that moment.

balance: The syntax definition of our language allows a return term only to
appear exactly once at the very end of method and constructor bodies.
That is, the execution of such return term is always preceded by a call of
the corresponding method or constructor. For the external semantics, this
means that an incoming return may only happen, if previously a matching
outgoing call was invoked.

44 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

To meet the first two requirements, transitions of the external semantics are
formalized in an assumption-commitment context, similar to the program’s typing
judgments of the static semantics. In the external semantics, however, the contexts
also have a dynamic aspect, in the sense that the commitment context Θ does
not only include the committed class names but also the names of their instances
that have been passed on to the component during the execution of the program.
Dually, the assumption context ∆ consists of the component’s class and object
names passed on to the program. Thus, transitions representing computation steps
of the external semantics will follow the following scheme:

∆ ` c : Θ a−→ ∆′ ` c′ : Θ′,

where a is the label describing the communication and c is the configuration of
the program prior to the transition. We used primed versions of ∆,Θ , and c in
the transition scheme to indicate that the configuration as well as the context
might change due to the transition. In particular, since the name contexts, Θ and
∆, keep track of the object names that passed the interface, each transition of
the external semantics causes an extension of the context by exactly the names
that are mentioned in the ν-binder of the transition’s communication label. The
transition rules of the external semantics are again formalized in terms of a de-
duction system where the conclusion of each rule consists of a transition scheme.
Moreover, most of the rules are equipped with some premises defining the rule’s
application condition. In particular, we have to add certain premises to meet the
realizability requirements regarding incoming communication.

To ensure a consistent information flow, the transition rules for incoming com-
munication require that each object name mentioned in the call or return, respec-
tively, is either included in the commitment context, in the assumption context
or in the name context of the communication label’s ν-binder. The first two cases
indicate that the program and the component have communicated the object ear-
lier already; the third case represents the situation where the object name shows
up at the interface for the first time. Since all names in the contexts are also ac-
companied by their types, the contexts can be used the check for well-typedness
as well. To keep the definition of the external semantics concise we encapsulate
the type and information flow check in an auxiliary notation of the following form:

∆ ` a : Θ,

which expresses that, within a context represented by ∆ and Θ, the computation
step represented by a conforms to well-typedness and a consistent information
flow. The definition is given in Table 2.10. The rule T-CallI deals with the type
and information flow check of a label that represent an incoming method call. This
is basically carried out by the premises of the first row: the first premise states
that the callee object is indeed an object of the program; the second and the third
premise ensure the existence of the method within the callee class as well as the
well-typedness of the actual parameters. Since we use the name contexts for the
type check we ensure at the same time that all object names of the communication

2.4. EXTENSION BY COMPONENTS: THE JAPL LANGUAGE 45

[T-CallI]

C = Θ(o) T = Θ(C)(m).dom Θ,∆,∆′ ` v:T
dom(∆′) ⊥ dom(∆,Θ) dom(∆′) ⊆ v

∆ ` ν(∆′).〈call o.m(v)〉? : Θ

[T-NewI]

Θ(C)(C).dom = T Θ,∆,∆′ ` v:T
dom(∆′) ⊥ dom(∆,Θ) dom(∆′) ⊆ v

∆ ` ν(∆′).〈new C(v)〉? : Θ

[T-RetI]
dom(∆′) ⊥ dom(∆,Θ) dom(∆′) ⊆ v

∆ ` ν(∆′).〈return(v)〉? : Θ

Table 2.10: Label check for incoming communication

label are mentioned in one of the name contexts, hence, a consistent information
flow is assured. The premises of the second row check for well-formedness of the
ν-bound name context ∆′: first, the names which are claimed to pass the interface
for the first time, must not be included in ∆ or Θ. We use ⊥ to express that two
sets are disjunct. Second, the name context ∆′ must not include more names than
actually communicated by this interface communication.

The rule T-NewI deals with an incoming constructor call and follows the
scheme of rule T-CallI. However, we need not to look up the name of the invoked
class. Finally, the check of an incoming return label even only consists of the well-
formdness check of the ν-bound name context.

Configurations. We have learned that extending the language with the notion
of components leads to a new kind of method (and constructor) calls: besides
internal calls, where caller and callee belong to the same component, we now
also have external (or cross-border) calls, where caller and callee sit in different
components. With respect to the configurations of a program, this means, we also
have to introduce a second receive statement enabling us to distinguish activation
records that are blocked due to an internal call from activation records that are
blocked due to an external call. More precisely, regarding internal calls we keep
using the receive statement that we have introduced previously. As for the external
calls we use a similar receive statement but which is additionally annotated with
the return type of the expected return value. Thus, we now have three types of
activation records:

ARa ::= (µ,mc) ARib ::= (µ, rcv x; mc) AReb ::= (µ, rcv x:T ; mc).

For the sake of convenience we will also use AR for activation records in general
and ARb for internally or externally blocked activation record. Moreover, we will
use ARi for ARa and ARib records, i.e., for activation records whose next upcoming
reduction will be due to an internal step.

46 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

We redefine the call stack structure of configurations of components:

CSa ::= ARa ◦CSb CSb ::= CSib | CSeb

CSeb ::= AReb ◦CSb | ε CSib ::= ARib ◦CSb

CS ::= CSa | CSeb

Contrary to the call stack of a closed program, a call stack of an open program
does not necessarily have an active activation record on top but the call stack can
also be externally blocked due to an outgoing call. Note that externally blocked
call stacks also include the empty call stack. The reason is that in some cases not
the main body of the program but the main body of an external component is
executed. Then, for instance at the very beginning of the execution, we start with
a configuration that entails an empty call stack.

Furthermore, we introduce the notion of well-typedness of configurations. Sim-
ilar to the typing judgments of open programs, well-typedness of a configuration
is expressed by writing the configuration in an assumption-commitment context
consisting of type mappings ∆ and Θ. Before we present the definition for well-
typed configurations, we define the free variables of activation record code.
Definition 2.4.3 (Free variables): Assume code mc of an activation record. The expres-
sion fvars(mc) denotes the set of free variables within mc. The function fvars is given
for activation record code by the recursive definition shown in Table 2.11.

Definition 2.4.4 (Well-typed configuration): Let (h, v,CS) ∈ Conf be a configuration
and ∆, Θ typing contexts. We say the configuration (h, v,CS) is well-typed in context
of the assumed type mapping ∆ and the committed type mapping Θ if the following
properties hold:

1. For all (C, f) ∈ ran(h), it is Θ ` C[(. . .)].

2. For all (µ,mc) ∈ CS and for all x ∈ fvars(mc), it is x ∈ dom(v) ∪ dom(µ).

3. For all µm ∈ CS, it is [[this]]µm, ∈ dom(h).

Thus, well-typedness of configurations ensures that the class names of objects
in the heap are indeed committed as names of classes. The second statement en-
sures that each variable mentioned in the code of an activation record is either a
global variable or a local variable of the record. We use dom(v1·. . .·vk) as abbrevi-
ation for dom(v1)∪ . . .∪ dom(vk). Finally, we are assured that the local variables
of each activation record representing a method instance provide a value for the
self-reference this which in turn refers to an object in the heap.

2.4. EXTENSION BY COMPONENTS: THE JAPL LANGUAGE 47

fvars(rcv x; mc) def= {x} ∪ fvars(mc)

fvars(rcv x:T ; mc) def= {x} ∪ fvars(mc)

fvars(x = e) def= {x} ∪ fvars(e)

fvars(f = e) def= fvars(e)

fvars(x = e.m(e1, . . . , ek)) def= {x} ∪ fvars(e) ∪i=1,...,k fvars(ei)

fvars(x = new C(e1, . . . , ek)) def= {x} ∪i=1,...,k fvars(ei)

fvars(stmt1; stmt2) def= fvars(stmt1) ∪ fvars(stmt2)

fvars({T x; stmt}) def= fvars(stmt) \ x
fvars(while(e){stmt}) def= fvars(e) ∪ fvars(stmt)

fvars(if(e){stmt1} else {stmt2})
def= fvars(e) ∪ fvars(stmt1) ∪ fvars(stmt2)

fvars(BE) = ∅
fvars(return e) = fvars(e)

fvars(return) = ∅
fvars(x) def= {x}

fvars(this) def= ∅
fvars(f) def= ∅

fvars(null) def= ∅
fvars(op(e1, . . . , ek)) def= fvars(e1) ∪ . . . ∪ fvars(ek)

Table 2.11: Free variables

Transition rules. After this somewhat longer preliminary explanation, let us
now have a closer look at the rules of the external semantics. They are given in
Table 2.12. To improve readability, we distinguish conditions that express a real
limitation of the rule’s application from conditions that only introduce variables
used to keep the definition short. The first kind of conditions are written as
premises, the latter are written as side conditions. An exception is the introduction
of the communication label a which is always listed as the first premise in every
rule.

The first rule, CallO, implements an outgoing call. This rule must be applied
only if the callee of the method is indeed an object of an external component. This
is checked by assuring that the callee object name is an element of the domain of
the name context ∆. In this sense, rule CallO is the counterpart of rule Call
which deals with internal method calls, only. However, we do not put a method
body on the call stack but instead we add a rcv statement to the current activation

48 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

[CallO]
a = ν(Θ′).〈call o.m(v)〉! o ∈ dom(∆)

∆ ` (h, v, (µ, x = e.m(e); mc) ◦CSb) : Θ
a−→

∆ ` (h, v, (µ, rcv x:T ; mc) ◦CSb) : Θ,Θ
′

where o = [[e]]v,µh , v = [[e]]v,µh ,
T = ∆2(o)(m).ran, and
Θ′ = new(h, v,Θ)

[NewO]
a = ν(Θ′).〈new C(v)〉! C ∈ dom(∆)

∆ ` (h, v, (µ, x = new C(e); mc) ◦CSb) : Θ
a−→

∆ ` (h, v, (µ, rcv x:C; mc) ◦CSb) : Θ,Θ
′

where v = [[e]]v,µh and
Θ′ = new(h, v,Θ)

[RetO]
a = ν(Θ′).〈return(v)〉!

∆ ` (h, v, (µ, return e) ◦CSeb) : Θ
a−→

∆ ` (h, v,CSeb) : Θ,Θ
′

where
v = [[e]]v,µh and
Θ′ = new(h, v,Θ)

[CallI]
a = ν(∆′).〈call o.m(v)〉? ∆ ` a : Θ

∆ ` (h, v,CSeb) : Θ
a−→

∆,∆
′ ` (h, v, (vl,mbody(C,m)) ◦CSeb) : Θ

where C = Θ(o),

T x = mparams(C,m),

T ′ x′ = mvars(C,m),
and
vl = {this 7→ o,

x 7→ v, x′ 7→ ival(T ′)}

[NewI]
a = ν(∆′).〈new C(v)〉? ∆ ` a : Θ

∆ ` (h, v,CSeb) : Θ
a−→

∆,∆
′ ` (h

′
, v, (vl, cbody(C)) ◦CSeb) : Θ

where o ∈ N \ dom(h),

h′ = h[o 7→ ObjC⊥],

T x = cparams(C),

T ′ x′ = cvars(C), and
vl = {this 7→ o,

x 7→ v, x′ 7→ ival(T ′)}

[RetI]
a = ν(∆′).〈return(v)〉? ∆ ` a : Θ ∆,∆′,Θ ` v : T

∆ ` (h, v, (µ, rcv x:T ; mc) ◦CSb) : Θ
a−→

∆,∆
′ ` (h, v′, (µ′,mc) ◦CSb) : Θ

where
(v′, µ′) = vupd(v, µ, x 7→ v)

Table 2.12: Japl language: operational semantics (ext.)

record which is annotated with the return type of the called method. Thus, the
activation record becomes an externally blocked activation record. To determine
the return type, we consult the name context ∆. Since, however, the object’s type
is a class name, we have to apply ∆ twice to get the corresponding class type
which in turn yields the return type of the method. We use ∆2 to express the
double application of ∆. The return type will be needed in rule RetI to check
that the incoming return value matches the outgoing call.

Apart from modifying the call stack we also have to update the committed
name context, since the outgoing call might involve the propagation of names of
some program objects which haven’t passed the interface previously. In order to
find out these new object names we use an auxiliary function new(h, o,Θ). For a
given set of objects o it consults the heap h in order to create a subset of o which
consists only of instances of program classes accompanied by their types. Finally
the current committed name context Θ is subtracted leaving only the new object
names. Its definition is as follows:

2.4. EXTENSION BY COMPONENTS: THE JAPL LANGUAGE 49

Definition 2.4.5 (New names propagation):

new(h, o,Θ) def= {(o:C) | o ∈ o ∧ o ∈ dom(h) ∧ C = h(o).class} \Θ.

The rule NewO deals with the instantiation of a class of an external compo-
nent. It resembles rule CallO but it is a bit simpler, as there is no need to look
up the return type. Rule RetO processes a return statement. More specifically,
it must only deal with outgoing returns, i.e., it must only be applied if the cor-
responding method has been called by an external component. This, however, is
the case, if the next activation record on the call stack is an externally blocked
record but, in particular, not an internally blocked record that waits for an inter-
nal return. Thus, the rule expects that the topmost activation record is followed
by an externally blocked call stack.

The next three rules deal with incoming communications, namely with in-
coming method calls (CallI), incoming object creation (NewI), and incoming
returns (RetI). All three rules implement the type and information flow consis-
tency check as it has been previously explained. Moreover, all three rules assert
consistency of the control flow, in that they start from a configuration with an
externally blocked call stack. In Rule RetI, however, we do not use CSeb in the
judgment to express this requirement but we explicitly demand the annotated
rcv statements on top of the call stack, as we use its annotated return type to
check well-typedness of the return value in the communication label. Second, an
annotated rcv statement on top also ensures the balance condition, as it indicates
a preceded outgoing call (cf. rules CallO and NewO). After all, CSeb also com-
prises the empty statement, hence, in contrast to Rule RetI, the Rules CallI
and NewI can also be applied when the call stack is empty. This allows to execute
the program through the use of an external main body.

Note that our approach for defining the external semantics of Japl is closely
related to Tretmans’ input-output transition systems[69]. This kind of labeled
transition systems also distinguishes input and output labels in order to deter-
mine the direction of communication occurring between a component and its
environment. Moreover, input-output transition systems are input-enabled which
reflects the fact that an exact behavior of the environment is not specified. How-
ever, although Japl components are generally input-enabled as well we have made
clear that realizability demands some restrictions regarding the possible interface
communication. For instance, as already mentioned the balance condition forbids
transitions with incoming return labels in certain situations.

Remark 2.4.6 (Renaming): The introduction of new objects of an external class by
means of an incoming communication is actually carried out by passing the object’s
name to the program. Although the label check for incoming communication ensures
that the name of such an object indeed hasn’t shown up at the interface previously, there
might exist an internal object of the same name within the program already. In this case,
we assume an implicit ad hoc renaming of the internal object. More precisely, we rename
the object in the heap and at the same time change all corresponding references within

50 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

fields or variables of the component. As an important consequence in the following we
will consider configuration equality always up to renaming of objects, only.

Note, that we do not have to arrange for capture-free renaming as object names are
globally4 unique.

An important feature of the operational semantics is that it preserves the
well-typedness of configurations. This is formalized in the following lemma.

Lemma 2.4.7 (Subject reduction): Assume ∆0 ` p′ : Θ0 and ∆ ` c : Θ for a configu-
ration c such that ∆ and Θ represent extensions of ∆0 and Θ0, respectively.

1. If c p c
′ then also ∆ ` c′ : Θ.

2. If ∆ ` c : Θ a−→p ∆′ ` c′ : Θ′ then ∆′ ` c′ : Θ′. Moreover, ∆′ and Θ′ again
represent extensions of ∆0 and ΘO.

Thus, the subject reduction lemma justifies the use of typing judgments for
transition states of the external operational semantics.

Definition 2.4.8 (Program execution; program traces): Let

p′ ≡ impdecl T x; cldef {stmt ; return}

be an open program with ∆ ` p′ : Θ. We broaden the application of cinit , defined in
Definition 2.3.3, such that we also apply it to open programs p′. However, in the context
of open programs we call cinit(p′) an active initial configuration. Dually, we introduce a
passive initial configuration

cinit(p′)
def= (h⊥, x 7→ ival(T), ε),

where the call stack is not initialized with the main body of p′ but it is empty, meaning
that the main body of an external component is to be executed.

The execution of an open program is represented by a finite, possibly empty, se-
quence of internal and external transitions starting from one of its initial configurations.
The sequence of communication labels arising from a program execution is called an
(observable interaction) trace of the program. We use an annotated arrow t=⇒ to repre-
sent a program execution that implements the trace t. The corresponding rules are given
in Table 2.13. Thus, the execution of an open program represents the reflexive transitive
closure of the internal and external transitions.

From now on, we deal with open programs only. Specifically, a closed program
is considered to be an open program which does not import external classes.
Therefore, the syntactical discrimination between open and closed programs by
using different non-terminal symbols p and p′ is not necessary anymore, instead
we will use p also for open programs.

4With “global” we always mean global with respect to a certain component only, but not to
the whole system consisting of all components that might be involved in a program execution.

2.5. TRACES AND THE NOTION OF TESTING 51

[Intern]
c −→∗ c′

∆ ` c : Θ ε=⇒ ∆ ` c′ : Θ

[Single]
∆ ` c : Θ a−→ ∆′ ` c′ : Θ′

∆ ` c : Θ a=⇒ ∆′ ` c′ : Θ′

[Seqnc]
∆ ` c : Θ s=⇒ ∆′ ` c′ : Θ′ ∆′ ` c′ : Θ′ t=⇒ ∆′′ ` c′′ : Θ′′

∆ ` c : Θ st=⇒ ∆′′ ` c′′ : Θ′′

Table 2.13: Japl language: traces

2.5 Traces and the notion of testing

We have seen that the execution of an open program gives rise to a sequence of
its interface interactions that occur during the execution. We use these sequences,
called traces, to define a semantics of a program which characterizes the program’s
possible effect on its environment, i.e. on other, external components. Based on
this trace semantics, we will formalize a notion of testing that builds the formal
basis of our testing approach.
Definition 2.5.1 (Trace Semantics): We introduce three semantic functions

[[·]]atrace , [[·]]
p
trace , and [[·]] : ∆ ` p : Θ ⇀ P(a∗),

such that for well-typed open programs p with ∆ ` p : Θ we define

[[∆ ` p : Θ]]atrace
def= {s ∈ a∗|∆ ` cinit(p) : Θ s=⇒ ∆′ ` c′ : Θ′},

[[∆ ` p : Θ]]ptrace
def= {s ∈ a∗|∆ ` cinit(p) : Θ s=⇒ ∆′ ` c′ : Θ′}, and

[[∆ ` p : Θ]] def= [[∆ ` p : Θ]]atrace ∪ [[∆ ` p : Θ]]ptrace

Thus, the first two semantics definitions yield the set of traces that can be
implemented by a program p with some interacting external components, where
the program is either considered as a passive or as an active component, respec-
tively. The third definition then consists of all traces that can be realized by the
program with any external component.

We want to use the notion of traces to formalize what it means to test a com-
ponent on the basis of its interface behavior. However, for a better understanding
of the differences between a more traditional testing approach and the testing
approach we want to embark on, we first will give a definition of a traditional
testing approach in the context of our language.

Testing a component, in general, means to execute the component in order
to increase confidence in its quality by inspecting the execution. In most cases, a
component tester aims at only one feature to be tested at a time. Test cases are

52 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

specified each describing a specific execution of the program along with certain
expectations related to the feature to be tested. In particular, traditional test
case specifications basically consist of certain input data and the corresponding
anticipated output data. Both, input and output data, may comprise not only
values directly communicated between the component and its environment but
also the component’s states. For this reason, this testing approach is sometimes
called state-based testing [28]. If the feature to be tested covers only functional
requirements, the test case’s pass and fail criteria are often completely confined to
the specification of the input and output data: the component passes the specified
test case if, and only if, its execution with respect to the specified input data leads
to the desired output data. Moreover, the expected output data is often not given
explicitly but instead a so-called test oracle is provided, i.e., a Boolean function of
the input and output data determining whether the component passed or failed
the test. This testing approach can be formalized in terms of our formal setting
as follows:

Definition 2.5.2 (State-based testing): For a given component under test p with Θ ` p :
∆, a state-based test case specification can be represented by

• input data (hin , vin , ac) consisting of a heap function hin , a global variable func-
tion vin , and an incoming method call label ac = ν(Θ′).〈call o.m(vin)〉? as well
as of

• a test oracle function success : (H × V × a) → (a × H × V) → bool which
yields for each input data a Boolean function of the resulting outgoing return label
ar = ν(∆′).〈return(vout)〉! and the final state of the component.

The component p passes the specified test case if:

∆ ` (hin , vin , ε) : Θ acar=⇒ ∆′ ` (hout , vout , ε) : Θ′

such that success(hin , vin , ac)(ar, hout , vout) holds.

In order to carry out a state-based test case execution, we have to write a test
program which implements a set-up, assuring that the component’s configuration
corresponds to the specified input data, and which furthermore implements the
method call ac as well as the evaluation of the oracle function success afterwards.

Unfortunately, as the test program is itself a Japl component it can modify
neither the global variables of the component under test nor its heap directly, but
the test program has to drive the component to the desired input configuration
by means of method calls. However, it is often not clear which calls should be
made to reach the input configuration or if the configuration can be reached at
all. For, it might be that there exists no trace in the component’s trace semantics
that leads to the desired configuration. Summarizing, the test set-up, initiating a
state-based test execution, is difficult or sometimes even impossible to realize in
a component-based setting, as the component’s state is usually not accessible due
to information hiding and encapsulation.

2.5. TRACES AND THE NOTION OF TESTING 53

Besides that, according to Definition 2.5.2, state-based testing does not allow
for call-backs which might occur between the specified method call and its return.
More general, sometimes it might be necessary to specify a test execution which
entails a longer communication sequence s in between the original call and its
return:

∆ ` (hin , vin , ε) : Θ acs ar=⇒ ∆′ ` (hout , vout , ε) : Θ′ .

Even if we relax the criteria for passing the test by allowing the component to
produce more interface communication than merely the return label, then this
requires at least additional declarations of the reaction that has to be carried out
by the test program.

In a testing approach that is based on the component’s interface behavior,
in contrast, the component’s internal state is not specified but only its behavior
which is observable by a test program. This approach is therefore called behavior-
based testing. In our setting, the observable behavior consists of method calls
and returns occurring at the component’s interface, thus, a test case specification
stipulates a sequence of interface interactions.

Definition 2.5.3 (Behavior-based testing): For a given component under test p with Θ `
p : ∆ a behavior-based test case specification can be represented by a sequence of
communication labels, that is, a trace s ∈ a∗.

The component p passes the specified test case if:

∆ ` cinit(p) : Θ s=⇒ ∆′ ` c : Θ′

or ∆ ` cinit(p) : Θ s=⇒ ∆′ ` c : Θ′ .

In other words, we actually test for s ∈ [[∆ ` p : Θ]]. Note that this approach
also allows for test cases which are initiated by the component under test, that is,
we also can execute and test the component’s main body. A test trace s generally
describes communication steps which are expected to be carried out by the com-
ponent under test as well as communication steps that have to be carried out by
the component’s environment. Thus, when conducting behavior-based testing, a
test program need not to take care for establishing a specified input configuration
of the component under test but in exchange it has to implement several calls
and returns along the test execution as stipulated by the specified test trace. At
the same time, the test program has to check that the component’s contribution
to the interface communication complies with the trace specification.

Specifically, in order to test for s ∈ [[∆ ` p : Θ]] for a component p and a
test trace s, we need a test program which can implement the complementary
trace s̄ of s that results from s by replacing question marks with exclamation
marks, and vice versa; hence, we require a test program ptp with Θ ` ptp : ∆
and s̄ ∈ [[Θ ` ptp : ∆]]. Then, a test execution can be considered as the execution
of actually both programs p and ptp, such that ppt’s outgoing communication
represents the incoming communication of p and vice versa such that ppt reports
a successful test run if it observes trace s̄ at its interface. One question that may

54 CHAPTER 2. JAVA-LIKE PROGRAMMING LANGUAGE – JAPL

arise from this testing approach is how to find an appropriate test program for
a given test case specification. In fact, the following two chapters will deal with
the introduction of, both, a test specification language that is built on the basis
of interface traces and a test program generation algorithm.

But first it remains to show, that our language represents a sound framework
for further investigations. More precisely, the semantics’ extension by interface
communication rules should represent a sound extension with regards to the se-
mantics of the internal computation. In context of the above mentioned test ap-
proach, this means that, under the provision that the program p passes the test,
the two programs p and ppt can be merged to a single program that gives rise to
a sequence of internal computation steps containing internal call and return steps
that correspond to the labels of the trace s. This is more general formalized in
the following lemma.
Definition 2.5.4 (Merge of components): Let

p1 = impdecl1; T1 x1; cldef 1 {T ′1 x′1; stmt1; return}
and

p2 = impdecl2; T2 x2; cldef 2 {T ′2 x′2; stmt2; return}

be two components such that Θ2 ` p1 : Θ1 and Θ1 ` p2 : Θ2. Then the merge of the two
components is defined as follows,

p1 E p2
def= cldef 1 cldef 2 T1 x1; T2 x2; {T ′1 x′1; stmt1; return},

where we assume an ad-hoc renaming of global variables to prevent name clashes if
necessary.

Note that the merge p of the two components p1 and p2 does not contain
their mutual import declarations and only the main body of p1. In particular, the
merge is therefore not symmetric. The intuitive motivation for the drop of one
main body is that one component represents the (“main”) program and the other
one is incorporated as some kind of a passive library. For, we have seen in the
operational semantics that always exactly one main body is executed.
Lemma 2.5.5 (Compositionality): There exists a merge function on configurations

· E · : Conf × Conf ⇀ Conf

with the following two properties:

1. For two components p1 and p2 with Θ2 ` p1 : Θ1 and Θ1 ` p2 : Θ2, such that

Θ2 ` cinit(p1) : Θ1
t=⇒p1 Θ′2 ` c′1 : Θ′1

and

Θ1 ` cinit(p2) : Θ2
t̄=⇒p2 Θ′1 ` c′2 : Θ′2 ,

and for p = p1 E p2 such that ` p : Θ1,Θ2 the following holds:

cinit(p) −→∗p c′1 E c′2 ,

2.5. TRACES AND THE NOTION OF TESTING 55

We annotated the transition arrows to indicate the context in which the respective
transition rules are applied.

2. Assume a closed program p with ` p : Θ. For every two components p1 and p2

with Θ2 ` p1 : Θ1 and Θ1 ` p2 : Θ2 such that p1 E p2 = p and Θ1,Θ2 = Θ the
following holds:

cinit(p) −→∗p c implies the existence of a trace t ∈ a∗ such that:

• Θ2 ` cinit(p1) : Θ1
t=⇒p1 Θ′2 ` c′1 : Θ′1 ,

• Θ1 ` cinit(p2) : Θ2
t̄=⇒p2 Θ′1 ` c′2 : Θ′2 and

• and c′1 E c′2 = c.

In words: Feeding a component p1 with the interface communication carried
out by p2, and vice versa, has the same effect as syntactically merging the two
programs, such that the communication is carried out internally. On the other
hand, a closed program can be torn into two components which can communi-
cate via interface communication reaching configurations that correspond to the
configurations reachable by the original component.

Chapter 3

The test specification
language

In this chapter we will develop a test specification language which allows to specify
unit tests for the Java-like programming language Japl introduced in the previous
chapter. From the unit testing point of view, Japl components can be considered
to be the smallest testable constituents of a Japl program, as one can test a Japl
component without the need to modify its code but by providing a test program
which imports the component and investigates its behaviour by means of method
invocations. Therefore we will identify test units with Japl components. That is,
a unit test always represents a test of a Japl component and in the following we
will use the terms unit and component and, respectively, unit test and component
test interchangeably.

A test specification shall stipulate a desired behavior to be shown by the
unit under test to its environment. Equating units with components of our lan-
guage, this means that such a specification talks about the communication which
is captured by the communication labels of the external semantics introduced in
Section 2.4.3. Thus, a first approach could be, to use the trace, i.e. the sequence
of communication labels, itself as a test specification. Or, if one wants more ex-
pressiveness, also regular expressions of communication labels could form a test
specification language. However, we want to ensure that the language provides
some additional features which has an impact on the language design. In partic-
ular, we want that specifications of the language are:

interaction-based As mentioned above, the language shall allow for specifying
the desired behavior of the unit in terms of the interactions that occur at
the interface between the unit and its environment. More precisely, these
interaction specifications represent the fundamental elements from the test-
ing point of view and thus they deserve a correspondingly prominent role
within the specification language from the language designing point of view.

57

58 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

executable The idea is to use a specification as a basis of an executable test
program, or test driver, which, together with the component under test, ac-
tually performs the test that was specified. In other words, the test program
has the task to determine whether the unit under test passes the specified
test or not. As a consequence, a specification must not describe tests which
cannot be implemented in the Japl programming language. This restriction
has two aspects. On the one hand, a specification must not mention fea-
tures of the unit under test which cannot be observed by a test program,
which imports the unit as an external component and which therefore has
no access to the internals of the unit. As an obvious example a specification
must not include references to variables of the component under test, since
its variables are not accessible, hence not observable, by the test program.

Another aspect of executability is given by the fact that in general a test
specification does not only include observations but also stimuli of the unit
under test. These stimuli are to be implemented by the test program and
will show up in terms of interface communication during the test execu-
tion. Therefore, the sequence of stimuli and observations must comply to
the control flow policy of the programming language. For instance, due to
the sequential flow of control, a specification must not include two con-
secutive calls of a component method, as the test program cannot realize
these method calls without accepting an incoming method call or return in
between.

satisfiable While the executability criterion ensures the existence of a test pro-
gram that can execute the specified test, satisfiability, in contrast, ensures
that for each specified test a Japl component exists which can pass the test.
For, in general, it is possible to write down sequences of interface interactions
which could not be implemented by any component of our programming lan-
guage. Let us consider again an example specification with two consecutive
method calls — but this time let us assume that the specification requires
the component under test to realize these calls. Again due to the sequential
flow of control, no Japl component could fulfill such an expectation. The
specification language should identify these faulty specifications and this
should be performed preferably statically. In particular, syntax and type
system should filter them out. Alas, in some cases this is not possible. For
instance, a specification may require the evaluation of a Boolean expression
to true. But in general it is impossible to decide statically whether a Boolean
expression can be evaluated to true, at all. In Section 4.5 we will discuss in
more detail that unfortunately there exist situations where we cannot even
at runtime identify a specification as faulty. However, at least, we want to
design our specification language such that we can single out as many faulty
specifications as possible.

complete This is actually not a requirement regarding a single specification but
rather concerns the specification language itself. That is, the language should

3.1. EXTENSION BY EXPECTATIONS 59

be complete in the sense that every interaction-based, executable, and sat-
isfiable behavior should be expressible within the language.

accessible We want to encourage software developers to perform unit tests. Thus,
software developers should be able to quickly learn the language. Moreover,
testing should not break the rhythm of the short test-and-develop cycles
which many programmers embark on due to extreme programming or other
agile software development approaches.

It turns out that using traces, as defined in Definition 2.5.1, or regular expressions
on communication labels do not meet most of the criteria. Indeed, not all sequences
of labels described by a regular expression are satisfiable or executable. A trace,
in contrast, satisfies most of the criteria by definition. However, a pure trace
language is rather not accessible and in particular it is not very practical to use
interaction traces as specifications since a trace does not entail any generalization
but covers exactly only one specific behavior. Finally, it is difficult to define a
specification language whose elements are only sequences of interactions which
indeed represent a proper trace.

Our basic idea of meeting these requirements is to define a test specification
language by extending the programming language with additional constructs that
ease the specification of interactions. A specification represents a desired interac-
tion trace (or a set of traces) to be shown by the unit under test. Extending the
programming language means that developers only have to learn the additional
constructs. Furthermore the design of the new constructs will exclude many faulty
specifications on the syntax and type level already.

3.1 Extension by expectations

In Chapter 2 we have first defined a simple “monolithic” object oriented language
which later has been extended to Japl by incorporating the notion of components.
In this chapter we will in turn extend Japl in order to get a test specification
language for testing Japl components. Again we will extend the original syntax
and correspondingly extend and adapt the type system as well as the operational
semantics. The formal definition of both, the Japl language and its extension, will
allow for a formal definition of the test pass criteria and of the meaning of a test
itself, too. For, an important consequence of our approach is that the extended
operational semantics will provide a trace semantics for specifications similar to
the trace semantics for Japl components defined in Section 2.5. Thus, it is natural
to consider a specification’s trace semantics to be the meaning of the test and it
suggests itself to define the test pass criteria in terms of a relation regarding
the test specification’s trace semantics and the trace semantics of the component
under test. Then, a strict and straightforward test pass criterion would be to
demand trace inclusion: for each of the specification’s traces there must exist
a corresponding trace within the trace semantics of the component under test.
Assuming that we use for the trace semantics of both, specifications and Japl
components, the same notation [[·]], we can also rephrase this test pass criterion

60 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

more formally by saying that a Japl component p satisfies a test specification s if
the following holds:

[[∆ ` s : Θ]] ⊆ [[∆ ` p : Θ]]

Although the above formulated test pass criterion demonstrates the general
idea of our approach, we will decide to slightly deviate from this relation in two
aspects due to certain design decisions regarding the specification language.

First, a simple but crucial deviation comes from the fact that we will formal-
ize specifications not from the point of view of the unit but of its environment.
Thus, for instance, a call of a method of a unit class invoked by the unit’s en-
vironment is expressed in a test specification in terms of an invocation of that
method resulting in an outgoing call label within the external semantics of the test
specification language. Within the trace semantics of the component under test,
in contrast, this call shows up in form of an incoming call. The complementary
viewpoints regarding the unit and the test specification resembles the situation of
a programmer who is writing unit testing code for testing frameworks like xUnit.

Second, the detailed discussion about the extension below will show that our
language will support relaxed specifications in that a specification may let the
unit under test to chose from several admissible behaviors. For instance, instead
of expecting exactly one specific incoming call1 at a certain point of time, a
specification may list several acceptable incoming calls. Providing alternatives
regarding incoming communications likewise result in multiple traces within the
semantics of the specification. A specification-conform component, however, needs
only to realize one of these traces.

In the remainder of this section we will develop appropriate syntactical ex-
tensions of the test specification language along with an informal description of
their meaning. For this, we will in particular account for the desired interaction-
basedness and accessibility of the language. The subsequent three sections will
then provide a formal definition of the syntax, the type system, and the oper-
ational semantics, respectively. Before we deal with the new constructs that we
want to add, however, let us first see why it is necessary to define a specification
language in the first place. That is, why is the original programming language
Japl not expressive enough to formulate a specification (program) whose trace
semantics can be used as a test specification for another component. According
to the definition of the external semantics given in Table 2.12, we can identify
the desired behavior of the unit as desired incoming communication steps of the
external semantics. In particular, consider a Japl program ps representing a test
specification with

∆0 ` cinit(ps) : Θ0
tγ1!
=⇒ ∆1 ` c1 : Θ1,

that is, the specification program is executed and produces a trace which ends
with an outgoing communication label γ1!. Now, the specification of the desired

1Note that we already use the xUnit perspective here. That is, the specified incoming call is
to be implemented by the unit in terms of an outgoing call.

3.1. EXTENSION BY EXPECTATIONS 61

behavior could entail the fact that a certain incoming communication γ2? is ex-
pected to occur right after γ1!:

∆0 ` cinit(ps) : Θ0
tγ1!
=⇒ ∆1 ` c1 : Θ1

γ2?−−→ ∆2 ` c2 : Θ2.

However, again according to the rules of the external semantics, the outgoing
communication step represented by γ1 either leads to an empty call stack or
it puts a type-annotated receive statement on top of the call stack (CallO,
NewO, and RetO). Thus, in the former case it is not determined whether the
next incoming communication is an incoming method or constructor call (CallI,
NewI) and in the latter case additionally an incoming return is possible (RetI).
Moreover, the Japl program ps has no influence on the input values, namely
on the incoming return value or the input parameters of the call, respectively.
We say a Japl program that has just given away the control to some external
component is generally input-enabled meaning that it cannot decree a specific
incoming communication to occur next but it accepts several different incoming
calls and returns. This under-specification resulting from the openness of the
program restrains us from stipulating the next expected incoming communication.

On account of this, we extend the language by expectation statements which
determine the next expected incoming communication. This way, we will restrict
the application of the semantics’ incoming communication rules such that an
application of a rule is only possible if the corresponding expectation statement
is on top of the call stack.

Since we want to change the “look-and-feel” of the programming language as
little as possible, the question arise how should these new statements look like
and how to integrate them into the language. In order to specify incoming com-
munication, we need statements for incoming method calls, incoming constructor
calls, and incoming returns. The original programming language already provides
statements for the outgoing counterparts: an outgoing method call is caused by
a call statement, which includes the term e.m(e), an outgoing constructor call
includes the term new C(e), and an outgoing return results from return e. It sug-
gests itself that the terms for the incoming communication look similar. Thus, as
a first approach we could, for instance, introduce a term for an incoming method
call which resembles the conventional method call, except that it has a question
mark instead of the usual dot for the method selector:

e?m(e).

The usage of a question mark for expressing an incoming communication is in-
spired by CSP and other process calculi where a question mark describes the
input of a value. An informal description of the term’s semantics would be: wait
for an incoming method call of method m of object e with actual parameters e.
However, sometimes we might want to give a more loose specification in that we
don’t want to stipulate the exact values of the actual parameters but only want
to ensure that certain conditions for the values hold. It could be even the case

62 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

that we don’t want to be specific regarding the callee object. As a consequence,
the term for an incoming method call expectations has the following form:

(C x)?m(T1 x1, . . . , Tk xk).where(e) .

The callee and parameter expressions in our first approach are now replaced by
variable declarations which play the role of formal parameters expressing that
the expectation is not specific regarding the incoming values. However, the new
where-clause narrows down the possible incoming method calls, as the values
of the parameters and of the callee must satisfy the condition e. Note, that a
loose where-clause leads to many different possible incoming method calls, such
that the specification does not only describe a single interaction trace (and its
prefixes) anymore. However, it is certainly still possible to restrict the incoming
communication to a distinct incoming method call by means of an appropriate
where-clause which fixes the callee and incoming parameters to specific values,
that is,

(C x)?m(T1 x1, . . . , Tk xk).where(x==v && x1==v1 && . . . xk==vk) .

We add syntactic sugar for this kind of restrictions on incoming values, so that
the last example can also be written as:

v?m(v1, . . . , vk),

which resembles a usual method call a bit more, again. Moreover, it is allowed to
omit the where-clause where(true).

Similar to the terms for incoming method call expectations, we introduce terms
for incoming constructor call and incoming return expectations, which are

new?(C x)C(T x).where(e) and x =?return(T x′).where(e).

As in the case with incoming call specifications we likewise add syntactic
sugar for incoming return terms. The term ?return(v) represents a shortform for
x =?return(T x′).where(x′ == v) where x is a local variable which is not used
somewhere else.

Using an extension of the programming language in order to specify test cases,
may make the specification language more accessible for software developers. At
the same time, it eases to satisfy the executability requirement, as we only have
to ensure that the new statements can be translated to semantical equivalent
program language code. All other statements can remain the same.

Moreover, it will become obvious that the specification language also meets
the satisfiability requirement. For, the extension of the operational semantics will
show, that we basically only introduce new premises in the incoming communica-
tion rules. Since we add only further restrictions it is easy to see that the extension
of the language does not allow new traces that could not have been produced by a
program of the original language already. However, adding restrictions could raise

3.1. EXTENSION BY EXPECTATIONS 63

the risk to produce faulty traces, that is, one could write specifications which
could get stuck.

In particular, a specification gets stuck, if an incoming communication term
represents an expectation which is inconsistent with the requirements for incoming
communication that we introduced in Section 2.4.3. Fortunately, we can identify
statically many of the specifications that would cause faulty traces. Specifically,
we will explain in the following how we restrict the specification language, such
that incoming communication expectations of a valid specification always comply
with three of the four requirements, namely with well-typedness, control-flow
consistency, and balance. The type system will ensure that a valid specification
only contains expectations of incoming communication which is well-typed and
consistent regarding the control flow. As for the balance requirement, we filter
out undesired specification statically by introducing appropriate statements which
incorporate the above mentioned expectation terms.

The balance condition stipulates that an incoming return may only occur if
a corresponding outgoing call was processed previously. Since test specifications
must not contain expectations that do not satisfy this requirement, we have to
make sure that the term for incoming returns may only appear in certain situa-
tions. Remember, the argument for introducing the balance condition was that an
outgoing return is always preceded by an incoming method call. This property in
turn was due to the fact that return terms may only occur at the end of a method
body, hence, it is actually caused by the syntactical structure of the code. The
idea is to mirror the syntactical structure such that incoming return terms comply
with the balance condition. More specifically, we define a new statement by com-
bining the term for an (outgoing) method call with the corresponding incoming
return, forming a dual version of a normal method definition, that is

e!m(e){Tl xl; stmt ; x =?return(T x′).where(e′)}.

Thus, the original statement of an (outgoing) method call, x = e.m(e), is now
split into the actual outgoing call and its corresponding incoming return such
that the new construct indeed resembles a method definition: instead of a method
signature we have an outgoing method call term and instead of the ususal return
term we have an incoming return term. Combining the call and its return into
one statement ensures that, assuming a syntactical valid specification, an incoming
return term will never be executed without a preceding outgoing method call. At
the same time the expectation body in between the outgoing call and the incoming
return term makes it possible to define local variables xl and a statement stmt
in order to specify further interface interactions that are expected to happen in
between the outgoing call and its return. Note, that we use the exclamation mark
instead of a dot in the outgoing method call, which resembles the syntax of an
output in CSP. Using an exclamation mark emphasis the duality to incoming
method calls and makes the actual trace specification more explicit.

Using the same pattern we introduce a statement for the combination of an

64 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

outgoing constructor call and its return:

new!C(e){Tl xl; stmt ; x =?return(C x′).where(e′)}.

The remaining incoming communication terms that we still have to incorporate
into our language are the incoming method and constructor call expectations. For
similar reasons it again makes sense to use the same pattern, that is, to combine
the incoming call term with a body that ends with an outgoing return. Thus, we
introduce another statement that combines an incoming call expectation with an
outgoing return:

(C x)?m(T x).where(e′) { Tl xl; stmt ; !return(e); }

Finally, we define a similar statement for incoming constructor calls:

new(C x)?(T x).where(e′) { Tl xl; stmt ; !return; }

Note, in contrast to the incoming method call, the return term of an incoming
constructor call does not include an expression for the returned value. For, a
constructor always returns the name of the created object x.

Since we define all these constructs as statements, we can compose them in a
nested and sequential way such that the resulting sequence of interface commu-
nication terms satisfies the balance condition.
Remark 3.1.1: Regarding incoming call statements, one could think that we actually do
not need to introduce a completely new statement, since it might be sufficient to adapt
the usual method definition. Indeed, an incoming call statement is almost identical to a
method definition of a class — apart from the where-clause and the “formal parameter”
for the callee object. But an incoming method call expectation is not only more specific
regarding the expected values but, in contrast to a conventional method definition, it also
is interpreted within a certain interaction context. More specifically, an incoming method
call expectation deals with an incoming call resulting in a communication label which
is expected to occur at a certain place within the interface trace while a conventional
method definition is rather a template of a behavior shown by the method whenever it is
called.

After this conceptional overview which also included an informal introduction
of the interface communication statements, the following sections provide the de-
tails of the syntax, type system, and operational semantics of our test specification
language.

3.2 Syntax

The syntax of the test specification language is given by a grammar as shown
in Table 3.1. In general, the grammar of the test specification resembles that of
the programming language given in Table 2.1 with small replacements and some
extensions. To stress the extending character of the specification language the

3.2. SYNTAX 65

s ::= cutdecl T x; mokdecl { stmt } specification

cutdecl ::= test class C; test unit class

mokdecl ::= mock class C{C(T, . . . , T); T m(T, . . . , T); }; mock class

stmt ::=x = e | x = new C() | ε | stmt ; stmt | {T x; stmt} statements

| while (e) {stmt} | if (e) {stmt} else {stmt}
| stmt in | stmtout | case { stmt in ; stmt }

stmt in ::= (C x)?m(T x).where(e) {T x; stmt ; !return e} incoming stmt

| new(C x)?C(T x).where(e) {T x; stmt ; !return}
stmtout ::= e!m(e, . . . , e) {T x; stmt ; x =?return(T x).where(e) } outgoing stmt

| new!C(e, . . . , e) {T x; stmt ; x =?return(T x).where(e) }
e ::=x | null | op(e, . . . , e) expressions

Table 3.1: Specification language for Japl: syntax

extensions are highlighted in the grammar definition. Similar to the original defi-
nition of a program p which consists of class import declarations, global variable
definitions, class definitions, and a main body, the definition of a specification s
consists of unit class declarations, global variable definitions, class declarations,
and a specification body. In particular the class import declaration is replaced by
the unit class declarations which also mention the names of the classes only. The
class definition of a program is replaced by the mock class declaration where only
the signature of the classes are specified. The method bodies are omitted since the
specification body basically consists of the interaction trace and therefore implic-
itly stipulates the behavior of the classes, rendering the method body definitions
unnecessary. As the classes do not provide method bodies or field declarations it
wouldn’t make sense to internally call their methods. Thus we omit the statements
for (internal) method calls and field updates. For the same reason, the specifica-
tion language only provides a simplified new construct which actually does not
entail a constructor call but rather merely specifies the creation of a new object
of a tester class. Furthermore, the specification language also provides sequential
composition of statements, block statements, conditional statements, while loops,
and the empty statement.

Finally, the language allows for explicitly specifying the interaction sequence
between the tester program and the unit under test. To this end, we introduce
dedicated statement for each type of interaction as discussed previously.

By introducing formal parameters in an incoming communication term we
provided the possibility to relax a specification in terms of the expected incoming
values. A case statement, where each branch consists of a sequence of statements
which all start with an incoming call statement, enables a further relaxation with
respect to the callee class and the called method or constructor, respectively:
the tester’s environment (i.e. the unit under test) chooses a branch by provid-
ing an incoming communication that matches the branch’s leading incoming call
statement.

