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Geometric phases for astigmatic optical
modes of arbitrary order

6.1 Introduction

In the twenty-five years that have passed since Berry published his landmark paper [87],
the geometric phase has turned out to be a very unifying concept in physics. Various phase
shifts and rotation angles both in classical and quantum physics have been proven to originate
from the geometry of the underlying parameter space. One of the first examples was given
by Pancharatnam [88] who discovered that the phase shift due to a cyclic transformation of
the polarization of an optical field is equal to half the enclosed area on the Poincaré sphere
for polarization states. Other optical examples of geometric phases are the phase shift that
arises from the variation of the direction of the wave vector of an optical field through a fiber
[89] and the phase that is associated with the cyclic manipulation of a squeezed state of light
[90]. The Gouy phase shift, which is due to the variation of the beam parameters (the beam
width and the radius of curvature of the wave front) of a Gaussian optical beam, can also be
interpreted geometrically [91].
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6. Geometric phases for astigmatic optical modes of arbitrary order

In analogy with the geometric phase for polarization (or spin) states of light, van Enk has
proposed a geometric phase that arises from cyclic mode transformations of paraxial optical
beams carrying orbital angular momentum [92]. The special case of isotropic first-order
modes is equivalent to the polarization case [93] and, as was experimentally demonstrated by
Galvez et. al., the geometric phase shift acquired by a first-order mode that is transformed
along a closed trajectory on the corresponding Poincaré sphere also equals half the enclosed
surface on this sphere [94]. Similar experiments have been performed with second-order
modes [95], in particular to show that exchange of orbital angular momentum is necessary
for a non-trivial geometric phase to occur [96]. However, in the general case of isotropic
modes of order N, the connection with the geometry of the N + 1-dimensional mode space is
not at all obvious.

In this chapter, we present a complete and general analysis of the phase shift of transverse
optical modes of arbitrary order when propagating through a paraxial optical set-up, thereby
resolving this issue. Paraxial optical modes with different transverse mode indices (n, m)
are connected by bosonic ladder operators in the spirit of the algebraic description of the
quantum-mechanical harmonic oscillator and complete sets of transverse modes |u,,,) can
thus be obtained from two pairs of ladder operators [17]. We show that the geometries of the
subspaces of modes with fixed transverse mode numbers n and m, which are closed under
mode transformations, are all carbon copies of the geometry underlying the ladder operators.
We fully characterize this geometry including both the generalized beam parameters, which
characterize the astigmatism and orientation of the intensity and phase patterns of a Gaussian
fundamental mode, and the degrees of freedom associated with the nature and orientation of
the higher-order modes. We find a dynamical and a geometric contribution to the phase shift
of a mode under propagation through an optical set-up, which both have a clear significance
in terms of this parameter space.

The material in this chapter is organized as follows. In the next section we briefly sum-
marize the operator description of paraxial wave optics. We discuss its group-theoretical
structure, which is essential for our ladder-operator approach, and show how paraxial ray op-
tics emerges from it. In section 6.3 we discuss how complete basis sets of transverse modes
can be obtained from two pairs of bosonic ladder operators. We discuss the transformation
properties of the ladder operators, and, thereby, of the modes and characterize the ten de-
grees of freedom that are associated with the choice of a basis of transverse modes. Two of
those degrees of freedom relate to overall phase factors of the ladder operators and, therefore,
of the modes. In section 6.4, we show that the variation of these phases under propagation
through a set-up originates from the variation of the other parameters. We discuss an analogy
with the Aharonov-Bohm effect in quantum mechanics and show that both contributions to
the phase shift are geometric in that they are fully determined by the trajectory through the
parameter space. However, only the geometric contribution relates to the geometry of this
space. Section 6.5 is devoted to the specific, but experimentally relevant, case of mode trans-
formations of non-astigmatic modes. In the final section, we summarize our results and draw
our conclusions.
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6.2 Canonical description of paraxial optics

6.2 Canonical description of paraxial optics

6.2.1 Position and propagation direction as conjugate variables

A monochromatic paraxial beam of light that propagates along the z direction is conveniently
described by the complex scalar profile u(p, z), which characterizes the spatial structure of
the field beyond the structure of the carrier wave exp(ikz — iwt). The two-dimensional vector
o = (x,y)T denotes the transverse coordinates. The electric and magnetic fields of the beam
can be expressed as

E(p.z.1) = Re{Egeu(p, )¢} 6.1)

and E
B(p.21) = Re {f(ez X ulp. z)e”‘““”} : 6.2)

where Ej is the amplitude of the field, € is the transverse polarization, e, is the unit vector
along the propagation direction and w = ck is the optical frequency with ¢ the speed of light.
The slowly varying amplitude u(p, z) obeys the paraxial wave equation

(Vf, + Zika%)u(p,z) =0, (6.3)
where Vf) = 02/0x* + 3%/3y* is the transverse Laplacian. Under the assumption that the
transverse variation of the field appears on a much larger length scale than the wavelength,
this description of paraxial wave optics is consistent with Maxwell’s equations in free space
[45].

The paraxial wave equation (6.3) has the form the Schrodinger equation for a free particle
in two dimensions. The longitudinal coordinate z plays the role of time while the transverse
coordinates p = (x,y)T constitute the two-dimensional space. This analogy allows us to adopt
the Dirac notation of quantum mechanics to describe the evolution of a classical wave field
[42]. In the Schrodinger picture, we introduce state vectors |u(z)) in the Hilbert space L? of
square-integrable transverse states of the wave field, where the z coordinate parameterizes the
trajectory along which the field propagates. The states are properly normalized (u(z)|u(z)) = 1
for all z and the field profile in real space can be expressed as u(p,z) = (plu(z)). Just as in
quantum mechanics, the transverse coordinates may be viewed as a hermitian vector operator
p = (%79)" acting on the Hilbert space. The derivatives with respect to these coordinates
constitute canonically conjugate operators. Rather than the conjugate transverse momentum
operator —id/dp, which has the significance of the normalized transverse momentum of the
field, it is convenient to construct the propagation-direction operator by dividing the trans-
verse momentum operator by the normalized longitudinal momentum k. Thus, we obtain the
hermitian vector operator 6= (f%c, 19},)T = —(i/k)(8/0x,0/0y)". The transverse position and
propagation-direction operators obey the canonical commutation rules

[Pas kO] = iSap , (6.4)
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6. Geometric phases for astigmatic optical modes of arbitrary order

where the indices a and b run over the x and y components. In analogy with quantum me-
chanics, we introduce the transverse field profile in propagation-direction representation

(6, 7) = (Blu(z)) = % f drp u(p, 2)e 0P (6.5)

which is the two-dimensional Fourier transform of u(p,z) and characterizes the transverse
propagation-direction distribution of the field.

In geometric optics, a ray of light is fully characterized in a transverse plane z by its
transverse position p and propagation direction 6, which are usually combined in the four-
dimensional ray vector 2 T = (p',6"). The operator description of paraxial wave optics
may be viewed as a formally quantized (wavized) description of light rays, where p and 6
have been replaced by hermitian operators 5 and @ that obey canonical commutation rules
(6.4) and 1/k = 4 plays the role of 7 [31]. These operators are conveniently combined in
the ray operator 27 = (p",47). In analogy with quantum mechanics, where the expectation
values of the position and momentum operators have a clear classical significance in the limit
i — 0, a paraxial wave field reduces to a ray in the limit of geometric optics 2 — 0. Its
transverse position and propagation direction in the transverse plane z are characterized by
the expectation values (u(z)|0lu(z)) and (u(z)|@|u(z)).

6.2.2 Group-theoretical structure of paraxial wave and ray optics

Both the diffraction of a paraxial beam under free propagation, as described by the paraxial
wave equation (6.3), and the transformations due to lossless optical elements can be expressed
as unitary transformations |ugy) = Ulu;) on the transverse state of the field. In general, a
unitary operator can be expressed as

O(laj)) = e ZiaiTs | (6.6)

where {a;} is a set of real parameters and {Tj} a set of hermitian generators, i.e., T]T =T;.
In the present case of paraxial propagation and paraxial (first-order) optical elements, the
generators are quadratic forms in the transverse position and propagation-direction operators.
This is exemplified by the paraxial wave equation (6.3), which in operator notation takes the
following form

0 _ kg
a—zlu(z» =—75¢ |u(2)) (6.7)
and is formally solved by
ikz0?
lu(z)) = exp (_T) 1e(0)) . (6.8)

This shows that that free propagation of a paraxial field is generated by k6%/2, which is
obviously quadratic in the canonical operators. Since the ray operator 2 has four components,
the number of squares of the operators is four while the number of mixed products is (‘2‘) =6,
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6.2 Canonical description of paraxial optics

which gives a total of ten quadratic forms. They are hermitian and can be chosen as

T\=%, T,=9, T3=3, Ts= %(5619X+19xf€) , Ts= %()Afﬁﬁﬁyff) ,
To=kify, T7=kdd, Ts=kDd,, To=k*9> and Ty =k . (6.9

In terms of these generators, free propagation of a paraxial beam (6.8) is described by

i(fg + T]()) Z

lu(z)) = exp [— %

] [ (0)) - (6.10)

The mixed product T appears in the generator of free propagation through an anisotropic
medium, i.e., a medium in which the refractive index depends on the propagation direction
6. In that case the propagator can be expressed as exp(—ikdTN~'6z/2), where N is a real and
symmetric matrix that characterizes the (quadratic) variation of the refractive index with the
propagation direction. If the anisotropy of the refractive index is not aligned along the J,
and ¥, directions, this transformation involves Tg. A thin astigmatic lens imposes a Gaussian
phase profile. The unitary transformation that describes it can be expressed as

ikaF_lp) 178

> 6.11)

|M0ut> = exp (_
where F is a real and symmetric 2X2 matrix whose eigenvalues correspond to the focal lengths
of the lens while the corresponding, mutually perpendicular, eigenvectors fix its orientation
in the transverse plane. In the general case of an astigmatic lens that is not aligned along the
x and y directions, this transformation involves the generators Ty, T, and T5. A rotation of
the beam profile in the transverse plane can be represented by

ltsor) = €Ty (6.12)

where Tg — T7 = —i(x0/dy — y0/0x) is the orbital angular momentum operator and ¢ is the
rotation angle. The operators T4 and Ts generate transformations that rescale a field profile
along the x and y directions respectively, i.e.,

Uou (%, Y, 2) = (Pliton(2)) = (ple!OEeTir0ReTs () = (o wn(eex, cyy.2) . (6.13)

Physically speaking, such transformations correspond to the deformation of a field profile
due to refraction at the interface between two dielectrics with different refractive indices.

