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6
Geometric phases for astigmatic optical

modes of arbitrary order

6.1 Introduction

In the twenty-five years that have passed since Berry published his landmark paper [87],

the geometric phase has turned out to be a very unifying concept in physics. Various phase

shifts and rotation angles both in classical and quantum physics have been proven to originate

from the geometry of the underlying parameter space. One of the first examples was given

by Pancharatnam [88] who discovered that the phase shift due to a cyclic transformation of

the polarization of an optical field is equal to half the enclosed area on the Poincaré sphere

for polarization states. Other optical examples of geometric phases are the phase shift that

arises from the variation of the direction of the wave vector of an optical field through a fiber

[89] and the phase that is associated with the cyclic manipulation of a squeezed state of light

[90]. The Gouy phase shift, which is due to the variation of the beam parameters (the beam

width and the radius of curvature of the wave front) of a Gaussian optical beam, can also be

interpreted geometrically [91].
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6. Geometric phases for astigmatic optical modes of arbitrary order

In analogy with the geometric phase for polarization (or spin) states of light, van Enk has

proposed a geometric phase that arises from cyclic mode transformations of paraxial optical

beams carrying orbital angular momentum [92]. The special case of isotropic first-order

modes is equivalent to the polarization case [93] and, as was experimentally demonstrated by

Galvez et. al., the geometric phase shift acquired by a first-order mode that is transformed

along a closed trajectory on the corresponding Poincaré sphere also equals half the enclosed

surface on this sphere [94]. Similar experiments have been performed with second-order

modes [95], in particular to show that exchange of orbital angular momentum is necessary

for a non-trivial geometric phase to occur [96]. However, in the general case of isotropic

modes of order N, the connection with the geometry of the N + 1-dimensional mode space is

not at all obvious.

In this chapter, we present a complete and general analysis of the phase shift of transverse

optical modes of arbitrary order when propagating through a paraxial optical set-up, thereby

resolving this issue. Paraxial optical modes with different transverse mode indices (n,m)

are connected by bosonic ladder operators in the spirit of the algebraic description of the

quantum-mechanical harmonic oscillator and complete sets of transverse modes |unm〉 can

thus be obtained from two pairs of ladder operators [17]. We show that the geometries of the

subspaces of modes with fixed transverse mode numbers n and m, which are closed under

mode transformations, are all carbon copies of the geometry underlying the ladder operators.

We fully characterize this geometry including both the generalized beam parameters, which

characterize the astigmatism and orientation of the intensity and phase patterns of a Gaussian

fundamental mode, and the degrees of freedom associated with the nature and orientation of

the higher-order modes. We find a dynamical and a geometric contribution to the phase shift

of a mode under propagation through an optical set-up, which both have a clear significance

in terms of this parameter space.

The material in this chapter is organized as follows. In the next section we briefly sum-

marize the operator description of paraxial wave optics. We discuss its group-theoretical

structure, which is essential for our ladder-operator approach, and show how paraxial ray op-

tics emerges from it. In section 6.3 we discuss how complete basis sets of transverse modes

can be obtained from two pairs of bosonic ladder operators. We discuss the transformation

properties of the ladder operators, and, thereby, of the modes and characterize the ten de-

grees of freedom that are associated with the choice of a basis of transverse modes. Two of

those degrees of freedom relate to overall phase factors of the ladder operators and, therefore,

of the modes. In section 6.4, we show that the variation of these phases under propagation

through a set-up originates from the variation of the other parameters. We discuss an analogy

with the Aharonov-Bohm effect in quantum mechanics and show that both contributions to

the phase shift are geometric in that they are fully determined by the trajectory through the

parameter space. However, only the geometric contribution relates to the geometry of this

space. Section 6.5 is devoted to the specific, but experimentally relevant, case of mode trans-

formations of non-astigmatic modes. In the final section, we summarize our results and draw

our conclusions.
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6.2 Canonical description of paraxial optics

6.2 Canonical description of paraxial optics

6.2.1 Position and propagation direction as conjugate variables

A monochromatic paraxial beam of light that propagates along the z direction is conveniently

described by the complex scalar profile u(ρ, z), which characterizes the spatial structure of

the field beyond the structure of the carrier wave exp(ikz − iωt). The two-dimensional vector

ρ = (x, y)T denotes the transverse coordinates. The electric and magnetic fields of the beam

can be expressed as

E(ρ, z, t) = Re
{
E0εu(ρ, z)eikz−iωt

}
(6.1)

and

B(ρ, z, t) = Re
{E0

c
(ez × ε)u(ρ, z)eikz−iωt

}
, (6.2)

where E0 is the amplitude of the field, ε is the transverse polarization, ez is the unit vector

along the propagation direction and ω = ck is the optical frequency with c the speed of light.

The slowly varying amplitude u(ρ, z) obeys the paraxial wave equation(
∇2
ρ + 2ik

∂

∂z

)
u(ρ, z) = 0 , (6.3)

where ∇2
ρ = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplacian. Under the assumption that the

transverse variation of the field appears on a much larger length scale than the wavelength,

this description of paraxial wave optics is consistent with Maxwell’s equations in free space

[45].

The paraxial wave equation (6.3) has the form the Schrödinger equation for a free particle

in two dimensions. The longitudinal coordinate z plays the role of time while the transverse

coordinates ρ = (x, y)T constitute the two-dimensional space. This analogy allows us to adopt

the Dirac notation of quantum mechanics to describe the evolution of a classical wave field

[42]. In the Schrödinger picture, we introduce state vectors |u(z)〉 in the Hilbert space L2 of

square-integrable transverse states of the wave field, where the z coordinate parameterizes the

trajectory along which the field propagates. The states are properly normalized 〈u(z)|u(z)〉 = 1

for all z and the field profile in real space can be expressed as u(ρ, z) = 〈ρ|u(z)〉. Just as in

quantum mechanics, the transverse coordinates may be viewed as a hermitian vector operator

ρ̂ = (x̂, ŷ)T acting on the Hilbert space. The derivatives with respect to these coordinates

constitute canonically conjugate operators. Rather than the conjugate transverse momentum

operator −i∂/∂ρ, which has the significance of the normalized transverse momentum of the

field, it is convenient to construct the propagation-direction operator by dividing the trans-

verse momentum operator by the normalized longitudinal momentum k. Thus, we obtain the

hermitian vector operator θ̂ = (ϑ̂x, ϑ̂y)
T = −(i/k)(∂/∂x, ∂/∂y)T. The transverse position and

propagation-direction operators obey the canonical commutation rules

[ρ̂a, kθ̂b] = iδab , (6.4)
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6. Geometric phases for astigmatic optical modes of arbitrary order

where the indices a and b run over the x and y components. In analogy with quantum me-

chanics, we introduce the transverse field profile in propagation-direction representation

ũ(θ, z) = 〈θ|u(z)〉 = k
2π

∫
d2ρ u(ρ, z)e−ikθTρ , (6.5)

which is the two-dimensional Fourier transform of u(ρ, z) and characterizes the transverse

propagation-direction distribution of the field.

In geometric optics, a ray of light is fully characterized in a transverse plane z by its

transverse position ρ and propagation direction θ, which are usually combined in the four-

dimensional ray vector �
T =

(
ρT, θT

)
. The operator description of paraxial wave optics

may be viewed as a formally quantized (wavized) description of light rays, where ρ and θ

have been replaced by hermitian operators ρ̂ and θ̂ that obey canonical commutation rules

(6.4) and 1/k = � plays the role of � [31]. These operators are conveniently combined in

the ray operator �̂ T =
(
ρ̂T, θ̂T

)
. In analogy with quantum mechanics, where the expectation

values of the position and momentum operators have a clear classical significance in the limit

� → 0, a paraxial wave field reduces to a ray in the limit of geometric optics � → 0. Its

transverse position and propagation direction in the transverse plane z are characterized by

the expectation values 〈u(z)|ρ̂|u(z)〉 and 〈u(z)|θ̂|u(z)〉.

6.2.2 Group-theoretical structure of paraxial wave and ray optics

Both the diffraction of a paraxial beam under free propagation, as described by the paraxial

wave equation (6.3), and the transformations due to lossless optical elements can be expressed

as unitary transformations |uout〉 = Û |uin〉 on the transverse state of the field. In general, a

unitary operator can be expressed as

Û
({a j}) = e−i

∑
j a jT̂ j , (6.6)

where {a j} is a set of real parameters and {T̂ j} a set of hermitian generators, i.e., T̂ †
j = T j.

In the present case of paraxial propagation and paraxial (first-order) optical elements, the

generators are quadratic forms in the transverse position and propagation-direction operators.

This is exemplified by the paraxial wave equation (6.3), which in operator notation takes the

following form
∂

∂z
|u(z)〉 = − ik

2
θ̂2|u(z)〉 (6.7)

and is formally solved by

|u(z)〉 = exp

(
− ikzθ̂2

2

)
|u(0)〉 . (6.8)

This shows that that free propagation of a paraxial field is generated by kθ̂2/2, which is

obviously quadratic in the canonical operators. Since the ray operator �̂ has four components,

the number of squares of the operators is four while the number of mixed products is
(
4
2

)
= 6,
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6.2 Canonical description of paraxial optics

which gives a total of ten quadratic forms. They are hermitian and can be chosen as

T1 = x̂2 , T2 = ŷ2 , T3 = x̂ŷ , T4 =
k
2

(
x̂ϑ̂x + ϑ̂x x̂

)
, T5 =

k
2

(
ŷϑ̂y + ϑ̂yŷ

)
,

T6 = kx̂ϑ̂y , T7 = kŷϑ̂x , T8 = k2ϑ̂xϑ̂y , T9 = k2ϑ̂2
x and T10 = k2ϑ̂2

y . (6.9)

In terms of these generators, free propagation of a paraxial beam (6.8) is described by

|u(z)〉 = exp

⎛⎜⎜⎜⎜⎜⎜⎝− i
(
T̂9 + T̂10

)
z

2k

⎞⎟⎟⎟⎟⎟⎟⎠ |u(0)〉 . (6.10)

The mixed product T̂8 appears in the generator of free propagation through an anisotropic

medium, i.e., a medium in which the refractive index depends on the propagation direction

θ. In that case the propagator can be expressed as exp(−ikθ̂TN−1θ̂z/2), where N is a real and

symmetric matrix that characterizes the (quadratic) variation of the refractive index with the

propagation direction. If the anisotropy of the refractive index is not aligned along the ϑx

and ϑy directions, this transformation involves T̂8. A thin astigmatic lens imposes a Gaussian

phase profile. The unitary transformation that describes it can be expressed as

|uout〉 = exp

(
− ikρTF−1ρ

2

)
|uin〉 , (6.11)

where F is a real and symmetric 2×2 matrix whose eigenvalues correspond to the focal lengths

of the lens while the corresponding, mutually perpendicular, eigenvectors fix its orientation

in the transverse plane. In the general case of an astigmatic lens that is not aligned along the

x and y directions, this transformation involves the generators T̂1, T̂2 and T̂3. A rotation of

the beam profile in the transverse plane can be represented by

|urot〉 = e−i(T̂6−T̂7)φ|u〉 , (6.12)

where T̂6 − T̂7 = −i(x∂/∂y − y∂/∂x) is the orbital angular momentum operator and φ is the

rotation angle. The operators T̂4 and T̂5 generate transformations that rescale a field profile

along the x and y directions respectively, i.e.,

uout(x, y, z) = 〈ρ|uout(z)〉 = 〈ρ|ei log(cx)T̂4+i log(cy)T̂5 |uin(z)〉 = √
cxcy uin(cxx, cyy, z) . (6.13)

Physically speaking, such transformations correspond to the deformation of a field profile

due to refraction at the interface between two dielectrics with different refractive indices.

