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An exact quantum theory of rotating light

7.1 Introduction

During the past decades, both the propagation and the diffraction of light through optical
set-ups with rotating optical elements [104, 105, 48, 69], as well as the physical properties
of rotating beams of light [19, 106, 20] have attracted a steady amount of attention. So far,
both theoretical and experimental work has focused mainly on classical aspects of rotating
light. Only recently, van Enk and Nienhuis have proposed a first quantum theory of rotating
photons [107]. They construct rotating field operators as coherent superpositions of the field
operators corresponding to the rotational Doppler-shifted [48] angular-momentum compo-
nents of the field. In leading order of the paraxial approximation, the spin and orbital degrees
of freedom of the radiation field decouple [45] and fields with a rotating polarization and a
stationary spatial pattern can be constructed as superpositions of rotational Doppler-shifted
circular-polarization states. Similarly, fields with a rotating mode pattern and a stationary po-
larization can be built up from the rotational Doppler-shifted angular-momentum components
of the spatial field distribution. It is, of course, also possible to construct fields with both a
rotating polarization and a rotating spatial pattern. Since, in the paraxial approximation, the
polarization and spatial degrees of freedom are decoupled, the rotation frequencies may even
have different values. The rotation of the polarization and spatial patterns of the fields that
are thus constructed are uniform only in the paraxial limit. Moreover, the approach requires
that the differences in diffraction of the Doppler-shifted angular-momentum components of
the field are negligible, i.e that the the rotation frequency is small compared to the optical
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7. An exact quantum theory of rotating light

frequency.

In this chapter, we introduce the first exact quantum theory of rotating light. We show
that Maxwell’s equations in free space have complete sets of solutions that rotate uniformly
as a function of time, i.e., that are monochromatic in a rotating frame. Our approach does not
necessarily involve paraxial approximations and both the spatial structure and the polarization
of the rotating modes of free space rotate at a uniform velocity about the rotation axis. Once
such rotating solutions have been obtained, quantization is relatively straightforward. We
follow the standard procedure of canonical quantization and show that quantization in the
co-rotating frame is consistent with quantization in the stationary frame. We show how this
approach can be applied to obtain a quantum-mechanical description of the dynamics of the
set of modes that obey rotating boundary conditions. We derive the paraxial counterpart of
the exact theory and discuss quantization of the rotating cavity modes that we have studied in
chapters 3 and 5 as an example.

The material in this chapter is organized as follows. In the next section, we summarize
the equations of motion of the radiation field, show how they may be derived from the stan-
dard Lagrangian for the free electromagnetic field and discuss canonical quantization in the
Coulomb gauge [5]. In section 7.3 we study the dynamics of light in a rotating frame and
derive complete sets of monochromatic solutions of the wave equation in such a frame. The
corresponding field operators in a stationary frame are introduced and discussed in section
7.4, where we also discuss quantization in the rotating frame. In the final section we summa-
rize our results and draw our conclusions.

7.2 Preliminaries

7.2.1 Equations of motion of the free radiation field

It is well-known from textbook electrodynamics that the electric and magnetic fields are fully
characterized by a scalar potential ®(r, 7) and a vector potential A(r, 7). In terms of these
potentials the fields are given by [4]:

B(r,1) = VXA(r,1) and E(r, 1) = -VO(r,1) — 66—1? , (7.1)

where c is the speed light. These definitions ensure that the homogeneous Maxwell equations
are obeyed [4]. Although the fields are fully specified by the potentials @(r, ) and A(r, t), the
reverse is not true; there is some arbitrariness (gauge freedom) in the choice of the potentials.
The dynamics of the free radiation field is most conveniently described in the Coulomb gauge,
which is defined by the requirement that [4]

V- A =0. (7.2)

In the absence of electric charges and currents, it follows from the inhomogeneous Maxwell
equations that the scalar potential @ vanishes while the vector potential obeys the wave equa-
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tion

, 16
Vi- o)A =0, (7.3)

which, together with the requirement that the field is divergence free (7.2), fully describes the
dynamics of the free radiation field in the Coulomb gauge.

In general, the dynamics of the free electromagnetic field may be described by the La-
grangian [5]

L= fd3r LAA) = %OfdgrﬂAlz—czKVxA)lz} =

% [(AIA) - AV XAV X AY) . (7.4)

where £ is the Lagrangian density in real space and we have adopted the Dirac notation of
quantum mechanics to denote the state of the classical radiation field. In case of the free
radiation field it is natural to assume that the field A and its derivatives vanish at infinity
while, for the radiation field enclosed by an ideal cavity with a perfectly conducting boundary,
the Maxwell boundary conditions [4] require that A at the boundary is locally normal to it.
In both cases, and under the assumption that the field is locally transverse so that it obeys
equation (7.2), partial integration of the second term in equation (7.4) yields f dir [VXAP? =
- f dsr A - (VZA). Using this, one may show that the Euler-Lagrange equation that derives
from the Lagrangian (7.4) reproduces the wave equation (7.3). The canonical momentum
density corresponding to the field A is given by

H = — = A 75
A= R € (7.5)

The Hamiltonian may be obtained as
H= | 4 { Al L 2.2 —
= | dsr{ly-A- £} = — (L My) + XV X AV X A)} =
260
1
— [(MAIL) - §AIVPA)] . (7.6)
26()
The second equality only holds in the Coulomb gauge as defined by equation (7.2). In this
gauge, the corresponding Hamilton equations reproduce the wave equation (7.3).