From the canonical commutation relations (6.4), it follows that the commutator of any
two generators (6.9) is a linear combination of the generators. In mathematical terms, the
algebra of the generators is closed, which means that (Tw, T)] = I Ym &kim T, with real structure
constants gy;,,. We shall prove that the unitary transformations (6.6) with the generators (6.9)
form a ten-parameter Lie group. For reasons that will become clear this group is called the
metaplectic group Mp(4).
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6. Geometric phases for astigmatic optical modes of arbitrary order

Since the states |u(z)) are normalized, the expectation values (u(z)|p|u(z)) and (u(z)|@|u(z))
have the significance of the average transverse position and the average propagation direction
of the field. A special property of the unitary transformations in equation (6.6) with the
quadratic generators given by (6.9), is that the Heisenberg transformation U 2 U of the vector
operator " = (p*,8") is linear, so that it can be expressed as

U'({a;) 2 U({a;}) = M({a;})) % , (6.14)

where M({a;}) is the 4 x 4 ray matrix that describes the transformation of aray 27 = (o', 67)
under the optical element that is described by the state-space operator U({a i}). The defining
properties of the position and momentum operators, i.e., that they are hermitian and obey
canonical commutation rules (6.4), are preserved under this unitary Heisenberg transforma-
tion. It follows that M({a}) is real and obeys the identity

M™({a))GM(la;})) =G with G = ( 01 ; ) , (6.15)
where 0 and 1 denote the 2 X 2 zero and unit matrices respectively, so that G is a 4 X 4 matrix.
This identity (6.14) ensures that the operator expectation values (u(z)| 2 [u(z)) of the transverse
position and propagation direction transform as a ray, i.e., trace out the path of a ray when the
field propagates through an optical set-up. This shows how paraxial ray optics emerges from
paraxial wave optics and, as such, the identity (6.14) may be viewed as an optical analogue of
the Ehrenfest theorem in quantum mechanics [49]. The manifold of rays 2 constitutes a phase
space in the mathematical sense. The real and linear transformations on this manifold that
obey the relation (6.15), or, equivalently, preserve the canonical commutation rules (6.4), are
ray matrices. The product of two ray matrices is again a ray matrix so that ray matrices form
a group. The group of real 4 x 4 ray matrices, which preserve the bilinear form 2G4, where
2 and J are ray vectors, is called the symplectic group S p(4, R). The term symplectic, which
is a syllable-by-syllable translation of the Latin “complex” to Ancient Greek and literally
means “braided together”, refers to the fact that a phase space is a joint space of position
and propagation direction (momentum). The 4 X 4 ray matrices in S p(4,R) emerge from
a set of unitary state-space transformations, which, as one may prove from equation (6.14),
constitute a group under operator multiplication. As was mentioned already, this group is
called the metaplectic group Mp(4). For real rays 2,5 € R*, the products 2 TGz and
4TG4 vanish. The product TG does not vanish and is obviously conserved under paraxial
propagation and optical elements. It is called the Lagrange invariant [29, 97] and has the
significance of the phase-space extent of a pair of rays 2 and ». Conservation of this quantity
is an optical analogue of Liouville theorem in statistical mechanics.

The commutators of the quadratic generators T ; and the position and propagation-direction
operators are linear in these operators, so that we can write

—i[T;, 81=J;% , (6.16)
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where the 4 x 4 matrices J; are real. Explicit expressions of these matrices are given in
appendix 6.A. Applying equation (6.14) to infinitesimal transformations immediately shows
that the ray matrix corresponding to the unitary state-space operator in equation (6.6) is given
by

M({a;)) = e 2% (6.17)

Equation (6.16) provides a general relationship between the generators {7';} of the unitary
state-space transformations (6.6) and the generators {J;} of the corresponding ray matrices
(6.17). By applying equation (6.15) to infinitesimal transformations, one finds that the gen-
erators obey JJTG + GJ; = 0. Moreover, from equation (6.16) one may prove that

(7,71, 8] = Ui Jj15 . (6.18)

Using the Lie algebra (T, T)] = iYm gklmf"m we find that [Jy, Ji] = — >, 8kimJm- This proves
that the metaplectic and symplectic groups are homomorphic, i.e., for every U € Mp(4) there
is a corresponding M € S p(4,R). The reverse of this statement is not true; a ray matrix M
fixes a corresponding transformation U up to an overall phase. The homomorphism is an
isomorphism up to this phase.

By using equation (6.15) and the expressions of the unitary transformations (6.10), (6.11),
(6.12) and (6.13) or, equivalently, the relation between (6.16) the sets of generators (T ;) and
{J;} and the definition (6.17) of the ray matrices, one finds the 4 X 4 ray matrices that describe
propagation, a thin lens, a rotation in the transverse plane and the rescaling of a beam profile
due to refraction at the interface between two dielectrics. These ray matrices, some of which
have been given explicitly in sections 2.2 and 3.5, generalize the well-known ABCD matrices
to the case of two independent transverse degrees of freedom [12].

The group-theoretical structure that we have discussed in this section can easily be gen-
eralized to the case of D spatial dimensions. In that case there are 2D canonical operators.
These give rise to 2D + (22D ) = 2D? + D linearly independent quadratic forms, which generate
state-space transformations that constitute the metaplectic group M p(2D). The corresponding
ray matrices obey the 2D—dimensional generalization of equation (6.15) and form the cor-
responding symplectic group S p(2D,R). In case of a single transverse dimension, the three
hermitian quadratic forms can be chosen as x2, k(&9 + 9,%)/2 and k*92. In the analogous
case of the quantum-mechanical description of a particle in three dimensions, the number of
quadratic forms is twenty-one.

6.3 Basis sets of paraxial modes

6.3.1 Ladder operators

As a result of the quadratic nature of the generators (6.9), a, possibly astigmatic, Gaussian
beam profile at the z = 0 input plane of a paraxial optical set-up will retain its Gaussian shape
in all other transverse planes z. This is the general structure of a transverse fundamental
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6. Geometric phases for astigmatic optical modes of arbitrary order

mode. Complete sets of higher-order transverse modes that preserve their general shape under
paraxial propagation and paraxial optical elements can be obtained by repeated application of
bosonic raising operators a;(O) in the z = 0 plane [33]. In the present case of two transverse
dimensions, we need two independent raising operators so that p = 1,2. Both the raising
operators and the corresponding lowering operators a,(0) are linear in the transverse position
and propagation-direction operators p and §. Their transformation property under unitary
transformations € M p(4) follows from the requirement that acting with a transformed ladder
operator on a transformed state must be equivalent to transforming the raised or lowered state,
ie.,

Bgulitou) = A Oliin) = U uin) . (6.19)

out

In view of the unitarity of U, this requires that
al) = 04007 . (6.20)

Since the generators (6.9) are quadratic in the position and propagation-direction operators,
the ladder operators preserve their general structure and remain linear in these operators under
this transformation (6.20). Moreover, their bosonic nature is preserved so that they obey the
commutation rules

[a(2), &}(2)] = 6 (6.21)

in all transverse planes z of the optical set-up if (and only if) they obey bosonic commutation
rules in the z = 0 plane. When the fundamental Gaussian mode |ugy(z)) is chosen such that
the lowering operators give zero when acting upon it, i.e., a;(z)|uo(z)) = a2(z)|ugo(z)) = 0,
the commutation rules (6.21) guarantee that the modes

(&i(z))n (ftl(z))m ltt00(2)) » (6.22)

wtnm(2)) =

nlm!

form a complete set in all transverse planes z. For a given optical system, the complete set of

modes is thus fully characterized by the choice of the two bosonic ladder operators a,(0) in
the reference plane z = 0.

