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3
Twisted light between rotating mirrors

3.1 Introduction

The possibly very rich structure of optical cavity modes is fully determined by the boundary

condition that the electric field must vanish on the mirror surfaces. This implies that the

wave fronts (surfaces of equal phase) of a mode that propagates inside the cavity fit on the

mirror surfaces. As a result, the mirror surfaces are nodal planes of the standing wave pattern

that is formed inside the cavity. The common approach to finding the modes of a paraxial

optical cavity is by considering a freely propagating Gaussian beam and requiring its wave

fronts to fit on the mirror surfaces [12]. This is straightforward in the standard case of a

cavity with two spherical mirrors. The resulting equation can be solved to obtain the beam

parameters that characterize a complete and orthonormal set of Hermite-Gaussian modes.

Geometric stability comes in as the necessary and sufficient condition for a cavity to have

stationary modes and the round-trip Gouy phases determine the corresponding frequency

spectrum. This approach allows for generalization to the case of astigmatic mirrors, which

are curved differently in two mutually perpendicular transverse directions, provided that the

mirror axes are parallel. The problem of finding the paraxial modes of a cavity with non-

aligned astigmatic mirrors requires far more advanced analytical [38, 34] or, as discussed in

the previous chapter, algebraic techniques.

In this chapter we consider an additional, and surprisingly different, source of complexity.

We study the propagation and diffraction of light inside a two-mirror cavity that is rotating

at a uniform velocity about its optical axis. It remains true that the electric field vanishes
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3. Twisted light between rotating mirrors

on the mirror surfaces. Since cavity modes are usually defined as monochromatic solutions

of the wave equation that obey the boundary conditions imposed by the mirrors, the mode

concept requires special attention in this time-dependent case. As opposed to, for instance,

vibration, uniform rotation is homogeneous in time, which means that all instants of time,

and therefore all cavity round trips, are equivalent. In this special case, it is natural to require

that modes adopt the time-dependence of the cavity so that they rotate along with the mirrors.

We show that this property can be used as a defining property of rotating cavity modes. As an

example, we consider the case of a rotating astigmatic two-mirror cavity. We generalize the

geometric-algebraic method that we have developed in the previous chapter to derive explicit

expressions of the rotating cavity modes and apply these to study some of their physical

properties.

The material in this chapter is organized as follows. In the next section we discuss the

perturbative approach to the paraxial approximation [45] and its generalization to the time-

dependent case [46]. This helps us to ensure the consistency of our approach in that we retain

all terms up to the same order of the expansion. In section 3.3 and section 3.4 we generalize

the operator description of paraxial wave optics [42] to account for the time-dependence of

a rotating cavity and show how modes can be defined in such a system. Explicit expressions

of the rotating cavity modes are derived in section 3.5 and section 3.6, where we also discuss

some of their physical properties. In section 3.7 we focus on the role of spatial symmetries

in special limiting cases while section 3.8 is devoted to the orbital angular momentum in the

rotating cavity modes. Explicit results for specific cases are briefly discussed in section 3.9.

3.2 Time-dependent paraxial propagation

The spatial structure of an optical beam is characterized by a vector field u(r, t), which de-

scribes the spatial and temporal variations of the vector components of the field that are slow

compared to those arising from the carrier wave. The profile u(r, t) defines the electric field
of the beam by

E (r, t) = Re
{
E0u (r, t) eikz−iωt

}
, (3.1)

where E0 is an amplitude factor and ω = ck is the frequency of the carrier wave, with k the

wave number and c the speed of light. In vacuum the electric field obeys the wave equation

∇2E =
1

c2
∂2E
∂t2
, (3.2)

with the additional requirement that it has a vanishing divergence

∇ · E = 0 . (3.3)

Essential for the paraxial approximation is that the beam has a small opening angle, which we

indicate by the smallness parameter δ. Then the beam waist is of the order of the parameter

γ, and the diffraction length (or Rayleigh range) is of the order of the parameter b, where

1

k
= δγ = δ2b . (3.4)
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3.2 Time-dependent paraxial propagation

So the diffraction length is much larger than the beam waist, which is much larger than the

wavelength. The smallness of δ ensures that the variations of the profile u(r, t) with the

longitudinal coordinate z are slow compared to the variations with the transverse coordinates

ρ = (x, y)T, which are, in turn, slow compared to the variations of the carrier wave exp(ikz)
with z. By using δ as an expansion parameter, the time-independent paraxial wave equation

(2.32) can be obtained directly from the wave equation (3.2) while resolving the apparent

paradox that paraxial fields cannot have a completely vanishing divergence [45]. As we shall

discuss in a moment, this approach allows for generalization to the time-dependent case [46].

Time dependent optical fields necessarily have spectral structure in addition to their spa-

tial structure. The concept of a mode loses its meaning if the difference in diffraction of the

frequency components becomes significant, i.e., if the diffraction due to the time dependence

of the profile becomes important. Conversely, we shall show that the mode concept remains

meaningful if the time scale for variation of the cavity boundaries is slower than the transit

time through the focal range of the beam. This transit time is of the order of

a =
b
c
=

1

ωδ2
. (3.5)

In order to obtain the time-dependent paraxial wave equation, the profile u is expanded in

powers of the opening angle δ

u(r, t) =
∞∑

n=0

δnu(n)(r, t) . (3.6)

Since we need to account for the (relative) order of the magnitudes of the derivatives of u, it
is convenient to introduce the scaled variables ξ = x/γ, η = y/γ, ζ = z/b and τ = t/a. In

these variables, the derivatives can be treated as being of the same order in δ. Substituting the

expression (3.1) for the electric field in the wave equation (3.2) then gives(
∂2

∂ξ2
+
∂2

∂η2
+ 2i
∂

∂ζ
+ 2i
∂

∂τ

)
u(r, t) = δ2

(
∂2

∂τ2
− ∂

2

∂ζ2

)
u(r, t) , (3.7)

while the transversality condition (3.3) yields

δ

(
∂ux

∂ξ
+
∂uy

∂η

)
= −δ2 ∂uz

∂ζ
− iuz . (3.8)

It is natural to assume that to zeroth order the z component of u vanishes, and equation (3.8)

shows that such a solution can be found. Then to zeroth order of the paraxial approximation

the electric field lies in the transverse plane. In the special case of uniform polarization it can

be written as

u(0)(r, t) = εu(r, t) , (3.9)

where ε is a transverse polarization vector. The scalar profile u(r, t) obeys the time-dependent

paraxial wave equation (
∂2

∂x2
+
∂2

∂y2
+ 2ik

∂

∂z
+
2ik
c
∂

∂t

)
u(r, t) = 0 . (3.10)
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3. Twisted light between rotating mirrors

