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5
Rotationally induced vortices in optical

cavity modes

5.1 Introduction

Rotation is a very natural source of vorticity: when a glass of water is stirred, a vortex appears

at the center. Such a vortex is a singularity of the water current and it is of the same type as

the vortex that appears above a sink. When a glass of water is put into uniform rotation,

for instance by placing it on a turntable, the water current vanishes at the rotation axis but

is not singular. It has been known for over half a century that this is different in case of a

superfluid [70]. Due to the zero viscosity of, and the vortex quantization in, a superfluid,

uniform rotations induce a regular pattern of equally charged vortices. Vortices appear only

if the rotation frequency exceeds a certain critical value and their number increases if the

rotation frequency is further increased. Eventually rotation may destabilize the superfluid.

More recently, similar experiments have been performed with Bose-Einstein condensates of

dilute gases both by optically stirring the condensate [71] and by trapping it in a rotating

elliptical potential [72].

During the past decades, optical vortices and their propagation have attracted a significant

amount of attention [73, 74, 75, 76, 77, 78]. An optical vortex is a singularity of the phase

of an optical beam and is characterized by its position in the transverse plane, its topological

charge and its morphology. The vortex charge is determined by the total phase change 2πq
along a contour around the vortex center and must be integer for reasons of continuity. As
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5. Rotationally induced vortices in optical cavity modes

opposed to the vortices that appear in superfluids and Bose-Einstein condensates, optical

vortices can be elliptical; their morphology is characterized by the partial derivatives of the

beam profile close to the vortex center and can be represented by a point on a sphere [79].

The polar angle on the sphere determines the degree of ellipticity while the azimuthal angle

fixes the orientation in the transverse plane. The interplay between astigmatism and the

propagation of optical vortices may give rise to very rich behavior [80, 81, 82]. The dynamics

of optical vortices in a laser cavity has also been studied [83].

In view of the recent interest in effects of rotating elements on optical beams [69] and

the physical properties of rotating mode patterns [19, 20], the above-mentioned examples

of rotationally induced vortices in material systems raise the question if and how rotation

induces vorticity in light fields [84]. In this chapter we address this topic by studying the

optical properties of a two-mirror cavity that is put into rotation about its optical axis. This

set-up is schematically drawn in figure 5.1. We expect an effect of rotation only if the cavity

lacks rotational symmetry. In analogy with the rotating elliptical potential in which Bose-

Einstein condensates can be trapped, we break the rotational symmetry by taking at least one

of the mirrors cylindrical or astigmatic. In the absence of rotation, such a cavity has astigmatic

Hermite-Gaussian modes [12], which have lines of zero intensity (line dislocations) in the

transverse plane. We show that rotation deforms the cavity modes into generalized Gaussian

modes [44] and that the line dislocations are deformed into optical vortices (point singularities

in the transverse plane). We study the properties of these rotationally induced optical vortices.

This chapter is organized as follows. In the next section we briefly review the propa-

gation of optical fields through time-dependent systems, focus on the specific case of a ro-

tating astigmatic cavity and summarize the ladder-operator method that we have introduced

in chapter 3. In the third section, we characterize the degrees of freedom associated with

the astigmatism and vorticity of the rotating cavity modes and apply the analogy with the

quantum-mechanical harmonic oscillator to derive analytical expressions of the rotating cav-

ity modes. These are used to discuss some general properties of the vortices that appear in

these modes. In the fourth section we show and discuss some explicit results for a specific

realization of a uniformly rotating two-mirror cavity.

5.2 Paraxial wave optics between rotating mirrors

5.2.1 Mode propagation in a rotating cavity

The mathematical description of the propagation of light through optical systems simplifies

significantly if the paraxial approximation is applied. This approximation is almost always

justified in experimental set-ups with optical beams. In the present case of a rotating cavity,

we must account for effects that arise from the time dependence of the mirror settings. As-

suming that the rotation frequency Ω is much smaller than the optical frequency ω, we use

the generalization of the paraxial approximation to the time-dependent case [46]. In this ap-

proximation, the electric field is purely transverse. For a propagating mode it can be written
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5.2 Paraxial wave optics between rotating mirrors

as

E(r, t) = Re
{
E0εu(r, t)eikz−iωt

}
, (5.1)

where E0 is the amplitude of the field, ε is the transverse polarization, k is the wave number

and ω = ck is the optical frequency with c the speed of light. The complex scalar profile

u(r, t) characterizes the large-scale spatial structure and slow temporal variations of the field.

