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1
Twisted light

1.1 Introduction

In this thesis we theoretically investigate optical modes with a highly non-trivial spatial, and

in some cases also spectral, structure. We introduce an algebraic method to obtain explicit

expressions of the modes to all orders inside a two-mirror cavity with twisted boundary con-

ditions and apply these to study some of their physical properties. We generalize the concept

of a cavity mode to the case of a two-mirror cavity that is put into uniform rotation about

its optical axis and focus on the special case of a rotating astigmatic two-mirror cavity. We

extend our algebraic method to account for time-dependent mirror settings and study some

optical and opto-dynamical properties of this simple, but surprisingly rich, set-up. We dis-

cuss a complete and general characterization of the parameter space underlying basis sets of

paraxial optical modes and study the geometric phase shift that arises from it. This phase

shift constitutes the ultimate generalization of the Gouy phase in paraxial wave optics. We

show that, in free space, the concept of a rotating mode of the radiation field can be general-

ized beyond the paraxial regime and show that the field can be quantized in an orthonormal,

but otherwise arbitrary, basis of rotating modes, thereby constructing the first exact quantum

theory of rotating light.

In this first, introductory, chapter we put the material discussed in the rest of the thesis in

a somewhat broader context. Twisted and rotating boundary conditions are a natural source

of orbital angular momentum and vorticity in optical fields. In the next section we give a

brief historical introduction to these topics and discuss some applications in various branches
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1. Twisted light

of modern quantum optics. The mathematical method that we develop and apply to char-

acterize the dynamics of, mostly classical, wave fields generalizes well-established operator

techniques from quantum mechanics. It is exact up to leading order of the (time-dependent)

paraxial approximation and hinges upon the tight connection between wave and ray optics.

Throughout the thesis we shall mostly use it in its canonical operator representation. How-

ever, both the analogy with quantum mechanics and the connection with ray optics are more

conveniently discussed in the equivalent integral representation, which is the optical ana-

logue of the path-integral formulation of quantum mechanics. This is worked out explicitly

in sections 1.3 and 1.4. In the final section of this chapter, we give a detailed outline of this

thesis.

1.2 Optical angular momentum

The ability of light to exert torques and forces on a material object was first recognized by

Kepler. In his book De cometis libelli tres [1], published in 1619, he proposed that the

empirical fact that a comet’s tail always points away from the sun, is due to a radiative force

exerted by the sun light. Initially, this proposal attracted quite some attention, especially in

the context of the then ongoing debate whether light is composed of particles or should be

considered a wave phenomenon. However, since various attempts to experimentally observe

mechanical forces of light failed, the interest slowly dwindled [2].

When in the early 1860’s Maxwell was the first to realize that light is a manifestation of

the electromagnetic field [3], it became possible to study the mechanical properties of light,

such as its energy, momentum and angular momentum, within the framework of classical

electrodynamics. By studying the exchange of energy between a set of charged particles and

the electric and magnetic fields, Poynting showed in 1884 that the energy density associated

with the electromagnetic field in vacuum can be expressed as
(
ε0|E|2 + μ−10 |B|2

)
/2, where E

and B are respectively the electric and the magnetic field, and ε0 and μ0 are the permittivity

and the permeability of vacuum [4]. From similar considerations, one may deduce that the

momentum density of the electromagnetic field in vacuum can be expressed as P = ε0E × B
so that the angular momentum associated with the electromagnetic field is given by [4]

J =
∫

d3r
(
r × P

)
= ε0

∫
d3r

(
r × (E × B)

)
. (1.1)

By Helmholtz’s theorem, the electric and magnetic field can be decomposed into the trans-

verse radiation field and the longitudinal Coulomb field such that E = E‖+E⊥, with ∇·E⊥ = 0

and ∇×E‖ = 0. From Maxwell’s equations it follows that the longitudinal contribution to the

magnetic field vanishes so that the angular momentum arising from the radiation field can be

obtained from equation (1.1) by replacing the electric field by the transverse electric field E⊥.
In general, it is convenient to introduce a scalar potential Φ and a vector potential A such that

E = −∇Φ − Ȧ and B = ∇ × A [4]. The scalar potential does not contribute to the radiation

field so that E⊥ = −Ȧ⊥. Substitution of E⊥ = −Ȧ⊥ and B = ∇ × A in the expression of the
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1.2 Optical angular momentum

angular momentum of the radiation field in vacuum yields after partial integration [5]

Jrad = Lrad + Srad , (1.2)

with

Lrad = ε0
∑
i

∫
d3r

(
Ė⊥

)
i (r × ∇)Ai and Srad = ε0

∑
i

∫
d3r Ė⊥ × A , (1.3)

where the index i runs over the vector components of the field. The first contribution in

equation (1.3) is extrinsic in that it depends on the origin of the coordinate system used. By

a proper choice of the origin, it can be made to vanish. As such, it may be viewed as the

wave-optical analogue of the orbital angular momentum associated with the center-of-mass

motion of two bodies, one of which orbits around the other [6]. The second contribution in

equation (1.3), on the other hand, is obviously intrinsic and has the flavor of spin. However,

although it may be shown that it indeed takes the form of the expectation value of the spin of

a spin-1 particle, its interpretation as a spin is not without severe and fundamental difficulties

[5]. These difficulties originate from the fact that the photon travels at the speed of light and,

therefore, by special relativity, must have zero rest mass. The spin of a massive particle may

be defined as its total angular momentum in a co-moving frame but, since the photon travels

at the speed of light, its co-moving frame is non-existent. As a result, its spin is ill-defined

[7]. This is illustrated by the fact that, in a quantized description of the radiation field, the

operators corresponding to the components of Srad do not obey the proper commutation rules

[8, 6].