In chapter 2, we have shown that, in the special case of an astigmatic two mirror-cavity,
the ladder operators, and thereby the cavity modes, can be directly obtained as the eigen-
vectors of the ray matrix for one round trip inside the cavity. In the present case of an open
system, we are free to choose the parameters that specify the ladder operators in the z = 0
input plane. A convenient way to do this is to choose an arbitrary ray matrix My € S p(4,R).
This ray matrix can be chosen independent of the properties of the optical system, and of the
ray matrices that describe the transformations of its elements. However, as we shall see, a
necessary and sufficient restriction is that M, has four eigenvectors y for which the matrix
element u'Gu does not vanish. It is obvious that this matrix element is purely imaginary so
that the eigenvectors must be complex. Since M, is real, this implies that for each eigenvector
Hp also i, is one of the eigenvectors so that the eigenvectors come in two complex conjugate
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6.3 Basis sets of paraxial modes

pairs, obeying the eigenvalue relations Mo, = App, and Mou, = Ay, with p = 1,2. With-
out loss of generality we can assume that the matrix elements u;Gu p» are positive imaginary.
Then we can write

wiGup=2i  and  p Gu, =0, (6.23)

where p = 1, 2. The first relation can be assured by proper normalization of the eigenvectors,
whereas the second follows from the antisymmetry of G. By taking matrix elements of the
symplectic identity Mg GM, = G, we find the relations

/l;/lqp;qu = u;qu and /lp/lq,u;G,uq = ,u}T,G,uq . (6.24)
Assuming that the two eigenvalues 1; and A, are different, we conclude that
Gy =0 and  piGu =0. (6.25)

When the eigenvalues are degenerate, i.e., 4; = A, one can find infinitely many pairs of
linearly independent vectors u; and u, that obey these symplectic orthonormality properties.
Following the approach discussed in chapter 2, we now specify the ladder operators in the
z = 0 input plane by the expressions

k : k
a,(0) = \/;/JZGa and  a}(0) = \/;p;Ga. (6.26)

The symplectic orthonormality properties (6.23) and (6.25) of the eigenvectors , and ),
ensure that the ladder operators in the input plane obey bosonic commutation relations (6.21).
From the general transformation property of the ladder operators (6.20), combined with the
Ehrenfest relation (6.14) between U and M, one may show that the ladder operators in other
transverse planes z are given by the same expressions (6.26) when u,, is replaced by u,(z) =
M(2)u,. Here, M(z) is the ray matrix that describes the transformation of ray from the z = 0
input plane to the transverse plane z. It can be constructed by multiplying the ray matrices that
describe the optical elements of which the set-up consists and free propagation between them
in proper order. The fact that the properties (6.23) and (6.25) are conserved under symplectic
transformations € S p(4, R) confirms that the ladder operators remain bosonic in all transverse
planes of the set-up.

Since the modes are fully characterized by the choice of two complex vectors u,, we
expect that the expectation values of physically relevant operators can be expressed in terms
of these vectors. The average transverse position and momentum of the beam trace out the
path of a ray. This implies that the expectation values (i, |0lu,) and (Bl ) vanish.
In appendix 6.B we prove, however, that the expectation values of the generators Tj are, in
general, different from zero and can be expressed as

N 1 1 1\ .
(Ut T jlttym) = 3 {(n + E)MIGJJ'/‘I + (m + z),uéGJjﬂz} . 6.27)

This result generalizes the expression (2.82) of the orbital angular momentum in twisted
cavity modes that we derived in chapter 2. It is noteworthy that these properties of the modes
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6. Geometric phases for astigmatic optical modes of arbitrary order

are fully characterized by the generators J; and the complex ray vectors u,,, which both have
a clear geometric-optical significance.

Finally, it is worthwhile to notice that the results of this section remain valid when the
number of (transverse) dimensions is different. In particular, the same method gives explicit
expressions for complete orthogonal sets of time-dependent wave functions that solve the
Schrodinger equation of a free particle in three-dimensional space.

6.3.2 Degrees of freedom in fixing a set of modes

We have shown that there is a one-to-one correspondence between the defining properties
of a ray matrix, i.e., that it is real and obeys the identity (6.15), and the properties (6.23)
and (6.25) of the complex eigenvectors y, that ensure that the ladder operators (6.26) are
bosonic. This implies that all different basis sets of complex vectors u, that obey these
identities must be related by symplectic transformations, i.e., each of these sets can be written
as {Mu,} U {M,u;}, with M € Sp(4,R) and {u,} U {,u;} the set of complex eigenvectors of a
specific ray matrix My € S p(4,R). Since {Mu,} U {Mu;‘,} constitutes the set of eigenvectors
of MMyM™", it follows that the freedom in choosing a set of complex vectors that generate
two pairs of bosonic ladder operators (6.26) is equivalent to the freedom of choosing a ray
matrix M € Sp(4,R). As a result, the number of independent parameters associated with
this choice is equal to the number of generators of S p(4,R), which is ten. In order to give a
physical interpretation of these degrees of freedom, we follow the characterization discussed
in chapter 5 and decompose the complex ray vectors into two-dimensional subvectors so that
py(2) = (ry(2),1)(2)). In terms of these subvectors, the ladder operators take the following
form

ap(z) = \/;(r;(z)e—t;(z)ﬁ) and  aj(z) = \/;(r,‘,(z)a—t;(z)p), (6.28)

where p = 1,2. An explicit expression of the Gaussian fundamental mode can be given if we
combine the two-dimensional column vectors 7, and 7, into

R(z) = (r1(z), n(2) and T(2) = (11(2), 2(2)) . (6.29)

The objects R and T take the form of 2 X 2 matrices, but since r, and t,, are transverse vectors,
R and T do not transform as such under ray-space transformations € S p(4,R) nor under
transformations on the transverse plane. The symplectic orthonormality properties (6.23) and
(6.25) of the vectors 1, can be expressed as

RI)T(@)-T'@R@ =211 and R'2)T@)-T(@RE) =0, (6.30)

and hold for all values of z. Now, the fundamental transverse mode in plane z can be written

as
_ |k ko'S()p
too(p»2) = ndet R(z) %P (_ 2 ) ’ 6.31)
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6.3 Basis sets of paraxial modes

where S = —iTR™!. As opposed to R and T, S is a 2 x 2 matrix in the transverse plane and
transforms accordingly. It can be checked directly that acting upon |ugy(z)) with the lowering
operators a;(z) and a,(z) gives zero. The fundamental mode (6.31) is properly normalized
and has been constructed such that it solves the paraxial wave equation (6.3) under free prop-
agation. Moreover, one may check that it transforms properly under the transformations of
optical elements. The second relation in equation (6.30) guarantees that S is symmetric. This
is obvious when we multiply the relation from the left with (RT)™', and from the right with
R~!. The real and imaginary parts S, and S; of S respectively characterize the astigmatism of
the intensity and phase patterns. The real part can be written as S, = (—iTR™' +i(R") ' T)/2.
With the first relation in equation (6.30) this shows that RS,R" = 1. This leads to the identity

RR"=§;', (6.32)
which shows that S; is positive definite. As a result, the curves of constant intensity in the
transverse plane are ellipses. Moreover, the fundamental mode is square-integrable. Depend-
ing on the sign of det S;(z) the curves of constant phase in the transverse plane are ellipses,
hyperbolas or parallel straight lines. Under free propagation, S is a slowly varying smooth
function of z. Optical elements, on the other hand, may instantaneously modify the astigma-
tism. The astigmatism of both the intensity and the phase patterns is characterized by two
widths in mutually perpendicular directions and one angle that specifies the orientation of the
curves of constant intensity or phase. The total number of degrees of freedom that specify
the astigmatism, and, thereby, the matrix symmetric S, is thus equal to six.

Two of the remaining four degrees of freedom are related to the nature and orientation
of the higher-order mode patterns. From equation (6.32), we find that R can be expressed as
S0 T, where o is a unitary 2 X 2 matrix. Notice that S; is real and positive so that S;1% s
well-defined. It is illuminating to rewrite the complex ray vectors y; and u, as

-1/2 T
(wom)=(F)=( s TI % oe (5 o )(m a). 63

where i, = (1,0,1, 0)T and iy, =(0,1,0, )T are the complex ray vectors that correspond to
the ladder operators that generate the stationary states of an isotropic harmonic oscillator in
two dimensions. The first matrix in the second right-hand-side of this expression (6.33) is the
ray matrix that describes the transformation of a thin astigmatic lens. It imposes the elliptical
or hyperbolic wave front of the optical modes on the harmonic oscillator functions. The
second matrix has the form of the ray matrix that describes the deformation of a mode due to
refraction. It rescales the modes along two mutually perpendicular transverse directions and
accounts for the astigmatism of the intensity patterns. The third matrix involves the complex
matrix o and obeys the generalization of equation (6.15) to complex matrices. Since it is
complex, however, it is not a ray matrix € S p(4,R). In order to clarify its significance, we
rewrite equation (6.33) in terms of the ladder operators, which are conveniently combined in
the vector operator (&;,a,)". By using the definition if the ladder operators (6.26) and the
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Ehrenfest relation (6.14), the transformation in equation (6.33) can be expressed as

(?):LJER%—TW»=
as 2

o Tq. R g TQ.
—i\/gcrexp (—@)(s}/zmis;‘/ze)exp(@) . (6.34)

The linear combination of the position and momentum operators between the brackets takes
the form of the lowering-operator vector for an isotropic harmonic oscillator in two dimen-
sions. Again, the 2 X 2 matrix S; accounts for the astigmatism of the intensity patterns
by rescaling the ladder operators and, therefore, the modes they generate. The exponential
terms take the form of the mode-space transformation for a thin astigmatic lens and impose
the curved wave fronts. From right to left, the lowering operators (6.34) as well as the corre-
sponding raising operators, first remove the curved wave front, then modify the mode patterns
and eventually restore the wave front again. The 2 X 2 matrix o is a unitary transformation in
the space of the lowering operators a; and a, and transforms accordingly. It arises from the
U(2) symmetry of the isotropic harmonic oscillator in two dimensions and accounts for the
fact that any, properly normalized, linear combination of bosonic lowering operators yields
another bosonic lowering operator. Up to overall phases, to which we come in a moment,
this transformation can be parameterized as a; — 17141 + 7242 and d, — —nja; + N30 with
Iml> + |772|2 = 1. The two obvious degrees of freedom that are associated with the spinor
n = (71,m2)" are the relative amplitude and the relative phase of its components. Analogous
to the Poincaré sphere for polarization states (or the Bloch sphere for spin-1/2 states), they
can be mapped onto a sphere. For reasons that will become clear, this sphere is called the
Hermite-Laguerre sphere [17]. Since 17; and 7, are spinor components in a linear rather than
a circular basis, this mapping takes the following form

iy _j¢ .

m 1 eTCosg+e’2 s1ng

n= == , e 9 . it 9 | (6.35)
n V2| —iez cos 5 +ie”'Z sin

2

where 9 and ¢ are the polar and azimuthal angles on the sphere. The mapping is such that
the north pole (¢ = 0) corresponds to ladder operators that generate astigmatic Laguerre-
Gaussian modes with positive helicity. The south pole (3 = m) corresponds to Laguerre-
Gaussian modes with the opposite helicity while the equator (¢ = x/2) corresponds to
Hermite-Gaussian modes. Other values of the polar angle ¢ correspond to generalized Gaus-
sian modes [44]. The azimuth angle ¢ determines the transverse orientation of the higher-
order mode patterns. Since paraxial optical modes are invariant under rotations over 7 in the
transverse plane, the mapping in equation (6.35) is such that a rotation over ¢ on the sphere
corresponds to a rotation of the mode pattern over ¢ = ¢/2.