It obeys the time-dependent paraxial wave equation(
∇2ρ + 2ik

∂

∂z
+
2ik
c
∂

∂t

)
u(ρ, z, t) = 0 , (5.2)

with ρ = (x, y)T and ∇2ρ = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplacian. If we omit the

derivative with respect to time, this equation reduces to the standard paraxial wave equation,

which has the same form as the Schrödinger equation for a free particle in two dimensions, z
playing the role of time. It describes the diffraction of a freely propagating stationary paraxial

beam. The time derivative in equation (5.2) accounts for the time dependence of the profile

and incorporates retardation between distant transverse planes.

In addition to diffraction, the propagation of the light inside a cavity is governed by the

boundary condition that the electric field must vanish on the mirror surfaces. In case of

a rotating cavity this boundary condition is explicitly time dependent. A natural way to

eliminate this time dependence is by transforming to a co-rotating frame, where it is sufficient

to consider the behavior of time-independent propagating modes v(r). The transformation

that connects the profile in the rotating frame to the profile in the stationary frame can be

expressed as

u(ρ, z, t) = Ûrot(Ωt)v(ρ, z) , (5.3)

where Ω is the rotation frequency and Ûrot(α) = exp(−iαL̂z) is the operator that rotates a

scalar function over an angle α about the z axis with L̂z = −i(x∂/∂y− y∂/∂x) the z component

of the orbital angular momentum operator. Substitution of the rotating mode (5.3) in the

time-dependent paraxial wave equation (5.2) yields the wave equation for v(ρ, z)(
∇2ρ + 2ik

∂

∂z
+
2Ωk

c
L̂z

)
v(ρ, z) = 0 . (5.4)

In the rotating frame, the retardation term is replaced by a Coriolis term, which is familiar

from particle mechanics. Since ∇ρ and L̂z commute, the formal solution of the paraxial wave

equation in the rotating frame (5.4) can be expressed as

v(ρ, z) = Ûf (z)Ûrot

(
−Ωz

c

)
v(ρ, 0) ≡ Û(z)v(ρ, 0) , (5.5)

where Ûf (z) = exp
( iz
2k∇2ρ

)
is the propagator corresponding to the time-independent paraxial

wave equation and describes free propagation of a paraxial beam in a stationary frame. The

operator Û(z) has the significance of the propagator in the rotating frame. The rotation oper-

ator arises from the Coriolis term in equation (5.4) and gives the propagating modes a twisted

nature.
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5. Rotationally induced vortices in optical cavity modes

Figure 5.1: Schematic plot of the set-up that we study in this chapter: an astigmatic two-

mirror cavity that is put into rotation about its optical axis. The rotation frequency is denoted

Ω and z0 indicates the transverse reference plane.

5.2.2 The modes of a rotating cavity

In a stationary cavity, modes are usually defined as stationary solutions of the time-dependent

paraxial wave equation (5.2) that vanish on the mirror surfaces [12]. The transverse profiles of

these modes are reproduced after each round trip up to a Gouy phase factor exp(−iχ), which
determines the resonant wave numbers. From equation (5.1) it follows that the electric field

picks up a phase 2kL − χ, where L is the mirror separation, after each round trip so that the

resonance condition reads 2kL − χ = 2πq with q ∈ Z. The necessary and sufficient condition

for a stationary cavity to have long-lived modes is that it is geometrically stable, i.e., that the

round-trip Gouy phases χ are real so that the magnification | exp(−iχ)| is equal to 1.

Since a rotating cavity is time-dependent, we cannot expect time-independent modes in

this case. A natural and continuous generalization of the mode criterion to the rotating case

is to require that the modes adopt the time-dependence of the cavity, i.e., that they rotate

along with the mirrors. These modes are time-independent in the co-rotating frame so that

they obey equation (5.4) and vanish on the mirror surfaces. As discussed in the previous

chapter, the interplay between rotation and stability gives rise to surprisingly rich behavior,

but geometrically stable rotating two-mirror cavities exist. In chapter 3, we have derived an

analytical-algebraic method to find explicit expressions of their modes. The method involves

two pairs of bosonic ladder operators in the spirit of the quantum-mechanical harmonic os-

cillator that generate a complete and orthogonal set of cavity modes. In a given transverse

reference plane, which we take close to the first mirror and denote by z = z0 as is indicated in
figure 5.1 the profiles of the cavity modes can be expressed as

vnm(ρ, z0) =
1√

n!m!