66 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

Again, due to the lack of field declarations, we exclude field names from the
set of possible expressions. Furthermore, due to the nested structure of the expec-
tation specifications, the use of this would be ambiguous, hence is not supported.
Instead, if we want to refer to the callee object of an incoming method call, we
use the formal callee parameter of an incoming call term.

Remark 3.2.1: Although the intention of the specification language is to describe the
interface interaction between an object-oriented component and its environment by spec-
ifying method calls, the specification language itself is not object-oriented. In particular,
the language does not support the definition of (specification) classes but only the dec-
laration of test class names and mock class signatures. An extension of the specification
language with classes is discussed in Chapter 5.

3.3 Static semantics

Once we had developed useful syntactical constructs for specifying interface com-
munication, defining the specification language’s syntax was straightforward: ba-
sically, we just extended the statement definition of Japl by the new specification
statements. In order to meet the language requirements from the beginning of this
chapter, however, we have to further confine the valid specifications by means of
the type system.

Recall, in particular, that executability requires a specified test to be imple-
mentable in terms of a Japl program and, respectively, satisfiability demands the
existence of a Japl component which passes the test. With these requirements in
mind consider the following specification snippet consisting of two nested outgoing
method call statements:

o1!m1(v1) {
o2!m2(v1) { ... }
...
};

Although this specification snippet represents a syntactical valid specification
fragment, it must be considered as an invalid specification, as it cannot fulfill
the executability requirement. For, as we have already pointed out, there exists
no Japl program that implements the specified test: we cannot write a Japl pro-
gram that realizes two consecutive outgoing method calls without an incoming
communication in between, as the first outgoing method call passes the control
to an other component rendering it impossible to invoke the second method call
immediately afterwards. It is obvious that we can construct a dual example con-
sisting of two nested incoming call statements which must be deemed an invalid
specification too as it is not satisfiable.

The nested call statement example showed that we cannot use arbitrary state-
ments as expectation body of a call statement, so considering an outgoing method
call statement sout with

sout = o1!m1(v){ Tl xl; stmt1; x =?return(T x′).where(e) },

3.3. STATIC SEMANTICS 67

as well as an incoming method call statement sin with

sin = o2?m.where(e)(T x){ Tl xl; stmt2; !return(v) },

the question arises what kind of statements may be used for stmt1 and, respec-
tively, stmt2 in general, in order to fulfill executability and satisfiability. To answer
this question, it is important to understand the discrepancy between Japl and the
specification language regarding their corresponding control flow policies. Due to
the sequential flow of control, a Japl program is always blocked right after it has
realized an outgoing communication and it may only proceed when the external
semantics provides it with an incoming communication. This strict control flow
policy does not hold for the specification language anymore. The above outgoing
call statement sout , in particular, indicates that a specification may proceed with
the processing of stmt1 after it has realized the outgoing call label 〈call o1.m1(v)〉!
due to the execution of the term o1!m1(v). We refer to statements, like stmt1, that
occur between an outgoing communication and an incoming communication term
as passive statements and we say they appear in passive control context . For, a Japl
program that corresponds to the outgoing call statement gets blocked, hence it
becomes passive, right after it has realized the outgoing call label 〈call o1.m1(v)〉!.

A Japl program that corresponds to the incoming call statement sin , however,
may proceed, i.e., it is active, right after it has realized the incoming call label
〈call o2.m2(v)〉?. Thus, we refer to statements, like stmt2, occurring between an
incoming and an outgoing communication term, as active statements and we say
they appear in active control context .

Specifically, an incoming communication can “re-activate” a previously blocked
Japl program again, hence, it is easy to see that we may use incoming call state-
ments or the empty statement for passive statements, like stmt1 in sout , without
breaking executability. In order to increase the expressiveness of our specification
language, however, we will permit also other statements to appear in a passive
control context. Consider, as an example, a specification where the expectation
regarding incoming calls depends itself on an incoming value. More specifically,
after performing an outgoing call o!m(v), the specification expects a sequence of
invocations of method m1 of object o1, where the exact number of invocations
is determined by a Boolean input parameter x of method m1. Then this can be
expressed by the following specification snippet:

1 b = ...;
2 o!m() {
3 while(b) {
4 o1?m1(bool x) { b=x; ... }
5 }
6 o2?m2() { ... }
7 ...
8 };

The example demonstrates that the specification languages allows for a straight-
forward formalization of this kind of specifications. Note, however, it needs a

68 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

while-loop to appear in a passive control context therefore lacking a direct cor-
respondent in Japl. Nevertheless, in Chapter 4 we will provide a code generation
algorithm which allows to determine a Japl program that implements this test
specification snippet. The algorithm’s key concept for translating passive state-
ments like the above mentioned passive while-loop is based on a reordering of the
involved statements. Thus, we will allow statements to appear in passive control
context if they do not entail side-effects as a reordering of these statements is not
critical.

Considering the incoming call statement sin with its active statement stmt2

again, the situation is more relaxed, since in general stmt2 can also be processed
in Japl. As already mentioned above, the only exception is a statement which
entails another incoming communication, because the sequential control flow of
Japl does not allow two or more consecutive incoming call labels.

Be it as it may, regarding the typing system, it suffices to conclude that only
incoming call statements, the empty statement, and side-effect-free statements,
may appear in a passive control context. If a statement does not entail an incoming
communication as the next interface communication, then it may appear in an
active control context. This has to be checked by the type system.

The type system of the specification language is based on the type system
of the Japl programming language which was introduced in Section 2.2 and Sec-
tion 2.4.2. Recall, that in Japl well-typedness of a statement stmt was evaluated
in context of a local type mapping Γ and a global type mapping ∆ expressed by
the typing judgment:

Γ; ∆ ` stmt : ok.

As for the specification language we have to implement two modifications on the
typing judgments for statements. First, we have to equip the typing judgments
with an additional flag γ in order to implement the control-flow related checks
that we have discussed above. The flag γ represents the considered control context
of the statement and correspondingly ranges over the set {act , psv}.

Second, we have to ensure that a callee of an outgoing or incoming call state-
ment indeed belongs to an external component or, respectively, to the program.
To this end, we have to distinguish component and program classes in the typing
judgments. In the Japl typing rules for statement, both, component and program
classes, were included in the global type mapping ∆. Consequently, we split the
global mapping into a global mapping ∆ regarding component types and a global
mapping Θ for program types.

Considering the two modifications, the specification language’s type judgments
for statements are of the following form:

Γ; ∆; Θ ` stmt : okγ .

The type system of the specification language is given in Table 3.2. As men-
tioned earlier, it is based on the type system of Japl. Apart from the two modifi-
cations regarding the judgments, we introduce new rules for the new specification

3.3. STATIC SEMANTICS 69

[T-Spec]

Γ; ∆ ` cutdecl : ok
Θ = cltype(mokdecl) Γ′ = Γ, x:T Γ′; ∆; Θ ` stmt : okγ ;

Γ; ∆ ` cutdecl mokdecl T x; {stmt ; return} : Θγ

[T-CallIn]

Θ(C)(m).dom = T Γ, x:C, x:T ; ∆,Θ ` e : Bool Θ(C)(m).ran = T

Γ′ = Γ, x:C, x:T , x′:T ′ Γ′; ∆; Θ ` stmt : okact Γ′; ∆,Θ ` e′ : T

Γ; ∆; Θ ` (C x)?m(T x).where(e){T ′ x′; stmt ; !return e′} : okpsv

[T-NewIn]

Θ(C)(C).dom = T Γ′ = Γ, x:C, x:T , x′:T ′

Γ′; ∆; Θ ` stmt : okact Γ, x:C, x:T ; ∆,Θ ` e : Bool

Γ; ∆; Θ ` new(C x)?C(T x).where(e){T ′ x′; stmt ; !return} : okpsv

[T-CallOut]

Γ; ∆,Θ ` e : C Γ′(x) = ∆(C)(m).ran Γ; ∆,Θ ` e : ∆(C)(m).dom

Γ′ = Γ, x:T Γ′; ∆; Θ ` stmt : okpsv Γ′; ∆,Θ ` e′ : Bool

Γ; ∆; Θ ` e!m(e){T x; stmt ; ?return(x).where(e′)} : okact

[T-NewOut]

Γ′(x) = C Γ; ∆ ` e : ∆(C)(C).dom

Γ′ = Γ, x:T Γ′; ∆; Θ ` stmt : okpsv Γ′; ∆,Θ ` e : Bool

Γ; ∆; Θ ` new!C(e){T x; stmt ; ?return(x).where(e)} : okact

[T-VUpd]
Γ; ∆,Θ ` e : Γ(x)

Γ; ∆; Θ ` x = e : okact
[T-Block]

Γ, x:T ; ∆; Θ ` stmt : okact

Γ; ∆; Θ ` {T x; stmt} : okact

[T-NewInt]
C ∈ dom(Θ) Γ(x) = C

Γ; ∆; Θ ` x = new C() : okact

[T-Seq]
xΓ; ∆; Θ ` stmt1 : okγ Γ; ∆; Θ ` stmt2 : okγ

Γ; ∆; Θ ` stmt1; stmt2 : okγ

[T-While]
Γ; ∆; Θ ` e : Bool Γ; ∆; Θ ` stmt : okγ

Γ; ∆; Θ ` while (e) {stmt} : okγ

[T-Cond]
Γ; ∆; Θ ` e : Bool Γ; ∆; Θ ` stmt1 : okγ Γ; ∆; Θ ` stmt2 : okγ

Γ; ∆; Θ ` if (e) {stmt1} else {stmt2} : okγ

[T-Case]
Γ; ∆; Θ ` stmt in : okpsv Γ; ∆; Θ ` stmt : okpsv

Γ; ∆; Θ ` case { stmt in ; stmt } : okpsv

Table 3.2: Specification language for Japl: type system (stmts)

statements and we skip the rules that deal with class definitions and other omitted
constructs of the original language. A specification is type-checked by using rule
T-Spec. The rule determines the committed type context Θ by extracting the
class types from the specification’s mock class signatures. Moreover, it checks if

70 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

the classes of the component under test are among the types of the assumed type
context ∆. Finally, it type-checks the body statement within a typing context that
is given by the assumption context, the commitment context, as well as the local
context enriched by the global variables. The type-check of the body statement
yields a control context γ which is also used to annotated the committed types
of the specification, indicating that the specified test starts in passive or in active
control context, respectively.

The rules T-CallIn and T-NewIn deal with the incoming method and con-
structor call statements and resemble the now unnecessary rule T-MDef for
method definitions of Table 2.2. After extending the local type context with the
“formal parameters”, the local variables, and the callee object, we have to type-
check the body statement and, in case of a method call, the return expression.
Moreover, a call statement is only well-typed if it appears in a passive control con-
text and if the callee class C is an element of the program context Θ. Right after
the incoming call, the program has gained control and thus the body statement
is correspondingly checked in an active control context.

In a similar way, outgoing method and constructor call statements may only
appear in a situation where the program has the control which is again ensured
by an exclamation mark in the context of the judgment that forms the conclusion.
Thus, the body statement in turn has to be checked in a passive control context.

We want to allow sequential composition of incoming call statements. There-
fore, the rule T-Seq can be applied in an active as well as in a passive control
context. This is done by using a variable γ for the control context. However, both
sub-statements have to be well-typed regarding the same control context. We simi-
larly proceed with while loops (T-While) and conditional statements (T-Cond).
Allowing the latter two kind of statements to appear in a passive control context
considerably increases the expressiveness of the specification language, as we have
shown already. However, the rules T-Block and T-VUpd show that we allow
block variable declarations and assignments in an active control context only, be-
cause they involve a side-effect. The case statement is only well-typed in a passive
control context and also all its sub-statements have to be well-typed in a passive
control context.

Finally, we have to carry out minor adaptions to transform the rule T-Prog’
for open programs of Table 2.9 to T-Spec for specifications. The import declara-
tion check of rule T-Prog’ is replaced by a unit declaration check. Furthermore,
the function cltype has to be adapted, as the mock class declarations consist only
of the method signatures but do not provide method bodies.

Definition 3.3.1 (Well-typedness): A specification s is well-typed if there exist an as-
sumption/commitment context ∆,Θ and a control context γ such that the judgment

; ∆ ` s : Θγ

is deducible by means of the deduction rules given in Table 3.2 and 2.3. In particular,
the deduction starts with an empty local type mapping. Therefore, well-typedness of the

3.3. STATIC SEMANTICS 71

specification s is denoted by
∆ ` s : Θγ .

However, sometimes we will omit the control context annotation meaning that s is well-
typed either in a passive or in an active control context.

Note, although some statements can in general occur in a passive or in an
active control context, they are always well-typed within either a passive or an
active control context, only, depending on the code context. If, for instance, a
conditional statement forms the body of an outgoing call statement, then it is
well-typed in a passive control context. If, in contrast, it forms the body of an
incoming call statement, then it appears in an active control context.
Remark 3.3.2: Incoming call statements are well-typed in passive control context, only.
Their bodies in turn are only well-typed in active control context. The dual holds for
outgoing call statements. Together with the nested nature of the call statements, this leads
always to executions with interaction sequences that are consistent regarding the control-
flow at the interface.

The grammar given in Table 3.2 was motivated to show that the specifica-
tion language indeed represents basically a simple extension of the programming
language. Due to the relaxed control flow policy of the specification language,
however, we had to add some extra checks within the type system in order to en-
sure executability and satisfiability. Specifically, we added the notion of active and
passive control contexts as well as active and passive statements. It is also possible
to implement the control-flow related checks in the syntax definition already. In
particular, we can distinguish active and passive statements on the syntax level.
For this, consider the following definition.
Definition 3.3.3 (Active and passive statements: sact , spsv): The syntax for active and
passive statements, sact and spsv , respectively, is given in terms of the following gram-
mar where e refers to expressions as defined in Table 3.2:

spsv ::= if(e) {spsv} else {spsv} | while(e) {spsv} | spsv ; spsv

| stmt ′in | case stmt ′in ; spsv

stmt ′in ::= (C x)?m(T x).where(e) {T x; sact ; !return e}
| new(C x)?C(T x).where(e) {T x; sact ; !return}

sact ::= if(e) {sact} else {sact} | while(e) {sact} | sact ; sact

| x = e | {T x; sact} | stmt ′out
stmt ′out ::= e!m(e, . . . , e) {T x; spsv ; x =?return(T x).where(e) }

| new!C(e, . . . , e) {T x; spsv ; x =?return(T x).where(e) }.

The fact that conditional statements, while-loops, and sequential composi-
tions may appear in active and in passive control context is reflected within Def-
inition 3.3.3, in that parts of the original definition of stmt are duplicated to
corresponding parts in spsv and sact . The side-effect entailing assignments and

72 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

block statements, however, are always instances of sact . Note that we also had
to redefine the syntax definition for the incoming and outgoing communication
statements, as the new versions, stmt ′out and stmt ′in , account for the control-flow
policy. That is, an incoming call statement now has always an active statement
as expectation body and an outgoing call statement a passive statement.

The following lemma will relate the syntax definition for active and passive
statements with the original definition of the specification language. More specif-
ically, the lemma will show that all statements within a syntactical valid and
well-typed specification are instances of either sact or spsv .
Lemma 3.3.4: Let

s = cutdecl T x; mokdecl { stmt }

be a well-typed specification such that ∆ ` s : Θ. Then stmt is either of the form sact

or of the form spsv .

Proof. By structural induction. We show that Γ; ∆; Θ ` stmt : okpsv implies that
stmt is of the form spsv and that Γ; ∆; Θ ` stmt : okact implies that stmt is of the
form sact . We show some cases regarding the form of stmt :

Case (C x)?m(T x).where(e){T ′ x′; stmt ; !return e′}
Well-typedness of s yields

Γ; ∆; Θ ` (C x)?m(T x).where(e){T ′ x′; stmt ′; !return e′} : okpsv

and thus Γ; ∆; Θ ` stmt ′ : okact . Due to the induction hypothesis we know that
stmt ′ is of the form sact . And this in turn implies that stmt is of the form spsv .

Case x = e

We know that Γ; ∆; Θ ` x = e : okact . Moreover, x = e is an instance of sact .

Case stmt1; stmt2

Subcase
Assume Γ; ∆; Θ ` stmt1; stmt2 : okact . Then also Γ; ∆; Θ ` stmt1 : okact and
Γ; ∆; Θ ` stmt2 : okact . The induction hypothesis yields that both, stmt1 and
stmt2, are of the form sact . Thus, also the sequence is an instance of sact .

Subcase A
ssume Γ; ∆; Θ ` stmt1; stmt2 : okpsv . Then also Γ; ∆; Θ ` stmt1 : okpsv and
Γ; ∆; Θ ` stmt2 : okpsv . The induction hypothesis yields that both, stmt1 and
stmt2, are of the form spsv . Thus, also the sequence is an instance of spsv .

Assuming a well-typed specification, it is often more convenient to use the
syntax definition for active and passive statements instead of the general state-
ment definition stmt within proofs and definitions. In particular, we will use sact

and spsv in the following section which deals with the definition of the operational
semantics.

3.4. OPERATIONAL SEMANTICS 73

3.4 Operational semantics

In general the operational semantics of the specification language is very similar
to the operational semantics of the original programming language. In particular,
the internal steps remain the same. Regarding the inference rules of the external
steps, the crucial point is that we have to narrow down the communication steps
such that the resulting trace semantics of the specification consists only of the
specified traces (and their prefixes). This is implemented, on the one hand, by
additional premises and, on the other hand, by allowing incoming communication
only if a corresponding communication term is on top of the call stack.

The different handling of interface communication as well as the absence of
internal method and constructor calls also leads to a somewhat different, i.e.,
simpler, form of the call stack of a specification. For, the execution of a program
never adds or removes an activation record but each inference rule only modifies
the topmost activation record. Although this means that the call stack does not
consist of several blocked and possibly one active activation record, we still dis-
tinguish activation records which only allow incoming communication as the next
interface communication from activation records which only allow outgoing com-
munication as the next interface communication. Thus, for the activation records
of the specification language we define

AR ::= ARa | ARp

ARa ::= (µ,mcact)
ARp ::= (µ,mcpsv)

mcact ::= sact | sact ; !return(e); mcpsv

mcpsv ::= spsv | spsv ; x =?return(T x).where(e); mcact

The rules of the operational semantics are given in Table 3.3.
The rules CallO and NewO deal with outgoing method and, respectively,

constructor call statements. Just as the corresponding rules of the programming
language, the expressions within the actual call term are evaluated and the transi-
tion is labeled with an outgoing call label. However, in the resulting configuration,
the call stack is not blocked by a receive statement but instead only the actual
call term of the statement is removed leaving the body of the call statement on
top of the call stack. For, the body of the call statement comprises the desired
tester/environment interactions that should occur until the call’s incoming return
occurs. The variable structure is extended by a variable function for the local
variables of the call statement. Note that, although CallO and NewO resemble
the corresponding rules of the programming language we do not add an activa-
tion record as we did in the semantics of the programming language. Otherwise
the local variables of this call statement wouldn’t be accessible by the body state-
ment. Finally, the return statement is annotated with the return type of the called
method or, respectively, the callee’s class name.

74 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

[CallO]

sact = e!m(e) {T x; spsv ; x =?return(T x′).where(e′)}
a = ν(Θ′).〈call o.m(v)〉! o ∈ dom(∆)

∆ ` (h, v, (µ, sact ; mc
act

) ◦CS) : Θ
a−→

∆ ` (h, v, (vl·µ, spsv ; x=?return(T x
′
).where(e

′
); mc

act
) ◦CS) : Θ,Θ

′

where o = [[e]]v,µh ,
v = [[e]]v,µh ,
T = ∆2(o)(m).ran,
Θ′ = new(h, v,Θ), and

vl = {x 7→ ival(T)}

[NewO]

sact = new!C(e) {T x; spsv ; x =?return(C x′).where(e′)}
a = ν(Θ′).〈new C(v)〉! C ∈ dom(∆)

∆ ` (h, v, (µ, sact ; mc
act

) ◦CS) : Θ
a−→

∆ ` (h, v, (vl·µ, spsv ; x=?return(C x
′
).where(e

′
); mc

act ◦CS) : Θ,Θ
′

where v = [[e]]v,µh ,
Θ′ = new(h, v,Θ), and

vl = {x 7→ ival(T)}

[RetO]
a = ν(Θ′).〈return(v)〉!

∆ ` (h, v, (vl·µ, !return e; mc
act

) ◦CS) : Θ
a−→

∆ ` (h, v, (µ,mc
act

) ◦CS) : Θ,Θ
′

where

v = [[e]]
v,vl·µ
h and

Θ′ = new(h, v,Θ)

[CallI]

spsv = (C x)?m(T x).where(e′) {Tl xl; sact ; !return e}
a = ν(∆′).〈call o.m(v)〉? C = Θ(o) Θ ` a : ∆

[[e′]]
v,vl·µ
h = true

∆ ` (h, v, (µ, spsv ; mc
psv

) ◦CS) : Θ
a−→

∆,∆
′ ` (h, v, (vl·µ, sact ; !return e; mc

psv ◦CS) : Θ

where
vl = {x 7→ o, x 7→ v,

xl 7→ ival(Tl)}

[NewI]

spsv = new?(C x)C(T x).where(e′) {Tl xl; sact ; !return}
a = ν(∆′).〈new C(v)〉? C ∈ dom(Θ) Θ ` a : ∆

[[e]]
v,vl·µ
h = true

∆ ` (h, v, (µ, sact ; mc
act

) ◦CS) : Θ
a−→

∆,∆
′ ` (h

′
, v, (vl·µ, sact ; !return x; mc

act
) ◦CS) : Θ

where
o ∈ N \ dom(h),

h′ = h[o 7→ ObjC⊥],
and
vl = {x 7→ o, x 7→ v,

xl 7→ ival(Tl)}

[RetI]

a = ν(∆′).〈return(v)〉? ∆ ` a : Θ ∆,∆′,Θ ` v:T

[[e]]
v,{x′ 7→v}·vl·µ
h = true

∆ ` (h, v, vl·µ, x =?return(T x
′
).where(e); mc

act ◦CS) : Θ
a−→

∆,∆
′ ` (h, v′, (µ′,mc

act
) ◦CS) : Θ

where
(v′, v′l·µ

′) =
vupd(v, vl·µ, x 7→ v)

[CaseIC]

stmt in = (C x)?m(T x).where(e′) {Tl xl; sact ; !return e}
a = ν(∆′).〈call o.m(v)〉? C = Θ(o) Θ ` a : ∆

[[e′]]
v,vl·µ
h = true

∆ ` (h, v, (µ, case {stmt}; mc
psv

) ◦CS) : Θ
a−→

∆,∆
′ ` (h, v, (vl·µ, sact ; !return e; stmt

′
; mc

psv ◦CS) : Θ

where
stmt in ; stmt′ ∈ stmt

T x = mparams(C,m),
and
vl = {x 7→ o, x 7→ v,

xl 7→ ival(Tl)}

[CaseIN]

stmt in = new?(C x)C(T x).where(e′) {Tl xl; sact ; !return}
a = ν(∆′).〈new C(v)〉? C ∈ dom(Θ) Θ ` a : ∆

[[e]]
v,vl·µ
h = true

∆ ` (h, v, (µ, case {stmt}; mc
psv

) ◦CS) : Θ
a−→

∆,∆
′ ` (h

′
, v, (vl·µ, sact ; !return x; mc

act
) ◦CS) : Θ

where
stmt in ; stmt ∈ stmt

T x = mparams(C,m),
and
v = {x 7→ o, x 7→ v,

xl 7→ ival(Tl)}

Table 3.3: Specification language for Japl: operational semantics (external)

3.4. OPERATIONAL SEMANTICS 75

The rule RetO is almost identical to the former version, except that we do
not have to remove an activation record from the call stack. Likewise, we only
remove a variable function but not a method variable structure.

The rules CallI and NewI can only be applied if the statement on top of
the stack frame is indeed an incoming method call statement or an incoming
constructor call statement, respectively. Additionally, we add a premise which
asserts that the where-clause condition evaluates to true. The evaluation uses a
variable context which is already extended by the formal parameters of the call
terms, as the where-clause expression might contain references to parameters.
Again, only the call term is removed from the call stack.

Rule RetI deals with the incoming return term, which has been annotated
with the proper return type. After the transition, the variable context is shortened
by the top most variable function, since it represented the variables of the call
statement which the return term belonged to. Note, that we first updated the old
variable context with the incoming return value since we do not know whether
the target variable was part of the call statement’s variables.

The last rules CaseIC and CaseIN deal with the case statement. These rules
are applicable exactly if rule CallI or rule NewI is applicable for at least one
of its branches. One might think, it would be more straightforward to provide an
internal rule which just reduces the case statement non-deterministically to one
of its branches. However, not the specification but the external component should
non-deterministically choose a branch.

Leaving a statement on top of the stack frame after an outgoing call term has
been processed, results in a crucial change of the language. Right after the call,
the program is not blocked waiting for an incoming communication but it still
can proceed. Although the type system ensures that assignments may not occur
right after an outgoing call, still while-loops and conditional statements may be
processed by means of internal communication steps. Thus, regarding internal
computation steps, the specification language breaks the control flow requirement
here. However, concerning the interface communication, also a specification still
sticks to this requirement. For, the typing rules do not allow a nesting of statement
which results in two consecutive incoming or two consecutive outgoing commu-
nication terms. As a consequence, the traces of a specification program always
satisfy the control flow requirement.

Allowing while-loops and conditional statements in a passive control context,
however, eases the definition of trace-based specifications. A while-loop in a pas-
sive control context allows to specify repetitions of incoming calls where the exact
number of repetitions depends on the incoming values and is, thus, not known
statically. Conditional statements in a passive control context allow to specify
different expectations depending on conditions unknown statically.

Remark 3.4.1: Note, the lack of class definitions implies that all transition rules do not
depend on the specification code. That is, we do not have to index transition steps by a
specification.

76 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

Finally, we give a definition for test specification executions and traces that
corresponds to Definition 2.4.8. Moreover, we expand the trace semantics defini-
tion given in Definition 2.5.1 in order to include specifications.
Definition 3.4.2 (Specification execution; specification traces): Let

s ≡ cutdecl T x; mokdecl {stmt ; return}

be a specification with ∆ ` s : Θ. We, again, broaden the application of cinit , defined in
Definition 2.3.3 and Definition 2.4.8, such that we also apply it to specifications s.

The execution of a specification is represented by a finite, possibly empty, sequence
of internal and external transitions starting from its initial configuration. The sequence
of communication labels arising from an execution is called an (observable interaction)
trace of the specification. As in the case of program executions, we use an annotated
arrow t=⇒ to represent a specification execution that implements the trace t. The corre-
sponding rules are given in Table 2.13. Thus, the execution of a specification represents
the reflexive transitive closure of the internal and external transitions.

Note, that due to the relaxed control-flow policy, specifications do not have
passive but only active initial configurations. For, not a passive initial configu-
ration but a passive main statement is used to express a specification execution
that starts with an incoming communication. Similarly, the following definition
for the trace semantics of specifications gets by with only one semantic function.
Definition 3.4.3 (Trace Semantics): We expand the domain of the semantic function [[·]],
given in Definition 2.5.1, to ∆ ` s : Θ, where s represents a well-typed specification. In
particular, assuming ∆ ` s : Θ, we define

[[∆ ` s : Θ]] def= {s ∈ a∗ | ∆ ` cinit(s) : Θ s=⇒ ∆′ ` c′ : Θ′}

3.5 Example

Having defined the test specification language, let us have a look at two small
example specifications. The first example specifies the proper usage of a simple
file system library. The second example represents a test specification for the voter
system introduced in the Chapter 1.

Consider a system’s library for handling files equipped with a specific appli-
cation programmer’s interface (API). Usually, such an API entails a reasonable
orders of file operations that may be invoked by a program. In particular, let us as-
sume that the operations for writing strings to a file consists of an open-for-writing
operation, a sequence of write-string operations, and a final close operations. Fur-
ther, let us assume that a class File encapsulates these operations, such that they
are accessible via method calls. The class’ constructor is equipped with a string
parameter for specifying the file name. A method openWrite allows to request
for opening the file for writing. The method’s Boolean return value indicates a
successful or a failed execution of the file operation. Further, the class provides
a method writeStr which writes its string parameter to the corresponding file.
It returns the string that actually has been written to the file (which could be,

3.5. EXAMPLE 77

for instance, a prefix of the method’s parameter due to the lack of disk space).
Finally, an invocation of the close method closes the file and possibly allows to
release system resources that were used for handling the file. Again, a successful
execution of the underlying file close operation is committed with true.

The valid order of file-writing operations therefore corresponds to a sequence
of constructor and method calls regarding class File. Calling the method writeStr
before the file has been opened via openWrite, for instance, doesn’t make sense.
Instead, ignoring the method returns, the valid sequences can be depicted by the
following graph:

• new File // • f .openWrite // •

f .writeStr

DD
f .close // •

where we assume f to be the object that has been created by the constructor call
at the beginning of the sequence.

Knowing about the interface of File and the valid method invocation order,
we can specify the behavior to be shown by a program that uses File for writing
string files. The corresponding example specification is given in Listing 3.1.

The specification starts with the declaration of global variables. Since the
specification does not contain callbacks to the component under test we do not
need to specify its class names, hence we dropped the test class declaration. Lines
4 to 8 deal with the interface declaration of the File class as described above.

While the interface declaration stipulates the static aspects of the interface, the
behavior specification given in Lines 10 to 30 deal with its dynamic aspects. Lines
11 to 14 represent the expectation of an incoming constructor call: a file-write task
always starts with the creation of a File object. The expectation’s where-clause
checks whether the string represents a valid file name. Here, we just ensure that
the parameter is not the empty string. We store the name of the created object f
in the global variable file as the scope of the constructor call expectation ends in
Line 14.

After the object creation, we expect the object’s openWrite method to be
called. This is expressed in Line 15 to 18. Within the incoming call term in Line
15, we use the global variable file to ensure that indeed exactly the object is
called that just has been created.2 The actual file-operation for opening the file
is replaced by an assignment to the global Boolean variable writing. It encodes
the file state regarding write operations, in that the value true indicates the file’s
readiness for writing. Correspondingly, the value is passed as the return value to
the component under test.

Once the file is ready for writing, the component under test may write an
arbitrary number of strings to the file until it finally calls close to close it. This is
implemented in terms of a passive while-loop in Line 19 to 29. As long as writing is
true, the component under test is allowed to call the method writeStr for writing

2In this simple example, however, there exists no other instance of class File anyway.

78 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

Listing 3.1: Specification example: file-io
1 File file;
2 bool writing;
3

4 mock class File{ File(string);
5 bool openWrite();
6 string writeStr(string);
7 bool close()
8 }
9

10 {
11 new(File f)?File(string fname).where(fname != ””) {
12 file = f;
13 !return;
14 };
15 file?openWrite() {
16 writing = true;
17 !return(writing);
18 };
19 while (writing) {
20 case {
21 file?writeStr(string s) {
22 !return(s);
23 }
24 file?close() {
25 writing = false;
26 !return(true)
27 }
28 }
29 }
30 }

strings to file. A case construct, however, allows the component to alternatively
close the file by calling method close. This method sets the writing status-flag to
false which causes the specification to leave the while-loop. As a consequence,
in particular the component under test must not call writeStr anymore.

As mentioned above, the second example, given in Listing 3.2, illustrates a
test specification regarding the voter system. Due to the simplicity of the spec-
ification language, however, we have to use some additional constructs in the
example which are actually not provided by the original specification language.
More specifically, we import and use the Java classes HashMap and Vector in order
to define the test specification. That is, we assume that the specification language
is object-oriented – an extension which is actually discussed in Chapter 5. Recall
that the class Census is put to test. To this end, a list of Voter objects is passed

3.6. EXECUTABILITY AND INPUT ENABLEDNESS 79

to an instance of Census via method call conductVoting. Afterwards we expect
the Census object to enquire the vote of each of the Voter objects by calling their
method vote. Finally, it should return the conjunction of collected votes.

Similar to the jMock specification, we have to create a list of Voter objects by
means of the standard library class Vector. Actually, the specification language
does not support the import of library classes. We ignore this problem but initial-
ize the list with three internally created Vector objects in Line 6 to 8. Moreover, we
define a mapping votes which provides the vote for each Voter object in terms of
Boolean values. For the sake of brevity, we skipped the details of the initialization
of the mapping votes, but we assume that for each Voter object v of voters, the
expression votes.get(v) yields a Boolean value which will be used for the object’s
vote. Furthermore, we create an empty list called. During the voting procedure,
it will store the object names of the Voter object that have been called by the
Census instance, already.

The main specification statement, starting in Line 17, creates a Census object
c and calls its method census afterwards, passing a copy of the voters list to the
unit under test. The expectation body of this outgoing method call consists of
a while-loop which loops until each voter object has been called by c. The body
of the while-loop consists of an incoming call expectation of method vote of an
instance of the Voter. Specifically, the where-clause ensures that each Voter object
is called once, at most. In this case, the object yields its vote consulting the votes
mapping. Moreover, it calculates the outcome of the voting. Finally, it adds itself
to the list called.

3.6 Executability and input enabledness

As mentioned earlier, we want to generate an executable test program from a spec-
ification. More precisely, for every specification we should be able to automatically
derive a Japl program which checks whether the unit under test shows the desired
behavior at its interface as described by the specification. An important difference
between the specification and the resulting test program is that the test program
can not enforce the external component to show a certain behavior but instead
it tests for it. If the unit shows a behavior that deviates from the specification
then the test failed. In particular, we assume that a test program provides some
failure handling code which is only executed when the test program detects an
unexpected behavior of the unit under test. We don’t need to be specific regarding
the failure handling code but we only require the code to stop the program from
making any progress. Hence, it could merely consist of a diverging while-loop but
in real life it would probably report the failure to the user. May it as it be, we
refer to the failure handling code by the pseudo statement fail . Based on this, we
define

Definition 3.6.1 (Test failure detection): Assume c = (h, v, (µ, fail ; mc) ◦CS to be a
Japl configuration whose topmost statement is the pseudo statement fail . Then we denote

80 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

Listing 3.2: Specification example: voter system
1 import java.util.HashMap
2

3 test class Census;
4

5 Census c;
6 Vector voters = new Vector({
7 new Voter(); new Voter(); new Voter();
8 });
9 HashMap votes = ...

10 Vector called = new Vector();
11 Boolean conj = true;
12

13 mock class Voter {
14 Boolean vote();
15 }
16

17 new!Census() {
18 c=?return()
19 };
20 c!conductVote(voters.clone()) {
21 while (called.size() < voters.size()) {
22 (Voter v)?vote().where(called.contains(v) == false) {
23 Boolean myvote = votes.get(v);
24 called.add(v);
25 conj:=conj && myvote;
26 !return(myvote);
27 }
28 }
29 x=?return(Boolean y).where(y == conj)
30 }

this with
c ↓fault .

Moreover, if p is a well-typed Japl program with

∆ ` p : Θ s=⇒ ∆′ ` c : Θ′ and c ↓fault,

then we also may write
∆ ` p : Θ s=⇒↓fault .

Due to possible test failures, the test program does not have the same trace
semantics as the specification. For, as we have seen already, a test program which
gave away the control to an external component cannot restrict the incoming
communication but is generally input enabled. Therefore, executability means
that we can generate a test program which implements the specified outgoing

3.7. SATISFIABILITY AND COMPLETENESS 81

communication and which, at the same time, detects the first deviation from the
specified incoming communication.

Lemma 3.6.2 (Executability): Let s be a specification of our test specification language
and let ∆,Θ be an assumption-commitment context such that ∆ ` s : Θ. Then there
exists a Japl program p such that ∆ ` p : Θ and

1. for every trace t ∈ [[∆ ` s : Θ]] also t ∈ [[∆ ` p : Θ]] as well as

2. (a) for every trace tγ! ∈ [[∆ ` p : Θ]] also tγ! ∈ [[∆ ` s : Θ]], and

(b) for every trace tγ? ∈ [[∆ ` p : Θ]] either tγ? ∈ [[∆ ` s : Θ]]

or ∆ ` p : Θ
tγ?
=⇒↓fault .

Note that within 2.(b) of Lemma 3.6.2, we use an exclusive-or for the two
possible cases. That is, the test program p reports a failure if, and only if, the
specification did not expect the last incoming communication γ?. We will prove
the executability property in the next chapter by proposing a code generation
algorithm which generates a program with the desired properties.

3.7 Satisfiability and completeness

The traces of a test specification’s trace semantics describe the behavior that we
expect from the unit under test and thus determines what we want to test. But a
test which cannot be passed by any program is useless. Therefore, a specification
should always describe only traces with incoming communication that is indeed
implementable by a program of the programming language. Before we formalize
this feature it is important to realize that a change of the viewpoint is involved:
in the specification the expected behavior is given in terms of incoming commu-
nication carried out by an (absent) external component. In contrast, saying that a
program should exist which shows the desired behavior means that the communi-
cation shows up in terms of outgoing communication within the semantics of the
program.

Thus, in order to formalize the satisfiability requirement, we use the dual of a
given trace t, denoted by t̄, where in each label question marks and exclamation
marks are exchanged, such that each incoming communication label becomes an
outgoing communication label and vice versa.

Lemma 3.7.1 (Satisfiability): Let s be a specification of our test specification language
with ∆ ` s : Θ. Then for every trace t ∈ [[∆ ` s : Θ]] there exists a Japl program p such
that Θ ` p : ∆ and t̄ ∈ [[Θ ` p : ∆]].

Note, that executability requires the existence of a single program, whereas
satisfiability involves the existence of a program for each trace. This is a conse-
quence of the input non-determinism introduced by the formal parameters in the
incoming communication terms. That is, allowing different incoming values means
also allowing different components to pass the test.

82 CHAPTER 3. THE TEST SPECIFICATION LANGUAGE

The completeness requirement demands that each possible behavior of a Japl
component can be formulated as a desired behavior in terms of a specification of
the test specification language.
Lemma 3.7.2 (Completeness): Let p be a Japl program with ∆ ` p : Θ. Then for
every trace t ∈ [[∆ ` p : Θ]] there exists a specification s such that Θ ` s : ∆ and
t̄ ∈ [[Θ ` s : ∆]].

Chapter 4

Code generation

This chapter describes how to generate a test program of our Java-like program-
ming language Japl, introduced in Chapter 2, from a test specification given in
terms of our test specification language, introduced in Chapter 3. The generation
of proper programming language code that implements the specified test is a vital
aspect of our testing approach, which is depicted in Figure 4.1. In the left upper
corner, the figure sketches a Japl component and some environmental Japl code
which complement one another forming a closed Japl program. Component and
environment are assumed to communicate, which is represented by the double ar-
row. Due to the closeness, however, the communication is hidden inside the code.
This is indicated by the question mark.

In order to verify, that the component shows the desired behavior to its envi-
ronment, we first write a specification in terms of our test specification language.
The specification represents a simple environment for the component and, at the
same time, it phrases the desired behavior by stipulating a required component-
environment interaction. This is sketched in the bottom part of the figure, where
an exclamation mark within the double arrow indicates that the communication
represents a requirement.

As a final step, the test specification is used to generate a Japl program
which, again, represents an environment for the component and in particular tests
for the component’s behavior by observing and checking the actual component-
environment interaction against the specified behavior.

To understand the general strategy for the generation, it is useful to reca-
pitulate the nature of the specification language and especially, what are the
differences to (or additions to) the original programming language. The abstract
goal of the specification language is the specification of interaction traces used
for testing and employing programming-like structuring such as statements, ex-
pressions, and method invocations. As far as the interaction is concerned, i.e.,
the calls and returns exchanged at the interface of the unit under test, there is
a strong duality between incoming and outgoing communication, seen from the
perspective of the tester. Outgoing calls and returns must be carried out by the

83

84 CHAPTER 4. CODE GENERATION

component
under
test

component's environment

?
component

under
test

test program

test

!

test specification

test specification language

programming language

test creation code generation

Figure 4.1: Testing framework

tester, and incoming communication must be checked by it, and both adhering to
the linear order as given by the specification language, specifying a set of traces.
It suggests itself, to realize the interaction labels as given on the specification level
by corresponding method calls and returns at the program level. Obvious as it is,
however, to do so requires to tackle the following two points:

control flow: The code at the level of the Japl programming language must be
contained in bodies of methods, corresponding to the incoming method call
specifications of the test specification, i.e., the test-code must be appropri-
ately “distributed” over different method bodies and classes. Furthermore
and as mentioned, the order of accepting incoming communications and
generating outgoing ones must be realized as given by the specification. We
use a dynamic labeling mechanism to assure proper interaction sequencing.

variable binding: As a consequence of the above mentioned code distribution,
we have to deal with the two different scoping mechanisms of method call
statements within the specification language on the one hand, and method
definitions within Japl on the other hand. Although the parameters of an

4.1. PREPROCESSING 85

incoming method call statement at the specification level introduce a scope
that resembles the scope of the formal parameters introduced by a method
definition at the Japl level, there is a crucial difference. For instance, within
a specification of two nested incoming call statements1 the inner call state-
ment may refer to parameters of the outer incoming call statement. At the
Japl level, however, the two incoming call statements correspond to two
method executions which cannot mutually access their formal parameters
or variables.

In the following, we will present a code generation algorithm which transforms
a test specification of the specification language into Japl code. In particular,
the algorithm will produce method bodies of tester classes, which implement the
specified test. For a better understanding, the algorithm consists of two steps. The
first step modifies the specification, in order to introduce the labeling mechanism
and to deal with the variable binding problem, respectively. Since the outcome of
the transformation is still a specification, it is rather a preprocessing step. The
second step, in contrast, will generate method body code from a specification that
has been preprocessed already, hence, we can assume certain properties.

4.1 Preprocessing

4.1.1 Labeling mechanism

The programming language Japl does not provide language constructs for stat-
ing the expectation of a certain incoming communication at a certain point of
the program execution. The specification language in contrast provides special
expectation statements for this purpose. Recall that the introduction of incoming
call statements entails a relaxation of the strict sequential control-flow policy, as
these statements are to be processed after realizing an outgoing communication.
In Japl an outgoing communication always leads to a control context, where the
execution of a statement is impossible as the Japl program is blocked until an in-
coming communication occurs. Thus, to stress this specific feature of specification
statements that are executed between an outgoing and an incoming communica-
tion we introduced the notion of a passive control context in Section 3.3 and we,
correspondingly, called these statements passive statements. Further, recall that
apart from incoming call statements we additionally allow while-loops and condi-
tional statements to appear in a passive control context, in order to increase the
expressiveness of the specification language.

In particular, the introduction of passive while-loops and conditional state-
ments leads to a dynamic evaluation of the incoming communication expecta-
tions. That is, the next expected incoming communication is determined at run-
time, possibly depending on previous incoming values. This is the basic language

1The satisfiability requirement demands an outgoing call statement to occur between the
outer and the inner incoming call statement. Though, the outgoing call does not play a role in
this example.

86 CHAPTER 4. CODE GENERATION

disparity that we have to overcome if we want to generate a proper test program
in Japl that results from a specification of the test specification language.

Our first step on the way to the test program is to introduce the basic frame-
work for ensuring that the external steps carried out by the final test program
will occur in the same order as stipulated in the specification. To this end, we tag
all incoming communication terms of the specification with a unique identifier.
We will use these ids in the final test program in order to match the interface
communication steps that occur during the test execution with the corresponding
communication statements of the specification. Moreover, the labeling mechanism
will enable us to dynamically determine the next expected incoming communi-
cation without the need for passive while-loops and conditional statements. This
paves the way for generating proper code in the final code generation step, which
does not support passive statements.

For a better understanding of the labeling idea, let us take a look at a simple
specification snippet:

Listing 4.1: Preprocessing: specification snippet
1 u!doSomething(x) {
2 if(e) {
3 (C t)?meth1() { !return(y1); }
4 } else {
5 (C t)t?meth2() { !return(y2); }
6 }
7 ?return(z)
8 };

In this example, the method doSomething of unit object u is called by the tester
and is expected to react with an incoming call of either method meth1 or method
meth2, depending on the value of expression e. Both tester methods, meth1 and
meth2, immediately return and finally the incoming return from the first method
call is expected. For the sake of simplicity, we do not use where-clauses here.

If we want to translate this specification fragment to proper test code of the
programming language, we have to face two problems. First, in the operational
semantics of the specification language, it is possible to invoke the unit method
doSomething of u and proceed internally by executing the following conditional
statement such that afterwards either the incoming call term of method meth1 or
of meth2 is on top of the call stack. In the resulting test program, however, reduc-
ing the conditional statement right after giving away the control is not possible.
Second, in the specification language the incoming call terms express the expec-
tation of either of the methods meth1 or meth2 . The programming language, in
contrast, does not provide expectation terms but an incoming method call always
leads to the execution of the corresponding method body. In particular, basically
every method provided by the test program can be called. It is important to un-
derstand that, due to this input-enabledness of the programming language, we
won’t be able to generate a program that prevents the tester’s environment from
showing an undesired behavior. However, the idea is to write a test program, that

4.1. PREPROCESSING 87

is, we do not want to prevent the component under test from doing something
wrong but we want to detect an unexpected behavior. Thus, at least, immedi-
ately after the call has been accepted, conformance to the specification should be
checked, i.e., the invoked method should find out whether it was expected to be
called.

Our approach to tackle these problems involves a preprocessing of the spec-
ification which is explained in the following by means of the example. First, we
annotate the terms for incoming communication with unique ids i1, i2, and i3:

Listing 4.2: Preprocessing: annotated specification
1 u!doSomething(x) {
2 if(e) {
3 [i1](C t)?meth1() { !return(y1); }
4 } else {
5 [i2](C t)?meth2() { !return(y2); }
6 }
7 [i3]?return(z)
8 };

Furthermore, we introduce a global variable next which is used to store the iden-
tifier of the next expected incoming communication. Then, in order to determine
the next expected call without the passive conditional statement, we have to an-
ticipate the conditional statement such that it is implicit decision regarding the
next expected call is carried out right before the control is given away to the
external component. In this example this means we evaluate the conditional ex-
pression e and, correspondingly, set the global variable next to the identifier of
the next expected incoming call term before we call doSomething.2 When the ex-
pected method meth1 or, respectively, meth2 is invoked then the corresponding
expectation body realizes, first, a test on next to determine whether this call was
expected, i.e., whether it is conform to the specification, and, second, an update of
the next variable right before the method returns the control back to the tester’s
environment. In our example both methods have to update next to i3.