The unitary matrix that describes the ladder operator transformation corresponding to the
spinor 7 is constructed as

m@=(m*%), (6.36)
-, M
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6.3 Basis sets of paraxial modes

where the second row is fixed up to a phase factor by the requirement that o) must be unitary.
With this convention, the two rows of sigma correspond to antipodal points on the Hermite-
Laguerre sphere. Completely fixing the matrix o € U(2), however, requires four independent
degrees of freedom. The remaining two, which are not incorporated in 7, are phase factors.
Any matrix o € U(2) can be written as

ix1 0
0'=( 60 e )0'0(7]). (6.37)

The phase factors exp(iy,) correspond to overall phases of the vectors y, and, therefore, of
the ladder operators (6.26). The vectors 1, can be written as

up =€y, (S,m) , (6.38)

where p = 1,2 and v,(S, ) is completely determined by S and 5 according equation (6.33),
o being replaced by o(n). Although the vectors v; and v, obey symplectic orthonormality
conditions (6.23) and are, therefore, not independent, the phases y| and y, are independent.
From equation (6.37) and the fact that R = S/ 25T it is clear that the argument of det R
is equal to y;| + x2 so that the overall phase of the fundamental mode (6.31) is given by
—(x1 + x2)/2. The overall phases of the two raising operators are respectively —y; and —y»,
so that the phase factors in the higher order modes |u,,,(z)) are given by exp(—iy ) with

1 1
Xnm = (n + E)Xl + (m + 5))(2 . (6.39)

In a single transverse plane, such overall phase factors do not modify the physical properties
of the mode pattern. The evolution of these phase under propagation and optical elements,
however, can be measured interferometrically.

The astigmatism of the modes, as characterized by the 2 X 2 matrix S, can be modified in
any desired way by appropriate combinations of the optical elements that we have discussed
in section 6.2. As will be discussed in section 6.5, the degrees of freedom associated with
the spinor 1 can be manipulated by mode convertors and image rotators. Although we shall
see that variation of the phase factors exp(ix,) is, in general, unavoidable when the other
parameters are modified, we show here that it is possible to construct a ray matrix € S p(4,R)
that solely changes these phase factors. Such a ray matrix is defined by the requirement that

My (0D (11 o iy 115 ) = (1 opn e™ipry ey ) (6.40)

so that the vectors p, and (i, are eigenvectors of M. The corresponding eigenvalues are
unitary. In terms of R and T this relation can be expressed as

R R R R\(C 0
MX({XP})(T T ):(T T )(0 c) (6.41)

o =( er 0 ) . (6.42)

where
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By using that
-1
R R* 1{-T" R
(T T*) :Z( T —RT)’ (643)

which follows directly from the identities in equation (6.30), we find that M, can be expressed

as
1R R* cC o -Tf R
MX({X‘”})_Z_Z(T T )( 0 C* )( TT —RT)_
l( -RCT" + R*C*TT RCR' - R*C*RT ) (6.44)
2i\ -TCT" +T*C*TT TCR'-T*C*RT '
This ray matrix adds overall phases exp(ix,) to the eigenvectors p,, and y;,. It is real and
one may check that it obeys the identity (6.15) so that it is a physical ray matrix € S p(4, R).
In this section, we have argued that the number of degrees of freedom associated with
the choice of two pairs of ladder operators that generate a basis set of modes in a transverse
plane z is equal to number of generators of S p(4,R), which is ten. We have shown that six
of those are related to the astigmatism of the modes as characterized by a the complex and
symmetric 2 X 2 matrix S. Two of the other four are angles on the Hermite-Laguerre sphere
that characterize a spinor 7, which determines the nature and orientation of the higher-order
modes. The remaining two are overall phases of the ladder operators. All these degrees of
freedom can be manipulated in any desired way by choosing a suitable ray matrix € S p(4,R).

6.3.3 Gouy phase

In the limiting case of non-astigmatic modes that propagate through an isotropic optical sys-
tem the 2 X 2 matrix S is a symmetric matrix with degenerate eigenvalues so that it can
be considered a scalar s = s; + is;. If we choose op = 1, the higher-order modes are
Hermite-Gaussian. In that case, the complex ray vectors are given by y; = (7,0, 1, 0)T and
uy = (0,r,0, NT, with r,t € C. The symplectic normalization condition (6.23) implies that
r*t — t*r = 2i. The real part s, of s = —it/r determines the beam width w = 2/(ks,) of
the fundamental mode while the imaginary part s; fixes the radius of curvature of its wave
fronts according to R = 1/s;. Under free propagation over a distance z, the vectors u; and w,
transform according to

r+zt 0
0 r+zt
ui(z) = ; and () = 0 (6.45)
0 t

The parameters r, t and s remain scalar and free propagation does not introduce an overall
phase difference between p; and u; so that n, or, equivalently o, is independent of z. Without
loss of generality we can choose z = 0 to coincide with the focal plane of the mode, which
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implies that s € R so that r*t = —¢*r = i. Since s,, and, therefore, R = os; cannot pick up a
phase, we find that

Xx(@) = x(0) = arg(ﬂ) = arctan(t—z) = arctan(i) , (6.46)
r r IR

where zgr = ir/t is the Rayleigh range. This is the well-known Gouy phase for a Gaussian
mode [12]. Since the vectors w; and w, pick up an overall phase y(z), the raising operators
pick up a phase —y(z). The phase shift of the higher-order modes (6.22) is then given by
exp(—i(n + m + 1)y) and depends on the total mode number N = n + m only. As a result of
this degeneracy, the same expression holds in the non-astigmatic case with oy # 1. In that
case, it is still true that the components of r are independent of z.

Generalization to astigmatic modes is straightforward only if the modes have simple astig-
matism and if the orientation of the higher-order mode patterns is aligned along the astigma-
tism of the fundamental mode. In that case, the vectors u, pick up different Gouy phases
and the components of 7 are independent of z. As will be discussed in section 6.5, this is not
true in the case of non-astigmatic modes that propagate through an optical set-up with sim-
ple astigmatism. In the more general case of modes with general astigmatism that propagate
through an arbitrary set-up of paraxial optical elements, the z dependence of S depends on 7
and vice versa [17]. In this case no simple expressions of the Gouy phases can be derived.
The phase in equation (6.39) may be viewed as the ultimate generalization of the Gouy phase
within paraxial wave optics.

6.4 The geometric interpretation of the variation of the phases y,,,

6.4.1 Evolution of the phases y

In this section we show that variation of the phase differences y, between y,, and v,, (6.38) is,
in general, unavoidable under (a sequence of) mode transformations that modify the degrees
of freedom associated with S and 7. From the discussion in the previous section it is clear
that the generalized Gouy phases were defined such that they vary only under transformations
that involve free propagation. However, for later purposes, it is convenient to formulate the
description of mode transformations that give rise to phase shifts in a slightly more general
way.

Suppose that the unitary state-space transformation that describes (a part of) a trajectory
through the parameter space is given by U(¢) = exp(—iT¢), where T is a (linear combination
of the) generator(s) defined in equation (6.9) and ¢ is a real parameter that parameterizes
the trajectory. In this case, the { dependent ladder operators (6.20) obey the anti-Heisenberg

equation of motion

A1)
a9 7] = —i% .

In terms of the complex ray vectors p,({) and the ray matrix M({) = exp(=J¢) that cor-
responds to U({) according to relation (6.14), this equation of motion takes the form of a

(6.47)
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symplectic Schrodinger equation and can be expressed as

8{ =Jup(Q) - (6.43)
Substitution of 1, ({) = exp(ix,)v,({) yields after dividing by exp(ix )
6
o -V + =Jvp(0) . (6.49)

By multiplying from the left with v,T,G, using the normalization condition v,T,va = 2i and
rearranging the terms we find that

Np _ 1 -

% =3 {vava + vaa—é, . (6.50)
The generator J represents a conserved quantity. Hence, the first term between the curly
brackets does not depend on the parameter £ and the above equation (6.50) can be integrated
to obtain

(():l (vTGJv)z+f de'y ‘Ga 6.51)
Xpld ) D r)¢ a(/ ' :

The first term between the curly brackets constitutes a dynamical contribution to the phase
shift and arises from the fact that J corresponds to a constant of motion. The second term,
on the other hand, relates to the geometry of the complex ray space and is the natural gener-
alization of Berry’s geometric phase to this case. In the next section, we derive an equivalent
expression from which the geometric significance of the phase shifts (6.51) is more obvious.

6.4.2 Analogy with the Aharonov-Bohm effect

In quantum mechanics, it is well-known that the coupling of a particle with charge g to the
magnetic vector potential A(r) gives rise to a measurable phase shift (g/%) fc A - dr of the
wave function when the particle moves along a trajectory C = r(¢). This effect occurs even
when the magnetic field B = V X A vanishes everywhere along the trajectory and is known
as the Aharonov-Bohm effect [98].