The expansion (3.6) then shows that all even orders of the transverse components are coupled

by equation (3.7) while all odd orders can be assumed to vanish. Equation (3.8) connects odd

orders of the z component to the even orders of the transverse components, which implies that

all even orders (including the zeroth) of the longitudinal component vanish. The first-order

contribution to the profile is longitudinal and by using equation (3.8) it can be expressed in

the zeroth order term

δu(1)(r, t) =
i
k

(
εx
∂

∂x
+ εy
∂

∂y

)
u(r, t)ez , (3.11)

where ez is the unit vector in the z direction.
Up to first order of the paraxial approximation, finding the modes of a cavity with rotating

mirrors requires solving the time-dependent paraxial wave equation (3.10) with the boundary

condition that the electric field (3.1) vanishes at the mirror surfaces at all times. The range of

validity of this time-dependent wave equation provides a natural upper limit to the rotation

frequency of the mirrors. In a typical experimental set-up the diffraction length of the modes

of an optical cavity is of the order of magnitude of the mirror separation, so that the period

of the rotation of the mirrors can be at most comparable to the cavity round-trip time. This

yields an upper bound to the rotation frequency Ω

Ω �
cπ
L
, (3.12)

where L is the mirror separation and c is the speed of light. The average lifetime of a photon

inside the cavity, which we leave out of our consideration here, provides a natural lower

bound to the rotation frequency of the mirrors.

3.3 Operator description of time-dependent paraxial wave optics

3.3.1 Operators and transformations

The standard time-independent paraxial wave equation follows if we omit the time derivative

in equation (3.10). This has the same structure as the Schrödinger equation for a free particle

in two dimensions, with k taking the place of m/� and the longitudinal coordinate z playing
the role of time. This analogy can be exploited by adopting the Dirac notation of quantum

mechanics to describe classical light beams [42]. This naturally leads to an operator descrip-

tion of paraxial wave optics. Here, we show that this description can be generalized to include

the time dependence of the scalar beam profile u(ρ, z, t), even though the time dependence of

an optical beam does not have an analogue in quantum mechanics.

We associate to the beam profile u(ρ, z, t) a vector |u(z, t)〉 in the Hilbert space of paraxial
modes of the radiation field

u(ρ, z, t) = 〈ρ|u(z, t)〉 , (3.13)

where |ρ〉 is an eigenstate of the transverse position operator ρ̂ = (x̂, ŷ)T. The correspond-

ing momentum operator can be represented by kθ̂ = (k̂ϑx, kϑ̂y)
T = −i(∂/∂x, ∂/∂y)T. The
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3.3 Operator description of time-dependent paraxial wave optics

transformations of paraxial propagation and lossless optical elements such as thin lenses can

be expressed as unitary transformations in the transverse mode space. Expressing the time-

dependent paraxial wave equation (3.10) in terms of the momentum operators gives(
∂

∂z
+
1

c
∂

∂t

)
|u(z, t)〉 = − ik

2
θ̂2|u(z, t)〉 , (3.14)

which is formally solved by

|u(z, t)〉 = exp

(
− ikz

2
θ̂2

)
|u(0, t − z/c)〉 = Ûf (z)|u(0, t − z/c)〉 , (3.15)

where Ûf (z) denotes the unitary operator that describes free propagation of a paraxial beam.

This result shows that the time-dependent paraxial wave equation (3.10) describes paraxial

beam propagation while incorporating retardation effects. A thin spherical lens imposes a

Gaussian phase profile. Hence, the transformation caused by such a lens can be expressed as

[27]

|uout〉 = exp

(
− ikρ̂2

2 f

)
|uin〉 , (3.16)

where f is the focal length of the lens. The generalization of this transformation to the case

of a lens that has astigmatism is given by

|uout〉 = exp

(
− ikρ̂TF−1ρ̂

2

)
|uin〉 = Ûl(F)|uin〉 , (3.17)

where F is a real and symmetric 2 × 2 matrix. The eigenvalues of F characterize the focal

lengths of the lens while the, mutually orthogonal, real eigenvectors fix its orientation in the

transverse plane.

3.3.2 Rotating lenses and frequency combs

The unitary operator that rotates a scalar function about the z axis can be expressed as

Ûrot(α) = exp(−iαL̂z) , (3.18)

where α is the rotation angle and L̂z = ρ̂×kθ̂ = −i(x∂/∂y−y∂/∂x) = −i∂/∂φ is the z component

of the orbital angular momentum operator. The inverse of this rotation is a rotation in the

opposite direction, so that Û†rot(α) = Ûrot(−α). The transformation of a rotated lens can be

expressed as

Ûrot(α)Ul(F)Û
†
rot(α) . (3.19)

This (anti-Heisenberg) transformation property makes sense if one realizes that rotating a lens

is equivalent to rotating the profile in the opposite direction, applying the lens and rotating the

profile backward. The beam transformation caused by an astigmatic lens (3.17) only involves
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3. Twisted light between rotating mirrors

Figure 3.1: Unfolding a rotating optical cavity into an equivalent periodic lens guide. The

mirrors are replaced by rotating lenses with the same focal lengths and the z = 0 reference

plane is indicated by the dashed line.

the position operator ρ̂ = (x̂, ŷ)T. The anti-Heisenberg transformation of the position operator

under a rotation about the z axis (3.18) can be expressed as

Ûrot(α)ρ̂Û
†
rot(α) =

(
cosα sinα

− sinα cosα

)
ρ̂ = PT(α)ρ̂ , (3.20)

with P(α) a two-dimensional rotation matrix. By using this transformation property of the

position operators, the transformation of a rotated lens (3.19) can be expressed as

Ûl

(
P(α)FPT(α)

)
. (3.21)

For a lens rotating at angular velocity Ω, the rotation angle is α = Ωt, so that the time-

dependent beam transformation caused by the rotating lens is given by Ûl

(
F(t)

)
where F(t) =

P(Ωt)F(0)PT(Ωt). Without loss of generality we can choose the real and symmetric matrix

F(t) diagonal at t = 0

F(0) =
(

fξ 0

0 fη

)
. (3.22)

By using equations (3.19-3.22) and introducing cylindrical coordinates with x = R cos φ,

y = R sin φ, the time-dependent transformation of a rotating lens can be expressed as

Ûl

(
F(t)

)
= exp

[
− ikR2

4

(
f −1ξ + f −1η

)
− ikR2

4

(
f −1ξ − f −1η

)
cos (2Ωt − 2φ)

]
. (3.23)

Using the Jacobi-Anger expansion of a plane wave in cylindrical waves: exp(iz cos φ) =∑∞
l=−∞ ilJl(z) exp(ilφ), where Jl are Bessel functions of the first kind [47], this result can be

rewritten as:

Û(F(t)) = exp

[
− ikR2

4

(
f −1ξ + f −1η

) ]
×

∑
l

{
Jl

(
ikR2

4

(
f −1ξ − f −1η

))
exp

[
− 2il

(
Ωt + φ +

π

4

) ]}
. (3.24)