From the canonical commutation relations (6.4), it follows that the commutator of any

two generators (6.9) is a linear combination of the generators. In mathematical terms, the

algebra of the generators is closed, which means that [T̂k, T̂l] = i
∑

m gklmT̂m with real structure

constants gklm. We shall prove that the unitary transformations (6.6) with the generators (6.9)

form a ten-parameter Lie group. For reasons that will become clear this group is called the

metaplectic group Mp(4).
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6. Geometric phases for astigmatic optical modes of arbitrary order

Since the states |u(z)〉 are normalized, the expectation values 〈u(z)|ρ̂|u(z)〉 and 〈u(z)|θ̂|u(z)〉
have the significance of the average transverse position and the average propagation direction

of the field. A special property of the unitary transformations in equation (6.6) with the

quadratic generators given by (6.9), is that the Heisenberg transformation Û†
�̂ Û of the vector

operator �̂ T =
(
ρ̂T, θ̂T

)
is linear, so that it can be expressed as

Û†({a j})�̂ Û
({a j}) = M

({a j})�̂ , (6.14)

where M
({a j}) is the 4× 4 ray matrix that describes the transformation of a ray �

T =
(
ρT, θT

)
under the optical element that is described by the state-space operator Û

({a j}). The defining

properties of the position and momentum operators, i.e., that they are hermitian and obey

canonical commutation rules (6.4), are preserved under this unitary Heisenberg transforma-

tion. It follows that M
({α j}) is real and obeys the identity

MT({a j})GM
({a j}) = G with G =

(
0 1
−1 0

)
, (6.15)

where 0 and 1 denote the 2×2 zero and unit matrices respectively, so that G is a 4×4 matrix.

This identity (6.14) ensures that the operator expectation values 〈u(z)|�̂ |u(z)〉 of the transverse
position and propagation direction transform as a ray, i.e., trace out the path of a ray when the

field propagates through an optical set-up. This shows how paraxial ray optics emerges from

paraxial wave optics and, as such, the identity (6.14) may be viewed as an optical analogue of

the Ehrenfest theorem in quantummechanics [49]. The manifold of rays � constitutes a phase

space in the mathematical sense. The real and linear transformations on this manifold that

obey the relation (6.15), or, equivalently, preserve the canonical commutation rules (6.4), are

ray matrices. The product of two ray matrices is again a ray matrix so that ray matrices form

a group. The group of real 4× 4 ray matrices, which preserve the bilinear form �
TG� , where

� and � are ray vectors, is called the symplectic group S p(4,R). The term symplectic, which

is a syllable-by-syllable translation of the Latin “complex” to Ancient Greek and literally

means “braided together”, refers to the fact that a phase space is a joint space of position

and propagation direction (momentum). The 4 × 4 ray matrices in S p(4,R) emerge from

a set of unitary state-space transformations, which, as one may prove from equation (6.14),

constitute a group under operator multiplication. As was mentioned already, this group is

called the metaplectic group Mp(4). For real rays � , � ∈ R4, the products �
TG� and

�
TG� vanish. The product � TG� does not vanish and is obviously conserved under paraxial

propagation and optical elements. It is called the Lagrange invariant [29, 97] and has the

significance of the phase-space extent of a pair of rays � and � . Conservation of this quantity

is an optical analogue of Liouville theorem in statistical mechanics.

The commutators of the quadratic generators T̂ j and the position and propagation-direction

operators are linear in these operators, so that we can write

−i[T̂ j, �̂ ] = J j�̂ , (6.16)
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where the 4 × 4 matrices J j are real. Explicit expressions of these matrices are given in

appendix 6.A. Applying equation (6.14) to infinitesimal transformations immediately shows

that the ray matrix corresponding to the unitary state-space operator in equation (6.6) is given

by

M
({α j}) = e−

∑
j α j J j . (6.17)

Equation (6.16) provides a general relationship between the generators {T̂ j} of the unitary

state-space transformations (6.6) and the generators {J j} of the corresponding ray matrices

(6.17). By applying equation (6.15) to infinitesimal transformations, one finds that the gen-

erators obey JT
j G +GJ j = 0. Moreover, from equation (6.16) one may prove that

[
[T̂i, T̂ j], �̂

]
= [Ji, J j]�̂ . (6.18)

Using the Lie algebra [T̂k, T̂l] = i
∑

m gklmT̂m we find that [Jk, Jl] = −∑m gklmJm. This proves

that the metaplectic and symplectic groups are homomorphic, i.e., for every Û ∈ Mp(4) there
is a corresponding M ∈ S p(4,R). The reverse of this statement is not true; a ray matrix M
fixes a corresponding transformation Û up to an overall phase. The homomorphism is an

isomorphism up to this phase.

By using equation (6.15) and the expressions of the unitary transformations (6.10), (6.11),

(6.12) and (6.13) or, equivalently, the relation between (6.16) the sets of generators {T̂ j} and
{J j} and the definition (6.17) of the ray matrices, one finds the 4×4 ray matrices that describe

propagation, a thin lens, a rotation in the transverse plane and the rescaling of a beam profile

due to refraction at the interface between two dielectrics. These ray matrices, some of which

have been given explicitly in sections 2.2 and 3.5, generalize the well-known ABCDmatrices

to the case of two independent transverse degrees of freedom [12].

The group-theoretical structure that we have discussed in this section can easily be gen-

eralized to the case of D spatial dimensions. In that case there are 2D canonical operators.

These give rise to 2D+
(
2D
2

)
= 2D2 +D linearly independent quadratic forms, which generate

state-space transformations that constitute the metaplectic group Mp(2D). The corresponding

ray matrices obey the 2D−dimensional generalization of equation (6.15) and form the cor-

responding symplectic group S p(2D,R). In case of a single transverse dimension, the three

hermitian quadratic forms can be chosen as x2, k(x̂ϑ̂x + ϑ̂x x̂)/2 and k2ϑ̂2
x. In the analogous

case of the quantum-mechanical description of a particle in three dimensions, the number of

quadratic forms is twenty-one.

6.3 Basis sets of paraxial modes

6.3.1 Ladder operators

As a result of the quadratic nature of the generators (6.9), a, possibly astigmatic, Gaussian

beam profile at the z = 0 input plane of a paraxial optical set-up will retain its Gaussian shape

in all other transverse planes z. This is the general structure of a transverse fundamental
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6. Geometric phases for astigmatic optical modes of arbitrary order

mode. Complete sets of higher-order transverse modes that preserve their general shape under

paraxial propagation and paraxial optical elements can be obtained by repeated application of

bosonic raising operators â†p(0) in the z = 0 plane [33]. In the present case of two transverse

dimensions, we need two independent raising operators so that p = 1, 2. Both the raising

operators and the corresponding lowering operators âp(0) are linear in the transverse position

and propagation-direction operators ρ̂ and θ̂. Their transformation property under unitary

transformations ∈ Mp(4) follows from the requirement that acting with a transformed ladder

operator on a transformed state must be equivalent to transforming the raised or lowered state,

i.e.,

â(†)
out|uout〉 = â(†)

outÛ |uin〉 = Ûâ(†)
in
|uin〉 . (6.19)

In view of the unitarity of Û, this requires that

â(†)
out = Ûâ(†)

in
Û† . (6.20)

Since the generators (6.9) are quadratic in the position and propagation-direction operators,

the ladder operators preserve their general structure and remain linear in these operators under

this transformation (6.20). Moreover, their bosonic nature is preserved so that they obey the

commutation rules

[âp(z), â†q(z)] = δpq (6.21)

in all transverse planes z of the optical set-up if (and only if) they obey bosonic commutation

rules in the z = 0 plane. When the fundamental Gaussian mode |u00(z)〉 is chosen such that

the lowering operators give zero when acting upon it, i.e., â1(z)|u00(z)〉 = â2(z)|u00(z)〉 = 0,

the commutation rules (6.21) guarantee that the modes

|unm(z)〉 = 1√
n!m!

(
â†
1
(z)
)n (

â†
2
(z)
)m |u00(z)〉 , (6.22)

form a complete set in all transverse planes z. For a given optical system, the complete set of

modes is thus fully characterized by the choice of the two bosonic ladder operators âp(0) in

the reference plane z = 0.

In chapter 2, we have shown that, in the special case of an astigmatic two mirror-cavity,

the ladder operators, and thereby the cavity modes, can be directly obtained as the eigen-

vectors of the ray matrix for one round trip inside the cavity. In the present case of an open

system, we are free to choose the parameters that specify the ladder operators in the z = 0

input plane. A convenient way to do this is to choose an arbitrary ray matrix M0 ∈ S p(4,R).
This ray matrix can be chosen independent of the properties of the optical system, and of the

ray matrices that describe the transformations of its elements. However, as we shall see, a

necessary and sufficient restriction is that M0 has four eigenvectors μ for which the matrix

element μ†Gμ does not vanish. It is obvious that this matrix element is purely imaginary so

that the eigenvectors must be complex. Since M0 is real, this implies that for each eigenvector

μp also μ∗p is one of the eigenvectors so that the eigenvectors come in two complex conjugate
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6.3 Basis sets of paraxial modes

pairs, obeying the eigenvalue relations M0μp = λpμp and M0μ
∗
p = λ

∗
pμ

∗
p, with p = 1, 2. With-

out loss of generality we can assume that the matrix elements μ†pGμp are positive imaginary.

Then we can write

μ†pGμp = 2i and μTpGμp = 0 , (6.23)

where p = 1, 2. The first relation can be assured by proper normalization of the eigenvectors,

whereas the second follows from the antisymmetry of G. By taking matrix elements of the

symplectic identity MT
0 GM0 = G, we find the relations

λ∗pλqμ
†
pGμq = μ

†
pGμq and λpλqμ

T
pGμq = μ

T
pGμq . (6.24)

Assuming that the two eigenvalues λ1 and λ2 are different, we conclude that

μ†
1
Gμ2 = 0 and μT1Gμ2 = 0 . (6.25)

When the eigenvalues are degenerate, i.e., λ1 = λ2, one can find infinitely many pairs of

linearly independent vectors μ1 and μ2 that obey these symplectic orthonormality properties.