(
â†
1
(z0)

)n (
â†
2
(z0)

)m
v00(ρ, z0) , (5.6)

where â†
1
(z0) and â†

2
(z0) are the two raising operators in the reference plane. The fundamen-

tal mode v00(z0) is fixed up to a phase factor by the requirement that acting on it with the

corresponding lowering operators must give zero, i.e., â1(z0)v00(z0) = â2(z0)v00(z0) = 0. The

ladder operators are linear combinations of the position operators ρ̂ = (x, y) and the conjugate
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5.2 Paraxial wave optics between rotating mirrors

momentum operators kθ̂ = −i∇ρ with k the wave number of the mode. The expectation val-

ues 〈v|ρ̂|v〉 and 〈v|θ̂|v〉 have the significance of the average transverse position and the average
propagation direction of the beam. The position and propagation direction operators obey

canonical commutation relations [ρ̂i, kθ̂ j] = iδi j, where the indices i and j run over x and y
and with δi j the Kronecker delta function. In the reference plane z0 the lowering operators

can be expressed as

âi(z0) =

√
k
2

(
rTi (z0)θ̂ − tTi (z0)ρ̂

)
, (5.7)

where the index i runs over 1 and 2. The complex vectors ti(z0) and ri(z0) have two compo-

nents and are chosen such that μTi = (rTi , t
T
i ) is an eigenvector of the round-trip ray matrix in

the co-rotating frame. In the present case of an astigmatic optical cavity, this is a real 4 × 4

matrix, which can be expressed as

Mrt = M1 · M(L) · M2 · M(L) , (5.8)

where M(z) = Mf (z) · Mrot(−Ωz/c) is the ray matrix that corresponds to Û(z) and describes

free propagation in the co-rotating frame, Mf (z) is the ray matrix that describes propagation

in a stationary frame and Mrot(α) is the ray matrix that describes a rotation over an angle α

in the transverse plane. The ray matrices M1,2 describe the mirrors 1 and 2 respectively and

are fully determined by their radii of curvature and orientation in the transverse plane. These

ray matrices are the generalizations to the astigmatic case of the standard 2 × 2 ray matrices,

which can be found in any textbook on optics. Explicit expressions of the 4 × 4 ray matrices

are given in section 3.5.

As opposed to the unitary propagator Û(z) and the rotation operator Ûrot(α), which act in

the Hilbert space of transverse modes, ray matrices describe real linear transformations in the

transverse phase space (ρ, θ). Formally speaking, this phase space is a symplectic manifold

and the real and linear transformations that preserve its mathematical structure form the real

symplectic group S p(R, 4). Symplectic groups and various physically relevant aspects of

symplectic geometry have been studied in detail, see, for instance, reference [39]. The ladder

operators act in the mode space, but since they are constructed from the ray vectors μTi =

(rTi , t
T
i ) and transform accordingly, the algebraic properties of the round-trip ray matrix (5.8)

are essential for the ladder operator approach to be applicable. From these properties, it

follows that its eigenvalues are either real or pairwise complex conjugate phase factors. The

rotating cavity is geometrically stable only in the latter case. In this case, the corresponding

pairwise complex conjugate eigenvectors μT1,2 = (rTi , t
T
i ) and μ

†
i = (r†i , t

†
i ) can be chosen such

that

rTi (z0)t j(z0) − tTi (z0)r j(z0) = 0 , (5.9)

and

r†i (z0)t j(z0) − t†i (z0)r j(z0) = 2iδi j , (5.10)

where the indices i and j take the values 1 and 2. The complex conjugate eigenvectors μ†
1,2

generate the raising operators â†
1,2 according to equation (5.7) and the special properties of the
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5. Rotationally induced vortices in optical cavity modes

eigenvectors (5.9) and 5.10) guarantee that the ladder operators obey bosonic commutation

relations

[ai(z0), a j(z0)] = 0 and [âi(z0), â
†
j (z0)] = δi j , (5.11)

where the indices i and j run over 1 and 2, so that the modes (5.6) form a complete and

orthonormal set in the transverse reference plane.

The four eigenvalues of the round-trip ray matrix (5.8) can be written as exp(iχ1,2) and
exp(−iχ1,2), where χ1,2 are the round-trip Gouy phases that are picked up by the lowering

operators. They determine the resonant wave numbers for the (n,m) cavity mode according

to

2kL − χ1
(
n +

1

2

)
− χ2

(
m +

1

2

)
= 2πq , (5.12)

where q ∈ Z is the longitudinal mode index.

The ladder operators that generate the rotating cavity modes in an arbitrary transverse

plane inside the cavity can be constructed according to equation (5.7) and its hermitian con-

jugate by using that the z dependent eigenvectors μTi (z) =
(
rTi (z), t

T
i (z)

)
are given by

(
ri(z)
ti(z)

)
= M(z − z0)

(
ri(z0)
ti(z0)

)
. (5.13)

The properties given by equations (5.9) and (5.10) are preserved under this transformation

so that the ladder operators obey the bosonic commutation relations (5.11) in all transverse

planes.

