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7
An exact quantum theory of rotating light

7.1 Introduction

During the past decades, both the propagation and the diffraction of light through optical

set-ups with rotating optical elements [104, 105, 48, 69], as well as the physical properties

of rotating beams of light [19, 106, 20] have attracted a steady amount of attention. So far,

both theoretical and experimental work has focused mainly on classical aspects of rotating

light. Only recently, van Enk and Nienhuis have proposed a first quantum theory of rotating

photons [107]. They construct rotating field operators as coherent superpositions of the field

operators corresponding to the rotational Doppler-shifted [48] angular-momentum compo-

nents of the field. In leading order of the paraxial approximation, the spin and orbital degrees

of freedom of the radiation field decouple [45] and fields with a rotating polarization and a

stationary spatial pattern can be constructed as superpositions of rotational Doppler-shifted

circular-polarization states. Similarly, fields with a rotating mode pattern and a stationary po-

larization can be built up from the rotational Doppler-shifted angular-momentum components

of the spatial field distribution. It is, of course, also possible to construct fields with both a

rotating polarization and a rotating spatial pattern. Since, in the paraxial approximation, the

polarization and spatial degrees of freedom are decoupled, the rotation frequencies may even

have different values. The rotation of the polarization and spatial patterns of the fields that

are thus constructed are uniform only in the paraxial limit. Moreover, the approach requires

that the differences in diffraction of the Doppler-shifted angular-momentum components of

the field are negligible, i.e that the the rotation frequency is small compared to the optical

123



7. An exact quantum theory of rotating light

frequency.

In this chapter, we introduce the first exact quantum theory of rotating light. We show

that Maxwell’s equations in free space have complete sets of solutions that rotate uniformly

as a function of time, i.e., that are monochromatic in a rotating frame. Our approach does not

necessarily involve paraxial approximations and both the spatial structure and the polarization

of the rotating modes of free space rotate at a uniform velocity about the rotation axis. Once

such rotating solutions have been obtained, quantization is relatively straightforward. We

follow the standard procedure of canonical quantization and show that quantization in the

co-rotating frame is consistent with quantization in the stationary frame. We show how this

approach can be applied to obtain a quantum-mechanical description of the dynamics of the

set of modes that obey rotating boundary conditions. We derive the paraxial counterpart of

the exact theory and discuss quantization of the rotating cavity modes that we have studied in

chapters 3 and 5 as an example.

The material in this chapter is organized as follows. In the next section, we summarize

the equations of motion of the radiation field, show how they may be derived from the stan-

dard Lagrangian for the free electromagnetic field and discuss canonical quantization in the

Coulomb gauge [5]. In section 7.3 we study the dynamics of light in a rotating frame and

derive complete sets of monochromatic solutions of the wave equation in such a frame. The

corresponding field operators in a stationary frame are introduced and discussed in section

7.4, where we also discuss quantization in the rotating frame. In the final section we summa-

rize our results and draw our conclusions.

7.2 Preliminaries

7.2.1 Equations of motion of the free radiation field

It is well-known from textbook electrodynamics that the electric and magnetic fields are fully

characterized by a scalar potential Φ(r, t) and a vector potential A(r, t). In terms of these

potentials the fields are given by [4]:

B(r, t) = ∇ × A(r, t) and E(r, t) = −∇Φ(r, t) − ∂A
∂t
, (7.1)

where c is the speed light. These definitions ensure that the homogeneous Maxwell equations

are obeyed [4]. Although the fields are fully specified by the potentials Φ(r, t) and A(r, t), the
reverse is not true; there is some arbitrariness (gauge freedom) in the choice of the potentials.

The dynamics of the free radiation field is most conveniently described in the Coulomb gauge,

which is defined by the requirement that [4]

∇ · A(r, t) = 0 . (7.2)

In the absence of electric charges and currents, it follows from the inhomogeneous Maxwell

equations that the scalar potential Φ vanishes while the vector potential obeys the wave equa-
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tion (
∇2 − 1

c2
∂2

∂t2

)
A(r, t) = 0 , (7.3)

which, together with the requirement that the field is divergence free (7.2), fully describes the

dynamics of the free radiation field in the Coulomb gauge.

In general, the dynamics of the free electromagnetic field may be described by the La-

grangian [5]

L =
∫

d3r L(A, Ȧ) =
ε0
2

∫
d3r

{
|Ȧ|2 − c2|(∇ × A)|2

}
=

ε0
2

{
〈Ȧ|Ȧ〉 − c2〈∇ × A|∇ × A〉

}
, (7.4)

where L is the Lagrangian density in real space and we have adopted the Dirac notation of

quantum mechanics to denote the state of the classical radiation field. In case of the free

radiation field it is natural to assume that the field A and its derivatives vanish at infinity

while, for the radiation field enclosed by an ideal cavity with a perfectly conducting boundary,

the Maxwell boundary conditions [4] require that A at the boundary is locally normal to it.

In both cases, and under the assumption that the field is locally transverse so that it obeys

equation (7.2), partial integration of the second term in equation (7.4) yields
∫

d3r |∇ ×A|2 =
− ∫

d3r A ·
(
∇2A

)
. Using this, one may show that the Euler-Lagrange equation that derives

from the Lagrangian (7.4) reproduces the wave equation (7.3). The canonical momentum

density corresponding to the field A is given by

ΠA =
∂L
∂Ȧ
= ε0Ȧ . (7.5)

The Hamiltonian may be obtained as

H =
∫

d3r
{
ΠA · Ȧ − L

}
=

1

2ε0

{
〈ΠA|ΠA〉 + ε20c2〈∇ × A|∇ × A〉

}
=

1

2ε0

{
〈ΠA|ΠA〉 − ε20c2〈A|∇2A〉

}
. (7.6)

The second equality only holds in the Coulomb gauge as defined by equation (7.2). In this

gauge, the corresponding Hamilton equations reproduce the wave equation (7.3).