Following the approach discussed in chapter 2, we now specify the ladder operators in the

z = 0 input plane by the expressions

âp(0) =

√
k
2
μTpG�̂ and â†p(0) =

√
k
2
μ†pG�̂ . (6.26)

The symplectic orthonormality properties (6.23) and (6.25) of the eigenvectors μp and μ∗p
ensure that the ladder operators in the input plane obey bosonic commutation relations (6.21).

From the general transformation property of the ladder operators (6.20), combined with the

Ehrenfest relation (6.14) between Û and M, one may show that the ladder operators in other

transverse planes z are given by the same expressions (6.26) when μp is replaced by μp(z) =
M(z)μp. Here, M(z) is the ray matrix that describes the transformation of ray from the z = 0

input plane to the transverse plane z. It can be constructed by multiplying the ray matrices that

describe the optical elements of which the set-up consists and free propagation between them

in proper order. The fact that the properties (6.23) and (6.25) are conserved under symplectic

transformations ∈ S p(4,R) confirms that the ladder operators remain bosonic in all transverse

planes of the set-up.

Since the modes are fully characterized by the choice of two complex vectors μp, we

expect that the expectation values of physically relevant operators can be expressed in terms

of these vectors. The average transverse position and momentum of the beam trace out the

path of a ray. This implies that the expectation values 〈unm|ρ̂|unm〉 and 〈unm|θ̂|unm〉 vanish.

In appendix 6.B we prove, however, that the expectation values of the generators T̂ j are, in

general, different from zero and can be expressed as

〈unm|T̂ j|unm〉 = 1

2

{(
n +

1

2

)
μ†
1
GJjμ1 +

(
m +

1

2

)
μ†
2
GJjμ2

}
. (6.27)

This result generalizes the expression (2.82) of the orbital angular momentum in twisted

cavity modes that we derived in chapter 2. It is noteworthy that these properties of the modes
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are fully characterized by the generators J j and the complex ray vectors μp, which both have

a clear geometric-optical significance.

Finally, it is worthwhile to notice that the results of this section remain valid when the

number of (transverse) dimensions is different. In particular, the same method gives explicit

expressions for complete orthogonal sets of time-dependent wave functions that solve the

Schrödinger equation of a free particle in three-dimensional space.

6.3.2 Degrees of freedom in fixing a set of modes

We have shown that there is a one-to-one correspondence between the defining properties

of a ray matrix, i.e., that it is real and obeys the identity (6.15), and the properties (6.23)

and (6.25) of the complex eigenvectors μp that ensure that the ladder operators (6.26) are

bosonic. This implies that all different basis sets of complex vectors μp that obey these

identities must be related by symplectic transformations, i.e., each of these sets can be written

as {Mμp} ∪ {Mμ∗p}, with M ∈ S p(4,R) and {μp} ∪ {μ∗p} the set of complex eigenvectors of a

specific ray matrix M0 ∈ S p(4,R). Since {Mμp} ∪ {Mμ∗p} constitutes the set of eigenvectors

of MM0M−1, it follows that the freedom in choosing a set of complex vectors that generate

two pairs of bosonic ladder operators (6.26) is equivalent to the freedom of choosing a ray

matrix M ∈ S p(4,R). As a result, the number of independent parameters associated with

this choice is equal to the number of generators of S p(4,R), which is ten. In order to give a

physical interpretation of these degrees of freedom, we follow the characterization discussed

in chapter 5 and decompose the complex ray vectors into two-dimensional subvectors so that

μTp(z) =
(
rTp(z), t

T
p(z)

)
. In terms of these subvectors, the ladder operators take the following

form

âp(z) =

√
k
2

(
rTp(z)θ̂ − tTp(z)ρ̂

)
and â†p(z) =

√
k
2

(
r†p(z)θ̂ − t†p(z)ρ̂

)
, (6.28)

where p = 1, 2. An explicit expression of the Gaussian fundamental mode can be given if we

combine the two-dimensional column vectors rp and tp into

R(z) =
(
r1(z), r2(z)

)
and T(z) =

(
t1(z), t2(z)

)
. (6.29)

The objects R and T take the form of 2×2 matrices, but since rp and tp are transverse vectors,

R and T do not transform as such under ray-space transformations ∈ S p(4,R) nor under

transformations on the transverse plane. The symplectic orthonormality properties (6.23) and

(6.25) of the vectors μp can be expressed as

R†(z)T(z) − T†(z)R(z) = 2i1 and RT(z)T(z) − TT(z)R(z) = 0 , (6.30)

and hold for all values of z. Now, the fundamental transverse mode in plane z can be written

as

u00(ρ, z) =

√
k

π detR(z)
exp

(
−kρTS(z)ρ

2

)
, (6.31)
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6.3 Basis sets of paraxial modes

where S = −iTR−1. As opposed to R and T, S is a 2 × 2 matrix in the transverse plane and

transforms accordingly. It can be checked directly that acting upon |u00(z)〉 with the lowering

operators â1(z) and â2(z) gives zero. The fundamental mode (6.31) is properly normalized

and has been constructed such that it solves the paraxial wave equation (6.3) under free prop-

agation. Moreover, one may check that it transforms properly under the transformations of

optical elements. The second relation in equation (6.30) guarantees that S is symmetric. This

is obvious when we multiply the relation from the left with
(
RT)−1, and from the right with

R−1. The real and imaginary parts Sr and Si of S respectively characterize the astigmatism of

the intensity and phase patterns. The real part can be written as Sr =
(− iTR−1+ i(R†)−1T†)/2.

With the first relation in equation (6.30) this shows that RSrR† = 1. This leads to the identity

RR† = S−1
r , (6.32)

which shows that Sr is positive definite. As a result, the curves of constant intensity in the

transverse plane are ellipses. Moreover, the fundamental mode is square-integrable. Depend-

ing on the sign of detSi(z) the curves of constant phase in the transverse plane are ellipses,

hyperbolas or parallel straight lines. Under free propagation, S is a slowly varying smooth

function of z. Optical elements, on the other hand, may instantaneously modify the astigma-

tism. The astigmatism of both the intensity and the phase patterns is characterized by two

widths in mutually perpendicular directions and one angle that specifies the orientation of the

curves of constant intensity or phase. The total number of degrees of freedom that specify

the astigmatism, and, thereby, the matrix symmetric S, is thus equal to six.

Two of the remaining four degrees of freedom are related to the nature and orientation

of the higher-order mode patterns. From equation (6.32), we find that R can be expressed as

S−1/2
r σT, where σ is a unitary 2 × 2 matrix. Notice that Sr is real and positive so that S−1/2

r is

well-defined. It is illuminating to rewrite the complex ray vectors μ1 and μ2 as

(
μ1 μ2

)
=

(
R
T

)
=

(
1 0

−Si 1

)(
S−1/2

r 0

0 S1/2
r

)(
σT 0

0 σT

) (
μ̃x μ̃y

)
, (6.33)

where μ̃x = (1, 0, i, 0)T and μ̃y = (0, 1, 0, i)T are the complex ray vectors that correspond to

the ladder operators that generate the stationary states of an isotropic harmonic oscillator in

two dimensions. The first matrix in the second right-hand-side of this expression (6.33) is the

ray matrix that describes the transformation of a thin astigmatic lens. It imposes the elliptical

or hyperbolic wave front of the optical modes on the harmonic oscillator functions. The

second matrix has the form of the ray matrix that describes the deformation of a mode due to

refraction. It rescales the modes along two mutually perpendicular transverse directions and

accounts for the astigmatism of the intensity patterns. The third matrix involves the complex

matrix σ and obeys the generalization of equation (6.15) to complex matrices. Since it is

complex, however, it is not a ray matrix ∈ S p(4,R). In order to clarify its significance, we

rewrite equation (6.33) in terms of the ladder operators, which are conveniently combined in

the vector operator (â1, â2)
T. By using the definition if the ladder operators (6.26) and the
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6. Geometric phases for astigmatic optical modes of arbitrary order

Ehrenfest relation (6.14), the transformation in equation (6.33) can be expressed as(
â1

â2

)
=

√
k
2
(RTθ̂ − TTρ̂) =

−i

√
k
2
σ exp

(
− ikρTSiρ

2

) (
S1/2

r ρ̂ + iS−1/2
r θ̂

)
exp

(
ikρTSiρ

2

)
. (6.34)

The linear combination of the position and momentum operators between the brackets takes

the form of the lowering-operator vector for an isotropic harmonic oscillator in two dimen-

sions. Again, the 2 × 2 matrix Sr accounts for the astigmatism of the intensity patterns

by rescaling the ladder operators and, therefore, the modes they generate. The exponential

terms take the form of the mode-space transformation for a thin astigmatic lens and impose

the curved wave fronts. From right to left, the lowering operators (6.34) as well as the corre-

sponding raising operators, first remove the curved wave front, then modify the mode patterns

and eventually restore the wave front again. The 2× 2 matrix σ is a unitary transformation in

the space of the lowering operators â1 and â2 and transforms accordingly. It arises from the

U(2) symmetry of the isotropic harmonic oscillator in two dimensions and accounts for the

fact that any, properly normalized, linear combination of bosonic lowering operators yields

another bosonic lowering operator. Up to overall phases, to which we come in a moment,

this transformation can be parameterized as â1 → η1â1 + η2â2 and â2 → −η∗1â1 + η
∗
2â2 with

|η1|2 + |η2|2 = 1. The two obvious degrees of freedom that are associated with the spinor

η = (η1, η2)
T are the relative amplitude and the relative phase of its components. Analogous

to the Poincaré sphere for polarization states (or the Bloch sphere for spin-1/2 states), they

can be mapped onto a sphere. For reasons that will become clear, this sphere is called the

Hermite-Laguerre sphere [17]. Since η1 and η2 are spinor components in a linear rather than

a circular basis, this mapping takes the following form

η =

(
η1
η2

)
=

1√
2

⎛⎜⎜⎜⎜⎜⎝ e
iϕ
2 cos ϑ

2
+ e−i ϕ

2 sin ϑ
2

−ie
iϕ
2 cos ϑ

2
+ ie−i ϕ

2 sin ϑ
2

⎞⎟⎟⎟⎟⎟⎠ , (6.35)

where ϑ and ϕ are the polar and azimuthal angles on the sphere. The mapping is such that

the north pole (ϑ = 0) corresponds to ladder operators that generate astigmatic Laguerre-

Gaussian modes with positive helicity. The south pole (ϑ = π) corresponds to Laguerre-

Gaussian modes with the opposite helicity while the equator (ϑ = π/2) corresponds to

Hermite-Gaussian modes. Other values of the polar angle ϑ correspond to generalized Gaus-

sian modes [44]. The azimuth angle ϕ determines the transverse orientation of the higher-

order mode patterns. Since paraxial optical modes are invariant under rotations over π in the

transverse plane, the mapping in equation (6.35) is such that a rotation over ϕ on the sphere

corresponds to a rotation of the mode pattern over φ = ϕ/2.