As shown below, this leads to an extension of the code by three next update
statements and three next check statement:

Listing 4.3: Preprocessing: anticipation
1 if(e) { next = i1 } else { next = i2 };
2 u!doSomething(x) {
3 if(e) {
4 [i1](C t)?meth1() { check(i1); next = i3; !return(y1); }
5 } else {
6 [i2](C t)?meth2() { check(i2); next = i3; !return(y2); }
7 }
8 [i3]?return(z)

2Note, it is possible to evaluate the expression e earlier, as we assume expressions to be
side-effect free.

88 CHAPTER 4. CODE GENERATION

9 };
10 check(i3);

In this example three patterns regarding the code generation become apparent:

• Every term which implements an outgoing communication step is immedi-
ately preceded by an update of next . This applies to outgoing method calls
and outgoing returns. The update can be a simple assignment or a rather
complex evaluation.

• A passive conditional statement leads to the situation that the preprocessed
code contains an equivalent anticipatory conditional statement which imple-
ments the update of the next variable.

• Every term which implements an incoming communication step is immedi-
ately succeeded by a check of next . This applies to incoming method calls
and incoming returns. We use an auxiliary notation, check, for this.

In the final program code, the auxiliary notation check will be replaced by a certain
statement which implements the test regarding next . However, in the specification
language it is impossible that the external component implements an unexpected
call, anyway. So for the time being we can consider the statement check to be
equal to ε. Yet, we added the check statement in this step already as the check
represents the counterpart of the update statement. It also makes the idea of
the labeling mechanism more clear. Note, furthermore, that we did not remove
the passive conditional statement. The reason is that the preprocessing step shall
yield valid specification code. The final program code, naturally, won’t contain
the passive conditional statement anymore.

Now let us describe a general algorithm for a preprocessing step which trans-
forms test code as sketched in Listing 4.1 into test code as sketched in Listing 4.3.
The basic idea is to inspect the passive conditional statements and while-loops
of the original code in order to determine a corresponding anticipated update
statement of the variable next . The resulting code then will consist of the origi-
nal code, equipped with theses update statements and their corresponding check
statements. We define the preprocessing step by a syntax-directed code transfor-
mation. The transformation determines all the necessary next update statements
and, at the same time, inserts these statements, as well as the corresponding
checks, into the code. A next update statement is an assignment statement of the
following form:

snxt ::= next =e | if(e) {snxt} else {snxt}

Remark 4.1.1: Within a specification that provides the global variable next , the exe-
cution of a next update statement snxt always terminates. Specifically, apart from the
assignment to next , it is free of side-effects.

4.1. PREPROCESSING 89

Since the specification language allows nestings of passive conditional and
while statements, a next update statement might equally consist of nested condi-
tional statements. During the preprocessing’s recursive descent through the speci-
fication an update statement might evolve until it is finally inserted at its intended
position in the code. We define two mutually recursively applied functions

prepin : spsv × snxt → snxt × spsv and

prepout : sact → sact ,

given in Table 4.1 and Table 4.2, respectively. Both functions expect a statement
as argument which is in passive or, respectively, active control context. They
return the same statement but annotated with ids as well as extended by checks
and next update statements. Additionally, as a second argument, prepin expects
a next update statement which determines the identifier of the next incoming
communication that is expected to happen after statement spsv has been executed.
The update statement is inserted in spsv in front of its last outgoing return. Dually,
prepin also yields a new next update statement which describes the next expected
incoming call of spsv itself, i.e., which has to be carried out before spsv is executed.

prepout(e!m(e, . . . , e){T x; spsv1 ; x =?return(T x′).where(e′) }) def
=

snxt ; e!m(e, . . . , e){T x; spsv2 ; x = [i]?return(T x′).where(e′)}; check(i, e′);
where (snxt , s

psv
2) = prepin(spsv1 , next = i)

prepout(new!C(e, . . . , e){T x; spsv1 ; x =?return(C x′).where(e′) }) def
=

snxt ; new!C(e, . . . , e){T x; spsv2 ; x = [i]?return(C x′).where(e′)}; check(i, e′);
where (snxt , s

psv
2) = prepin(spsv1 , next = i)

prepout(if (e) {sact1 } else {sact2 })
def
=

if (e) {prepout(s
act
1)} else {prepout(s

act
2)}

prepout(while (e) {sact}) def
= while (e) {prepout(s

act)}

prepout(s
act
1 ; sact2)

def
= prepout(s

act
1); prepout(s

act
2)

prepout({T x; sact}) def
= {T x; prepout(s

act)}

prepout(x = e)
def
= x = e

Table 4.1: Preprocessing: labeling and anticipation (prepout)

The definition of prepout is straightforward. Its solely interesting case deals
with an outgoing call statement. The call’s incoming return term is annotated

90 CHAPTER 4. CODE GENERATION

with a new identifier i3. The return value of prepout comprises not only a mod-
ified version of the call statement but it represents actually a sequence of three
statement: the call statement is framed by an anticipating next update statement
and a check statement. In order to find out the proper update statement, however,
the function prepin must be applied on the body of the call expectation state-
ment. The application of prepin also inserts the return term’s update statement
into the expectation body, which is merely an assignment of i to next . For all
other active statements, prepout is either the identity or, in case of a composite
statement, prepout is applied recursively.

prepin((C x)?m(T x).where(e){T x; sact ; !return e′}, snxt)
def
=

(next = i, [i] (C x)?m(T x).where(e){T x; check(i, e); prepout(s
act); snxt !return e′})

prepin(new(C x)?C(T x).where(e){T x; sact ; !return}, snxt)
def
=

(next = i, [i] (C x)?m(T x).where(e){T x; check(i, e); prepout(s
act); snxt !return})

prepin(ε, snxt)
def
= (snxt , ε)

prepin(if(e){spsv1 } else {spsv2 }, snxt)
def
= (if(e){s1nxt} else {s2nxt}, if(e) {s̃p1} else {s̃

p
2})

where
(s1nxt , s̃

p
1) = prepin(spsv1 , snxt) and (s2nxt , s̃

p
2) = prepin(spsv2 , snxt)

prepin(spsv1 ; spsv2 , snxt)
def
= (s1nxt , s̃

p
1 ; s̃p2)

where
(s2nxt , s̃

p
2) = prepin(spsv2 , snxt) and (s1nxt , s̃

p
1) = prepin(spsv1 , s2nxt)

prepin(while(e){spsv}, snxt)
def
= (if(e) {s1nxt} else {snxt}, while(e) {s̃p})

where
(s1nxt ,) = prepin(spsv , snxt) and (s2nxt , s̃

p) = prepin(spsv , if(e){s1nxt} else {snxt})

prepin(case {stmt in ; spsv}, snxt)
def
= (next = i, case { ˜stmt in ; s̃p})

where for each stmt lin ; spsvl ∈ stmt in ; spsv

stmt lin = (C x)?m(T x).where(e){T x; sact ; !return e′} it is

(slnxt , s̃
p
l) = prepin(spsvl , snxt) and

˜stmt
l
in = [i](C x)?m(T x).where(e){T x; check(i, e); prepout(s

act); slnxt !return e′}

Table 4.2: Preprocessing: labeling and anticipation (prepin)

As shown in Table 4.2 the function prepin , applied to an incoming method or
constructor call, annotates the call with a new identifier, puts the given update
statement snxt in front of the outgoing return, and yields an assignment to i as
its own update statement. Moreover, it applies prepout to the expectation body.

3We assume a unique name generation scheme here which guarantees that the new identifier
is indeed not used within the rest of the program.

4.1. PREPROCESSING 91

As we have seen in the example, regarding the update statement to be cal-
culated, a passive conditional statement leads to a conditional update statement.
Note that prepin is applied recursively to the conditional’s branches which yield
to corresponding next update statements that have to be incorporated into the
conditional update statement. Moreover, the given update statement that is to be
inserted, has to be inserted in both branches of the passive conditional statement.

Regarding sequential composition, the given update statement snxt has to
be inserted in spsv2 since snxt determines the next incoming communication that
happens after the sequential composition. The processing of spsv2 yields a new
update statement that has to be inserted in spsv1 whose transformation, in turn,
yields the final update statement for the whole sequence.

Processing of the while-loop leads to two recursive applications of prepin . The
first call is used to find out the update statement solely for the while-body. In
particular, we are not in interested in the resulting code transformation. This is
indicated by the symbol. However, if the expression e is false then the body of
the while-loop would be skipped. Thus the update statement of the while-loop
is a conditional statement, where one branch consists of the update statement of
the while-loop body and the other one of the update statement of the consecutive
statement. The resulting update statement has to be inserted also in the body
statement itself which is done by the second application of prepin .

The processing of the case statement, finally, follows the pattern of the pro-
cessing of an incoming call. Nevertheless, we do not apply prepin recursively, as
we want to equip every call of the case statement with the same expectation iden-
tifier. This way, we express that each branch of the case statement represents an
expected interface communication.

Note that the transformation functions are well-defined. More specifically,
prepin is defined for all statements that may occur in a passive context and prepout

for all statements that may occur in an active control context. The mutual recur-
sion regarding the body of call statements is justified by Remark 3.3.2. Moreover,
it is easy to see that the resulting code is syntactically correct and well-typed
(under the assumption that the original statement was syntactically correct and
well-typed and that the resulting program is extended by the global variable next).

A specification that results from the preprocessing step mentioned above has
the following properties:

• Each incoming method call statement is of the following form:

[i] (C x)?m(T x).where(e){T x; check(i, e); sact ; snxt !return e′},

that is, the call is annotated with an identifier, the body starts with a
corresponding expectation check, and the return term is preceded by an
expectation update statement. The identifier is unique unless the call is
a branch of a case expression, where other calls with the same identifier
annotation could exist.

The incoming constructor call has the same features.

92 CHAPTER 4. CODE GENERATION

• Each outgoing call statement is transformed into code of the following form:

snxt ; e!m(e, . . . , e) {T x; spsv ; [i]x =?return(T x′).where(e′)}; check(i, e′),

where i is a unique identifier. Moreover, within the specification, each oc-
currence of an outgoing call statement is preceded by an update statement
snxt and followed by an expectation check check(i, e′).

The same properties hold for an outgoing constructor call.

Remark 4.1.2 (Adjustment of initial expectation identifier): Consider, we want to pre-
process a specification

s = cutdecl T x; mokdecl { stmt },

where the body statement stmt is passive. Applying prepin to stmt yields not only the
new statement, stmt ′, but also a next update statement snxt . In order to anticipate the
next incoming communication of stmt ′, the update statement snxt has to be executed at
the very beginning of the specification. Since the specification body appears in a passive
control context, however, this is not possible.

The solution is as follows. Assume T to be the type of the expectation identifiers
as well as of the variable next and i0 = ival(T). That is, the operational semantics
initializes each variable of type T to i0. Within the preprocessed specification, we replace
all occurrences of identifier i by the initial value i0 where i is determined by the execution
of snxt :

cinit(T x; T next ; {snxt ; return}) −→∗ (h, v, (µ, return)) and
i = [[next]]v,µh .

Renaming the identifier of the first expected incoming communication to the initial value
i0 leads to the fact that we do not need to explicitly initialize next with a specific value.

Note, that snxt always consists of conditional statements and assignments to next ,
only. In particular, it does not involve any loops or method or constructor calls. Thus,
the small program above that executes snxt for determining the very first expectation
identifier always reaches the terminal configuration.

The main idea of the preprocessing is the following. Whenever an incoming
communication expectation term is about to be executed, its associated identifier
is indeed stored in the global variable next . In other words, whenever an incoming
call or return occurs the variable next indicates whether this call or return was
expected. This is formalized by the following lemma.

Lemma 4.1.3 (Anticipation): Let s be a valid specification and stmt its body statement.
Then let s′ be the specification that results from the preprocessing step such that we in-
troduce a new global variable next and the body statement of s is replaced by either
prepout(stmt) or prepin(stmt), depending on whether stmt is an active or a passive

4.1. PREPROCESSING 93

statement. (If stmt is passive additionally consider an adjustment of the initial expecta-
tion identifier according to Remark 4.1.2). Let, in particular, c = (h, v, (µ,mc) ◦CS) be
a configuration such that

∆ ` cinit(s′) : Θ t=⇒ ∆′ ` c : Θ′ .

Then the following holds:

1. if mc = [i] (C x)?m(T x){. . .}; mcact then [[next]]v,µh = i,

2. if mc = [i] new(C x)?(T x){. . .}; mcact then [[next]]v,µh = i

3. if mc = case {[i] stmt }; mcact then [[next]]v,µh = i, and

4. if mc = [i]?return(T x).where(e); mcact then [[next]]v,µh = i.

Remember, however, that the variable next does not have any influence on
the behavior of the preprocessed specification. For, no statement but only the
new check statements evaluates next in order to test if the actual incoming com-
munication matches with the specification. Since the preprocessed specification
still contains the original expectation statement, which do not accept a wrong
behavior anyway, these checks are always positive. As mentioned early, we will
need next in the final Japl program due to the general input-enabledness of the
programming language.

4.1.2 Variable binding

The specification language supports nested incoming and outgoing call statements
such that formal parameters and local variables of outer statements are accessible
also within the inner statements. This supports the look-and-feel of the origi-
nal programming language where also static scopes for local variable declaration
exist. Since we have to move and distribute most of the specification code into
method bodies, however, the original local scopes do not exist in the resulting
code anymore, rendering it impossible to access certain local variables or formal
parameters. Listing 4.4 shows a small specification snippet which has been already
preprocessed regarding the expectation identifiers, i.e., the code is already anno-
tated with identifiers. The example shows two nested incoming call statements.
For the sake of simplicity, both calls address the same class and method. The
first incoming call defines a formal parameter xp as well as a local variable xl and
the second one only a parameter yp. Thus, the body of the second call statement
has access to both the parameters xp and yp as well as to the local variable xl.
The inner call statement, indeed, makes usage of the outer call’s local variable xl
within its where-clause and also it accesses the outer call’s formal parameter xp
within a conditional statement.

In order to get valid test code, we have to translate the two incoming call
statements into code which will reside in the method body of method meth. In
particular, the translation of the sketched conditional statement will be part of

94 CHAPTER 4. CODE GENERATION

Listing 4.4: Formal parameters and local variables
[i] (C x)?meth(C xp) {

C xl;
· · ·
[j] (C y)?meth(C yp).where(yp > xl) {
if(xp < yp) { . . . }
· · ·
}
}

the method’s body. However, the second invocation of meth won’t be aware of the
variable xp. In order to make it accessible, we have to make the variable globally
accessible. To this end we extend our preprocessing step with the introduction of
global variables xgp, x

g
l , and ygp representing the counterpart of the local variables

xp, xl, and yp, respectively. Additionally, we introduce global counterparts xg

and yg for the callees of the two incoming calls. Right after the first invocation
of meth, the expectation body has to assign the values of its actual parameters
to xg and xgp. When the method is called a second time, the global variable xgp is
used to access the value of the formal parameter of the first call. Furthermore the
global variable xgl is used in the where-clause. The result is shown in Listing 4.5.
Note that we still use the “local” parameter yp in the where-clause as its value
has not been copied to ygp when the clause is evaluated.

Listing 4.5: Variable globalization
[i] (C x)?meth(C xp) {
xg=x; xgp=xp;
· · ·
[j] (C y)?meth(C yp).where(yp > xgl) {
yg=y; . . .
if(xgp < ygp) { . . . }
· · ·
}
}

Since the general “variable globalization step”, as it has been explained by the
example above, is rather straightforward, we don’t want to introduce it in all its
formal details but we sketch the basic idea. In general we extend our preprocessing
of specification programs by the following steps:

• For each local variable and formal parameter that occur in the original
specification, a new global variable is added.4

4We assume all local variables and formal parameters of the original specification to be

4.2. JAPL CODE GENERATION 95

• Each incoming call or return term is followed by a sequence of statements
that copy the values of the formal parameters to their global correspondent.
In the following we will refer to this sequence by the auxiliary statement
svinit if needed.

• Each occurrence of a local variable or parameter within the specification is
replaced by its global correspondent. This, of course, neither applies to the
occurrences of formal parameters in the incoming call or return term itself
nor to the occurrences in svinit .

• A consequence is that local variable are of no use anymore, hence, we re-
move all local variable declarations within expectation statements and block
statements. Specifically, block statements { T x; stmt } are resolved in that
they are replaced by their wrapped statement stmt .

Having explained separately the two main aspects of the preprocessing step
we bundle them by means of a definition.
Definition 4.1.4 (Preprocessing): Consider

s = cutdecl T x; mokdecl {stmt},

to be a valid specification. Then with prep(s) we denote the specification

s′ = cutdecl T x; T ′ x′; mokdecl {stmt ′},

that results from preprocessing s. In particular, depending on the control context, the
body statement stmt ′ results from either applying prepout or prepin to stmt followed by
a variable globalization as explained above. Hence, the new variables x′ comprise next
as well as the global counterparts of the formal parameters and local variables defined in
stmt . In case that stmt is passive we additionally consider an adjustment of the initial
expectation identifiers as explained in Remark 4.1.2.

4.2 Japl code generation

We have seen that the preprocessing step results in a specification which con-
tains a global variable next that is updated to the identifiers of the next expected
incoming communication — right before the specification passes the control to
the component through an outgoing communication. Moreover, due to variable
globalization the specification is free from variable accesses crossing an outgoing
communication. These were important steps towards the final test program. How-
ever, the preprocessed specification still contains expectation statements, which do
not exist in the programming language Japl. In the next step we finally translate
these statements to syntactic valid Japl code.

Before we start, let us summarize the features of a specification which results
from the preprocessing step that was described above.

different. Otherwise we can accomplish this by a proper renaming as we consider Var to be
infinite.

96 CHAPTER 4. CODE GENERATION

1. The list of the specification’s global variables includes the variable next and
global correspondents for all formal parameters and local variables of the
original specification.

2. All accesses to local variables and formal parameters within the original
specification are “redirected” to the corresponding global variable, i.e., all
occurrences of local variables and formal parameters within assignments
and expressions of the original specification are replaced by their global
counterparts.

3. The specification is free from local variables and free from block statements.

4. An incoming method call statement always has the following form:

[i] (C x)?m(T x).where(e){svinit ; check(i, e); sact ; snxt ; !return e′}.

That is, the body consists of a statement svinit that assigns the values of
the actual parameters to global variables, a check whether this call was
expected, the actual body sact , an expectation update statement snxt , and
finally the return term. In particular, the body does not introduce any local
variables. Incoming constructor call statements and case statements have a
similar form.

5. Each outgoing method call statement always appears in following form:

snxt ; e!m(e, . . . , e){sact ; [i]x =?return(x′).where(e′)}; check(i, e′),

such that each call statement is preceded by an expectation update state-
ment and followed by a check. Outgoing call statements do not introduce
local variables either.

As mentioned before, the last thing that remains to be done is to remove the
passive statements and to translate the expectation statements into valid code of
the programming language. As for the incoming call statements, the basic idea
is to move the expectation body into the method body of the callee method.
However, in order to do so, we have to consider the following:

• If the specification contains two or more incoming call statements that ad-
dress the same method, then we have to add all the corresponding expec-
tation bodies to the same method body. Thus, we have to make sure that
the corresponding Japl code of either of the expectation bodies is executed
each time the method is called. In particular, exactly the expectation body
must be chosen that matches with the specification at the specific situation
where the call occurs. Moreover, if the method is called but no matching
expectation statement of the specification can be found, the test program
should realize this and consider it to be an unexpected behavior.

4.2. JAPL CODE GENERATION 97

Listing 4.6: Code generation: method body scheme
T meth(T1 x1, . . . , Tn xn) {

T retVal;

expectation1

...
expectationk
fail;

return(retVal);
}

• In the specification, each incoming call statement introduces its own set
of formal parameters. A method definition, however, provides only one set
of formal parameters. Since more than one incoming call statements might
flow into a single method definition, the call statement’s formal parameters
have to be unified.

• Certainly, we cannot merely copy an expectation body into the correspond-
ing method body, as in general an expectation body might contain a nesting
of other expectation statements, which have to be translated as well. More-
over, the programming language does allow exactly only one return term at
the end of a method definition. Thus we cannot add a return term for each
expectation body.

Listing 4.6 sketches our approach for the generation of method code. A method
body always starts with the definition of a local variable retVal which is used for
the return value. For each of the method’s call expectation statements we put the
corresponding method code, represented by the expectationi boxes, between the
variable definition and the return statement. More precisely, the expectation boxes
are actually nested and this nesting ends with the pseudo statement fail which
represents the error handling in case of an unexpected call. Listing 4.7 sketches
the Japl code that implements an incoming call statement, that is, it shows how
the expectation boxes of Listing 4.6 look like. The nesting arises from the fact that
each expectation handler is wrapped into a conditional statement which checks
whether the actual call of the method matches with the incoming call expectation
statement. Thus the corresponding code is executed only if the variable next holds
the identifier of the incoming call statement and if the expression of the where-
clause evaluates to true. In this case the actual code of the expectation body is
executed and finally the return variable retVal is set to the return value of the call
statement. Otherwise, we have to check the other expectation handlers. If even
the inner-most expectation does not match with the actual call, then the call was
unexpected, that is, the else-branch of the inner-most expectation box consists of

98 CHAPTER 4. CODE GENERATION

Listing 4.7: Code generation: code for expectationk−1

1 if((next == id) && check-where-clause) {
2 body

3 retVal = ret-val ;

4 } else { expectationk };

the fail statement.
The constructor of a class has a similar pattern. As the return value of a

constructor is always the new instantiated object, however, we do not have to
provide a return variable in the constructor body. In exchange we have to deal
with internal object creation. Thus, constructor bodies differ from method bodies
in that they additionally contain a conditional statement which enables internal
calls:

if(internal == true) {
skip;
} else { fail };

Thus, if no matching incoming call expectation can be found, then, before we
consider the constructor call to be unexpected, we additional check if an internal
object creation was expected. To this end, we consult a dedicated global Boolean
variable internal. A value of true indicates an internal constructor call that corre-
sponds to an equivalent call within the specification. In this case the constructor
has to do nothing but solely return the new object since the specification language
does not allow to provide specific code for internal object creation. Accordingly,
every internal object creation, x = new C, within the specification program will
be translated to a similar object creation framed by assignments to the new global
variable internal:

internal = true;
x = new C(v1, . . . vk);
internal = false;

This way, the constructor can distinguish internal calls from unexpected incoming
calls. Note that due to typing issues it might be necessary to provide some dummy
parameter values v1 to vk. As shown above, the internal object creation always
results in the execution of the empty statement skip only, such that actual values
of the dummy parameter have no influence on the new object.

In the following, we assume a set of class definitions cldef which consists of
the classes to be provided by the tester program. Each of the classes’ methods
is of the structure as shown in Listing 4.6. We will present an iterative trans-
formation algorithm which will extend the method bodies piece by piece but we
will start with classes where each method and constructor body does not contain
any expectation code so far. That is, we assume a set of initial class definitions

4.2. JAPL CODE GENERATION 99

method code:

T meth(T1 x1, . . ., Tk xk) {
T retVal;

fail;

return(retVal);
}

constructor code:

C(T1 x1, . . ., Tk xk) {

if(internal == true) {
skip;
} else { fail; }

return;
}

Table 4.3: Initial method and constructor code

cldef init where each method and constructor of the classes is of the form as shown
in Table 4.3.

As mentioned above, starting from these initial class definitions we gradually
extend the method and constructor bodies in order to add code that deals with a
certain call expectation. Table 4.4 introduces an auxiliary notation which describes
the modification of a class definition set by extending a method body with call
expectation code. The notation

cldef .C.m
(i,ew)→ stmt : e

represents a sequence of class definitions which is identical to cldef except that
the method body of method m of class C is extended by the statement stmt. More
precisely, a new conditional statement as sketched in Listing 4.7 is created where
i represents the expected communication identifier and ew is the expression of
the where-clause. Along with a return value assignment, the new statement stmt
is inserted as the main branch of the conditional statement whereas the original

cldef .C.m
(i,ew)→ stmt : e

def
= cldef ′ where

cldef = class C {T f mdef } ∈ cldef ,

mdef = T ′ m(T ′ x′){Tl xl; stmtb; return(retVal)} ∈ mdef ,

mdef ′ = T ′ m(T ′ x′){ Tl xl;
if((next == i) && (ew)){

stmt ; retVal = e;

} else { stmtb; };
return(retVal) },

cldef ′ = class C {C x mdef ′} ∈ cldef ,

cldef ′ = cldef \ {cldef } ∪ {cldef ′}.

Table 4.4: Code-generation: method extension

100 CHAPTER 4. CODE GENERATION

method body statement forms the else-branch. That is, in the definition we exploit
our knowledge about the structure of the method bodies. Note, that the meaning
of the notation is not defined for sequences of class definitions where class C does
not exist or where class C does not provide an appropriate method definition.

We use cldef .C.C
(i,ew)→ stmt for the extension of a constructor body which only

differs from the definition given in Table 4.4, in that we do not add a return value
assignment.

The final code generation step is carried out by two mutual recursive functions,
which are pointwise defined in terms of simple functional programming code for
the sake of clarity. The function

codeout : cldef × sout ⇀ cldef × stmtpl ,

given in Table 4.5, generates code only from specification statements which are in
active control context. It yields a statement of the programming language equiv-
alent to the original specification statement.5 However, the function additionally
returns a new class definition sequence. For, the specification statement could in-
corporate an expectation statement resulting in the extension of the corresponding
callee class. The function

codein : cldef × sin ⇀ cldef

transforms statements that are in passive control context into method body code,
modifying the given set of class definitions. The function’s definition is given in
Table 4.6.

Let us have a closer look at the codeout definition. The first two definitions
of Table 4.5 deal with outgoing method and constructor call statements. When
we translate such a call statement of the specification language into proper pro-
gramming language code, we have to merge the expectation statement’s call term
with its return term to get a call statement of the programming language. More-
over, the specification body must be processed. As the specification body might
contain incoming call expectations, its processing potentially leads to a modifica-
tion of the given class definitions. Note, that we assume a specification which has
been preprocessed, that is, we do not need to add a check regarding the expecta-
tion identifier or regarding the where-clause, since the preprocessing has already
added it. Moreover, we can assume that the specification code does not contain
declarations of local variables.

The transformation does not need to modify assignments. As explained above,
internal object creations have to be distinguishable from unexpected incoming
constructor calls. Thus, the translation uses a corresponding flag to indicate an
internal instantiation. Moreover, we have to add dummy parameters to the con-
structor call, in order to get a well-typed call. For each parameter of type T we

5We use the superscript pl to indicate that the resulting statement is an element of the
programming language.

4.2. JAPL CODE GENERATION 101

codeout(cldef, e!m(e) {stmt ; [i]?return(x).where(ew)})
def
=

let cldef ′ = code in(cldef , stmt) in (cldef ′, x=e.m(e)).

codeout(cldef , new!C(e){stmt ; [i]?return(x).where(ew)}) def
=

let cldef ′ = code in(cldef , stmt) in (cldef ′, x=new C(e)).

codeout(cldef , x=e)
def
= (cldef , x=e)

codeout(cldef , new C())
def
=

let T x = cparams(C) in

let stmt = intern =true; x = new C(ival(T)); intern =false in (cldef , stmt).

codeout(cldef , stmt1; stmt2)
def
=

let (cldef 1, stmtpl
1) = codeout(cldef , stmt1) in

let (cldef 2, stmtpl
2) = codeout(cldef 1, stmt2) in (cldef 2, stmtpl

1 ; stmtpl
2).

codeout(cldef , while (e) {stmt})
def
=

let (cldef ′, stmtpl) = codeout(cldef , stmt) in (cldef ′, while (e) {stmtpl}).

codeout(cldef , if (e) {stmt1} else {stmt2})
def
=

let (cldef 1, stmtpl
1) = codeout(cldef , stmt1) in

let (cldef 2, stmtpl
2) = codeout(cldef 1, stmt2) in (cldef 2, if(e) {stmtpl

1 } else{stmtpl
2 })

Table 4.5: Generation of Japl code (codeout)

pass its initial value ival(T) to the constructor. The parameter types can be looked
up in the class definition of the corresponding class.

A sequence of two active expectation statements is processed by transforming
each statement, i.e. a sequence is processed in terms of two recursive applica-
tions of codeout . We pass the original class definitions to the codeout application
regarding the first statement and we use the resulting class definition for the
transformation of the second statement. The class definitions that result from the
second transformation then represents also the result of the sequence’ transfor-
mation. While-loops, and conditional statements are processed similarly, that is,
we have to process their sub-statements, recursively.

Now let us discuss the definitions of codein of Table 4.6. Again the process-
ing of incoming method and incoming constructor calls are similar. One common
task is to substitute the expectation statement’s formal parameters by the for-
mal parameters of the corresponding method or constructor definition and the
expectation’s callee names by the special self reference symbol this, respectively.

The remaining passive statements are compositions of other passive state-
ments, hence, the transformation is realized by recursive applications of codein .

102 CHAPTER 4. CODE GENERATION

code in(cldef, [i] (C x)?m(T x).where(e){check(i, e); stmt ; !return er})
def
=

let (cldef ′, stmtpl) = codeout(cldef , stmt) in
let T xp = mparams(C,m) in

let (e′, e′r, stmtpl ′) = (e, er, stmtpl)[this/x, xp/x] in cldef ′.C.m
(i,e)→ stmtpl ′ : e′r.

code in(cldef, [i] new(C x)?C(T x).where(e){check(i, e); stmt ; !return}) def
=

let (cldef ′, stmtpl) = codeout(cldef , stmt) in
let T xp = cparams(C) in

let (e′, stmtpl ′) = (e, stmtpl)[this/x, xp/x] in cldef ′.C.C
(i,e)→ stmtpl ′.

code in(cldef , stmt1; stmt2)
def
=

let cldef 1 = code in(cldef , stmt1) in

let cldef 2 = code in(cldef 1, stmt2) in cldef 2.

code in(cldef , if(e) {stmt1} else {stmt2})
def
=

let cldef 1 = code in(cldef , stmt1) in

let cldef 2 = code in(cldef 1, stmt2) in cldef 2.

code in(cldef , while(e) {stmt}) def
=

let cldef 1 = code in(cldef , stmt) in cldef 1.

code in(cldef , case { stmt1 stmt2 . . . stmtn})
def
=

let cldef 1 = code in(cldef , stmt1) in
. . .

let cldef n = code in(cldef n−1, stmtn) in cldef n.

Table 4.6: Generation of Japl code (codein)

As for the transformation of a case statement, for instance, the branches are trans-
formed subsequently, such that one branch uses the updated class definitions of
the previous transformation.

4.3 Generation of the test program.

In the previous section we introduced the algorithm for generating class defini-
tions from a given specification statement. Let us now summarize and complete
the necessary steps for generating a complete test program from a specification
program. Assuming that we have a valid specification program

s = cutdecl T x; mokdecl {stmt ; return},

such that ∆ ` s : Θ for some name contexts ∆ and Θ, we can generate a corre-
sponding test program in the following way:

4.4. CORRECTNESS OF THE CODE GENERATION 103

1. We preprocess the specification s according to Definition 4.1.4 which results
in a new specification

s′ = prep(s) = cutdecl T ′ x′; mokdecl {stmt ′; return},

which is, in particular, equipped with the anticipation code and which is
free of local variables.

2. Now we translate the sequence cutdecl into an import declaration sequence
impdecl . To this end, each declaration test C defined in cutdecl is translated
to import C, that is, we only have to replace the keyword test by the
keyword import.

3. For each class definition of mokdecl we define an initial class definition with
method and constructor code as given in Table 4.3 respecting the param-
eter and return types of the corresponding class. This results in an initial
sequence of class definitions cldef 0. If stmt ′ is a passive statement we define

cldef = codein(cldef 0, stmt ′) and stmtpl = ε,

and otherwise we define

(cldef , stmtpl) = codeout(cldef 0, stmt ′).

4. The resulting test program is defined by

p = impdecl ; T ′ x′; cldef ; {stmtpl ; return}.

4.4 Correctness of the code generation

The programming language, the test specification language, and the code genera-
tion algorithm are given in terms of formal definitions. This allows us to formally
prove the correctness of the code generation algorithm. Although the language
represents a relatively small subset of Java or C] the correctness proof turns out
to be quite complex already. While the complete proof is given in the appendix,
this section provides a discussion of the proof idea. After introducing some fun-
damentals regarding correctness proofs in general we will point out some specific
characteristics of the test code generation. Based on this, we will outline the proof
with references to the corresponding details in the appendix.

Before we deal with the actual correctness proof, we should first clarify the
meaning of correctness in this context. Correctness of an algorithm in general is
always to be understood with respect to a specific specification. That is, an algo-
rithm is considered as correct if it meets its specification. Usually, the specification
of an algorithm captures its functional aspects only, such that the specification
stipulates a desired relation between an input to the algorithm and its generated
output. As for our code generation algorithm, its input values are test specifica-
tions of the test specification language and its corresponding output values are

104 CHAPTER 4. CODE GENERATION

represented by the generated Japl test programs. Intuitively, the desired input-
output relation between a test specification and the resulting Japl program is
clear, as well:
Algorithm specification (informal): For each valid test specification s, the Japl
program p, generated by the algorithm, has to test whether the component’s behavior
exposed to its environment conforms to the behavior specified by s. This has two aspects:

1. The generated test program p has to provide a proper environment for the compo-
nent under test. In particular, it must not prevent a specification-conform compo-
nent from showing the desired behavior.

2. Program p must detect undesired behavior.

For a formal correctness proof we likewise need a formal algorithm specifica-
tion too. To this end, we have to bring the informal algorithm specification into
the context of the formal language and algorithm definitions. Recall that the trace
semantics of a Japl component consists of communication traces, where each trace
captures, both, the behavior of the component exposed to its environment but also
the behavior of the environment exposed to the component. Correspondingly, we
defined the test specification language basically as an extension of the program-
ming language, such that a specification’s trace semantics serves as a description
of a desired component’s behavior to be exposed to its environment if reciprocally
the environment exposes a certain behavior to the component. Thus, in our set-
ting the first requirement of the informal specification above can be formalized in
terms of a trace inclusion. For, each trace of the specification represents a valid
behavior of the component which, therefore, must be realizable by the generated
program as well. Otherwise it would prevent a specification-conform component
from showing the desired behavior. Moreover, the trace inclusion ensures that
the test program provides a proper environment in that it exposes the specified
behavior to the component under test.
Requirement 1 (Provide a proper environment): For each well-typed speci-
fication s with ∆ ` s : Θ the generated test program p must have the following property:

[[∆ ` s : Θ]] ⊆ [[∆ ` p : Θ]],

This means that the test program may behave in the same way as the spec-
ification in that the test program simulates the specification. Indeed, originally
introduced by Milner in [47] as a means to compare programs, simulation has
become a standard proof technique for correctness proofs.6 For systems that are
given in terms of a labeled transition systems the notion of simulation is commonly
defined as follows.
Definition 4.4.1 (Simulation): Assume a labeled transition system (Conf , a,→). A sim-
ulation relation is a binary relation S ∈ Conf × Conf such that for each pair of config-
urations c, d ∈ Conf the following holds: if (c, d) ∈ S then for all c′ ∈ Conf and for all

6For a detailed discussion of simulation relations see also [48].

4.4. CORRECTNESS OF THE CODE GENERATION 105

transition labels a
c
a−→ c′

implies that there is a d′ ∈ Conf such that, using the same label a, also

d
a−→ d′ and (c′, d′) ∈ S.

Given two configurations c and d, we say d simulates c if there is a simulation S such
that (c, d) ∈ S.

Thus, intuitively, a configuration d simulates another configuration c, if all the
behavior that can be shown by c can also be shown by d such that d’s successor
again simulates the successor of c. If we relate this to the execution of the generated
test program this means that, indeed, the test program must be able to realize each
communication trace that is realized by the specification as well. The advantage
of the simulation definition given in Definition 4.4.1 is that the trace inclusion is
broken down to single transition steps only.

The definition of simulation that we gave above, however, requires that all
transitions are observable, i.e., all transitions are labeled. According to the oper-
ational semantics of the specification and the programming language, in contrast,
we distinguish external, i.e., labeled, from internal, i.e., unlabeled, transitions.
Specifically, as for our testing approach, the generated test program need to sim-
ulate the interface communication of the specification only, because they represent
the desired observable behavior. But we don’t have to be so strict regarding the
internal transitions. Hence, we need a slightly more relaxed simulation definition,
called weak simulation.
Definition 4.4.2 (Weak simulation): Assume a labeled transition system

(Conf , a,→)

which also allows for unlabeled transitions. A weak simulation relation is a binary re-
lation S ∈ Conf × Conf such that for each pair of configurations c, d ∈ Conf the
following holds:

1. if (c, d) ∈ S then c′ ∈ Conf with

c c′

implies that there is a d′ ∈ Conf such that

d ∗ d′ and (c′, d′) ∈ S.

2. if (c, d) ∈ S then c′ ∈ Conf and a transition labels a with

c
a−→ c′

implies that there is a d′ ∈ Conf such that, using the same label a, also

d
a=⇒ d′ and (c′, d′) ∈ S.

106 CHAPTER 4. CODE GENERATION

Given two configurations c and d, we say d weakly simulates c if there is a simulation S
such that (c, d) ∈ S.

Note, in the implication of the definition’s first requirement we used the star
annotated internal transition arrow (∗) for the transition from d to d′ allowing
for more than one internal transition steps but it also includes the case where d
equals d′. Furthermore, the double arrow (a=⇒) in the implication of the second
requirement states that the overall transition from d to d′ may consist not only
of the transition step labeled with a but it may be preceded and followed by a
sequence of internal transitions.

As for our code generation algorithm, the generated program p must be able
to weakly simulate the specification: it must be able to produce the same ob-
servable behavior in terms of sequences of interface interactions but in between
of these interactions it may perform different internal computation steps. But,
intuitively, the generated code should not only support the behavior that is given
by the specification but beyond that it must not support any additional behavior.
This is in general captured by the notion of bisimulation. Bisimulation has been
introduced by Park [54] for testing observational equivalence of the calculus of
communicating systems. A simulation relation S is a bisimulation, if the inverse
relation S−1 is a simulation relation as well. An equivalent definition is given in
the following.
Definition 4.4.3 (Bisimulation): A binary relation S ∈ Conf × Conf is a bisimulation
if for all pairs of configurations c, d ∈ Conf the following holds:

If (c, d) ∈ S then for all transition labels a it is:

1. For all c′ ∈ Conf
c
a−→ c′

implies that there is a d′ ∈ S such that, regarding the same label a,

d
a−→ d′ and (c′, d′) ∈ S,

2. and, symmetrically, for all d′ ∈ S

d
a−→ d′

implies that there is a c′ ∈ S such that, regarding the same label a,

c
a−→ c′ and (c′, d′) ∈ S,

Given two configurations c and d in S, c is bisimilar to d, written c ∼ d, if there is a
bisimulation S such that (c, d) ∈ S.

The bisimilarity relation is the largest bisimulation relation of the given labeled
transition system. Note, the bisimilarity relation ∼ is an equivalence relation. In
particular, if c is bisimilar to d then d is also bisimilar to c. Note, moreover, that
two configurations are not necessarily bisimilar if one configuration simulates the

4.4. CORRECTNESS OF THE CODE GENERATION 107

other and vice versa, but instead it is important that they simulate each other
regarding the same simulation relation.

Corresponding to the simulation relation, we can define a weak bisimulation
which also allows internal steps.
Definition 4.4.4 (Weak bisimulation): A binary relation S ∈ Conf ×Conf is a bisimu-
lation if for all pairs of configurations c, d ∈ Conf the following holds:

Assume (c, d) ∈ S.

1. For all c′ ∈ Conf we have:

(a) If
c c′

then there is a d′ ∈ Conf such that

d ∗ d′ and (c′, d′) ∈ S.

(b) If, for some communication label a,

c
a−→ c′

then there is a d′ ∈ Conf such that, regarding the same label a,

d
a=⇒ d′ and (c′, d′) ∈ S.

2. Symmetrically, for all d′ ∈ Conf we have:

(a) If
d d′

then there is a c′ ∈ Conf such that

c ∗ c′ and (c′, d′) ∈ S.

(b) If, for some communication label a,

d
a−→ d′

then there is a c′ ∈ Conf such that, regarding the same label a,

c
a=⇒ c′ and (c′, d′) ∈ S.

Given two configurations c and d in S, c is weakly bisimilar to d, written c ≈ d, if there
is a weak bisimulation S such that (c, d) ∈ S.

Note, that also a weak bisimulation relation is an equivalence relation. Hence,
c is weakly bisimilar to d exactly if d is weakly bisimilar to c.

Be it as it may, it is important to understand, that the generated test program
is in fact not (weakly) bisimilar to the specification. This is due to a crucial

108 CHAPTER 4. CODE GENERATION

difference between a test and a specification: while a specification describes only
the desired behavior of the component, a test, in contrast, has additionally to
reckon with components that do not conform to the specification. That is, a test
can fail. This is reflected by the fact that the test program’s trace semantics
also includes traces which entail an undesired behavior of the component under
test. In particular, the trace semantics of the generated program is not equal to
the trace semantics of the test specification. However, the test program should
detect an undesired behavior of the component as soon as possible and react
with a failure report. Correspondingly, a trace of the generated test program may
only deviate from the specification due to an undesired behavior caused by the
component under test but the observable behavior of the test program itself must
be always as specified. As a consequence, the second requirement for a correct code
generation algorithm cannot be expressed by a simple trace inclusion statement
but it has to account for the possibility of undesired incoming communication.
This can be formalized as follows.

Requirement 2 (Detect undesired behavior):

1. sγ! ∈ [[∆ ` p : Θ]] implies sγ! ∈ [[∆ ` s : Θ]]

2. sγ? ∈ [[∆ ` p : Θ]] implies either sγ? ∈ [[∆ ` s : Θ]]

or ∆ ` cinit(p) : Θ
sγ?
=⇒↓fault .

We said that intuitively the test program should support the specified interface
behavior – but nothing more. Indeed, the second requirement for a correct code
generation algorithm resembles the first requirement, in that the trace inclusion
is split into two parts regarding the last communication label — the first part
does demand trace inclusion and only the second part adds some extra behavior:
All traces of the program that end with an outgoing communication must be
included in the specification’s trace semantics, as well. Traces of the program that
end with an incoming communication, however, must either be included in the
specification’s trace semantics or otherwise the program must report a failure after
realizing the trace. For, the latter case represents a program execution where the
last interface communication due to the component under test was not expected
according to the specification.

Thus, as mentioned above already, the second requirement cannot be formu-
lated in terms of the usual simulation relation but we have to come up with a
similar yet slightly different definition.

Definition 4.4.5 (Testing simulation): Assume a labeled transition system

(Conf , a,→)

which also allows for unlabeled transitions. A testing simulation relation is a binary
relation S ∈ Conf × Conf such that for each pair of configurations c, d ∈ Conf the
following holds:

4.4. CORRECTNESS OF THE CODE GENERATION 109

1. if (c, d) ∈ S then c′ ∈ Conf with

c c′

implies that there is a d′ ∈ Conf such that

d ∗ d′ and (c′, d′) ∈ S.

2. if (c, d) ∈ S then c′ ∈ Conf and a transition labels a with

c
a−→ c′

implies that

(a) either there is a d′ ∈ Conf such that, using the same label a, also

d
a=⇒ d′ and (c′, d′) ∈ S

(b) or otherwise there exist no such d′ ∈ Conf but instead

c′ ↓fault .

Given two configurations c and d, we say d simulates c up to test failures if there is a
testing simulation S such that (c, d) ∈ S.

As a consequence, the desired input output relation for our code generation
algorithm is not captured by a bisimulation relation but we have to combine the
simulation aspect with the testing simulation.
Definition 4.4.6 (Testing bisimulation): A simulation relation S ∈ Conf × Conf is a
testing bisimulation if S−1 is a testing simulation. Given two configurations c and d, we
say d is testing bisimilar to c (or: d is weakly bisimilar to c up to testing failures), written
c - d, if there exists a testing bisimulation S with (c, d) ∈ S.

Note, in contrast to bisimulation, testing bisimulation is not symmetric: the
generated test program simulates the specification, but the specification simulates
the test program up to test failures only.

Summarizing, we state the correctness of the generated test program and we
subsequently sketch the proof.
Lemma 4.4.7 (Correctness of the test program generation): Let s be a well-typed test
specification and, correspondingly, let p be the Japl program that results from s accord-
ing to the test program generation algorithm given in Section 4.3. Then p fulfills Require-
ment 1 and Requirement 2.

The complete proof of Lemma 4.4.7 is given in the appendix. Yet, in the follow-
ing we present the general proof idea. We have to show that for each specification
s and for the correspondingly generated program p we can provide a relation S
such that S represents a testing bisimulation for s and p. More precisely, we have
defined the different simulation and bisimulation relations for configurations, only.

110 CHAPTER 4. CODE GENERATION

Therefore, we actually have to provide a testing bisimulation relation Rb which
includes the pair consisting of the initial configurations regarding s and p, respec-
tively, i.e.,

(cinit(s), cinit(p)) ∈ Rb.

For the sake of brevity, however, we will use in this context the specification and
the program as a shorter representation for their initial configurations, such that
we can also write

(s, p) ∈ Rb.

Since the code generation algorithm is given in two parts, namely the prepro-
cessing step and the actual Japl code generation step, we will break down the
proof into two parts, as well.

The preprocessing step results in a new specification which must not show a
different behavior than the original specification. In particular, it does not entail
the above mentioned specification-test discrepancy but the result of the prepro-
cessing step still represents a specification. Therefore, we have to show that the
original specification and the preprocessed specification are indeed (weakly) bisim-
ilar. Regarding the actual Japl code generation step, however, we have to deal
with the discrepancy between a specification and a test. Thus, we have to show
that the preprocessed specification and the resulting Japl code are related with
respect to a testing bisimulation. The combination of both proofs yield the re-
sult that the original specification and the Japl code are testing bisimilar. The
correctness proof of the code generation algorithm can be sketched as follows.
For a given specification s we first provide a weak bisimulation relation Rb with
(s, prep(s)) ∈ Rb where prep(s) is the specification that results from preprocessing
s. Second, we give a testing bisimulation relation Rt with (prep(s), p) ∈ Rt where
p is the Japl program that results from generating Japl code from prep(s). Thus,
we will prove

s ≈ prep(s) - p

for each input output pair, s and p of the code generation algorithm.
Section C.1 of the appendix deals with the bisimulation proof regarding the

preprocessing step, i.e., we prove s ≈ prep(s). More specifically, the proof of
Lemma C.1.3 shows that the specification which results from applying the pre-
processing functions prepin and prepout , defined in Section 4.1, is bisimilar to the
original specification. In fact, the proof does not take the variable globalization
step into account. However, due to the absence of recursion it is obvious that the
variable globalization does not affect the observable behavior of the specification,
hence, we can derive from the proof that a specification s and its preprocessed
version prep(s) are bisimilar.