7.2.2 Modes and quantization

Optical modes are usually defined as monochromatic solutions of the wave equation (7.3).

Although the vector potential is real, it is convenient to allow for complex mode func-

tions Fλ(r) so that the vector potential corresponding to a mode Fλ is given by A(r, t) =
Re

{
Fλ(r) exp(−iωλt)

}
. The subscript λ denotes a set of mode indices, which characterizes the

spatial and polarization structure of the mode function Fλ. For a given set of modes, the am-

plitudes 〈Fλ|A〉 and their derivatives 〈Fλ|Ȧ〉 obey harmonic equations of motion and it follows
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7. An exact quantum theory of rotating light

that the radiation field can be quantized as a set of harmonic oscillators. In case of the free

field it is customary to quantize the field in a basis of plane waves. It is well-known, however,

that quantization can be performed in a manifestly basis-independent manner, which also ap-

plies to the case of a set of cavity modes with finite spatial extent [108]. For later reference,

we briefly summarize the quantization of the radiation field in an orthonormal but otherwise

arbitrary set of modes {Fλ}. Since the complex vector potential corresponding to a mode Fλ
is given by Fλ(r) exp(−iωλt), it follows from the wave equation (7.3) that the mode functions

obey the Helmholtz equation (
∇2 + k2λ

)
Fλ(r) = 0 , (7.7)

where k2λ = ω
2
λ/c

2 so that also Fλ(r) exp(iωλt) is a solution of the wave equation (7.3).

However, since also F∗λ(r) obeys the Helmholtz equation (7.7), and since Re{Fλ(r)eiωλt} =
Re{F∗λ(r)e−iωλt}, it follows that without loss of generality we can assume that ωλ > 0. It is

convenient to define λ∗ such that F∗λ(r) = Fλ∗(r). Notice that this convention implies that,

in general, λ∗ is not the complex conjugate of λ. In the specific case of real mode functions

Fλ = F∗λ it implies that λ∗ = λ. The mode functions {Fλ} are eigenfunctions of the Hermitian

operator ∇2 and form, therefore, a complete basis in real space. This implies that any solution

of the wave equation (7.3) can be expanded as

A(r, t) =
∑
λ

〈Fλ|A(t)〉Fλ(r) . (7.8)

In order to quantize the field, we introduce the normal variables, which are defined as

aλ(t) =
(
ε0

2�ωλ

)1/2 (
i〈Fλ|Ȧ(t)〉 + ωλ〈Fλ|A(t)〉

)
(7.9)

and

(aλ∗)∗ (t) =
(
ε0

2�ωλ

)1/2 (
−i〈Fλ|Ȧ(t)〉 + ωλ〈Fλ|A(t)〉

)
, (7.10)

where we used that the physical field A and its time derivative Ȧ are real. Notice that in case

of real mode functions Fλ = Fλ∗ it follows that aλ = aλ∗ . Inverting the definitions (7.9) and

(7.10) yields

A(r, t) =
∑
λ

(
�

2ε0ωλ

)1/2 (
aλ(t)Fλ(r) + a∗λ(t)F

∗
λ(r)

)
(7.11)

and

Ȧ(r, t) = −i
∑
λ

(
�ωλ
2ε0

)1/2 (
aλ(t)Fλ(r) − a∗λ(t)F

∗
λ(r)

)
. (7.12)

The corresponding expressions for the electric and magnetic fields can be obtained by apply-

ing equation (7.1). From equation (7.5), it follows that the canonical momentum density can

be expressed as

Π(r, t) = −i
∑
λ

(
�ωλε0
2

)1/2 (
aλ(t)Fλ(r) − a∗λ(t)F

∗
λ(r)

)
. (7.13)
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7.2 Preliminaries

Since the mode functions Fλ do not depend on time, equations (7.11) and (7.12) imply that

ȧλ(t) = −iωλaλ(t) , (7.14)

which also follows from the fact that the field (7.12) obeys the wave equation (7.3). Substi-

tution in the Hamiltonian (7.6) gives

H =
∑
λ

�ωλ
2

(
a∗λaλ + aλa∗λ

)
, (7.15)

which, in view of equation (7.14), does not depend on time and takes the form of the Hamil-

tonian of a harmonic oscillator for each mode Fλ.
Canonical quantization of the field involves replacing the field and the canonical mo-

mentum density by hermitian vector operators Â and Π̂ whose components obey canonical

commutation relations. In the Coulomb gauge these take the following form [5]

[
Âi(r, t), Π̂ j(r′, t)

]
= i�δ⊥(r − r′)δi j , (7.16)

where the indices i and j run over the vector components, δ⊥(r − r′) denotes the transverse
delta function [5] and δi j denotes the Kronecker delta. As opposed to, for instance, ∇2,

which acts as an operator in the Hilbert space of physical states of the classical radiation field

A(r, t), the field and momentum operators Â(r, t) and Π̂(r, t) are operators in the Hilbert space
of quantum states of the radiation field. By replacing the classical field and momentum in the

definitions of the normal variables (7.9) and (7.10) by the corresponding operators, one finds

the operators âλ and â†λ that correspond to these variables. They obey boson commutation

rules [
âλ, â

†
λ′
]
= δλλ′ . (7.17)

The operators â†λ and âλ respectively create and annihilate a photon in the mode Fλ. The

vacuum state, which is the quantum state of the field in which none of the modes Fλ contains
photons, is defined by

âλ|vac) = 0 ∀λ , (7.18)

where a bra vector |...) with a round bracket denotes a vector in the Hilbert space of quantum
states of the radiation field. Other states can be generated by acting with (functions of) the

creation operators â†λ on the vacuum. The quantum dynamics of the radiation field is governed

by the Heisenberg equation of motion for the field operators, or, equivalently, the Schrödinger

equation for the quantum states. The Hamilton operator takes the form of equation (7.15),

the normal variables being replaced by the creation and annihilation operators. Similarly, the

field and momentum operators take the form of equation (7.12) and (7.13), the creation and

annihilation operators replacing the normal variables. The canonical commutation relations