The unitary matrix that describes the ladder operator transformation corresponding to the

spinor η is constructed as

σ0(η) =

(
η1 η2
−η∗2 η∗1

)
, (6.36)
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where the second row is fixed up to a phase factor by the requirement that σ0 must be unitary.

With this convention, the two rows of sigma correspond to antipodal points on the Hermite-

Laguerre sphere. Completely fixing the matrix σ ∈ U(2), however, requires four independent

degrees of freedom. The remaining two, which are not incorporated in η, are phase factors.

Any matrix σ ∈ U(2) can be written as

σ =

(
eiχ1 0

0 eiχ2

)
σ0(η) . (6.37)

The phase factors exp(iχp) correspond to overall phases of the vectors μp and, therefore, of

the ladder operators (6.26). The vectors μp can be written as

μp = eiχpνp(S, η) , (6.38)

where p = 1, 2 and νp(S, η) is completely determined by S and η according equation (6.33),

σ being replaced by σ0(η). Although the vectors ν1 and ν2 obey symplectic orthonormality

conditions (6.23) and are, therefore, not independent, the phases χ1 and χ2 are independent.

From equation (6.37) and the fact that R = S−1/2
r σT it is clear that the argument of detR

is equal to χ1 + χ2 so that the overall phase of the fundamental mode (6.31) is given by

−(χ1 + χ2)/2. The overall phases of the two raising operators are respectively −χ1 and −χ2,

so that the phase factors in the higher order modes |unm(z)〉 are given by exp(−iχnm) with

χnm =

(
n +

1

2

)
χ1 +

(
m +

1

2

)
χ2 . (6.39)

In a single transverse plane, such overall phase factors do not modify the physical properties

of the mode pattern. The evolution of these phase under propagation and optical elements,

however, can be measured interferometrically.

The astigmatism of the modes, as characterized by the 2× 2 matrix S, can be modified in

any desired way by appropriate combinations of the optical elements that we have discussed

in section 6.2. As will be discussed in section 6.5, the degrees of freedom associated with

the spinor η can be manipulated by mode convertors and image rotators. Although we shall

see that variation of the phase factors exp(iχp) is, in general, unavoidable when the other

parameters are modified, we show here that it is possible to construct a ray matrix ∈ S p(4,R)
that solely changes these phase factors. Such a ray matrix is defined by the requirement that

Mχ
({χp}) ( μ1 μ2 μ∗1 μ∗2 ) = ( eiχ1μ1 eiχ2μ2 e−iχ1μ∗1 e−iχ2μ∗2

)
, (6.40)

so that the vectors μp and μ∗p are eigenvectors of Mχ. The corresponding eigenvalues are

unitary. In terms of R and T this relation can be expressed as

Mχ
({χp})

(
R R∗

T T∗

)
=

(
R R∗

T T∗

) (
C 0

0 C∗

)
, (6.41)

where

C =
(

eiχ1 0

0 eiχ2

)
. (6.42)

101



6. Geometric phases for astigmatic optical modes of arbitrary order

By using that (
R R∗

T T∗

)−1
=

1

2i

( −T† R†

TT −RT

)
, (6.43)

which follows directly from the identities in equation (6.30), we find that Mχ can be expressed

as

Mχ({χp}) = 1

2i

(
R R∗

T T∗

) (
C 0

0 C∗

) ( −T† R†

TT −RT

)
=

1

2i

( −RCT† + R∗C∗TT RCR† − R∗C∗RT

−TCT† + T∗C∗TT TCR† − T∗C∗RT

)
(6.44)

This ray matrix adds overall phases exp(±iχp) to the eigenvectors μp and μ∗p. It is real and

one may check that it obeys the identity (6.15) so that it is a physical ray matrix ∈ S p(4,R).
In this section, we have argued that the number of degrees of freedom associated with

the choice of two pairs of ladder operators that generate a basis set of modes in a transverse

plane z is equal to number of generators of S p(4,R), which is ten. We have shown that six

of those are related to the astigmatism of the modes as characterized by a the complex and

symmetric 2 × 2 matrix S. Two of the other four are angles on the Hermite-Laguerre sphere

that characterize a spinor η, which determines the nature and orientation of the higher-order

modes. The remaining two are overall phases of the ladder operators. All these degrees of

freedom can be manipulated in any desired way by choosing a suitable ray matrix ∈ S p(4,R).

6.3.3 Gouy phase

In the limiting case of non-astigmatic modes that propagate through an isotropic optical sys-

tem the 2 × 2 matrix S is a symmetric matrix with degenerate eigenvalues so that it can

be considered a scalar s = sr + isi. If we choose σ0 = 1, the higher-order modes are

Hermite-Gaussian. In that case, the complex ray vectors are given by μ1 = (r, 0, t, 0)T and

μ2 = (0, r, 0, t)T, with r, t ∈ C. The symplectic normalization condition (6.23) implies that

r∗t − t∗r = 2i. The real part sr of s = −it/r determines the beam width w =
√
2/(ksr) of

the fundamental mode while the imaginary part si fixes the radius of curvature of its wave

fronts according to R = 1/si. Under free propagation over a distance z, the vectors μ1 and μ2
transform according to

μ1(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
r + zt
0

t
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and μ2(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0

r + zt
0

t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (6.45)

The parameters r, t and s remain scalar and free propagation does not introduce an overall

phase difference between μ1 and μ2 so that η, or, equivalentlyσ0, is independent of z. Without

loss of generality we can choose z = 0 to coincide with the focal plane of the mode, which

102



6.4 The geometric interpretation of the variation of the phases χnm

implies that s ∈ R so that r∗t = −t∗r = i. Since sr, and, therefore, R = σ0sr cannot pick up a

phase, we find that

χ(z) − χ(0) = arg
( r + zt

r

)
= arctan

( tz
r

)
= arctan

(
z

zR

)
, (6.46)

where zR = ir/t is the Rayleigh range. This is the well-known Gouy phase for a Gaussian

mode [12]. Since the vectors μ1 and μ2 pick up an overall phase χ(z), the raising operators

pick up a phase −χ(z). The phase shift of the higher-order modes (6.22) is then given by

exp(−i(n + m + 1)χ) and depends on the total mode number N = n + m only. As a result of

this degeneracy, the same expression holds in the non-astigmatic case with σ0 � 1. In that

case, it is still true that the components of η are independent of z.
Generalization to astigmatic modes is straightforward only if the modes have simple astig-

matism and if the orientation of the higher-order mode patterns is aligned along the astigma-

tism of the fundamental mode. In that case, the vectors μp pick up different Gouy phases

and the components of η are independent of z. As will be discussed in section 6.5, this is not

true in the case of non-astigmatic modes that propagate through an optical set-up with sim-

ple astigmatism. In the more general case of modes with general astigmatism that propagate

through an arbitrary set-up of paraxial optical elements, the z dependence of S depends on η

and vice versa [17]. In this case no simple expressions of the Gouy phases can be derived.

The phase in equation (6.39) may be viewed as the ultimate generalization of the Gouy phase

within paraxial wave optics.

6.4 The geometric interpretation of the variation of the phases χnm

6.4.1 Evolution of the phases χnm

In this section we show that variation of the phase differences χp between μp and νp (6.38) is,

in general, unavoidable under (a sequence of) mode transformations that modify the degrees

of freedom associated with S and η. From the discussion in the previous section it is clear

that the generalized Gouy phases were defined such that they vary only under transformations

that involve free propagation. However, for later purposes, it is convenient to formulate the

description of mode transformations that give rise to phase shifts in a slightly more general

way.

Suppose that the unitary state-space transformation that describes (a part of) a trajectory

through the parameter space is given by Û(ζ) = exp(−iT̂ζ), where T̂ is a (linear combination

of the) generator(s) defined in equation (6.9) and ζ is a real parameter that parameterizes

the trajectory. In this case, the ζ dependent ladder operators (6.20) obey the anti-Heisenberg

equation of motion [
â(†)(ζ), T̂

]
= −i

∂â(†)

∂ζ
. (6.47)

In terms of the complex ray vectors μp(ζ) and the ray matrix M(ζ) = exp(−Jζ) that cor-

responds to Û(ζ) according to relation (6.14), this equation of motion takes the form of a
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6. Geometric phases for astigmatic optical modes of arbitrary order

symplectic Schrödinger equation and can be expressed as

∂μp

∂ζ
= −Jμp(ζ) . (6.48)

Substitution of μp(ζ) = exp(iχp)νp(ζ) yields after dividing by exp(iχp)

i
∂χp

∂ζ
νp(ζ) +

∂νp

∂ζ
= −Jνp(ζ) . (6.49)

By multiplying from the left with ν†pG, using the normalization condition ν†pGνp = 2i and
rearranging the terms we find that

∂χp

∂ζ
=

1

2

{
ν†pGJνp + ν

†
pG

∂νp

∂ζ

}
. (6.50)

The generator J represents a conserved quantity. Hence, the first term between the curly

brackets does not depend on the parameter ζ and the above equation (6.50) can be integrated

to obtain

χp(ζ) =
1

2

{(
ν†pGJνp

)
ζ +

∫ ζ

0

dζ′ν†pG
∂νp

∂ζ′

}
. (6.51)

The first term between the curly brackets constitutes a dynamical contribution to the phase

shift and arises from the fact that J corresponds to a constant of motion. The second term,

on the other hand, relates to the geometry of the complex ray space and is the natural gener-

alization of Berry’s geometric phase to this case. In the next section, we derive an equivalent

expression from which the geometric significance of the phase shifts (6.51) is more obvious.

6.4.2 Analogy with the Aharonov-Bohm effect

In quantum mechanics, it is well-known that the coupling of a particle with charge q to the

magnetic vector potential A(r) gives rise to a measurable phase shift (q/�)
∫
C A · dr of the

wave function when the particle moves along a trajectory C = r(t). This effect occurs even

when the magnetic field B = ∇ × A vanishes everywhere along the trajectory and is known

as the Aharonov-Bohm effect [98].

The physical properties that are associated with the wave function that describes a particle

in quantum mechanics are not affected by the transformation ψ(r, t) → exp(iφ(r))ψ(r, t). The
Schrödinger equation is obviously not invariant under this local U(1) gauge transformation.

When gauge invariance of the Schrödinger equation is imposed, the vector potential A(r)
arises as the corresponding gauge field. In this picture, the Aharonov-Bohm phase is due to

the coupling to a gauge field, the conserved charge q being the coupling constant. As such it

is a direct consequence of the U(1) gauge invariance of quantum electrodynamics.