So far, we have considered only the mode that propagates from left to right (from mirror

1 to mirror 2 in figure 5.1). By using the ray matrix that describes one of the mirrors (say

mirror 2), one can construct the ladder operators that generate the modes that propagate in

the opposite direction

(
r←i (z)
t←i (z)

)
= M(z0 + L − z) · M2 · M(z0 + L − z)

(
r→i (z)
t→i (z)

)
. (5.14)

The actual field inside the cavity is a linear combination of the left and right propagating

modes and can be expressed as

Enm(r, t) = Re
{
− iE0ε

(
v→nm(ρ, z)e

ikz−iωt − v←nm(ρ, z)e
−ikz−iωt)} , (5.15)

where the minus sign accounts for the fact that a mode changes sign when it is reflected by

a mirror. In the rest of this chapter, we focus on the mode profile vnm(ρ, z) rather than on

the actual cavity field (5.15), since this is the profile that would be measured in any realistic

experiment. The expressions of the modes that we have given in this section hold in the co-

rotating frame, the corresponding expressions of the rotating mode patterns unm(ρ, z, t) in the

stationary frame can be obtained by applying equation (5.3).
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5.3 Ladder operators and vortices

Figure 5.2: The Hermite-Laguerre sphere, which describes the degrees of freedom associated

with the nature of higher-order paraxial optical modes. Each point (ϕHL, ϑHL) corresponds

to a complete and orthonormal set of modes; the poles (ϑHL = 0, π) correspond to Laguerre-

Gaussian modes while points on the equator (ϑHL = π/2) correspond to Hermite-Gaussian

modes. Intermediate values of the polar angle ϑHL give rise to generalized Gaussian modes.

The azimuthal angle ϕHL determines the orientation of the higher-order mode patterns in the

transverse plane.

5.3 Ladder operators and vortices

5.3.1 Analytical expressions of the modes

In order to derive more explicit expressions of the rotating cavity modes (5.6), we combine

the vectors r1,2 and t1,2 in two matrices, which are defined as

R(z) =
(
r1(z), r2(z)

)
and T(z) =

(
t1(z), t2(z)

)
, (5.16)

The special properties (5.9) and (5.10) can then be summarized as

RTT − TTR = 0 and R†T − T†R = 2i1 . (5.17)

As was mentioned already, the fundamental mode v00(ρ, z) is fixed by the requirement that

acting on it with both lowering operators must give 0. The two first order differential equa-

tions that are thus obtained have the solution

v00(ρ, z) =

√
k

π detR(z)
exp

(
−kρTS(z)ρ

2

)
, (5.18)

where S = −iTR−1 is a 2×2 matrix. It makes sense to decompose S into its real and imaginary

parts S = Sr + iSi. The matrices Sr and Si, respectively, characterize the astigmatism of the

Gaussian intensity and phase patterns. From the properties of R and T (5.17) it can be shown

easily that S is symmetric and that its real part Sr is positive definite so that the mode profile

is square-integrable. The profile in equation (5.18) has been normalized properly. In order to
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5. Rotationally induced vortices in optical cavity modes

characterize the other degrees of freedom, it is convenient to rewrite the z dependent lowering
operators (5.7) as

(
â1(z)
â2(z)

)
=

√
k
2

(
RT(z)θ̂ − TT(z)ρ̂

)
=

√
k
2

RT(z)
(
θ̂ − iS(z)ρ̂

)
. (5.19)

By using equation (5.17) we find that RR† = S−1r so that RT(z) can be written as σ(z)S(z)−1/2r ,

where σ is a unitary 2 × 2 matrix. Notice that Sr is real, symmetric and positive definite so

that S−1/2r is well defined. By making use of the operator identity eABe−A = B + [A, B] +
1
2!
[[A, [A, B]] + ... and the canonical commutation relations [ρ̂, kθ̂] = iδi j we find that

Siρ̂ + θ̂ = e−ikρSiρ/2θ̂eikρSiρ/2 (5.20)

so that the z dependent lowering operators can be expressed as

(
â1

â2

)
= −i

√
k
2
σe−ikρSiρ/2

(
S1/2
r ρ̂ + iS−1/2r θ̂

)
eikρSiρ/2 . (5.21)