(7.16) are ensured by the boson commutation rules (7.17). The definition of the vacuum

state (7.18), the field and momentum operators (7.16) and the Hamiltonian (7.15) provide a

complete description of the quantum dynamics of the radiation field.
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7. An exact quantum theory of rotating light

So far, we have assumed that {Fλ} constitutes a discrete set of modes. In case of a con-

tinuous set, the mode functions are normalized to δ functions and the summations over λ

are replaced by integrals over the continuous variables that characterize the modes. In the

particular case of normalized plane waves exp(ik · r)/(2π)3/2 the summations are replaced by∑
λ → (2π)−3/2

∫
d3k.

7.3 Wave optics in a rotating frame

7.3.1 Equations of motion

In chapter 3, we have shown that the modes of an optical cavity that is put into uniform

rotation about its optical axis can be defined as solutions of the time-dependent wave equation

that rotate along with the mirrors. These solutions are monochromatic in the co-rotating

frame. The corresponding complex fields, whose real parts correspond to the physical fields,

are separable in space and time and, therefore, stationary in the co-rotating frame. We shall

generalize the rotating-mode concept to the case of a freely propagating non-paraxial field and

obtain complete sets of rotating modes of the free radiation field as monochromatic solutions

in a rotating frame. First, we derive the equations of motion for light in a rotating frame.

Analogous to the discussion in chapter 5, we express the time-dependent vector potential

in the stationary frame in terms of the vector potential in a rotating frame. The latter is

denoted C(r, t). Since rotation of both the vector components and their spatial structure of

a vector field in R3 is a real transformation of the field, it follows that C(r, t) can be defined

real. It is related to the vector potential in the stationary frame by the identity

A(r, t) = 〈r|e−iΩtĴz |C〉 , (7.19)

where |r〉 is an eigenket of the position operator so that C(r, t) = 〈r|C〉 is the real-space rep-
resentation of the vector potential in the rotating frame. The operator exp(−iĴzΩt) describes
a time-dependent rotation of both the spatial structure and the polarization of a vector field,

where Ω is the rotation frequency and Ĵz is the corresponding generator. By considering in-

finitesimal rotations exp(−iαĴz)A = A − iαĴzA + O(α2) of both the vector components of a

field A and their spatial structure, we find that Ĵz may be expressed as

〈r|Ĵz|A〉 = 〈r|L̂z + Ŝ z|A〉 � −i
∂

∂φ
A(r, t) + i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 −1 0

1 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ A(r, t) . (7.20)

The spin part Ŝ z acts upon the vector nature of the field and generates rotations of the vector

components. The orbital part, on the other hand, solely acts upon the spatial structure of

each of the vector components and generates rotations of their spatial patterns. Notice that

the form of the real-space representation of Ĵz, which figures in the second right-hand side in

equation (7.20), confirms that the rotation of a vector field in R3 is a real transformation so

that the vector potential can be assumed real in both frames.
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7.3 Wave optics in a rotating frame

Substitution of the rotating field |A〉 = e−iΩtĴz |C〉 and its time derivative |Ȧ〉 =
e−iΩtĴz

(
|Ċ〉 − iΩĴz|C〉

)
in the Lagrangian (7.4) yields the Lagrangian in the rotating frame

Lrot =
ε0
2

{
〈Ċ|Ċ〉 + iΩ〈C|Ĵz|Ċ〉 − iΩ〈Ċ|Ĵz|C〉 + Ω2〈C|Ĵ2z |C〉 − c2〈∇ × C|∇ × C〉

}
, (7.21)

where we have used that ∇ × (ĴzC) = Ĵz(∇ × C) so that 〈∇ × A|∇ × A〉 = 〈∇ × C|∇ × C〉.
Using the real-space representation of Ĵz, which figures in equation (7.20), one may show

that ∇ · (ĴzC) = L̂z(∇ · C). It follows that the transversality condition (7.2) is not affected by

a transformation to a rotating frame so that

∇ · C(r, t) = 0 . (7.22)

By using that, for a transverse field, 〈∇×C|∇×C〉 = −〈C|∇2C〉, the Euler-Lagrange equation
for C(r, t) yields the wave equation in the rotating frame

⎛⎜⎜⎜⎜⎝∇2 +
Ω2 Ĵ2z

c2
+
2iΩĴz

c2
∂

∂t
− 1

c2
∂2

∂t2

⎞⎟⎟⎟⎟⎠ C(r, t) = 0 . (7.23)

This equation can also be obtained directly from substitution of the rotating field (7.19) in the

wave equation in the stationary frame (7.3). Notice that, iĴz is real so that the wave equation

(7.23) in the rotating frame is real.

The canonical-momentum density in the rotating frame is given by

ΠC(r, t) =
∂L
˙∂C
= ε0

(
Ċ(r, t) − iΩ〈r|Ĵz|C〉

)
= ε0

(
Ċ(r, t) + iΩ〈C|Ĵz|r〉

)
, (7.24)

which is also real. By using the expression (7.5) of the momentum in a stationary frame and

|Ȧ〉 = e−iΩtĴz
(
|Ċ〉 − iΩĴz|C〉

)
, we find that

ΠA(r, t) = 〈r|e−iΩtĴz |ΠC〉 . (7.25)

The Hamiltonian in the rotating frame can be expressed as

Hrot = ΠC · Ċ − L =
1

2ε0
〈ΠC|ΠC〉 + iΩ〈ΠC|Ĵz|C〉 − iΩ〈C|Ĵz|ΠC〉 + ε0c

2

2
〈∇ × C|∇ × C〉 . (7.26)

By using that the field is transverse (7.22), one may show that the Hamilton equations that

derive from this Hamiltonian are equivalent to the wave equation in the rotating frame (7.23).