In this section, we point out an analogy between the generalized Gouy phase and the

Aharonov-Bohm effect. This gives some new insights in the nature and origin of this ge-

ometric phase and allows us to derive an expression of the phase (6.51) from which its
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origin in the geometry of the underlying parameter space is obvious. It is convenient to

combine the parameters that characterize the eight degrees of freedom that are associated

with the matrix S and the spinor η into a vector �R = (R1,R2, ...)
T. The corresponding dif-

ferential operator, which is a vector in the eight-dimensional parameter space, is defined as
�∇�R = (∂/∂R1, ∂/∂R2, ...)

T.

The physical properties, for example those in equation (6.27), of the transverse mode

fields (6.22), which are generated by the ladder operators constructed from the vectors μp,

are not affected by transformations of the type

μp → eiψp

(
�R
)
μp , (6.52)

where p = 1, 2. This symmetry property can be thought of as local U(1) ⊗ U(1) gauge in-

variance. The ray matrix ∈ S p(4,R) that describes such gauge transformations (6.52) figures

in equation (6.44). As shown in appendix 6.C, the two corresponding real generators Jχp can

be constructed from the eigenvectors μp. The vector μ1 is an eigenvector of Jχ1
with eigen-

value −i. Since Jχ1
is real, the complex conjugate vector μ∗1 is an eigenvector of Jχp with

eigenvalue i. Moreover, Jχ1
μ2 = Jχ1

μ∗2 = 0. Similarly, μ2 and μ∗2 are eigenvectors of Jχ2
with

eigenvalues −i and i and Jχ2
μ1 = Jχ2

μ∗1 = 0. Since invariance under the gauge transformation

(6.52) is a local and continuous symmetry, it gives rise to conserved Noether charges. The

gauge transformations are generated by two different generators, hence there are two Noether

charges, which can be expressed as ν†pGJχpνp/2 = 1, where the factor 1/2 arises from the fact

that a symplectic vector space is a joint space of position and momentum and where we have

used that Jχpνp = −i and ν†pGνp = 2i. In appendix 6.C, we prove that the corresponding

state-space generators T̂χp can be expressed as
(
â†pâp + âpâ†p

)
/2 so that the charges of a mode

(6.22) are given by 〈unm|T̂χ1
|unm〉 = (n + 1/2) and 〈unm|T̂χ2

|unm〉 = (m + 1/2). Since the gauge

transformation in equation (6.44) is constructed from the eigenvectors μp, it varies through-

out the parameters space. As a result, the generators T̂χp can be constructed only locally and

vary through the parameter space according to the ladder-operator transformation in equation

(6.20). However, since the modes also vary, it follows that Noether charges (n + 1/2) and

(m + 1/2) of the modes |unm〉 are globally conserved.

In terms of �R and �∇�R, the equations of motion of the vectors μp (6.48) can be rewritten as

(
�∇�Rμp

)
· ∂
�R
∂ζ
= −Jμp . (6.53)

These equations are obviously not invariant under the gauge transformations (6.52). Imposing

gauge invariance yields the modified equations of motion

( (
�∇�R + i�Ap

)
νp

)
· ∂
�R
∂ζ
= −Jνp , (6.54)

where the gauge fields �Ap are vector fields in the parameter space of �R that are defined by

their transformation property under the gauge transformations (6.52)

�Ap → �Ap − �∇�Rψp . (6.55)
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With these transformation properties, the equation of motion (6.54) is manifestly invariant

under the gauge transformations (6.52). The general solution of this equation (6.54) can be

expressed as

νp = μpe−i
∫
C �Ap·d�R , (6.56)

where C is a trajectory �R(ζ) and μp solves the equation of motion without the gauge field

(6.53). In full analogy with the Aharonov-Bohm effect, this shows that the phase difference

between μp and νp is due to the fact that the latter is coupled to the gauge field �Ap. Since

we have defined the vectors μp so as to include the appropriate geometric-phase factor while

they are not coupled to the gauge fields, the coupling of νp to the gauge fields removes the

geometric phase rather than introducing it. The geometric origin of the phases is evident in

that they are determined only by the trajectory C and do not depend on the velocity ∂�R/∂ζ.
By using equation (6.54) they can be expressed as

χp =

∫
C
�Ap · d�R = 1

2

∫ ζ

0

dζ′
⎧⎪⎪⎨⎪⎪⎩νpGJνp +

(
ν†pG�∇Rνp

)
· ∂�R
∂ζ

⎫⎪⎪⎬⎪⎪⎭ , (6.57)

which is in obvious agreement with equation (6.51).

In analogy with the Aharonov-Bohm effect, the Noether charges ν†pGJχpνp/2 = 1 deter-

mine the strength of the coupling of the vectors μp to the gauge fields �Ap. This is consistent

with the fact that the vectors νp pick up phases χp. The Noether charges of the modes (6.22),

however, are equal to n + 1/2 and m + 1/2 and depend on the mode numbers n and m. As

a result, the modes |unm〉 couple differently to the (corresponding state-space) gauge fields

and, therefore, experience different phase shifts. This is in obvious agreement with equation

(6.39).

The Noether currents (ν†pGJχpνp/2)∂�R/∂ζ = ∂�R/∂ζ are uniform throughout the param-

eters space of �R. It follows that the “physical” fields or Berry curvatures Fαβ = ∂α(Ap)β −
∂β(Ap)α, where the indices α and β run over the parameter-space vector components, are con-

stant so that the gauge fields �Ap(�R) cannot possess any non-trivial dynamics. Attributing the

generalized Gouy phases χp to coupling to gauge fields �Ap, which do not have any dynamical

properties in their own rights, may seem a bit tautological. On the other hand, the analysis

discussed here shows that the structure that underlies the generalized Gouy phase shifts (6.39)

is that of a gauge theory. In this picture, the appearance of phase shifts under propagation

through an optical set-up is the unavoidable consequence of the U(1)×U(1) gauge invariance

of the dynamics of paraxial optical modes, or, equivalently, of the fact that the mode charges

n + 1/2 and m + 1/2 are conserved under state-space transformations ∈ Mp(4,R).

The connection between the gauge invariance as discussed here does not depend on the

specific structure of the symplectic vector space. Our results as well as the Aharonov-Bohm

effect indicate that there is a more general connection between local gauge invariance and the

appearance of geometric phases, see, for instance, reference [99].
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6.5 Geometric phases for non-astigmatic modes

6.5.1 Ray matrices on the Hermite-Laguerre sphere

A particulary interesting limiting case of the geometric phases that we discuss in this chapter,

are the phase shifts due to mode conversions on the Hermite-Laguerre sphere, each point on

which characterizes a basis set of higher-order modes. We focus on non-astigmatic modes

in their focal planes so that S can be considered a real scalar s ∈ R. We shall construct ray

matrices and corresponding state-space operators that solely modify the degrees of freedom

associated with the Hermite-laguerre sphere and study the geometric phases arising from such

transformations.

The azimuth angle ϕ on the Hermite-Laguerre sphere specifies the orientation in the trans-

verse plane of the set of higher-order modes. It can be modified by the rotation operator

exp(−iϕŝ3), where ŝ3 = k(x̂ϑ̂y − ŷϑ̂x)/2 = (T̂6 − T̂7)/2 is the corresponding generator. The

factor 1/2 accounts for the fact that a rotation angle ϕ on the Hermite-Laguerre sphere corre-

sponds to a φ = ϕ/2 in the transverse plane. For reasons that will become clear, the ray matrix

that describes a rotation in a plane parallel to an equatorial plane on the Hermite-Laguerre

sphere is denoted M3. It takes the following form

M3(ϕ) = e−ϕΣ3 =
⎛⎜⎜⎜⎜⎜⎝ P

(
ϕ
2

)
0

0 P
(
ϕ
2

) ⎞⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos
(
ϕ
2

)
− sin

(
ϕ
2

)
0 0

sin
(
ϕ
2

)
cos

(
ϕ
2

)
0 0

0 0 cos
(
ϕ
2

)
− sin

(
ϕ
2

)
0 0 cos

(
ϕ
2

)
sin

(
ϕ
2

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.58)

where Σ3 = (J6 − J7)/2 is the corresponding ray-space generator and P ∈ S O(2) is a 2 × 2

rotation matrix. When this ray matrix acts on an arbitrary pair of complex ray vectors μp that

obey the identities (6.23) and (6.25), the matrix S transforms according to S → PSPT. In

the present case of scalar S, this transformation only modifies the orientation of the mode

patterns and does not affect S.

Another class of transformations that solely act upon the Hermite-Laguerre sphere are

those that describe mode converters. Mode converters consists of a pair of astigmatic or

cylindrical lenses [100]. The distance between the lenses and their radii of curvature are cho-

sen such that the Gouy phase shift introduces a phase difference ϑ between the eigenvectors

μ1 and μ2 of the transformation of the mode converter. If the input and output plane of the

mode converter are chosen such that they respectively coincide with focal planes of the in-

cident and outgoing modes and if the modes are matched to the mirrors so that S is scalar

and equal to 1 in appropriate units determined by the mirrors, the eigenvectors of the mode

converter are given by μ̃1 = (1, 0, i, 0)T and μ̃2 = (0, 1, 0, i)T and their complex conjugates.

The ray matrix that describes the transformation that introduces a phase difference ϑ between
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6. Geometric phases for astigmatic optical modes of arbitrary order

μ̃1 and μ̃2 can then be constructed as

M1(ϑ) = e−ϑΣ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos
(
ϑ
2

)
0 sin

(
ϑ
2

)
0

0 cos
(
ϑ
2

)
0 − sin

(
ϑ
2

)
− sin

(
ϑ
2

)
0 cos

(
ϑ
2

)
0

0 sin
(
ϑ
2

)
0 cos

(
ϑ
2

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.59)

where Σ1 = k(J1 − J2)/4 + (J9 − J10)/(4k) is the corresponding generator. Again, one may

prove easily that this transformation does not affect the astigmatic degrees of freedom if S
is scalar and equal to 1. The corresponding state-space generator is given by ŝ1 = k(T̂1 −
T̂2)/4 + (T̂9 − T̂10)/(4k) = k(x̂2 − ŷ2 + ϑ̂2

x − ϑ̂2
y)/4.

So far, we have constructed two of the three ray matrices that only modify the nature and

orientation of the higher-order modes. The third corresponds to a mode converter in a basis

that is rotated over π/4 in the transverse plane, or, equivalently over π/2 in the equatorial

plane of the Hermite-Laguerre sphere. The ray matrix that describes such a transformation

can be obtained as

M2(ϑ) = M3(π/4)M1(ϑ)M−1
3 (π/4) = e−ϑΣ2 =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos
(
ϑ
2

)
0 0 sin

(
ϑ
2

)
0 cos

(
ϑ
2

)
sin

(
ϑ
2

)
0

0 − sin
(
ϑ
2

)
cos

(
ϑ
2

)
0

− sin
(
ϑ
2

)
0 0 cos

(
ϑ
2

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.60)

where Σ2 = kJ3/2 + J8/(2k) is the corresponding generator. The corresponding state-space

generator is given by ŝ2 = kT̂3/2+ T̂8/(2k) = k(xy+ ϑ̂xϑ̂y)/2. Since M3 and M1 do not affect

the astigmatic degrees of freedom if S is scalar and equal to 1, it follows that the same is true

for M3.