It follows that a rotating lens introduces frequency side bands in a monochromatic optical

field at frequencies ω ± 2pΩ with p ∈ Z [48].
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3.4 Modes in a rotating cavity

3.4 Modes in a rotating cavity

3.4.1 Lens guide picture

In order to describe the evolution of a profile vector |u(z, t)〉 inside a rotating cavity it is

convenient to unfold the cavity into an equivalent lens guide. As illustrated in figure 3.1,

the mirrors are replaced by lenses with the same focal lengths. Rather than describing the

bouncing back and forth inside the cavity we describe the propagation along the axis of the

lens guide, with coordinate z. The dashed line on the left of the first lens in figure 3.1 indicates
the transverse reference plane of the lens guide, which is positioned at z = 0. The profile in

any transverse plane of the lens guide is connected to the profile in the input plane by a

unitary transformation. Just as in equation (3.15), this time-dependent connection involves

retardation, as described by

|u(z, t)〉 = Û(z, t)|u(0, t − z/c)〉 . (3.25)

The unitary operator Û(z, t) can be constructed by successive application of the transforma-

tions of the optical elements and free propagation that are in between the reference plane and

the z plane in the correct order. We need only two different transformation operators for the

lenses in the lens guide, which we denote for simplicity as Û1(t) and Û2(t). For the lens guide
that corresponds to a cavity rotating at the uniform angular velocity Ω, these time-dependent

operators are given by equation (3.19) with rotation angle α = Ωt, so that

Ûi(t) = Ûrot(Ωt)Ûl

(
Fi(0)

)
Û†rot(Ωt) , (3.26)

with i = 1, 2 labeling the two lens types. Since the orientations of the rotating lenses de-

pend on time, retardation effects must be included. As an example we give the operator that

connects the profile vectors in transverse planes that are separated by one period of the lens

guide

Û(2L, t) = Ûf(L)Û2(t − L/c)Ûf (L)Û1(t − 2L/c) . (3.27)

Obviously, all lenses that correspond to the same mirror of the cavity have the same orien-

tation at any instant of time. Nevertheless, as a result of the finiteness of the speed of light,

the orientation of two lenses that correspond to the same mirror of the cavity is perceived

differently by a light pulse that propagates through the lens guide.

3.4.2 Rotating modes

Cavity modes are resonant field distributions inside an optical cavity. In a stationary cavity, a

field pattern is resonant only if it repeats itself after each round trip through the cavity. The

natural generalization of this mode criterion to the rotating case is by requiring that the field

pattern in the corresponding lens guide is the same in every period, at a single given instant

of time. This implies that the mode vector |u(0, t)〉 in the reference plane for a given value of
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3. Twisted light between rotating mirrors

t repeats itself after one period 2L up to a phase factor

|u(2L, t)〉 = e−iχ|u(0, t)〉 . (3.28)

The phase χ generalizes the Gouy phase for the round trip in a stationary cavity. Since the

lens guide is rotating at a uniform velocityΩ, this mode criterion (3.28) can be obeyed only if

the mode pattern rotates along with the lenses, so that the time dependence of a mode vector

must be determined by

|u(z, t)〉 = Ûrot(Ωt)|v(z)〉 . (3.29)

The homogeneous time dependence of this profile (3.29) can be eliminated by introducing

the z dependent profile
|v(z)〉 = |u(z, 0)〉 , (3.30)

which has the significance of the profile vector in the co-rotating frame. By combining the

relation (3.29) with equations (3.25-3.27), we find that the propagation of a beam profile in

this frame is governed by the general relation

|v(z)〉 = Û(z, 0)Ûrot(−Ωz/c)|v(0)〉 , (3.31)

so that the product Û(z, 0)Ûrot(−Ωz/c) can be viewed as the operator for free propagation in

the co-rotating frame. In the special case of the propagation over one period of the lens guide,

we find

|v(2L)〉 = ÛrtÛ
†
rot(Ωt)|u(0, t)〉 = Ûrt|v(0)〉 , (3.32)

where Ûrt is given by the expression

Ûrt = Ûf (L)Ûrot(−ΩL/c)Û2(0)Ûf (L)Ûrot(−ΩL/c)Û1(0) (3.33)

and has the significance of the transformation operator over a single period of the lens guide in

the co-rotating frame. Notice that the operator for free evolution Ûf is denoted as a function of

length while the lens operators Ûi are denoted as a function of time and the rotation operator

Ûrot is denoted as a function of angle.

Now the mode criterion (3.28) in the reference plane z = 0 in the rotating frame is obeyed

by the eigenvectors of the round-trip operator Ûrt. Once these mode vectors are determined,

we can use the propagation equation (3.15) and the time dependence (3.29) to obtain the

shape of the modes at other time instants, and at any position within a period of the lens

guide. The eigenvalues, which are specified by the phase angles χ, determine the resonance

frequencies of the modes. In the next section we shall indicate how the modes can be obtained

explicitly from a ladder-operator method.

3.5 Ray matrices and ladder operators

3.5.1 Time-dependent ray matrices

The transverse spatial structure of paraxial modes in cavities with spherical mirrors is known

to be similar to the spatial structure of the stationary states of a two-dimensional quantum
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3.5 Ray matrices and ladder operators

harmonic oscillator [12]. Complete sets of modes can be generated by using bosonic ladder

operators [33]. In chapter 2, we have derived a ladder operator method to find explicit expres-

sions of the paraxial modes of an optical cavity that has general astigmatism. These ladder

operators are conveniently expressed in terms of the eigenvectors of the ray matrix for one

period in the lens guide, or, equivalently, for one round trip in the cavity. Here we generalize

this approach to account for the time dependence that arises from the rotation of the cavity.

In this case, also the ray matrices depend on time.

In geometric paraxial optics, a light ray is specified by its position ρ = (x, y)T and its

propagation direction θ = ∂ρ/∂z in the transverse plane z. They can conveniently be combined

into a four-dimensional column vector

� (z) =
(
ρ(z)
θ(z)

)
. (3.34)

The linear transformation of a ray � through a paraxial astigmatic optical system can be de-

scribed by a product of 4 × 4 ray matrices, which generalize the well-known ABCD matrices

to the case of two independent transverse dimensions [12]. Here, we shall construct the ray

matrix M(z) that describes the transformation of a ray through the lens guide from the refer-

ence plane at z = 0 to the transverse plane z. In wave optics, the position of a light beam is the

expectation value of the operator ρ̂, while its propagation direction is the expectation value of

θ̂, which is the ratio of the transverse and the longitudinal momentum. This is confirmed by

the fact that the Heisenberg evolution of the operator vector �̂ = (ρ̂, θ̂)T reproduces the ray

matrix, as exemplified by the general identity

Û†(z)
(
ρ̂

θ̂

)
Û(z) = M(z)

(
ρ̂

θ̂

)
. (3.35)