By introducing real scaled coordinates ρ′ =
√

kS1/2
r ρ that account for the astigmatism of the

intensity pattern, the product of
√

k/2 and the linear combination of ρ̂ and θ̂ between the

brackets takes the form of the lowering operators of a dimensionless quantum-mechanical

harmonic oscillator in two dimensions. From right to left, both the z dependent lowering

operators (5.21) and the corresponding raising operators â†
1,2 first remove the curved wave

front, then modify the mode pattern and eventually restore the wave front again. The uni-

tary matrix σ describes the additional degrees of freedom, which characterize the nature and

orientation of the higher-order modes. Overall phase factors in the rows of σ do not affect

the mode structure in a given transverse plane z and without loss of generality we can fix its

determinant such that σ ∈ S U(2). Since σ is unitary, its rows are not independent and we

can write

σ =

(
σx σy

−σ∗y σ∗x

)
, (5.22)

with |σx|2 + |σy|2. In complete analogy with the Poincaré sphere for polarization vectors (or

the Bloch sphere for spin-1/2 states) the degrees of freedom associated with the complex

vector (σx, σy) can be mapped onto the so-called Hermite-Laguerre sphere [17]. As is in-

dicated in figure 5.2, every point on the sphere corresponds to two pairs of bosonic ladder

operators that generate a complete set of higher-order modes. In this respect, it is different

from the Poincaré and Bloch spheres, on which every point corresponds to a single state.

The poles on the Hermite-Laguerre sphere correspond with (σx, σy) = (1,±i)/
√
2 and yield

ladder operators that generate Laguerre-Gaussian modes. Points on the equator correspond

to (σx, σy) = (cosϕHL, sinϕHL) and give rise to Hermite-Gaussian modes. Intermediate val-

ues of the polar angle 0 < ϑHL < π/2 correspond to generalized Gaussian modes [44]. The

azimuthal angle ϕHL fixes the orientation of the higher-order mode patterns in the transverse
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5.3 Ladder operators and vortices

Figure 5.3: A stationary cavity with simple astigmatism is equivalent to its mirror image (the

dashed line indicates the mirror plane). Since the rotation direction changes sign under this

reflection, rotation breaks this symmetry.

plane. The rows of σ (5.22) correspond to antipodal points on the sphere so that it is, strictly

speaking, sufficient to consider one of the hemispheres only. In general, the separation of

the degrees of freedom in terms of the symmetric matrix S, which characterizes the astig-

matism, and the unitary matrix σ, which determines the nature of the higher order modes, is

local in the sense that it only holds in a single transverse plane z. The evolution of σ under

propagation and optical elements depends on the astigmatism and vice versa.

Using the defining identity of the Hermite polynomials Hn(x) exp(−x2/2) =

(x − ∂
∂x )

n exp(−x2/2) and the binomial expansion (a + b)n =
∑n

p=0

(
n
p

)
apbn−p for [a, b] = 0

the normalized higher order modes can be expressed as

vnm(ρ
′, z) =

⎛⎜⎜⎜⎜⎜⎝k
(
detSr

)1/2
π

⎞⎟⎟⎟⎟⎟⎠
1/2

exp

⎛⎜⎜⎜⎜⎝−ρ′(1 + iS−1/2r SiS
−1/2
r )ρ′

2

⎞⎟⎟⎟⎟⎠ ×
n∑

p=0

m∑
q=0

(
n
p

)(
m
q

)
(i)n+m (

σ∗x′
)p

(
σy′

)q (
σ∗y′

)n−p
(σx′)

m−q × Hk+l(x′)Hn+m−k−l(y′) , (5.23)

where ρ′ = (x′, y′)T are the scaled coordinates that account for the astigmatism of the in-

tensity patterns. The above expression holds in the co-rotating frame. The corresponding

expression for the rotating modes unm(ρ
′, z, t) in the stationary frame, can be obtained by

applying equation (5.3).

5.3.2 Vortices in higher order modes

As discussed in section 3.7, a stationary two-mirror cavity has inversion symmetry in the

imaginary transverse planes halfway the lenses of the corresponding lens guide. In case of a

cavity with simple astigmatism, the symmetry property (3.72) is equivalent to the statement
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|u00|
2 arg(u00) |v00|

2 arg(v00)

|u01|
2 arg(u01) |v01|

2 arg(v01)

|u10|
2 arg(u10) |v10|

2 arg(v10)

|u11|
2 arg(u11) |v11|

2 arg(v11)

|u02|
2 arg(u02) |v02|

2 arg(v02)

|u20|
2 arg(u20) |v20|

2 arg(v20)

Figure 5.4: Intensity and false-color phase patterns of the first few modes of an optical

cavity consisting of a spherical and a stationary (left) and rotating (right) cylindrical mirror.

The radius of curvature of the spherical mirror is equal to 4L, with L the mirror separation.