By using the canonical commutation relations (6.4) and the definitions of the generators

ŝ1, ŝ2 and ŝ3 in terms of the canonical operators, one may easily show that the generators

obey an S U(2) algebra

[ŝ1, ŝ2] = iŝ3 (6.61)

and cyclic permutations. The ray-space generators obey

[Σ1,Σ2] = Σ3 (6.62)

so that the matrices iΣ1, iΣ2 and iΣ3 also constitute an S U(2) algebra. Thus we have obtained

both a metaplectic and a symplectic realization of an S U(2) algebra. This proves the well-

known fact that S U(2) is a subgroup of Mp(4) and, therefore, of S p(4,R).

6.5.2 Spinor transformations

Since the generators Σ1, Σ2 and Σ3 constitute an S U(2) algebra, an arbitrary pair of ray

vectors μp on the Hermite-Laguerre sphere can be expressed as a linear combination of the

108



6.5 Geometric phases for non-astigmatic modes

eigenvectors of one of these generators. In analogy with section 6.3, where we introduced the

components of η as the coefficients of the expansion of an arbitrary bosonic lowering operator

in terms of the two lowering operators for a harmonic oscillator in two dimensions, we can

write an arbitrary pair of complex ray vectors on the Hermite-Laguerre sphere as

μ1 = η1μ̃1 + η2μ̃2 and μ2 = −η∗2μ̃1 + η∗1μ̃2 , (6.63)

where μ̃1 = (1, 0, i, 0)T and μ̃2 = (1, 0, i, 0)T are eigenvectors of Σ1 with eigenvalues −i and i
respectively, (they are also eigenvectors of JHO = k(J1+J2)/4+(J9+J10)/(4k) with degenerate

eigenvalues i). Notice that, analogous to the construction in section 6.3 and the mapping in

equation (6.35), the components of η are spinor components in a linear rather than in a circular

basis. The symplectic orthogonality properties (6.23) and (6.25) require that the expansions

in equation (6.63) do not involve the complex conjugate vectors μ∗p. Moreover, they ensure

normalization of η such that |η1|2 + |η2|2 = 1.

Since the ray matrices M1, M2 and M3, as defined in equations (6.59), (6.60) and (6.58),

only modify the degrees of freedom associated with η, these transformations can be expressed

in the two-dimensional spinor space. In particular, the transformation described by M3 (6.58)

can be expressed as

(
η1
η2

)
→

⎛⎜⎜⎜⎜⎜⎝ cos
(
ϕ
2

)
− sin

(
ϕ
2

)
sin

(
ϕ
2

)
cos

(
ϕ
2

) ⎞⎟⎟⎟⎟⎟⎠
(
η1
η2

)
= e−iϕτ3/2

(
η1
η2

)
, (6.64)

where

τ3 =

(
0 −i
i 0

)
(6.65)

is the corresponding generator. Similarly, the transformations (6.59) and (6.60) of mode

converters can be rewritten in terms of the spinor components as

(
η1
η2

)
→

⎛⎜⎜⎜⎜⎝ e
iϑ
2 0

0 e
−iϑ
2

⎞⎟⎟⎟⎟⎠
(
η1
η2

)
= e−iϑτ1/2

(
η1
η2

)
(6.66)

and (
η1
η2

)
→

⎛⎜⎜⎜⎜⎜⎝ cos
(
ϑ
2

)
i sin

(
ϑ
2

)
i sin

(
ϑ
2

)
cos

(
ϑ
2

) ⎞⎟⎟⎟⎟⎟⎠
(
η1
η2

)
= e−iϕτ2/2

(
η1
η2

)
, (6.67)

where the corresponding spinor generators are given by

τ1 =

( −1 0

0 1

)
and τ2 =

(
0 −1
−1 0

)
. (6.68)

As a result of the fact that we have the defined the spinor components with respect to the

eigenvectors of Σ1 rather than of Σ3, the spinor generators τ1, τ2 and τ3 take the form of Pauli

matrices in a rotated basis. They also form an S U(2) algebra, i.e., [τ1, τ2] = iτ3 and cyclic
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6. Geometric phases for astigmatic optical modes of arbitrary order

permutations. This algebra is closed and the matrix transformations of η on the Hermite-

Laguerre sphere that are generated by τ1, τ2 and τ3 are analogues of Jones matrices in polar-

ization optics.

Since the complex vectors μ̃1 and μ̃2 are eigenvectors of Σ1 with eigenvalues −i and i
respectively, the spinor corresponding to a point (φ, θ) on the Hermite-Laguerre sphere can

be expressed as

η(φ, θ) = (−i)1/2e−i(φ+π/2)τ3e−iθτ1eiπτ2/2
(
1

0

)
, (6.69)

where the factor (−i)1/2 = exp(−iπ/4) is introduced to make this identity consistent with

equation (6.35).

6.5.3 Mode-space transformations

In dimensionless notation, the lowering operators corresponding to the complex ray vectors

μ̃p can be expressed as

b̂x =

√
k
2

(
x̂ + iϑ̂x

)
and b̂y =

√
k
2

(
ŷ + iϑ̂y

)
. (6.70)

The corresponding raising operators b̂†x and b̂†y generate the set of harmonic-oscillator states

in two dimensions |vnm〉 according to equation (6.22), the raising operators being replaced by

the harmonic-oscillator raising operators. This set corresponds to η = (1, 0)T, which is on

the equator of the Hermite-Laguerre sphere. The antipodal point η = (0, 1)T gives rise to the

same set of modes |vmn〉, the mode indices being interchanged. The modes corresponding to

an arbitrary point on the Hermite-Laguerre sphere can be expanded as

|unm(η)〉 = 1√
n!m!

(
η∗1b̂†x + η

∗
2b̂†y

)n (−η2b̂†x + η1b̂†y
)m |v00〉 . (6.71)

By using that
[
b̂†x, b̂

†
y
]
= 0, this can be rewritten as

|unm(η)〉 =
n∑

p=0

m∑
q=0

√
(n + m − p − q)!(p + q)!

n!m!

(
n
p

)(
m
q

)
×

(η∗1)
n−p(η∗2)

p(−η2)m−q(η1)
q|v(n+m−p−q)(p+q)〉 , (6.72)

which expresses the transformed state |unm(η)〉 as an expansion in two-dimensional harmonic-

oscillator states of the same order N = n+m. Conversely, this result shows that the subspaces

of modes of fixed order N = n + m are closed under transformations (mode conversions) on

the Hermite-Laguerre sphere.

In general, the subspace of modes of fixed order N is an N + 1-dimensional subspace

of the Hilbert space of transverse states of the field. The unitary transformations on this

subspace form the group S U(N + 1). Only in the special case of first order modes, the

most general unitary transformation is equivalent to the S U(2) transformation that figures
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6.5 Geometric phases for non-astigmatic modes

Figure 6.1: Intensity and false-color phase patterns of the modes that lie in the ϕ = 0 plane

of the Hermite-Laguerre, or, equivalently, Poincaré sphere for the non-astigmatic first-order

modes |u01〉. The north and a south poles (ϑ = 0, π) respectively correspond to Laguerre-

Gaussian modes with l = n − m = −1 and l = m − n = 1. On both poles p = min(n,m) = 0.

The modes on the equator (ϑ = π/2) are Hermite-Gaussian while modes for intermediate

values of ϑ are generalized Gaussian modes. The color coding in the phase patterns is such

that the color changes in a continuous fashion from red via yellow, green, blue and purple

back to red when the phase changes from 0 to 2π.
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6. Geometric phases for astigmatic optical modes of arbitrary order

in equation (6.72). It follows that the subspace of first-order modes is isomorphic to the

Hermite-Laguerre sphere for the ladder operators. This sphere, which is an analogue of the

Poincaré sphere for polarization states [93], as well as the intensity and phase structure of

some of the modes that lie on it, is plotted in figure 6.1. In the general case of N > 1,

S U(2) is a subgroup of the group S U(N + 1) of unitary transformations on the subspace of

modes of fixed order N. This accounts for the fact that only specific transformations on the

Hilbert space of transverse states of the field can be achieved by mode converters and image

rotators. In case of N > 1, the transformation in equation (6.72) gives rise to a sphere for each

combination (n,m) of the transverse mode numbers. Since |unm(η)〉 and |umn(η)〉 correspond
to antipodal points on the same sphere, it follows that, depending on the parity of N, only

(N + 2)/2 (for even N) or (N + 1)/2 (for odd N) of these spheres are independent, i.e., not

related by rotations over π. All of these spheres are isomorphic to the Hermite-Laguerre

sphere for the ladder operators. Since, in general, the modes on a given sphere cannot be

expressed as a linear combination of the modes on the poles, it follows that, for N > 1, these

spheres are not Poincaré spheres in the strict sense. The two spheres for second-order modes,

as well as the intensity and phase patterns of some of the modes that lie on them, are plotted

in figure 6.2.

The mode-transformation in equation (6.72), together with the matrix representation of

the spinor transformation that we have discussed above, provides a matrix description of

beam transformations of non-astigmatic optical modes of arbitrary order. It generalizes the

description discussed in references [101, 102], which applies to first order modes.

By inverting the relations in equation (6.70) and their hermitian conjugates, the posi-

tion and propagation-direction operators can be expressed in terms of the ladder opera-

tors. Using this result, the state-space generators can be written as ŝ1 = (b̂†xb̂x − b̂†y b̂y)/2,

ŝ2 = (b̂†xb̂y + b̂xb̂†y)/2 and ŝ3 = (b̂†xb̂y − b̂xb̂†y)/(2i), which is a Schwinger representation of

the S U(2) algebra. Here, the S U(2) algebra (6.61) is ensured by the boson commutation

relations (6.21). This representation provides a complete and closed description of the modes

and transformations on the Hermite-Laguerre sphere in terms of the ladder operators.