7.2.2 Modes and quantization

Optical modes are usually defined as monochromatic solutions of the wave equation (7.3).
Although the vector potential is real, it is convenient to allow for complex mode func-
tions F,(r) so that the vector potential corresponding to a mode F, is given by A(r,t) =
Re{F (r) exp(—iw,1)}. The subscript A denotes a set of mode indices, which characterizes the
spatial and polarization structure of the mode function F,. For a given set of modes, the am-
plitudes (F,|A) and their derivatives (F A obey harmonic equations of motion and it follows

125



7. An exact quantum theory of rotating light

that the radiation field can be quantized as a set of harmonic oscillators. In case of the free
field it is customary to quantize the field in a basis of plane waves. It is well-known, however,
that quantization can be performed in a manifestly basis-independent manner, which also ap-
plies to the case of a set of cavity modes with finite spatial extent [108]. For later reference,
we briefly summarize the quantization of the radiation field in an orthonormal but otherwise
arbitrary set of modes {F,}. Since the complex vector potential corresponding to a mode F,
is given by F (1) exp(—iw,f), it follows from the wave equation (7.3) that the mode functions
obey the Helmholtz equation

(V> + &) Far) =0, (7.7)

where k2 = w?3/c? so that also F,(r)exp(iw,?) is a solution of the wave equation (7.3).
However, since also F(r) obeys the Helmholtz equation (7.7), and since Re{F,(r)e'“'} =
Re{F;(r)e‘i“’"’}, it follows that without loss of generality we can assume that w,; > 0. It is
convenient to define A" such that F';(r) = F,«(r). Notice that this convention implies that,
in general, 1* is not the complex conjugate of A. In the specific case of real mode functions
F, = F} itimplies that 1* = 1. The mode functions {F,} are eigenfunctions of the Hermitian
operator V2 and form, therefore, a complete basis in real space. This implies that any solution
of the wave equation (7.3) can be expanded as

A(r,1) = Z(F/1|A(t)>F/l(r) . (7.8)
1
In order to quantize the field, we introduce the normal variables, which are defined as
12
€y . .
axr) = ((FJA@) + w(FIA®))) (7.9)
2h(1),1
and
@ 1/2 ‘
(ap)" (1) = (~iCFAA®) + w(FAA®D)) (7.10)
271(1),1

where we used that the physical field A and its time derivative A are real. Notice that in case
of real mode functions F, = F,- it follows that a; = a,-. Inverting the definitions (7.9) and
(7.10) yields

o2
A(r, 1) = zﬂl (2eowﬁ) (a)(t)F,l(r) + a;(t)F;(r)) (7.11)
and | o, "
A(r, 1) = —iz (2—60) (@ (OFA(r) = a5 (OF; (1)) . (7.12)
A

The corresponding expressions for the electric and magnetic fields can be obtained by apply-
ing equation (7.1). From equation (7.5), it follows that the canonical momentum density can
be expressed as

7 12 .
o=~y (%) (@xFa(r) - a4 (OF;)) . (7.13)

A
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Since the mode functions F, do not depend on time, equations (7.11) and (7.12) imply that
a)(t) = —iwan(t) , (7.14)

which also follows from the fact that the field (7.12) obeys the wave equation (7.3). Substi-
tution in the Hamiltonian (7.6) gives

hw * *
H= ; 7* (dia, + aad)) (7.15)

which, in view of equation (7.14), does not depend on time and takes the form of the Hamil-
tonian of a harmonic oscillator for each mode F ;.

Canonical quantization of the field involves replacing the field and the canonical mo-
mentum density by hermitian vector operators A and IT whose components obey canonical
commutation relations. In the Coulomb gauge these take the following form [5]

A, 0, T, )| = o, (x = 1) (7.16)

where the indices i and j run over the vector components, ¢, (r — r’) denotes the transverse
delta function [5] and ¢;; denotes the Kronecker delta. As opposed to, for instance, V2,
which acts as an operator in the Hilbert space of physical states of the classical radiation field
A(r, 1), the field and momentum operators A(r, 1) and II(r, ¢) are operators in the Hilbert space
of quantum states of the radiation field. By replacing the classical field and momentum in the
definitions of the normal variables (7.9) and (7.10) by the corresponding operators, one finds
the operators a, and &jl that correspond to these variables. They obey boson commutation
rules

lar. &), | = 600 - (7.17)