The physical properties that are associated with the wave function that describes a particle
in quantum mechanics are not affected by the transformation ¥ (r, f) — exp(i¢(r))y(r, ). The
Schrodinger equation is obviously not invariant under this local U(1) gauge transformation.
When gauge invariance of the Schrodinger equation is imposed, the vector potential A(r)
arises as the corresponding gauge field. In this picture, the Aharonov-Bohm phase is due to
the coupling to a gauge field, the conserved charge g being the coupling constant. As such it
is a direct consequence of the U(1) gauge invariance of quantum electrodynamics.

In this section, we point out an analogy between the generalized Gouy phase and the
Aharonov-Bohm effect. This gives some new insights in the nature and origin of this ge-
ometric phase and allows us to derive an expression of the phase (6.51) from which its
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origin in the geometry of the underlying parameter space is obvious. It is convenient to
combine the parameters that characterize the eight degrees of freedom that are associated
with the matrix S and the spinor 7 into a vector R = (R, R, ..)T. The corresponding dif-
ferential operator, which is a vector in the eight-dimensional parameter space, is defined as
Vg = (0/0R1, /Ry, .)".

The physical properties, for example those in equation (6.27), of the transverse mode
fields (6.22), which are generated by the ladder operators constructed from the vectors u,,
are not affected by transformations of the type

pp = By, (6.52)

where p = 1,2. This symmetry property can be thought of as local U(1) ® U(1) gauge in-
variance. The ray matrix € S p(4,R) that describes such gauge transformations (6.52) figures
in equation (6.44). As shown in appendix 6.C, the two corresponding real generators J,, can
be constructed from the eigenvectors u,. The vector y; is an eigenvector of J,, with eigen-
value —i. Since J,, is real, the complex conjugate vector yj is an eigenvector of J,, with
eigenvalue i. Moreover, J, 1y = Jy, 5 = 0. Similarly, u, and 1 are eigenvectors of J,, with
eigenvalues —i and i and J,,u; = J,,u] = 0. Since invariance under the gauge transformation
(6.52) is a local and continuous symmetry, it gives rise to conserved Noether charges. The
gauge transformations are generated by two different generators, hence there are two Noether
charges, which can be expressed as v;GJ oV /2 = 1, where the factor 1/2 arises from the fact
that a symplectic vector space is a joint space of position and momentum and where we have
used that J,, v, = —i and v:,va = 2i. In appendix 6.C, we prove that the corresponding
state-space generators T)(p can be expressed as (&;& p+a ,,&,T,) /2 so that the charges of a mode
(6.22) are given by (unm|f‘)(l |ty = (n+ 1/2) and (unm|f‘m|unm) = (m+ 1/2). Since the gauge
transformation in equation (6.44) is constructed from the eigenvectors y,, it varies through-
out the parameters space. As a result, the generators f)(p can be constructed only locally and
vary through the parameter space according to the ladder-operator transformation in equation
(6.20). However, since the modes also vary, it follows that Noether charges (n + 1/2) and
(m + 1/2) of the modes |u,,) are globally conserved.
In terms of R and 61—\;, the equations of motion of the vectors yu,, (6.48) can be rewritten as
(V'Rl‘p) ) (2—? =
These equations are obviously not invariant under the gauge transformations (6.52). Imposing
gauge invariance yields the modified equations of motion

—Ju, . (6.53)

(Vg +id,)v,)- % =-Jv,, (6.54)

where the gauge fields A » are vector fields in the parameter space of R that are defined by
their transformation property under the gauge transformations (6.52)

Ay, — A, ~Vau, . (6.55)
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With these transformation properties, the equation of motion (6.54) is manifestly invariant
under the gauge transformations (6.52). The general solution of this equation (6.54) can be
expressed as

= pye kAR (6.56)

where C is a trajectory 7_?)(4“ ) and y,, solves the equation of motion without the gauge field
(6.53). In full analogy with the Aharonov-Bohm effect, this shows that the phase difference
between u,, and v, is due to the fact that the latter is coupled to the gauge field A_),,. Since
we have defined the vectors u,, so as to include the appropriate geometric-phase factor while
they are not coupled to the gauge fields, the coupling of v, to the gauge fields removes the
geometric phase rather than introducing it. The geometric origin of the phases is evident in
that they are determined only by the trajectory C and do not depend on the velocity 673/ ac.
By using equation (6.54) they can be expressed as

- oR
fC f d¢’ {v,,GJv,, + (V;GV(RV],) . 0—4} , (6.57)

which is in obvious agreement with equation (6.51).

In analogy with the Aharonov-Bohm effect, the Noether charges V;G]Xp vp/2 = 1 deter-
mine the strength of the coupling of the vectors y,, to the gauge fields A »- This is consistent
with the fact that the vectors v, pick up phases y,. The Noether charges of the modes (6.22),
however, are equal to n + 1/2 and m + 1/2 and depend on the mode numbers n and m. As
a result, the modes |u,,,) couple differently to the (corresponding state-space) gauge fields
and, therefore, experience different phase shifts. This is in obvious agreement with equation
(6.39).

The Noether currents (VI,G o V! 2)6@/6( = é)ﬁ/ 0¢ are uniform throughout the param-
eters space of R. 1t follows that the “physical” fields or Berry curvatures Fog = 0,(A))s —
0p(Ap)a, Where the indices @ and 8 run over the parameter-space vector components, are con-
stant so that the gauge fields A p(ﬁ) cannot possess any non-trivial dynamics. Attributing the
generalized Gouy phases )/, to coupling to gauge fields A p» which do not have any dynamical
properties in their own rights, may seem a bit tautological. On the other hand, the analysis
discussed here shows that the structure that underlies the generalized Gouy phase shifts (6.39)
is that of a gauge theory. In this picture, the appearance of phase shifts under propagation
through an optical set-up is the unavoidable consequence of the U(1) x U(1) gauge invariance
of the dynamics of paraxial optical modes, or, equivalently, of the fact that the mode charges
n+ 1/2 and m + 1/2 are conserved under state-space transformations € Mp(4,R).

The connection between the gauge invariance as discussed here does not depend on the
specific structure of the symplectic vector space. Our results as well as the Aharonov-Bohm
effect indicate that there is a more general connection between local gauge invariance and the
appearance of geometric phases, see, for instance, reference [99].
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6.5 Geometric phases for non-astigmatic modes

6.5.1 Ray matrices on the Hermite-Laguerre sphere

A particulary interesting limiting case of the geometric phases that we discuss in this chapter,
are the phase shifts due to mode conversions on the Hermite-Laguerre sphere, each point on
which characterizes a basis set of higher-order modes. We focus on non-astigmatic modes
in their focal planes so that S can be considered a real scalar s € R. We shall construct ray
matrices and corresponding state-space operators that solely modify the degrees of freedom
associated with the Hermite-laguerre sphere and study the geometric phases arising from such
transformations.

The azimuth angle ¢ on the Hermite-Laguerre sphere specifies the orientation in the trans-
verse plane of the set of higher-order modes. It can be modified by the rotation operator
exp(—ip$3), where §3 = k(ﬁf?y - jzﬁx) /2 = (Tg = T7)/2 is the corresponding generator. The
factor 1/2 accounts for the fact that a rotation angle ¢ on the Hermite-Laguerre sphere corre-
sponds to a ¢ = ¢/2 in the transverse plane. For reasons that will become clear, the ray matrix
that describes a rotation in a plane parallel to an equatorial plane on the Hermite-Laguerre
sphere is denoted Mj3. It takes the following form

cos(%) —sin(%) 0 0
o P(f) 0 _ sin(f) cos(f) 0
e R L) o I S Y R

where X3 = (Jg — J7)/2 is the corresponding ray-space generator and P € SO(2) is a 2 X 2
rotation matrix. When this ray matrix acts on an arbitrary pair of complex ray vectors y,, that
obey the identities (6.23) and (6.25), the matrix S transforms according to S — PSPT. In
the present case of scalar S, this transformation only modifies the orientation of the mode
patterns and does not affect S.

Another class of transformations that solely act upon the Hermite-Laguerre sphere are
those that describe mode converters. Mode converters consists of a pair of astigmatic or
cylindrical lenses [100]. The distance between the lenses and their radii of curvature are cho-
sen such that the Gouy phase shift introduces a phase difference ¥} between the eigenvectors
w1 and u; of the transformation of the mode converter. If the input and output plane of the
mode converter are chosen such that they respectively coincide with focal planes of the in-
cident and outgoing modes and if the modes are matched to the mirrors so that S is scalar
and equal to 1 in appropriate units determined by the mirrors, the eigenvectors of the mode
converter are given by f; = (1,0, 4, 0)T and = (0,1,0, )T and their complex conjugates.
The ray matrix that describes the transformation that introduces a phase difference ¢} between
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[ and fi, can then be constructed as
cos (%) 0 sin (%) 0
0 cos(%) 0 —sin (%)
—sin (% 0 cos(% 0
0 sin (%) 0 cos (%)

M) = e ™ = , (6.59)

—~
(S1S3
~—

where X = k(J; — J2)/4 + (Jo — J10)/(4k) is the corresponding generator. Again, one may
prove easily that this transformation does not affect the astigmatic degrees of freedom if S
is scalar and equal to 1. The corresponding state-space generator is given by §; = k(T —
T2)/4 + (To = T10)/(4k) = k(3> = 3 + 95 = 5)/4.

