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4
Rotational stabilization and destabilization

of an optical cavity

4.1 Introduction

Stability is a very distinctive property of the dynamics of a physical system. Characteristic for

unstable dynamics is that an arbitrary initial state evolves into a rapidly diverging state. Ex-

amples range from the simple case of a particle on the top of a hill to a wealth of instabilities

that can be observed and characterized in fluids and plasmas. External motion has significant

effects on the dynamics of physical systems and may modify its stability properties. This is

exemplified by the Paul trap [50], or more generally by a time-orbiting potential trap [51],

in which a particle is trapped in an oscillating potential from which it would escape in the

stationary case. The Paul trap is a close analogue of the rotational stabilization of a particle

in a saddle-point potential [52]. Another well-known example of rotational stabilization is

the gyroscope. Similar behavior has also been observed in thermodynamically large systems

such as granular matter [53] and fluids [54].

In recent years, optical cavities with moving elements have become topical. State-of-the-

art experiments focus on opto-mechanical oscillators driven by radiation pressure [55, 56] and

cavity-assisted trapping and cooling [57, 58, 59]. Possible applications range from weak-

force detection [60] to fundamental research on quantum entanglement [61, 62] and deco-

herence [63, 64] on macroscopic scales. In addition to the longitudinal radiation pressure,

electromagnetic fields can exert transverse forces due to their phase structure [65]. A specific
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4. Rotational stabilization and destabilization of an optical cavity

example is the transfer of optical orbital angular momentum [21], which can give rise to a

torque along the propagation axis of the beam. Recently, it has been shown that this torque

can in principle be sufficiently large to trap and cool the rotational degrees of freedom of a

mirror in a cavity-assisted set-up [25]. In this chapter, we focus on the complementary ques-

tion: How does rotation of a mirror affect the optical properties of a cavity and, in particular,

its (in)stability? As such, the work presented here constitutes the first analysis of rotational

effects on stability in optics.

We consider a cavity that consists of two mirrors facing each other. In the standard case

both mirrors are spherical. Depending on their focusing properties, a ray that is coupled into

such a cavity can either be captured, or escape after a finite (and typically small) number of

round trips. In the latter case the cavity is geometrically unstable whereas it is stable in the

former one. The stability criterion for this system can be expressed as [12]

0 < g1g2 < 1 , (4.1)

where g1,2 = 1 − L/R1,2 with R1,2 = 2 f1,2 the radii of curvature of the two mirrors, f1,2 the

corresponding focal lengths and L the mirror separation. The optical properties of unstable

cavities are fundamentally different from those of their stable counterparts [12]. Since a

geometrically stable cavity has the ability to confine light, its modes are spatially confined

and stationary. An unstable cavity, on the other hand, cannot confine light and is intrinsically

lossy even if the mirrors are perfectly reflecting. As a result, the propagation of light inside

an unstable cavity is dominated by diffraction at the sharp edges of the mirrors [66] and its

“modes” are self-similar diverging patterns that have a fractal nature [67]. Instability is a

necessary condition for an optical cavity to display chaotic behavior [68].

We consider rotations about the optical axis of a cavity and expect an effect only if at

least one of the mirrors is astigmatic (or cylindrical), so that the cavity lacks axial symmetry.

In general, both mirrors can be astigmatic with non-parallel axes but, for simplicity, we first

focus on a cavity that consists of a cylindrical (c) and a spherical (s) mirror. The more

general case of a cavity with two astigmatic mirrors is briefly discussed in section 4.4. In the

simple case of a cavity with one spherical and one astigmatic mirror, the curvature of each

mirror can be specified by a single g parameter so that the configuration space, spanned by

gs and gc, is two-dimensional. In the absence of rotation the stability criterion in the plane

through the optical axis in which the cylindrical mirror is curved is of the form of equation

(4.1): 0 < gsgc < 1. In the other perpendicular plane through the cavity axis, in which the

cylindrical mirror is flat, the stability criterion reads: 0 < gs < 1. As is indicated in the

stability diagram in the upper left window in figure 4.1, stable (dark blue) areas appear where

both criteria are met. The cavity is partially stable (light blue) in areas where only one of

the two is fulfilled. When a cavity is partially stable, both a ray that is coupled into it and its

modes are confined in one of the two transverse directions only. One may guess that rotation

disturbs the confinement of the light by the mirrors so that all (partially) stable cavities will

eventually lose stability if the rotation frequency is sufficiently increased. However, we will

show that this is not the case and that rotation has surprisingly rich and distinct effects on the
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4.2 Stability of a rotating cavity

stability of a two-mirror cavity.