The operators Ezz and a, respectively create and annihilate a photon in the mode F,. The
vacuum state, which is the quantum state of the field in which none of the modes F, contains
photons, is defined by

aylvac) =0 Va, (7.18)

where a bra vector |...) with a round bracket denotes a vector in the Hilbert space of quantum
states of the radiation field. Other states can be generated by acting with (functions of) the
creation operators 21; on the vacuum. The quantum dynamics of the radiation field is governed
by the Heisenberg equation of motion for the field operators, or, equivalently, the Schrodinger
equation for the quantum states. The Hamilton operator takes the form of equation (7.15),
the normal variables being replaced by the creation and annihilation operators. Similarly, the
field and momentum operators take the form of equation (7.12) and (7.13), the creation and
annihilation operators replacing the normal variables. The canonical commutation relations
(7.16) are ensured by the boson commutation rules (7.17). The definition of the vacuum
state (7.18), the field and momentum operators (7.16) and the Hamiltonian (7.15) provide a
complete description of the quantum dynamics of the radiation field.
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7. An exact quantum theory of rotating light

So far, we have assumed that {F,} constitutes a discrete set of modes. In case of a con-
tinuous set, the mode functions are normalized to ¢ functions and the summations over A
are replaced by integrals over the continuous variables that characterize the modes. In the
particular case of normalized plane waves exp(ik - r)/ (27)*/? the summations are replaced by
Y- @mS2 [dik.

7.3 Wave optics in a rotating frame

7.3.1 Equations of motion

In chapter 3, we have shown that the modes of an optical cavity that is put into uniform
rotation about its optical axis can be defined as solutions of the time-dependent wave equation
that rotate along with the mirrors. These solutions are monochromatic in the co-rotating
frame. The corresponding complex fields, whose real parts correspond to the physical fields,
are separable in space and time and, therefore, stationary in the co-rotating frame. We shall
generalize the rotating-mode concept to the case of a freely propagating non-paraxial field and
obtain complete sets of rotating modes of the free radiation field as monochromatic solutions
in a rotating frame. First, we derive the equations of motion for light in a rotating frame.

Analogous to the discussion in chapter 5, we express the time-dependent vector potential
in the stationary frame in terms of the vector potential in a rotating frame. The latter is
denoted C(r, ). Since rotation of both the vector components and their spatial structure of
a vector field in R3 is a real transformation of the field, it follows that C(r, f) can be defined
real. It is related to the vector potential in the stationary frame by the identity

A(r, 1) = (rle” @ |C) (7.19)

where |r) is an eigenket of the position operator so that C(r, #) = (r|C) is the real-space rep-
resentation of the vector potential in the rotating frame. The operator exp(—iJ.Qr) describes
a time-dependent rotation of both the spatial structure and the polarization of a vector field,
where Q is the rotation frequency and J; is the corresponding generator. By considering in-
finitesimal rotations exp(—iafZ)A = A — iaJ.A + O(a?) of both the vector components of a
field A and their spatial structure, we find that J. may be expressed as

0 -1 0
<r|fZ|A):(r|f,Z+§Z|A)i—iiA(r,t)+i 1 0 0 |A®@,D). (7.20)
o¢ 0 0 0

The spin part S acts upon the vector nature of the field and generates rotations of the vector
components. The orbital part, on the other hand, solely acts upon the spatial structure of
each of the vector components and generates rotations of their spatial patterns. Notice that
the form of the real-space representation of J,, which figures in the second right-hand side in
equation (7.20), confirms that the rotation of a vector field in R? is a real transformation so
that the vector potential can be assumed real in both frames.
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7.3 Wave optics in a rotating frame

Substitution of the rotating field |[A) = e‘iQ’jZ|C) and its time derivative |A) =
e~ (IC) — iQJ;IC)) in the Lagrangian (7.4) yields the Lagrangian in the rotating frame

Liot = %" {<c|c> +IQ(CIJ|C) — i CIJIC) + Q(C|J2IC) — A(V x C|V x c>} , (7.21)

where we have used that V x (J.C) = J.(V x C) so that (V x A|V x A) = (V x C|V x C).
Using the real-space representation of J,, which figures in equation (7.20), one may show
that V - (J.C) = L.(V - C). It follows that the transversality condition (7.2) is not affected by
a transformation to a rotating frame so that

V.-Cr,0=0. (7.22)

By using that, for a transverse field, (V x C|V x C) = —(C|V2C), the Euler-Lagrange equation
for C(r, ) yields the wave equation in the rotating frame

W QX2 2Qf.8 16
c? ¢z ot 2o

]C(r, =0. (7.23)

This equation can also be obtained directly from substitution of the rotating field (7.19) in the
wave equation in the stationary frame (7.3). Notice that, iJ. is real so that the wave equation
(7.23) in the rotating frame is real.