Next, we have to prove that prep(s) - p where p represents the Japl program
which has been generated from prep(s) according to Section 4.2 and 4.3. This is
subject to Section C.3. Regarding this testing bisimilarity proof, two complications
arise. First, the operational semantics of the Japl language is formalized in context
of a specific program p. For instance, Rule Call refers to the implementation of

4.5. FAILURE REPORT AND FAULTY SPECIFICATIONS 111

the corresponding method in p. As a consequence, we have to include the program
p into the definition of the testing bisimulation relation. More specifically, for each
program p we provide a corresponding relation Rpb .

Second, as mentioned in Section 4.1, the transition from a specification s to a
corresponding Japl program p renders it necessary to distribute the originally se-
quential specification over several method bodies and classes. On the other hand,
testing bisimilarity certainly entails the requirement that p sticks to the originally
specified order of interactions. This is were the anticipation mechanism comes into
play. That is, in Section C.1 we prove that already the preprocessed specification
is equipped with properly anticipating code regarding the next incoming commu-
nication step.

4.5 Failure report and faulty specifications

Up to this point, we assumed that a test program just stops execution, if the
unit under test shows an undesired behavior. More precisely, we assumed that
the abstract code check(i,e) and assert(e) diverge, if it detects an unexpected
incoming communication. This was sufficient for the theoretical considerations so
far, but in practice such a reaction certainly isn’t very helpful. Instead, a test
program should report if the behavior of the unit under test does not comply
with the specification. To this end, we assume an additional external component
which allows for printing error messages. If an expectation identifier check or a
where-clause assertion fails, the external component is used to report a failed test
run. Afterwards, since the language does not provide a statement for an abnormal
termination, we can stop the program with an infinite empty while-loop.

Clearly a test run fails if the unit under test implements an interface communi-
cation which is unexpected according to the specification. But what are actually
the criteria for passing a test? A straightforward and intuitive criterion for a
successful test run would be a test program execution that reaches a terminal
configuration such that the corresponding interface trace is also an element of the
specification’s trace semantics. Due to while-loops, however, a specification can
specify desired interface traces of arbitrary length. This allows to specify and test
the interface behavior of reactive systems which usually do not terminate with
a final result but are expected to interact with their environment continuously.
Thus, not only a test run that ended in a terminal configuration is considered to
be successful but also all (possibly ongoing) executions — unless the unit under
test shows an undesired interface communication. The only trivial difference be-
tween a successful terminated test run and an ongoing test run is that a ongoing
successful test run can still become a faulty test run due to an undesired behav-
ior of the unit, whereas the terminated successful test run cannot become faulty
anymore. In cases where we want to emphasis the latter kind of successful test
runs we speak of an irrevocably successful test run.

In classic state-based testing usually only terminating test runs can be as-
sessed. For, at the very end of the test program, a test verdict is derived from
the final program state. It wouldn’t make sense to say anything about test suc-

112 CHAPTER 4. CODE GENERATION

cess or failure for an ongoing test execution. In our testing approach, however, a
test verdict is spread on the complete interface trace: each occurrence of an ex-
pected incoming communication represents a desired behavior of the unit under
test. Thus, we do not only increase confidence on the unit with each terminated
successful test run, but we increase confidence already during a test execution.
This justifies our decision to count ongoing test runs as successful test runs.

With this notion of success, we do not need to add any code for success re-
ports: we assume that a termination of the program is visible, which indicates an
irrevocably successful test run; likewise a program which is still in execution, but
in absence of failure reports so far, is considered to be successful.

Nevertheless, again in the real world, this notion of success is also not always
useful. A diverging unit would be considered as successful, although this seldom
complies with the desired behavior. On account of this, we additionally assume
that the system provides the possibility to implement a time-out, such that an
expected incoming communication has to occur within a certain time period,
otherwise the test program reports a time-out failure and stops. In a simpler
setting, the test program continuously reports on the progress and the software
tester can decide to stop the program if he or she notices that the program hasn’t
made any progress for a longer time.

Note, that as in other testing approaches, a failed test execution does not
necessarily result from a faulty unit but it also may indicate a faulty specification.
To understand this, consider the following specification snippet.

Listing 4.8: Faulty traces: specification snippet
1 count = 1; lastval = 1000;
2 while(count <= 10) {
3 (C x)?meth(int i).where(i > 0 && i < lastval) {
4 count = count + 1;
5 lastval = i;
6 !return(null)
7 }
8 }

In the example, a while-loop expresses the expectation of 10 consecutive incoming
calls, all addressing the same class and method. Moreover, a global variable lastval
is used within the call statement’s where-clause in order to assure that the value
of the call’s parameter is greater than zero and less than the parameter’s value of
the last call or, in case of the first call, less than the initial value of 1000.

Now, let us assume a deduction in the operational semantics of the specifi-
cation language where the parameter of the first incoming call is 5. Although
this call is satisfying the where-clause it makes, at the same time, a complete
processing of the specification program impossible, since for each of the expected
consecutive calls the value of the parameter has to be decreased at least by one.
Thus, the deduction gets stuck meaning that the specification program cannot
reach the terminal configuration. However, the first call could have had a differ-
ent value, such that in this case finishing the program would have been possible.

4.5. FAILURE REPORT AND FAULTY SPECIFICATIONS 113

In other words, the feasibility for reaching a terminal configuration depends on
the behavior of the external component. For this reason, we consider the behavior
shown by the external component of our example as incorrect.

However, if we modify the specification example such that the initial value
of the variable lastval is not 1000 but 5, then things are different. In this case,
no matter what the incoming behavior is, it is not possible to reach a terminal
configuration. Therefore, we call the modified specification a faulty specification.
A trace of a specification which cannot be extended by further communication
steps due to unsatisfiable where-clauses is called a faulty trace. Note, that a single
trace can be faulty due to a faulty specification or due to an incorrect behavior
of the external component. A specification is exactly a faulty specification if all
of its traces are faulty traces.

Note, that also faulty specifications are satisfiable, as the operational seman-
tics of a faulty specification cannot produce a matching incoming communication
label, either. In particular, also regarding the specification language, a faulty spec-
ification can never reach a terminal configuration.

Chapter 5

Further possible
extensions

Within the last chapters we have provided a basic framework for testing compo-
nents of object-oriented class-based languages like Java and C]. A main contribu-
tion was the development of a test specification language which allows to specify
a desired interface trace in order to stipulate the expected interface behavior of an
object-oriented component under test. As mentioned earlier, however, some of the
common features of object-oriented programming languages have been omitted.
In this chapter we want to discuss some of these features. In particular, we sketch
possible approaches to incorporating certain features into our programming lan-
guage. We also investigate the extension’s impact on our testing approach and
correspondingly suggest additional modifications of the specification language, if
necessary. Furthermore, we discuss some extensions concerning the specification
language only, that is, language features that may facilitate writing test specifi-
cation.

5.1 Specification classes

We have introduced a test specification language which can be used to describe
expected interface interactions of communicating objects. The specification lan-
guage itself, however, is not object-oriented. Extending the specification language
with classes and objects may allow for reusing and parameterizing specifications.

Specifically, in this section we want to investigate an extension of the specifi-
cation language with specification classes. Method bodies of specification classes
consist of specification statements. An invocation of such a specification method
gives rise to the expectation of the interface interaction sequence given by the
method’s body. A specification statement within a method body might contain
reference to fields and to parameters of the method as well as calls to other spec-
ification methods. In particular, a specification method may call itself, i.e., the
extension of the language introduces recursion. Summarizing, a method body of

115

116 CHAPTER 5. FURTHER POSSIBLE EXTENSIONS

s ::= cutdecl T x; mokdecl cldef { stmt } specification

cutdecl ::= test class C; test unit class

mokdecl ::= mock class C{C(T, . . . , T); T m(T, . . . , T)}; mock class

cldef ::= class C{T f ; con mdef } class def.

con ::=C(T x){T x; stmt ; return} constructor

mdef ::=X m(T x){T x; stmt ; return} meth. def.

stmt ::=x = e | x = new C() | ε | stmt ; stmt | {T x; stmt} statements

| while (e) {stmt} | if (e) {stmt} else {stmt}
| stmt in | stmtout | case { stmt in ; stmt }
| f = e | e.m(e, . . . , e) | x = new C(e, . . . , e)

stmt in ::= (C x)?m(T x).where(e) {T x; stmt ; !return e} incoming stmt

| new(C x)?C(T x).where(e) {T x; stmt ; !return}
stmtout ::= e!m(e, . . . , e) {T x; stmt ; ?return(x).where(e)} outgoing stmt

| new!C(e, . . . , e) {T x; stmt ; ?return(x).where(e)}
e ::=x | f | this | null | op(e, . . . , e) expressions

X ::= ? | ! control context

Table 5.1: Extension by specification classes: syntax

a specification class represents a trace specification which is possibly abstracted
over parameters, variables, and sub-traces.

Note that introducing specification classes, renders it necessary to distinguish
them from mock classes. While mock classes are still given in terms of their sig-
nature only, specification classes in contrast are fully-fletched classes similar to
the programming language classes except that their method bodies may contain
expectation statements. Furthermore, mock objects still neither provide fields nor
do they allow for internal method calls. On the contrary, specification classes and
their objects must not show up at the interface trace, hence, they can be consid-
ered as hidden classes with respect to the specification program’s environment.
We will capture these requirements by the type system, which we will explain
somewhat later.

Table 5.1 suggests a grammar extension of the specification language regarding
specification classes. We have extended the grammar of the original specification
language given in Table 3.1 by constructs for class definitions and by statements
for method and constructor calls as well as field updates. The definition of specifi-
cation classes resembles the definition of conventional classes in the programming
language but differs in two aspects. First, for simplicity reasons, method defini-
tions do not include return values and therefore not a return type either. Second,
instead of a return type, method definitions state the control context X of the
body statement. Note, that a method call statement does not entail an assign-
ment, due to the lack of a return value. Finally, we have added rules for expressions
that yield the current object’s name or the value of one of its fields, respectively.

5.1. SPECIFICATION CLASSES 117

We said earlier, that we have to distinguish mock and specification classes.
The proper differentiation will be carried out by the type system. In particular,
internal method calls as well as field accesses may only be targeted at instances of
specification classes, while interface communication statements may only involve
external or mock classes.

Additionally, we have to ensure that the new constructs do not allow to spec-
ify an inconsistent control flow. For, in general we want to allow invocations of
specification methods to appear within, both, passive and active control context,
yet we have to check that a specification method’s body complies with the con-
trol context of its call. In account of this, we extend the type definition given in
Definition 2.2.1 by adding the rule

T ::= (MNames ∪ CNames) ⇀ (U × . . .× U)γ .

The new type is used for specification classes. It yields the parameter types and
the control context γ of each of the specification class’s methods and constructor,
allowing to check for control flow consistency. At the same time, it also allows to
distinguish mock and specification classes, as mock classes will be associated with
the usual class types.

The type system of the original specification language is extended by rules for
the new constructs. These new rules resemble the corresponding typing rules of
the programming language as given in Table 2.2 and Table 2.3. Besides adding
new rules we only have to modify the Rule T-Spec in order to deal with the new
class definitions. Thus, Table 5.2 only shows the new version of Rule T-Spec as
well as the new rules concerning the new class definition constructs and the new
statements. All other rules that were given in Table 3.2 are inherited without any
modifications and are, therefore, left out. We also omit the straightforward typing
rules for the new expressions.

As mentioned earlier, we extend Rule T-Spec with a judgment for type check-
ing the specification class definitions. Additionally, we have to ensure that spec-
ification types do not show up in the interface communication. That is, the sig-
natures of methods and constructors of both, mock classes and imported classes,
must not include class names of specification classes. This check is abbreviated
by the new premise ∆ ` Θ : ok, which stands for:

∀C ∈ dom(∆). ∀C ′ ∈ commedCl(C,∆). C ′ ∈ dom(Θ)⇒ isMockCl(C ′)
∧
∀C ∈ dom(Θ). isMockCl(C)⇒ ∀C ′ ∈ commedCl(C,Θ).
C ′ ∈ dom(Θ)⇒ isMockCl(C ′),

where we use the following two auxiliary functions in order to determine the set
of communicated class names within the signature of a given class and to find out
if a class is a mock class but not a specification class:

commedCl(C,χ) def= ∪m∈dom(C){χ(C)(m).dom ∪ χ(C)(m).ran} and

isMockCl(C) def= Θ(C) ∈ (FNames ∪ CNames) ⇀ (T × . . .× T → T)

118 CHAPTER 5. FURTHER POSSIBLE EXTENSIONS

[T-Spec]

Γ; ∆ ` cutdecl : ok Θ = cltype(mokdecl), cltype(cldef)

∆ ` Θ : ok Γ′ = Γ, x:T Γ′; ∆; Θ ` cldef : ok Γ′; ∆; Θ ` stmt : okγ

Γ; ∆ ` cutdecl mokdecl T x; cldef { stmt } : Θγ

[T-SClass]
Γ′ = Γ, f :T , this:C Γ′; ∆; Θ ` con : ok Γ′; ∆; Θ ` mdef : ok

Γ; ∆; Θ ` class C{T f ; con mdef } : ok

[T-Con]
Γ′ = Γ, x:T , x′:T ′ Γ′; ∆; Θ ` stmt : okact

Γ; ∆; Θ ` C(T x){T ′ x′; stmt ; return} : ok

[T-MDef]
Γ′ = Γ, x:T , x′:T ′ Γ′; ∆; Θ ` stmt : okγ(X)

Γ; ∆; Θ ` X m(T x){T ′ x′; stmt ; return} : ok

[T-CallSCl]
Γ; ∆,Θ ` e : C Θ(C)(m) = T

γ
Γ; ∆ ` e : T

Γ; ∆; Θ ` e.m(e) : okγ

[T-NewSCl]

Θ(C)(C) = T
act

Γ; ∆,Θ ` e : T

Γ; ∆; Θ ` x = new C(e) : okact
[T-FUpdSCl]

Γ; ∆,Θ ` e : Γ(f)

Γ; ∆; Θ ` f = e : okact

Table 5.2: Extension by specification classes: type system (stmts)

In words, each externally defined class shall communicate only instances of tester
classes that are indeed mock classes. Likewise, each mock class shall only commu-
nicate instances of tester classes that are mock classes, too.

The new typing Rule T-SClass deals with specification classes and is almost
identical to Rule T-Class for programming classes except that the assumed typ-
ing context is conformed to the typing context of the specification language’s type
system. Note, that a class definition is well-typed in a passive and in an active
control context. Also constructor and method definitions are well-typed in any
control context as can be seen from Rule T-SCon and Rule T-SMDef, respec-
tively. The body of a constructor definition, however, is only well-typed in an
active control context; a method body is type-checked in the control context that
has been stated in the method definition. Consequently, an internal method call is
only well-typed if it occurs in a control context which corresponds to the control
context of the called method (T-CallSCl). This check also ensures that no mock
method can be called internally, as mock classes do not provide control contexts
for their methods at all. An instantiation of a specification class is handled in
Rule T-NewSCl. It may only occur in an active control context as it involves a
side-effect in form of a variable update. For the same reason, also field updates are
only allowed in an active control context, as can be seen in Rule T-FUpdSCl.

5.1. SPECIFICATION CLASSES 119

Concerning the operational semantics, we can leave the rules regarding the
interface communication as given in Table 3.3 in Section 3.4. For, the specification
classes must not make any contributions to the interface communication. As for
the internal computation steps, the operational semantics has to be extended by
new rules for the three new statements, namely for field updates, method calls and
constructor calls of specification classes. Additionally, we have to add rules for the
return from internal method and constructor calls. Fortunately, we can borrow
the corresponding internal rules of the programming language of Table 2.7 with
almost no modifications. We only have to simplify Rule Call and Ret, since in
the specification language the internal calls do not return values. The new rules are
given in Table 5.3. Finally, the new constructs do not entail new types of interface
communications, hence, we do not have to extend or modify the transition rules
dealing with the interface communication.

[FUpd]
o = [[this]]v,µh (C,F) = h(o) h′ = h[o 7→ (C,F[f 7→ [[e]]v,µh])]

(h, v, (µ, f = e; mc) ◦CSb) (h′, v, (µ,mc) ◦CSb)

[Call]

o = [[e]]v,µh C = h(o).class T x = mparams(C)(m) Tl xl = mvars(C)(m)

vl = {this 7→ o, x 7→ [[e]]v,µh , xl 7→ ival(Tl)}
(h, v, (µ, e.m(e); mc ◦CSb) (h, v, (vl,mbody(C,m)) ◦ (µ, rcv; mc) ◦CSb)

[New]

o ∈ N \dom(h) h′ = h[o 7→ ObjC⊥] T x = cparams(C) Tl xl = cvars(C)

vl = {this 7→ o, x 7→ [[e]]v,µh , xl 7→ ival(Tl)}
(h, v, (µ, x = new C(e); mc) ◦CSb)
(h′, v, (vl, cbody(C); return this) ◦ (µ, rcv x; mc) ◦CSb)

[Retm] (h, v, (µ, return) ◦(µ′, rcv; mc) ◦CSb) (h, v, (µ′,mc) ◦CSb)

[Retc]
(v′, µ′′) = vupd(v, µ′, x 7→ [[e]]v,µh)

(h, v, (µ, return e) ◦(µ′, rcv x; mc) ◦CSb) (h, v′, (µ′′,mc) ◦CSb)

Table 5.3: Extension by specification classes: operational semantics

Although extending the specification language by specification classes was
more or less straightforward, the code generation algorithm gets considerably
more complex. This has three reasons. First, introducing recursion entails the
possibility that several instances of an expectation statement’s local variable exist
in the variable stack at the same time, rendering it impossible to replace them by
global variables. The same applies to the parameters of an expectation statement.
Consider for instance a specification that contains the following method definition:

?specMeth(C o1) {
o1?mockMeth(C o2, D o3){

o3!unitMeth(){

120 CHAPTER 5. FURTHER POSSIBLE EXTENSIONS

this.specMeth(o2);
?return()
};
!return(o3)
};
return

}

The body of the specification method specMeth represents the expectation of an
incoming call of mockMeth, which is not answered with an immediate return but
provokes a call-back of method unitMeth to the component under test. The body
of the call-back specification, in turn, contains a recursive call of the specification
method specMeth.

This example makes clear, that introducing global variables for the incoming
call’s parameters o2 and o3 is not sufficient, as the execution of the specification
may lead to two instances of the incoming call statement of mockMeth on the
call stack, where each instance needs its own parameter representation in the
variable stack. As a consequence, the parameters and local variables of interaction
statements cannot be replaced by global variables anymore but one has to emulate
the variable stack of the called methods.

The second complication concerns the update of the global variable next which
we used to anticipate the next incoming communication. A specification program
may contain several internal call statements referring to the same specification
method, such that each call statement requires a different update of next after
the specification method has been processed. For a better understanding, consider
the following specification snippet:

?specMeth() {
(C x)?mockMeth1(){ !return() };
return

}
...
{ // main body of specification :

specMeth(); (D y)?mockMeth2() { !return() };
specMeth(); (E z)?mockMeth3() { !return() }
}

Thus, we have defined a specification methods specMeth, which is called by the
main body twice, such that each call is followed by the incoming call statement of
another mock method (namely mockMeth2 and mockMeth3, respectively). Follow-
ing the labeling approach suggested in Chapter 4, we would equip the incoming
call of mockMeth2 and mockMeth3 with expectation ids, say, i2 and i3. Moreover,
we would have to insert an update of next in front of the last outgoing communi-
cation term that precedes the incoming call statements. In our example, however,
both the incoming call statements, mockMeth2 and mockMeth3, are preceded by
the outgoing return term in the specification method specMeth. Thus, we cannot
determine the identifier of the next expected incoming call statically, as specMeth

5.1. SPECIFICATION CLASSES 121

is called more than once. A solution to this problem is to adapt the preprocessing
steps such that we add a parameter to each specification method for incoming
communications. The parameter is used to determine the desired update state-
ment for next . Thus, regarding our example, the outcome of the preprocessing
could be sketched in the following way:

?specMeth(int updatebranch) {
[i1](C x)?mockMeth1(){
if (updatebranch == 1) { nxt = i2 }
else { };
if (updatebranch == 2) { nxt = i3 }
else { };
!return };

return

}
...
{ // main body of specification :
. . .
specMeth(1); [i2](D y)?mockMeth2() { . . . !return };
specMeth(2); [i3](E z)?mockMeth3() { . . . !return }
}

The third complication arise from the fact that specification methods for pas-
sive control contexts, i.e., a specification method whose body starts with an in-
coming call statement, cannot be translated to a corresponding method in the
programming language. Again consider a small example

?specMeth(C x) {
x?mockMeth(){ . . . !return };
return

}
...
{ // main body of specification :
. . . o1!unitMeth() { specMeth(o2); . . . ?return }
}

In this example, a specification method specMeth is given whose body consists
of an incoming call statement where the expected callee is determined by the
specification method’s parameter x. An invocation of method specMeth happens in
the main body right after an outgoing call term. Thus, this internal call cannot be
carried out in the programming language as it does not allow internal computation
steps right after an outgoing communication. Moreover, we know from Chapter 4
that the incoming call statement in specMeth will be translated to a fragment
of the method definition of method mockMeth. However, certainly the method
mockMeth won’t have direct access to parameters of the specification method.

To overcome these problems, we suggest the following approach. According to
Rule Call in Table 5.3, the invocation of a specification method results into a

122 CHAPTER 5. FURTHER POSSIBLE EXTENSIONS

new activation (vl,mbody(C)(m) which may evolve to some (µ,mc), in general.
In the translated code, we emulate the call of a specification method that ap-
pears within passive control contexts by providing a global variable specMethVars
which captures the variable function lists µ of its activation records. Since passive
specification methods do not contain active statement that have to be carried out
by the specification method, we do not need a representation of the activation
record’s code mc. The variable specMethVars consists of a list of structures where
each structure contains the a specification method’s local variable list µ including
its actual parameters as well as a reference to the corresponding specification ob-
ject. Accesses to the parameters and local variables of a specification method are
replaced by accesses to the structure. Accesses to fields of a specification object
are replaced by calls to designated access methods.

Now, a call of a passive specification method has to be anticipated such that a
corresponding structure is created right before the preceding outgoing communi-
cation happens. Correspondingly, prior to the last outgoing communication term
within the specification method the structure of the specification method has to
be deleted. Hence, we have to extend the anticipation mechanism of Section 4.1
such that is does not only handle the anticipation of incoming call expectations
but also the anticipation regarding invocations of specification methods that entail
an incoming call expectation.

5.2 Programming classes

The previous section has shown that extending the specification language with
specification classes requires a complex adaption of the code generation process.
Extending the specification language with programming language classes, in con-
trast, only involves a rather moderate adaption. More specifically, we want to
allow the usage of classes whose method bodies do not contain any specification
statements but only programming language statements. Calls to these methods
may only occur within an active control context. Instances of these classes may
show up at the interface only in object position, i.e., as a parameter or return
value but not as a callee. Additionally, we want to support the import of pro-
gramming language classes. This facilitates writing a specification program, as
it allows, for instance, to import standard library classes implementing common
data structures as sets or lists or the like.

Table 5.4 shows the grammar for a specification language extended by pro-
gramming language classes. Actually, the syntactical extension of the specification
language is very similar to the modification of the last section. Again we borrow
the class definition constructs from the grammar of the programming language but
this time we don’t have to adapt the original method definition but we keep the
return expression and the type in the corresponding construct. We furthermore
extend the specification construct with the support for import declarations.

The idea is to embed the class concept of the programming language in the
specification language, such that classes of programming language components can

5.2. PROGRAMMING CLASSES 123

s ::= cutdecl impdecl mokdecl T x; cldef { stmt } specification

cutdecl ::= test class C; test unit class

impdecl ::= import C; imported class

mokdecl ::= mock class C{C(T, . . . , T); T m(T, . . . , T)}; mock class

cldef ::= class C{T f ; con mdef } class def.

con ::=C(T x){T x; stmt ; return} constructor

mdef ::=T m(T x){T x; stmt ; return e} meth. def.

stmt ::=x = e | x = new C() | ε | stmt ; stmt | {T x; stmt} statements

| while (e) {stmt} | if (e) {stmt} else {stmt}
| stmt in | stmtout | case { stmt in ; stmt }
| f = e | x = e.m(e, . . . , e) | x = new C(e, . . . , e)

stmt in ::= (C x)?m(T x).where(e) {T x; stmt ; !return e} incoming stmt

| new(C x)?C(T x).where(e) {T x; stmt ; !return}
stmtout ::= e!m(e, . . . , e) {T x; stmt ; ?return(x).where(e)} outgoing stmt

| new!C(e, . . . , e) {T x; stmt ; ?return(x).where(e)}
e ::=x | f | this | null | op(e, . . . , e) expressions

Table 5.4: Extension by programming classes: syntax

be used within specifications. Thus, it is important that class definitions which
represent syntactically correct and well-typed definitions regarding the program-
ming language are also syntax valid and well-typed regarding the specification
language. Moreover, such a class definition executed within a specification should
gives rise to the same semantics as in the programming language. A comparison of
the extended grammar of the specification language, given in Table 5.4, with the
grammar of the programming language, given in Table 2.1 and Table 2.8, shows
that indeed all instances of cldef in the grammar of Table 2.1 are also instances of
cldef in the grammar of Table 5.4: The grammar rules for the class, constructor,
and method definitions are identical; moreover, all statements of the programming
language are statements of the specification language, too. The converse, however,
does not hold, since the statements in the specification language also comprise the
interaction statements, which do not exist in the programming language.

We want to restrict the class definitions of the specification language to class
definitions of the programming language. In particular, a class’ method definitions
must not contain expectation statements. This restriction has to be carried out
by the type system. To this end, we introduce a new kind of control context int ,
called internal control context, which represents a subset of the active control
context. That is, every statement which is considered to occur in internal control
context is also in active control context. A statement is in internal control context
if the specification has the control and if the statement is also represented in the
syntax of the programming language. In particular, outgoing call statements may
occur in active control context but never in internal control context. Finally, in

124 CHAPTER 5. FURTHER POSSIBLE EXTENSIONS

order to restrict the class definitions to the desired ones, the type system will allow
method body to contain only statements which are in internal control context.

Furthermore, the type system has to ensure that the new programming lan-
guage classes do not occur as callee in specification statements. This is done by
introducing another typing context, Π, which includes all typed programming
language classes. Specifically, it contains the locally defined classes as well as im-
ported classes. This way, we can distinguish programming language classes from
mock classes and from the external classes that represent the component under
test.

Table 5.5 shows most of the typing rules for the specification language extended
with programming language classes. Rule T-Spec ensures that the classes of the
component under test are included in the type context ∆ and that the imported
programming language classes are included in the type context Π. Furthermore,
the class definitions appearing in the specification are type-checked, where the
assumed local type context is extended by the global variables and where the
type context for programming language classes is enriched by the defined classes
themselves. Finally, regarding the same type context, also the main specification
statement is checked, which again yields its control context γ.

Rule T-Class equals its pendant of the programming language apart from
the necessary adaption of the judgments regarding the the new type context Π.
Likewise, the rules T-Con and T-MDef resemble the corresponding program-
ming language rules. Except for the extended assumption context, however, they
additionally restrict the body statement of the method or constructor definition
to statements that are well-typed in an internal control context. That is, it en-
sures that the statement is also a syntactical valid statement of the programming
language.

As for the statements, on the one hand we introduce new rules dealing with
field updates (T-VUpdPCl), method calls (T-CallPCl), and the new class instan-
tiation statement (T-NewPCl). On the other hand, the remaining typing rules
regarding other statement, are borrowed from the original specification language.
The new rules are again almost identical to the corresponding rules of the pro-
gramming language’s type system. Only the control context is added, putting
the new statements in internal control context. Besides that, the type context
is extended by Π, which is used to verify the correct types of a constructor or,
respectively, method call’s parameters. In case of a method call, it is also con-
sulted regarding the return type. Since mock classes and classes of the component
under test do not provide access to their fields, it is ensured that the three new
statements indeed can only be addressed at programming language classes and
their instances.

As for the remaining inherited typing rules regarding statements, they are
again extended by the new name context. Some of them are also adapted regard-
ing the control context. A block statement, for instance, may appear within a
method body but also within a specification statement. The control context of
a block statement’s body determines also the control context of the whole block

5.2. PROGRAMMING CLASSES 125

[T-Spec]

∆ ` cutdecl : ok Π ` impdecl : ok Π′ = Π, cltype(cldef) Γ′ = Γ, x:T

Θ = cltype(mokdecl) Γ′; ∆; Π′; Θ ` cldef : ok Γ′; ∆; Π′; Θ ` stmt : okγ

Γ; ∆; Π′ ` cutdecl impdecl mokdecl T x; cldef {stmt} : Θγ

[T-Class]
Γ′ = Γ, f :T , this:C Γ′; ∆; Π; Θ ` con : ok Γ′; ∆; Π; Θ ` mdef : ok

Γ; ∆; Π; Θ ` class C{T f ; con mdef } : ok

[T-Con]
Γ′ = Γ, x:T , x′:T ′ Γ′; ∆; Π; Θ ` stmt : okint

Γ; ∆; Π; Θ ` C(T x){T ′ x′; stmt ; return} : ok

[T-MDef]
Γ′ = Γ, x:T , x′:T ′ Γ′; ∆; Π; Θ ` stmt : okint Γ′; ∆,Π,Θ ` e:T

Γ; ∆; Π; Θ ` T m(T x){T ′ x′; stmt ; return e} : ok

[T-VUpd]
Γ; ∆,Π,Θ ` e : Γ(x)

Γ; ∆; Π; Θ ` x = e : okint

[T-Block]

γ ∈ {act , int}
Γ, x:T ; ∆; Π; Θ ` stmt : okγ

Γ; ∆; Π; Θ ` {T x; stmt} : okγ

[T-NewInt]
C ∈ dom(Θ) Γ(x) = C

Γ; ∆; Π; Θ ` x = new C() : okint

[T-NewPCl]
Γ(x) = C Γ; ∆,Π,Θ ` e : Π(C)(C).dom

Γ; ∆; Π; Θ ` x = new C(e) : okint

[T-CallPCl]
Γ; ∆,Π,Θ ` e : C Γ(x) = C Γ; ∆,Π,Θ ` e : Π(C)(m).dom

Γ; ∆; Π; Θ ` x = e.m(e) : okint

[T-FUpdPCl]
Γ; ∆,Π,Θ ` e : Γ(f)

Γ; ∆; Θ ` f = e : okint

[T-Seq]
Γ; ∆; Π; Θ ` stmt1 : okγ Γ; ∆; Π; Θ ` stmt2 : okγ

Γ; ∆; Π; Θ ` stmt1; stmt2 : okγ

[T-CtrlSub]
Γ; ∆; Π; Θ ` stmt : okint

Γ; ∆; Π; Θ ` stmt : okact

Table 5.5: Extension by programming classes: type system (stmts)

statement, which thus can be now an active or an internal control context. The
instantiation of a mock class as well as incoming call and outgoing call statements
are still considered as passive or, respectively, active statements which are only
well-typed if the corresponding callee can be found in the commitment context
Θ or the assumed test component context ∆, respectively. This way, it is assured

126 CHAPTER 5. FURTHER POSSIBLE EXTENSIONS

that a programming language class may not occur as a callee within a specifica-
tion statement. Sequential composition, while-loops, and conditional statements
are well-typed within any control context. However, as in the block statement
case, the control context of each of these statements is determined by the control
context of their sub-constituents. In particular, the conditional statement and the
sequential statement are only well-typed if their sub-statements share the same
control context. For the sake of brevity, we have omitted some of the rules which
are transfered from the original specification language with only minor adaption
as mentioned above.

Finally, we need a subsumption rule, T-CtrlSub, regarding the active and
internal control context, as each internal statement, i.e., a statement which is
also part of the programming language, may also occur in an active specification
statement.

The grammar and the type system ensure that class definitions appearing
within a well-formed specification also represent well-formed class definitions re-
garding the programming language. This eases the extension of the operational
semantics. For, we can borrow the internal rules for internal method and con-
structor calls as well as for field updates from the operational semantics of the
programming language without the need for any modifications. Since the exten-
sion only concerns internal computations, we do not have to extend the external
transition rules.

Also the extension of the code generation is straightforward: the class defini-
tions can be transfered to the test program without any adaption. Moreover, the
newly introduced statements may only occur in active control context. In partic-
ular, they may only occur within an incoming call statement such that the code
generation algorithm will let them become part of the corresponding method or
constructor body. Hence, the statements can be copied into the corresponding
method or constructor definition of the resulting test program.

5.3 Subtyping and inheritance

Two important concepts of object-oriented programming languages are inheri-
tance and subtyping. The concept of inheritance facilitates the re-use of code.
In the context of class-based object-oriented languages, code re-use operates on
classes, i.e., one class can inherit the field and method definitions of another class.
Subtyping refers to the concept where types are put into a partial order relation
giving rise to type compatibility. More specifically, within a program, an expres-
sion of a certain type can be replaced by an expression of a smaller type without
compromising well-typedness. Although inheritance and subtyping actually rep-
resent two different concepts, most of the mainstream class-based programming
languages merge them to one concept that we will refer to as subclassing : A class
that inherits the code from another class represents a smaller, i.e. a subclass, of
the code-donating superclass. Integrating subtyping and inheritance is possible
due to the fact that classes represent types.

5.3. SUBTYPING AND INHERITANCE 127

p ::= impldecl; T x; cldef {stmt ; return} program
impdecl ::= import C import

cldef ::= class C extends C{T f ; con mdef } class definition
con ::=C(T x){T x; stmt ; return} constructor

mdef ::=T m(T x){T x; stmt ; return e} method definition
stmt ::=x = e | x = e.m(e, . . . , e) | x = new C(e, . . . , e) statements

| f = e | ε | stmt ; stmt | {T x; stmt}
| while (e) {stmt} | if (e) {stmt} else {stmt}
| x = super.m(e) | super(e)

e ::=x | f | null | this | op(e, . . . , e) expressions

Table 5.6: Japl with subclassing: syntax

We want to investigate the impact of introducing subclassing into our test-
ing approach. To this end, we extend our programming language with single-
inheritance and single-subtyping by introducing the notion of subclassing. That
is, a class may have at most one superclass. In particular, we do not account
for additional concepts that would introduce polymorphism, like, for instance,
Java’s notion of interfaces. Subclasses may provide new implementations of inher-
ited methods. In one word, we want to allow for overriding. To keep the extension
simple, however, we restrict overriding, such that the signature of the new method
definition entails exactly the same parameter and return types. In particular we
do not allow covariance on return types and we do not deal with overwriting
either. However, within a redefining method body we provide a keyword super
which allows to execute the implementation of the inherited method definition.
Finally, the extension of our language shall implement dynamic method dispatch,
meaning that the method body to be executed due to a method invocation is
determined not statically but at runtime.

The syntactical extension of the programming language is shown in Table 5.6.
Class definitions include a reference to the superclass. Furthermore, the set of
statements is extended by a method call statement and a constructor call state-
ment addressing the method implementation of the superclass. We assume the
existence of a class Object which provides no fields, no method definitions, and
only an empty constructor body. Thus, all classes imported or defined within the
program have at least class Object as superclass.

As for the type system, we have to incorporate the subtyping relation. To this
end, we extend the type of a class with the class name of its superclass:

T ::= clnames× ((MNames ∪ clnames) ⇀ (U × . . .× U → U))

Likewise, we have to adapt the auxiliary function cltype. Recall that cltype is
used to extract the type of a class from its definition. We modify the original

128 CHAPTER 5. FURTHER POSSIBLE EXTENSIONS

definition, given in Section 2.2, in that the type of a class shall also include the
typing information regarding its inherited methods. Thus, the function cltype
needs to consult the typing context in order to find out the method types of the
superclass:

cltype(∆, class C extends D{ T f ; con mdef }) def= C:(D, I) , where

I : (MNames ∪ CNames) ⇀ (U × . . .× U → U);

n 7→

(T → C) if n = C and C(T x){T ′ x′; stmt ; return} ∈ mdef
(T → T) if n = m and T m(T x){T ′ x′; stmt ; return e} ∈ mdef
(T → T) if ∆(D) = (E, I ′) and I ′(n) = (T , T)

We show in Table 5.7 new and, respectively, modified typing rules according to
the typing rules of Table 2.2 and Table 2.9. As mentioned above, the domain of
the auxiliary function cltype has been adapted, such that also rule T-Prog has
to be changed correspondingly. Note, that a class definition might use a class as
its superclass whose definition was given ahead within the program code. Thus,
the commitment context is determined incrementally. Specifically, we assume that
cldef consists of the sequence cldef 1 cldef 2 . . . cldef n.

The rule T-Class is merely modified in that we adapted the class definition
code in the conclusion judgment. In particular we didn’t change the handling
of the fields. It is a crucial point that still only the fields of the defining class
are incorporated into the local type context. For, the consequence is that the
constructor and the method bodies do not have access to fields provided by the
superclass. This way we stipulate a field access policy where all fields are consid-
ered as private in the sense that they can be accessed by instances of the defining
class, only. We will see later that this decision influences the observability of some
interaction.

The rules T-SupCall and T-SupNew implement the type check for the new
statements, namely for the call statements that address inherited method or con-
structor code. Since a class type also incorporates the type information of inherited
methods, we do not need to descent the type succession but we can check well-
typedness directly by consulting the type of the class that contains the super call.
To determine the class in question we only have to lookup the type of this. All
other premises are equal to the corresponding premises of the typing rules regard-
ing the conventional method and constructor calls. This entails a slight abuse of
notation, since now the type of a class does not only consist of the method and
constructor type function but it is now a pair consisting of the class name of the
super class and the mentioned type function. However, we keep the notation, that
is, although the type of a class C is now of the form ∆(C) = (D, I), we still write

∆(C)(m).dom and ∆(C)(m).ran

to denote the domain and, respectively, the range of the type function I. Similarly,
we write

∆(C).supcl

5.3. SUBTYPING AND INHERITANCE 129

[T-Prog]

Γ′ = Γ, x:T
Θ1 = cltype(∆, cldef 1) . . . Θn = cltype(∆,Θn−1, cldef n)

Γ; ∆ ` impdecl : ok Γ′; ∆,Θn ` cldef : ok Γ′; ∆,Θn ` stmt : ok

Γ; ∆ ` impdecl ; T x; cldef 1 . . . cldef n {stmt ; return} : Θn

[T-Class]
Γ′ = Γ, f :T , this:C Γ′; ∆ ` con : ok Γ′; ∆ ` mdef : ok

Γ; ∆ ` class C extends D{T f ; con mdef } : ok

[T-SupCall]
Γ(this) = C Γ(x) = ∆(C)(m).ran Γ; ∆ ` e : ∆(C)(m).dom

Γ; ∆ ` x = super.m(e) : ok

[T-SupNew]
Γ(this) = C Γ; ∆ ` e : ∆(C)(C).dom

Γ; ∆ ` super(e) : ok

Table 5.7: Japl with subclassing: type system (stmts)

to denote the superclass D of C.

As mentioned earlier, an instance of a class has only access to the fields that
are defined in that class. This is a central aspect for the operational semantics.
First of all, however, we should have a look at a small example which will reveal
that the above statement is actually not completely true, if sub-classing comes
into play. Consider a code fragment which consists of the definition of two classes
C and D.

1 C extends object {
2 T x;
3 T meth1() { x = . . . }
4 }
5

6 D extends C {
7 T y;
8 T meth2() { y = . . .; z = super.meth1(); . . . }
9 }

Each class definition consists of a variable declaration and a method definition.
Furthermore, class D is a subclass of class C. Now assume that we have an
instance o of class D and we call its method meth2. According to the method
body of meth2, its execution will change the value of the variable y. This is fine,
as the variable y is declared within class D. Moreover, it is true that the method
body of meth2 must not access the variable x, as it is not declared within the
definition of D. However, meth2 may call the method meth1 inherited from class
C. Method meth1, in turn, may access and even change the variable x. Therefore,
although object o is an instance of class D, it may access the inherited variable x
– but only by means of an invocation of an inherited method.

130 CHAPTER 5. FURTHER POSSIBLE EXTENSIONS

The consequence regarding the operational semantics is that object o is repre-
sented twice in the heap h of the program: one entry in h stores the value of x, the
other entry the value of y. The idea is that one entry represents o as an object of
class C and the other entry represents o as an instance of class D. Regarding the
execution of method meth2, o can be considered as an object of class D, hence it
may access the corresponding entry in h, only. Similarly, during the execution of
meth1 we may access o via the other entry only.

On account of this, we have to change the heap function in that it does not
only map object names o to objects (C,F) consisting of the object’s class C and
the object’s field values F (cf. Definition 2.3.1), but the domain of the heap is
extended by class names. Thus, a heap maps pairs of object and class names to
objects. That is, the set of heap functions is redefined to:

H
def= (CNames ×N) ⇀ Obj .

Note, that an object still is represented by a pair (C,F) consisting of the object’s
field function F but also of its class C. The class C is the class from which the
object has been instantiated. For instance, regarding the above example object o
of class D has two representations in the heap h. In particular, it is

h(D, o) = (D, {y 7→ vx}) and h(C, o) = (D, {x 7→ vy}).

Moreover, we introduce a new auxiliary variable cls which is used to determine
the class of the currently executed method body. Specifically, assuming a heap h,
a global variable function v, and a local variable function list µ it is

C = [[cls]]v,µh
the class that implements the currently executed method body. Therefore, we can
access the currently executed object as it is presented to the currently executed
method by means of the expression h([[cls]]v,µh , [[this]]v,µh).

Apart from the field access mechanism, the above example additionally demon-
strated the invocation of the inherited methods meth1 by using the keyword
super. Since the class type provides the name of its superclass, extending the
operational semantics with the super calls is straightforward: instead of looking
up and expanding the method body of the executing class we use the method
body that is provided by the superclass.

In the example, we actually didn’t need to explicitly choose the inherited
method implementation by calling super.meth1() but, since D does not over-
ride meth1, we could have called this.meth1(), as well, getting the same result.
Hence, we assume a dynamic dispatching of method invocations. This dispatching
mechanism is realized as follows. Within a sub-class D, for each inherited method

T m(T x)

which is not replaced by new code in terms of a new method definition, we assume
an invisible method definition as follows:

T m(T x){ x = super.m(x); return(x) }.

5.3. SUBTYPING AND INHERITANCE 131

As for the above example, for instance, we assume a hidden method definition of
the form

T meth1() { T x; x = super.meth1(); return(x) },

extending the explicitly given class definition of class D. Thus, in general, the
execution of a method this.m(e) does not require a complicated look-up mecha-
nism in order to find the class that actually implements the method. Instead, the
corresponding implementation is always provided by the calling class which then
might possibly call the inherited method explicitly by means of a super call – if
it didn’t override it by real user code.

Having discussed the underlying modifications of the operational semantics,
let us have a look at the corresponding rules. Regarding the internal steps, we
only have to change the rules of Table 2.7 that deal with field updates, internal
method calls and internal object creation. Moreover, we have to add new rules for
calling methods or constructors of the superclass. The rules are given in Table 5.8.

[FUpd]

o = [[this]]v,µh C = [[cls]]v,µh (C ′,F) = h(C, o)
h′ = h[(C, o) 7→ (C ′,F[f 7→ [[e]]v,µh])]

(h, v, (µ, f = e; mc) ◦CSb) (h′, v, (µ,mc) ◦CSb)

[Call]

o = [[e]]v,µh C = h(, o).class T x = mparams(C,m) Tl xl = mvars(C,m)
∆ 6` C : [(. . .)] vl = {cls 7→ C, this 7→ o, x 7→ [[e]]v,µh , xl 7→ ival(Tl)}

(h, v, (µ, x = e.m(e); mc) ◦CSb) (h, v, (vl,mbody(C,m)) ◦ (µ, rcv x; mc) ◦CSb)

[New]

o ∈ N \ dom(h) h′ = h[(C, o) 7→ ObjC⊥] T x = cparams(C) Tl xl = cvars(C)
vl = {cls 7→ C, this 7→ o, x 7→ [[e]]v,µh , xl 7→ ival(Tl)}

(h, v, (µ, x = new C(e); mc) ◦CSb)
(h′, v, (vl, cbody(C); return this) ◦ (µ, rcv x; mc) ◦CSb)

[SupCall]

o = [[e]]v,µh C = [[cls]]v,µh C ′ = Θ(C).supcl
T x = mparams(C,m) Tl xl = mvars(C,m)

∆ 6` C ′ : [(. . .)] vl = {cls 7→ C, this 7→ o, x 7→ [[e]]v,µh , xl 7→ ival(Tl)}
(h, v, (µ, x = super.m(e); mc) ◦CSb)
(h, v, (vl,mbody(C,m)) ◦ (µ, rcv x; mc) ◦CSb)

[SupNew]

o = [[e]]v,µh C = [[cls]]v,µh C ′ = Θ(C).supcl
T x = mparams(C,m) Tl xl = mvars(C,m)

∆ 6` C ′ : [(. . .)] vl = {cls 7→ C, this 7→ o, x 7→ [[e]]v,µh , xl 7→ ival(Tl)}
(h, v, (µ, super(e); mc) ◦CSb)
(h, v, (vl, cbody(C,m); return this) ◦ (µ, rcv ; mc) ◦CSb)

Table 5.8: Japl with subclassing: operational semantics (int.)

Rule FUpd is modified in that we explicitly have to look up the class C whose
method body is currently in execution. For, as mentioned above, the class and

132 CHAPTER 5. FURTHER POSSIBLE EXTENSIONS

program:

C2 extends C1 {

. . .