6.5.4 Geometric phases and the Aharonov-Bohm analogy

The spinor η, as defined by equation (6.35), is completely determined by the azimuthal and

polar angles on the Hermite-Laguerre sphere. The reverse of this statement is not true; choos-

ing a point on the Hermite-Laguerre sphere fixes a properly normalized spinor ξ†ξ = 1 up

to an overall phase factor so that ξ = exp(iχ)η(φ, ξ) with χ ∈ R. In the limiting case of

transformations on the Hermite-Laguerre sphere, it follows from equation (6.63), or from the

equivalent expansion in terms of the lowering operators in equation (6.70), that the two rais-

ing operators a†
1
and â†

2
pick up equal but opposite phases −χ and χ respectively. The modes

|unm(η)〉 (6.71) pick up a phases exp(−iχnm) with

χnm = (n − m)χ . (6.73)
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6.5 Geometric phases for non-astigmatic modes

Such phases do not modify the physical properties of the modes but their variation under (a

sequence of) transformations on the Hermite-Laguerre sphere can be measured interferomet-

rically. Analogous to the discussion in section 6.4, we shall show that the variation χ has a

geometric interpretation in terms of the Hermite-Laguerre sphere. We consider (a sequence

of) state-space transformations that only modify the degrees of freedom associated with the

nature and orientation of the higher-order modes. The evolution of the ladder operators un-

der such transformations is described by the anti-Heisenberg equation of motion (6.47) when

T̂ is replaced by a generator ŝ/2, which is a linear combination of ŝ1, ŝ2 and ŝ3, and ζ pa-

rameterizes a trajectory on the Hermite-Laguerre sphere. The factor 1/2 in the generator is

introduced for notational convenience. In terms of a spinor ξ, the equation of motion (6.48)

takes the following form

∂ξ

∂ζ
= − iτξ(ζ)

2
, (6.74)

where τ is the spinor generator that corresponds to ŝ. It is a linear combination of τ1, τ2 and

τ3. The spinor ξ picks up the appropriate phase factor. Substitution of ξ = exp(iχ)η gives

iη
∂χ

∂ζ
+
∂η

∂ζ
= − iτη

2
. (6.75)

Using that η†η = 1, this result can be rewritten as

∂χ

∂ζ
= iη†

∂η

∂ζ
− η†τη

2
. (6.76)

The generator τ represents a constant of motion so that this result can be integrated to yield

χ(ζ) = −
(
η†τη)ζ

2
+ i

∫ ζ

0

dζ′η†
∂η

∂ζ′
. (6.77)

This result can also be obtained directly from substitution of the complex ray vectors μp,

as defined by equation (6.63), in the general expression of the geometric phase shift (6.51).

The first term in equation (6.51) arises from the fact that τ/2 represents a conserved quan-

tity. The second term constitutes the well-known geometric phase shift that is experienced by

a spinor when it is transported along a trajectory on the Hermite-Laguerre sphere. Anal-

ogous to the discussion in section 6.4, both contributions are geometric in that they are

fully determined by the trajectory on the Hermite-Laguerre sphere but only the second re-

lates to the geometry of the Hermite-Laguerre sphere. It is natural to use spherical coordi-

nates �R = (
r sin(ϑ) cos(ϕ), r sin(ϑ) sin(ϕ), r cos(ϑ)

)T
to parameterize points on the Hermite-

Laguerre sphere. For a closed trajectory that consists of geodesics, the first contribution in

equation (6.77) vanishes [103]. Then, the phase shift (6.77) can be rewritten as

χ = i
∫ z

0

dz′η†
∂η

∂z′
= i

∫ z

0

dz′η†
(
�∇�Rη

)
· ∂
�R
∂z′
= i

∮
C
η†
(
�∇�Rη

)
· d�R , (6.78)
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6. Geometric phases for astigmatic optical modes of arbitrary order

Figure 6.2: Intensity and false-color phase patterns of the modes that lie in the ϕ = 0 plane

of two the Hermite-Laguerre spheres for non-astigmatic second-order modes |u11〉 (this page)
and |u02〉 (next page). In the figure on this page, the north and south poles (ϑ = 0, π) re-

spectively correspond to Laguerre-Gaussian modes with l = n − m = m − n = 0 and

p = min(n,m) = 0 while the modes on the equator (ϑ = π/2) are Hermite-Gaussian.

The intermediate modes are generalized Gaussian modes. In the figure on the next page

the north and south poles (ϑ = 0, π) respectively correspond to a Laguerre-Gaussian mode
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6.5 Geometric phases for non-astigmatic modes

(continued) with l = n − m = −2 and l = m − n = 2. In both cases p = min(n,m) = 1.

Again, the modes on the equator (ϑ = π/2) are Hermite-Gaussian while generalized Gaussian

modes appear for intermediate values of ϑ. The color coding in the phase patterns is such

that the color changes in a continuous fashion from red via yellow, green, blue and purple

back to red when the phase changes from 0 to 2π. Both spheres are carbon-copies of the

Hermite-Laguerre sphere on which every point characterizes two pairs of bosonic ladder

operators.
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6. Geometric phases for astigmatic optical modes of arbitrary order

where �∇�R is the gradient in spherical coordinates and C = �R(z) is a closed trajectory on the

Hermite-Laguerre sphere. In the Aharonov-Bohm picture, this phase shift is due to the cou-

pling of η to a gauge field that arises from the U(1) gauge invariance of the spinor dynamics.

Comparison with equation (6.56) shows that this gauge field is given by

�A = η†
(
�∇�Rη

)
. (6.79)

By using the gradient in spherical coordinates and equation (6.35) �A can be written as

�A =
i cotϑ
2r

. (6.80)

The corresponding “magnetic” field or Berry curvature is given by

�B = �∇�R × �A = − i
2r2

(6.81)

and is homogeneous on the Hermite-Laguerre sphere. It may be viewed as the field of a

monopole located at the center of the Hermite-Laguerre sphere. By the virtue of Stokes’

theorem, the geometric phase can be expressed as

χ = i
∮
C
η†
(
�∇�Rη

)
· d�R = i

∮
C
�A · d�R = i

∮
S
�B · d �S = 1

2

∮
S

dΩ =
1

2
Ω , (6.82)

where S is the enclosed surface on the Hermite-Laguerre sphere and Ω is the solid angle.

This result establishes the well-known connection between the geometric phase acquired by

a spinor that is transported along a closed trajectory on the Hermite-Laguerre sphere and the

enclosed solid angle Ω on the sphere. Since we have defined the phase picked up by the

higher-order modes as exp(−iχnm) with χnm = (n − m)χ, the result in equation (6.82) has the

opposite sign of the analogous result for the standard case in which a spinor with positive

helicity picks up a phase shift exp(iχ).
The phase shift the modes |vnm〉, as given by equation (6.73), depends only on the dif-

ference between the mode numbers n and m. In the Aharonov-Bohm picture, n − m has

the significance of the topological charge of a non-astigmatic mode |vnm〉 and determines the

strength of the coupling to the (corresponding state-space) gauge field. For modes with equal

mode numbers n = m, the topological charge vanishes so that they do not couple to the

gauge field and, therefore, do not experience a phase shift. The orbital angular momentum

in non-astigmatic modes |vnm〉 can be expressed as (n − m) cosϑ [17] and is proportional to

their topological charge. It follows that in the case of a non-astigmatic mode, the exchange

of orbital angular momentum between the mode and the set-up through which it propagates

is necessary for a non-trivial geometric phase to occur [96, 95].

In this section, we have studied the geometric phase that arises from (cyclic) transfor-

mations on the Hermite-Laguerre sphere for higher-order modes. We have constructed ray

matrices that solely modify the nature and orientation of the higher-order modes and derived

the corresponding spinor and mode-space transformations. In terms of the spinor η the phase

116



6.6 Concluding remarks

shift due to a (cyclic) transformation takes the familiar form of the geometric phase for a

spinor. In experimental realizations, mode converters consist of pairs of astigmatic lenses in

which the degrees of freedom associated with S are employed to achieve mode conversion

[100]. As a result, there will be an additional contribution to the phase shift of the modes.

This can be compensated for by measuring the interference between fields that have passed

the same sequence of mode converters and image rotators but with different relative orienta-

tions [94].

6.6 Concluding remarks

We have explored the parameter space that is associated with the choice of a complete and

orthonormal set of paraxial optical modes in the transverse plane. Modes are defined as

solutions of the paraxial wave equation (6.3) that are fully characterized by a set of mode pa-

rameters whose variation through a paraxial optical set-up is described by the 4×4 ray matrix

M(z), which describes the transformation of a ray r = (ρ, θ)T from the z = 0 input plane of the

set-up to the transverse plane z. Complete sets of transverse modes can be obtained from two

pairs of bosonic ladder operators. The ladder operators are fully specified by two complex ray

vectors μp with p = 1, 2, which characterize the mode parameters. Their variation through

an optical set-up, and, thereby, the variation of the ladder operators, can conveniently be ex-

pressed in terms of M(z). We have argued that there is a one-to-one correspondence between

the algebraic properties of the ladder operators and the defining properties of a physical ray

matrix ∈ S p(4,R), i.e., that it is real and obeys the identity (6.15). It follows that all sets

of modes can be expressed in terms of two pairs of ladder operators and, moreover, that the

freedom in choosing a set of modes is equivalent to the choice of an arbitrary ray matrix

M0 ∈ S p(4,R). Since S p(4,R) is a ten-parameter Lie group, the number of free parameters

associated with this choice is equal to ten. A possible physical characterization of these de-

grees of freedom involves a symmetric 2 × 2 matrix S, which characterizes the astigmatism

of the phase and intensity patterns of the fundamental mode, and a spinor η, which specifies

the nature and orientation of the higher-order modes. The matrix S is fully specified by six

parameters while characterization of η requires two independent parameters, which can be

mapped on a Poincaré sphere. The remaining two degrees of freedom are overall phases of

the ladder operators. They do not modify the physical properties of the modes in a given

transverse plane z. Their variation through an optical set-up, however, gives rise to a gener-

alized Gouy phase shift of the modes, which can be measured interferometrically. We have

shown that both contributions to the variation of the overall phases through an optical set-up,

as described by equation (6.51), are geometric in that they are fully determined by the trajec-

tory �R(z) and do not depend on the velocity ∂�R/∂z. However, only the second contribution in

equation (6.51) relates to the geometry of the parameter space. In the specific case of a closed

trajectory on the Hermite-Laguerre sphere for non-astigmatic optical modes, the phase shifts

of the two raising operators are equal but opposite. In full analogy with the Pancharatnam

phase for polarization states, they are equal to half the enclosed surface on the sphere.
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It is noteworthy that the overall phases χp of the vectors μp are in general only unam-

biguously defined in case of a closed trajectory. In particular, in the propagation-direction

representation, the astigmatism of the fundamental mode ũ00(θ, z) is fully specified by the

symmetric matrix V = S−1. Analogous to the discussion in section 6.3, the remaining de-

grees of freedom can be characterized by a unitary 2 × 2 matrix υ, which is defined such

that T = V−1/2
r υT. It follows that υ and σ are related by σ = −iυV−1/2

r VS1/2
r . In general

det
(
V−1/2

r VS1/2
r

)
� 1 so that defining σ = Cσ0 and υ = C′υ0 such that σ0 and υ0 have

unit determinants, requires different phase matrices C � C′. The phase shift along a closed

trajectory, however, does not depend on the phase convention used. In the limiting case of

transformations of non-astigmatic modes in their focal planes, i.e., when S and V can be con-

sidered real scalars, the phases are also unambiguously defined along an open trajectory. All

results presented in this chapter are, of course, independent of the phase convention that is

chosen.