The radius of curvature of the cylindrical mirror is equal to 2L. The plots show the mode

patterns in the co-rotating frame close to the spherical mirror. The cylindrical mirror is flat

in the vertical direction. In the right plots, the rotation frequency is equal to Ω0/10 with

Ω0 = cπ/L. The color code used to plot the phase patterns is periodic; from 0 to 2π the color

changes in a continuous fashion from red via yellow, green, blue and purple back to red.
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5.3 Ladder operators and vortices

Figure 5.5: Dependence on the rotation frequency Ω of the polar angle ϑHL on the Hermite-

Laguerre sphere for a cavity consisting of a spherical and a rotating cylindrical mirror. The

characterization of the modes in terms of (ϕHL, ϑHL) is local and the plot specifies the nature

of the higher-order modes in the transverse plane close to the spherical mirror.

that a stationary cavity must have the same modes as its mirror image, as illustrated in figure

5.3, where the mirror plane is parallel to one of the planes through the mirror axes and the

cavity axis. This symmetry implies that the cavity modes are real apart from the overall

curved wave fronts. This symmetry property holds for modes of all order so that the higher

order modes are Hermite-Gaussian. Hermite-Gaussian modes do have line dislocations (lines

across which the phase jumps by π) in the transverse plane, but do not have vortices. As

discussed in section 3.7, the inversion symmetry in case of a stationary cavity with general

astigmatism is more subtle. In that case, the cavity modes are real only in the immediate

neighborhood of the mirrors.

Rotation obviously breaks the inversion symmetry of a stationary cavity. As a result, the

modes of a rotating cavity have additional phase structure. The fundamental mode attains

a twist; although the electric field vanishes on the mirror surfaces, its wave fronts do not

fit their local curvature. From equation (5.18), it is clear that no vortices can appear in the

fundamental mode. Vortices appear as zeros of the polynomial part of the profile of the higher

order modes (5.23). Due to the rotation of the cavity, the line dislocations in the higher-order

Hermite-Gaussian modes are deformed into elliptical vortices.

From the fact that σ (5.22) is a unitary matrix, it follows that the two raising operators

â†
1,2 generate vortices with opposite charge. As a result, the vortices that appear at the center

of the v01 and v10 modes have equal but opposite topological charges ±1. Since both vortices
are spherical (canonical) in the scaled coordinates, their morphologies are determined only

by the astigmatism of the intensity pattern. In general, the raising operators split, displace and

introduce vortices in the cavity modes so that the vortex pattern in the higher-order modes

(5.23) can be very complicated. More explicit expressions have been given only in limiting

cases [80, 81].

The fundamental mode contains only even powers of the position coordinates ρ = (x, y)T
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5. Rotationally induced vortices in optical cavity modes

and is even under inversion in the transverse plane: ρ→ −ρ. The ladder operators are linear in
the position and propagation-direction operators and are obviously odd under this inversion.

It follows that the rotating cavity modes (5.23) are even or odd, depending on the parity of

the total mode number n + m. Odd modes have a vortex at the center of the mode patterns,

whereas even modes, in general, do not.

5.4 Examples

In this section we illustrate the rotational effects on the structure of two-mirror cavity modes

by further investigating a specific example. We focus on a cavity consisting of a stationary

spherical and a rotating cylindrical mirror, which is the simplest realization of a uniformly

rotating two-mirror cavity. The radius of curvature of the spherical mirror is taken as 4L, with
L the mirror separation while the radius of curvature of the cylindrical mirror is chosen as 2L.
This cavity is geometrically stable for rotation frequencies up to Ω0/6, where Ω0 = cπ/L
with c the speed of light, is the frequency corresponding to the cavity round-trip time.

In the absence of rotation, the modes unm(ρ, z) of the cavity are defined as the station-

ary solutions of the time-dependent paraxial wave equation (5.2) that vanish on both mirror

surfaces. The transverse intensity and phase patterns close to the spherical mirror of the

zeroth, first and second order modes of the cavity are plotted in the left column of figure

5.4. Although the astigmatism is different in other transverse planes (in particular close to

the cylindrical mirror), the modes are Hermite-Gaussian everywhere. Their phase structure

clearly reflects the fact that the wave fronts fit the curvature of the (spherical) mirror. The

phase structure of the higher-order modes reveals phase jumps of π (sign changes), which

appear along horizontal and vertical lines in the transverse plane and arise from the Hermite-

polynomials in equation (5.23). Although these line dislocations are not visible in the inten-

sity patterns, they are physical and can be observed interferometrically.