}

C4 extends C3 {

. . .

}

environment:

C1 extends Object {

. . .

}

C3 extends C2 {

. . .

}

Table 5.9: Example: cross-border inheritance

the object name are needed to get the corresponding object representation (C ′,F)
from the heap. Finally, as in the original rule, first the field function F and then,
correspondingly, the heap is updated.

Regarding an internal method call, we have to find out the class from which the
callee object o has been instantiated. To this end, we consult the heap regarding
o. Note that for all entries of o in the heap, the yielded class is the same. The rest
of the rule is quite similar to the original rule. However, the new local variable
function vl additionally stores the class C in cls, as its method is about to be
executed. Moreover, we have to consult the assumption context ∆ in order to
check that C is indeed not an external class.

The modification regarding Rule New are similar to the modifications of
Rule Call. Though, we do not have to look up the type C.

In order to call an inherited method via the keyword super, we first have to
find out the caller class C via the variable cls. This is shown in Rule SupCall.
Afterwards, we can look up C’s superclass C ′ and, if C ′ is also a program class,
then we can execute its method implementation as it has been explained for
Rule Call, already.

Again, similar to the Rule SupCall, Rule SupNew finds out the superclass
of the caller class and executes its constructor, if the superclass is a program class.

It may happen that the program extends a class of the environment or vice
versa meaning that sub-class and super-class are defined on different sides. This
has the effect that calls of inherited methods or constructors may cross the inter-
face. To understand the consequences, consider the example given in Table 5.9.
In the example, some environment class C1 is extended by a program class C2.
Class C2 is again extended by an environment class C3 which in turn is extended
by a program class C4. Now let us assume that an instance o of C4 calls an
inherited method m3 of C3. This results in a cross-border method call, where
the environment executes the method body of m3 provided by C3. In order to

5.3. SUBTYPING AND INHERITANCE 133

[CallO]
a = ν(Θ′).〈call C.o.m(v)〉! ∆ ` o : C

∆ ` (h, v, (µ, x = e.m(e); mc) ◦CSb) : Θ
a−→

∆ ` (h, v, (µ, rcv x:T ; mc) ◦CSb) : Θ,Θ′

where o = [[e]]v,µh , v = [[e]]v,µh ,
T = ∆2(o)(m).ran, and
Θ′ = new(h, v,Θ)

[CallI]
a = ν(∆′).〈call C.o.m(v)〉? ∆ ` a : Θ

∆ ` (h, v,CSeb) : Θ
a−→

∆,∆′ ` (h, v, (vl,mbody(C,m)) ◦CSeb) : Θ

where C = Θ(o),

T x = mparams(C,m),

T ′ x′ = mvars(C,m),
and
vl = {cls 7→ C, this 7→ o,

x 7→ v, x′ 7→ ival(T ′)}

Table 5.10: Japl with subclassing: operational semantics (ext.)

potentially access fields of C3, object o is considered as an object of C3 during
the execution of m3 as we have explained above. However, m3 may itself call an
inherited method m2 of C2 which, in turn, may call an inherited method m1 of
C1. Again, object o has to be considered as an object of C1 in order to access
fields of C1. Summarizing, object o shows up twice as callee object in the envi-
ronment – however, the first call needed to consider o as an object of C3 and
the second call casted o to an object of C1. Therefore, regarding the external
steps, we have to equip the communication labels a for method calls with a class
type C of the callee object o, such that a = ν(Θ′).〈call C.o.m(v)〉! and, respec-
tively, a = ν(∆′).〈call C.o.m(v)〉?. Apart from that, we only have to implement
minor adaptions regarding the rules for incoming and outgoing method calls of
the external semantics. The rules are given in Table 5.10.

Part II

Testing Multi-threaded
Components

135

137

In the previous part of this thesis we presented a formal framework for testing
object-oriented components in a sequential setting. That is, the language allowed
for a single-threaded flow of control, only. In the following part, we suggest an
extension of the framework regarding multi-threaded components. In particular,
we will extend the underlying programming language with the notion of threads.
In languages like Java and C] objects are passive entities residing in the heap of
the program – instantiated from classes that serve as “generators of state”; the
active part of the program is represented by threads. Indeed, in a multi-threaded
setting, there is also a mechanism for “generating new activity”, i.e., for creating
new threads. Thus, we extend our previous work by thread instantiation from
thread classes, meaning that new activities can be dynamically spawned from
“templates”.

Correspondingly, we have to adapt the test specification language. The un-
derlying idea is that we cope with multi-threading by providing a specification
statement for each thread. Hence, only the order of interactions which belong to
the same thread is specified.

Finally, we sketch how the code generation algorithm of the single-threaded
setting can be modified in order to generate test programs also for multi-threaded
components.

Chapter 6

Concurrent programming
language – CoJapl

6.1 Syntax

As mentioned in the introduction, we incorporate concurrency into the program-
ming language Japl of Chapter 2 by means of thread classes. The corresponding
syntactical modifications are rather straightforward. The grammar for the result-
ing concurrent Java-like language, CoJapl, is given in Table 6.1. Once again, to
emphasize the extending character, we grayed out the constructs that are inher-
ited from the sequential programming language Japl. The grammar shows that
a thread class definition resembles the definition of an object class constructor.
That is, we do not embark on the strategy of Java or C], where thread classes
are realized by means of designated object classes. Instead, introducing a new
kind of classes allows for a clear separation of concerns, as object classes are the
generators of state while thread classes are used to generate activity.

The signature of a thread class provides a thread class name C and a list of
formal parameters. The body of a thread class consists of a body statement stmt
and a concluding return. Thus, a CoJapl program p does not only provide a
sequence of class definitions cldef but additional it allows to define a sequence of
thread class definitions tdef .

The counterpart of a thread class definition is the spawn statement, which is
used to create a new thread instance from a thread class and which, thus, has
some similarities with the new statement. It specifies the name of the thread class
which serves as the code template for the new thread. A sequence of expressions
e represent the actual parameter of the new thread. The spawn statement is an
assignment. It allows to store the thread identifier of the new thread in a variable
x. A thread identifier is comparable with an object name insofar as it uniquely
identifies a thread. Note however, that a thread is not allocated on the heap.
Specifically, we assume the existence of another infinite set thread which serves

139

140CHAPTER 6. CONCURRENT PROGRAMMING LANGUAGE – COJAPL

p ::= impdecl ; T x; cldef tdef { stmt ; return } program

impdecl ::= import C import declaration

cldef ::= class C{ T f ; con mdef } class definition

con ::=C(T x){ T x; stmt ; return } constructor

mdef ::=T m(T x){ T x; stmt ; return e } meth. definition

tdef ::= thread C(T x){ stmt ; return } thread class definition

stmt ::=x = e | x = e.m(e, . . . , e) | x = new C(e, . . . , e) statements

| f = e | ε | stmt ; stmt | {T x; stmt}
| while (e) {stmt} | if (e) {stmt} else {stmt}
| x = spawn C(e, . . . , e)

e ::=x | f | null | this | op(e, . . . , e) | tid | tclass expressions

Table 6.1: CoJapl language: syntax

as the domain of thread identifiers. For the sake of simplicity we do not allow to
pass around thread identifiers in terms of a parameter or a return value. Within
the thread itself, its thread identifier can be found out by means of the new
expression tid. Moreover, a thread may also identify the name of its thread class
using the expression tclass.

6.2 Static semantics

Similar to the syntax definition, also the type system needs only small changes
regarding the concurrency extension. Concerning the typing rules for the syntac-
tical constituents up to statements, given in Table 6.2, we only have to modify
Rule T-Prog and to add two rules for the two new constructs, namely for thread
definitions and for the spawn statement. Apart from these changes, we keep the
rules from Table 2.2 and, respectively, Table 2.9 without any changes.

As for the Rule T-Prog, we only have change the definition of the commit-
ment context Θ, as not only the object classes but also the thread classes are
provided to the program’s environment. This is essential as it enables an external
component to instantiate a thread class defined in the program. On account of
this, we have to extend the definition of the auxiliary function cltype. While in the
sequential setting the function cltype was used in order to extract the typing infor-
mation of a class from the corresponding object class definition, in the concurrent
setting it additionally has to extract the typing information from thread class
definitions. Thus, we extend the definition given in Section 2.2 by the following
definition:

cltype(thread C(T x){ stmt ; return}) def= C : T

Therefore, in contrast to the type of an object class, a thread class type consists
of its parameter type list T , only. Note, specifically, that a thread class type is not

6.3. OPERATIONAL SEMANTICS 141

a functional type because a thread does not provide a return value. Furthermore,
note in this context that we use the same domain CNames for, both, object classes
and thread classes. Hence, we assume all names of object classes and thread classes
to be unique within the program. In particular, a class name C is at most either
typed as an object class or as a thread class.

Rule T-TDef deals with the syntax check of thread class definitions. Again,
the rule is almost identical to the corresponding rule for constructors T-Con.
The local type context is extended by the formal parameters which is then used
to type check the body statement stmt of the thread class.

The spawn statement is type-checked by means of Rule T-Spawn. Such a
statement is well-typed if the variable x is a thread variable and if the class name
C, indeed, refers to a thread class definition such that the thread class’s formal
parameters and the actual parameters match regarding their types.

Table 6.3 deals with the typing rules for expressions. According to Table 2.3,
we only add two new typing rules and keep the rest unchanged. Both the new
expression, tid and tclass, are well-typed in any type context, as a statement is
always executed in context of a specific thread. Specifically, we will see in the next
section concerning the operational semantics that also the main body statement
of the program will be provided with a thread identifier nmain and a designated
thread class name Main.

6.3 Operational semantics

As mentioned earlier, thread classes serve as generators of activity. Indeed, the
required modifications of the operational semantics due to the introduction of
thread classes mostly affect the call stack, as it represents the active code. Recall,
that in Japl the call stack captures the sequential flow of control by means of a
list of activation records. That is, in the sequential setting, a call stack is of the
form

CS = AR0 ◦ARb1 ◦ARb2 . . . ◦ARbn,

where the activation records ARb1 to ARbn are either externally or internally blocked.
Hence, they are of the form

ARb ::= (µ, rcv x; mc) | (µ, rcv x:T ; mc).

The topmost activation record AR0, however, is either currently in execution or
it is externally blocked, i.e., in the latter case the program waits for an incoming
communication from the environment. Summarizing, we can say that the form
of the call stack as well as the rules of the operational semantics of Japl allow
to reduce only the topmost statement of the topmost activation record, if at all.
This way, the sequential flow of control is ensured. In particular, the operational
semantics adheres to the order of the sequentially composed statements.

Regarding the multi-threaded setting, it is natural to use the above mentioned
call stack mechanism for each thread, as each thread on its own shall adhere

142CHAPTER 6. CONCURRENT PROGRAMMING LANGUAGE – COJAPL

[T-Prog]

Γ′ = Γ, x:T Θ = cltype(cldef), cltype(tdef) Γ; ∆ ` impdecl : ok

Γ′; ∆,Θ ` cldef : ok Γ′; ∆,Θ ` tdef : ok Γ′; ∆,Θ ` stmt : ok

Γ; ∆ ` impdecl ; T x; cldef tdef {stmt ; return} : Θ

[T-Import]
C ∈ dom(∆)

Γ; ∆ ` import C : ok

[T-Class]
Γ′ = Γ, f :T , this:C Γ′; ∆ ` con : ok Γ′; ∆ ` mdef : ok

Γ; ∆ ` class C{T f ; con mdef } : ok

[T-Con]
Γ′ = Γ, x:T , x′:T ′ Γ′; ∆ ` stmt : ok

Γ; ∆ ` C (T x){T ′ x′; stmt ; return} : ok

[T-MDef]
Γ′ = Γ, x:T , x′:T ′ Γ′; ∆ ` stmt : ok Γ′; ∆ ` e : T

Γ; ∆ ` T m(T x){T ′ x′; stmt ; return e} : ok

[T-TClass]
Γ′ = Γ, x:T Γ′; ∆ ` stmt : ok

Γ; ∆ ` thread C(T x){stmt ; return} : ok

[T-VUpd]
Γ; ∆ ` e : Γ(x)

Γ; ∆ ` x = e : ok
[T-FUpd]

Γ; ∆ ` e : Γ(f)

Γ; ∆ ` f = e : ok

[T-Call]
Γ; ∆ ` e : C Γ(x) = ∆(C)(m).ran Γ; ∆ ` e : ∆(C)(m).dom

Γ; ∆ ` x = e.m(e) : ok

[T-New]
Γ(x) = C Γ; ∆ ` e : ∆(C)(C).dom

Γ; ∆ ` x = new C(e) : ok

[T-Seq]
Γ; ∆ ` stmt1 : ok Γ; ∆ ` stmt2 : ok

Γ; ∆ ` stmt1; stmt2 : ok
[T-Block]

Γ, x:T ; ∆ ` stmt : ok

Γ; ∆ ` {T x; stmt} : ok

[T-While]
Γ; ∆ ` e : bool Γ; ∆ ` stmt : ok

Γ; ∆ ` while (e) {stmt} : ok

[T-Cond]
Γ; ∆ ` e : bool Γ; ∆ ` stmt1 : ok Γ; ∆ ` stmt2 : ok

Γ; ∆ ` if (e) {stmt1} else {stmt2} : ok

[T-Spawn]
Γ(x) = thread Γ; ∆ ` e : ∆(C)

Γ; ∆ ` x = spawn C(e) : ok

Table 6.2: CoJapl language: type system (stmts)

6.3. OPERATIONAL SEMANTICS 143

[T-Var]
Γ(x) = T

Γ; ∆ ` x : T
[T-Field]

Γ(f) = T

Γ; ∆ ` f : T

[T-Null] Γ; ∆ ` null : C [T-This]
Γ(this) = C

Γ; ∆ ` this : C

[T-Op]
Γ; ∆ ` e : dom(∆(op)) ran(∆(op)) = T

Γ; ∆ ` op(e) : T

[T-Tid] Γ; ∆ ` tid : thread [T-Tclass] Γ; ∆ ` tclass : CNames

Table 6.3: CoJapl language: type system (exprs)

to the order of the statements. Therefore, in the concurrent extension of our
programming language, we will make use of a set of call stacks. To this end, we
will use thread configuration mappings. A thread configuration mapping tc is a
function of the type

TC = thread⇀ (CNames × CS)

which maps a thread identifier to its call stack, if the program configuration
contains a thread with the thread identifier. Otherwise the mapping is undefined
for this identifier. In addition to the call stack, however, a call stack mapping
provides the thread class name of the thread. We use

tc(n).tclass and tc(n).cs

in order to refer to the thread class and to the call stack of a thread identifier n,
respectively. As for other mappings, we denote the thread configuration mapping
that results from modifying tc by mapping the thread identifier n to the thread
class C and call stack CS with

tc[n 7→ (C,CS)].

Recall, that this means either an extension of the original domain of tc by the
new element n or an update of tc concerning the image of t. In the latter case,
we often write

tc[n 7→ CS] as a short form for tc[n 7→ (tc(n).tclass,CS)],

as the execution of the thread may change its call stack but not its thread class,
anyway.

Therefore, a configuration of the multi-threaded language CoJapl only differs
from configuration of the sequential language Japl in that the call stack is replaced

144CHAPTER 6. CONCURRENT PROGRAMMING LANGUAGE – COJAPL

by a thread configuration mapping. We redefine the set of configurations Conf to

Conf def= (H× V ×TC).

In our concurrency model, not all threads are executed in parallel, but the oper-
ational semantics implements a scheduler allowing only one thread at a time to
exercise an undetermined number of computation steps. That is, the execution of
threads is interleaved. Note, that we embark on a preemptive concurrency model.
We do not provide specific language constructs like wait or notify by which a
thread could influence the actual scheduling. In particular, neither can a thread
explicitly give away the control to another thread nor can it claim execution time.

Now let us discuss the rules of the operational semantics that deal with inter-
nal computation steps. They are defined in Table 6.4 and Table 6.5. Regarding
the internal rules, the transition from Japl’s sequential setting to CoJapl’s multi-
threaded setting basically consists of the above mentioned replacement of the
call stack by the thread configuration mapping within the configurations. Hence,
within each transition rule, the call stack is replaced by a thread configuration
mapping. Each rule non-deterministically chooses a thread identifier n of the
thread configuration mapping’s domain. Then the associated call stack is reduced
much like in the corresponding rules of the sequential setting. Finally, the re-
sulting thread configuration replaces the original configuration within the thread
configuration mapping. Note, non-deterministically choosing a thread represents
a very simple scheduling policy which, specifically, does not guarantee fairness.
In other words, theoretically it may happen that a specific thread never gets any
execution time.

As for Rule Call, the transition from Japl to CoJapl does not only entail the
above mentioned call stack replacement, but additionally we have to provide the
method with values for the expressions tid and tclass. In order to find out the
thread class of the thread n, we do not only look up the thread’s call stack in the
thread configuration mapping tc but also its thread class CT .

Regarding Rule Spawn some more words are in order. We assume that a
thread with thread identifier n1 is about to spawn a new thread of thread class
C. To this end, we choose a new thread name n2 which is not already in use,
hence, which is not in the domain of the thread configuration mapping tc, already.
The new thread identifier n2 is returned to the call stack of thread n1 which
correspondingly updates the value of variable x by modifying the local variable
function list and the global variables. As for the new thread, we create a new
call stack CS2 which consists of a single activation record, only. In particular,
the activation record code is represented by the body of thread class C and its
local variable function list consists of the variable function vl only, capturing the
thread’s identifier, its class name, and the parameters x of the spawn statement.
Finally the thread configuration mapping is updated in that, on the one hand, it
gets extended regarding thread identifier n2 and, on the other hand, the entry of
thread identifier n1 is updated.

6.3. OPERATIONAL SEMANTICS 145

[Ass]

tc(n).cs = (µ, x = e; mc) ◦CSb

(v′, µ′) = vupd(v, µ, x 7→ [[e]]v,µh) CS = (µ′,mc) ◦CSb

(h, v, tc) (h, v′, tc[n 7→ CS])

[FUpd]

tc(n).cs = (µ, f = e; mc) ◦CSb CS = (µ,mc) ◦CSb

o = [[this]]v,µh (C,F) = h(o) h′ = h[o 7→ (C,F[f 7→ [[e]]v,µh])]
(h, v, tc) (h′, v, tc[n 7→ CS])

[Call]

tc(n) = (CT , (µ, x = e.m(e); mc) ◦CSb)
CS = (vl,mbody(C,m)) ◦ (µ, rcv x; mc) ◦CSb

o = [[e]]v,µh C = h(o).class T x = mparams(C,m) Tl xl = mvars(C,m)
vl = {this 7→ o, tid 7→ n, tclass 7→ CT , x 7→ [[e]]v,µh , xl 7→ ival(Tl)}

(h, v, tc) (h, v, tc[n 7→ CS])

[New]

tc(n).cs = (µ, x = new C(e); mc) ◦CSb

CS = (vl, cbody(C); return this) ◦ (µ, rcv x; mc) ◦CSb

o ∈ N \ dom(h) h′ = h[o 7→ ObjC⊥] T x = cparams(C) Tl xl = cvars(C)
vl = {this 7→ o, x 7→ [[e]]v,µh , xl 7→ ival(Tl)}

(h, v, tc) (h′, v, tc[n 7→ CS])

[BlkBeg]

tc(n).cs = (µ, {T x; stmt}; mc) ◦CSb CS = (vl·µ, stmt ; BE mc) ◦CSb

vl = {x 7→ ival(T)}
(h, v, tc) (h, v, tc[n 7→ CS])

[BlkEnd]
tc(n).cs = (vl·µ, BE mc) ◦CSb CS = (µ,mc) ◦CSb

(h, v, tc) (h, v, tc[n 7→ CS])

[Whl1]

tc(n).cs = (µ, while (e) {stmt}; mc) ◦CSb

CS = (µ, stmt ; while (e) {stmt}; mc) ◦CSb [[e]]v,µh
(h, v, tc) (h, v, tc[n 7→ CS])

[Whl2]
tc(n).cs = (µ, while (e) {stmt}; mc) ◦CSb CS = (µ,mc) ◦CSb ¬[[e]]v,µh

(h, v, tc) (h, v, tc[n 7→ CS])

Table 6.4: CoJapl language: operational semantics (internal, part 1)

Also the interface communication rules of the operational semantics basically
result from the rules of Table 2.12 by exchanging the configuration’s call stack
with a thread configuration mapping. Additionally, we extend the communication
labels a concerning incoming and outgoing calls and returns with the thread n

146CHAPTER 6. CONCURRENT PROGRAMMING LANGUAGE – COJAPL

[Cond1]

tc(n).cs = (µ, if (e) {stmt1} else {stmt2}; mc) ◦CSb

CS = (µ, stmt1; mc) ◦CSb [[e]]v,µh
(h, v, tc) (h, v, tc[n 7→ CS])

[Cond2]

tc(n).cs = (µ, if (e) {stmt1} else {stmt2}; mc) ◦CSb

CS = (µ, stmt2; mc) ◦CSb ¬[[e]]v,µh
(h, v, tc) (h, v, tc[n 7→ CS])

[Ret]

tc(n).cs = (µ1, return e) ◦ (µ2, rcv x; mc) ◦CSb

CS = (µ′2,mc) ◦CSb (v′, µ′2) = vupd(v, µ2, x 7→ [[e]]v,µ2
h)

(h, v, tc) (h, v′, tc[n 7→ CS])

[Spawn]

tc(n1).cs = (µ, x = spawn C(e); mc) ◦CSb CS1 = (µ′,mc) ◦CSb

n2 ∈ N \ dom(tc) (v′, µ′) = vupd(v, µ, x 7→ n2) CS2 = (vl, tbody(C))
T x = tparams(C) vl = {tid 7→ n2, tclass 7→ C, x 7→ [[e]]v,µh }

(h, v, tc) (h, v′, tc[n1 7→ CS1][n2 7→ CS2])

Table 6.5: CoJapl language: operational semantics (internal, part 2)

that carries out the communication step:

a ::= γ? | γ!
γ ::= n〈call o.m(v)〉 | n〈new C(v)〉 | n〈return (v)〉 | ν(∆,Θ).γ,

where o ∈ N , v ∈ Vals and where ∆ and Θ are type mappings.

To understand the reason for the extension of the labels, recall that a com-
munication label shall consist of exactly the information that is passed to the
receiver by the corresponding communication step. Now if, for instance, an in-
coming method call occurs, then the program does not only recognize the method
m, the callee o, and the actual parameters v of the call but it can also find out the
corresponding thread identifier by means of the expression tid. The same applies
to constructor calls and to returns.

Note, in particular, that the thread of an incoming call may show up for the
first time. Hence, the thread identifier may be included in the type mapping
of the ν-binder. Since the program may inquire the thread class via tclass,
such a new thread is typed with its class name. In contrast to the ν-binder of
the sequential setting, the ν-binder of the multi-threaded setting consists of two
mappings, representing the assumed and the committed types. For, in Japl an
interface communication may only update either the commitment context or the
assumption context. In CoJapl this is not always the case, anymore. The reason
will become clear soon.

6.3. OPERATIONAL SEMANTICS 147

Apart from the program configuration modifications and from the above men-
tioned label extension, we have to deal with a new kind of interface communi-
cation, namely cross-border thread spawning. More specifically, the program may
spawn a thread of an externally defined thread class provoking an outgoing thread
spawn label. Likewise, the environment may spawn a thread concerning a thread
class of the program resulting in an incoming thread spawn label. Again, the jus-
tification for dedicated labels regarding thread spawning is that the spawn is
obviously an observable interaction: the new thread itself is aware of the fact that
it just has been spawned. In order to find out the constituents of a spawn label, let
us assume that the program spawns a new thread of an externally defined thread
class. Such a spawn is certainly implemented in terms of a spawn statement

x = spawn C(e),

where we consider C to be an externally defined thread class, i.e., a thread class
of the program’s environment. Similar to the cross-border constructor call, the
name of the class and the actual parameters are part of the communication label.
In contrast to a constructor call, where the calling thread is blocked until the en-
vironment yields the new object name, a thread spawn immediately returns and,
thus, immediately yields the new thread identifier. As a consequence, the outgoing
spawn label is equipped with the new thread identifier, such that the communi-
cation step provides both the communication partners with the new identifier.
Symmetrically, an incoming spawn label includes the new thread identifier, as
well. Therefore, we extend the above communication label definition as follows:

γ ::= 〈spawn n of C(v)〉.

Note that the spawn label γ provides the identifier n of the newly created thread
only but not the thread identifier of the thread that has executed the spawn
statement, as it is unknown to the new thread and, thus, unknown to the receiver
of the communication step.

Now let us get back to the ν-binder. In the sequential setting a new name
communicated in terms of an incoming communication represents always an ob-
ject of an environment class, that is, the ν-binder of incoming communication
always consists of an assumption type mapping ∆′, only – objects of program
classes are always created by the program itself. We have just seen, however, that
regarding the multi-threaded setting an incoming spawn provides the identifier
of the new thread already, even though the thread class is part of the program.
Consequently, the thread identifier of the incoming spawn is typed with the pro-
gram class such that the ν-binder includes a commitment type mapping Θ′. The
parameters e of the spawn, yet again, may entail the propagation of new environ-
ment objects as well, thus, the spawn label is equipped with, both, a commitment
and an assumption type context.

After this general introduction, the interface communcation rules of the op-
erational semantics are given in Table 6.6. Similar to the internal computation

148CHAPTER 6. CONCURRENT PROGRAMMING LANGUAGE – COJAPL

[SpawnO]

a = ν(Θ′,∆′).〈spawn n of C(v)〉! C ∈ dom(∆)
tc(n′) = (µ, x=spawn C(e); mc) ◦CS

tc′ = tc[n 7→ (µ′,mc) ◦CS]

∆,∆′ ` (h, v, tc) : Θ
a−→ ∆ ` (h, v′, tc′) : Θ,Θ′

where v = [[e]]v,µh ,
n ∈ N \ dom(tc),
(v′, µ′) = vupd(v, µ, x 7→ n),
∆′ = (n:C), and
Θ′ = new(h, v,Θ)

[SpawnI]

a = ν(∆′,Θ′).〈spawn n of C(v)〉? ∆ ` a : Θ
tc′ = tc[n 7→ (C, (vl, tbody(C))]

∆ ` (h, v, tc) : Θ
a−→ ∆,∆′ ` (h, v, tc′) : Θ,Θ′

where T x = tparams(C) and
vl = {tid 7→ n, tclass 7→ C,

x 7→ v}

[CallI]

a = ν(∆′).n〈call o.m(v)〉? ∆ ` a : Θ

tc(n) = (CT ,CSeb)

tc′ = tc[n 7→ (vl,mbody(C,m)) ◦CSeb]

∆ ` (h, v, tc) : Θ
a−→ ∆,∆′ ` (h, v, tc′) : Θ

where Θ ` o : C,

T x = mparams(C,m),

T ′ x′ = mvars(C,m), and
vl = {tid 7→ n, tclass 7→ CT ,

this 7→ o, x 7→ v,
x′ 7→ ival(T ′)}

[NewI]

a = ν(∆′).n〈new C(v)〉? ∆ ` a : Θ

tc(n) = (CT ,CSeb)

tc′ = tc[n 7→ (vl, cbody(C)) ◦CSeb]

∆ ` (h, v, tc) : Θ
a−→ ∆,∆′ ` (h′, v, tc′) : Θ

where o ∈ N \ dom(h),

h′ = h[o 7→ ObjC⊥],

T x = cparams(C),

T ′ x′ = cvars(C), and
vl = {tid 7→ n, tclass 7→ CT ,

this 7→ o, x 7→ v,
x′ 7→ ival(T ′)}

[CallInt]

a = ν(∆′).n〈call o.m(v)〉? ∆ ` a : Θ
∆′ ` n : CT

tc′ = tc[n 7→ (CT , vl,mbody(C,m)))]

∆ ` (h, v, tc) : Θ
a−→ ∆,∆′ ` (h, v, tc′) : Θ

where Θ ` o : C,

T x = mparams(C,m),

T ′ x′ = mvars(C,m), and
vl = {tid 7→ n, tclass 7→ CT ,

this 7→ o, x 7→ v,
x′ 7→ ival(T ′)}

[NewInt]

a = ν(∆′).n〈new C(v)〉? ∆ ` a : Θ
∆′ ` n : CT

tc′ = tc[n 7→ (CT , (vl, cbody(C)))]

∆ ` (h, v, tc) : Θ
a−→ ∆,∆′ ` (h′, v, tc′) : Θ

where o ∈ N \ dom(h),

h′ = h[o 7→ ObjC⊥],

T x = cparams(C),

T ′ x′ = cvars(C), and
vl = {tid 7→ n, tclass 7→ CT ,

this 7→ o, x 7→ v,
x′ 7→ ival(T ′)}

Table 6.6: CoJapl language: operational semantics (external)

6.3. OPERATIONAL SEMANTICS 149

rules, most of the external rules are similar to their sequential counterparts of
Table 2.12. As mentioned above, however, we additionally introduce two rules
concerning incoming spawns and, respectively, outgoing spawns. Rule SpawnO
deals with a spawn statement that results in an outgoing spawn label, i.e., the
corresponding thread class C is in the domain of the assumption context ∆. We
said already that the ν-binder of a spawn label provides an assumption and an
commitment update context. The commitment context Θ′ is determined by means
of the auxiliary function new introduced in Section 2.4.3. The assumption context
consists exactly of the thread identifier n which is used for the newly spawned
thread.

Dually, Rule SpawnI deals with an incoming spawn label. The domain of the
thread configuration mapping is extended by the thread class name C and a new
call stack consisting of the thread class’s thread body.

The environment can create threads by means of externally defined thread
classes, hence, the corresponding thread creation process is not observable by
the program. As a consequence, an incoming call via a new thread may occur,
i.e., a thread which is unknown to the program so far. On account of this, the
operational semantics of CoJapl provides two rules for incoming method calls and,
respectively, for incoming constructor calls. Rules CallI and NewI deal with
incoming calls by means of a thread n which is known to the program already.
In particular, the rules’ original thread configuration mapping tc maps n to a
thread class CT and a call stack. Thus, the incoming call causes an extension of
the existing call stack by a new activation record.

On the other hand, Rule CallInt and Rule NewInt are used for incoming
calls via an unknown thread n. The novel character of n is indicated by the fact
that n is bound in the communication label a such that is included in the label’s
type context ∆′. Consequently, the thread configuration mapping is extended by
the new thread n, where n is mapped to its thread class and a new call stack
consisting of the method or, respectively, the constructor body of the call.

Note, in contrast to the previous incoming communication rules, the three new
rules SpawnI, CallInt , and NewInt dealing with new threads do not require an
externally blocked call stack in the original configuration.

We conclude this section with a definition of the program execution, the initial
configurations, and the trace semantics of a CoJapl program. It is no big surprise
that these definitions resemble the corresponding definitions of the sequential
language.

Definition 6.3.1 (Execution, initial configurations, and trace semantics): Let

p ≡ impdecl ; T x; cldef tdef {stmt ; return}

be a syntactically correct and well-typed CoJapl program. A program execution of p is
a finite sequence of reduction steps, according to the rules of Table 6.4, Table 6.5, and

150CHAPTER 6. CONCURRENT PROGRAMMING LANGUAGE – COJAPL

[Intern]
c ∗ c′

∆ ` c : Θ ε=⇒ ∆′ ` c′ : Θ′

[Single]
∆ ` c : Θ a−→ ∆′ ` c′ : Θ′

∆ ` c : Θ a=⇒ ∆′ ` c′ : Θ′

[Seqnc]
∆ ` c : Θ s=⇒ ∆′ ` c′ : Θ′ ∆′ ` c′ : Θ′ t=⇒ ∆′′ ` c′′ : Θ′′

∆ ` c : Θ st=⇒ ∆′′ ` c′′ : Θ′′

Table 6.7: CoJapl language: traces

Table 6.6, starting from an initial configuration of the program

cinit(p)
def= (h⊥, {x 7→ ival(T)},
{ nmain 7→ ({tid 7→ nmain , tclass 7→ Main}, stmt ; return) }),

or, respectively,

cinit(p)
def= (h⊥, {x 7→ ival(T)}, ε).

Correspondingly, by means of the rules of Table 6.7, we define three semantic func-
tions

[[·]]atrace , [[·]]
p
trace , [[·]] : ∆ ` p : Θ ⇀ P(a∗),

such that for ∆ ` p : Θ it is

[[∆ ` p : Θ]]atrace
def= {s ∈ a∗|∆ ` cinit(p) : Θ s=⇒ ∆′ ` c′ : Θ′},

[[∆ ` p : Θ]]ptrace
def= {s ∈ a∗|∆ ` cinit(p) : Θ s=⇒ ∆′ ` c′ : Θ′}, and

[[∆ ` p : Θ]] def= [[∆ ` p : Θ]]atrace ∪ [[∆ ` p : Θ]]ptrace .

Chapter 7

Test specification
language and code
generation

As in the sequential setting, the underlying idea of our testing approach also
in the multi-threaded setting is to provide a test specification language which
allows to specify the interface interactions that may occur between the component
under test and its environment. Regarding the sequential setting, the specification
language’s look-and-feel resembles that of the programming language Japl but also
the specification language’s semantics was geared towards Japl’s trace semantics.
Describing a desired interaction trace, i.e., a sequence of communication labels,
a Japl test specification, in particular, specifies the exact order of the entailed
interface interactions. The consequence is that, in Japl we only need a single,
sequentially composed, (main) specification statement which likewise stipulates
an exact order due to its sequential construction.

In the multi-threaded setting, a trace of the semantics also represents a se-
quence of interactions. Due to the non-deterministic scheduling policy of the lan-
guage, however, we cannot assure a certain sequence in general: if a program
realizes a certain trace, then it also realizes different possible interleavings of the
original trace. On account of this, we want to allow for specifying tests that are
relaxed regarding the order of interactions carried out by different threads. Inter-
actions that belong to the same thread, however, must again comply with a certain
order. Therefore the idea is that the concurrent specification language shall allow
to provide a specification statement for each thread that becomes active in the
specification. To achieve this, we first have to identify the different situations in
which a thread (identifier) may show up in a CoJapl program for the first time.
There exist four different ways which are:

• internal thread creations due to instantiation of a thread class of the program

151

152CHAPTER 7. SPECIFICATION LANGUAGE AND CODE GENERATION

itself; for instance:

x = spawn MyThread(e, . . . , e),

• outgoing spawn labels, that is, the program instantiates an external thread
class; for instance:

a = ν(∆′,Θ′).〈spawn n of C(v)〉!,

• incoming spawn labels, that is, the program’s environment instantiates a
thread class of the program, resulting in a communication label, like:

a = ν(∆′,Θ′).〈spawn n of C(v)〉?,

• and incoming method or constructor call labels where the call is carried out
by a new thread; for instance:

a = ν(∆′).n〈call o.m(v)〉?, such that n ∈ ∆′.

For each of the above listed situations, a specification must provide a correspond-
ing specification statement that determines the desired sequence of interface inter-
action carried out by the new thread. As in the single threaded case, we want to
accomplish this by extending the programming language CoJapl with dedicated
specification constructs.

Let us start with a spawn statement that results in an outgoing spawn label.
That is, the specification instantiates a thread class C of the component under
test. Following the style of the outgoing call statement of the sequential specifica-
tion language, the spawn statement of the multi-threaded specification language
resembles the original spawn statement but is equipped with an exclamation mark
to indicate the cross-border communication.

x = spawn!C(e, . . . , e).

A crucial difference between a method call specification statement (as well as a
constructor call specification statement) on one hand and the spawn specification
statement on the other hand is that the spawn statement is not split into two
parts at the equal sign. For, the thread that carries out the spawn statement
does not get blocked but always immediately returns such that the thread cannot
realize any other actions in between the spawn and the corresponding return of the
thread identifier. Since the spawn statement causes the creation of a new thread,
the specification shall entail a description of the desired interface interactions
realized by the new thread. To this end, we introduce the following test thread
construct for specifying the interface behavior of a thread class C pertaining to
the component under test:

test thread C(T x){ stmt }.

153

According to our example, the above mentioned outgoing spawn statement results
in a new thread of thread class C of the component under test and this new thread
shall expose a behavior that conforms to the specification statement stmt . Note
that stmt is parameterized regarding the spawn’s parameters. Also note that the
statement will be typed in a passive control context, as C is defined within the
external component, hence, the thread becomes active in the external component,
as well.

It has been mentioned, however, that a thread of an external thread class can
also be created by the external component itself such that the specification does
not know anything about the thread until it passes the interface for the very first
time due to an incoming method or constructor call. In these cases the speci-
fication has to provide a desired behavior for the new thread, as well. Though,
the corresponding specification statement cannot be parameterized regarding the
spawn parameters, as it was not the specification that causes the thread spawn-
ing but the external component, hence, the corresponding actual parameters are
not known to the specification. Therefore, we introduce a second test thread con-
struct for specifying the behavior of thread classes of the component under test.
In particular, it is almost identical to the aforementioned parameterized thread
specification construct except that it does not provide any parameters. Therefore,
the specification construct

test thread C{ stmt }

means that, if a thread of class C enters the specification via a method or con-
structor call for the first time, then the interface behavior realized by this thread
has to comply with the specification statement stmt .

Similar to the CoJapl programming language, a specification may not only
spawn threads of externally defined thread classes but it also may create threads
by means of internal thread creations, that is, the specification also supports the
following spawn statement:

x = spawn(e, . . . , e).

Note, however, in contrast to a CoJapl program, a specification may only use
this statement in order to realize internal thread creations, since external thread
creations are implemented by the above mentioned outgoing spawn statement.

A thread that comes to existence due to an internal thread creation also has
to stick to a specified interface interaction sequence. Therefore, the specification
language also provides a mock thread construct that stipulates a certain interface
interaction due to a thread of a specification thread class C:

mock thread C(T x){ stmt }.

Since a thread of a specification thread class C always starts in the specification,
it consequently may pass the interface for the first time due to an outgoing com-
munication, only. Hence, the specification statement stmt is typed in an active
control context.

154CHAPTER 7. SPECIFICATION LANGUAGE AND CODE GENERATION

A thread of a specification thread class can come into existence either due to
an internal spawn statement or due to an incoming spawn label. In both cases,
the corresponding thread creation parameters are observable to the specification.
Therefore, regarding specification thread classes, we do not need an additional
mock thread construct that lacks the parameters.

Note, furthermore, that we need not to provide a specification statement for
the expectation of incoming spawns. To understand the reason, consider the case
that we do provide such a specification statement. More specifically, assume a
specification of a thread n which entails the following fictitious incoming spawn
statement:

x = spawn?C(T x).where(e).

The statement specifies that we expect the component under test to provoke an
incoming spawn label via thread n resulting in a new thread. Let us assume, the
name of the new thread is n′. Within the thread n itself, however, we cannot
check if a spawn was executed. Also the new thread n′ cannot verify that it was
created by the specified spawn, as the originator of a spawn is unknown to the
new thread, in general. Finally, due to the scheduling policy, the execution of a
spawn statement and the resulting execution of the corresponding thread body
are decoupled such that the start of the new thread does not allow to infer the
point of time, when the spawn statement has been executed. For instance, even
if the component under test executes, as specified by the above spawn expecta-
tion statement, the right spawn statement at the desired point of time, then the
new thread n′ may be scheduled much later. The conclusion is, neither can the
specification observe the originator nor the point of time regarding an incoming
spawn rendering it useless to introduce a corresponding specification statement.

Summarizing, the above mentioned mock thread construct is used for, both,
internally spawned and externally spawned threads of specification thread classes.
Now that we have discussed the new specification construct, the following section
provides the syntax of the concurrent specification language, at large.

7.1 Syntax

The syntax of the test specification language for testing CoJapl components is
given in terms of a grammar definition in Table 7.1. The language is basically an
extension of the specification language, given in Table 3.1, by the interactions spec-
ification of thread classes. To this end, the language provides the new constructs
that we have introduced in the previous section. In particular, the test thread
constructs extend the declaration of the test unit classes while the mock thread
construct completes the mock class declarations. We assume that the thread class
names of all kinds of thread specification constructs are different. Note that, due
to simplicity, this also means that the behavior of a thread class of the component
under test may only be specified either by means of a parameterized test thread
specification construct or by the non-parameterized test thread construct. Con-
sequently, we assume that all instances of an external thread class may show up

7.1. SYNTAX 155

s ::= cutdecl ; mokdecl ; T x; { stmt } specification

cutdecl ::= test class C test unit classes

| test thread C(T x){ stmt }
| test thread C{ stmt }

mokdecl ::= mock class C{C(T, . . . , T); T m(T, . . . , T)} mock classes

| mock thread C(T x){ stmt }
stmt ::=x = e | x = new C | ε | stmt ; stmt | {T x; stmt} statements

| while (e) {stmt} | if (e) {stmt} else {stmt}
| x = spawn C(e, . . . , e)
| stmt in | stmtout | case { stmt in ; stmt }

stmt in ::= (C x)?m(T x).where(e) {T x; stmt ; !return e} incoming stmt

| new(C x)?C(T x).where(e){T x; stmt ; !return}
stmtout ::= e!m(e, . . . , e) {T x; stmt ; ?return(x).where(e) } outgoing stmt

| new!C(e, . . . , e){T x; stmt ; ?return(x).where(e)}
| x = spawn!C(e, . . . , e)

e ::=x | null | op(e, . . . , e) | tid | tclass expressions

Table 7.1: Specification language for CoJapl: syntax

for the first time either due to an outgoing spawn or due to an incoming call.
Finally, the set of statements is extended by the internal and the outgoing

spawn specification. Regarding the expressions, like in CoJapl we introduce the
new expressions tid and tclass which allow a thread to determine its identifier
and its class, respectively.

We conclude this section with two small examples which illustrate the usage
of the specification language. The examples are given in Table 7.2. The first ex-
ample on the left hand side of the table demonstrates the behavior specification
of externally defined thread class, i.e., thread classes provided by the component
under test. We assume that the component under test implements a thread that
communicates with a (simplified) network service via its socket API (cf. [72],
for instance). The used socket API, however, is wrapped in a ServerSocket class
which is mocked by the specification. The thread under test is spawned by the
main statement of the specification in Line 33. The thread specification is given in
Lines 7 to 31. Specifically, the component (more precisely: its thread) is expected
to create a ServerSocket object. Afterwards the component shall request the socket
to listen to the network by means of an invocation of method listen. When the
socket gets a connection request from the network it returns from the listen call.
In this example, the method immediately return simulating a connection request.
The component, in turn, accepts the connection by calling accept which is then
followed by an undetermined number of send requests and by a final call of the
close method.

The second example in Table 7.2 illustrates the specification of a mock thread
class StackTest (Lines 2 to 26). It assumes an externally defined Stack class. More

156CHAPTER 7. SPECIFICATION LANGUAGE AND CODE GENERATION

specifically, the thread class tests if the Stack implementation is thread-save. That
is, instances of the Stack class used via different threads must not interfere with
each other resulting in an invalid stack structure. The thread class is parametrized
in terms of three integer values which are pushed to and afterwards popped from
a Stack object. Finally, the main specification statement spawns three threads of
StackTest which, therefore, are executed concurrently.

Server socket example:

1 mock class ServerSocket{
2 ServerSocket ServerSocket();
3 bool listen();
4 ...
5 }
6

7 test thread ServSockThread() {
8 ServerSocket s;
9

10 new?(ServerSocket x)ServerSocket() {
11 s = x;
12 !return(s)
13 };
14 s?listen() {
15 !return(true)
16 };
17 s?accept() {
18 !return(true);
19 };
20 bool rcv = true;
21 while (rcv) {
22 case

23 s?send(Data d) {
24 !return(true)
25 }
26 s?close() {
27 rcv = false;
28 !return(true)
29 }
30 }
31 }
32 { thread x;
33 x = spawn!servSockThread()
34 }

Stack example:

1 test class Stack;
2 mock thread StackTest(int x1, x2, x3) {
3 Stack s;
4

5 new!Stack() {
6 ?return(s)
7 };
8 s!push(x1) {
9 ?return(1)

10 };
11 s!push(x2) {
12 ?return(2)
13 };
14 s!push(x3) {
15 ?return(3)
16 };
17 s!pop(){
18 ?return(x3)
19 }
20 s!pop(){
21 ?return(x2)
22 }
23 s!pop(){
24 ?return(x1)
25 }
26 }
27 { thread x;
28 x = spawn StackTest(1, 2, 3);
29 x = spawn StackTest(4, 5, 6);
30 x = spawn StackTest(7, 8, 9);
31 }

Table 7.2: CoJapl example specifications

7.2. STATIC SEMANTICS 157

7.2 Static semantics

The type system for the concurrent test specification language is given in Ta-
ble 7.3. It extends the type system for the sequential language, given in Table 3.2,
by new rules regarding the newly introduced constructs. Moreover, Rule T-Spec
requires a simple adaption, as the mock thread declarations have to be type-
checked, while the mock class declarations of the sequential settings were only
used to extract the type information.

Rule T-TestTSpwn deals with the test thread specification of threads spawned
by means of an outgoing spawn label. Thus, the corresponding thread class C has
to be included in the assumption context. Moreover, its type must comply with
the thread specification. Finally, the body statement stmt of the thread speci-
fication has to be well-typed regarding a type context that is enriched by the
thread creation parameters. Specifically, the statement has to be a passive state-
ment, since the thread starts within the component under test. Similarly, the
Rule T-TestTCall deals with the specification construct of an external thread
that shows up in the specification due to an incoming call. Therefore, the speci-
fication construct is not parameterized by the thread creation parameters, so we
can omit the type check of the previous rule. Yet, also here, the name C must be
typed as an externally defined thread class. Likewise, the specification statement
must be passive.