7.3.2 Rotating modes in free space

Analogous to the discussion in chapter 3, rotating modes of the free radiation field are defined

as solutions of the wave equation (7.3) that are monochromatic in a rotating frame. In com-

plex notation, such solutions can be expressed C(r, t) = Re{C(r) exp(−iωt)}, where C(r) is
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7. An exact quantum theory of rotating light

the complex spatial vector potential in the rotating frame. Substitution in the wave equation

in the rotating frame (7.23) gives

⎛⎜⎜⎜⎜⎝∇2 +
Ω2 Ĵ2z

c2
+
2ωΩĴz

c2
+
ω2

c2

⎞⎟⎟⎟⎟⎠ C(r) = 0 . (7.27)

This equation plays the role analogous to that of the Helmholtz equation (7.7) in the rotating

frame. Notice that due to the presence of Ĵz, which is a purely imaginary operator, equation

(7.27) is not real so that C(r) is, in general, a complex vector field.

Since [∇2, Ĵz] = 0, it follows that ∇2 and Ĵz must have simultaneous eigenfunctions for

which the wave equation (7.23) reduces to an algebraic equation, which can be solved to

obtain a dispersion relation. We shall derive the simultaneous eigenfunctions of ∇2 and Ĵz,

which allow us to obtain exact expressions of rotating modes in free space. For reasons of

convenience, we first discuss the analogous case of a rotating scalar field A(r, t). Later on,

we shall construct rotating complex vector fields A(r, t) from these scalar ones. Analogous

to equation (7.19), the negative frequency part of a rotating scalar field is defined as

A(r, t) = e−iL̂zΩtC(r)e−iωt , (7.28)

where C(r) is spatial field in the rotating frame. In case of a scalar field, equation (7.27)

reduces to ⎛⎜⎜⎜⎜⎝∇2 +
Ω2L̂2

z

c2
+
2ωΩL̂z

c2
+
ω2

c2

⎞⎟⎟⎟⎟⎠C(r) = 0 . (7.29)

Since also [∇2, L̂z] = 0 and since L̂z and ∇2 are both hermitian, L̂z and ∇2 must have an

orthonormal set of simultaneous eigenfunctions for which the wave equation (7.29) becomes

an algebraic equation. Since [L̂z,−i∂/∂z] = 0 and since the eigenfunctions of L̂z are propor-

tional to exp(ilφ) while the eigenfunctions of −i∂/∂z are proportional to exp(iqz), it is natural
to introduce cylindrical coordinates (R, φ, z) and look for solutions of the following type

C(R, φ, z) = G(R)eilφeiqz , (7.30)

with l ∈ Z and q ∈ R. Substitution in the scalar wave equation (7.29) yields after rearranging

the terms (
R2 ∂

2

∂R2
+ R
∂

∂R
+ (κR)2 − l2

)
G(R) = 0 , (7.31)

where κ ∈ R+ is defined by the dispersion relation

(ω + lΩ)2 = c2(κ2 + q2) . (7.32)

The solutions of equation (7.31) are Bessel functions of the first kind Gκl(R) = Jl(κR) so that

a set of scalar Bessel mode functions can be introduced as

Gλ(r) =
(
1

2π

)
Jl(κR)eilφeiqz , (7.33)
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where λ = (κ, l, q) denotes the set of spatial mode indices and the factor 1/(2π) is introduced

for reasons of normalization. The corresponding frequencies can be obtained from (7.32)

ωλ± = ±c
√
κ2 + q2 − lΩ . (7.34)

For every solution Gλ with ωλ±, the mode function G∗
λ = Gλ∗ with λ∗ = (κ,−l,−q) obeys the

scalar wave equation (7.29) with the frequencies ωλ∗± = ±c
√
κ2 + q2 + lΩ. Since the mode

functions are in general complex, the real scalar field in the rotating frame corresponding to

the mode Gλ with ωλ+ is given by

C(r, t) =
eiΩtĴz

(
Gλe−ic

√
κ2+q2t +Gλ∗eic

√
κ2+q2t

)
2

, (7.35)

where we have used that exp(−iΩtĴz) is real. Since Re
(
Gλe−ic

√
κ2+q2t

)
= Re

(
Gλ∗eic

√
κ2+q2t

)
,

it follows that without loss of generality we can choose

ωλ = c
√
κ2 + q2 − lΩ so that ωλ∗ = c

√
κ2 + q2 + lΩ . (7.36)

By using the orthonormality property of Bessel functions of the first kind [47], one may show

that the mode functions {Gλ} are normalized to δ functions

〈Gλ|Gλ′ 〉 =
∫ ∞

0

RdR
∫ 2π

0

dφ
∫ ∞

−∞
dz G∗

λ(R, φ, z)Gλ′(R, φ, z) =
1

κ
δ(κ− κ′)δ(q−q′)δll′ , (7.37)

where δ(κ − κ′) and δ(q − q′) denote Dirac delta functions while δll′ denotes the Kronecker
delta. By the Fourier-Bessel theorem and the Fourier theorem [47], the set of mode functions

{Gλ} constitutes a complete basis in real space.