If the cylindrical mirror is put into rotation, the mode structure changes significantly. The

modes of a rotating cavity are defined as co-rotating solutions of equation (5.2), or equiva-

lently solutions of equation (5.4), that vanish on the mirror surfaces. In the co-rotating frame,

propagating modes attain a twist due to retardation, which is accounted for by the Coriolis

term in equation (5.4). The effect of rotation on the intensity and phase patterns of the zeroth,

first and second order cavity modes is illustrated in the right column of figure 5.4, for which

the rotation frequency is equal to Ω0/10. The mode patterns are clearly affected by rotation.

The intensity patterns become more similar to Laguerre-Gaussian modes and have obviously

the structure of generalized Gaussian modes. Although the electric field vanishes on the mir-

ror surface, the wave fronts no longer fit its curvature. This is most apparent in case of the

fundamental mode v00(ρ, z), where the curves of constant phase close to the spherical mirror

have become elliptical. The non-parallel orientation of the elliptical intensity and phase pat-

terns of the fundamental mode v00(ρ, z) reflects its twisted nature. The higher-order modes

also attain a twist. Moreover, vortices appear in their phase patterns. The results confirm that

the vortices in the v01(ρ, z) and v10(ρ, z) have opposite charges and that only modes with odd
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n + m have a vortex at the center. In the modes with equal mode numbers n and m, vortices

appear in pairs of equal but opposite charge so that the total vortex charge is equal to zero.

As a result, the curves of constant phase that enclose all vortices are closed.

Due to a combined symmetry that survives rotation, the intensity patterns of the rotating

modes are aligned along the axes of the cylindrical mirror while the phase patterns are not.

As a result the azimuthal angle on the Hermite-Laguerre sphere ϕHL, which specifies the

orientation of the higher-order mode patterns, does not depend on the rotation frequency. This

is not true for the polar angle ϑHL, which specifies whether the modes are Hermite-Gaussian,

Laguerre-Gaussian or generalized Gaussian modes and is a measure of the vorticity in their

phase structure. Its dependence on the rotation frequencyΩ is shown in figure 5.5. In general,

the characterization of the cavity modes in terms of a point on the Hermite-Laguerre sphere

is local and the plot in figure 5.5 characterizes the higher-order cavity modes close the the

spherical mirror. It confirms that, due to the fact that rotation breaks the inversion symmetry

of a stationary cavity, the cavity modes are continuously deformed from Hermite-Gaussian

modes in the stationary case into generalized Gaussian modes in the rotating case. For not

too large values of the rotation frequency, the rotationally induced vorticity is proportional

to the rotation frequency. For larger values something surprising happens: at some point,

the vorticity starts to decrease with increasing rotation frequencies and eventually the modes

become Hermite-Gaussian again. This is due to the fact that this cavity is destabilized by

rotation at a rotation frequency Ω0/6. At this point, the modes lose their confinement in

one of the transverse directions (in this case in the vertical direction, i.e., the direction in

which the cylindrical mirror is flat) so that the elliptical vortices are stretched to become

line dislocations again. Although the vorticity in the modes disappears if this transition is

approached, the orbital angular momentum diverges due to the diverging astigmatism. As we

have shown in chapter 4, rotation may also stabilize a cavity that is unstable in the absence

of rotation. In such cases we expect the opposite behavior. Due to the rotation of the cavity,

we retrieve Hermite-Gaussian modes at the point where the cavity is stabilized, while mode

deformation and induced vorticity appear for even larger values of the rotation frequency.

5.5 Some remarks on experimental issues

In chapters 3, 4 and 5, we have discussed various optical and opto-dynamical properties of

astigmatic optical cavities with rotating mirrors. The essential feature that distinguishes those

from their stationary counterparts is the retardation L/c of a light pulse after propagation from
one mirror to the other. In the co-rotating frame, this gives rise to a twistΩL/c, which signifi-
cantly modifies the mode structure and the focusing properties of the cavity. Since the speed

of light is very large, experimental observation of the effects that we have studied requires

very large values of the rotation frequency Ω. In this section we discuss some possibilities

and limitations of several routes towards realization of an experimental set-up that captures

the essential features of the one that we have studied in this thesis.

Under typical experimental conditions, the distance between the mirrors of a paraxial
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Figure 5.6: A rotating two-mirror cavity can be unfolded into a stationary four-mirror ring

cavity that captures the essential optical properties of the rotating cavity. The image rotators

between the mirror rotate the mode profile over an angle ΩL/c in order to account for the

twist of the modes under propagation in the rotating frame.

optical cavity ranges from a few centimeters to several meters. In this case, the rotation fre-

quencyΩ0, which corresponds to the cavity round-trip time is of the order of 108 hertz so that

observation of the effects that we have discussed here, requires mechanical rotation frequen-

cies of 1 to 10 megahertz. Mechanical vibration frequencies close to this range have been

achieved with a piezoelectric actuator [85]. Developing a similar device to simulate rotations

at megahertz frequencies is challenging but seems, at least in principle, not impossible.