4.2 Stability of a rotating cavity

In order to describe the diffraction of light inside a rotating cavity, we use the paraxial approx-

imation [45] and its generalization to the time-dependent case [46]. We write the transverse

electric field of a propagating mode as

E(r, t) = Re
{
E0εu(r, t)eikz−iωt

}
, (4.2)

where E0 is the amplitude of the field, ε is the polarization, k is the wave number and ω =

ck is the optical frequency with c the speed of light. The large-scale spatial structure and

slow temporal variations of the electric field are characterized by the complex scalar profile

u(r, t). In lowest order of the paraxial approximation and under the assumption that the time

dependence of the profile is slow compared to the optical time scale, the electric field is purely

transverse and the profile u(r, t) obeys the time-dependent paraxial wave equation(
∇2
ρ + 2ik

∂

∂z
+

2ik
c
∂

∂t

)
u(r, t) = 0 , (4.3)

with ∇2
ρ = ∂

2/∂x2 + ∂2/∂y2. If we omit the derivative with respect to time, this equation

reduces to the standard paraxial wave equation, which describes the diffraction of a freely

propagating stationary paraxial beam. The additional time derivative accounts for the time

dependence of the profile and incorporates retardation between distant transverse planes.

The dynamics of light inside a cavity is governed by the boundary condition that the

electric field vanish on the mirror surfaces. For a rotating cavity, this boundary condition

is explicitly time dependent. This homogeneous time dependence vanishes in a co-rotating

frame where it is sufficient to consider time-independent propagating modes v(r). The trans-

formation that connects v(r) and u(r, t) takes the form

u(r, t) = Ûrot(Ωt)v(r) , (4.4)

where Ω is the rotation frequency and Ûrot(α) = exp(−iαL̂z) is the operator that rotates a

scalar function over an angle α about the z axis with L̂z = −i(x∂/∂y− y∂/∂x) the z component

of the orbital angular momentum operator. Substitution of the rotating mode (4.4) in the

time-dependent wave equation (4.3) gives(
∇2
ρ + 2ik

∂

∂z
+

2Ωk
c

L̂z

)
v(r) = 0 (4.5)

for v(r). The transformation to a rotating frame gives rise to a Coriolis term, in analogy with

particle mechanics. Since ∇2
ρ and L̂z commute, the formal solution of equation (4.5) can be

expressed as

v(ρ, z) = Ûf (z)Ûrot

(
−Ωz

c

)
v(ρ, 0) ≡ Û(z)v(ρ, 0) , (4.6)
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Figure 4.1: Stable (dark blue), partially stable (light blue) and unstable (white) areas of the

configuration space (gs, gc) for a cavity that consists of a stationary spherical and a rotating

cylindrical mirror, for different rotation frequencies. From left to right and from top to bottom

the rotation frequency is increased in equal steps Ω0/20 from 0 to Ω0/4.

where ρ = (x, y)T and Ûf (z) = exp
( iz

2k∇2
ρ

)
is the unitary operator that describes free propa-

gation of a paraxial beam in a stationary frame. The operator Û(z) has the significance of

the propagator in the rotating frame. The rotation operator arises from the Coriolis term in

equation (4.5) and gives the propagating modes a twisted nature.

The transformation of paraxial modes under propagation and optical elements can be

expressed in terms of a ray (ABCD) matrix [12, 32]. The standard 2 × 2 ray matrices that

describe optical elements with axial symmetry can be found in any textbook on optics. The

ray matrix of a composite system can be constructed by multiplying the ray matrices that

describe the optical elements and the distances of free propagation between them, in the

proper order. Generalization to astigmatic optical elements is straightforward and requires

4 × 4 ray matrices [12]. The ray matrix that describes propagation in a rotating frame is,

analogous to equation (4.6), given by M(z) = Mf (z)Mrot(−Ωz/c), where Mf (z) is the 4× 4 ray

matrix that describes free propagation over a distance z and Mrot(α) is the 4 × 4 ray matrix

that rotates the position ρ and propagation direction θ of a ray �
T = (ρT, θT) over an angle α

about the z axis. Starting at the entrance plane of the spherical mirror, the time-independent

ray matrix that describes a round trip through the rotating cavity in the co-rotating frame is
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4.2 Stability of a rotating cavity