We have shown that the symplectic group of ladder-operator transformations S p(4,R)
corresponds to the metaplectic group Mp(4) of unitary transformations on the Hilbert space

of state vectors |u〉. The metaplectic group constitutes a subgroup of the set of all possible

unitary transformations. This accounts for the fact that only specific linear combinations of

paraxial optical modes are modes as well, i.e., are fully characterized by a set of parameters

whose variation through a paraxial optical set-up is fully described by the ray matrix M(z).
Each combination (n,m) of the transverse mode indices gives rise to a subspace of the Hilbert

space of transverse states of the field, which is closed under metaplectic transformations.

The geometries of these subspaces are all carbon copies of the geometry of the symplectic

manifold underlying the ladder operators. In the limiting case of mode conversions of non-

astigmatic modes, the metaplectic group reduces to S U(2) and all those subspaces become

spheres, which are all carbon copies of the Hermite-Laguerre sphere for the ladder operators.

We have pointed out an analogy between the Aharonov-Bohm effect in quantum electro-

dynamics and the generalized Gouy effect in classical wave mechanics. This reveals deep

insights in the geometric origin of the latter. The physical properties of the modes (6.22) that

are generated by two pairs of ladder operators are not affected by the U(1)⊗U(1) gauge trans-

formation described by equation (6.52), or, equivalently (6.44). Imposing gauge invariance

of the equations of motion (6.47) or (6.48), gives rise to two gauge fields �Ap in the parame-

ter space. Analogous to the Aharonov-Bohm effect, the geometric phase shift of the ladder

operators through an optical set-up is due to the coupling these gauge fields. The raising and

corresponding lowering operators have pairwise equal but opposite topological charges and

experience opposite phase shifts. The topological charges of the modes |unn〉, i.e., the Noether

charges that arise from the gauge invariance of the description of their propagation through

an optical set-up, are given by n + 1/2 and m + 1/2 and depend on the mode numbers. As a

result, the modes |unm〉 couple differently to the gauge fields and experience different phase

shifts given by equation (6.39). Notice that the above-mentioned subspaces of modes with

transverse mode indices n and m are all uniquely characterized by their coupling to the two

(state-space) gauge fields. In the specific case of transformations on the Hermite-Laguerre
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sphere for higher-order modes, the phase shifts of the two lowering operators are equal but

opposite. In that case, the phase shift of the modes is given by equation (6.73). In the

Aharonov-Bohm picture, the variation of this phase is due to the coupling of the spinor η to a

single gauge field �A that arises from the U(1) gauge invariance of the spinor dynamics. The

topological charge of the modes |vnm〉 on the Hermite-Laguerre sphere is equal n −m and the

“magnetic” field (Berry curvature) due to the gauge field is uniform on the Hermite-Laguerre

sphere. It may be viewed as the field of a monopole located at the center of the sphere.

Although we have focused on the optical case, the mathematical structure that underlies

the ladder-operator method and the phase shifts that arise from the geometry underlying the

ladder operators are more general. The ray space (ρ, θ) is a phase space in the mathematical

sense and the operator description of paraxial wave optics that we have discussed in sec-

tion 6.2 may be viewed as a formally quantized (wavized) description of rays. Although the

interpretation is different, all this is in full analogy with the quantization of classical me-

chanics to obtain quantum mechanics. As a result, the methods and results of this chapter

can be applied to the quantum-mechanical description of wave packets. The only restriction

for the ladder-operator approach to apply is that the state-space generators (or Hamiltonian

in the quantum language) are quadratic in the canonical operators. The methods and results

in this chapter have been formulated such that it is evident how they can be generalized to

account for more independent spatial dimensions. In the general case of D dimensions, the

number of generators of Mp(2D) and S p(2D,R) is equal to 2D2 + D, D2 + D of which are

associated with a D × D symmetric matrix that generalizes S. The remaining D2 parameters

specify a unitary matrix ∈ U(D), which generalizes σ, and corresponds to the choice of D
orthonormal D−component spinors and D overall phase factors. The variation of the phases

under propagation (evolution) have a geometric interpretation in terms of the other degrees

of freedom.
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Appendices

6.A The ray-space generators J j

In this appendix we give explicit expressions of the ray-space generators J j. They are defined

by equation (6.16) and correspond to the state-space generators T̂ j as defined in equation

(6.9). They are given by

J1 =
2

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ J2 =
2

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ J3 =
1

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 0 0

0 1 0 0

1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

J4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ J5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

J6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

−1 0 0 0

0 0 0 1

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ J7 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 −1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

J8 = k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 −1
0 0 −1 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ J9 = 2k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 −1 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ J10 = 2k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 0 −1
0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.83)

6.B Expectation values of the generators T̂ j

This appendix is devoted to a proof of equation (6.27), which expresses the expectation values

〈unm|T̂ j|unm〉 of the generators T̂ j in equation (6.9) in terms of the corresponding ray-space

generators Ĵ j as defined by equation (6.16). We prove this by mathematical induction. The

special cases 〈u00|T̂ j|u00〉 involve Gaussian standard integrals and can be proven explicitly. A

formal proof by mathematical induction thus requires showing that the identity (6.27) holds

for modes |un+1m〉 and |unm+1〉 if it holds for |unm〉. In order to prove this, we notice that

〈un+1m|T̂ j|un+1m〉 = 1

n + 1
〈unm|â1T̂ jâ

†
1
|unm〉 . (6.84)

Using that

[
T̂ j, âp

]
=

√
k
2

(
μTpGT̂ j�̂ − μTpG�̂ T̂ j

)
=

√
k
2
μTpG

[
T̂ j, �̂

]
= i

√
k
2
μTpGJ j�̂ , (6.85)
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this can be rewritten as(
1

n + 1

)
〈unm|

⎛⎜⎜⎜⎜⎜⎝T̂ jâ1 − i

√
k
2
μT1GJj�̂

⎞⎟⎟⎟⎟⎟⎠ â†
1
|unm〉 =

〈unm|T̂ j|unm〉 −
( i
n + 1

) √ k
2
μT1GJj〈unm|�̂ â†

1
|unm〉 . (6.86)

The analogous result may be derived for |unm+1〉 and proving equation (6.27) thus boils down

to proving that

−
( i
n + 1

) √ k
2
μTpGJ j〈unm|�̂ â†p|unm〉 = 1

2
μ†pGJ jμp =

1

2

(
μ†pGJ jμp

)T
=

1

2
μT

pGJ jμ
∗
p , (6.87)

where we used that GT = −G and that JTG = −GJ. This expression can be rewritten as

〈unm|�̂ â†p|unm〉 = i(n + 1)

√
1

2k
μ∗p , (6.88)

which we also prove by mathematical induction. Again, the special case of |u00〉 can be

checked explicitly. In order to prove that it is true for |un+1m〉 and |unm+1〉, we use that

[
�̂ , â†p

]
= �̂

⎛⎜⎜⎜⎜⎜⎝
√

k
2
μ†pG�̂

⎞⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎝
√

k
2
μ†pG�̂

⎞⎟⎟⎟⎟⎟⎠ �̂ =
√

k
2

[
�̂ , r∗pθ̂ − t∗pρ̂

]
= i

√
1

2k
μ∗p (6.89)

and find

〈un+1m|�̂ â†
1
|un+1m〉 =

(
1

n + 1

)
〈unm|â1�̂ â†

1
â†
1
|unm〉 =(

1

n + 1

)
〈unm|â1

⎛⎜⎜⎜⎜⎜⎝â†1�̂ + i

√
1

2k
μ∗1

⎞⎟⎟⎟⎟⎟⎠ â†
1
|unm〉 = 〈unm|�̂ â†

1
|unm〉 + i

√
1

2k
μ∗1 . (6.90)

The analogous result may be derived for |unm+1〉. This completes the proof of equation (6.88)

and, thereby, of equation (6.27).

6.C Mode-space operators corresponding to the Noether charges

In this appendix we construct both the ray-space and the corresponding state-space generators

of the U(1)⊗U(1) gauge transformations. The ray matrix that describes such transformations

is given by equation (6.44). To first order in the phases χ1 and χ2 the matrix C (6.42) is given

by

C =
(
1 + iχ1 0

0 1 + iχ2

)
=

(
1 0

0 1

)
+ χ1

(
i 0

0 0

)
+ χ2

(
0 0

0 i

)
. (6.91)

Substitution in equation (6.44) then gives

Mχ
({χp}) = 1 +

χ1

2

( −r1t†
1
− r∗1tT1 r1r†

1
+ r∗1rT1

−t1t†
1
− t∗1tT1 t1r†

1
+ t∗1rT1

)
+

χ2

2

( −r2t†
2
− r∗2tT2 r2r†

2
+ r∗2rT2

−t2t†
2
− t∗2tT2 t2r†

2
+ t∗2rT2

)
, (6.92)
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where r1t†
1
= r1 ⊗ t†

1
etcetera are direct vector products. From Mχ

({χp}) = exp
(
−χpJχp

)
�

1 − χpJχp , we find that

Jχp =
1

2

(
rpt†p + r∗ptTp −rpr†p − r∗prTp
tpt†p + t∗ptTp −tpr†p − t∗prTp

)
(6.93)

where p = 1, 2. These generators are 4 × 4 matrices in the ray space. By carefully inspecting

the form of the direct products and the structure of the generators J j as given in appendix 6.A

we find that

T̂χp = −
k
4

{
rTp θ̂ρ̂

Tt∗p + r†pθ̂ρ̂
TtTp − rTp θ̂θ̂

Tr∗p − r†pθ̂θ̂
TrTp +

tTp ρ̂θ̂
Tr∗p + t†pρ̂θ̂

TrTp − tTp ρ̂ρ̂
Tt∗p − t†pρ̂ρ̂

TtTp
}
. (6.94)

This can be rewritten as

T̂χp = −
k
4

{(
−t†p r†p

) ( ρ̂ρ̂T ρ̂θ̂T

θ̂ρ̂T θ̂θ̂T

) (
tp

−rp

)
+
(
−tTp rTp

) ( ρ̂ρ̂T ρ̂θ̂T

θ̂ρ̂T θ̂θ̂T

) (
t∗p
−r∗p

)}
, (6.95)

which equals

T̂χp =
k
4

{
μ†pG�̂ �̂

TGμp + μ
T
pG�̂ �̂

TGμ∗p
}
=

k
2

{
μ†pG�̂ μTpG�̂ + μTpG�̂ μ†pG�̂

}
=

1

2

(
â†pâp + âpâ†p

)
, (6.96)

where, we used that �̂ TGμp is scalar so that �̂ TGμp =
(
�̂

TGμp
)T
= −μTpG�̂ .

122