Lower values of the rotation frequency require larger values of the mirror separation.

Currently, high-finesse optical cavities as large as 2 to 4 kilometers are being operated in

attempts to optically detect gravitational waves [86]. In such a set-up rotation frequencies of

a few kilohertz would suffice. However, the mirrors that are used in these set-ups are large

and, therefore, heavy so that achieving mechanical rotation at kilohertz frequencies without

too much distortion is anything but straightforward. Moreover, fabrication of an astigmatic

mirror of this size is not at all trivial.

Another, perhaps more realistic, dynamical approach could be to apply a rotating astig-

matic mode pattern, which can be constructed from its stationary Doppler-shifted frequency

components [48], to optically induce a rotating refractive-index pattern in a material with a

Kerr nonlinearity. Such a pattern could be used in transmission to realize a two-mirror cavity

with a rotating lens. The optical properties of such a cavity could be observed at another

wavelength. The rotation frequency that can be achieved in this set-up is eventually limited

by the dynamical response of the Kerr medium.

In addition to the dynamical realizations, one could try to mimic the twisted mode prop-

agation in the rotating frame by using image rotators. Since it is essential that back and forth

propagating modes attain a twist in the same direction, a two-mirror cavity with an image

rotator between the mirrors does not do the job. Instead, one should use a ring resonator

with four, pairwise identical, mirrors in which the light passes an image rotator after each

mirror, as indicated in figure 5.6. Although the settings of the optical elements in this set-up
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are time-independent, it does capture the essential optical properties of a rotating two-mirror

cavity. A difficulty with this set-up is that the clockwise and counterclockwise propagating

modes are frequency degenerate. In a passive set-up one of the two modes can be selected by

injecting light in one direction only. In an active realization, this degeneracy could be lifted

by applying the polarization degree of freedom.

5.6 Conclusion and outlook

In this chapter, we have applied the ladder-operator that we introduced in chapter 3 to study

the vortices that appear in the modes of an astigmatic two-mirror cavity when it is put into

rotation about the optical axis. The modes of a rotating cavity are defined as solutions of the

time-dependent paraxial wave equation (5.2) that rotate along with the cavity and vanish on

the mirror surfaces. This mode criterion is a continuous generalization of the requirement

that the modes of a stationary cavity are stationary solutions of equation (5.2) that vanish

on the mirror surfaces. The rotating cavity modes are stationary solutions in a co-rotating

frame where mode propagation is twisted due to the finite speed of light. As a result, rotation

deforms the astigmatic Hermite-Gaussian modes of a stationary cavity into generalized Gaus-

sian modes. The line dislocations in the Hermite-Gaussian modes are deformed into elliptical

vortices. In chapter 4, we have shown that rotation can destabilize a two-mirror cavity that

is stable in the absence of rotation. When such a transition is approached, the cavity modes

lose their confinement in one transverse direction so that the elliptical vortices are stretched

to become line dislocations again. This is illustrated in figure 5.5.

An interesting but open question is how rotation would affect the optical properties of

a geometrically unstable cavity, especially when close to the rotationally induced transition

from an unstable to a stable geometry. A geometrically unstable cavity is intrinsically lossy

[12] and the propagation of light inside an unstable cavity is dominated by diffraction at the

sharp edges of the mirrors [66]. Both mathematically and physically this system is funda-

mentally different from the stable cavities that we have studied here and it is not possible to

apply or generalize our method to such a system.

As opposed to a normal fluid, a spatially confined optical cavity mode attains vorticity

when it is put into uniform rotation. In this respect, it has some similarity with superfluids

and Bose-Einstein condensates. Compared to those systems, however, optical beams have

many more degrees of freedom to cope with rotation. A Bose-Einstein condensate arises as

the collective ground state of an ensemble of interacting bosons (usually atoms) in thermal

equilibrium. It is a gauge-symmetry-broken state that is characterized by its uniform phase.

The only way in which such a system can attain orbital angular momentum, is by locally

creating cylindrically symmetric vortices while keeping its phase fixed elsewhere. As a re-

sult, vortices appear only when the rotation frequency exceeds a certain threshold and the

number of vortices increases when the rotation frequency is further increased. For optical

cavity modes, on the other hand, both the astigmatism of the phase and intensity patterns

and the properties of the optical vortices are affected by rotation. Both contribute to the or-
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bital angular momentum [17], which typically increases with increasing values of the rotation

frequency even though the number of vortices does, in general, not increase.
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