It is clear that the vector field (ez × ∇)A is locally transverse so that it obeys the transver-

sality condition (7.2). It is easy to show that this is an exact solution of the wave equation

(7.3) if (and only if) A(r, t) obeys the scalar equivalent of the wave equation. Since the cor-
responding electric field has a vanishing z component, it is customary to call this a transverse

electric (TE) mode [4, 6]. The transversality condition (7.2) allows for two linearly inde-

pendent polarization states. The other, for which the magnetic field is transverse (TM), can

be constructed as −(ic/ω)∇ × (ez × ∇)A, where ω is the frequency in a stationary frame. In

general, the TE and TMmode functions corresponding to a set of scalar modes A are globally

orthonormal. The vectorial mode functions corresponding the TE and TM Bessel modes can

be expressed as

GTE
λ (r) = (ez × ∇)Gλ(r) (7.38)

and

GTM
λ (r) =

−i√
κ2 + q2

∇ × (ez × ∇)Gλ(r) , (7.39)

where
√
κ2 + q2 arises as the length of the wave vector of the Bessel modes in a stationary

frame. The frequencies in the rotating frame depend on Ω and are given by (7.36). It is
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convenient to define the subscript mode index of the vector fields such that it characterizes

both the spatial and the polarization degrees of freedom associated with the modes. In order

to do so, we introduce vectorial mode functions Gμ with μ = (λ, σ), where σ runs over the TE

and TM polarizations. One may prove that both the TE and TM mode are exact eigenstates

of Ĵz with eigenvalues l, but not of L̂z and Ŝ z separately. Moreover, both are eigenfunctions of

∇2 with eigenvalues −(κ2 + q2), of −i∂/∂z with eigenvalues q and of the transverse laplacian

∇2
ρ = ∇2 − ∂2/∂z2 with eigenvalues −κ2. Analogous to equation (7.37), the vectorial mode

functions Gμ obey the closure relation

〈Gμ|Gμ′ 〉 =
∫ ∞

0

RdR
∫ 2π

0

dφ
∫ ∞

−∞
dz G∗

μ(R, φ, z) · Gμ′ (R, φ, z) =

1

κ
δ(κ − κ′)δ(q − q′)δll′δσσ′ , (7.40)

where μ = (κ, l, q, σ). It follows that the set {Gμ} of vectorial Bessel mode functions consti-

tutes a complete basis of transverse vector fields in C3 so that the general solution of the wave

equation in the rotating frame (7.23) can be expanded as

C(r, t) =
∑
σ

∫ ∞

0

κdκ
∫ ∞

−∞
dq

∑
l

〈Gμ|C(t)〉Gμ(r) . (7.41)

Since the vectorial Bessel modes are eigenfunctions of Ĵz and, therefore, of the rotation op-

erator exp(−iαĴz), it follows that the corresponding fields are monochromatic both in the

rotating and in the stationary frame. As such, the Bessel modes {Gμ} accommodate the trans-

formations from a stationary to a rotating frame and vice versa.

7.3.3 Basis transformations

In this section we discuss how an arbitrary set of rotating modes, in particular the set of

mode functions that obey rotating boundary conditions, can be expanded in the vectorial

Bessel modes. We consider an orthonormal set of mode functions {Vν} that correspond to

transverse and monochromatic fields in the rotating frame, i.e., vector fields in C3 that obey

equations (7.22) and (7.23). Again, the subscript mode index ν characterizes both the spatial

and polarization degrees of freedom. The frequency of the mode Vν is denotedων. Analogous
to equation (7.41), the modes can be expanded as

Vν(r) =
∑
σ

∫ ∞

0

κdκ
∑

l

∫ ∞

−∞
dq 〈Gμ|Vν〉Gμ(r) , (7.42)

where μ = (κ, l, q, σ) and the coefficients of the expansion are given by

〈Gμ|Vν〉 =
∫ ∞

0

RdR
∫ 2π

0

dφ
∫ ∞

0

dq G∗
μ(R, φ, z) · Vν(R, φ, z) . (7.43)

By using that both Vμ and Gν correspond to monochromatic solutions of the wave equation in

the rotating frame (7.23), one may show by partial integration that the matrix elements (7.43)
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differ from 0 only if ω2
μ = ω

2
ν . This can be exploited by eliminating one of the spatial mode

indices, for instance, |q|, in favor of the frequency ω = ων. For a fixed value of ω, the scalar

mode functions (7.33) can be expressed as

Hλ(r;ω) =
(
1

2π

)
Jl(κR)eilφe±

iz
c

√
ω2+2lωΩ+l2Ω2−c2κ2 , (7.44)

where λ = (κ, l,±, ω) and the + and − signs correspond to fields that propagate in the positive

and negative z directions respectively. The corresponding vectorial modes Hμ can be obtained
by applying equations (7.38) and (7.39). In terms of these mode functions, the expansion

(7.42) reduces to

Vν(ρ, z) =
∑
σ

∫ ∞

0

κdκ
∑

l

∑
±
〈Hμ|Vν〉Hμ(r) , (7.45)

where the summation over ± denotes a summation over the two propagation directions along

the z axis. If we limit the discussion to fields for which the expansion (7.44) only involves

components with a fixed sign of q, the coefficients of the expansion (7.45) can be obtained

from integration in the transverse plane

〈Hν|Vμ〉 =
∫ ∞

0

RdR
∫ 2π

0

dφ
(
Hν(R, φ, z)

)∗ · Vμ(R, φ, z) . (7.46)

This result shows that, for a given value of the frequency in the rotating frame ω and a given

propagation direction along the z axis, the spatial dependence of a transverse vectorial mode

is fully determined by the field pattern in a single transverse plane. In the more general case

of monochromatic fields that contain components that propagate in both directions along the

z axis, the field can be separated in two parts that propagate in opposite directions along the z
axis. In that case, the analogous expressions can be derived for each of these two parts.