[T-Spec]

Θ = cltype(mokdecl) Γ; ∆; Θ ` cutdecl : ok Γ; ∆; Θ ` mokdecl : ok
Γ′ = Γ, x:T Γ′; ∆; Θ ` stmt : okγ ;

Γ; ∆ ` cutdecl ; mokdecl ; T x; { stmt } : Θγ

[T-TestTSpwn]
∆ ` C : T Γ′ = Γ, x:T Γ′; ∆; Θ ` stmt : okpsv

Γ; ∆; Θ ` test thread C(T x){ stmt } : ok

[T-TestTCall]
∆ ` C : T Γ′; ∆; Θ ` stmt : okpsv

Γ; ∆; Θ ` test thread C{ stmt } : ok

[T-MockT]
Γ′ = Γ, x:T Γ′; ∆; Θ ` stmt : okact

Γ; ∆; Θ ` mock thread C(T x){ stmt } : ok

[T-Spawni]
Γ; ∆,Θ ` x:thread Θ ` C:T Γ; ∆,Θ ` e:T

Γ; ∆; Θ ` x = spawn C(e) : okact

[T-Spawnout]
Γ; ∆,Θ ` x:thread ∆ ` C:T Γ; ∆,Θ ` e:T

Γ; ∆; Θ ` x = spawn!C(e) : okact

Table 7.3: Specification language for CoJapl: type system (stmts)

158CHAPTER 7. SPECIFICATION LANGUAGE AND CODE GENERATION

The mock thread specification represents the dual of the test thread specifica-
tion. Thus, its typing rule T-MockT is almost identical to Rule T-TestTspwn

but only its statement is type-checked in an active control context.
Finally, the two new spawn statements are type-checked by Rule Spawni and

Rule Spawnout , respectively. In both cases, the variable x has to be a thread
variable and the class name C must be appropriately typed as a thread class.
Regarding the internal spawn statement, however, the thread class must be pro-
vided by the commitment context Θ while the outgoing spawn statement is only
well-typed if the thread class can be found in the assumption context ∆. Note
that both statements are only well-typed in an active control context.

7.3 Operational semantics

Again, the internal steps of the operational semantics are identical to the rules
of the concurrent programming language CoJapl, hence, we do not repeat them
again. Regarding the external steps, we adapt the rules of the sequential specifi-
cation language by extending it with threads. This is done, as explained above,
by exchanging the call stack of the configurations with a thread configuration
mapping. Therefore, we also omit most of the rules inherited from the sequential
setting. We add new rules for the new thread-related specification constructs. As
with CoJapl, we have to differentiate incoming calls via new threads from rules
regarding re-entrant threads. The new rules are shown in Table 7.4.

An incoming spawn causes the extension of the thread configuration mapping
tc, where the new call stack is initialized with the specification statement of
the corresponding mock thread specification. To this end, we redefine the code
extracting function cbody such that it extracts the body statement from mock
and test thread specifications. We omit the straightforward redefinition of cbody .

Similarly, an outgoing spawn causes the extension of tc, where the call stack
is initialized with the specification statement of the corresponding test thread
specification. Additionally, the call stack that implements the outgoing spawn
statement is reduced and the global and local variables are updated with the new
thread identifier.

Regarding incoming method and constructor calls, we have to provide two rules
each, as explained above. Rule CallI deals with incoming method calls realized by
a thread n that is known to the specification, already. In particular, there exist a
thread configuration for n in tc already, whose call stack specifies the expectation
of this incoming call. Furthermore, the where-clause e′ of the expectation evaluates
to true, so the call stack is reduced and the thread configuration mapping is
correspondingly updated.

Rule CallInt , in contrast, deals with incoming calls that are realized by means
of a new thread. Thus, the thread configuration mapping does not provide a cor-
responding mapping. However, the rules requires that a test thread specification
regarding this thread is provided, such that the thread specification’s first ex-
pectation statement matches with the incoming call. In this case, the thread
configuration mapping is extended by a new thread configuration for the new

7.4. TEST CODE GENERATION 159

[SpawnI]

a = ν(∆′,Θ′).〈spawn n of C(v)〉? ∆ ` a : Θ
tc′ = tc[n 7→ (C, (vl, tbody(C))]

∆ ` (h, v, tc) : Θ
a−→ ∆,∆′ ` (h, v, tc′) : Θ,Θ′

where T x = tparams(C)
and
vl = {tid 7→ n, tclass 7→ C,

x 7→ v}

[SpawnO]

a = ν(Θ′,∆′).〈spawn n of C(v)〉!
tc(n′).cs = (µ, x=spawn!C(e); mc) ◦CS

tc′ = tc[n′ 7→ (µ′,mc) ◦CS][n 7→ (C, (vl, tbody(C)))]

∆,∆′ ` (h, v, tc) : Θ
a−→ ∆ ` (h, v′, tc′) : Θ,Θ′

where v = [[e]]v,µh ,
n ∈ N \ dom(tc),
(v′, µ′) = vupd(v, µ, x 7→ n),
∆′ = (n:C),
Θ′ = new(h, v,Θ), and
vl = {tid 7→ n, tclass 7→ C,

x 7→ v}

[CallI]

a = ν(∆′).n〈call o.m(v)〉? ∆ ` a : Θ

spsv =(C x)?m(T x).where(e′) {Tl xl; sact ; !return e}
[[e′]]

v,vl·µ
h tc(n).cs = (µ, spsv ; mcpsv) ◦CS

tc′ = tc[n 7→ (vl·µ, sact ; !return(e); mc) ◦CSeb]

∆ ` (h, v, tc) : Θ
a−→ ∆,∆′ ` (h, v, tc′) : Θ

where C = Θ(o),
∆,Θ ` n : CT , and
vl = {tid 7→ n,

tclass 7→ CT ,
this 7→ o, x 7→ v,
x′ 7→ ival(T ′)}

[CallInt]

a = ν(∆′).n〈call o.m(v)〉? ∆′ ` n : CT
∆ ` a : Θ tbody(CT) = spsv ; spsv1

spsv =(C x)?m(T x).where(e′){Tl xl; sact ; !return e}
[[e′]]

v,vl
h tc′ = tc[n 7→ (vl, s

act ; !return e; spsv1)]

∆ ` (h, v, tc) : Θ
a−→ ∆,∆′ ` (h, v, tc′) : Θ

where C = Θ(o), and
vl = {tid 7→ n,

tclass 7→ CT ,
this 7→ o, x 7→ v,
x′ 7→ ival(T ′)}

Table 7.4: Specification language for CoJapl: operational semantics (external)

thread where the call stack consists of the thread’s specification statement. We
skip the rules for incoming constructor call, as they are very similar to the rules
for incoming method calls.

7.4 Test code generation

In this section we want to sketch a possible extension of the sequential code
generation algorithm achieving a code generation algorithm for the multi-threaded
setting.

Recall, that a central idea of the sequential test code generation was the antic-
ipation of the next incoming communication. Specifically, in the sequential setting
we annotated each incoming communication term of the specification with an ex-
pectation identifier. On the other hand, we added a global variable next which
provided the label of the next upcoming incoming communication term. This way,
we could distribute the (translated) code of the specification over several method
definitions without loosing track of the stipulated sequential order of the specified
interface interactions.

160CHAPTER 7. SPECIFICATION LANGUAGE AND CODE GENERATION

As for the multi-threaded setting, we will embark exactly on the same strategy,
though the sequential order and the corresponding anticipation mechanism will be
carried out for each thread, only. In particular, all specification statements of each
mock thread and test thread specification are equipped with a unique expectation
identifier annotation as well as with corresponding next update statements, so
that, for instance, as a first approach, a mock thread specification

mock thread C(T x){ sact }

is preprocessed according to the preprocessing step as described in Section 4.1
resulting in a thread specification

mock thread C(T x){ prepout(s
psv) },

where spsvpp results from applying prepout on spsv . It is crucial, that each thread
uses its own next variable since the specification stipulates the sequential order
of interactions only per thread. In this context, a little complication arise from
the fact that threads can be spawned dynamically. For, it is not sufficient to
declare a static number of global next variables but instead we have to implement
the next variables by means of a globally accessible dynamic list which maps
thread identifiers to the corresponding next expectation identifier. We abstract
the details regarding the list implementation away such that in the following we
refer to the globally accessible list in terms of an array. That is, we assume that
the preprocessed specification provides a dynamic list next where the expression
next [n] yields the next expectation identifier for the thread with thread identifier
n (if the list defines a value for n, at all).

As for the method code generation, the transition from the sequential to the
multi-threaded setting is rather straightforward. Concerning the methods’ case
switches (cf. Section 4.2), we merely have to replace the next expression by a
next [tid] expression. Thus, compared to Table 4.7 the case switch consists of
conditional statements of the following form:

1 if((next[tid] == id) && check-where-clause) {
2 body

3 retVal = ret-val ;

4 } else { expectationk };

However, additionally we have to consider the case that a thread enters the test
program for the first time via an incoming method or constructor call. In this
case, next [tid] is not defined. Hence, we first have to check if the thread is new
and, if so, we have to determine the matching thread specification for this thread.
Note that only threads of externally defined thread classes may show up at the
interface for the first time in terms of an incoming method or constructor call.
Therefore, we can assume that the new thread is instantiated from an externally
defined thread class and, correspondingly, only test thread specifications come
into question for this matching procedure.

7.4. TEST CODE GENERATION 161

If a matching thread specification is found, then the next list is extended by
tid such that next [tid] is initialized with the first expectation identifier of the
matching thread specification. For a better understanding, consider an example
specification which includes a test thread specification regarding thread class CT
that starts with an incoming method call expectation of method m of class C,
i.e.,

test thread CT { [i](C x)?m(T y).where(e) {

Moreover, assume that indeed an incoming call of method m of an instance of
C via thread n has occurred, where n is new to the specification. In particular,
next [n] is not defined. Then method m has to set next [n] to the expectation
identifier i. Specifically, the above mentioned case switch in the body of method
m has to be proceeded by the following code:

if (tid 6∈ next) {
if (tclass == CT) {

next[tid] = i
} else {

fail
}
}

Thus, when tid is not in the next list, hence, when tid shows up for the first
time, then method m checks the class type of the new thread by means of tclass.
If the calling class is CT then the next list is extended by tid that is mapped
to the expectation identifier i. As we put this conditional statement at the very
beginning of the method body, the above mentioned case switch can be executed
subsequently.

So far, we have ignored two further problems that arise from the dynamic
thread creation. First, we cannot resolve the local variable declaration problem
with variable globalization, anymore (cf. Section 4.1.2). To understand this, con-
sider the following test thread specification:

test thread CT {
[i](C x)?m1(T y).where(e) {

o!m2() {
(C x)?m1(T z).where(y = z) {

. . . },

The above specification consists of two nested incoming calls ofm1 where the inner
call’s where-clause uses the parameter y of the outer call. As several instances of
thread CT may be created during the execution it is not sufficient to provide a
(single) global pendant for y as we have done it in the sequential setting. Instead,
for each thread we have to provide a corresponding set of global variables. Thus,
similar to the solution for the global next variable, for each local variable we have
to implement a dynamic list of globally accessible variables. Then, regarding the
nested calls example given above, the second incoming call specification of m1
may access y by y[tid].

162CHAPTER 7. SPECIFICATION LANGUAGE AND CODE GENERATION

enter:

1 access = false;
2 while (!access) {
3 while(accID != 0) { };
4 accID = accID + tid;
5 if (addID == tid)
6 { access = true }
7 else

8 { accID = accID − tid }
9 }

exit:

1 access = false;
2 accID = accID − tid;

Table 7.5: CoJapl code generation: mutual exclusion

The second problem is due to the fact that a globally accessible list imple-
mentation must only allow a mutually exclusive writing access to the list, in order
to avoid inconsistency. Therefore, in the following we provide a simple mutual
exclusion algorithm for CoJapl. In particular, we assume that writing accesses to
global lists are only realized within critical sections. Table 7.5 sketches entry and
exit code to be executed by a thread whenever it wants to enter and, respectively,
exit a critical section. The only assumption for this algorithm concerning the Co-
Japl language is that we consider thread identifiers to be represented by integers
which can be added and subtracted. Each thread has a local variable access and
additionally all threads share a global variable accID. The local variable access is
used by a thread to indicate that is has access to the critical section. The global
variable addID stores thread identifiers of competing threads. Let us have a closer
look at the entry code. After initializing access to false, we enter the while-loop
at Line 2. After that, we have to busy-wait for accID to become 0. A value of 0
indicates that no thread is in the critical section and that currently no thread has
requested entrance to the critical section. A thread requests for entrance to the
critical section by incrementing accID with its own thread it. If then afterwards
accID indeed stores the thread identifier of the thread, then the thread is allowed
to enter the section. Since other threads may have incremented the variable con-
currently as well, however, accID may be unequal to the thread identifier. In this
case, all competing threads have to decrement accID by their thread identifier
again. Due to the fact that an assignment represents an atomic computation step
in our language, there exist at most one thread which may find accID to store
exactly its own thread identifier. Therefore, mutual exclusion is granted. When
leaving the critical section, the thread again subtracts its identifier from accID.

Chapter 8

Concluding remarks

In this thesis, we presented a novel unit testing approach for object-oriented multi-
purpose programming languages in the style of Java and C]. Analyzing existing
unit testing approaches we identified three goals to be melted into our testing
framework:

• Due to the tendency that software developers do not only write the unit code
but likewise are responsible for specifying and executing the corresponding
unit test cases, the test specification language should be easily accessible
by software developers. In particular, referring to the increasing popular-
ity of agile software development methodologies, a specification language
that is completely different to the programming language may hamper the
propagated short test-and-develop cycles that many developers embark on.

• Object-orientation entails heavy collaboration among objects. As a conse-
quence, within an object-oriented context, unit testing coincide with inte-
gration testing. Hence, an object-oriented unit test does not merely consist
of relating input with output data but instead the proper interaction of
objects itself is to be verified.

• Finally, not only due to the interdependency among objects, specifying
interaction-based test cases can easily become quite complex. Therefore,
it is useful if a test specification language allows to formalize test case spec-
ifications on a high level.

Our idea for combining these, partly contradicting, features was to define a test
specification language by extending the programming language with dedicated
specification statements. Aiming at interaction-based testing, the specification
statements basically express expectations regarding the observable behavior of
the unit under test.

Based on this, the main part of the thesis dealt with a unit testing framework
for sequential object-oriented programs. The framework was introduced in four
steps. Firstly, we presented a formally defined component-based object-oriented

163

164 CHAPTER 8. CONCLUDING REMARKS

programming language Japl that captured the basic features of Java, C], and sim-
ilar languages. Second, we introduced the test specification language as an exten-
sion of Japl. As a third step, we developed a test code generation algorithm which
allows to automatically generate a Japl test program from a test specification. A
central contribution is the correctness proof of the code generation algorithm. We
concluded the main part with a discussion about possible extensions of both, the
programming language and the test specification language.

Even though the programming language Japl, as mentioned, captures only a
small fraction of the features of today’s commonly used object-oriented languages,
its formal representation is already quite complex. In particular, the discussion
about the language extension with subtyping and inheritance in Section 5.3 gives
a foretaste of the complexity one would be confronted with, if aiming at a for-
mal representation for the whole Java or C] language. One may conclude that
implementations of these object-oriented languages are likewise so complex that
compilers, virtual machines, and the like themselves should be thoroughly tested.
But due to the lack of complete formal specifications regarding these languages,
which would be essential to derive useful test cases, it is doubtful that these tests
exist either.

Similarly, the development of the code generation algorithm and its correctness
proof demonstrated the amount of considerations necessary for writing proper test
code in general. Against this background, one specifically can get an impression
on the effort that has to be made for writing interaction-based test code without
the support of a tool that abstracts away some of the entailed intricacies.

The second part of the thesis introduced concurrency into the programming
language by means of thread classes. Afterwards, we discussed a corresponding
extension of the test specification language which also included a sketch regarding
the necessary modifications of the code generation algorithm. Clearly, the above
remarks about the difficulties of writing proper test code is even more true if
concurrency comes into play [60].

As a conclusion, the testing framework proposed in this thesis, indeed, may fa-
cilitate writing interaction-based unit tests. Thus, regarding our testing approach,
it suggests itself that implementing the framework in Java or C] is one of the next
steps in the near future. The fact that parts of code generation algorithm is given
in terms of simple functional programming language code may expedite the im-
plementation. Moreover, as the specification language is defined as an extension
of the programming language, it could be implemented with the help of an ex-
tensible compiler framework like Polyglot [51] or The Dryad Compiler [43], for
instance. As indicated already, however, probably more effort will be necessary
for embedding further features of real word programming languages into the for-
mal framework. Besides subtyping and inheritance, synchronization mechanisms
like synchronized methods and monitors represent interesting candidates for the

165

multi-threaded setting. Although it takes quite an effort to define a formal frame-
work for interaction-based testing, it clearly has the benefit that it could form
a basis for further testing-related research, in general. For instance, it could be
useful in the field of compositional testing as it investigates how we can reuse test
results about smaller components for the integration test of their composition [14].

Bibliography

[1] Abadi, M., Cardelli, L.: A Theory of Objects. Monographs in Computer Science.
Springer-Verlag (1996)

[2] Ábrahám, E., de Boer, F.S., Bonsangue, M.M., Grüner, A., Steffen, M.: Observabil-
ity, connectivity, and replay in a sequential calculus of classes. In: M. Bonsangue,
F.S. de Boer, W.P. de Roever, S. Graf (eds.) Proceedings of the Third International
Symposium on Formal Methods for Components and Objects (FMCO 2004), Lec-
ture Notes in Computer Science, vol. 3657, pp. 296–316. Springer-Verlag (2005).
URL http://www.ifi.uio.no/~msteffen/download/fa-fmco.pdf

[3] Ábrahám, E., Grabe, I., Grüner, A., Steffen, M.: Behavioral interface description of
an object-oriented language with futures and promises. Journal of Logic and Alge-
braic Programming (2009). URL http://www.ifi.uio.no/~msteffen/download/

09/futures.pdf. To appear in a special issue of the Journal of Logic and Algebraic
Programming (NWPT’07).

[4] Ábrahám, E., Grüner, A., Steffen, M.: Abstract Interface Behavior of Object-
Oriented Languages with Monitors. Theory of Computing Systems 43(3-4), 322–
361 (2008). DOI 10.1007/s00224-007-9047-0. URL http://www.ifi.uio.no/

~msteffen/download/07/monitors-journal.pdf

[5] Ábrahám, E., Grüner, A., Steffen, M.: Heap-Abstraction for an Object-Oriented
Calculus with Thread Classes. Journal of Software and Systems Modelling
(SoSyM) 7(2), 177–208 (2008). DOI 10.1007/s10270-007-0065-9. URL http:

//springerlink.metapress.com/content/dqxhn70707442838/fulltext.pdf

[6] Ammann, P., Offutt, J.: Introduction to Software Testing, 1 edn. Cambridge Uni-
versity Press (2008)

[7] Bandat, K.: On the Formal Definition of PL/I. In: AFIPS ’68 (Spring): Proceedings
of the April 30–May 2, 1968, Spring Joint Computer Conference, pp. 363–373. ACM,
New York, NY, USA (1968). DOI http://doi.acm.org/10.1145/1468075.1468130

[8] Barbey, S., Buchs, D., Péraire, C.: A Theory of Specification-Based Testing for
Object-Oriented Software. In: Proccedings of the European Dependable Computing
Conference, Lecture Notes in Computer Science, vol. 1150. Springer-Verlag (1996)

[9] Baresi, L., Pezzè, M.: An Introduction to Software Testing. Electr. Notes Theor.
Comput. Sci. 148(1), 89–111 (2006)

[10] Beck, K.: Smalltalk Idioms: Simple Smalltalk Testing. The Smalltalk Report 4(2)
(1994). URL http://www.xprogramming.com/testfram.htm

167

http://www.ifi.uio.no/~msteffen/download/fa-fmco.pdf
http://www.ifi.uio.no/~msteffen/download/09/futures.pdf
http://www.ifi.uio.no/~msteffen/download/09/futures.pdf
http://www.ifi.uio.no/~msteffen/download/07/monitors-journal.pdf
http://www.ifi.uio.no/~msteffen/download/07/monitors-journal.pdf
http://springerlink.metapress.com/content/dqxhn70707442838/fulltext.pdf
http://springerlink.metapress.com/content/dqxhn70707442838/fulltext.pdf
http://www.xprogramming.com/testfram.htm

168 BIBLIOGRAPHY

[11] Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
(2000)

[12] Beck, K., Gamma, E.: Test Infected: Programmers Love Writing Tests. Java Report
3(7), 51–56 (1998)

[13] Beizer, B.: Software Testing Techniques, 2 edn. Van Nostrand Reinhold Co., New
York, NY, USA (1990)

[14] Bertolino, A.: Software Testing Research: Achievements, Challenges, Dreams. In:
Proceedings of Future of Software Engineering at ICSE 2007, pp. 85–103 (2007)

[15] Biermann, G., Parkinson, M.J., Pitts, A.M.: An Imperative Core Calculus for Java
and Java with Effects. Technical Report 563, University of Cambridge Computer
Laboratory (2004)

[16] Binder, R.V.: Testing Object-Oriented Systems, Models, Patterns, and Tools.
Addison-Wesley (2000)

[17] Birrell, A.D.: An Introduction to Programming with C# Threads. Technical Report
TR-2005-68, Microsoft Research Technical Report (2005)

[18] Boehm, B., Basili, V.R.: Software Defect Reduction Top 10 List. Computer 34(1),
135–137 (2001). DOI http://doi.ieeecomputersociety.org/10.1109/2.962984

[19] Boehm, B.W.: Guidelines for Verifying and Validating Software Requirements and
Design Specifications. In: Samet, P. A. (ed.):IFIP, pp. 711–719. North-Holland:
Amsterdam (1979)

[20] de Boer, F.S., Bonsangue, M.M., Grüner, A., Steffen, M.: Java test driver generation
from object-oriented interaction traces. In: Proceedings of the 2nd International
Workshop on Harnessing Theories for Tool Support in Software TTSS’08, ICTAC
2008 satellite workshop, 30. August 2008, Istambul, Turkey (2008). URL http:

//www.ifi.uio.no/~msteffen/download/08/javatestdriver.pdf

[21] Byous, J.: Java Technology: The Early Years. Sun Developer Network (1998). URL
http://java.sun.com/features/1998/05/birthday.html

[22] Dahl, O.J., Nygaard, K.: SIMULA — An ALGOL-Based Simulation Language.
Communications of the ACM 9(9), 671–678 (1966)

[23] Dijkstra, E.W.: Ewd 340: The Humble Programmer. Communications of the ACM
15 (1972). URL http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD340.PDF

[24] The easyMock home page (2007). URL http://www.easymock.org

[25] ECMA International Standardizing Information and Communication Systems: C#

Language Specification, 4th edn. (2006). Standard ECMA-334

[26] The Eiffel home page (2008). URL http://www.eiffel.com

[27] Fowler, M.: Mocks Aren’t Stubs (2007). URL http://www.martinfowler.com/

articles/mocksArentStubs.html

[28] Freeman, S., Pruyce, N., Mackinnon, T., Walmes, J.: Mock Roles, not Objects. In:
Ninetheeth Object Oriented Programming: Systems, Languages, and Applications
(OOPSLA) ’04. ACM (2004). In SIGPLAN Notices

[29] Freeman, S., Pryce, N.: Evolving an Embedded Domain-Specific Language in Java.
In: P.L. Tarr, W.R. Cook (eds.) OOPSLA Companion, pp. ”855–865”. ACM (2006)

http://www.ifi.uio.no/~msteffen/download/08/javatestdriver.pdf
http://www.ifi.uio.no/~msteffen/download/08/javatestdriver.pdf
http://java.sun.com/features/1998/05/birthday.html
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD340.PDF
http://www.easymock.org
http://www.eiffel.com
http://www.martinfowler.com/articles/mocksArentStubs.html
http://www.martinfowler.com/articles/mocksArentStubs.html

BIBLIOGRAPHY 169

[30] Goldberg, A., Robson, D.: Smalltalk-80: The Language and its Implemementation.
Addison-Wesley, Reading, MA (1983)

[31] Gordon, A.D., Hankin, P.D.: A Concurrent Object Calculus: Reduction and Typing.
In: U. Nestmann, B.C. Pierce (eds.) Proceedings of HLCL ’98, Electronic Notes in
Theoretical Computer Science, vol. 16.3. Elsevier Science Publishers (1998). URL
http://www.elsevier.nl/locate/entcs/volume16.3.html

[32] Guttag, J.V., Horning, J.J., Wing, J.M.: Larch in Five Easy Pieces. Tech. Rep. 5,
DEC System Research Center, 130 Lytton Avenue, Palo Alto, CA 94301 (1985).
Order from src-report@src.dec.com

[33] Harrold, M.J.: Testing: A roadmap. In: In The Future of Software Engineering, pp.
61–72. ACM Press (2000)

[34] Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A minimal core calculus
for Java and GJ. In: Object Oriented Programming: Systems, Languages, and
Applications (OOPSLA) ’99, pp. 132–146. ACM (1999). In SIGPLAN Notices

[35] Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-Based Software Testing
and Analysis with C]. Cambridge University Press (2008)

[36] JSR 175: A Metadata Facility for the Java Programming Language (2004). URL
http://jcp.org/en/jsr/detail?id=175

[37] The Java Modeling Language (JML) home page (2003). URL http://www.cs.

iastate.edu/~leavens/JML/

[38] The jMock home page (2007). URL http://www.jmock.org

[39] Jones, C.: Applied Software Management: Assuring Productivity and Quality.
McGraw-Hill (1996)

[40] Jones, C.B.: Systematic Software Development Using VDM, 2 edn. International
Series in Computer Science. Prentice Hall (1990)

[41] The JUnit home page (2007). URL http://junit.sourceforge.net

[42] Kaner, C., Nguyen, H.Q., Falk, J.L.: Testing Computer Software. John Wiley &
Sons, Inc., New York, NY, USA (1993)

[43] Kats, L.C.L., Bravenboer, M., Visser, E.: Mixing Source and Bytecode. A Case for
Compilation by Normalization. In: G. Kiczales (ed.) Proceedings of the 23rd ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2008), pp. 91–108. ACM, New York, NY, USA (2008)

[44] Leavens, G.T., Cheon, Y.: Design by Contract with JML (2006). URL http://

www.jmlspecs.org/jmldbc.pdf

[45] Mackinnon, T., Freeman, S., Craig, P.: Endo-Testing: Unit Testing with Mock
Objects. In: G. Succi, M. Marchesi (eds.) Extreme Programming Examined, The
XP Series, pp. 287–301. Addison-Wesley (2001)

[46] Meyer, B.: Applying “Design by Contract”. IEEE Computer 25(10), 40–51 (1992)

[47] Milner, R.: An algebraic definition of simulation between programs. In: Proceedings
of 2nd Joint Conference on Artificial Intelligence, pp. 481–489. BCS (1971)

[48] Milner, R.: Communication and Concurrency. Prentice Hall (1989)

[49] Morris, J.H.: Lambda Calculus Models of Programming Languages. Technical Re-
port MIT-LCS TR-57, MIT Press (1968)

http://www.elsevier.nl/locate/entcs/volume16.3.html
http://jcp.org/en/jsr/detail?id=175
http://www.cs.iastate.edu/~leavens/JML/
http://www.cs.iastate.edu/~leavens/JML/
http://www.jmock.org
http://junit.sourceforge.net
http://www.jmlspecs.org/jmldbc.pdf
http://www.jmlspecs.org/jmldbc.pdf

170 BIBLIOGRAPHY

[50] Myers, G.J.: The Art of Software Testing, 2nd edn. Wiley (2004)

[51] Nathaniel Nystrom Michael R. Clarkson, A.C.M.: Polyglot: An Extensible Com-
piler Framework for Java. In: Proceedings of the 12th International Conference on
Compiler Construction. Springer (2003)

[52] Naur, P., Randell, B. (eds.): Software Engineering: A Report on a Conference spon-
sored by the NATO science committee. NATO (1969). URL http://homepages.

cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

[53] de Nicola, R., Hennessy, M.: Testing Equivalences for Processes. Theoretical Com-
puter Science 34, 83–133 (1984)

[54] Park, D.M.R.: Concurrency and automata on infinite sequences. In: P. Deussen (ed.)
Fifth GI Conference on Theoretical Computer Science, Lecture Notes in Computer
Science, vol. 104, pp. 167–183. Springer-Verlag (1981)

[55] Patton, R.: Software Testing, 2nd edn. SAMS (2005)

[56] Plotkin, G.D.: A structural approach to operational semantics. Report DAIMI
FN-19, Computer Science Department, Aarhus University (1981)

[57] Prasetya, W., Vos, T., Baars, A.: Trace-based Reflexive Testing of OO Programs
with T2. In: ICST ’08: Proceedings of the 2008 International Conference on Soft-
ware Testing, Verification, and Validation, pp. 151–160. IEEE Computer Society,
Washington, DC, USA (2008). DOI http://dx.doi.org/10.1109/ICST.2008.12

[58] Rahn, C.: Bloomberg.com (2009). URL http://www.bloomberg.com/apps/news?

pid=20601100&sid=avUsNKymzMPk

[59] Reynolds, J.C.: Theories of Programming Languages. Cambridge University Press
(1998)

[60] Roscoe, A.W.: Theory and Practice of Concurrency. Prentice Hall (1998)

[61] Spillner, A., Linz, T., Schaefer, H.: Software Testing Foundations: A Study Guide
for the Certified Tester Exam, 1 edn. Rocky Nook (2006)

[62] Std.1008-1987, I.: IEEE Standard for Software Unit Testing. The Institute of Elec-
trical and Electronics Engineers: New York (1993)

[63] Std.610.121990, I.: IEEE Standard Glossary of Software Engineering Terminology.
The Institute of Electrical and Electronics Engineers: New York (1990)

[64] Steffen, M.: Object-Connectivity and Observability for Class-Based, Object-
Oriented Languages. Habilitation thesis, Technische Faktultät der Christian-
Albrechts-Universität zu Kiel (2006)

[65] Stevens, P., Pooley, R.: Using UML: Software engineering with Objects and Com-
ponents. Object Technology Series. Addison-Wesley Longman (1999)

[66] Strnǐsa, R., Sewell, P., Parkinson, M.: The Java Module System: Core Design and
Semantic Definition. In: OOPSLA ’07: Proceedings of the 22nd annual ACM SIG-
PLAN conference on Object oriented programming systems and applications, pp.
499–514. ACM, New York, NY, USA (2007). DOI 10.1145/1297027.1297064

[67] Stroustrup, B.: The C++ Programming Language. Addison-Wesley (1986)

[68] The TestNG home page (2008). URL http://java-source.net/open-source/

testing-tools/testng

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://www.bloomberg.com/apps/news?pid=20601100&sid=avUsNKymzMPk
http://www.bloomberg.com/apps/news?pid=20601100&sid=avUsNKymzMPk
http://java-source.net/open-source/testing-tools/testng
http://java-source.net/open-source/testing-tools/testng

BIBLIOGRAPHY 171

[69] Tretmans, G.J.: A formal approach to conformance testing. Ph.D. thesis, Enschede
(1992). URL http://doc.utwente.nl/58114/

[70] Methods for Testing and Specification (MTS). The Testing and Test Control No-
tation Version 3 (TTCN-3)”. European Standard ETSI ES 201 8731 v2.2.1 (2002)

[71] Tucker, A.B. (ed.): The Computer Science and Engineering Handbook. CRC Press,
Inc., Boca Raton, FL, USA (2004)

[72] Wright, G.R., Stevens, W.R.: TCP/IP Illustrated: The implementation. Addison-
Wesley (2004)

http://doc.utwente.nl/58114/

Part III

Proofs

173

Appendices

175

Appendix A

Subject reduction

This chapter deals with the with well-typedness of configuration. We want to prove
that the rules of the operational semantics preserve well-typedness of the configu-
ration. This feature, called subject reduction, was formalized in Lemma 2.4.7 and
what follows is the proof for this lemma. Definition 2.4.4 introduces three require-
ments for well-typed configurations and the idea of the proof is to make a case
analysis on the transition for each requirement.

Proof. By case analysis of the transition step. As a precondition for all cases,
we assume that ∆ ` c : Θ holds. Let h and h′ be the heap functions as well
as v and v′ the global variable functions for the configuration c and c′, respec-
tively. Before we start with the case analysis, let us make three general observa-
tions. First, no transition rule changes the domain of the global variable function,
i.e. dom(v) = dom(v′). Second, regarding external steps the new assumption-
commitment context always represents an extension of the previous context. In
particular, all class names in ∆ and in Θ have the same type in ∆′ and in Θ′, re-
spectively. Furthermore, all transition steps change the local variables and code of
the top-most activation records only, if at all. Thus, within the following proof we
can ignore the tail of the call stack and focus on the top-most activation records.

Now let us prove the first requirement of Definition 2.4.4, i.e., we want to
show that all objects on the heap of configuration c′ belong to a program class
mentioned in Θ′.
Case Let us assume that c p c

′.
Regarding the Rules Ass, Call, BlkBeg, BlkEnd, Whilei, Condi, and Ret
there is no change of the heap involved. As Θ′ is an extension of Θ compliance
with the first requirement results from the precondition.

Subcase Rule FUpd
Lets assume that c c′ due to a field update. In particular, the third premise of
Rule FUpd implements the actual update. It also shows, however, that the class
name of the involved object is not changed. Thus, a field update does not break
the requirement.

177

178 APPENDIX A. SUBJECT REDUCTION

Subcase Rule New
Assume that c evolves to c′ due to application of Rule New. Then the heap is
extended by a new object o of class C. Likewise, the stack is extended by the
method body of C. Since the auxiliary function cbody is only defined for program
classes and as the program p is well-typed, we can deduce that Θ′ ` C : [(. . .)].

Case Let us now assume that ∆ ` c : Θ a−→p ∆′ ` c′ : Θ′.
Only one rule of the external semantics changes the heap, namely Rule NewI.
Since Θ′ is an extension of Θ the requirement follows from the precondition for
all the other external rules. Regarding NewI, as in Rule New, we can basically
deduce from the definedness of cbody for class name C that the first requirement of
a well-typed configuration also holds for the new configuration with the extended
heap. Now let us prove the second requirement of Definition 2.4.4. That is, we
have to show that every free variable of each activation record of c′ is a global
variable or in the domain of the record’s local variable list.

Case Again consider c p c
′

We show the most interesting cases.

Subcase Rule Ass
Execution of the assignment statement x = e does not extend the set of free
variables of the corresponding activation record but instead possibly reduces it
by x and fvars(e). Moreover, the domain of the record’s local variable list is not
changed which yields the proof for the requirement.

Subcase Rule Call and Rule New
Transitions that represent an internal method call or object instantiation create
a new top most activation record, while the method or constructor call in the
previously top most record is replaced by a receive statement. Thus, regarding
the previously top most record, all free variables of the record’s code are part
of the record’s local variable list. As for the new activation record, the code is
instantiated by the method or constructor body of the corresponding program
class. We know that the program is well-typed, therefore the code might only
make references to global variables, to this, or to local variables of the method
itself. Since the new record is equipped with a local variable function that consists
of a mapping for the aforementioned variables, the requirement is fulfilled.

Subcase Rule Ret
An application of Rule Ret causes the removal of the top most activation record.
Apart from this, only the receive statement on top of the calling activation record
is removed. Thus, again all free variables of the new top most activation record
are in the record’s local variable list.

Case Assume ∆ ` c : Θ a−→p ∆′ ` c′ : Θ′

Subcase RulesCallO and NewO
In both cases the outgoing method or constructor call is replaced by an annotated
receive statement. No introduction of new variables and no modification of the

179

record’s local variable functions is involved in this step. Thus the requirement
follows from the precondition.

Subcase Rule RetO
Only the top most activation record is removed. The requirement follows from
the precondition.

Subcase Rules CallI and NewI
Both rules extend the call stack by a new activation record leaving the rest of the
call stack unchanged. Like in the case for internal method calls we can deduce
from the well-typedness of the program that the new activation record conforms
to the second requirement of the well-typedness definition for configurations.

Subcase Rule RetI
An incoming return leads to the removal of the receive statement on top of the
top most activation record. Again, no new free variables are introduced and the
domain of the local variable function list is not changed. Finally, we have to prove
that also the third requirement for well-typed configurations is fulfilled by the new
configuration c′. More specifically, we have to show that each of the call stack’s
activation records that represents a method or constructor execution provides a
valid value for the special name this. Obviously, the only interesting cases are
the transitions that deal with internal or incoming method and constructor calls.
All other transitions do not modify the value of this within the local variable
lists.
Case Internal step

Subcase Rule Call
The local variable function for the new activation record maps this to o. More-
over, the second premise of the rule verifies that o indeed is on the heap.

Subcase Rule New
In Rule New also this is mapped to o. In the object creation case, however, the
object o is created and the new heap is extended by the new object.

Case External step

Subcase Rule CallI
The argumentation for the incoming method call is almost identical to the proof
for internal method calls. The first premise of the label check T-CallI verifies that
the callee object name o represents an object that is committed by the program.
Furthermore, the local variable function of the new activation record maps this
to o.
Subcase Rule NewI

Similar to the internal object creation, we can see in Rule NewI that the heap is
extended with a new object referenced by o which in turn serves as the value for
this in the local variable function.

Appendix B

Compositionality

The goal of this section is to prove the compositionality-Lemma 2.5.5 of Sec-
tion 2.5. This is structured as follows. We start with the discussion of some gen-
eral features of the language’s transition semantics. Afterwards we will provide
a merge definition that meets the requirements of the merge function definition
given in Lemma 2.5.5. This is followed by a few small proofs of some simple
yet useful features of the merge function in general. The compositionality-Lemma
states that the order regarding the application of the merge function on configura-
tions, on the one hand, and application of the transition rules, on the other hand,
does not play a role. Thus, the lemma consists of two directions: one direction
states that regarding the transition semantics the composition of two components
evolves to the same result as the two original components. The other direction
says that two constituents of one (closed) program evolve to the same result as
the original program. Correspondingly, the proof of Lemma 2.5.5 actually consists
of two parts. First, we will show certain features about the composition of two
components. Then, we show the features about the constituents of a closed pro-
gram. Both cases, however, consist of several smaller sub-proofs, but the schema
for both parts is the same. That is, regarding the composition we first prove the
features for single internal and single external steps. Then the compositionality
part follows from this by induction on the length of the trace. Similarly, regarding
the decomposition we show that a single internal step of a closed program corre-
sponds to internal or external single steps with regards to its constituents. Again,
the decompositionality direction follows by induction on the length of the trace.

We begin with three small lemmas about the independence of internal de-
ductions from certain changes regarding the stack, heap, global variables, or the
component code. More specifically, the first lemma states that a single internal
deduction step does only depend on the topmost but not on the trailing activation
records of the call stack.
Lemma B.0.1 (Stack tail does not influence internal steps): Assume two configurations

(h, v,CS ◦CSb1), (h, v,CS ◦CSb2) ∈ Conf .

181

182 APPENDIX B. COMPOSITIONALITY

If (h, v,CS ◦CSb1) (h′, v′, ĆS ◦CSb1) then also (h, v,CS ◦CSb2) (h′, v′, ĆS ◦CSb2).

Proof. By case analysis on the computation step. As for simple computation steps,
i.e., computation steps which do only modify the top most activation record, the
lemma follows immediately from the corresponding rules of the internal opera-
tional semantics, which are Ass, FUpd, BlkBeg, BlkEnd, Whli, and Condi.
The remaining internal rules, Call, New, and Ret, deserve a closer look, as they
also change the number of activation records within the call stack.

Case Rule Call
In case of an internal method call we can assume that

CS = (µ, x = e.m(e); mc)

and correspondingly that

ĆS = (vl,mbody(C,m)) ◦(µ, rcvx; mc) .

Now it is easy to see that the application of Rule Call is independent of the call
stack tail CSb1 and CSb2, respectively.

Case Rule New
Similar to internal method calls, regarding internal constructor calls we can as-
sume that

CS = (µ, x = new C(e); mc)

and correspondingly that

ĆS = (vl, cbody(C)) ◦(µ, rcvx; mc) .

Again, Rule New is formulated independently of the call stack tail CSb1 and CSb2,
respectively.

Case Rule Ret
As for an internal method or constructor return, we can define

CS = (µ1, return e) ◦(µ2, rcv x; mc)

and
ĆS = (µ′2,mc) .

Yet again, this definition makes the independence of Rule Ret regarding the call
stack tail apparent.

Similarly, extensions of the heap or of the global variable function do not
influence the outcome of internal computation steps. This is formalized in the
next lemma. For two functions f1 and f2 with dom(f1) ⊥ dom(f2) we use the
notion f1

af2 for the function that represents the disjunct union of f1 and f2.

183

Lemma B.0.2 (Heap and variable extension do not affect internal steps): If (h1, v1,CS)
(h′1, v

′
1,CS′) such that dom(h′1) ⊥ dom(h2) then also

(h1
ah2, v1

av2,CS) (h′1
ah2, v

′
1
av2,CS′) .

Proof. Applicability of the internal transition (h, v,CS) (h′, v′,CS′) ensures
that the deduction step does not realize a call to an external class or object and
that only evaluation of local variables defined in CS, of global variables of v, or
object names of h might be involved. Disjunction of h′1 and h2 is required in order
to prevent name clashes due to internal object creation. This, however, does not
represent a real restriction, since we consider the semantics modulo renaming
anyway, as we have remarked in 2.4.6 already.

Also extending the program by another component does not affect the outcome
of an internal step.
Lemma B.0.3 (Additional classes do not affect internal steps): Assume two compo-
nents p and p′ such that p E p′ is defined. If (h, v,CS) p (h′, v′,CS′) then also
(h, v,CS) pEp′ (h′, v′,CS′).

Proof. Trivial, as the reduction step does only refer to method code of p, if at all.
And the component merge does not modify method code of p.

Now its time to give a concrete definition of a merge function. This merge
function will form the basis of the compositionality proof.
Definition B.0.4 (Merge of configurations): Given two configurations

(h1, v1,CS1), (h2, v2,CS2) ∈ Conf

with ∆ ` (h1, v1,CS1) : Θ and Θ ` (h2, v2,CS2) : ∆. We assume that dom(h1) ⊥
dom(h2) as well as dom(v1) ⊥ dom(v2) – otherwise we assume a proper renaming of
objects or, respectively, variables. The result of the merge

(h, v,CS) = (h1, v1,CS1) E (h2, v2,CS2)

is defined by:

• h def= h1
ah2,

• v def= v1
av2 , and

• CS
def= CS1 ! CS2 , where ! denotes a commutative operation representing

the merge of the two call stacks which is inductively defined by the following
equations:

(ARi ◦ARib ◦CSb1) ! CSeb2
def= ARi ◦(ARib ◦CSb1) ! CSeb2 (B.1)

(ARi ◦CSeb1) ! (AReb2 ◦CSb2) def= ARi ◦CSeb1 ! (ARib2 ◦CSb2) (B.2)

ARi ! (AReb2 ◦CSb2) def= ARi ◦(ARib2 ◦CSb2) (B.3)

ARi ◦CSb1 ! ε
def= ARi ◦CSb1 (B.4)

184 APPENDIX B. COMPOSITIONALITY

Note that in ARib2 denotes the activation record that results from AReb2 by forgetting the
return type of the topmost rcv statement.

Remark B.0.5: The equations in Definition B.0.4 show that a merge of two call stacks is
only defined if exactly one call stack has an active or internally blocked activation record
on top and the other call stack is externally blocked.

The next lemma makes a statement about the merge of call stacks.

Lemma B.0.6 (Topmost activation record remains topmost): There exists a function f
such that for all defined merges of call stacks the following holds:

1. (ARi ◦CSb1) ! CSb2 = ARi ◦ f(CSb1,CSb2).

2. In particular, the activation record that is on top of the active call stack before the
merge also remains the topmost record of the resulting call stack after the merge.
Moreover, the form of the rest of the resulting call stack does not depend on the
topmost record but is determined only by the rest of the first stack frame and the
second stack frame.

Proof. Let the function f be defined by

f(CS1,CS2) def=

(AReb1 ◦CSb1) ! (ARib2 ◦CSb2) if CS1 = AReb1 ◦CSb1 and

CS2 = AReb2 ◦CSb2
CS1 ! CS2 else

where ARib2 represents the activation record which results from AReb2 by forgetting
the type annotation of the receive statement. Then f has the property stated in
the first statement. The second statement follows immediately from the definition
of the merge of two stack frames.

Now we want to apply the new lemmas in order to show that a simple internal
computation step of one configuration will not be influenced if we merge it with
another configuration. This is formalized in the following lemma.

Lemma B.0.7 (Merge does not influence simple deduction): Assume a configuration
(h1, v1,ARa ◦CSb) such that

(h1, v1,ARa ◦CSb) (h′1, v
′
1,

´ARa ◦CSb)

represents a simple deduction. Then, if for some other configuration (h2, v2,CSb2) the
merge (h1, v1,ARa ◦CSb) E (h2, v2,CSb2) is defined, we get

(h1, v1,ARa ◦CSb) E (h2, v2,CSb2) (h′1, v
′
1,

´ARa ◦CSb) E (h2, v2,CSb2).

Proof. Let us assume that

(h1, v1,ARa ◦CSb) (h′1, v
′
1,

´ARa ◦CSb).

185

We know from Lemma B.0.6 that ARa ◦CSb ! CSb2 = ARa ◦ f(CSb,CSb2). From
Lemma B.0.1 and Lemma B.0.2 we can deduce

(h1
ah2, v1

av2,ARa ◦ f(CSb,CSb2))

(h′1
ah2, v

′
1
av2, ´ARa ◦ f(CSb,CSb2)) = (h′1, v

′
1,

´ARa ◦CSb) E (h2, v2,CSb2).

Note that we didn’t index the transition arrow in the previous lemma, as the
lemma is independent of a certain program code. However, we certainly assume
that all transitions in the lemma are understood in the context of the same pro-
gram.

The next two lemmas will show one of the compositionality properties for single
steps of the operational semantics. More specifically, Lemma B.0.8 states that for
internal computation steps the order regarding merge operation application and
transition rule application does not matter. Afterwards Lemma B.0.9 will show
the same property for external computation steps.

Lemma B.0.8 (E and): For two configurations c1, c2 ∈ Conf and two component p1

and p2 such that c1 E c2 and p1 E p2 is defined, the following holds: If c1 p1 c
′
1 then

c1 E c2 p1Ep2 c
′
1 E c2.

Proof. For simple computation steps the property has been proven by Lemma B.0.7
already. It remains to show the property also for the other internal transition rules
given in Table 2.7. Let c1 = (h1, v1, (ARa ◦CSb1)) and c2 = (h2, v2,CSb2).

Case Rule Ret
Applicability of Rule Ret for c1 implies

c1 = (h1, v1, (µ, return e) ◦(µ′, rcv x; mc) ◦CSb) (h1, v
′
1, (µ

′′,mc) ◦CSb).