So far, we have constructed two of the three ray matrices that only modify the nature and
orientation of the higher-order modes. The third corresponds to a mode converter in a basis
that is rotated over /4 in the transverse plane, or, equivalently over n/2 in the equatorial
plane of the Hermite-Laguerre sphere. The ray matrix that describes such a transformation
can be obtained as

My(9) = MS(”/4)M1(19)M3_1(71'/4) — ¢ %

cos(%’) 0 0 sin(g)

0 cos(ﬁ) sin(ﬂ)

0 _Sm(z%) oy 259) O PG
—sin(g) 0 0 cos(%)

where X, = kJ3/2 + Jg/(2k) is the corresponding generator. The corresponding state-space
generator is given by §, = kT5/2 + Ts/(2k) = k(xy + 19x19y)/ 2. Since M3 and M, do not affect
the astigmatic degrees of freedom if S is scalar and equal to 1, it follows that the same is true
for M;.

By using the canonical commutation relations (6.4) and the definitions of the generators
$1, $» and §3 in terms of the canonical operators, one may easily show that the generators
obey an S U(2) algebra

[$1, 82] = i83 (6.61)

and cyclic permutations. The ray-space generators obey
[Z1,22] =23 (6.62)

so that the matrices i¥, iX, and iX3 also constitute an S U(2) algebra. Thus we have obtained
both a metaplectic and a symplectic realization of an S U(2) algebra. This proves the well-
known fact that S U(2) is a subgroup of M p(4) and, therefore, of S p(4,R).

6.5.2 Spinor transformations

Since the generators X, ¥, and X3 constitute an S U(2) algebra, an arbitrary pair of ray
vectors u, on the Hermite-Laguerre sphere can be expressed as a linear combination of the
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eigenvectors of one of these generators. In analogy with section 6.3, where we introduced the
components of 7 as the coefficients of the expansion of an arbitrary bosonic lowering operator
in terms of the two lowering operators for a harmonic oscillator in two dimensions, we can
write an arbitrary pair of complex ray vectors on the Hermite-Laguerre sphere as

M1 =My + 1o and o = -y + e, (6.63)

where i, = (1,0,1, 0)" and i = (1,0,1, 0)T are eigenvectors of X; with eigenvalues —i and i
respectively, (they are also eigenvectors of Jyo = k(J;1+J2)/4+(Jo+J10)/(4k) with degenerate
eigenvalues 7). Notice that, analogous to the construction in section 6.3 and the mapping in
equation (6.35), the components of 7 are spinor components in a linear rather than in a circular
basis. The symplectic orthogonality properties (6.23) and (6.25) require that the expansions
in equation (6.63) do not involve the complex conjugate vectors i, Moreover, they ensure
normalization of 5 such that |, > + || = 1.

Since the ray matrices M, M, and M3, as defined in equations (6.59), (6.60) and (6.58),
only modify the degrees of freedom associated with 7, these transformations can be expressed
in the two-dimensional spinor space. In particular, the transformation described by M3 (6.58)
can be expressed as

0 T 0 R D PR

3 =( 9 N ) (6.65)

is the corresponding generator. Similarly, the transformations (6.59) and (6.60) of mode
converters can be rewritten in terms of the spinor components as

i
R I T
m 0 e m m

( m )_)( Cos(%) isin(l;%) J( m ):e_,-m/z( m ) ’ 6.67)

m isin(i) cos(i) mn m

where the corresponding spinor generators are given by

-1 0 0 -1
T1—( 0 1) and T2—( -1 0 ) (668)

where

and

As a result of the fact that we have the defined the spinor components with respect to the
eigenvectors of X; rather than of X3, the spinor generators 7y, 7, and 73 take the form of Pauli
matrices in a rotated basis. They also form an S U(2) algebra, i.e., [7], 72] = it3 and cyclic
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permutations. This algebra is closed and the matrix transformations of 7 on the Hermite-
Laguerre sphere that are generated by 7y, 7, and 73 are analogues of Jones matrices in polar-
ization optics.

Since the complex vectors fi; and fi, are eigenvectors of X; with eigenvalues —i and i
respectively, the spinor corresponding to a point (¢, #) on the Hermite-Laguerre sphere can
be expressed as

n(¢,0) = (_l')1/2e—i(¢+n/2)‘rse—i9ﬂ eiﬂ'rz/2( (1) ) , (6.69)

where the factor (—i)!/? = exp(—in/4) is introduced to make this identity consistent with
equation (6.35).

6.5.3 Mode-space transformations

In dimensionless notation, the lowering operators corresponding to the complex ray vectors
fi, can be expressed as

R k.o . ko
b, = \/;(fc+iﬁx) and b, = \/;(jz+iﬁy). (6.70)

The corresponding raising operators b! and B; generate the set of harmonic-oscillator states
in two dimensions |v,,) according to equation (6.22), the raising operators being replaced by
the harmonic-oscillator raising operators. This set corresponds to 7 = (1,0)T, which is on
the equator of the Hermite-Laguerre sphere. The antipodal point n = (0, 1)T gives rise to the
same set of modes |v,,,), the mode indices being interchanged. The modes corresponding to
an arbitrary point on the Hermite-Laguerre sphere can be expanded as

()} = (55 + m3b])" (=mabf + mb})” Ivoo) - 6.71)

n'm!

By using that [b], 13:(] = 0, this can be rewritten as

m

d (n+m—p—ql(p+g!(n\m
[t (7)) = ZZ nlm! (p)(q) *

p=0 g=0
(nT)n_p(n;)p(_UZ)m_q(nl)q|v(n+m—p—q)(p+q)> 5 (672)

which expresses the transformed state |u,,,(17)) as an expansion in two-dimensional harmonic-
oscillator states of the same order N = n+m. Conversely, this result shows that the subspaces
of modes of fixed order N = n + m are closed under transformations (mode conversions) on
the Hermite-Laguerre sphere.

In general, the subspace of modes of fixed order N is an N + 1-dimensional subspace
of the Hilbert space of transverse states of the field. The unitary transformations on this
subspace form the group SU(N + 1). Only in the special case of first order modes, the
most general unitary transformation is equivalent to the S U(2) transformation that figures
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Figure 6.1: Intensity and false-color phase patterns of the modes that lie in the ¢ = 0 plane
of the Hermite-Laguerre, or, equivalently, Poincaré sphere for the non-astigmatic first-order
modes |up;). The north and a south poles (¢ = 0, 7) respectively correspond to Laguerre-
Gaussian modes with/ =n—m = —1 and [ = m —n = 1. On both poles p = min(n,m) = 0.
The modes on the equator (¥ = m/2) are Hermite-Gaussian while modes for intermediate
values of ¢} are generalized Gaussian modes. The color coding in the phase patterns is such
that the color changes in a continuous fashion from red via yellow, green, blue and purple
back to red when the phase changes from O to 2.
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6. Geometric phases for astigmatic optical modes of arbitrary order

in equation (6.72). It follows that the subspace of first-order modes is isomorphic to the
Hermite-Laguerre sphere for the ladder operators. This sphere, which is an analogue of the
Poincaré sphere for polarization states [93], as well as the intensity and phase structure of
some of the modes that lie on it, is plotted in figure 6.1. In the general case of N > 1,
SU(2) is a subgroup of the group S U(N + 1) of unitary transformations on the subspace of
modes of fixed order N. This accounts for the fact that only specific transformations on the
Hilbert space of transverse states of the field can be achieved by mode converters and image
rotators. In case of N > 1, the transformation in equation (6.72) gives rise to a sphere for each
combination (n, m) of the transverse mode numbers. Since |u,,, (7)) and |u,,,(17)) correspond
to antipodal points on the same sphere, it follows that, depending on the parity of N, only
(N + 2)/2 (for even N) or (N + 1)/2 (for odd N) of these spheres are independent, i.e., not
related by rotations over . All of these spheres are isomorphic to the Hermite-Laguerre
sphere for the ladder operators. Since, in general, the modes on a given sphere cannot be
expressed as a linear combination of the modes on the poles, it follows that, for N > 1, these
spheres are not Poincaré spheres in the strict sense. The two spheres for second-order modes,
as well as the intensity and phase patterns of some of the modes that lie on them, are plotted
in figure 6.2.

The mode-transformation in equation (6.72), together with the matrix representation of
the spinor transformation that we have discussed above, provides a matrix description of
beam transformations of non-astigmatic optical modes of arbitrary order. It generalizes the
description discussed in references [101, 102], which applies to first order modes.

By inverting the relations in equation (6.70) and their hermitian conjugates, the posi-
tion and propagation-direction operators can be expressed in terms of the ladder opera-
tors. Using this result, the state-space generators can be written as §; = (l}ii)x - 13;13},)/2,
§ = (B,TCIA)y + lAJXB;)/Z and §3 = (l;if)y - BXB;)/ (2i), which is a Schwinger representation of
the SU(2) algebra. Here, the S U(2) algebra (6.61) is ensured by the boson commutation
relations (6.21). This representation provides a complete and closed description of the modes
and transformations on the Hermite-Laguerre sphere in terms of the ladder operators.