The canonical-momentum density in the rotating frame is given by

Mc(r, f) = % = & (C(r, 1) - iUr|JIC)) = & (C(r, 1) + iQ(CILI)) (7.24)

which is also real. By using the expression (7.5) of the momentum in a stationary frame and
Ay = e (IC) - iQJ,|C)), we find that

ML (r, ) = (rle” M) . (7.25)
The Hamiltonian in the rotating frame can be expressed as
Hy=HN¢c-C-L=
%@(HCmC) + I |, |C) — iQ(C|J.|M¢) + EOTCZW xClVxC)y. (7.26)

By using that the field is transverse (7.22), one may show that the Hamilton equations that
derive from this Hamiltonian are equivalent to the wave equation in the rotating frame (7.23).
7.3.2 Rotating modes in free space

Analogous to the discussion in chapter 3, rotating modes of the free radiation field are defined
as solutions of the wave equation (7.3) that are monochromatic in a rotating frame. In com-
plex notation, such solutions can be expressed C(r,#) = Re{C(r) exp(—iwt)}, where C(r) is
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7. An exact quantum theory of rotating light

the complex spatial vector potential in the rotating frame. Substitution in the wave equation
in the rotating frame (7.23) gives

a tz|Cm=0. (7.27)

Q72 20Q).  W?
(Vz +—<+ W@
C

This equation plays the role analogous to that of the Helmholtz equation (7.7) in the rotating
frame. Notice that due to the presence of J, which is a purely imaginary operator, equation
(7.27) is not real so that C(r) is, in general, a complex vector field.

Since [V?, f] = 0, it follows that V? and fz must have simultaneous eigenfunctions for
which the wave equation (7.23) reduces to an algebraic equation, which can be solved to
obtain a dispersion relation. We shall derive the simultaneous eigenfunctions of V2 and J,
which allow us to obtain exact expressions of rotating modes in free space. For reasons of
convenience, we first discuss the analogous case of a rotating scalar field A(r, 7). Later on,
we shall construct rotating complex vector fields A(r, f) from these scalar ones. Analogous
to equation (7.19), the negative frequency part of a rotating scalar field is defined as

A(r, 1) = e B2 C(r)e (7.28)

where C(r) is spatial field in the rotating frame. In case of a scalar field, equation (7.27)
reduces to

QY2 2001, 2
(Vz + c—zz + wcz “ 4 L;)—z) Cr)=0. (7.29)

Since also [V?,1.] = 0 and since L. and V? are both hermitian, L. and V> must have an
orthonormal set of simultaneous eigenfunctions for which the wave equation (7.29) becomes
an algebraic equation. Since [L., —id/dz] = 0 and since the eigenfunctions of L. are propor-
tional to exp(il¢) while the eigenfunctions of —id/dz are proportional to exp(igz), it is natural
to introduce cylindrical coordinates (R, ¢, z) and look for solutions of the following type

C(R, $,2) = G(R)e' e (7.30)

with [ € Z and g € R. Substitution in the scalar wave equation (7.29) yields after rearranging
the terms

9 0
R*— +R— + (R’ -|GR) =0, 7.31
( o R+ R) (R) (7.31)
where x € R* is defined by the dispersion relation

(W+IQ)? =K +¢%) . (7.32)

The solutions of equation (7.31) are Bessel functions of the first kind G,;(R) = J;(xR) so that
a set of scalar Bessel mode functions can be introduced as

Ga(r) = (%T) Ji(kR)e™ e (7.33)
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7.3 Wave optics in a rotating frame

where A = (k, I, g) denotes the set of spatial mode indices and the factor 1/(2x) is introduced
for reasons of normalization. The corresponding frequencies can be obtained from (7.32)

Wie = £CA[K2 + g% - IQ . (7.34)

For every solution G, with w,., the mode function G}, = G, with " = (k, -1, —q) obeys the
scalar wave equation (7.29) with the frequencies wy-» = +c+/k? + g% + IQ. Since the mode
functions are in general complex, the real scalar field in the rotating frame corresponding to
the mode G, with w,, is given by

i (Gﬁe_i" VK2+q2t + Gy eic \/K2+q21)

C(r,t) = 5 s

(7.35)

where we have used that exp(—iQ¢J.) is real. Since Re (G,le‘ic V"2+‘72’) = Re (Gpeic V“2+"2’),
it follows that without loss of generality we can choose

Wy =cAlKlE+ g —1Q so that Wy =CAKRR+ @ +I1Q. (7.36)

By using the orthonormality property of Bessel functions of the first kind [47], one may show
that the mode functions {G,} are normalized to ¢ functions

00 21 00 1
(GaAlGy) = f Rde d¢f dz Gi(R,$,2)Gy(R,$,2) = ;5(K—K/)6(q—q’)6lp , (1.37)
0 0 —00

where 6(k — «’) and 8(q — q’) denote Dirac delta functions while ¢;» denotes the Kronecker
delta. By the Fourier-Bessel theorem and the Fourier theorem [47], the set of mode functions
{G,} constitutes a complete basis in real space.