7.3.4 Rotating modes in the paraxial approximation

The expansion (7.45) of a set of monochromatic vectorial modes Vμ in the basis of TE and

TM modes corresponding to monochromatic scalar Bessel modes Hλ(r) establishes the con-
nection with the paraxial description discussed in chapter 3 in a very natural way. Essential

to the paraxial approximation is the assumption that the field propagates mainly along a well-

defined direction, so that the wave-vector components transverse to the dominant propaga-

tion direction are small compared to the length of the wave vector. In the case of the scalar

monochromatic Bessel modes (7.44), this implies that c2κ2 << ω2. In the terminology of sec-

tion 3.2, the ratio cκ/ω can be used as a smallness parameter δ. Analogous to the discussion

in chapter 3, we also assume that Ω ∼ δ2ω, which is a slowly-varying envelope approxima-

tion. Then, by expanding the square root in the argument of the exponent in equation (7.44)

up to first order in powers of δ, the monochromatic scalar Bessel modes (7.44) reduce to

Hλ(ρ, z;ω) � exp

(
± iωz

c

(
1 +

lΩ
ω
− c2κ2

2ω2

))
Hλ(ρ, 0;ω) , (7.47)
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where the + and − signs again correspond to fields that propagate in the positive and negative

z directions. Since ∇2
ρHλ = −κ2Hλ and L̂zHλ = lHλ, the exponential term in equation (7.47)

takes the form of the paraxial propagator in the rotating frame (3.31), acting on the trans-

verse Bessel mode function Hλ(ρ, 0), z being replaced by −z for modes propagating in the

negative z direction. This shows that the paraxial Bessel modes (7.47) are exact solutions of

the paraxial wave equation in a rotating frame (5.4). The longitudinal components of the TM

modes are of the order of δ smaller than the transverse components and, in leading order of

the paraxial approximation, both the TE and the TM modes corresponding to the scalar mode

functions (7.47) are polarized in the transverse plane. Moreover, the transverse variation of

the polarization is slow compared to that of the transverse beam profile as characterized by

Hλ(ρ, z) so that, up to first order in δ, the transverse polarization of the Bessel modes can be

chosen independent of the spatial mode indices. In the paraxial approximation, a vectorial

Bessel mode Gμ thus reduces to εσHλ, where σ labels two linearly independent transverse

polarization states and λ is a set of spatial mode indices. Analogous to the discussion above,

the paraxial Bessel modes εσHλ constitute a complete basis set of paraxial modes. An arbi-

trary (set of) paraxial modes ετVλ, where τ labels the polarization states, can be expanded in

this basis. In the case of the rotating cavity modes that we have described in chapters 3 and

5, the paraxial mode functions are given by Vλ = vnm exp(ikz) with λ = (n,m, k) the mode

profiles in the rotating frame vnm given by equation (3.58). The uniform polarization ε can be

chosen independently of the spatial indices λ.

Notice that, analogous to the description in section 3.2, this approach is perturbative in

that it allows for obtaining higher-order corrections by taking higher-order powers of δ into

account. However, the spatial and polarization degrees of freedom are decoupled only in

lowest non-vanishing order of the paraxial approximation.

7.4 Quantization

7.4.1 Normal variables for a rotating field

As discussed in the previous section, the vectorial Bessel mode functions accommodate the

transformation from the rotating to the stationary frame and vice versa. In order to derive

expressions of the normal variables associated with the Bessel-mode components of the field

in a rotating frame, we substitute the expansion (7.41) in the expression (7.19) of the rotating

field in the stationary frame and obtain

A(r, t) =
∑
σ

∫ ∞

0

κdκ
∑

l

∫ ∞

−∞
dq 〈Gμ|C〉e−ilΩtGμ(r) (7.48)

for the real vector potential in the stationary frame. Its time derivative can be expressed as

Ȧ(r, t) =
∑
σ

∫ ∞

0

κdκ
∑

l

∫ ∞

−∞
dq

(
〈Gμ|Ċ(t)〉 − ilΩ〈Gμ|C(t)〉

)
e−ilΩtGμ(r) . (7.49)
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From the definitions (7.9) and (7.10), we find that the normal variables corresponding to the

Bessel-mode components of the rotating field are given by

aμ(t) =

⎛⎜⎜⎜⎜⎜⎝ ε0

2�c
√
κ2 + q2

⎞⎟⎟⎟⎟⎟⎠
1/2

e−ilΩt
(
i〈Gμ|Ċ(t)〉 + ωμ∗ 〈Gμ|C(t)〉

)
(7.50)

and

aμ∗ (t) =

⎛⎜⎜⎜⎜⎜⎝ ε0

2�c
√
κ2 + q2

⎞⎟⎟⎟⎟⎟⎠
1/2

eilΩt
(
i〈Gμ∗ |Ċ(t)〉 + ωμ〈Gμ∗ |C(t)〉

)
(7.51)

where c
√
κ2 + q2 arises as the frequency of the Bessel modes in the stationary frame and ωμ∗

andωμ are given by equation (7.36). With the normal variables in equations (7.50) and (7.51),

the field in the stationary frame and the corresponding momentum take the form of equations

(7.12) and (7.13), the mode functions Fλ being replaced by the vectorial Bessel modes Gμ.

7.4.2 Normal variables in the rotating frame

In case of a complete set of rotating modes {Vμ}, it is more natural to describe the dynamics

of the radiation field in terms of a set of normal variables that characterize the amplitudes and

corresponding momenta in these rotating modes. In this section, we show that it is possible to

introduce such variables and derive the corresponding Hamiltonian. The expressions in equa-

tions (7.50) and (7.51) suggest to introduce normal variables for the Bessel-mode components

in the rotating frame as

cμ(t) =

⎛⎜⎜⎜⎜⎜⎝ ε0

2�c
√
κ2 + q2

⎞⎟⎟⎟⎟⎟⎠
1/2 (

i〈Gμ|Ċ(t)〉 + ων∗ 〈Gμ|C(t)〉
)

(7.52)

and

cμ∗(t) =

⎛⎜⎜⎜⎜⎜⎝ ε0

2�c
√
κ2 + q2

⎞⎟⎟⎟⎟⎟⎠
1/2 (

i〈Gμ∗ |Ċ(t)〉 + ωμ〈Gν∗ |C(t)〉
)
. (7.53)