The propagation operator Û acts on the operator nature of ρ̂ and θ̂, while the matrix M acts

on the four-dimensional ray vector. This relation may be viewed as the optical analogue of

the Ehrenfest theorem in quantum mechanics [49]. Note that the commutation relations for

the components of the position and propagation-direction operators take the form

[ρ̂x, θ̂x] = [ρ̂y, θ̂y] = i� = i/k . (3.36)

The ray matrix M(z) for propagation from the plane z = 0 to the plane z of the lens guide

can be constructed as the product of the ray matrices for the regions of free propagation and

the lenses in between these planes in the right order. The ray matrix for free propagation is

described by

Û†
f
(z)

(
ρ̂

θ̂

)
Ûf (z) =

(
1 z1
0 1

) (
ρ̂

θ̂

)
= Mf (z)

(
ρ̂

θ̂

)
, (3.37)

where 1 and 0 are the 2× 2 unit and zero matrices respectively. The transformation for a thin

astigmatic lens can be expressed as

Û†
l
(F)

(
ρ̂

θ̂

)
Ûl(F) =

(
1 0
−F−1 1

) (
ρ̂

θ̂

)
= Ml(F)

(
ρ̂

θ̂

)
. (3.38)
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3. Twisted light between rotating mirrors

The ray matrix of a rotation about the z axis follows from the identity

Û†rot(α)
(
ρ̂

θ̂

)
Ûrot(α) =

(
P(α) 0

0 P(α)

) (
ρ̂

θ̂

)
= Mrot(α)

(
ρ̂

θ̂

)
. (3.39)

The identities (3.35) and (3.38) remain valid for rotating lenses, which makes both the oper-

ators Û and the ray matrices M depend on time. The transformation of a time-dependent ray

in the reference plane to another transverse plane z is given by

� (z, t) = M(z, t)� (0, t − z/c)) (3.40)

in analogy to equation (3.25). A co-rotating incident ray in the reference plane must give

a co-rotating ray everywhere in the lens guide, and the ray matrices in the rotating frame

become independent of time. In complete analogy to equation (3.32), this implies that the

transformation of a ray in the rotating frame over one period from the reference plane is

given by the round-trip ray matrix

Mrt = Mf (L)Mrot(−ΩL/c)M2(0)Mf (L)Mrot(−ΩL/c)M1(0) , (3.41)

with M1(0) and M2(0) the ray matrices for the lenses 1 and 2 at time 0.

Any ray matrix that describes the transformation of a (sequence of) lossless optical ele-

ments obeys the following identity

MTGM = G , where G =
(

0 1
−1 0

)
. (3.42)

This property generalizes the requirement that the determinant of a ray matrix must be equal

to 1 to optical systems that have two independent transverse dimensions. It is easy to show

that the ray matrices that we have used obey this identity (3.42). The product of matrices that

obey equation (3.42) obeys it as well and in mathematical terms the set of 4× 4 matrices that

obey this identity forms the real symplectic group Sp(4,R). Both the underlying algebra and

the physics of such linear phase space transformations have been studied in detail, see, for

instance, reference [39].

3.5.2 Ladder operators in reference plane

The similarity between Hermite-Gaussian modes of a cavity with spherical mirrors and har-

monic-oscillator eigenstates can be traced back to the fact that in the paraxial limit the Heisen-

berg evolution (3.35) of the position and propagation-direction operators ρ̂ and θ̂ is linear, so

that ladder operators, which are linear in these operators, preserve their general shape under

propagation and optical elements. In chapter 2 we have demonstrated that the ladder opera-

tors that generate the modes of a cavity with non-parallel astigmatic mirrors are determined

by the eigenvectors of the round-trip ray matrix. In the rotating frame, the relation between

the propagation operators and the ray matrix for a round trip is basically the same as for a
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3.5 Ray matrices and ladder operators

stationary one, and equations (3.33) and (3.41) are obviously analogous. This allows us to

apply the same technique to obtain expressions for the modes of the rotating cavity. In order

to define the ladder operators we shall need the eigenvectors and eigenvalues of the ray matrix

equation (3.41). Stability of the rotating cavity requires that the eigenvalues are unitary, and

since the matrix Mrt is real, this implies that its eigenvectors come in two pairs μ1, μ
∗
1 and μ2,

μ∗2 that are each other’s complex conjugate. The eigenvalue relations are written as

Mrtμ1 = eiχ1μ1 and Mrtμ2 = eiχ2μ2 . (3.43)

From the general property (3.42) of ray matrices one directly obtains the generalized (sym-

plectic) orthogonality properties

μT1Gμ2 = μ
†
1
Gμ2 = 0 , (3.44)

while the eigenvectors can be normalized in order to obey the identities

μ†
1
Gμ1 = μ

†
2
Gμ2 = 2i . (3.45)

We shall now prove that the ladder operators that define the shape of the modes in the refer-

ence plane z = 0 at time 0 are easily expressed in terms of the eigenvectors μ1 and μ2 of the

ray matrix Mrt. Following the approach discussed in the previous chapter, we introduce two

lowering operators

âi =

√
k
2
μiG

(
ρ̂

θ̂

)
, (3.46)

where i = 1, 2. From the generalized orthonormality properties (3.44) and (3.45) of the

eigenvectors μi combined with the canonical commutation rules (3.36) it follows that the

ladder operators obey the bosonic commutation rules

[
âi, â

†
j

]
= δi j . (3.47)

Any set of ladder operators that obey these commutation relations defines a complete and

orthonormal set of transverse modes according to

|vnm〉 = 1√
n!m!

(
â†
1

)n (
â†
2

)m |v00〉 . (3.48)

Apart from an overall phase factor, the fundamental mode (or ground state in the terminology

of quantum mechanics) |v00〉 is determined by the requirement that â1|v00〉 = â2|v00〉 = 0. The

bosonic ladder operators obviously determine a complete and orthogonal set of modes in the

reference plane z = 0. A more explicit expression of the fundamental mode will be given

below. In chapter 5 we shall derive analytical expressions of the higher-order modes.
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3. Twisted light between rotating mirrors

3.5.3 Ladder operators in arbitrary transverse plane

The eigenvectors μi(0) = μi refer to the transformation from the reference plane at z = 0 to

the plane z = 2L, in the rotating frame. We also need the modes |vmn(z)〉, and therefore the

eigenvectors μi(z) in an arbitrary transverse plane z in the lens guide, in the rotating frame.