It is clear that the vector field (e, X V)A is locally transverse so that it obeys the transver-
sality condition (7.2). It is easy to show that this is an exact solution of the wave equation
(7.3) if (and only if) A(r, ) obeys the scalar equivalent of the wave equation. Since the cor-
responding electric field has a vanishing z component, it is customary to call this a transverse
electric (TE) mode [4, 6]. The transversality condition (7.2) allows for two linearly inde-
pendent polarization states. The other, for which the magnetic field is transverse (TM), can
be constructed as —(ic/w)V X (e; X V)A, where w is the frequency in a stationary frame. In
general, the TE and TM mode functions corresponding to a set of scalar modes A are globally
orthonormal. The vectorial mode functions corresponding the TE and TM Bessel modes can
be expressed as

GIE(r) = (e, x V)Ga(r) (7.38)

and .
—i

where +/k? + ¢? arises as the length of the wave vector of the Bessel modes in a stationary
frame. The frequencies in the rotating frame depend on Q and are given by (7.36). It is

GMr) = V X (e, X V)G(r) , (7.39)
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7. An exact quantum theory of rotating light

convenient to define the subscript mode index of the vector fields such that it characterizes
both the spatial and the polarization degrees of freedom associated with the modes. In order
to do so, we introduce vectorial mode functions G, with ¢ = (4, o), where o runs over the TE
and TM polarizations. One may prove that both the TE and TM mode are exact eigenstates
of J. with eigenvalues /, but not of . and § . separately. Moreover, both are eigenfunctions of
V2 with eigenvalues —(x* + ¢?), of —id/0z with eigenvalues g and of the transverse laplacian
V2 = V2 - §°/97> with eigenvalues —«*. Analogous to equation (7.37), the vectorial mode
functions G, obey the closure relation

00 2 00
(G,IG) = f RdR f do f dz G(R.$,2) - Gy (R.$,2) =
0 0 —o0
1 , ,
;5(K —k)6(q — 4")owdoo (7.40)

where y = (x, 1, g,0). It follows that the set {G,} of vectorial Bessel mode functions consti-
tutes a complete basis of transverse vector fields in C? so that the general solution of the wave
equation in the rotating frame (7.23) can be expanded as

Cwn=>) fo kdk f dg ) (GIC(1))Gy(r) . (7.41)
o - 1

Since the vectorial Bessel modes are eigenfunctions of fz and, therefore, of the rotation op-
erator exp(—ia.J.), it follows that the corresponding fields are monochromatic both in the
rotating and in the stationary frame. As such, the Bessel modes {G,,} accommodate the trans-
formations from a stationary to a rotating frame and vice versa.

7.3.3 Basis transformations

In this section we discuss how an arbitrary set of rotating modes, in particular the set of
mode functions that obey rotating boundary conditions, can be expanded in the vectorial
Bessel modes. We consider an orthonormal set of mode functions {V,} that correspond to
transverse and monochromatic fields in the rotating frame, i.e., vector fields in C3 that obey
equations (7.22) and (7.23). Again, the subscript mode index v characterizes both the spatial
and polarization degrees of freedom. The frequency of the mode V, is denoted w,. Analogous
to equation (7.41), the modes can be expanded as

\ZCEDY fo Kk ) f dq (GIV,)G(r) , (7.42)
o [

where u = (x, [, g, o) and the coefficients of the expansion are given by

0o 21 )
(GuIV,) = f RdR f do f dg G;(R,$.2) - V,(R, $.2) . (7.43)
0 0 0

By using that both V,, and G, correspond to monochromatic solutions of the wave equation in
the rotating frame (7.23), one may show by partial integration that the matrix elements (7.43)
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7.3 Wave optics in a rotating frame

differ from O only if wﬁ = w?. This can be exploited by eliminating one of the spatial mode
indices, for instance, |g|, in favor of the frequency w = w,. For a fixed value of w, the scalar
mode functions (7.33) can be expressed as

1 16+ N2l PO —RE
H/l(l'; O.)) = (_) ]](KR)ell¢€7 . W 2w+ 2O 2k , (744)

73
where A = (k, [, +, w) and the + and — signs correspond to fields that propagate in the positive
and negative z directions respectively. The corresponding vectorial modes H,, can be obtained
by applying equations (7.38) and (7.39). In terms of these mode functions, the expansion

(7.42) reduces to
Vi =3 [ kY Y VB (7.45)
o I+

where the summation over + denotes a summation over the two propagation directions along
the z axis. If we limit the discussion to fields for which the expansion (7.44) only involves
components with a fixed sign of g, the coefficients of the expansion (7.45) can be obtained
from integration in the transverse plane

0o 21
MV, = [ RaR [ do (BR.0.2) ViR 6.0, (7.46)

This result shows that, for a given value of the frequency in the rotating frame w and a given
propagation direction along the z axis, the spatial dependence of a transverse vectorial mode
is fully determined by the field pattern in a single transverse plane. In the more general case
of monochromatic fields that contain components that propagate in both directions along the
7 axis, the field can be separated in two parts that propagate in opposite directions along the z
axis. In that case, the analogous expressions can be derived for each of these two parts.