Figure 4.2: Transverse intensity patterns in the co-rotating frame of the (1, 1) mode of cavity

I (top), which is specified by (gs, gc) = ( 3
4
, 1

2
) and destabilized by rotation, and cavity II

(bottom), which is specified by (gs, gc) = (− 3
4
,− 1

2
) and stabilized by rotation, for increasing

rotation frequencies. From left to right it increases from 0 to 0.166Ω0 for cavity I and from

0.21Ω0 to Ω0/4 for cavity II. The plots show the mode patterns close to the spherical mirror

and the vertical direction corresponds to the direction in which the cylindrical mirror is flat.

then

Mrt = M(L) · Mc · M(L) · Ms , (4.7)

where L is the mirror separation and Ms and Mc are the ray matrices for the spherical and

the cylindrical mirror. They are fully determined by the radii of curvature and the orientation

of the mirrors in the transverse plane. Explicit expressions of these ray matrices are given in

sections 2.2 and 3.5.

Typically, the round-trip ray matrix (4.7) has four distinct time-independent eigenvectors

μi with corresponding eigenvalues λi. In the rotating frame, any time-dependent incident ray

�
T
0 (t) =

(
ρT(t), θT(t)

)
can be expanded as � 0(t) =

∑
i ai(t)μi. After n times bouncing back and

forth between the mirrors, the ray evolves into � n(t + 2nL/c) =
∑

i ai(t)λn
i μi. The possibly

complex eigenvalues have the significance of the magnification of the eigenvector after one

round trip and it follows that a cavity is stable only if all four eigenvalues have absolute value

1. As shown in chapter 2, the eigenvalues of any physical ray matrix come in pairs λ and λ−1

so that possible deviations from |λ| = 1 appear in two of the four eigenvalues at the same time.

If only two eigenvalues have absolute value 1, the cavity is partially stable. The eigenvalues

of the round-trip ray matrix (4.7) do not depend on the frame of reference, and it follows that

the same is true for the notion of stability.

A ray that is bounced back and forth inside the cavity hits a mirror at time intervals L/c.

Since a rotation over π turns an astigmatic mirror to an equivalent orientation, it follows that

the stability of a cavity is not affected by a change in the rotation frequency Ω → Ω + pΩ0
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with integer p and Ω0 = cπ/L. In the present case, in which one of the mirrors is spherical,

a ray hits the cylindrical mirror at time intervals 2L/c so that the eigenvalues λi are periodic

with Ω0/2. Moreover, an astigmatic cavity is not gyrotropic so that the eigenvalues do not

depend on the sign of Ω. It follows that it is sufficient to only consider rotation frequencies

in the range 0 < Ω < Ω0/4.

By using the expression of the ray matrix in the co-rotating frame (4.7) and the stabil-

ity criterion that its eigenvalues must have a unit length, we find the stable, partially stable

and unstable sections in the configuration space (gs, gc) for different values of the rotation fre-

quency. The results are shown in figure 4.1. These plots reveal that, already at relatively small

rotation frequencies, quite drastic changes take place. For instance, near (gs, gc) = (1, 0) sta-

ble configurations are destabilized to become (partially) unstable, while partially stable geo-

metries near the negative gc axis are stabilized by the rotation. An optical cavity can thus both

lose and gain the ability to confine light due to the fact that it rotates. It is noteworthy that

some configurations, for example those with small and positive gs and gc, are first partially

destabilized by rotation, but retrieve stability if the rotation frequency is further increased.

Another remarkable feature of the plots in figure 4.1 is the absence of partially stable areas

in the lower right plot. As we will argue below, this is more generally true for the rotation

frequency Ω0/4. In this specific case, the boundaries of stability are given by the hyperbolas

gc = 1/(2gs) and gc = 1/(2gs − 1) and their asymptotes.