The basic time-dependent transformation of a ray is given by equation (3.40), so that

μi(z) = M(z, 0)Mrot(−Ωz/c)μi(0) (3.49)

in analogy to equation (3.31) for the beam profile propagation in the rotating frame. In the

special case of propagation over one period, we should take z = 2L. Then the ray transfor-

mation in (3.49) is Mrt, which gives

μi(2L) = eiχiμi(0) . (3.50)

For notational convenience we separate the four-dimensional eigenvectors in their two-dimen-

sional subvectors as

μi(z) =
(

ri(z)
ti(z)

)
. (3.51)

Then we compose two 2×2 matrices out of the column vectors ri(z) and ti(z), by the definition

R(z) ≡ (r1(z), r2(z)) and T(z) ≡ (t1(z), t2(z)) . (3.52)

The relations (3.44) and (3.45) can be summarized as

RTT − TTR = 0 and R†T − T†R = 2i1 (3.53)

in all transverse planes z.
The dependence of the ladder operators on z in the rotating frame is determined by the

requirement that when acting on a rotating solution of the time-dependent paraxial wave

equation, they must produce another solution. In view of equation (3.31), this requirement

takes the form

âi(z) = Û(z, 0)Urot(−Ωz/c)âi(0)U
†
rot(−Ωz/c)Û†(z, 0) . (3.54)

In the right-hand sides of this equation the propagation operators Û act on the operators

ρ̂ and θ̂. In accordance with the general Ehrenfest relation (3.35), and the relation (3.42),

this gives rise to a product GM−1 = MTG when we substitute the expression (3.46) for the

lowering operator. This leads to the conclusion that the z dependent lowering operator obeys

the relation

âi(z) =

√
k
2
μi(z)G

(
ρ̂

θ̂

)
=

√
k
2

(
ri(z)θ̂ − ti(z)ρ̂

)
(3.55)

for all values of z.
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3.6 Structure of the modes

3.6.1 Algebraic expressions of the modes

The fundamental mode |v00(z)〉 in the rotating frame obeys the requirement that the lowering

operators âi(z) give zero when acting on it for all transverse planes z in the lens guide. An

explicit analytical expression of the normalized mode function as it propagates through the

lens guide can be found after a slight generalization of our results for a stationary cavity

discussed in chapter 2. There we have shown that the fundamental mode can be expressed in

terms of the z dependent eigenvectors, which give rise to the 2×2 matrices R(z) and T(z). For
rotating cavities, the same result applies in the rotating frame, where the time dependence

disappears. In the rotating frame, the beam profile of the fundamental mode is given by the

general Gaussian expression

v00(R, z) = 〈ρ|v00(z)〉 =
√

k
π detR(z)

exp

(
ikρTT(z)R−1(z)ρ

2

)
. (3.56)

From the properties (3.53) of the matrices R and T it follows that the matrix S = −iTR−1

is symmetric. In the intervals between the lenses, the corresponding time-dependent mode

|u00(z, t)〉 = Ûrot(Ωt)|v00(z)〉 obeys the time-dependent paraxial wave equation (3.10), and the

input-output relation for |u00(z, t)〉 across a lens of type 1 or 2 corresponds to the lens operator
Û1(t) or Û2(t) as in equation (3.17).

The periodicity (3.50) of the eigenvectors μi ensures that the matrix S(z) = −iT(z)R−1(z)
is periodic with period 2L. Moreover, the determinant of R picks up a phase factor after one

period, according to the identity

detR(2L) = ei(χ1+χ2) detR(0) . (3.57)

As a result, the fundamental mode (3.56) picks up a phase factor exp(−i(χ1 + χ2)/2) after a
period of the lens guide, or over a cavity round trip.

The higher-order modes |vnm(z)〉 in the rotating frame are obtained from the fundamental

mode by using the z dependent version of (3.48)

|vnm(z)〉 = 1√
n!m!

(
â†
1
(z)

)n (
â†
2
(z)

)m |v00(z)〉 . (3.58)

The periodicity (3.50) of the eigenvector is reflected in a similar periodicity of the lowering

operator, in the form

âi(z + 2L) = eiχi âi(z) , (3.59)

which in turn will give rise to a periodicity of the modes in the rotating frame |vnm(z)〉. From
this equation we find that the raising operator gets an additional phase exp(−iχi) after a round

trip. The phase factor picked up by the mode |vnm〉 (or by the time-dependent mode |unm〉) is
therefore specified by the relation

|vnm(2L)〉 = e−iχ1(n+1/2)−iχ2(m+1/2)|vnm(0)〉 . (3.60)
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3. Twisted light between rotating mirrors

The resonant wave numbers of the modes follow from the requirement that the complex

electric field

Enm (ρ, z, t) = E0εunm (ρ, z, t) eikz−iωt (3.61)

is periodic over a round trip. This implies that the wave number k of the transverse modes

must obey the identity

2kL − χ1
(
n +

1

2

)
− χ2

(
m +

1

2

)
= 2πq (3.62)

where q ∈ Z is the longitudinal mode index. Note that the round-trip Gouy phases χ1 and

χ2, and thereby the resonant wavelengths are affected by the rotation. This is obvious since

they arise from the eigenvalues of the round-trip ray matrix Mrt, which according to equation

(3.41) contains the angular velocity Ω.

3.6.2 Spectral structure

Just as in equation (3.29), the time-dependent mode as viewed from the (non-rotating) labo-

ratory frame follows from the mode |vnm(z)〉 by a simple rotation, so that:

|unm(z, t)〉 = Ûrot(Ωt)|vnm(z)〉 . (3.63)

The mode function unm(ρ, z, t) = 〈ρ|unm(z, t)〉 is a co-rotating solution of the time-dependent

paraxial wave equation (3.10). Since this mode function depends on time, the electric field

(3.61) is no longer monochromatic. The spectral structure follows directly from the polar

expansion

unm(ρ, z, t) = unm(R, φ −Ωt, z) =
∑

l

gnml(R, z)eil(φ−Ωt) . (3.64)

From this result it is clear that the rotation of a mode converts the lth Fourier component along

the azimuthal angle φ of the spatial distribution to a frequency component ω + lΩ. Since the
fundamental Gaussian mode (3.56) is even under inversion in the transverse plane ρ → −ρ,
the expansion (3.64) for u00 contains only even values of l, so that the fundamental mode only

contains side bands at frequencies ω + 2pΩ with p ∈ Z and ω = ck. The ladder operators âi

are obviously odd under this inversion, so that the modes |unm〉 with even values of n+m only

contain the even sidebands ω + 2pΩ, while the modes with odd values of n + m only contain

the odd sidebands ω + (2p + 1)Ω. The separation between neighboring sidebands is always

equal to 2Ω, which reflects that the cavity returns to an equivalent orientation after a rotation

over an angle of 180◦.