6.5.4 Geometric phases and the Aharonov-Bohm analogy

The spinor 7, as defined by equation (6.35), is completely determined by the azimuthal and
polar angles on the Hermite-Laguerre sphere. The reverse of this statement is not true; choos-
ing a point on the Hermite-Laguerre sphere fixes a properly normalized spinor £7¢ = 1 up
to an overall phase factor so that & = exp(iy)n(¢, &) with y € R. In the limiting case of
transformations on the Hermite-Laguerre sphere, it follows from equation (6.63), or from the
equivalent expansion in terms of the lowering operators in equation (6.70), that the two rais-
ing operators aI and a§ pick up equal but opposite phases —y and y respectively. The modes
[t (7)) (6.71) pick up a phases exp(—ixp,) with

Xom = (n—m)y . (6.73)
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6.5 Geometric phases for non-astigmatic modes

Such phases do not modify the physical properties of the modes but their variation under (a
sequence of) transformations on the Hermite-Laguerre sphere can be measured interferomet-
rically. Analogous to the discussion in section 6.4, we shall show that the variation y has a
geometric interpretation in terms of the Hermite-Laguerre sphere. We consider (a sequence
of) state-space transformations that only modify the degrees of freedom associated with the
nature and orientation of the higher-order modes. The evolution of the ladder operators un-
der such transformations is described by the anti-Heisenberg equation of motion (6.47) when
T is replaced by a generator §/2, which is a linear combination of §;, §, and §3, and £ pa-
rameterizes a trajectory on the Hermite-Laguerre sphere. The factor 1/2 in the generator is
introduced for notational convenience. In terms of a spinor &, the equation of motion (6.48)
takes the following form

9 itg(@)

a2

(6.74)

where 7 is the spinor generator that corresponds to §. It is a linear combination of 7, T, and
73. The spinor £ picks up the appropriate phase factor. Substitution of & = exp(iy)n gives

oy  on _ _im

6.75
n— o ; ) (6.75)
Using that n'5 = 1, this result can be rewritten as
O _..0n nit (6.76)

o ~"Mar T 2

The generator 7 represents a constant of motion so that this result can be integrated to yield

0
x@ =T Cagy 30 (677)

This result can also be obtained directly from substitution of the complex ray vectors u,,,
as defined by equation (6.63), in the general expression of the geometric phase shift (6.51).
The first term in equation (6.51) arises from the fact that 7/2 represents a conserved quan-
tity. The second term constitutes the well-known geometric phase shift that is experienced by
a spinor when it is transported along a trajectory on the Hermite-Laguerre sphere. Anal-
ogous to the discussion in section 6.4, both contributions are geometric in that they are
fully determined by the trajectory on the Hermite-Laguerre sphere but only the second re-
lates to the geometry of the Hermite-Laguerre sphere. It is natural to use spherical coordi-
nates R = (rsin(P) cos(p), r sin(F) sin(p), rcos(ﬁ*))T to parameterize points on the Hermite-
Laguerre sphere. For a closed trajectory that consists of geodesics, the first contribution in
equation (6.77) vanishes [103]. Then, the phase shift (6.77) can be rewritten as

"z 6 2 Y 37% + (= =
_ ;30N ot _ i
X—lfodzna—zl—ljo‘dzr](V,ﬁn)-a—z,—lggn (V,ﬁn)-dﬂ, (6.78)
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6. Geometric phases for astigmatic optical modes of arbitrary order

Figure 6.2: Intensity and false-color phase patterns of the modes that lie in the ¢ = 0 plane
of two the Hermite-Laguerre spheres for non-astigmatic second-order modes | ) (this page)
and |up;) (next page). In the figure on this page, the north and south poles (3 = 0, ) re-
spectively correspond to Laguerre-Gaussian modes with [ = n —m = m —n = 0 and
p = min(n,m) = 0 while the modes on the equator (3 = n/2) are Hermite-Gaussian.
The intermediate modes are generalized Gaussian modes. In the figure on the next page
the north and south poles (9 = 0, ) respectively correspond to a Laguerre-Gaussian mode
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B

A
m >-H
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(continued) with l = n—m = -2 andl = m —n = 2. In both cases p = min(n,m) = 1.
Again, the modes on the equator (¥ = 7/2) are Hermite-Gaussian while generalized Gaussian
modes appear for intermediate values of ¢. The color coding in the phase patterns is such
that the color changes in a continuous fashion from red via yellow, green, blue and purple
back to red when the phase changes from 0 to 2zx. Both spheres are carbon-copies of the
Hermite-Laguerre sphere on which every point characterizes two pairs of bosonic ladder

Y
A

v

operators.
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6. Geometric phases for astigmatic optical modes of arbitrary order

where 673 is the gradient in spherical coordinates and C = ﬁ(z) is a closed trajectory on the
Hermite-Laguerre sphere. In the Aharonov-Bohm picture, this phase shift is due to the cou-
pling of 1 to a gauge field that arises from the U(1) gauge invariance of the spinor dynamics.
Comparison with equation (6.56) shows that this gauge field is given by

A=n"(Van) . (6.79)

By using the gradient in spherical coordinates and equation (6.35) A can be written as

5> icot?d
A= (6.80)
2r
The corresponding “magnetic” field or Berry curvature is given by
=2 - ed i
B=VixA=-— 6.81
2 72 (6.81)

and is homogeneous on the Hermite-Laguerre sphere. It may be viewed as the field of a
monopole located at the center of the Hermite-Laguerre sphere. By the virtue of Stokes’
theorem, the geometric phase can be expressed as

. - =3 . - . e d g 1 1
,\/:zsgrﬂ(vﬁn)-di{:zSEA-d??:zSEBmZS:ESEdQ:EQ, (6.82)
C C S S

where S is the enclosed surface on the Hermite-Laguerre sphere and Q is the solid angle.
This result establishes the well-known connection between the geometric phase acquired by
a spinor that is transported along a closed trajectory on the Hermite-Laguerre sphere and the
enclosed solid angle Q on the sphere. Since we have defined the phase picked up by the
higher-order modes as exp(—iyun,) With y,, = (n — m)y, the result in equation (6.82) has the
opposite sign of the analogous result for the standard case in which a spinor with positive
helicity picks up a phase shift exp(iy).

The phase shift the modes |v,,,), as given by equation (6.73), depends only on the dif-
ference between the mode numbers n and m. In the Aharonov-Bohm picture, n — m has
the significance of the topological charge of a non-astigmatic mode |v,,,) and determines the
strength of the coupling to the (corresponding state-space) gauge field. For modes with equal
mode numbers n = m, the topological charge vanishes so that they do not couple to the
gauge field and, therefore, do not experience a phase shift. The orbital angular momentum
in non-astigmatic modes |v,,,) can be expressed as (n — m)cos ¢ [17] and is proportional to
their topological charge. It follows that in the case of a non-astigmatic mode, the exchange
of orbital angular momentum between the mode and the set-up through which it propagates
is necessary for a non-trivial geometric phase to occur [96, 95].

In this section, we have studied the geometric phase that arises from (cyclic) transfor-
mations on the Hermite-Laguerre sphere for higher-order modes. We have constructed ray
matrices that solely modify the nature and orientation of the higher-order modes and derived
the corresponding spinor and mode-space transformations. In terms of the spinor i the phase
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shift due to a (cyclic) transformation takes the familiar form of the geometric phase for a
spinor. In experimental realizations, mode converters consist of pairs of astigmatic lenses in
which the degrees of freedom associated with S are employed to achieve mode conversion
[100]. As a result, there will be an additional contribution to the phase shift of the modes.
This can be compensated for by measuring the interference between fields that have passed
the same sequence of mode converters and image rotators but with different relative orienta-
tions [94].

6.6 Concluding remarks

We have explored the parameter space that is associated with the choice of a complete and
orthonormal set of paraxial optical modes in the transverse plane. Modes are defined as
solutions of the paraxial wave equation (6.3) that are fully characterized by a set of mode pa-
rameters whose variation through a paraxial optical set-up is described by the 4 X4 ray matrix
M(z), which describes the transformation of a ray r = (p, 6)" from the z = 0 input plane of the
set-up to the transverse plane z. Complete sets of transverse modes can be obtained from two
pairs of bosonic ladder operators. The ladder operators are fully specified by two complex ray
vectors u, with p = 1,2, which characterize the mode parameters. Their variation through
an optical set-up, and, thereby, the variation of the ladder operators, can conveniently be ex-
pressed in terms of M(z). We have argued that there is a one-to-one correspondence between
the algebraic properties of the ladder operators and the defining properties of a physical ray
matrix € S p(4,R), i.e., that it is real and obeys the identity (6.15). It follows that all sets
of modes can be expressed in terms of two pairs of ladder operators and, moreover, that the
freedom in choosing a set of modes is equivalent to the choice of an arbitrary ray matrix
My € S p(4,R). Since S p(4,R) is a ten-parameter Lie group, the number of free parameters
associated with this choice is equal to ten. A possible physical characterization of these de-
grees of freedom involves a symmetric 2 X 2 matrix S, which characterizes the astigmatism
of the phase and intensity patterns of the fundamental mode, and a spinor 7, which specifies
the nature and orientation of the higher-order modes. The matrix S is fully specified by six
parameters while characterization of n requires two independent parameters, which can be
mapped on a Poincaré sphere. The remaining two degrees of freedom are overall phases of
the ladder operators. They do not modify the physical properties of the modes in a given
transverse plane z. Their variation through an optical set-up, however, gives rise to a gener-
alized Gouy phase shift of the modes, which can be measured interferometrically. We have
shown that both contributions to the variation of the overall phases through an optical set-up,
as described by equation (6.51), are geometric in that they are fully determined by the trajec-
tory ﬁ(z) and do not depend on the velocity 67%/ 0z. However, only the second contribution in
equation (6.51) relates to the geometry of the parameter space. In the specific case of a closed
trajectory on the Hermite-Laguerre sphere for non-astigmatic optical modes, the phase shifts
of the two raising operators are equal but opposite. In full analogy with the Pancharatnam
phase for polarization states, they are equal to half the enclosed surface on the sphere.
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6. Geometric phases for astigmatic optical modes of arbitrary order

It is noteworthy that the overall phases y, of the vectors u, are in general only unam-
biguously defined in case of a closed trajectory. In particular, in the propagation-direction
representation, the astigmatism of the fundamental mode #iy(6, z) is fully specified by the
symmetric matrix V = S™'. Analogous to the discussion in section 6.3, the remaining de-
grees of freedom can be characterized by a unitary 2 X 2 matrix v, which is defined such
that T = Vr_l/ 2T, It follows that v and o are related by o = —iUVr_l/ 2VSrl/ 2. In general
det (Vr_mVSr]/z) # 1 so that defining ¢ = Coy and v = C’vy such that oy and vy have
unit determinants, requires different phase matrices C # C’. The phase shift along a closed
trajectory, however, does not depend on the phase convention used. In the limiting case of
transformations of non-astigmatic modes in their focal planes, i.e., when S and V can be con-
sidered real scalars, the phases are also unambiguously defined along an open trajectory. All
results presented in this chapter are, of course, independent of the phase convention that is
chosen.