Moreover, applying Equation B.1 twice as well as rule Ret, Lemma B.0.2, and
Lemma B.0.1 yields

c1 E c2 = (h1
ah2, v1

av2, (µ, return e) ◦(µ′, rcv x; mc) ◦(CSb ! CSb2))
(h1

ah2, v
′
1
av2, (µ′′,mc) ◦(CSb ! CSb2)).

On the other hand Equation B.1 yields

(h1, v
′
1, (µ

′′,mc) ◦CSb) E c2 = (h1
ah2, v

′
1
av2, (µ′′,mc) ◦(CSb ! CSb2)).

Case Rule Call
Applicability of Rule Ret for c1 implies

c1 = (h1, v1, (µ, x = e.m(e); mc) ◦CSb1) (h1, v1,ARam ◦(µ, rcv x; mc) ◦CSb1),

186 APPENDIX B. COMPOSITIONALITY

where ARam represents the activation record that comprises the method body of
the called method m. Again, by applying Equation B.1, rule Call, Lemma B.0.2,
and Lemma B.0.1 we get

c1 E c2 = (h1
ah2, v1

av2, (µ, x = e.m(e); mc) ◦(CSb1 ! CSb2)
(h1

ah2, v1
av2,ARam ◦(µ, rcv x; mc) ◦(CSb1 ! CSb2).

On the other hand, applying Equation B.1 twice yields

(h1, v1,ARam ◦(µ, rcv x; mc) ◦CSb1) E c2 =
(h1

ah2, v1
av2,ARam ◦(µ, rcv x; mc) ◦(CSb1 ! CSb2).

Case Rule New
The proof is almost identical to the proof for method calls.

Lemma B.0.9 (E and a−→): Assume two components p1 and p2 as well as configurations
c1, c2 ∈ Conf such that p1 E p2 and c = c1 E c2 are defined. Further, assume ∆ ` c1 :
Θ a−→p1 ∆′ ` c′1 : Θ′ as well as Θ ` c2 : ∆ ā−→p2 Θ′ ` c′2 : ∆′. Then c1 E c2 p1Ep2
c′1 E c′2 as well as c1 E c2 p2Ep1 c

′
1 E c′2.

Proof. Case a = ν(Θ′).〈call o.m(v)〉!
In this case we know from rule CallO that

c1 = (h1, v1, (µ, x = e.m(e); mc) ◦CSb)

such that [[e]]v1,µh1
= o and [[e]]v1,µh1

= v. Moreover the rule yields

c′1 = (h1, v1, (µ, rcv x:T ; mc) ◦CSb)

On the other hand, from rule CallI and from the complementary label ā we can
deduce for c2 that

c2 = (h2, v2,CSeb2) and c′2 = (h2, v2,ARam ◦CSeb2).

It is [[e]]v1
av2,µ

h1ah2
= [[e]]v1,µh1

as well as [[e]]v1
av2,µ

h1ah2
= [[e]]v1,µh1

. Thus, Lemma B.0.6 and
Rule Call yield

c1 E c2 = (h1
ah2, v1

av2, (µ, x = e.m(e); mc) ◦ f(CSb,CSeb2)) p1Ep2
(h1

ah2, v1
av2,ARam ◦(µ, rcv x; mc) ◦ f(CSb,CSeb2)).

Finally, due to Equation B.0.4 and Lemma B.0.6 we get

c′1 E c′2 = (h1, v1, (µ, rcv x:T ; mc) ◦CSb) E (h2, v2,ARam ◦CSeb2)
= (h1

ah2, v1
av2,ARam ◦ f(CSeb2 , (µ, rcv x:T ; mc) ◦CSb))

= (h1
ah2, v1

av2,ARam ◦(µ, rcv x; mc) ◦ f(CSb,CSeb2)).

187

Case a = ν(Θ′).〈return(v)〉!
According to rule RetO it is

c1 = (h1, v1, (µ1, return e) ◦CSeb1) such that [[e]]v1,µ1
h1

= v

and c′1 = (h1, v1,CSeb1). Likewise we know from rule RetI that

c2 = (h2, v2, (µ2, rcv x:T ; mc) ◦CSb2) and c′2 = (h2, v
′
2, (µ

′
2,mc) ◦CSb2).

Now, due to Equation B.1, Equation B.0.4, Lemma B.0.6, and Lemma B.0.2 we
get

c1 E c2 = (h1
ah2, v1

av2, (µ1, return e) ◦(CSeb1 ! (µ2, rcv x:T ; mc) ◦CSb2)
= (h1

ah2, v1
av2, (µ1, return e) ◦(µ2, rcv x; mc) ◦ f(CSb2,CSeb1)

(h1
ah2, v1

av′2, (µ
′
2,mc) ◦ f(CSb2,CSeb1)

On the other hand, Lemma B.0.6 yields

c′1 E c′2 = (h1
ah2, v1

av′2,CSeb1 ! (µ′2,mc) ◦CSb2)
= (h1

ah2, v1
av′2, (µ

′
2,mc) ◦ f(CSb2,CSeb1)).

All other cases are similar or dual.

In the following we want to prove the other implication of the compositionality
lemma. That is, we want to show that a component’s sub-constituents come to the
same result as the original component. However, again we first start by introduc-
ing some auxiliary lemmas. In particular the next lemma states that regarding
an internal computation step one can prune the heap and the global variable
function of a configuration to a minimum without influencing the outcome of the
computation. More specifically, in most cases the heap can be even reduced to the
object that is referenced by the variable this of the topmost activation record, as
only field updates or field lookups of the corresponding object might be involved
in the computation step. An exception is a method invocation where we also have
to include the callee object into the minimal heap.
Lemma B.0.10 (Reduction of heap and variables): Consider an internal computation
step

(h, v, (µ,mc) ◦CSb) (h′, v′, ´CSb).

Let vs be the restriction of v on exactly the variables which occur in the expressions e that
have been evaluated or updated due to the above mentioned computation step. Further,
let hs = h ↓{µ(this),[[ec]]

v,µ
h } if the computation step is a method call and ec is the callee

expression, or hs = h ↓{µ(this)} otherwise. Then also

(hs, vs, (µ,mc) ◦CSb) (h′s, v
′
s,

´CSb),

such that h′s = h′ ↓dom(h′s)
and v′s = v′ ↓dom(vs).

188 APPENDIX B. COMPOSITIONALITY

Proof. Straightforward. The selection process regarding the necessary objects in
the heap ensures that for all possible internal transitions all objects names which
might be dereferenced, leading to a lookup in the heap, are included in the min-
imized heap. This ensures that the minimized configuration is enabled and since
the internal computations are deterministic (modulo new object names), the state-
ment then also follows from Lemma B.0.2. Note that the final heaps h′ and h′s
are equal on the complete domain of h′s which might include a new object name
due to a constructor call.

Lemma B.0.11 (Decomposition, single step): Let c, c′ ∈ Conf such that c p c
′ for

some component p. Moreover, assume name contexts ∆,Θ and components p1 and p2

with p1 E p2 = p, ∆ ` p1 : Θ, and Θ ` p2 : ∆ as well as configurations c1 and c2 with
c1 E c2 = c, ∆ ` c1 : Θ, and Θ ` c2 : ∆. Then one of the following properties hold:

1. There exists a communication label a such that ∆ ` c1 : Θ a−→p1 ∆′ ` c′1 : Θ′ and
Θ ` c2 : ∆ ā−→p2 Θ′ ` c′2 : ∆′ with c′1 E c′2 = c′ or

2. c1 p1 c
′
1 such that c′1 E c2 = c′ or c2 p2 c

′
2 such that c1 E c′2 = c′.

Proof. By case analysis of the transition from c to c′. We show the most interesting
cases.
Case simple transition

That is, let c = (h, v,ARa ◦CSb) (h′, v′, ´ARa ◦CSb). Then ARa is either part
of the call stack of c1 or of c2. Let us assume without the loss of generality
that c1 = (h1, v1,ARa ◦CSb1). It is v1 ⊂ v and since ∆ ` c1 : Θ we also know
that the topmost statement of ARa does not involve the evaluation of variables of
dom(v)\dom(v1). This fact, together with Lemma B.0.1 and Lemma B.0.10 yields
c1 (h′1, v

′
1,

´ARa ◦CSb1) such that dom(h′1) = dom(h′) ↓dom(h1) and dom(v′1) =
dom(v′) ↓dom(h1). This leads to (h′1, v

′
1,

´ARa ◦CSb1) E c2 = c′.

Case internal method call: ARa = (µ, e.m(e); mc)
That is,

c = (h, v, (µ, e.m(e); mc) ◦CSb) p (h, v,ARam ◦(µ, rcv x; mc) ◦CSb) = c′,

where ARam consists of the method body code of the method m. Let us assume that
the calling activation record is part of c1, i.e., c1 = (h1, v1, (µ, e.m(e); mc) ◦CSb1).
Since c1 is a well-typed configuration, it is [[e]]v1,µh1

= [[e]]v,µh and we assume that
the expression is evaluated to some object name o.

Subcase o ∈ dom(h1)
The precondition of the lemma regarding c1 and p1 as well as Lemma B.0.10 and
Lemma B.0.1 yield that also

c1 = (h1, v1, (µ, e.m(e); mc) ◦CSb1) p1 (h1, v1,ARam ◦(µ, rcv x; mc) ◦CSb1)
= c′1,

189

Assume c2 = (h2, v2,CSb2). Then from c1 E c2 = c and Lemma B.0.1 it follows
that CSb = f(CSb1,CSb2). And we get

c′1 E c2 = (h1, v1,ARam ◦(µ, rcv x; mc) ◦CSb1) E (h1, v2,CSb2)
= (h1

ah2, v1
av2,ARam ◦(µ, rcv x; mc) ◦ f(CSb1,CSb2)

= c1

Subcase o ∈ dom(h2)

∆ ` c1 : Θ = ∆ ` (h1, v1, (µ, e.m(e); mc) ◦CSb1) : Θ a−→p1

∆ ` (h1, v1, (µ, rcv x:T ; mc) ◦CSb1) : Θ,Θ′ = ∆ ` c′1 : Θ,Θ′,

where a = ν(Θ′).〈call o.m(v)〉!. On the other hand, the stack of c2 is externally
blocked. Moreover, p and p2 share the same class definition of the class of o such
that

Θ ` c2 : ∆ = Θ ` (h2, v2,CSeb2) : ∆ ā−→p2

Θ,Θ′ ` (h2, v2,ARam ◦CSeb2) : ∆ = Θ,Θ′ ` c′2 : ∆.

According to the definition of the stack merge it is

((µ, rcv x:T ; mc) ◦CSb1) ! (ARam ◦CSeb2) = ARam ◦(µ, rcv x; mc) ◦(CSb1 ! CSeb2)

which proves the statement.

Case internal return: ARa = (µ, return e;)
That is,

c = (h, v, (µ, return e) ◦(µ′, rcv x; mc) ◦CSb) p (h, v′, (µ′′,mc) ◦CSb) = c′,

Let us again assume that ARa is part of the call stack of c1. As for the second
activation record there exist two possibilities; either it is also part of c1 or in the
call stack of c2.
Subcase receiving activation record is in c2

Since c1 has an active activation record on top and since c1 E c2 is defined, the
topmost activation record of c2 must be externally blocked. Moreover, the merge
of to call stacks does not change the order of the activation records. Thus, the
second activation record of c is the topmost activation record of c2 but annotated
with the return type. As a consequence for both components we get the following
transitions:

∆ ` c1 : Θ = ∆ ` (h1, v1, (µ, return e) ◦CSeb1) : Θ a−→p1

∆ ` (h1, v1,CSeb1) : Θ,Θ′ = ∆ ` c′1 : Θ,Θ′

as well as

Θ ` c2 : ∆ = Θ ` (h2, v2, (µ′, rcv x:T ; mc) ◦CSb2) : ∆ ā−→p2

Θ,Θ′ ` (h2, v
′
2, (µ

′′,mc) ◦CSb2) : ∆ = Θ,Θ′ ` c′2 : ∆,

190 APPENDIX B. COMPOSITIONALITY

where a = ν(Θ′).〈return(v)〉!. From c1 E c2 = c we can deduce that CSb =
f(CSb2,CSeb1). Thus,

CSeb1 ! (µ′′,mc) ◦CSb2 = (µ′′,mc) ◦ f(CSeb2 ,CSb2) = (µ′′,mc) ◦CSb,

which leads to c′1 E c′2 = c′. Other cases are similar or dual.

Finally, we can prove Compositionality-Lemma 2.5.5:

Proof. The proof follows directly by induction on the length of the transition se-
quence by applying Lemma B.0.8 and Lemma B.0.9, respectively, for the composi-
tion direction of the proof and Lemma B.0.11 for the decomposition direction.

Appendix C

Code generation

C.1 Preprocessing

In this section, we want to show that preprocessing a specification results in a
new specification such that the two specifications are behavioral equivalent re-
garding the interface communication. For this, as described in Section 4.4, we will
provide a binary relation for which we will show that it represents a weak bisim-
ulation. Furthermore, we will show that the pair of initial configurations of both
specifications is included in the bisimulation relation. Recall, the preprocessing
is basically done by means of two functions, prepin and prepout (cf. Table 4.2
and 4.1 in Section 4.1), which implement the preprocessing of passive and active
statements, respectively. Hence the preprocessing functions are defined for static
code, only. In order to define the bisimulation relation, we need to lift the prepro-
cessing definition to dynamic code, namely to the code of activation records mc
(cf. Section 3.4).
Definition C.1.1 (Preprocessed activation record code): We extend range and domain of
the preprocessing functions prepin and prepout , originally defined in Section 4.1, to

prepout : mc → mc and prepin : mc × snxt → snxt ×mc.

We additionally define

prepout(s
act ; !ret ; mcpsv1) def= prepout(s

act); !ret ; prepin(mcpsv2)
with (,mcpsv2) = prepin(mcpsv1 , success)

as well as

prepin(spsv1 ; x=?ret ; mcact, snxt)
def= (s′nxt , s

psv
2 ; [i]x=?ret ; check(i, e′);

prepout(mcact))

with (s′nxt , s
psv
2) = prepin(spsv1 ,next = i),

where !ret and ?ret abbreviate !return(e) and ?return(T x′).where(e), respectively.

191

192 APPENDIX C. CODE GENERATION

Based on the definition above, we can define the bisimulation relation Rb.
The idea is to relate each configuration of the original specification with the
corresponding specification of the preprocessed specification. Thus, as for the
heap and the global variables, we relate configurations which are almost identical
but where the configurations of the preprocessed specification only provides the
additional global variable next which stores an arbitrary expectation identifier i.
Regarding the activation record code of configuration pairs of Rb, we basically
relate code to its preprocessed variant according to the preprocessing functions
of Definition C.1.1. An exception is code mcact whose preprocessed variant starts
with an next update statement snxt . For instance, the preprocessing of an outgoing
call statement results in a corresponing call statement but which is preceded by
an update statement. In these case we have to relate the original mcact code not
only to the preprocessing result but additionally to all the code that result from
reducing snxt in terms of internal steps.

Definition C.1.2 (Bisimulation relation Rb): We define a binary relation Rb ⊂ Conf ×
Conf over configurations of the specification language, such that for all heap functions
h, global variable functions v, local variable function lists µ, and activation record code
mcact1 or, respectively, mcpsv1 exactly the following pairs are included:

1.
((h, v, (µ,mcpsv1)), (h, v+[next], (µ,mcpsv2)))) ∈ Rb,

if (,mcpsv2) = prepin(mcpsv1 , success).

2.
((h, v, (µ,mcact1)), (h, v+[next], (µ,mcact2)))) ∈ Rb,

if mcact2 =

s′nxt ; mcact if prepout(mcact1) = snxt ; mcact with

(h, v+[next], (µ, snxt)) ∗ (h, v+[next], (µ, s′nxt))
prepout(mcact1) else

.

where v+[next] represents the variable function that extends v with next such that next
stores an arbitrary expectation identifier. In particular, v must not include a variable with
this name, already. And correspondingly, mcact1 and mcpsv1 must not include references
to a variable next .

Note, according to the definition, Rb does not define a function. Instead, for
each configuration c1 with (c1, c2) ∈ Rb for some configuration c2, there exist
several other configurations c3 6= c2 such that also (c1, c3) ∈ Rb. For, on the one
hand, the right hand side configuration may vary in the value of the global variable
next . On the other hand, as mentioned above already, if c1’s activation record
code is preprocessed resulting into code that starts with an update statement
snxt , then c1 is not only related to configurations that provide the corresponding
preprocessed code but also to its successors where snxt has been reduced already.

Finally, we have to prove that the relation Rb is indeed a weak bisimulation
relation. This is stated in the following lemma.

C.1. PREPROCESSING 193

Lemma C.1.3: The binary relation Rb given in Definition C.1.2 represents a weak
bisimulation in the sense of Definition 4.4.4.

Proof. Assume two configurations c1, c2 ∈ Conf with (c1, c2) ∈ Rb. The definition
of Rb implies that there exist a heap function h, a global variable function v, a
local variable function list µ, and activation record code mc such that c1 is of the
form

c1 = (h, v, (µ,mc))

and c2 is of the form
c2 = (h, v+[next], (µ,mc′)),

where mc′ corresponds to mcpsv2 or mcact2 of Definition C.1.2. We prove the lemma
by means of a case analysis regarding the construction of mc of the configuration
c1. In particular, for each case we will show both simulation directions at the same
time. That is, in each case, we will prove that

• on the one hand, for each possible transition steps of c1 to c′1

c1 c′1 implies c2
∗ c′2

and
∆ ` c1 : Θ a−→ ∆′ ` c′1 : Θ′ implies ∆ ` c2 : Θ a=⇒ ∆′ ` c′2 : Θ′

• and, on the other hand, for each possible transition steps of c2 to c′2

c2 c′2 implies c1
∗ c′1

and
∆ ` c2 : Θ a−→ ∆′ ` c′2 : Θ′ implies ∆ ` c1 : Θ a=⇒ ∆′ ` c′1 : Θ′,

such that in all cases (c′1, c
′
2) ∈ Rb. Within the proof we will refer to the firstly

mentioned direction (i.e., c2 simulates c1) by using the right arrow ⇒ and corre-
spondingly to the lastly mentioned direction (i.e., c1 simulates c2) by using the left
arrow ⇐. We show some exemplary cases only as the remaining cases are similar.
Note that according to the operational semantics each starting configuration only
allows for either an internal or an external transition step.

Case mc = if(e) {sact1 } else {sact2 }; sact
In this case we have

mc′ = if(e) {prepout(s
act
1)} else {prepout(s

act
2)}; prepout(s

act)

according to Definition C.1.1 and to the sequential and the conditional case of
Table 4.1.
Direction ⇒

We have to show that c1 c′1 implies c2 ∗ c′2, as c1 can only be reduced
by an internal transition. Specifically, the rules Cond1 and, respectively, Cond2

194 APPENDIX C. CODE GENERATION

regarding the internal steps of the specification language’s operational semantics
yield

c1 c′1 with

c′1 = (h, v, (µ, sact1 ; sact)) or c′1 = (h, v, (µ, sact2 ; sact)),

respectively, depending on the evaluation of [[e]]µ,vh . Correspondingly, we get

c2 c′2 with

c′2 = (h, v+[next], (µ, prepout(s
act
1); prepout(s

act))) or

c′2 = (h, v+[next], (µ, prepout(s
act
2); prepout(s

act))).

According to the definition of prepout for the sequential composition, it is

(c′1, c
′
2) ∈ Rb.

Direction ⇐
Also c2 can only be reduced by means of an internal transition, so we have to
show that c2 c′2 implies c1 ∗ c′1. Again, we can only apply rule Cond1 or
Cond2, if [[e]]µ,v+[next]

h evaluates to true or to false, respectively. Since e must not
contain any references to next , it is

[[e]]µ,v+[next]

h = [[e]]µ,vh .

Hence, c1 c′1 where c′1 and c′2 are of the same form as in the above proof
regarding the other direction. Therefore, again, it is (c′1, c

′
2) ∈ Rb.

Case mc = x=e; sact

As for c2, it is mc′ = x= e; prepout(sact). Thus, the first statement of c1’s code
and of c2’s code is the same assignment and so it is easy to see that

c1 c′1 implies that c2 c′2,

but also conversely,
c2 c′2 implies that c1 c′1,

such that, regarding both proof directions

(c′1, c
′
2) ∈ Rb.

Case mc = e!m(e) { T x; spsv1 ; x =?return(T x′).where(e′) }; sact
Then regarding the activation record code of c2, the definition of Rb allows for
the following possibilities. Either it is

mc′ = s′nxt ; e!m(e) { T x; spsv2 ; [i]x =?return(T x′).where(e′) };
check(i, e′); prepout(s

act),

C.1. PREPROCESSING 195

or, similarly, but without the preceding update statement, it is

mc′ = e!m(e) { T x; spsv2 ; [i]x =?return(T x′).where(e′) };
check(i, e′); prepout(s

act),

with (∗) (snxt , s
psv
2) = prepin(spsv1 ,next = i) and

(h, v+[next], (µ, snxt)) ∗ (h, v+[next], (µ, s′nxt)).

Direction ⇒
The configuration c1 can only be reduced by an outgoing method call. Therefore,
for appropriate name contexts ∆,∆′,Θ and an outgoing method call label a it is

∆ ` c1 : Θ a−→ ∆′ ` c′1 : Θ,

where the configuration c′1 is of the form

c′1 = (h, v, (µ′, spsv1 ; x =?return(T x′).where(e′) }; sact))

according to the rule CallO of the external semantics. As for c2, if need be, we
first process the update statement s′nxt by internal transitions, so we get

c2
∗ c′2 = (h, v+[next], e!m(e) { T x; spsv2 ; [i]x =?return(T x′).where(e′) };

check(i, e′); prepout(s
act)),

where the global variable function of c′2 has only changed the value of next . Fur-
thermore, the external semantics yields

∆ ` c′2 : Θ a−→ ∆′ ` c′′2 : Θ,

such that

c′′2 = (h, v′+[next], s
psv
2 ; [i]x=?return(T x′).where(e′); check(i, e′); prepout(s

act)).

Due to the equation (∗) and according to Definition C.1.1 it is

(c′1, c
′′
2) ∈ Rb.

Direction ⇐
If mc′ starts with an update statement s′nxt then

c2 c′2

such that (c1, c′2) ∈ Rb. Alternatively, as shown above, the first statement of mc′

can be an outgoing call statement. In this case, c2 equals the configuration c′2 of
the other proof direction that we have discussed above already. Due to the fact,
that expressions in mc′ must not include references to the extra variable next , all
outgoing call labels a, involved in a transition from c′2 to c′′2 , can also be applied
to c1 such that, again, ∆ ` c1 : Θ a−→ ∆′ ` c′1 : Θ such that(c′1, c

′′
2) ∈ Rb.

196 APPENDIX C. CODE GENERATION

Case mc = if(e) {spsv1 } else {spsv2 }; spsv
According to the definition of prepin in Table 4.2, it is

mc′ = if(e) {s̃p1} else {s̃p2}; s̃p ,

where (snxt , s̃
p) = prepin(spsv , success) and, for each i ∈ {1, 2},

(, s̃pi) = prepin(spsvi , snxt).

Direction ⇒
According to the operational semantics, only the internal rules Cond1 or Cond2

can be applied, in order to reduce the configuration c1: if [[e]]µ,vh evaluates to true
or to false, then c1 c′1 such that

c′1 = (h, v, (µ, spsv1 ; spsv)) or, resp., c′1 = (h, v, (µ, spsv2 ; spsv)).

Correspondingly, we get c2 c′2 with

c′2 = (h, v+[next], (µ, s̃
p
1 ; s̃p)) or, resp., c′2 = (h, v+[next], (µ, s̃

p
2 ; s̃p)).

The definition of prepin regarding sequential compositions yields in both cases

(c′1, c
′
2) ∈ Rb.

Direction ⇐
Both configurations, c1 and c2, can only be reduced by one of the internal rules
Cond1 or Cond2. Moreover, recall again that e must not depend on the value of
next . Therefore, the proof that we have given for the other direction also represents
a proof for this direction.

Case mc = (C x)?(T x).where(e){Tl xl; sact ; !return(e′)}; spsv
Again, according to the definition of prepin , the activation record code of c2 is

mc′ = [i] (Cx)?(Tx).where(e){Tlxl; check(i, e); prepout(s
act); snxt ; !return(e′)}; s̃p ,

with (snxt , s̃
p) = prepin(spsv , success).

Direction ⇒
The configuration c1 allows for external transition steps only. In particular, it only
allows transitions which are labeled with an incoming call label a such that

∆ ` c1 : Θ a−→ ∆′ ` c′1 : Θ,

with
c′1 = (h, v, (µ′, sact ; !return(e′); spsv))

The configuration c2 allows for the same transition step. Specifically, it is

∆ ` c2 : Θ a−→ ∆′ ` c′2 : Θ,

C.1. PREPROCESSING 197

where

c′2 = (h, v+[next], (µ′, check(i, e); prepout(s
act); snxt ; !return(e′)}; s̃p))

and, since we assume check(i, e) to equal ε, additionally

c′2
∗ c′′2 = (h, v+[next], (µ′, prepout(s

act); snxt ; !return(e′)}; s̃p)).

According to the definition of prepin and the definition of s̃p , we get

(c1, c′′2) ∈ Rb.

Direction ⇐
Also for c2 the operational semantics permits only incoming method call steps a
such that

∆ ` c2 : Θ a−→ ∆′ ` c′2 : Θ,

where

c′2 = (h, v+[next], (µ′, check(i, e); prepout(s
act); snxt ; !return(e′)}; s̃p)).

Again, equating check(i, e) with ε we can further say

c′2 = (h, v+[next], (µ′, prepout(s
act); snxt ; !return(e′)}; s̃p)).

Finally, regarding the same name contexts and the same communication label, we
get

∆ ` c1 : Θ a−→ ∆′ ` c′1 : Θ,

with
c′1 = (h, v, (µ′, sact ; !return(e′); spsv)).

And again according to the definition of prepin and the definition of s̃p , we can
conclude

(c1, c′′2) ∈ Rb.

Lemma C.1.4: Assume a specification s with ∆ ` s : Θ. Additionally, consider a spec-
ification s′ that results from s by adding the global next variable and by preprocessing
its main statement. Then

(cinit(s), cinit(s′)) ∈ Rb.

Proof. Consider

s = cutdecl T x; mokdecl {stmt ; return},

to be a valid specification. Further, assume a specification s′ such that

s′ = cutdecl T x; T next ; mokdecl {stmt ′; return},

where stmt ′ results from either applying prepin or prepout to stmt , depending on
the control context of the statement. Then the claim immediately follows from
the Definition C.1.2 of Rb.

198 APPENDIX C. CODE GENERATION

C.2 Anticipation

In order to prove that the first preprocessing step indeed represents an anticipa-
tion mechanism of the expected interface communication, we first introduce some
auxiliary definitions.
Definition C.2.1 (Anticipation-valid code): The code mc of an activation record is said
to be anticipation-valid if there exist update-statements `snxt and ´snxt such that the judg-
ment `snxt `as mc : ´snxt is deducible according to the inference rules given in Table C.1.

Lemma C.2.2: Static anticipation-validity implies proper anticipation:

1. Assume `snxt `as mcpsv : ´snxt . Then for all heaps h, all global variable functions
v, and all local variable function lists µ the following holds. If

(h, v, (µ, `snxt)) ∗ (h, v, (µ,next = i))

and
(h, v, (µ,mcpsv)) ∗ (h, v, (µ, [j] mcpsv ′).

then i = j.

2. Assume `snxt `as mcact : ´snxt . Then for all heaps h, all global variable functions
v, and all local variable function lists µ the following holds. If

(h, v, (µ, `snxt)) ∗ (h, v, (µ,next = i))

and
(h, v, (µ,mcact))

γ!−→ (h, v, (µ, [j] mcpsv ′).

then i = j.

Proof. Both, the passive and the active case will be proven by induction on the
construction of the code. Let us first assume that

`snxt `as mcpsv : ´snxt and (h, v, (µ, `snxt)) ∗ (h, v, (µ,next = i))

for some heap h, global variable function v, and local variable function list µ. We
do a case analysis regarding the code:

Case mcpsv = [i] (C x)?m(T x).where(e′){Tl xl; sact ; snxt ; !return(e)}
According to Rule AS-CallIn it is `snxt = next == i. Thus trivially the propo-
sition holds.
Case mcpsv = ε

Nothing to show, as ε does not evolve to an incoming call or incoming return
statement.
Case mcpsv = spsv1 ; spsv2

The proof for this case follows from the induction hypothesis and the premises
`snxt `as s

psv
1 : snxt and snxt `as s

psv
2 : ´snxt of Rule AS-Seqp. However, we have to

distinguish two sub-cases.

C.2. ANTICIPATION 199

[AS-CallIn]
`as s

act : snxt = ´snxt

next = i `as [i] (C x)?m(T x).where(e′){Tl xl; sact ; snxt ; !return(e)} : ´snxt

[AS-Seqp]
`snxt `as s

psv
1 : snxt snxt `as s

psv
2 : ´snxt

`snxt `as s
psv
1 ; spsv2 : ´snxt

[AS-Whilep]
snxt `as s

psv : `snxt `snxt = if(e) {snxt} else { ´snxt}
`snxt `as while(e) {spsv} : ´snxt

[AS-Ifp]
snxt1 `as s

psv
1 : ´snxt snxt2 `as s

psv
2 : ´snxt `snxt = if(e) {snxt1} else {snxt2}

`snxt `as if(e) {spsv 1} else {spsv 2} : ´snxt

[AS-Case]
next = i `as [i] stmt in ; spsv : ´snxt

next = i `as case [i] stmt in ; spsv : ´snxt

[AS-Skip]
`snxt = ´snxt

`snxt `as ε : ´snxt

[AS-spsv -RetIn]
`snxt `as s

psv : next = i `as mcact : ´snxt

`snxt `as s
psv ; [i]x =?return(T x′).where(e); mcact : ´snxt

[AS-CallOut]
snxt `as s

psv : next = i

`snxt `as snxt ; e!m(e){Tl xl; spsv ; [i]x =?return(T x′).where(e)} : next = i

[AS-Seqa]
`snxt `as s

act
1 : snxt snxt `as s

act
2 : ´snxt

`snxt `as s
act
1 ; sact2 : ´snxt

[AS-Whilea]
`snxt `as s

act : ´snxt

`snxt `as while(e) {sact} : ´snxt

[AS-Ifa]
`snxt `as s

act
1 : ´snxt `snxt `as s

act
2 : ´snxt

`snxt `as if(e) {sact1 } else {sact2 } : ´snxt

[AS-sact -RetOut]
`snxt `as s

act : snxt `as mcpsv : ´snxt

`snxt `as s
act ; snxt ; !return(e); mcpsv : ´snxt

[AS-VUpd] `snxt `as x = e : ´snxt

Table C.1: Anticipation-valid code (static)

200 APPENDIX C. CODE GENERATION

Subcase spsv1 = ε
Then `snxt = snxt and (h, v, (µ, spsv1 ; spsv2)) (h, v, (µ, spsv2)), so the proposition
follows from the hypothesis regarding spsv2 .

Subcase spsv1 6= ε
In this case the proposition immediately follows from the induction hypothesis
regarding spsv1 .

Case mcpsv = while(e) {spsv}
According to Rule AS-Whilep it is `snxt = if(e) {snxt} else { ´snxt} with snxt

such that snxt `as s
psv : `snxt . Assume that (h, v, (µ, snxt)) ∗ (h, v, (µ,next == i).

The hypothesis yields (h, v, (µ, spsv)) ∗ (h, v, (µ, [i] mcpsv ′)). Assume h, v, and
µ such that [[e]]v,µh = true. Then

(h, v, (µ, `snxt)) (h, v, (µ, snxt)) ∗ (h, v, (µ,next == i)).

as well as

(h, v, (µ, while(e) {spsv})) (h, v, (µ, spsv ; while(e){spsv})) ∗ (h, v, (µ, [i] mcpsv ′′)).

On the other hand, now consider the case that [[e]]v,µh = false. Then we get

(h, v, (µ, `snxt)) (h, v, (µ, snxt)) ∗ (h, v, (µ,next == i)).

The remaining cases are similar.
Now let us assume that

`snxt `as mcact : ´snxt and (h, v, (µ, `snxt)) ∗ (h, v, (µ,next = i))

for some heap h, global variable function v, and local variable function list µ. We
do a case analysis regarding the code:

Case mcact = snxt ; e!m(e){Tl xl; spsv ; [i]x =?return(T x′).where(e)}
Due to the premise of Rule AS-CallOut the proposition follows from the passive
case of this lemma.
Case mcact = sact1 ; sact2

Like in the passive case we have to distinguish two sub-cases: if sact1 is the empty
statement or a variable update then the proposition follows from the hypothesis
of the second statement. Otherwise it follows from the hypothesis of the first
statement.

Again the remaining cases are straightforward.

While the previous deduction system checks that some code anticipates the
incoming communication expectations in the context of any configuration state,
the next definition in contrast captures the anticipation feature within the context
of a given state.

C.2. ANTICIPATION 201

[AD-spsv -RetI]
h, v, µ `ad s

psv : next = i `as mcact : snxt

h, v, µ `ad s
psv ; [i]x =?return(T x′).where(e); mcact : snxt

[AD-RetI]
[[next]]v,µh = i `as mcact : snxt

h, v, µ `ad [i]x =?return(T x′).where(e); mcact : snxt

[AD-spsv]
`as s

psv : snxt [[next]]v,µh = i (h, v, (µ, spsv)) ∗ [i] stmt in

h, v, µ `ad s
psv : snxt

[AD-sact -RetOut]
h, v, µ `ad s

act : snxt `as mcpsv : s′nxt

h, v, µ `ad s
act ; snxt ; !return(e); mcpsv : s′nxt

[AD-RetOut]
h, v, µ `ad mcpsv : snxt

h, v, µ `ad !return(e); mcpsv : snxt

[AD-stmtout]
h, v, µ `ad s

psv : next = i `as s
act : snxt

h, v, µ `ad e!m(e){Tl xl; spsv ; [i]x =?return(T x′).where(e)}; sact : snxt

[AD-snxt]
(h, v, (µ, s′nxt))

∗ (h, v′, (µ, ε)) h, v′, µ `ad s
act : snxt

h, v, µ `ad s
′
nxt ; s

act : snxt

[AD-sact]
sact 6= stmtout ; s

act
2 `as s

act : snxt

h, v, µ `ad s
act : snxt

Table C.2: Anticipation-valid configurations (dynamic)

Definition C.2.3 (Anticipation-valid configuration): Assume a configuration

(h, v, (µ,mc)) ∈ Conf

of the specification language. Then we say that the configuration is anticipation-valid,
written

h, v, µ `ad mc : anticip,

if the judgment h, v, µ `ad mc : snxt can be derived for some update statement snxt by
means of the deduction rules given in Table C.2 and Table C.1.

Lemma C.2.4 (Anticipation preprocessing establishes anticipation-validity): Assume a
statement stmt such that ∆ ` stmt : Θ. Furthermore, for a given update statement ´snxt

let stmt ′ = prep(stmt , ´snxt). Then for some appropriate update statement `snxt also
`snxt `as stmt ′ : ´snxt holds.

Proof. More specifically, we will prove in the following that, if stmt is an in-
stance of spsv then it is `snxt `as stmt ′ : ´snxt with `snxt defined by (`snxt , stmt ′) =
prepin(stmt , ´snxt). Moreover, if stmt is an instance of sact we will show that

202 APPENDIX C. CODE GENERATION

`as stmt ′ : holds. By structural induction. We will show the interesting sub-
cases for both cases, i.e., passive and active statement.

Case stmt = spsv

In this case let us define (`snxt , s
psv ′) = prepin(spsv , ´snxt).

Subcase stmt = (C x)?m(T x).where(e){Tl xl; sact ; !return(e)}
According to the definition of prepin it is

`snxt = next = i and
stmt ′ = [i] (C x)?m(T x.where(e)){Tl xl; sact ′; ´snxt ; !return(e)} with
sact ′ = prepout(s

act).

The induction hypothesis implies `as s
act ′ : . Thus, both premises of Rule AS-CallIn

are satisfied which proves the proposition.

Subcase stmt = if(e) {spsv1 } else {spsv2 }
According to the definition of prepin it is

`snxt = if(e) {snxt1} else {snxt2} with
(snxt1, s

psv
1
′) = prepin(spsv1 , ´snxt) and

(snxt2, s
psv
2
′) = prepin(spsv2 , ´snxt).

The induction hypothesis is

snxt1 `as s
psv
1
′ : ´snxt and snxt2 `as s

psv
2
′ : ´snxt .

Therefore, all three premises of Rule AS-Ifp are satisfied.

Subcase stmt = while(e) {spsvb }
According to the definition of prepin it is

`snxt = if(e) {snxt1} else { ´snxt} and
stmt ′ = while(e) {spsv2 } with

(snxt1, s
psv
1) = prepin(spsvb , ´snxt) and

(snxt2, s
psv
2) = prepin(spsv1 , if(e) {snxt1} else { ´snxt}).

The induction hypothesis is

snxt2 `as s
psv
2 : if(e) {snxt1} else { ´snxt}.

Rule AS-Whilep proves the claim.

Case stmt = sact

Subcase stmt = e!m(e){Tl xl; spsv ; x =?return(T x′).where(e)}
According to the definition of prepout it is

stmt ′ = snxt ; e!m(e){Tl xl; spsv ′; [i]x =?return(T x′).where(e) with
(snxt , s

psv ′) = prepin(spsv ,next = i).

C.2. ANTICIPATION 203

Due to the induction hypothesis we know that snxt `as s
psv ′ : next = i. This

makes Rule AS-CallOut applicable which yields the proposition.

Subcase stmt = while(e) {sact}
According to the definition of prepout it is

stmt ′ = while(e) {prepin(sact)},

so that the induction hypothesis directly implies the proposition.

The next lemma justifies the term anticipation-valid configuration.
Lemma C.2.5 (Dynamic anticipation-validity implies proper anticipation): Assume a
configuration (h, v, (µ,mc)) ∈ Conf , such that h, v, µ `ad mc : snxt . Then the follow-
ing holds:

• If ∆ ` (h, v, (µ,mcact) ◦CS) : Θ
γ!−→ ∆ ` (h, v, (µ, [i] mcpsv) ◦CS) : Θ′ then

[[next]]v,µh = i.

• If (h, v, (µ,mcpsv) ◦CS) ∗ (h, v, (µ, [i] mcpsv ′) ◦CS) then [[next]]v,µh = i.

Proof. Let us first assume that h, v, µ `ad mcpsv : snxt and

(h, v, (µ,mcpsv) ◦CS) ∗ (h, v, (µ, [i] mcpsv ′) ◦CS).

If mcpsv starts with an instance of spsv then the proposition immediately follows
from the premises of Rule AD-spsv . If mcpsv starts with an incoming return term
then it follows immediately from the premise of Rule AD-RetI.

Now let us assume that

∆ ` (h, v, (µ,mcact) ◦CS) : Θ
γ!−→ ∆ ` (h, v, (µ, [i] mcpsv) ◦CS) : Θ′.

If mcact starts with an outgoing call or an outgoing return term, then the propo-
sition follows from the passive case of this lemma. In all other cases it follows
from the induction hypothesis.

The last property that we have to show for proving Lemma 4.1.3 is that the dy-
namic anticipation-validity is an invariant regarding transitions of the operational
semantics.
Lemma C.2.6 (Invariance of anticipation-validity): Assume two specification language
configurations, c and c′, with

c = (h, v, (µ,mc)) such that h, v, µ `ad mc : snxt

and furthermore

c′ = (h′, v′, (µ′,mc′)) with c c′ or ∆ ` c : Θ a−→ ∆′ ` c′ : Θ′.

The it is also true that
h′, v′, µ′ `ad mc′ : snxt .

204 APPENDIX C. CODE GENERATION

Proof. Case analysis regarding the construction of mc of configuration c.

Case mc = spsv ; [i]?return(T x).where(e); mcact

We present three exemplary subcases, as the remaining cases are similar.

Subcase spsv = if(e) {spsv1 } else {spsv2 }; s
psv
3

The assumed anticipation-validity regarding c is due to Rule AD-spsv -RetI,
which in particular implies

h, v, µ `ad if(e) {spsv1 } else {spsv2 }; s
psv
3 : next = i. (C.1)

According to the operational semantics, regarding c′ we can conclude that h′ = h,
v′ = v, and µ′ = µ. Moreover, depending on the evaluation of e, the conditional
statement reduces either to spsv1 or spsv2 . Without the loss of generality, let us
assume that e evaluates to true. Thus,

c′ = (h, v, (µ, spsv1 ; spsv3 ; [i]?return(T x).where(e); mcact)).

In order to prove h, v, µ `ad mc′ : snxt , we have to show that

h, v, µ `ad s
psv
1 ; spsv3 : next = i.

Referring to Rule AD-spsv , we can see from Equation C.1 that

`as if(e) {spsv1 } else {spsv2 }; s
psv
3 : next = i

which in turn implies that also

`as s
psv
1 ; spsv3 : next = i

due to the Rules AS-Ifp and AS-Seqp. Furthermore the premise

(h, v, (µ, if(e) {spsv1 } else {spsv2 }; s
psv
3)) ∗ (h, v, (µ, [i] stmt in ; spsv4))

of Rule AD-spsv implies that also

(h, v, (µ, spsv1 ; spsv3)) ∗ (h, v, (µ, [i] stmt in ; spsv4))

is true. Therefore, we get

h, v, µ `ad s
psv
1 ; spsv3 : next = i

.
Subcase spsv = [j] (C x)?m(T x).where(e){ Tl xl; sact ; !return(e′) }; spsv3

Similar to the previous subcase, the premise of Rule AD-spsv -RetI yields

h, v, µ `ad [j] (C x)?m(T x).where(e){ Tl xl; sact ; !return(e′) }; spsv3 : next = i,

which, according to the Rules AD-spsv , AS-Seqp, and AS-CallIn, implies that

[[next]]v,µh = j and sact = sact1 ; s′nxt with s′nxt `as s
psv
3 : next = i.

C.2. ANTICIPATION 205

The configuration c may only evolve to c′ in terms of an incoming method call
which leads to

c′ = (h, v, (vl·µ, sact1 ; s′nxt ; !return(e′); spsv3 ; [i]?return(T x).where(e); mcact)).

Thus, it remains to show that

h, v, vl·µ `ad s
act
1 ; s′nxt ; !return(e′); spsv3 : next = i.

This, however, is true according to Rule AD-sact -RetOut.

Subcase spsv = ε
In this subcase, the code mc of c starts with the outgoing call term !return(e), so
the assumption about the anticipation-validity regarding c is due to Rule Ad-RetI.
Since its premise `as mcact : snxt also implies anticipation-validity of mcact re-
garding any heap and variable functions and since mc reduces to mcact through
an incoming return label, we can immediately see that

h, v, µ `ad mcact : snxt .

Case mc = spsv

As for configurations c whose code consist of a passive statement only, the corre-
sponding proofs can be easily derived from the previous case. Basically, we only
have to omit the trailing code [i]x =?return(T x).where(e); mcact.

Case mc = sact ; !return(e); mcpsv

Also regarding active code, we will show the most interesting subcases.

Subcase sact = x=e; sact1

Therefore, c internally reduces to

c′ = (h, v′, (µ′, sact1 ; !return(e); mcpsv)).

According to Rule AD-sact -RetOut it is sact1 = sact2 ; s′nxt such that

sact = x=e; sact2 ; s′nxt with s′nxt `as mcpsv : snxt .

We now have to distinguish the case, where x is the next variable, from the case
where x represents a different variable.

Subsubcase x 6= next
As the first statement of sact is not an outgoing call, but also not an instance of
snxt , we know from Rule AD-sact that

`as x=e; sact2 ; s′nxt : s′nxt .

Consequently, it is also true that

`as s
act
2 ; s′nxt : s′nxt .

206 APPENDIX C. CODE GENERATION

This, in turn, leads to the fact that, according to Rule AD-snxt -RetOut, also

h, v′, µ′ `ad s
act
2 ; s′nxt ; !return(e); mcpsv

is true.
Subsubcase x = next

In this case the local variable list is not changed by the internal transition, i.e.,
µ′ = µ. Moreover, we have to consult Rule AD-snxt instead of Rule AD-sact . And
this rule’s two premises, applied to our assignment, leads to

(h, v, (µ, x = e)) (h, v′, (µ, ε)),

such that h, v′, µ `ad s
act
2 ; s′nxt : s′nxt . Therefore, in particular the first but also

the second premise of Rule AD-sact -RetOut are true regarding the configuration
c′.
Subcase sact = e!m(e) {T x; spsv ; [i]x =?return(T x).where(e′) }; sact1

Rule AD-stmtout yields

h, v, µ `ad s
psv : next = i and `as s

act
1 : snxt .

Thus, the transition from c to c′ in terms of an outgoing method call label leads
to

c′ = (h, v, (µ, spsv ; [i]x =?return(T x).where(e′); sact1 ; !return(e); mcpsv)).

According to Rule Ad-spsv -RetI, it remains to show that

`as s
act
1 ; !return(e); mcpsv : snxt .

Since we assume that c is anticipation-valid and due to Rule AD-sact -RetOut
it is sact1 = sact2 ; s′nxt such that

s′nxt `as mcpsv : snxt .

Therefore, according to Rule AS-sact -RetOut, it is indeed

`as s
act
2 ; s′nxt ; !return(e); mcpsv : snxt .

Subcase sact = ε
Therefore, it is

h, v, µ `ad!return(e); mcpsv : snxt

and additionally
h, v, µ `ad mcpsv : snxt .

Since c evolves to
c′ = (h, v, (µ,mcpsv)),

this implies h, v, µ `ad mcpsv : snxt .

Case mc = sact

Much as the proof for passive statement represents a simplified case of passive call
stack code, also the proof for active statements are very similar to the previous
proof case.