3.6.3 The cavity field

We have unfolded a cavity with rotating mirrors into a lens guide with rotating lenses and

described a method to obtain expressions of the transverse modes that are reproduced after
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each period of the lens guide. In order to obtain an expression of the electric field inside the

cavity, the lens-guide modes must be folded back into the cavity

Ecav(r, t) = Re
{
− iεE0

[
u(ρ, z, t)eikz − u(ρ, 2L − z, t)e−ikz

]
e−iωt

}
(3.65)

for 0 < z < L. In the transverse planes near the two mirrors the two terms between the square

brackets differ by phase factors exp(−ikρTF−11,2(t)ρ/2). For z � 0 and z � L the electric field

can be expressed as

Ecav(r, t) = 2Re

⎧⎪⎪⎨⎪⎪⎩εE0 f1,2(ρ, t) sin

⎛⎜⎜⎜⎜⎜⎝kz ∓ kρTF−11,2ρ
4

⎞⎟⎟⎟⎟⎟⎠ e−iωt

⎫⎪⎪⎬⎪⎪⎭ , (3.66)

where the − and + signs apply near mirror 1 and 2 respectively and f1,2(ρ, t) is the profile in the
imaginary plane halfway the lenses in the lens guide picture. The sine term in equation (3.65)

is the natural generalization of a standing wave to a field with transverse spatial structure. It

shows that the electric field vanishes on the mirror surfaces even if the mode profiles halfway

the mirrors f1,2(ρ, t) have phase structure so that the wave fronts of the field (3.65) do not fit

on the mirror surfaces.

3.7 Spatial symmetries

As discussed in the previous chapter (section 2.5), the lens guide corresponding to a station-

ary two-mirror cavity has inversion symmetry in the imaginary planes halfway the lenses.

Rotation breaks this symmetry and no spatial symmetries remain in the case of a rotating

cavity with general astigmatism. This is different in the case of a rotating cavity with simple

astigmatism. In this section, we give a more formal description of the inversion symmetry of

a stationary cavity as well as of the spatial symmetries associated with simple astigmatism.

We show that both survive in a modified fashion in the case of a rotating cavity with simple

astigmatism.

3.7.1 Inversion symmetry of a stationary cavity

We consider inversion zs + z → zs − z of the lens guide with respect to a given transverse

plane zs. As indicated in figure 3.2, the propagation direction of a ray θ = ∂ρ/∂z picks up a

minus sign under zs + z → zs − z so that the transformation of a ray �
T = (ρT, θT) under this

inversion is given by

(
ρ

θ

)
→ N

(
ρ

θ

)
with N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≡
(

1 0
0 −1

)
. (3.67)

As a result, the inverted transformation corresponding to a ray matrix M takes the following

modified form

NM−1NT = M . (3.68)
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3. Twisted light between rotating mirrors

Figure 3.2: Inversion of an optical set-up. When both a ray trajectory and the elements of

which the set-up consists are inverted with respect to some transverse plane zs, the angles ϑx

and ϑy, which specify the propagation direction of a ray, change sign. This is accounted for

by the matrix N as defined in equation (3.67).

If the lens guide has inversion symmetry with respect to the plane z = zs, the ray matrix

Mrt(zs) that describes the transformation of a round trip starting from this plane must be equal

to the corresponding inverted transformation, so that

NM−1rt (zs)N
T = Mrt(zs) . (3.69)

In terms of the eigenvectors μi of the round-trip ray matrix Mrt(zs), this symmetry property

implies that

Mrt(zs)μi(zs) = NM−1rt (zs)N
Tμi(zs) = λiμi(zs) , (3.70)

where λi = exp(−iχi) are the corresponding unitary eigenvalues. Using that μ∗i (zs) is an

eigenvector of M−1rt (zs) with eigenvalue λi, we find that inversion symmetry implies that

Nμi(zs) = μ∗i (zs) . (3.71)

It follows that ri(zs) and R(zs) are real while ti(zs) and T(zs) are purely imaginary. As a result,

both the fundamental mode (3.56) and the ladder operators (3.46) are real in the symmetry

plane so that all modes are real in that plane.

Rotation obviously breaks the inversion symmetry in the transverse planes halfway the

lenses and the round-trip ray matrix in the co-rotating frame (3.41) does not obey the identity

(3.69). As a result the mode profiles halfway the lenses f1,2(ρ, t) are not real in general and

contribute to the phase structure of the cavity field close to the mirrors (3.66).

3.7.2 Simple astigmatism

The lens guide corresponding to a stationary two-mirror cavity with simple astigmatism has

symmetry directions parallel to the mirror axes in all transverse planes. These symmetry

directions arise from the invariance of the cavity under reflections in the planes through the

mirror axes and the cavity axis. In terms of the round-trip ray matrix M(z), this symmetry
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property can be expressed as

QMrt(z)QT = Mrt(z) with Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≡
(

Q 0
0 Q

)
. (3.72)

The transformation Q describes a reflection in the xz plane. Similarly, −Q describes a reflec-

tion in yz plane. In terms of the eigenvectors, this invariance (3.72) implies that Qμi(z) = μi(z)
so that QR = R and QT = T. It follows that u(ρ, z) = u(Qρ, z) so that the phase and intensity

patterns of all the modes are aligned along the symmetry directions.

One may show easily that a stationary or rotating cavity with general astigmatism as well

as a rotating cavity with simple astigmatism lacks the symmetry described by equation (3.72).

3.7.3 Rotating cavities with simple astigmatism

Rotation breaks both the inversion symmetry of a stationary cavity (3.69) and the spatial

symmetries arising from simple astigmatism (3.72). As a result, no spatial symmetries remain

in the case of a rotating cavity with general astigmatism. In the special case of a rotating

cavity with simple astigmatism, however, one may prove explicitly that both symmetries

survive when combined with inversion of the rotation direction Ω → −Ω. These statements

can be expressed as

QMrt(z;Ω)QT = Mrt(z;−Ω) , (3.73)

and

NM−1rt (zs;Ω)N
T = Mrt(zs;−Ω) , (3.74)

where zs is an inversion-symmetry plane and Mrt(z;−Ω) is the ray matrix that describes the

transformation of a round trip starting from a transverse plane z. The ray matrix Mrt(z;−Ω)
depends on the rotation frequency Ω according to equation (3.41). Combining equations

(3.73) and (3.74) yields

QNM−1rt (z;Ω)(QN)T = Mrt(z;Ω) . (3.75)

In terms of the eigenvectors μi(z;Ω) this implies that

QNμi(z;Ω) = μ∗i (z;Ω) , (3.76)

fromwhich we conclude thatQR(z;Ω) = R∗(z;Ω) andQT(z;Ω) = −T∗(z;Ω) so that v(Qρ, z) =
v∗(ρ, z). As a result, the intensity patterns |u(ρ, z, t)|2 of the modes of a rotating cavity with

simple astigmatism are aligned along the mirror axes at all times, while the phase patterns

are not.
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3. Twisted light between rotating mirrors

3.8 Orbital angular momentum

In section 2.5.3, we have shown that the twisted boundary conditions that are imposed by a

pair of non-parallel astigmatic mirrors induce orbital angular momentum in the modes of such

a cavity. In the present case of a rotating cavity, we expect the twisted mode propagation in the

rotating frame (3.31) combined with non-isotropic boundary conditions to give rise to orbital

angular momentum as well. In this section we analyze the orbital angular momentum in

rotating cavity modes. We discuss the contribution due to their phase structure and show that

the physical rotation of the mode patterns contributes only in higher-order of δ. As a result

this contribution is significant only in special cases where the orbital angular momentum due

to the mode structure vanishes [19, 20].