We have shown that the symplectic group of ladder-operator transformations S p(4, R)
corresponds to the metaplectic group M p(4) of unitary transformations on the Hilbert space
of state vectors |u). The metaplectic group constitutes a subgroup of the set of all possible
unitary transformations. This accounts for the fact that only specific linear combinations of
paraxial optical modes are modes as well, i.e., are fully characterized by a set of parameters
whose variation through a paraxial optical set-up is fully described by the ray matrix M(z).
Each combination (n, m) of the transverse mode indices gives rise to a subspace of the Hilbert
space of transverse states of the field, which is closed under metaplectic transformations.
The geometries of these subspaces are all carbon copies of the geometry of the symplectic
manifold underlying the ladder operators. In the limiting case of mode conversions of non-
astigmatic modes, the metaplectic group reduces to S U(2) and all those subspaces become
spheres, which are all carbon copies of the Hermite-Laguerre sphere for the ladder operators.

We have pointed out an analogy between the Aharonov-Bohm effect in quantum electro-
dynamics and the generalized Gouy effect in classical wave mechanics. This reveals deep
insights in the geometric origin of the latter. The physical properties of the modes (6.22) that
are generated by two pairs of ladder operators are not affected by the U(1)®U (1) gauge trans-
formation described by equation (6.52), or, equivalently (6.44). Imposing gauge invariance
of the equations of motion (6.47) or (6.48), gives rise to two gauge fields A p» in the parame-
ter space. Analogous to the Aharonov-Bohm effect, the geometric phase shift of the ladder
operators through an optical set-up is due to the coupling these gauge fields. The raising and
corresponding lowering operators have pairwise equal but opposite topological charges and
experience opposite phase shifts. The topological charges of the modes [u,,,), i.e., the Noether
charges that arise from the gauge invariance of the description of their propagation through
an optical set-up, are given by n + 1/2 and m + 1/2 and depend on the mode numbers. As a
result, the modes |u,,) couple differently to the gauge fields and experience different phase
shifts given by equation (6.39). Notice that the above-mentioned subspaces of modes with
transverse mode indices n and m are all uniquely characterized by their coupling to the two
(state-space) gauge fields. In the specific case of transformations on the Hermite-Laguerre
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sphere for higher-order modes, the phase shifts of the two lowering operators are equal but
opposite. In that case, the phase shift of the modes is given by equation (6.73). In the
Aharonov-Bohm picture, the variation of this phase is due to the coupling of the spinor 77 to a
single gauge field A that arises from the U(1) gauge invariance of the spinor dynamics. The
topological charge of the modes |v,,,) on the Hermite-Laguerre sphere is equal n — m and the
“magnetic” field (Berry curvature) due to the gauge field is uniform on the Hermite-Laguerre
sphere. It may be viewed as the field of a monopole located at the center of the sphere.

Although we have focused on the optical case, the mathematical structure that underlies
the ladder-operator method and the phase shifts that arise from the geometry underlying the
ladder operators are more general. The ray space (p, 0) is a phase space in the mathematical
sense and the operator description of paraxial wave optics that we have discussed in sec-
tion 6.2 may be viewed as a formally quantized (wavized) description of rays. Although the
interpretation is different, all this is in full analogy with the quantization of classical me-
chanics to obtain quantum mechanics. As a result, the methods and results of this chapter
can be applied to the quantum-mechanical description of wave packets. The only restriction
for the ladder-operator approach to apply is that the state-space generators (or Hamiltonian
in the quantum language) are quadratic in the canonical operators. The methods and results
in this chapter have been formulated such that it is evident how they can be generalized to
account for more independent spatial dimensions. In the general case of D dimensions, the
number of generators of Mp(2D) and S p(2D,R) is equal to 2D* + D, D> + D of which are
associated with a D x D symmetric matrix that generalizes S. The remaining D* parameters
specify a unitary matrix € U(D), which generalizes o, and corresponds to the choice of D
orthonormal D—component spinors and D overall phase factors. The variation of the phases
under propagation (evolution) have a geometric interpretation in terms of the other degrees
of freedom.
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Appendices

6.A The ray-space generators J;

In this appendix we give explicit expressions of the ray-space generators J;. They are defined
by equation (6.16) and correspond to the state-space generators f"j as defined in equation
(6.9). They are given by

00 00 00 0 0 00 00
;_2f0000] o _2/0000]| . _1/0 000
"“%xl1 0 0 0 2"%klo o0 o0 o0 "klo 1 00
0000 01 00 1 000
-1 0 0 0 0 0 00
0 00 0 0 -1 0 0
=10 o1 0] B"Tlo o 0o
0 00 0 0 0 0 1
0 000 0 -1 0 0
-1 0 0 0O 0 0 00
=10 00 1] "7lo o 0o
0 00 0 0 0 1 0
00 0 -1 00 -1 0 000 0
00 -1 0 00 0 0 00 0 -1
=k =2k =2k
Is 00 0 0 I9 o0 o of Mo 000 O
00 0 0 00 0 0 000 O
(6.83)

6.B Expectation values of the generators 7

This appendix is devoted to a proof of equation (6.27), which expresses the expectation values
(unmlf"jlunm) of the generators f"j in equation (6.9) in terms of the corresponding ray-space
generators .J ; as defined by equation (6.16). We prove this by mathematical induction. The
special cases (ugo|T ilugo) involve Gaussian standard integrals and can be proven explicitly. A
formal proof by mathematical induction thus requires showing that the identity (6.27) holds
for modes |t+1,m) and |t,41) if it holds for |u,,). In order to prove this, we notice that

) 1 o
<un+1m|Tj|un+1m> = m(unm|alTja1|unm> . (684)
Using that
i) = S (W6T)3 —1IGET) = A SiTG [T 8] = in) TG, 5 6.85
[J’al’]_ 2(’“‘1) it T Hp zJ)‘ 2Hp [J’Z]_l FHpGi% s (6.85)
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this can be rewritten as

1 L. L [k e
(m) (U [Tjal —1 \/;IUF]FGJJz] allunm> =

A i k 1 A AT
<”nm|Tj|unm> - (m) \/;/1] ij<unmlza1|unm> . (6.86)

The analogous result may be derived for |u,,+1) and proving equation (6.27) thus boils down
to proving that

i k T o at 5 | T 1, .
—(n+1)\gu,,GJ,-wnmnapmnm: 16Ty = 5 (4G ) = SHEG Tty . (6.87)

where we used that GT = —G and that JTG = —GJ. This expression can be rewritten as

(tt| B &)t} = i(n + 1) (6.88)

[J
e
which we also prove by mathematical induction. Again, the special case of [ug)) can be
checked explicitly. In order to prove that it is true for |u;,41,) and |t,,,+1), we use that

[%,&;]zé(\/g,u;Gé]—(\/gu;Gé]é:\/7[£r6— ]—l(yp (6.89)

and find

<un+lm|£&-{|un+lm> = ( )(unmml 5& 21 |unm> =

—

n+

! R A . 1
(n+1)<unm|a1(az ﬂulJailum=<unm|w1|unm>+z\/ﬁul. (6.90)

The analogous result may be derived for |u,,,+1). This completes the proof of equation (6.88)
and, thereby, of equation (6.27).

6.C Mode-space operators corresponding to the Noether charges

In this appendix we construct both the ray-space and the corresponding state-space generators
of the U(1)® U(1) gauge transformations. The ray matrix that describes such transformations
is given by equation (6.44). To first order in the phases y; and y» the matrix C (6.42) is given

by
1+ 0 ) (10 i 0 0 0
C‘( 0 1+i/\(2)_(0 1)”‘1(0 o)“(z(o i)‘ 6.91)

Substitution in equation (6.44) then gives

My(lxp)) = 1 +%(

T s T i # T
rlz‘1 rlt1 nr +r1r1)

—ntl =60 nrl + T

i T T # T
)Q( —nty =13ty ary + 151, ) ’ 6.92)

2 —tth—ttT tLr) + 1)
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where rq ti =rne® tI etcetera are direct vector products. From M, ({x,}) = exp (—)(,,JXP) x
1 —xpJy,, we find that
F # 4T i * T
J, = l( rpt¥ + rptTp —rpriZ - rpr¥ ) (6.93)
T2\ iyt —tyr, =17,
where p = 1,2. These generators are 4 X 4 matrices in the ray space. By carefully inspecting
the form of the direct products and the structure of the generators J; as given in appendix 6.A
we find that

n K TpsT e | 4pAT T TAAT = _ i AAT,T
TXP = —Z{rpé?p 1, + rp9p 1, - rp99 = rp99 T, +
0p0" vy + 8p0" ) — 0 pp" e — £ippT ey} (6.94)

This can be rewritten as
A k Ny e t ot i "
=—— (-t P _TT .
Ty, = 4 {( I r,‘,)( 0pT  6e" +( Iy r,;) 0T oaT —r ,  (6.95)
which equals

. k o o .
Ty, =7 {,u;Gz 3 Gup + 1y G2 zTG,up} =

k R . X A ata oA A
3 {u;Gz ,u;Gz +,u;Gz ,u;Ga} == (a;ap + apaT) , (6.96)

where, we used that 2TG,u,, is scalar so that éTG,u,, = (S/TG,u,,)T = —,u;Gé.
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