7.3.4 Rotating modes in the paraxial approximation

The expansion (7.45) of a set of monochromatic vectorial modes V, in the basis of TE and
TM modes corresponding to monochromatic scalar Bessel modes H,(r) establishes the con-
nection with the paraxial description discussed in chapter 3 in a very natural way. Essential
to the paraxial approximation is the assumption that the field propagates mainly along a well-
defined direction, so that the wave-vector components transverse to the dominant propaga-
tion direction are small compared to the length of the wave vector. In the case of the scalar
monochromatic Bessel modes (7.44), this implies that c>x> << w?. In the terminology of sec-
tion 3.2, the ratio c«x/w can be used as a smallness parameter 6. Analogous to the discussion
in chapter 3, we also assume that Q ~ §?w, which is a slowly-varying envelope approxima-
tion. Then, by expanding the square root in the argument of the exponent in equation (7.44)
up to first order in powers of ¢, the monochromatic scalar Bessel modes (7.44) reduce to
Q Al

Hip,zzw) ~ exp[+ 1+ = - XN Hy0,0,0) (7.47)
c w20
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7. An exact quantum theory of rotating light

where the + and — signs again correspond to fields that propagate in the positive and negative
z directions. Since VﬁH = —k*H, and f,ZH 1 = [H,, the exponential term in equation (7.47)
takes the form of the paraxial propagator in the rotating frame (3.31), acting on the trans-
verse Bessel mode function H,(p, 0), z being replaced by —z for modes propagating in the
negative z direction. This shows that the paraxial Bessel modes (7.47) are exact solutions of
the paraxial wave equation in a rotating frame (5.4). The longitudinal components of the TM
modes are of the order of ¢ smaller than the transverse components and, in leading order of
the paraxial approximation, both the TE and the TM modes corresponding to the scalar mode
functions (7.47) are polarized in the transverse plane. Moreover, the transverse variation of
the polarization is slow compared to that of the transverse beam profile as characterized by
H,(p, z) so that, up to first order in §, the transverse polarization of the Bessel modes can be
chosen independent of the spatial mode indices. In the paraxial approximation, a vectorial
Bessel mode G, thus reduces to €-H,, where o labels two linearly independent transverse
polarization states and A is a set of spatial mode indices. Analogous to the discussion above,
the paraxial Bessel modes €, H; constitute a complete basis set of paraxial modes. An arbi-
trary (set of) paraxial modes €,V,, where 7 labels the polarization states, can be expanded in
this basis. In the case of the rotating cavity modes that we have described in chapters 3 and
5, the paraxial mode functions are given by V, = v,, exp(ikz) with A = (n,m, k) the mode
profiles in the rotating frame v,,,, given by equation (3.58). The uniform polarization € can be
chosen independently of the spatial indices A.

Notice that, analogous to the description in section 3.2, this approach is perturbative in
that it allows for obtaining higher-order corrections by taking higher-order powers of ¢ into
account. However, the spatial and polarization degrees of freedom are decoupled only in
lowest non-vanishing order of the paraxial approximation.

7.4 Quantization

7.4.1 Normal variables for a rotating field

As discussed in the previous section, the vectorial Bessel mode functions accommodate the
transformation from the rotating to the stationary frame and vice versa. In order to derive
expressions of the normal variables associated with the Bessel-mode components of the field
in a rotating frame, we substitute the expansion (7.41) in the expression (7.19) of the rotating
field in the stationary frame and obtain

A(r, 1) = Z jom KdKZ f‘x’ dq (G,I|C>e*ithGﬂ(r) (7.48)
o i -

for the real vector potential in the stationary frame. Its time derivative can be expressed as
A(r, 1) = Zf KdKZf dq ((G,,IC(t)) - ilQ(G,,IC(t)))e*ithGﬂ(r) . (7.49)
o 0 ! -
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From the definitions (7.9) and (7.10), we find that the normal variables corresponding to the
Bessel-mode components of the rotating field are given by

€

H=|——oe
) [2hc\//<2+q2

1/2
] (G, IC() + W (GLICD)) (7.50)

and

€
ap(t) =| —2
g [2hc VK2 + ¢?

where ¢ y/k* + ¢? arises as the frequency of the Bessel modes in the stationary frame and w,
and w,, are given by equation (7.36). With the normal variables in equations (7.50) and (7.51),
the field in the stationary frame and the corresponding momentum take the form of equations
(7.12) and (7.13), the mode functions F, being replaced by the vectorial Bessel modes G,,.