The leading-order contribution to the orbital angular momentum per unit length in a

monochromatic paraxial field is given by equation (2.80). The obvious extension of this

result to the present case of polychromatic modes involves a summation over the frequency

components ω + lΩ with l ∈ Z. Substitution of the spectral expansion (3.64) then gives the

following expression for the orbital angular momentum in the rotating cavity modes (3.63)

Lnm =

∞∑
l=−∞

ε0|E0|2
2(ω + lΩ)

∫ 2π

0

dφ
∫ ∞

0

RdR l|gnml(R, z)|2 . (3.77)

Using that the rotation frequency Ω is of the order of δ2 smaller than the optical frequency ω,

the leading-order contribution to the orbital angular momentum can be expressed as

L(0)
nm =

ε0|E0|2
2ω

∞∑
l=−∞

∫ 2π

0

dφ
∫ ∞

0

RdR l|gnml(R, z)|2 = N�〈vnm(z)|ρ̂ × kθ̂|vnm(z)〉 , (3.78)

where the superscript (0) refers to the fact that this contribution is of order 0 inΩ/ω. This con-

tribution obviously has the significance of the orbital angular momentum in the co-rotating

frame and it is due to the spatial phase and intensity structure of the modes. Its dependence

on the rotation frequency Ω can be traced back to fact that the round-trip ray matrix in the

rotating frame (3.41) depends on Ω so that the same is true for the modes |vnm(z)〉. In analogy
with equation (2.81), this result (3.78) can be expressed in terms of the eigenvectors of the

round-trip ray matrix (3.41)

L(0)
nm = N�

{ (
n +

1

2

)
Re

(
r∗1(z) × t1(z)

)
+

(
m +

1

2

)
Re

(
r∗2(z) × t2(z)

)}
, (3.79)

where N = ε0|E0|2/(2�ω) is the number of photons per unit length and ri(z) and ti(z) are
related to the eigenvectors μi(z) of the round-trip ray matrix (3.41) by equations (3.51) and

(3.49). Since free space is isotropic, L(0)
nm is conserved under propagation from one mirror

to the other. In the special case of a rotating cavity with simple astigmatism, the modified

inversion symmetry (3.75) requires that the orbital angular momentum takes the same value

0 < z < L and L < z < 2L so that the modes do not exert a torque on the mirrors. This
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is not true if the cavity has general astigmatism. In that case both the astigmatism and the

rotational deformation of the modes contribute to the orbital angular momentum, which takes

different values in the two intervals of the lens guide. As a result, rotating modes with general

astigmatism do exert a torque on the mirrors. However, also in the general-astigmatic case,

there is net orbital angular momentum in the rotating cavity field. In this respect, rotating

cavity modes with general astigmatism are different from their stationary counterparts.

The next-to-leading-order contribution to the orbital angular momentum is of the order

of Ω/ω ∼ δ2 smaller than the leading order term (3.78). It is non-negligible only in specific

cases where the orbital angular momentum due to the spatial structure of the modes vanishes,

for instance, for reasons of symmetry. It can be expressed as

L(1)
nm = −

ε0|E0|2Ω
2ω2

∞∑
l=−∞

∫ 2π

0

dφ
∫ ∞

0

RdR l2|gnml(R, z)|2 . (3.80)

This contribution is due to the fact that the mode patterns unm(z, t) (3.64) in the laboratory

frame rotate as a function of time. This general expression of the orbital angular momentum

in a paraxial mode that does not possess orbital angular momentum in the co-rotating frame,

is a slight generalization of the results in references [19] and [20]. A naive interpretation of

the fact the rotational contribution to the orbital angular momentum is always negative would

be that a light field has a negative moment of inertia. However, even in free space rotation

has significant effects on the spatial and spectral structure of a light field so that it does not at

all resemble a rigid body. As a result the concept of a moment of inertia is ill-defined in this

wave-mechanical context [19, 20].

3.9 Examples

We illustrate some of the physical properties of rotating cavity modes by investigating two

specific examples. We discuss the spatial structure of the intensity patterns of rotating cavity

modes both in case of simple and in case of general astigmatism. The spectral structure

of simple-astigmatic rotating cavity modes is discussed as well. Typical examples of the

dependence of the orbital angular momentum on the rotation frequency are discussed in the

next chapter, while the rotational deformation of the phase structure of optical cavity modes

is discussed in detail in chapter 5.

3.9.1 Rotating simple astigmatism

The simplest realization of a uniformly rotating cavity consists of a stationary spherical and

a rotating astigmatic (or cylindrical) mirror. In the absence of rotation the modes of such a

cavity are astigmatic Hermite-Gaussian modes [12]. A cavity of this type has transverse sym-

metry directions parallel to the mirror axes along which the modes scale differently. Typical

examples of the intensity patterns of astigmatic Hermite-Gaussian modes in the immediate

neighborhood of the mirrors are shown in the upper windows in figure 3.3. Notice that the
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(0, 0) (0, 1) (0, 0) (0,1)

(1, 0) (1, 1) (1, 0) (1,1)

(0, 0) (0, 1) (0, 0) (0,1)

(1, 0) (1, 1) (1, 0) (1,1)

(0, 0) (0, 1) (0, 0) (0,1)

(1, 0) (1, 1) (1, 0) (1,1)

Figure 3.3: Intensity patterns of the (0, 0), (0, 1), (1, 0) and (1, 1) modes of the cavity between

a stationary spherical and a rotating astigmatic mirror for different values of the rotation

frequency Ω. The plots in the left column show the intensity patterns near the spherical

mirror while the plots in right column show the intensity pattern near the astigmatic mirror.

The radius of curvature of the spherical mirror is 4L, where L is the mirror separation. The

radius of curvature of the astigmatic mirror in the horizontal direction of the plot is equal to

2L while its radius of curvature in the vertical direction is 20L. From the top to the bottom

the rotation frequency is increased from Ω = 0 to Ω = cπ/(30L) and Ω = cπ/(6L).
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Figure 3.4: Spectral structure of the (0, 0), (0, 1), (1, 0) and (1, 1) modes of the cavity between

a stationary spherical and rotating astigmatic mirror. The radius of curvature of the spherical

mirror is equal to 4L, where L is the mirror separation and the radii of curvature of the

astigmatic mirror are equal to 2L and 20L respectively. The rotation frequency is equal to

Ω = cπ/(6L).

astigmatism of the intensity patterns is most pronounced on the spherical mirror. This is due

to the fact that the astigmatism of a mirror is visible in the intensity pattern of the reflected

beam only after free propagation over some distance.