Physically speaking, the intrinsic (or spin) contribution to the angular momentum of the

radiation field arises from its vector nature. In a circularly polarized beam it amounts to �

per photon. Since a linearly polarized beam contains equal contributions of the two opposite

circular polarizations, it bears no net spin angular momentum. Already in 1936, it has been

demonstrated experimentally that the exchange of spin angular momentum between a circu-

larly polarized beam of light and a birefringent crystal through which it propagates, gives rise

to a torque on the crystal [9]. The extrinsic (or orbital) contribution to the angular momen-

tum, on the other hand, arises from the phase structure of the field. Although optical forces

arising from transverse phase gradients had been observed in optical tweezers [10], it was not

before 1992 that it was realized that optical beams bearing orbital angular momentum can

easily be produced and manipulated in experimental set-ups with laser beams [11]. In the

standard case of a Laguerre-Gaussian beam [12], the orbital angular momentum arises from

an optical vortex on the beam axis. Optical vortices are point singularities of the phase of the

radiation field and give rise to helical wave fronts, which characterize a circular rather than

a linear distribution of the transverse momentum [13]. During the past decades, the physics

of optical vortices has been studied widely in the field of singular optics [14, 15]. In addition

to vorticity, also general astigmatism contributes to the orbital angular momentum in optical

fields [16, 17]. General astigmatism arises when the transverse intensity and phase distribu-

tions of an optical beam are anisotropic and non-aligned [18]. It gives rise to tumbling of
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1. Twisted light

the beam under free propagation [17]. The orbital angular momentum per photon in opti-

cal beams with vortices and/or general astigmatism can be significantly larger than the spin

angular momentum per photon in a circularly polarized beam. Under realistic experimental

conditions, values of 10� per photon can be achieved easily. Perhaps the most natural source

of optical orbital angular momentum is physical rotation of a transverse field pattern [19, 20].

However, under typical circumstances, this rotational contribution is very small compared to

the orbital angular momentum due to the transverse structure of a beam.

In the eighteen years that have passed since the first experiments were performed, optical

orbital angular momentum has played a central role in various branches of modern quan-

tum optics [21]. As opposed to the space of polarization states, which is inherently two-

dimensional, the space of optical orbital angular momentum states is infinite-dimensional.

Since in 2001, quantum entanglement in the orbital angular momentum of photons was first

demonstrated experimentally [22], this infinite-dimensional nature has offered a whole range

of interesting possibilities and challenges see, for instance, reference [23]. Also in the field

of optical tweezers, the orbital angular momentum has been used to manipulate small par-

ticles [24]. Recently, it has been shown theoretically that the orbital angular momentum in

a Laguerre-Gaussian beam can be sufficiently large to trap and cool the rotational degree

of freedom of a mirror [25]. This suggests possible application of optical orbital angular

momentum in the rapidly developing field of (cavity) opto-mechanics.

1.3 Classical optics and quantum mechanics

Long before the days of Maxwell, and even before the debate whether light consists of parti-

cles or should be considered a wave was settled in favor of the wave description by Young’s

famous double-slit experiments in 1801, the propagation and diffraction of waves was pretty

well-understood. In 1678, Huygens first formulated his principle that every point on a wave

front acts as a source of spherical waves. The wave front at a distant location is the enve-

lope of these spherical waves. It took until 1690 before Huygens published the principle in

his book Traité de la lumière [26]. Between 1815 and 1819, the wave theory of light was

significantly refined by Fresnel, who, in the spirit of Young’s double-slit experiment, added

the notion of interference to what is nowadays called the Huygens-Fresnel principle. For

monochromatic complex scalar waves E(r, t) = E(r) exp(−iωt) it can be expressed as [27]

E(ρ, z) =
2πk
i

∫
d2ρ0

exp
(
ik|r − r0|)
|r − r0| E(ρ0, z0) cos θ , (1.4)

where ρ = (x, y)T is the transverse position vector, k = ω/c is the wave number and θ is the

angle between the position vector r and the normal to the wave front in the z0 plane. The

Huygens-Fresnel integral (1.4) characterizes the complex spatial field E(ρ, z) in some trans-

verse plane z as a coherent superposition of spherical waves emanating from point sources

in the plane z0. The amplitudes and relative phases of the spherical waves are given by the

transverse field distribution E(ρ0, z0) in the plane z0. The additional obliquity factor cos θ is
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1.3 Classical optics and quantum mechanics

related to the fact that only spherical waves that propagate away from the sources are taken

into consideration [28]. It gives the spherical waves an angular profile. In its original form,

the Huygens principle explains reflection and refraction of light at an interface. The modified

Huygens-Fresnel principle as described by equation (1.4) also describes phenomena arising

from interference and diffraction. At the time it was formulated, the Huygens principle was

more of brilliant but somewhat qualitative guess rather than a formal and mathematically

rigorous statement. However, in 1882 Kirchhoff derived the Huygens-Fresnel integral di-

rectly from Maxwell’s equations [4]. In hindsight, the Huygens-Fresnel integral (1.4) may be

considered as the first example of a path integral in physics.