C.3. CORRECTNESS OF THE GENERATED CODE 207

C.3 Correctness of the generated code

In this section we want to prove that a preprocessed specification and the cor-
respondingly generated Japl code are testing bisimilar. This will also represent
a proof for Lemma 3.6.2 as it stated for each specification the general existence
of a program of the programming language which is “trace-equal” modulo input-
enabledness. To prove testing bisimilarity, we will first define a binary relation
Rt over specification language and programming language configurations. After-
wards we will prove that Rt is a testing bisimulation. Note in this section we have
to deal with constructs of the specification language and, at the same time, with
constructs of the programming language sharing the same name due to our lan-
guage extension approach. Therefore, in the following, we will annotate constructs
of the specification language with sp (e.g. stmtsl) and those of the programming
language with pl (e.g. stmtpl). Yet we may omit the annotation in cases where
the affiliation of a construct is clear.

The relation Rt is defined over configurations. However, the definition will
be based on similar relations over statements and, respectively, over call stacks.
Thus, before we will give the actual definition for Rt we need to define the relations
regarding statements and call stacks.
Definition C.3.1: The relation∼st⊆ stmtsl×stmtpl is recursively defined by the equa-
tions shown in Table C.3.

spsv ∼st ε
if(e) {sact1 } else {sact2 } ∼st if(e) {stmt1} else {stmt2}

with sact1 ∼st stmt1 and sact2 ∼st stmt2

while(e) {sact} ∼st while(e) {stmt} with sact ∼st stmt
sact1 ; sact2 ∼st stmt1; stmt2 with sact1 ∼st stmt1 and sact2 ∼st stmt2

x = e ∼st x = e
e!m(e) { spsv ; [i]x =?return(T x).where(e) } ∼st x = e.m(e); check(i, e)
new!C(e){ spsv ; [i]x =?return(C x).where(e) } ∼st x = new C(e); check(i, e)

Table C.3: Simulation relation for statements

Note, the relation ∼st relates all passive (specification language) statements
to the empty (programming language) statement. Similarly, active method and
constructor call statements of the specification language are related to the cor-
responding method or constructor call of the programming language, ignoring
the passive statement spsv that forms the body of the original call expectation
statement.

Additionally, note that regarding the relation ∼st , the expectation bodies of
method and constructor calls must not provide variable declarations. Likewise, the
block statement is not part of the relation. Therefore, a specification statement
(as well as the corresponding program statement) of this relation never contains
local variable declarations apart from the formal parameters of incoming calls.

208 APPENDIX C. CODE GENERATION

Lemma C.3.2: Assume a preprocessed specification statement stmtsl and, correspond-
ingly, a programming language statement stmtpl that results from generating code from
stmtsl by means of codein or, respectively, codeout . Then it is stmtsl ∼st stmtpl .

Proof. By structural induction. Straightforward. For instance, all passive state-
ments are completely transcribed to method body code by codein such that no
main body statement is generated at all. Similarly, all other cases immediately
follow from the definition of codeout , given in Tale 4.5, and the definition of ∼st ,
given in Table C.3.

The next definition specifies a relation over activation records of the specifica-
tion language and the corresponding call stack of the programming language. The
definition is based on the previously defined relation over statements. However,
it additionally has to consider the languages’ different handling concerning the
local variables. For, regarding the specification language, an incoming call results
in an extension of the local variable list of the call stack’s topmost (and only)
activation record by a local variable functions vl capturing the parameters of an
incoming call. Within the programming language, in contrast, an incoming call
causes the creation of a new activation record with its own variable function list.
Moreover, while we assume that the specification does not introduce any local
variables (apart from the parameter of a incoming method or constructor call),
meaning that the local variable functions only consists of the formal parameters,
the corresponding variable function of the programming language, in contrast,
additionally provides a variable retVal .
Definition C.3.3: The relation ∼CS⊆ ARsl × CSpl consists of pairs of specification
activation records and programming language calls stacks. It is (µsl ,mcsl) ∼CS CSpl in
exactly the following cases

1. (v⊥, sact) ∼CS (v⊥, stmt ; return) if sact ∼st stmt ,

2. (v·µ, sact ; !return(e); mcpsv) ∼CS (v̌, stmt ; retVal = e; return(retVal)) ◦CSeb

if sact ∼st stmt and (µ,mcpsv) ∼CS CSeb,

3. (v⊥, spsv) ∼CS (v⊥, ε), and

4. (v⊥·v·µ, spsv ; [i]x =?return(T x).where(e); mcact) ∼CS

(v̌, rcv T :x; check(i, e); mc) ◦CS′
if

(v·µ,mcact) ∼CS (v̌,mc) ◦CS′.

With v̌ we denote the variable function that results from extending v with an additional
variable retVal.

Before we can define the actual testing bisimulation relation Rt we have to
deal with another crucial difference between a specification and a program. That
is, a program provides method code which is to be copied into the program config-
uration at runtime, whenever a corresponding method invocation occurs. Hence,
relating configurations of the specification language with configurations of the

C.3. CORRECTNESS OF THE GENERATED CODE 209

programming language is not sufficient but the static code, given in terms of
method body code, has to meet certain requirements, as well. One solution would
be to extend the codomain of the relation Rt such that it does not only com-
prise the configurations Conf pl of the programming language but additionally its
programs p. Thus, the relation Rt would be a subset of Conf sl × (p × Conf pl).
However, static code, as the name implies, does not change during the program
execution. To express this, we choose a slightly different approach, that is, we
annotate Rpt with a specific program p, and for each p the relation Rpt is a subset
of Conf sl ×Conf pl . Based on this notation, we will now discuss the requirements
of Rpt that are related to the static code provided by p. This has the following
three aspects.

• The program p on its own has to provide certain features which are indepen-
dent of any configurations. In particular, if p does not have these features
then the corresponding relation Rpt is the empty set.

• It has been said, that static code may be copied into the program configura-
tion in order to execute it. Executability entails the requirement that certain
expressions within the code must be evaluable. This, in turn, imposes cor-
responding requirements on the configurations of Rpt regarding the variable
assignments given in terms of the configuration’s variable functions . Thus,
on the one hand, the variable functions of a configuration of Rpt have to
provide values of a proper type such that the expressions can be evaluated.
On the other hand, the code of a configuration of Rpt must not implement
assignments to variables which result in a wrongly typed variable.

• Finally, the method code within p must be able to simulate all the incoming
call expectations that are implemented in specification configuration of Rpt .

In the following, we will discuss these three aspects in more detail and provide
corresponding definitions. Afterwards, we will use these definitions to formulate
the definition of the relation Rpt .

First, let us deal with the general requirements regarding the static code itself.
For instance, a straightforward requirement is that all methods must provide well-
formed code, only. More specifically, as we have discussed in Chapter 4, the body
of a method must provide a structure that allows the simulation of, not only one
but potentially several, incoming call statements. To this end, we assume that the
code structure follows our anticipation strategy, meaning that each method defi-
nition of p implements a case switch regarding the communication identifier and
the corresponding where-clause. This requirement is formulated by the following
definition.

Definition C.3.4 (Anticipation-based code structure): Assume a well-typed program p.
We say that p has an anticipation-based code structure, if for each method m of each

210 APPENDIX C. CODE GENERATION

class C of p the definition is of the following form

T m(T x){ T retVal ;
n∏
k=1

(if((next == ik) && (ek)) { stmtk; retVal = e′k } else) {fail ; }

return(retVal) }

and, correspondingly, for each class C the definition of its constructor is of the following
form

C C(T x){ if(internal) {ε} else
n∏
k=1

(if((next == ik) && (ek)) { stmtk } else) {fail ; }

return }.

We use the
∏

symbol to denote an iteration of nested conditional statements.
Each condition expression tests for the next expected communication identifier
and the corresponding where-clause. If the method invocation does not match any
implemented call expectations regarding this method, then fail is called.

As for the relation Rpt we will presume that p has an anticipation-based code
structure. Otherwise, the relation is considered to be the empty set. Note that
this requirement can be checked independently of any configurations. If p has the
desired structure, however, it imposes additional requirements on the configura-
tions of Rpt . On the one hand, it is necessary that for each method the expressions
e1 to en of Definition C.3.4 can be evaluated. Since we assume that the program
does not use local variables or fields (cf. code generation algorithm), this repre-
sents a requirement on the global variable function v of the configurations. In
particular, v must provide defined values for all global variables that occur in e1

to en. Specifically, the types of the provided values must be as assumed by the
expressions, as otherwise their evaluation is not defined and the program can get
stuck. Moreover, the code of a specification configuration of Rpt must not change
the type of global variables by performing a wrongly typed assignment.
Definition C.3.5 (Well-typed variable function and specification configuration): Let ∆
be a global and Γ a local type mapping. Further, assume a variable function list µ = v·µ′.
We say, µ is well-typed regarding Γ and ∆, written

Γ; ∆ `var v·µ′ : ok,

if, and only if,

Γ = Γ1,Γ2 such that dom(Γ1) = dom(v),
for all x ∈ dom(v). ∆(v(x)) = Γ1(x), and
Γ2; ∆ `var µ

′ : ok.

C.3. CORRECTNESS OF THE GENERATED CODE 211

[T-sact -RetO]
Γ; ∆ ` stmt : okact Γ; ∆ ` mcpsv : okpsv

Γ; ∆ ` stmt ; !return(e); mcpsv : okpsv

[T-spsv -RetI]
Γ; ∆ ` stmt : okpsv Γ; ∆ ` mcact : okact

Γ; ∆ ` stmt ; ?return(T).where(e); mcact : okpsv

Table C.4: Well-typedness of dynamic specification code mcsl

Moreover, for a configuration csl = (h, v, (µ,mc)) of the specification language, we say
that csl is well-typed regarding Γ and ∆, written

Γ; ∆ `var csl : ok,

if
Γ; ∆ `var v·µ : ok and if the judgment Γ; ∆ ` mc : okγ

is derivable regarding the inference rules given in Table 3.2 and Table C.4.
While we have just seen that a configuration has to provide certain features,

such that the method bodies of p can be executed properly, we still have to formu-
late the requirement that, contrary, p indeed provides method code that matches
the expectations specified within the configuration specification. In particular, the
code provided by p has to match the expectations in such a way that for each
incoming call statement regarding method m within the configuration specifica-
tion, we can find corresponding code in the method definition of m within p. This
requirement is defined as follows.
Definition C.3.6 (Expectation supporting code): Let mcsl be activation record code re-
garding the specification language which is annotated with expectation ids. A program p
with anticipation-based code structure supports all expectations of mcsl , written

pBmcsl ,

if

• for each (
[i] (C x)?m(T x).where(e) {stmtsl ; return(er) }

)
∈ mcsl ,

there exist a corresponding conditional branch in the method definition of m in p
such that(

if((next == i) && (e)) { stmtpl ; retVal = er } else stmt ′pl
)
∈ p.C.m

with stmtsl ∼st stmtpl .

• for each (
[i] new(C x)?C(T x).where(e) {stmtsl ; return}

)
∈ mcsl ,

212 APPENDIX C. CODE GENERATION

there exist a corresponding conditional branch in the constructor definition of C in
p such that(

if((next == i) && (e)) { stmtpl} else stmt ′pl
)
∈ p.C.m

with stmtsl ∼st stmtpl .

Moreover, each expectation identifier that occurs within a conditional branch of a method
or a constructor definition is unique.

Finally, we can define the relation Rpt .

Definition C.3.7 (Testing bisimulation relationRpt): Assume a program pwith an anticipation-
based code structure. Further, assume a type mapping ∆ such that for all methodsm of all
classes C in p and for all Boolean expression e1 to en of m according to Definition C.3.4
it is

Γg,ΓC.m; ∆ ` ek : Bool,

where ΓC.m represents the local type mapping due to the formal parameters and local
variables of C.m according to Rule T-MDEF in Table 2.2 and Γg is the local type map-
ping that results from p’s global variables according to Rule T-PROG’.

We define a relation Rbt ⊆ Conf sl ×Conf pl over configurations of the specification
language and of the programming language as follows. For all heap functions h and all
global variable functions v the relation Rpt exactly consists of the following pairs: It is

((h, v,CSsl), (h, v,CSpl)) ∈ Rt

if, and only if,

1. regarding the call stacks it is

CSsl = (µ,mcsl) and (µ,mcsl) ∼CS CSpl ,

2. the program p supports all expectations of mcsl , i.e.,

pBmcsl ,

3. the specification configuration is well-typed regarding the local type mapping Γg
and the global type mapping ∆ of p, i.e.,

Γg; ∆ `var (h, v, (µ,mcsl) : ok.

and

4. the specification configuration is anticipation-valid, i.e.,

h, v, µ `ad mcsl : anticip

C.3. CORRECTNESS OF THE GENERATED CODE 213

Note, the heap and the global variables of related configurations are identical.
Moreover, the call stack of the specification’s configuration consists of a single
activation record, only, and it must be related to the call stack of the program’s
configuration in terms of the relation ∼CS .

Note further that, according to the operational semantics of the specification
language, the call stack of a specification’s configuration always consists of only
one activation record. Hence, the corresponding equation, CSsl = ARsl in Defini-
tion C.3.7 does not represent a real restriction.

Now, the following lemma will show that the relation Rpt is a testing bisimula-
tion as defined in 4.4.6. To understand the structure of the lemma’s proof, recall
that the code mc of a configuration’s activation record is always either active,
mcact, or passive, mcpsv, code. In particular, it is always of the following form:

mcact ::= sact | sact ; !return(e); mcpsv

mcpsv ::= spsv | spsv ; x =?return(T x).where(e); mcact

That is, the code of an activation record either consists of single statement (sact

or spsv , respectively) or it consists of a statement followed by a return term and
some more activation record code mcpsv or mcact.

The proof of the lemma consists of a case analysis regarding the construction
of the specification configurations of the relation Rpt .

Lemma C.3.8: The binary relation Rpt , defined in C.3.7, indeed represents a testing
bisimulation as defined in 4.4.6.

Proof. Assume a program p with anticipation-based code structure. Further, as-
sume a specification language configuration csl and a programming language spec-
ification cpl , such that

(csl , cpl) ∈ Rpt . (Ass)

The definition of Rpt implies that there exist a heap function h, a global variable
function v, as well as an activation record of the specification language ARsl =
(µ,mcsl) and a call stack of the programming language CSpl such that

csl = (h, v,ARsl) and cpl = (h, v,CSpl) with ARsl ∼CS CSpl .

Similar to the proof of Lemma C.1.3, we make a case analysis regarding the con-
struction of the code mcsl of ARsl . For each case we will prove that cpl simulates
csl (⇒) and additionally that csl simulates cpl up to test faults (⇐). Specifically,
we have to show for each case that the two configurations allow for similar com-
putations steps where the resulting configurations, c′sl and c′pl , again meet the four
requirements of Definition C.3.7. Two of the four requirements, however, can be
shown generally without analyzing distinct cases. For, we have already shown in
Lemma C.2.6 that anticipation validity is invariant concerning computation steps

214 APPENDIX C. CODE GENERATION

of the operational semantics. Moreover, it is obvious that, if p supports all expec-
tations that are specified in csl then no computation step adds new expectations,
so that p also supports all expectations specified in the new configuration c′sl .

As for the following case analysis, we first consider the cases, where ARsl

contains active code mcact. Afterwards, we consider all cases, where the code of
ARsl is passive, hence, an instance of mcpsv.

Case ARsl = (vl·µ′, sact ; !return(e); mcpsv) with sact 6= ε
Thus, the configurations csl is of the following form

csl = (h, v, (vl·µ′, sact ; !return(e); mcpsv)).

In particular, it is µ = vl·µ′. So, according to Definition C.3.7 as well as Defini-
tion C.3.3, we know from (Ass) that

cpl = (h, v, (v̌l, stmt ; retVal = e; return(retVal)) ◦CSeb),

such that
sact ∼st stmt and (µ′,mcpsv) ∼CS CSeb.

We make a subcase analysis regarding the first active statement of sact .

Subcase sact = x=e; sact1

Then sact ∼st stmt implies that

stmt = x=e; stmt1 with (∗) sact1 ∼st stmt1.

Direction ⇒
According to the operational semantics of the specification language, csl may
reduce to c′sl only in terms of an internal computation step such that

csl c′sl = (h, v′, (vl·µ′, sact1 ; !return(e); mcpsv))

Note that the local variables did not change as (Ass) implies that x is not a local
variable or parameter. Thus, similarly, we have

cpl c′pl = (h, v′, (v̌l, stmt1; retVal = e; return(retVal)) ◦CSeb).

So due to (Ass) and (∗) it is

(vl·µ′, sact1 ; !return(e); mcpsv) ∼CS (v̌l, stmt1; retVal = e; return(retVal)) ◦CSeb).

Again, the assumption (Ass) and Rule T-Seq of Table 2.2 imply that

Γg; ∆ `var (h, v′, (vl·µ′, sact1 ; !return(e); mcpsv)) : ok.

Thus, according to Definition C.3.7 we get

(c′sl , c
′
pl) ∈ Rt.

C.3. CORRECTNESS OF THE GENERATED CODE 215

Direction ⇐
The variable x must not be the extra variable retVal . Furthermore, cpl can only
deterministically reduce to the above mentioned c′pl . Hence, this proof direction
results in the same configuration pair

(c′sl , c
′
pl) ∈ Rt.

Subcase sact = ec!m(e){spsv ; [i]x =?return(T x′).where(e′)}; sact1

In particular due to Definition C.3.1, the assumption (Ass) implies

cpl = (h, v, (v̌l, ec.m(e); stmt1; retVal = e; return(retVal)) ◦CSeb).

Direction ⇒
Configuration csl reduces to c′sl due to an outgoing method call. Hence,

∆ ` csl : Θ a−→ ∆ ` c′sl : Θ′,

with

a = ν(Θ′).〈call o.m(v)〉! such that o = [[ec]]
v,µ
h and v = [[e]]v,µh .

and

c′sl = (h, v, (v⊥·µ, spsv ; [i]x =?return(Tx′).where(e′); sact1 ; !return(e); mcpsv)).

In the following, let us refer to the code of c′sl by mc′sl . Note that the new local
variable function is the completely undefined variable function v⊥, since the code
of csl is free of local variable declarations.

As for the programming language configuration cpl , the topmost statement of
the topmost activation record is the outgoing call ec.m(e) which likewise leads to
a transition labeled with the same communication label a, such that

∆ ` cpl : Θ a−→ ∆ ` c′pl : Θ′,

with

c′pl = (h, v, (v̌l, rcv x:T ; stmt1; retVal = e; return(retVal)) ◦CSeb).

In the following, let us refer to the code of c′pl by mc′pl . According to (Ass) and
Definition C.3.1, it is

(v⊥·µ, mc′sl) ∼st ((v̌l, rcv x:T ; stmt1; retVal = e; return(retVal)) ◦CSeb).

Furthermore, Rule T-CallOut of Table 3.2 and Rule T-spsv -RetI of Table C.4
imply that

Γg; ∆ `var (h, v, (v⊥·µ, mc′sl)) : ok.

Hence, it is
(c′sl , c

′
pl) ∈ Rt.

216 APPENDIX C. CODE GENERATION

Direction ⇐
Similar to the previous subcase, the configuration cpl allows at most the same
labeled transition to the configuration c′pl that was introduced in the above proof
regarding the other implication direction. This results in the same configuration
pair such that, again,

(c′sl , c
′
pl) ∈ Rt.

The other subcases are similar.
Case ARsl = (vl·µ′, !return(e); mcpsv)

Referring to Definition C.3.3, we can derive from (Ass), that

csl = (h, v, (vl·µ′, !return(e); mcpsv))

and, on the other hand, that

cpl = (h, v, (v̌l, retVal = e; return(retVal)) ◦CSeb)

or
cpl = (h, v, (v̌l, return(retVal)) ◦CSeb),

where we additionally know in the latter case that v̌l(retVal) = [[e]]v,µh . Moreover,
we know that

(µ′,mcpsv) ∼CS CSeb.

Direction ⇒
The only transition that may originate from csl is the one that is labeled with an
outgoing return label a such that

a = ν(Θ′).〈return(v)〉! with v = [[e]]v,µh .

More specifically, due to Rule RetO of Table 3.3 we get

∆ ` csl : Θ a−→ ∆ ` c′sl : Θ′ with c′sl = (h, v, (µ′,mcpsv)).

It is easy to see that processing the programming language configuration cpl
leads to the same outgoing communication step – with an intermediate inter-
nal computation step, if the case may be. In particular, in both cases, it is
v̌l(retVal) = [[e]]v,vl·µ

′

h right before the outgoing return is processed. Therefore,
it is

∆ ` cpl : Θ a=⇒ ∆ ` c′pl : Θ′ with c′pl = (h, v,CSeb).

The assumption (Ass) immediately yields that

(µ′,mcpsv) ∼CS CSeb.

Well-typedness of c′sl results from Rule T-sact -RetOut such that

Γg; ∆ `var c
′
sl : ok.

C.3. CORRECTNESS OF THE GENERATED CODE 217

So, all in all we can infer that

(c′sl , c
′
pl) ∈ Rt.

Direction ⇐
Again, cpl deterministically evolves to the configuration c′pl of the previous proof
direction.

Case ARsl = (vl, sact)
The proof of this case is almost identical to the previous two proof cases. Specif-
ically, we only have to skip the proof obligation that the trailing call stack CSeb

relates to the corresponding specification code, as no trailing call stack exists in
this case.

Case ARsl = (µ, spsv ; [i]x =?return(T x′).where(e′); mcact)
Due to Definition C.3.3, it is µ = v⊥·vl·µ′ so that

csl = (h, v, (v⊥·vl·µ′, spsv ; [i]x =?return(T x′).where(e′); mcact).

Moreover the same definition leads to

cpl = (h, v, (v̌l, rcv x:T ; check(i, e′); mc) ◦CSeb) with

(vl,mcact) ∼CS (v̌l, mc) ◦CSeb.

We consider some subcases regarding the structure of spsv . However, this time
we will not consider both implication directions for each subcase but only the
simulation direction (⇒). We will prove the simulation-up-to-faults direction (⇐)
for all subcases at the end.

Subcase spsv = if (e) {spsv1 } else {spsv2 }; s
psv
3

Without loss of generality we can assume that [[e]]v,µh = true and thus

csl c′sl with c′sl = (h, v, (µ, spsv1 ; spsv3 ; [i]x =?return(Tx′).where(e′); mcact)).

However, again due to Definition C.3.3 it is

(µ, spsv1 ; spsv3 ; [i]x =?return(T x′).where(e′); mcact) ∼CS CSpl .

Due to Rule T-sact -RetOut of Table C.4 and due to Rule T-Cond and Rule T-
Seq of Table 3.2 we know that

Γg; ∆ `var (µ, spsv1 ; spsv3 ; [i]x =?return(T x′).where(e′); mcact) : ok.

Thus, we get
(c′sl , cpl) ∈ Rt.

218 APPENDIX C. CODE GENERATION

Subcase spsv = [j] (C x)?m(T x).where(e′){ sact ; return(er) }; spsv3

In this case csl may only evolve due to an appropriate incoming method call label.
That is,

∆ ` csl : Θ a−→ ∆′ ` c′sl : Θ,

with

c′sl = (h, v, (v′l·µ, sact ; !return(er) ; spsv3 ; [i]x =?return(Tx′).where(e′); mcact))

as well as

a = ν(Θ′).〈call o.m(v)〉? such that ∆,∆′,Θ ` o, v : C, T and [[e′]]v,v
′
l·µ

h .

Let us refer to the code of c′sl as mc′sl . The assumption h, v, µ `ad mcsl : anticip
implies that

(∗) [[next]]v,µh = j

due to Lemma C.2.6. As for the configuration cpl , the facts that p provides an
anticipation-based code structure and, in particular, that p B mcsl , and finally
that the program is generally input enabled, lead to

∆ ` cpl : Θ a−→p ∆′ ` c′pl : Θ,

with

c′pl = (h, v, (v̌′l, stmt ; return(retVal)) ◦(v̌l, rcv x:T ; mc) ◦CSeb).

such that, due to (∗), it is c′pl
∗ c′′pl with

c′′pl = (h, v, (v̌′l, stmt1; retVal = er; return(retVal)) ◦(v̌l, rcv x:T ; mc) ◦CSeb)

and with
sact ∼st stmt1.

Let us refer to the code of the topmost activation record of c′′pl as mc′′pl . Then it
is

(v′l·µ,mc′sl) ∼st (v̌′l,mc′′pl) ◦CSeb.

Due to Rule T-spsv -RetI and Rule T-CallIn it is

Γg; ∆ `var c
′
sl : ok

and finally we get
(c′sl , c

′′
pl) ∈ Rt.

C.3. CORRECTNESS OF THE GENERATED CODE 219

Direction ⇐
As mentioned above, the call stack CSpl of the program configuration cpl is ex-
ternally blocked. Thus, it may only evolve due to an incoming call or due to an
incoming return. That is, we can assume that

∆ ` cpl : Θ a−→p ∆′ ` c′pl : Θ.

And regarding the communication label a we have to differentiate two subcases.

Subcase a = ν(∆n).〈call o.m(v)〉?
Due to the anticipation-based code structure of p, the configuration c′pl is of the
following form:

c′pl = (h, v, (v̌l, stmt ; return(retVal)) ◦CSpl),

where stmt implements a case switch regarding expectation ids in form of a nesting
of conditional statements as described in Definition C.3.4. Assume that

(∗) v(next) = j.

Subsubcase if ((next == j)&&(ej)) {stmtj ; retVal = e′j} else {stmt ′} ∈ stmt
Due to fact that p supports all expectations of the code of csl , i.e.,

pB spsv ; [i]x =?return(T x′).where(e′); mcact,

we can infer that j 6= i. Moreover, (Ass) implies that

h, v, µ `ad mcsl : anticip

so Lemma C.2.6 and (∗) yield that

csl
∗ c′sl with

c′sl = (h, v, (µ, [j] stmt in ; spsv1 ;

[i]x =?return(T x′).where(e′); mcact)).

Again, since p supports all expectations of csl , it is indeed

stmt in = (C x)?m(T x).where(ej){ sact ; !return(e′j) } .

If [[ej]]
v,µl·µ
h = false then ∆ ` c′sl : ∆ 6 a−→. But in this case also the corresponding

conditional branch of m within p is evaluated to false such that the method reports
a failure.

So let us assume that [[ej]]
v,µl·µ
h = true. Then we get

∆ ` c′sl : ∆ a−→ ∆′ ` c′′sl : Θ

with

c′′sl = (h, v, (vl·µ, sact ; !return(ej); s
psv
1 ; ?return(T x′).where(e′); mcact)).

220 APPENDIX C. CODE GENERATION

Let us refer to the activation record of c′′sl as AR′′sl . On the other hand, the program
configuration c′pl reduces to

c′pl
∗ c′′pl = (h, v, (v̌l, stmtj ; retVal = e′j ; return(retVal)) ◦CSpl),

where, yet again due to the expectation support, it is

(∗∗) sact ∼st stmtj .

Let us refer to the call stack of c′′pl as CS′′pl , then we get from (Ass) and from (∗∗)
that

AR′′sl ∼CS CS′′pl .

Subsubcase if ((next == j)&&(ej)) {stmtj ; retVal = e′j} else {stmt ′} 6∈ stmt
That is, the method m does not provide a conditional branch regarding the com-
munication identifier j. According to the structure of the method, this results in a
failure report. Thus, we have to show that the specification configuration cannot
realize an incoming call regarding a. Indeed, since h, v, µ `ad mcsl : anticip, we
know from Lemma C.2.6 and from (∗) that

∆ ` csl : Θ 6 a−→ .

Subcase a = ν(∆n).〈return(v)〉?
According to the operational semantics and due to the form of cpl it is

∆,∆n ` v:T

so that
∆ ` cpl : Θ a−→ ∆,∆n ` c′pl : Θ

with c′pl = (h, v′, (v̌l, check(i, e′); mc) ◦CSeb). Since we assume that check(i, e′)
tests whether next = i and e′ evaluates to true, we can differentiate two subsub-
cases.

Subsubcase [[next == i]]v,v̌lh ∧ [[e′]]v,v̌lh = true
In this case we can assume that

c′pl
∗ c′′pl = (h, v′, (v̌l, mc) ◦CSeb),

but also we know from h, v, µ `ad mcsl : anticip that spsv = ε and thus

∆ ` csl : Θ a−→ ∆,∆′ ` c′sl : Θ

with
c′sl = (h, v′, (vl·µ′,mcact)).

C.3. CORRECTNESS OF THE GENERATED CODE 221

Finally, both,
(vl·µ′,mcact) ∼CS (v̌l, mc) ◦CSeb

as well as
h, v′, vl·µ′ `var mcact : ok

immediately follow from (Ass).

Subsubcase [[next == i]]v,v̌lh ∧ [[e′]]v,v̌lh = false
In this case, we assume that check(i, e′) reports a failure. The specification con-
figuration, however, does not accept such an incoming return label a, hence,

∆ ` csl : Θ 6 a−→ .

Case ARsl = (vl, spsv)
Similar to the sact case, this spsv case, again, represents a simplified version of
the previous case, as we can replay its proofs while omitting the proof obligations
regarding the trailing call stack CSeb and, respectively, mcact.

In order to finally prove the correctness of the code generation algorithm, we
have to show that the initial configurations of a specification s and the initial
configuration of the correspondingly generated test program p represent a pair of
the testing bisimulation relation Rpt .
Lemma C.3.9 (Correctness of the test code generation): Assume a well-typed specifi-
cation s. Moreover, let s′ = prep(s) be the specification that results from preprocessing
s as defined in Definition 4.1.4 and let p be the correspondingly generated program ac-
cording to the algorithm described in Section 4.3. If the main statement of s′ is an active
statement then

(cinit(s′), cinit(p)) ∈ Rpt .

Otherwise it is
(cinit(s′), cinit(p)) ∈ Rpt .

In particular, it is Rpt 6= ∅.

Proof. Assume a well-typed configuration

s = cutdecl T x; mokdecl {stmt}.

Let s′ = prep(s). Then, according to Definition 4.1.4 we have

s = cutdecl T x; T ′ x′; T next ; mokdecl {stmt ′},

where stmt ′ results

1. from enriching stmt with anticipation code by means of the code processing
functions prepin and prepout and

222 APPENDIX C. CODE GENERATION

2. from “globalizing” all local variables within stmt , meaning that each variable
declaration and formal parameter within stmt has a global counterpart in
x′ such that stmt ′ is free of local variable declarations (apart from formal
parameters). Moreover, all occurrences of local variables and parameters
within stmt are replaced by the corresponding global counterpart.

It is easy to see that well-typedness of s implies well-typedness of s′, hence, let us
assume that ∆ ` s′ : Θ. Further let us assume that p with

p = impdecl ; T x; T ′ x′; T next ; cldef ; {stmtpl ; return}

is the test program generated from s′ as described in Section 4.3. According to the
code generation algorithm, the class definitions impldecl are generated by means
of the code generation functions codein and codeout . From, the definitions of these
functions, given in Table 4.5 and Table 4.6 as well as the auxiliary notation in
Table 4.4 it immediately follows that p provides an anticipation-based structure.
Moreover, the recursively descending application of codein and codeout ensures
that p supports all expectations of stmt ′. It is

cinit(s′) = (h⊥, v, (v⊥, stmt ′)),

where v maps each global variable of s′ to its initial value. Well-typedness of s′

implies that
Γg; ∆ `var (h⊥, v, (v⊥, stmt ′)),

where Γg represents the local type mapping regarding the global variables (cf.
Rule T-Spec in Table 3.2). According to Definition C.3.7, it remains to show
that the call stacks of the initial configurations of s and p are in relation regarding
∼CS .

Case stmt′ is an active statement
In this case, consider

cinit(p) = (h⊥, v, (v⊥, stmtpl ; return));

Since stmtpl results from applying codeout to stmt ′ we know from Lemma C.3.2
that

stmt ′ ∼st stmtpl hence (v⊥, stmt ′) ∼CS (v⊥, stmtpl).

Case stmt′ is a passive statement
In this case, consider

cinit(p) = (h⊥, v, (v⊥, ε));

Since stmt ′ is an instance of spsv , Definition C.3.3 yields

(v⊥, stmt ′) ∼CS (v⊥, ε).

Summary

In most of today’s software development projects, testing is still the only feasible
instrument for assuring the quality of a software product. Rigorous testing is
necessary during all stages of the software development life cycle. While system
and acceptance tests deal with the complete system, unit testing aims at the
smallest building blocks of the software. Not only due to the growing popularity
of agile software development methodologies, the responsibility for unit tests is
more and more shifted from software testers to software developers. Besides the
entailed advantages, like increasing quality awareness and immediate feedback
to the programmers, this development also demands for novel testing frameworks
accounting for the different qualifications and expectations of software developers.
At the same time, the rampant use of object-oriented programming languages
equally necessitates a change regarding the unit testing approaches. Specifically,
instead of traditional state-based tests in terms of an input-output comparison,
in an object-oriented context it is more useful to execute interaction- or behavior-
based tests considering the sequence of interactions between the unit under test
and its environment.

In this thesis we provide a unit testing approach for multi-purposes object-
oriented programming languages in the style of Java and C]. To meet the above
indicated requirements our approach includes the definition of a test specification
language which results from extending the programming language with new desig-
nated specification constructs. In this way, the software developer does not need
to learn a completely new language. At the same time, adding new constructs
allows to increase the abstraction of the language regarding the specification of
interaction-based tests. In order to execute a specified test, programming language
code is automatically generated from a test specification.

Our testing approach is presented in terms of a formal framework. On the one
hand, this enables us to identify and analyze the requirements on the design of
the specification language in a formal way. On the other hand, on the formal basis
we can, likewise, give a formal definition of the code generation algorithm which,
in turn, allows us to formally prove its correctness.

The development of the testing framework goes through several stages: First,
we introduce a programming language that captures a reasonable subset of fea-
tures many modern object-oriented general-purpose programming languages like
Java and C] have in common. In particular, the language comes with a formal

223

operational semantics giving a precise meaning to programs without ambiguities.
After that, we discuss and justify the new specification constructs which we

use in order to define the test specification language. A crucial aspect is that the
specification language is also equipped with an operational semantics giving a
precise meaning to the test specifications, as well.

Next, we present the code generation algorithm. To cope with the complexity,
the code generation is divided into two parts. First, a preprocessing step enriches
the original specification with additional code such that the new specification has
some useful features. Second, the actual code generation step transforms the new
test specification into a test program of the programming language. Finally, we
provide a correctness proof regarding the code generation algorithm. In particular,
we show that the resulting test program indeed tests for the specified interactions.

As mentioned above, the programming language represents only a small subset
of languages like Java or C]. Also the corresponding test specification language
lacks of several construct that would facilitate the writing of specifications. On
account of this, we discuss some possible language extensions regarding, both, the
programming language and the specification language.

An important feature of modern programming language is their support for
concurrency. Therefore, we propose the introduction of concurrency into the pro-
gramming language by means of thread classes which, in particular, allow to
create new threads, dynamically. Finally we suggest a corresponding extension
of the specification language and sketch a modification of the code generation
algorithm.

Samenvatting

In de meeste software-ontwikkelingsprojecten van vandaag is testen nog steeds
de enige bruikbare manier om de kwaliteit van een softwareproject te waar-
borgen. Rigoureus testen is nodig tijdens alle stages van de levenscyclus van
de software-ontwikkeling. Terwijl systeem- en acceptatie-testen over het com-
plete systeem gaan, is unit-testen gericht op de kleinste bouwstenen van de soft-
ware. De verantwoordelijkheid voor de unit-testen is meer en meer verschoven
van de softwaretesters naar de softwareontwikkelaars. Dit komt niet alleen door
de groeiende populariteit van agile-software-ontwikkelingsmethodologieën. Naast
de daaruit volgende voordelen voor de programmeurs, zoals het verhogen van
hun kwaliteitsbewustzijn en onmiddellijke feedback, eist deze ontwikkeling ook
nieuwe testraamwerken die rekening houden met de veranderde kwalificaties en
verwachtingen van de softwareontwikkelaars. Tevens is door het sterk stijgende
gebruik van object-georiënteerde programmeertalen ook een wijziging nodig wat
betreft de unit-test benaderingen. In het bijzonder, in plaats van de traditionele
toestand-gebaseerde tests door middel van een input-output vergelijking, is het in
een object-georiënteerde context nuttiger om op interactie of gedrag gebaseerde
tests uit te voeren, die op de volgorde van de interacties tussen de unit onder test
en diens omgeving letten.

In dit proefschrift geven we een aanpak van unit-testen voor multi-purpose
object-georiënteerde programmeertalen in de stijl van Java en C]. Om aan de
bovengenoemde eisen te voldoen, bevat onze aanpak de definitie van een taal
voor het specificeren van de tests. Die is het resultaat van de uitbreiding van
de eerdergenoemde programmeertaal met nieuwe taalconstructies voor de specifi-
catie van de tests. Op deze manier hoeft de softwareontwikkelaar niet een compleet
nieuwe taal te leren. Tegelijkertijd maakt het toevoegen van nieuwe constructies
het mogelijk om de abstractie van de taal te verhogen ten opzichte van de speci-
ficatie van interactie-gebaseerde tests. Om een bepaalde test uit te voeren wordt
de programma-code automatisch van een test-specificatie gegenereerd.

Onze testaanpak wordt gepresenteerd op basis van een formeel raamwerk. Dit
stelt ons enerzijds in staat om de eisen aan het ontwerp van de specificatietaal op
een formele manier te identificeren en te analyseren. Anderzijds kunnen we op deze
formele basis eveneens een formele definitie geven van het code-generatiealgoritme,
die ons zijnerzijds in staat stelt om de correctheid ervan formeel te bewijzen.

De ontwikkeling van het testraamwerk gaat door verschillende fasen: ten eerste

225

introduceren wij een programmeertaal, die een redelijke deelverzameling van fea-
tures omvat die veel moderne general-purpose object-georiënteerde programmeer-
talen, zoals Java en C], gemeen hebben. In het bijzonder komt de taal met een
formele operationele semantiek, die een precieze betekenis aan programma’s geeft,
zonder dubbelzinnigheden.

Daarna bespreken en rechtvaardigen wij de nieuwe specificatie constructies die
wij gebruiken om de test-specificatietaal te definiëren. Een belangrijk punt is dat
de specificatietaal eveneens uitgerust is met een operationele semantiek die een
precieze betekenis geeft aan de test specificaties.

Vervolgens presenteren wij het code-generatiealgoritme. Om de complexiteit
het hoofd te bieden is de code-generatie gesplitst in twee delen. Het eerste gedeelte
is een voorverwerkingsstap die extra code aan de oorspronkelijke specificatie to-
evoegt, zodat de nieuwe specificatie een aantal handige features heeft. De tweede
stap is de werkelijke code-generatie, die de nieuwe test-specificatie transformeert
naar een testprogramma van de programmeertaal. Tot slot presenteren we een cor-
rectheidsbewijs van het code-generatiealgoritme. In het bijzonder tonen we aan
dat het resulterende testprogramma inderdaad voor de opgegeven interacties test.

Zoals hierboven vermeld, vertegenwoordigt de programmeertaal slechts een
kleine deelverzameling van talen zoals Java of C]. Eveneens ontbreken een aantal
constructies in de test-specificatietaal die het schrijven van bepaalde specificaties
makkelijker zouden maken. Op grond daarvan bespreken wij een aantal mogelijke
taaluitbreidingen voor zowel de programmeertaal als de specificatietaal.

Een belangrijke feature van de moderne programmeertalen is hun onderste-
uning voor concurrency. Daarom stellen we de invoering voor van concurrency in
de programmeertaal door middel van threadklassen die, in het bijzonder, het mo-
gelijk maken om nieuwe threads dynamisch te creëren. Tot slot stellen we daarbij
een uitbreiding voor van de specificatietaal en schetsen we een wijziging van het
code-generatiealgoritme.

Curriculum Vitæ

Personal Data

Name Andreas Grüner (birth name: Lukosch)
Civil status Married, one child
Nationality German
Date of Birth 03.04.1974
Place of Birth Nettetal

Carrier

10/2009– Head of the @rtus software development group at Dataport
04/2008–03/2009 Doctorand at the University of Leiden, member of the re-

search cluster Foundations of Software Technology
04/2005–04/2008 Doctorand at the Chair of Software Technology, Univer-

sity of Kiel, as member of the NWO/DFG-project Mobi-J:
Formal Methods for Component and Objects

12/1999–12/2003 Software engineer at Bartsch-Software
11/1999–04/2000 Student assistant to the Chair of Multimedia Information

Processing at the University of Kiel

Education

10/1999–12/2004 University of Kiel, graduate studies in computer science
(Diplom), minor subject in mathematics. Diplom thesis:
Cliques and Components: Implementing Traces and Object
Connectivity for a Concurrent Language,
Supervisors: Prof. Dr. W.-P. de Roever, Dr. M. Steffen

10/1994–06/1996 University of Kiel, studies in physics
06/1984–06/1994 Hans-Geiger-Gymnasium Kiel, highschool diploma(Abitur)

Primary school in Kiel and Nettetal

227

Index

accessibility, 59
activation record

CoJapl, 141
Japl, 45

specification language, 73
sequential programming language,

31
active statement, see control context,

active
anticipation, 87, 92, 159, 194
anticipation-based code structure, 205
anticipation-valid

code, 194
configuration, 197

anticipation-validity, 197
auxiliary notations, 34

balance, 43
behavior-based testing, see interaction-

based testing
binary tree, 26
bisimulation, 106

testing, 109, 208
weak, 107, 189

C], 4
C++, 3
call stack

CoJapl, 141
specification language, 157

Japl, 46
specification language, 73

sequential programming language,
31

code generation, 99

code generation, 83, 159, 187
Japl, 95, 102

correctness, 103
code-in, 101
code-out, 100
correctness, 203, 217

CoJapl, 139
communication label, see transition la-

bel
completeness, 58
component, 38
compositionality, 54, 177
concurrency, 139
configuration

CoJapl, 143
Japl, 45

specification language, 73
initial, 36, 76, 149

active, 50
passive, 50

sequential programming language,
31

consistent control flow, 43
consistent information flow, 43
control context

active, 67
passive, 67

control flow, 84

decomposition, 184
defect, 6

environment, 38
error, 6
executability, 57, 79

228

expectation body, 63
expectation statement, 59
expression evaluation, 34
external semantics

Japl, 41

fail, see failure
failure, 6
failure report, 111
faulty specification, 111
free variables, 46

incoming communication, 41
inheritance, 126
initial expectation identifier, adjustment,

92
input enabledness, 79
integration testing, 5
interaction-based testing, 11, 57
interactions, 10
interface communication, 41
internal semantics, 41

Java, 3
Japl, 38
JMLUnit, 14
jMock, 10
JUnit, 7

label check, 45
labeled transition system, 41
labeling mechanism, 85

merge
components, 54
configurations, 179

mock class specification, 65
mock objects, 11, 65
mock thread specification, 153
mocks, see mock objects
mutual exclusion, 161

next , 87
next list, 160

object-oriented programming, 2

operational semantics, 36
CoJapl, 145–147, 150

specification language, 159
Japl, 48

specification language, 73
sequential programming language,

31
specification classes, 119
subtyping and inheritance, 131, 133

outgoing communication, 41

passive statement, see control context,
passive

preprocessing, 85, 89, 90, 95, 187
program execution

CoJapl, 149
Japl, 50
sequential programming language,

36
programming classes, 122
propagation of new names, 49

realizability
Japl, 42

renaming, 49

satisfiability, 58
Simula, 2
simulation, 104

testing, 108
weak, 105

Smalltalk, 3
software crisis, 1
software development process, see soft-

ware development life-cycle
spawn, 139, 152
specification language, see test specifi-

cation language
specification class, 115
specification execution, 75
state-based testing, 52
static semantics, 29, 141

CoJapl, 141
specification language, 157

Japl, 40

specification language, 68
programming classes, 124
sequential programming language,

26
specification classes, 118
subtyping and inheritance, 128

subclassing, 126
subject reduction, 50, 173
subtyping, 126
syntax

CoJapl, 140
specification language, 155

Japl, 39
specification language, 64

programming classes, 122
sequential programming language,

24
specification classes, 116
subtyping and inheritance, 127

test specification language, 57, 115, 122,
151

test thread specification, 152, 153
thread class, 139
thread configuration mapping, 143
thread-save, 156
trace

Japl, 50
specification language, 75

trace semantics
CoJapl, 149
Japl, 51

specification language, 76
traces, 50
transition label

CoJapl, 146
Japl, 42

type system, see static semantics
types

sequential programming language,
29

unit testing, 5, 7

variable binding, 84, 93

variable evaluation, 33
variable globalization, 94
V-model, 5

well-typedness, dynamic specification code,
207

	1 Introduction
	1.1 Object-oriented programming languages
	1.1.1 Java
	1.1.2 C

	1.2 Testing in the software development life-cycle
	1.3 Unit testing object-oriented software
	1.3.1 JUnit
	1.3.2 jMock
	1.3.3 JMLUnit

	1.4 Testing approach in this thesis
	1.5 Structure of the thesis
	1.6 Relation to my previous scientific work

	I Testing Sequential Components
	2 Java-like programming language – Japl
	2.1 Syntax
	2.2 Static semantics
	2.3 Operational semantics
	2.4 Extension by components: the Japl language
	2.4.1 Syntax
	2.4.2 Static Semantics
	2.4.3 Operational Semantics

	2.5 Traces and the notion of testing

	3 The test specification language
	3.1 Extension by expectations
	3.2 Syntax
	3.3 Static semantics
	3.4 Operational semantics
	3.5 Example
	3.6 Executability and input enabledness
	3.7 Satisfiability and completeness

	4 Code generation
	4.1 Preprocessing
	4.1.1 Labeling mechanism
	4.1.2 Variable binding

	4.2 Japl code generation
	4.3 Generation of the test program.
	4.4 Correctness of the code generation
	4.5 Failure report and faulty specifications

	5 Further possible extensions
	5.1 Specification classes
	5.2 Programming classes
	5.3 Subtyping and inheritance

	II Testing Multi-threaded Components
	6 Concurrent programming language – CoJapl
	6.1 Syntax
	6.2 Static semantics
	6.3 Operational semantics

	7 Specification language and code generation
	7.1 Syntax
	7.2 Static semantics
	7.3 Operational semantics
	7.4 Test code generation

	8 Concluding remarks
	Bibliography
	III Proofs
	Appendices
	A Subject reduction
	B Compositionality
	C Code generation
	C.1 Preprocessing
	C.2 Anticipation
	C.3 Correctness of the generated code

	Summary
	Samenvatting
	Curriculum Vitæ