Notice that, although their shape is very similar to that of normal variables in a stationary

frame, both the anti-symmetric way in which the frequencies ων and ων∗ appear and the

square-root factor, which involves the frequency of the Bessel mode in a stationary frame, are

signatures of the fact that these are normal variables in a non-inertial frame. They are related

to the normal variables (7.50) and (7.51) in the stationary frame by the unitary transformations

aμ(t) = e−ilΩtcμ(t) and aμ∗ (t) = eilΩtcμ∗ (t) . (7.54)

The field in the rotating frame and its derivative can be expressed as

C(r, t) =
∑
σ

∫ ∞

0

κdκ
∑

l

∫ ∞

−∞
dq

⎛⎜⎜⎜⎜⎜⎝ �

2ε0c
√
κ2 + q2

⎞⎟⎟⎟⎟⎟⎠
1/2 (

cμ(t)Gμ(r) + c∗μ(t)Gμ∗(r)
)

(7.55)
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and

Ċ(r, t) = −i
∑
σ

∫ ∞

0

κdκ
∑

l

∫ ∞

−∞
dq

⎛⎜⎜⎜⎜⎜⎝ �

2ε0c
√
κ2 + q2

⎞⎟⎟⎟⎟⎟⎠
1/2

×

ωμ
(
cμ(t)Gμ(r) − c∗μ(t)Gμ∗(r)

)
, (7.56)

where we have used that ωμ∗ + ωμ = 2c
√
κ2 + q2 and ωμ∗ − ωμ = 2lΩ. Since the Gμ and

Gμ∗ obey the wave equation in the rotating frame at the frequencies ωμ and −ωμ, this result is
consistent with the fact that C(r, t) obeys equation (7.23). By using equation (7.24), we find

that

ΠC(r, t) = −i
∑
σ

∫ ∞

0

κdκ
∑

l

∫ ∞

−∞
dq

⎛⎜⎜⎜⎜⎜⎝�ε0c
√
κ2 + q2

2

⎞⎟⎟⎟⎟⎟⎠
1/2 (

cμ(t)Gμ(r)−c∗μ(t)Gμ∗(r)
)
. (7.57)

The hamiltonian in the rotating frame (7.26) can be expressed as

Hrot =
1

2

∑
σ

∫ ∞

0

κdκ
∑

l

∫ ∞

−∞
dq �ωμ

(
c∗μcμ + cμc∗μ

)
. (7.58)

The form of this Hamiltonian confirms that the harmonic structure of the dynamics of the

modes survives in the rotating frame. The classical dynamics of the Bessel modes in the

rotating frame is described the Hamilton equations with the Hamiltonian (7.58) and with the

field and corresponding momentum as specified by equations (7.56) and (7.57).

From the expansion in equation (7.41), it follows that the normal variables that character-

ize the amplitude and momentum in a complete and orthonormal set of rotating modes {Vν}
may be defined as properly normalized linear combinations of the normal variables for the

Bessel modes, i.e.,

vν(t) =
∑
σ

∫ ∞

0

κdκ
∑

l

∫ ∞

−∞
dq 〈Vν|Gμ〉cμ(t) (7.59)

and

vν∗(t) =
∑
σ

∫ ∞

0

κdκ
∑

l

∫ ∞

−∞
dq 〈Vν∗ |Gμ∗ 〉cμ∗(t) , (7.60)

where μ = (κ, l, q, σ). By using the definitions (7.52) and (7.53) of cμ and cμ∗ and the fact that
the matrix element 〈Vν|Gμ〉 differs from zero only when ω2

ν = ω
2
μ while the matrix element

〈Vν∗ |Gμ∗ 〉 differs from zero only when ω2
ν∗ = ω

2
μ∗ , we find that

vν(t) =
∑
σ

∫ ∞

0

κdκ
∑

l

∫ ∞

−∞
dq

(
ε0

2�(ων + lΩ)

)1/2
×

〈Vν|Gμ〉
(
i〈Gν|Ċ(t)〉 + (ων + 2lΩ)〈Gμ|C(t)〉

)
(7.61)
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and

vν∗(t) =
∑
σ

∫ ∞

0

κdκ
∑

l

∫ ∞

−∞
dq

(
ε0

2�(ων − lΩ)

)1/2
×

〈Vν∗ |Gμ∗ 〉
(
i〈Gν∗ |Ċ(t)〉 + (ων − 2lΩ)〈Gμ∗ |C(t)〉

)
. (7.62)

Notice that the normal variables (7.61) and (7.62) reduce to the ordinary normal variables in

the stationary frame in the absence of rotation, i.e., for Ω = 0. Using the completeness of the

vectorial Bessel modes (7.40), the definitions in equations (7.59) and (7.60) can be inverted

to obtain

cμ(t) =
∑
ν

〈Gμ|Vν〉vν(t) and cμ∗(t) =
∑
ν

〈Gμ∗ |Vν∗ 〉vν∗(t) , (7.63)

where we have assumed that {Vν} is a discrete set of modes. Again using that the matrix

elements 〈Gμ|Vν〉 differ from 0 only when ω2
μ = ω

2
ν , the Hamiltonian (7.58) can be expressed

as

Hrot =
1

2

∑
ν

�ων
(
v∗νvν + vνv∗ν

)
. (7.64)

Thus, we have obtained a complete description of the classical dynamics of the radiation field

in terms of normal variables for an orthonormal but otherwise arbitrary set of rotating modes

{Vν}.

7.4.3 Canonical quantization

In the stationary frame, quantization is performed by replacing the real field A and canonical

momentum ΠA by hermitian operators that obey canonical commutation rules (7.16). The

normal variables aμ, as specified by equation (7.50), and their complex conjugates a∗μ become

bosonic annihilation and creation operators. The field operator in the stationary frame takes

the form of equation (7.12) when the modes Fλ are replaced by the Bessel modes Gν and
the normal variables are replaced by the creation and annihilation operators. The quantum

evolution of the rotating field operators is governed by the Heisenberg equation of motion.