4.3 Signatures of stabilization and destabilization

As discussed in chapter 3, the structure of the modes of a rotating cavity is fully determined

by the eigenvectors μi. The modes are defined as co-rotating solutions of the time-dependent

paraxial wave equation (4.3) that vanish on the mirror surfaces. Geometric stability comes in

as the necessary and sufficient requirement for them to exist. Here, we illustrate the effect of

rotational (de)stabilization on the mode structure by considering two cases of a cavity with a

spherical and a cylindrical mirror. Cavity I is specified by (gs, gc) = ( 3
4
, 1

2
). It is stable in the

absence of rotation and destabilized at a rotation frequency Ω = Ω0/6. Cavity II is specified

by the parameter values (gs, gc) = (− 3
4
,− 1

2
). It is partially stable in the absence of rotation

and stabilized by rotation at Ω � 0.2098Ω0. The effect of rotation on the spatial structure of

the modes of cavities I and II is shown in figure 4.2. The upper frames show the transverse

spatial structure on the spherical mirror of the (1, 1) mode of cavity I. From left to right the

rotation frequency increases from 0 to 0.166Ω0 in equal steps. In the absence of rotation

(left frame) the mode is an astigmatic Hermite-Gaussian mode. Due to rotation, the mode is

deformed to a generalized Gaussian mode with a nature in between Hermite-Gaussian and

Laguerre-Gaussian modes [44]. As a result, phase singularities or so-called optical vortices

[14], which are visible as points with zero intensity, appear. For rotation frequencies close

to Ω0/6, the mode loses its confinement in the vertical direction. This reflects the fact that

the cavity approaches a region of partial instability. The lower frames in figure 4.2 show the

intensity pattern on the spherical mirror of the (1, 1) mode of cavity II, which is stabilized
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4.4 Two astigmatic mirrors

by rotation. From left to right the rotation frequency is increased from 0.21Ω0 to 0.25Ω0 in

equal steps. As a result of the rotation we retrieve a mode that is confined in both directions

and is similar to a Hermite-Gaussian mode. Deformation of the mode due to the rotation is

more pronounced for even larger values of the rotation frequency.

Obviously, the horizontal and vertical directions in figure 4.2, which correspond to the

curved and flat directions of the cylindrical mirror, are lines of symmetry. In the special

case of a rotation frequency Ω0/4, the cylindrical mirror is rotated over π/2 after each round

trip so that its orientation is periodic with two round-trip times as a period. This causes the

diagonal lines between the horizontal and vertical directions to be lines of symmetry of the

round-trip ray matrix (4.7) and the intensity patterns. This explains the apparent absence of

astigmatism in the lower right plot of figure 4.2. This additional symmetry also causes the

four eigenvalues λi to have the same absolute value, which explains the absence of partial

stability in the lower right plot of figure 4.1.

Although the intensity patterns of the modes are aligned along the axes of the cylindrical

mirror, their phase patterns are not. These attain a twist that is a signature of orbital angular

momentum [21, 17], proportional to
∫

dρv∗(ρ, z)L̂zv(ρ, z). The dependence of this orbital

angular momentum in the (1, 1) mode of cavity I on the rotation frequency is shown in figure

4.3 (left plot). The orbital angular momentum shows a divergence at Ω0/6, which arises from

the induced instability of the cavity. The opposite happens for cavity II (right plot), which is

stabilized by rotation. In this case the orbital angular momentum decreases with increasing

rotation frequencies and eventually vanishes for Ω = Ω0/4 due to the additional symmetry

at this specific rotation frequency. The vanishing orbital angular momentum does not imply

that there is no vorticity in the modes at this rotation frequency. The two contributions to the

orbital angular momentum add up to zero for modes with two equal mode numbers.

4.4 Two astigmatic mirrors

Some features of the set-up that we have discussed so far are specific for the relatively simple

geometry we have looked at. In particular, the plots in figure 4.1 show that no cavity with

one spherical and one cylindrical mirror that is unstable in the absence of rotation can be

(partially) stabilized by rotation. This is different in more general cases. As an example,

we consider a cavity with two astigmatic mirrors. We take one of the radii of curvature of

each of the mirrors fixed while we vary the others. In this case the corresponding parameter

space, spanned by the g parameters corresponding to the varying radii of curvature, is again

two-dimensional. The radii of curvature are chosen such that the g parameters are given by