1/2
] (G IC0)) + wu (G IC (1)) (7.51)

7.4.2 Normal variables in the rotating frame

In case of a complete set of rotating modes {V,}, it is more natural to describe the dynamics
of the radiation field in terms of a set of normal variables that characterize the amplitudes and
corresponding momenta in these rotating modes. In this section, we show that it is possible to
introduce such variables and derive the corresponding Hamiltonian. The expressions in equa-
tions (7.50) and (7.51) suggest to introduce normal variables for the Bessel-mode components
in the rotating frame as

1/2
B €0 g
cut) = (%c\/T—qz) (KGLIC®) + w,(GLIC®))) (1.52)
and s
| («G.(C .
c,f(t)_(m m) (£GIC®) + WG IC®)) - (7.53)

Notice that, although their shape is very similar to that of normal variables in a stationary
frame, both the anti-symmetric way in which the frequencies w, and w,- appear and the
square-root factor, which involves the frequency of the Bessel mode in a stationary frame, are
signatures of the fact that these are normal variables in a non-inertial frame. They are related
to the normal variables (7.50) and (7.51) in the stationary frame by the unitary transformations

—ilQt

a(=e™c,t) and a0 =™ (1) . (7.54)

The field in the rotating frame and its derivative can be expressed as

1/2
C(r, r)_z f dez f dq (250(: m) (cu(0Gu@®) + (DG, () (7.55)
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and

12
Cr,0 = —lZf KdKZf dq [2606m) X

wu(cu(OGL(X) = (DG (), (7.56)

where we have used that w, + w, = 2c+/k* + ¢* and W, — w, = 2IQ. Since the G, and
G, obey the wave equation in the rotating frame at the frequencies w, and —w,, this result is
consistent with the fact that C(r, f) obeys equation (7.23). By using equation (7.24), we find
that

- 12
Hc(r, 1) = —zZ f dez f [heoc— ”K“’] (DG (0~ ()G, (1)) . (7.57)

The hamiltonian in the rotating frame (7.26) can be expressed as

Hio = % Z j:o dezll j:: dq hwﬂ(c;cﬂ + cﬂc;) . (7.58)

The form of this Hamiltonian confirms that the harmonic structure of the dynamics of the
modes survives in the rotating frame. The classical dynamics of the Bessel modes in the
rotating frame is described the Hamilton equations with the Hamiltonian (7.58) and with the
field and corresponding momentum as specified by equations (7.56) and (7.57).

From the expansion in equation (7.41), it follows that the normal variables that character-
ize the amplitude and momentum in a complete and orthonormal set of rotating modes {V,}
may be defined as properly normalized linear combinations of the normal variables for the
Bessel modes, i.e.,

YOEDY fo kdk f dg (V,|G,)c, (1) (7.59)
o i -

and

OEDY fo Kk ) f dg (V,1Gy)e (1) (7.60)
o i e

where u = («, [, g, o). By using the definitions (7.52) and (7.53) of ¢, and ¢,+ and the fact that
the matrix element (V,|G,) differs from zero only when a) = wlzl while the matrix element

(V,:|G) differs from zero only when (u = wﬂ , we find that

172
vv(t)—Zf KdKZf (2h(wv+lﬂ)) X

(VVIGH>(i<GvIC(t)> +(wy + 2ZQ)<G,u|C(t)>) (7.61)
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and

1/2
vv(t)—Zf KdKZf (va ZQ)) X

(VoG )G ICO) + (@, — 21Q)G IC)) . (7.62)

Notice that the normal variables (7.61) and (7.62) reduce to the ordinary normal variables in
the stationary frame in the absence of rotation, i.e., for Q = 0. Using the completeness of the
vectorial Bessel modes (7.40), the definitions in equations (7.59) and (7.60) can be inverted
to obtain

® = D UGV and G0 = D (G Vi (1) (7.63)

where we have assumed that {V,} is a discrete set of modes. Again using that the matrix
elements (G,|V,) differ from 0 only when w = w , the Hamiltonian (7.58) can be expressed
as

Hyy = % Z hew,(Vivy +v,v3) (7.64)

Thus, we have obtained a complete description of the classical dynamics of the radiation field
in terms of normal variables for an orthonormal but otherwise arbitrary set of rotating modes
{Vy}.

7.4.3 Canonical quantization

In the stationary frame, quantization is performed by replacing the real field A and canonical
momentum IIp by hermitian operators that obey canonical commutation rules (7.16). The
normal variables ay,, as specified by equation (7.50), and their complex conjugates a;, become
bosonic annihilation and creation operators. The field operator in the stationary frame takes
the form of equation (7.12) when the modes F, are replaced by the Bessel modes G, and
the normal variables are replaced by the creation and annihilation operators. The quantum
evolution of the rotating field operators is governed by the Heisenberg equation of motion.
The Hamiltonian takes the form of equation (7.15) when the normal variables are replaced
by the creation and annihilation operators that correspond to the normal variables defined in
equation (7.50) and (7.51).