The Hamiltonian takes the form of equation (7.15) when the normal variables are replaced

by the creation and annihilation operators that correspond to the normal variables defined in

equation (7.50) and (7.51).

Quantization in the rotating frame involves replacing the field in the rotating frame C(r, t)
and the corresponding momentum ΠC(r, t) (7.24) by vector operators Ĉ(r, t) and Π̂C(r, t)
whose components obey canonical commutation rules

[
Ĉi(r), Π̂C j(r′)

]
= i�δ⊥(r − r′)δi j , (7.65)

where the indices i and j run over the vector components. The other, independent, commuta-

tors of the components of Ĉ and Π̂C vanish. From the definition (7.19) of the complex field

in the rotating frame and the expression (7.25) of the corresponding momentum, it is evident
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that quantization in the rotating frame is consistent with quantization in the stationary frame.

Substitution of the expansions (7.55) and (7.57) in the canonical commutation rules in the ro-

tating frame (7.65) shows that also the normal variables in the rotating frame become bosonic

creation and annihilation operators. This is in obvious agreement with the transformations

in equation (7.54). Since the transformation described by the equations (7.59) and (7.60) is

a properly normalized unitary transformation in the space of the normal variables, it follows

that the same is true for the normal variables that describe the dynamics of the field in terms

of the amplitudes and momenta of the rotating modes Vμ. The quantum dynamics in the

rotating frame is described by the Heisenberg equation of motion with the Hamiltonian in

equation (7.58) or, equivalently, (7.64) when the normal variables are replaced by creation

and annihilation operators.

Notice, that since the transformation in equation (7.54), and also the transformations in

equations (7.59) and (7.60), are properly normalized unitary transformations, the vacuum as

perceived from the rotating frame is the same as that perceived from the stationary frame

(7.18).

7.5 Summary, conclusion and outlook

In this chapter we have presented the first exact quantum-optical description of rotating light,

or, equivalently, quantized the radiation field in an orthonormal but otherwise arbitrary basis

of rotating modes {Vμ}. Rotating modes are defined as divergence free (7.22) monochromatic

solutions of the wave equation in a rotating frame (7.23). In complex notation, these fields are

separable in space and time so that the corresponding physical fields are stationary in the ro-

tating frame. As a result, they rotate uniformly in a stationary frame. We have shown that the

set of vectorial Bessel modes both with transverse electric (TE) and transverse magnetic (TM)

polarization are exact eigenstates of Ĵz and, therefore, of the rotation operator exp(−iΩtĴz).

It follows that the fields corresponding to these modes only pick up a frequency shift under

the transformation from a stationary to a rotating frame. As a result, the Bessel-mode fields

are monochromatic in both frames. As the Bessel modes are monochromatic in the stationary

frame, the free radiation field can be quantized in this basis in the usual way. Since they are

also monochromatic in the rotating frame, an arbitrary rotating mode Vμ, which is monochro-

matic in the rotating frame, can be expanded in the subset of Bessel modes that have the same

frequency in the rotating frame. The simple transformation property of Bessel modes to the

stationary frame naturally leads to an expression of the field operator corresponding to the

rotating mode as a linear combination of the field operators for the Bessel modes in the sta-

tionary frame. Alternatively, the field can be quantized directly in the rotating frame. We

have shown that this is equivalent to quantization in the stationary frame.

The approach discussed in this chapter is particulary suited to describe the quantum dy-

namics of a set of modes that solve rotating boundary conditions, such as the rotating cavity

modes discussed in chapters 3 and 5. In that respect it is complementary to the approach dis-

cussed in reference [107], where approximate rotating solutions in free space are constructed
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from stationary ones. As opposed to reference [107], the theory presented here is exact and

does not require paraxial and/or slowly-varying-envelope approximations. On the other hand,

the approach in reference [107] is more flexible in that it allows for a quantum description of

fields with a rotating polarization and/or a rotating mode pattern whereas the work discussed

here only concerns uniformly rotating fields.

The method discussed in this chapter concerns quantization of the free radiation field in

the Coulomb gauge. As a result, its validity is restricted to energy scales where vacuum

fluctuations in full quantum electrodynamics (e.g. electron-positron pair creation) are negli-

gible. A special property of the transformation to a rotating frame that we have applied in

this chapter is that it does not affect the vacuum state of the radiation field. From a relativistic

point-of-view, other definitions of the transformation to a rotating frame may be more natural

[109, 110]. These lead to a different definition of the vacuum in the rotating frame [111]. The

transformation to a rotating frame that we have used here is fundamentally different from the

transformation to the co-moving frame of an orbiting observer. Also in that case the vacuum

is perceived differently, which may be understood as an example of the Unruh effect [112].

The scalar Bessel beams Gλ that we have studied in section 7.3, were first proposed some

twenty years ago [113, 114] and have been investigated in detail both theoretically and exper-

imentally, see, for instance, reference [115] for a recent review. The vectorial Bessel beams

Gμ are less well-known but have also been studied before [6, 116]. Since the production

of Bessel beams in experiments is well-established, it should be possible to construct the

rotating fields that we have discussed in this chapter as a superposition of their rotational-

Doppler shifted components. Production of quantum coherent superpositions of such modes

is probably far more involved.

An interesting application of the theory discussed in this chapter would be to study the

quantum interference of two single-photon fields that have the same spectral and spatial

structure in a given transverse plane of their own co-rotating frames but rotate at different

frequencies and, possibly, in opposite directions. From the results of section 7.3, it is clear

that rotation has strong and distinct effects on the spectral and spatial structure of the modes.

As a result, the probability of photon bunching in a quantum-interferometric set-up, which is

essentially determined by the spatial and spectral overlap of the two modes, depends strongly

on the two rotation frequencies.
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