(3/4, g1) for mirror 1 and (g2, 3/4) for mirror 2. The alignment of the mirrors is such that the

g1 direction of mirror 1 is parallel to the 3/4 direction of mirror 2 (and vice versa) so that

the cavity has simple astigmatism. In the absence of rotation each of the symmetry planes

through the mirror axes and the cavity axis can be considered as a cavity with two spherical

mirrors. The corresponding stability criteria are given by 0 < 3g1/4 < 1 for one symmetry

plane and 0 < 3g2/4 < 1 for the other. As is indicated in the upper left window in figure 4.4,
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4. Rotational stabilization and destabilization of an optical cavity

Figure 4.3: Dependence on the rotation frequency of the orbital angular momentum per

photon in the (1, 1) mode of cavity I (left), which is destabilized by rotation, and cavity II

(right), which is stabilized by rotation.

these criteria are met in strips in the configuration space (g1, g2). A cavity with two astigmatic

mirrors lacks the additional symmetry at Ω0/4 so that we need to consider rotation frequen-

cies in the range 0 < Ω < Ω0/2. As the other windows in figure 4.4 reveal, again rotation

has profound effects on the (in)stability of the cavity. One of the striking differences with the

plots in figure 4.1 is that some unstable geometries, in particular close to (g1, g2) = (1, 1) are

fully stabilized by rotation at relatively small values of the rotation frequency. At the specific

value of the rotation frequency Ω0/2, the mirrors are rotated over π/2 while the light propa-

gates from one mirror to the other. From the stability point of view, this situation is equivalent

to the case in which the mirrors are in the anti-parallel alignment and non-rotating. In that

case, the stability criteria can be expressed as 0 < g1g2 < 1, which gives rise to hyperbolic

boundaries of stability, and 0 < 9/16 < 1, which is always fulfilled. As a result the cav-

ity is partially stable in all cases and fully stable between the hyperbola g1 = 1/g2 and the

g1 = 0 and g2 = 0 axes in the configuration space. This is confirmed by the stability diagram

in the lower right window in figure 4.4. As a result of the fact that all geometries are (at

least) partially stable at the rotation frequency Ω0/2, there is a strange discontinuity in the

stability diagrams. Here, it occurs at Ω � 0.27Ω0. At this value of the rotation frequency

many unstable geometries are suddenly partially stabilized while stable geometries are fully

destabilized. Partially stable configurations are both stabilized to become stable and destabi-

lized to become unstable. However, no configurations are stable through this sharp transition,

which, physically speaking, corresponds to the boundary between “similar to anti-parallel

alignment” and “similar to parallel alignment” of the mirrors.
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Figure 4.4: Stable (dark blue), partially stable (light blue) and unstable (white) areas of the

configuration space (g1, g2) for a cavity that consists of two astigmatic mirrors, for different

rotation frequencies. The g parameters corresponding to the radii of curvature of mirror 1 are

given by (3/4, g1) while the g parameters for mirror 2 are given by (g2, 3/4). From left to

right and from top to bottom the rotation frequency is increased in equal steps Ω0/20 from 0

to Ω0/4.

4.5 Conclusion

We have investigated rotationally induced transitions between the areas of stability and partial

instability of an astigmatic two-mirror cavity. This is the first example of an optical system

where stability can be induced or removed by rotation. Mechanical systems with dynamical

stabilization are the Paul trap and the gyroscope. The most obvious signatures of rotational

(de)stabilization are the modification of the mode confinement and the divergence of the or-

bital angular momentum, discussed in section 4.3 and respectively shown in figures 4.2 and

4.3. The spatial structure of the rotating cavity modes may be difficult to measure, but since

their orbital angular momentum components appear at different frequencies due to the rota-

tional Doppler shift [48, 69], it should be possible to resolve the divergence of the orbital

angular momentum spectroscopically. The effects of transverse rotations on the optical prop-

erties of a cavity are significantly more complex than the resonance shifts that are associated

with small longitudinal displacements of the mirrors. This may have important consequences

in cavity-assisted opto-mechanical experiments in which the rotational degrees of freedom of
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a mirror are addressed.

Although the set-up that we have studied here is rather specific, our method, which is ex-

act in the paraxial limit, can be applied to more complex optical systems. Moreover, it should

also be applicable to other, mathematically similar, wave-mechanical systems. Examples in-

clude the quantum-mechanical description of a particle in a rotating, partially stable potential

and rotating acoustical cavities. In particular, the modification of the mode confinement and

the rotationally induced angular momentum are expected to have analogues in such systems.
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