Quantization in the rotating frame involves replacing the field in the rotating frame C(r, 1)
and the corresponding momentum I¢(r, f) (7.24) by vector operators C(r, ) and f[c(r, 1)
whose components obey canonical commutation rules

|Cite). T, ()] = in6 . (x = ¥)53; . (7.65)

where the indices i and j run over the vector components. The other, independent, commuta-
tors of the components of C and Tl¢ vanish. From the definition (7.19) of the complex field
in the rotating frame and the expression (7.25) of the corresponding momentum, it is evident
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that quantization in the rotating frame is consistent with quantization in the stationary frame.
Substitution of the expansions (7.55) and (7.57) in the canonical commutation rules in the ro-
tating frame (7.65) shows that also the normal variables in the rotating frame become bosonic
creation and annihilation operators. This is in obvious agreement with the transformations
in equation (7.54). Since the transformation described by the equations (7.59) and (7.60) is
a properly normalized unitary transformation in the space of the normal variables, it follows
that the same is true for the normal variables that describe the dynamics of the field in terms
of the amplitudes and momenta of the rotating modes V,. The quantum dynamics in the
rotating frame is described by the Heisenberg equation of motion with the Hamiltonian in
equation (7.58) or, equivalently, (7.64) when the normal variables are replaced by creation
and annihilation operators.

Notice, that since the transformation in equation (7.54), and also the transformations in
equations (7.59) and (7.60), are properly normalized unitary transformations, the vacuum as
perceived from the rotating frame is the same as that perceived from the stationary frame
(7.18).

7.5 Summary, conclusion and outlook

In this chapter we have presented the first exact quantum-optical description of rotating light,
or, equivalently, quantized the radiation field in an orthonormal but otherwise arbitrary basis
of rotating modes {V,}. Rotating modes are defined as divergence free (7.22) monochromatic
solutions of the wave equation in a rotating frame (7.23). In complex notation, these fields are
separable in space and time so that the corresponding physical fields are stationary in the ro-
tating frame. As a result, they rotate uniformly in a stationary frame. We have shown that the
set of vectorial Bessel modes both with transverse electric (TE) and transverse magnetic (TM)
polarization are exact eigenstates of J. and, therefore, of the rotation operator exp(—iQz.J.).
It follows that the fields corresponding to these modes only pick up a frequency shift under
the transformation from a stationary to a rotating frame. As a result, the Bessel-mode fields
are monochromatic in both frames. As the Bessel modes are monochromatic in the stationary
frame, the free radiation field can be quantized in this basis in the usual way. Since they are
also monochromatic in the rotating frame, an arbitrary rotating mode V,,, which is monochro-
matic in the rotating frame, can be expanded in the subset of Bessel modes that have the same
frequency in the rotating frame. The simple transformation property of Bessel modes to the
stationary frame naturally leads to an expression of the field operator corresponding to the
rotating mode as a linear combination of the field operators for the Bessel modes in the sta-
tionary frame. Alternatively, the field can be quantized directly in the rotating frame. We
have shown that this is equivalent to quantization in the stationary frame.

The approach discussed in this chapter is particulary suited to describe the quantum dy-
namics of a set of modes that solve rotating boundary conditions, such as the rotating cavity
modes discussed in chapters 3 and 5. In that respect it is complementary to the approach dis-
cussed in reference [107], where approximate rotating solutions in free space are constructed
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from stationary ones. As opposed to reference [107], the theory presented here is exact and
does not require paraxial and/or slowly-varying-envelope approximations. On the other hand,
the approach in reference [107] is more flexible in that it allows for a quantum description of
fields with a rotating polarization and/or a rotating mode pattern whereas the work discussed
here only concerns uniformly rotating fields.

The method discussed in this chapter concerns quantization of the free radiation field in
the Coulomb gauge. As a result, its validity is restricted to energy scales where vacuum
fluctuations in full quantum electrodynamics (e.g. electron-positron pair creation) are negli-
gible. A special property of the transformation to a rotating frame that we have applied in
this chapter is that it does not affect the vacuum state of the radiation field. From a relativistic
point-of-view, other definitions of the transformation to a rotating frame may be more natural
[109, 110]. These lead to a different definition of the vacuum in the rotating frame [111]. The
transformation to a rotating frame that we have used here is fundamentally different from the
transformation to the co-moving frame of an orbiting observer. Also in that case the vacuum
is perceived differently, which may be understood as an example of the Unruh effect [112].

The scalar Bessel beams G, that we have studied in section 7.3, were first proposed some
twenty years ago [113, 114] and have been investigated in detail both theoretically and exper-
imentally, see, for instance, reference [115] for a recent review. The vectorial Bessel beams
G, are less well-known but have also been studied before [6, 116]. Since the production
of Bessel beams in experiments is well-established, it should be possible to construct the
rotating fields that we have discussed in this chapter as a superposition of their rotational-
Doppler shifted components. Production of quantum coherent superpositions of such modes
is probably far more involved.

An interesting application of the theory discussed in this chapter would be to study the
quantum interference of two single-photon fields that have the same spectral and spatial
structure in a given transverse plane of their own co-rotating frames but rotate at different
frequencies and, possibly, in opposite directions. From the results of section 7.3, it is clear
that rotation has strong and distinct effects on the spectral and spatial structure of the modes.
As aresult, the probability of photon bunching in a quantum-interferometric set-up, which is
essentially determined by the spatial and spectral overlap of the two modes, depends strongly
on the two rotation frequencies.

139



7. An exact quantum theory of rotating light

140