If the astigmatic mirror is put into rotation the mode structure changes significantly. This

is shown in the other two windows of figure 3.3. As a result of the rotation, the cavity

is no longer invariant under reflection in the planes through the mirror axes and the cavity

axis. In the special case of simple astigmatism, it is invariant under reflection in these planes

combined with inversion of the rotation direction. As a result, the intensity patterns of the

modes are still aligned along the mirror axes but the phase distributions are not. Rotation

also breaks the inversion symmetry of the corresponding lens guide in the imaginary planes

halfway the mirrors. As a result, the higher-order modes are no longer Hermite-Gaussian

modes but generalized Gaussian modes with a nature in between Hermite- and Laguerre-

Gaussian modes [44]. As a result, phase singularities (optical vortices) appear, which are

best visible in the center of the (0, 1) and (1, 0) modes in figure 3.3.

The spectral structure of the rotating modes is illustrated in figure 3.4. These spectra

show that the modes are confined spectrally and confirm that they only have odd or even
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frequency components depending on the parity of the total mode number n + m. Due to the

reflection symmetry in the planes through the mirror axes and the cavity axis, the orbital-

angular-momentum spectrum of cavity modes with simple astigmatism is symmetric, i.e.,

gl(ρ) = g−l(ρ) in the absence of rotation. Rotation breaks this symmetry, as is confirmed by

the spectra in figure 3.4.

3.9.2 Rotating general astigmatism

The mode structure becomes significantly more complex if the cavity has general astigma-

tism, which is the case if it consists of two non-aligned astigmatic mirrors. Such a cavity

does not have reflection symmetry planes through the optical axis. In the stationary case,

the corresponding lens guide does have inversion symmetry in the imaginary plane halfway

the lenses so that the higher-order modes close to the mirrors have the nature of astigmatic

Hermite-Gaussian modes. Typical examples of the modes of a stationary astigmatic cavity

with general astigmatism are shown in the upper window of figure 3.5.

At first sight one might guess that physical rotation of the mirrors effectively modifies

their relative orientation so that it can help to reduce the effect of general astigmatism. This

is not the case. The effect of rotation of the mirrors is essentially different from the effect

of general astigmatism. This is illustrated in the lower window of figure 3.5. The rotation

frequency is chosen such that the rotation angle after one round trip is equal but opposite

to the angle between the orientations of the two mirrors. Putting the mirrors into physical

rotation breaks the inversion symmetry so that the modes are no longer Hermite-Gaussian

but generalized Gaussian modes that have general astigmatism. As a result, again, vortices

appear.

3.10 Discussion and conclusion

In this chapter we have derived an algebraic method to obtain explicit expressions of the

paraxial modes of an astigmatic optical cavity that is put into uniform rotation about its optical

axis. Uniform rotation is homogeneous in time so that the explicit time-dependence of a

rotating cavity can be eliminated by a transformation to the co-rotating frame. Its paraxial

modes can then be obtained as solutions of the time-dependent paraxial wave equation (3.10)

that are stationary in the rotating frame, i.e., rotate along with the mirrors in the laboratory

frame. Up to first order of the paraxial approximation, the boundary condition that the electric

field vanishes on the mirror surfaces is not affected by the transformation to the co-rotating

frame. Mixing of the electric and magnetic fields is a second-order, relativistic, effect. The

rotating cavity modes are thus obtained as stationary solutions in the co-rotating frame that

vanish on the mirror surfaces. The regime of validity of the time-dependent paraxial wave

equation provides a natural upper limit for the rotation frequency (3.12).

The method that we have used to derive expressions of the rotating cavity modes gen-

eralizes the ladder-operator method that we have introduced in the previous chapter to this
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3.10 Discussion and conclusion

time-dependent case. It involves two pairs of bosonic ladder operators that generate a com-

plete and orthogonal set of modes in the rotating frame (3.48). The transformation of the

ladder operators from a reference plane in the co-rotating frame to an arbitrary transverse

plane (3.54) can be expressed in terms of the 4 × 4 ray matrix that describes the linear trans-

formation of a ray through the same system. As a result, the ladder operators that generate the

cavity modes can be constructed from the eigenvectors of the ray matrix for a round trip in

the co-rotating frame (3.41). Just as in the case of a cavity with stationary mirrors, geometric

stability turns out to be the necessary and sufficient condition for the rotating cavity to have

modes. The time-dependent expressions of the the modes |u(z, t)〉 in an external observer’s

frame can be obtained from the corresponding modes in the rotating frame |v(z)〉 by using

equation (3.29).

In the rotating frame, the ray and wave dynamics is modified even though the ray matrices

do not depend on time. In section 3.7, we have studied how rotation modifies the symmetry

properties of a cavity and its modes while rotational effects on their orbital angular momen-

tum were discussed in section 3.8. In section 3.9 we have shown how the mode structure

is affected by rotation for different values of the rotation frequency and that the modes re-

main spectrally confined as well. In the last part of section 3.9 we have studied the interplay

between general astigmatism and rotation. In both cases the cavity no longer has inversion

symmetry so that the higher order modes are generalized Gaussian modes that have a nature

in between Hermite-Gaussian and Laguerre-Gaussian modes with optical vortices.

The mode criterion that we have formulated in this chapter hinges upon the homogeneous

time dependence of a rotating cavity and cannot be generalized to cavities with mirrors that

rotate at different frequencies. In principle one can define the period of such a system by

considering the number of round trips that is needed for both mirrors to return to positions

that are equivalent to their initial positions. Once this period is determined, the method

that we have developed here can be applied to find its modes, provided that the cavity is

geometrically stable at all times. Preliminary numerical calculations, however, suggest that

geometric stability is a heavy requirement in this, non-homogeneous, case.

The set-up that we have discussed in this chapter is hard to realize experimentally. In

section 5.5 we shall discuss several possible routes towards experimental realization of a

set-up that captures the essential optical properties a rotating astigmatic two-mirror cavity.

Moreover, the methods that we have developed here provide a much more general framework

to cope with propagation and retardation in optical set-ups that have elements with time-

dependent settings. The only restriction is that the time-dependent paraxial approximation,

which we have formulated in section 3.2, is justified.
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3. Twisted light between rotating mirrors
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Figure 3.5: Modes of an optical cavity between two identical but non-aligned rotating astig-

matic mirrors for different rotation frequencies. The mirrors have radii of curvature that are

equal to 2L and 20L. The axes of the right mirror coincide with the horizontal and vertical

directions of the plots while the axes of the left mirror are rotated over an angle −π/3. From
the top to the bottom the rotation frequency is increased from Ω = 0 to Ω = cπ/(6L). The
latter frequency is chosen such that the angle over which the mirrors are rotated after each

round trip is equal but opposite to the angle between the orientations of the two mirrors.
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