The fundamental principle that underlies the ray-optical description of light is the prin-

ciple of least time, first formulated by Fermat in 1662. This principle states that a ray of

light optimizes the optical path length between two points in space and plays a role analo-

gous to that of the principle of least action in classical mechanics. Since the speed of light

is determined by the optical density of the medium, as characterized by the refractive index

n(x, y, z), the velocity of a ray of light is not an independent dynamical variable. It follows

that a ray of light can be fully characterized by its three spatial coordinates as a function of

some parameter, which we choose to be the z coordinate. In that case, the optical path length
of a ray can be expressed as

L =
∫ z2

z1
dz n(x, y, z)

√
1 + x′2 + y′2 , (1.5)

where z1 and z2 are the z coordinates of the begin and end points of the ray and where

x′ = ∂x/∂z and y′ = ∂y/∂z. Since the path length plays the role of the action, the argu-

ment of the integral in equation (1.5) is the Lagrangian L that describes the propagation

of optical rays through a medium characterized by the refractive index n(x, y, z). With the

corresponding momenta, which are defined as ∂L/∂x′ and ∂L/∂y′, this naturally leads to a

canonical formulation of geometric optics [29].

In many optical set-ups, the light propagates along a well-defined direction so that parax-

ial approximations (from the Ancient Greek παρα, which literally means alongside of) are

justified. In mathematical terms, the assumption that the light mainly propagates along the

z axis implies that x′, y′ << 1. In case of paraxial propagation through vacuum (n = 1), the

Lagrangian arising from the path length (1.5) can be approximated by

L = 1 +
1

2

(
x′2 + y′2

)
. (1.6)

The corresponding momenta are given by ϑx = ∂L/∂x′ = x′ and ϑy = ∂L/∂y′ = y′ and
correspond to direction angles measured with respect to the z axis. Following the standard

construction of the Feynman path integral [30], � being replaced by � = λ/2π = 1/k, the path
integral corresponding to the Lagrangian in equation (1.6) can be expressed as

E(ρ, z) =
2πkeik(z−z0)

i(z − z0)

∫
d2ρ0 exp

⎛⎜⎜⎜⎜⎜⎜⎝
ik

(
(x − x0)2 + (y − y0)2

)
2(z − z0)

⎞⎟⎟⎟⎟⎟⎟⎠ E(ρ0, z0) , (1.7)
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1. Twisted light

which clearly is a paraxial approximation of the Huygens-Fresnel integral (1.4) [12]. If we

write the field as the product E(ρ, z) = u(ρ, z) exp(ikz) of a spatial profile u(ρ, z) and a carrier

wave exp(ikz), it follows that (1.7) corresponds to the general solution of the paraxial wave

equation (
∇2
ρ + 2ik

∂

∂z

)
u(ρ, z) = 0 , (1.8)

where ∇2
ρ = ∂

2/∂x2 + ∂2/∂y2 is the transverse Laplacian. The paraxial wave equation (1.8)

takes the form of the Schrödinger equation for a free particle in two dimensions, � = 1/k
playing the role of �/m with m the mass of the particle. It describes the spatial evolution of

the profile u(ρ, z) of a paraxial beam, which characterizes its large-scale spatial structure, and

plays a central role in this thesis.

It is noteworthy that, in the present context of monochromatic scalar waves, the paraxial

approximation plays a role similar to that of the non-relativistic approximation in quantum

mechanics [31]. In the optical case, the exact wave equation reduces to the paraxial wave

equation for fields that mainly propagate along a well-defined direction while in quantum

mechanics, the Klein-Gordon equation, which describes a massive scalar field, reduces to the

ordinary Schrödinger equation for fields that only contain mainly time-like components.

1.4 First-order optics

An interesting property of the paraxial Lagrangian (1.6) is that the evolution of the transverse

coordinates ρ = (x, y)T and the corresponding momenta θ = (ϑx, ϑx)
T = ∂ρ/∂z, which are

conveniently combined in a four-dimensional ray vector � T = (ρT, θT), is linear. The solution

of the Euler-Lagrange equation deriving from the Lagrangian (1.6) can be expressed as

� (z) =
(

1 1z
0 1

)
� (0) , (1.9)

where 0 and 1 are the 2 × 2 zero and unit matrices. The fact that this transformation can be

represented by a 4×4 matrix is not a unique property of paraxial propagation through vacuum.

It is well-known that, in leading order of the paraxial approximation, the transformations due

to various lossless optical elements such as thin lenses and mirrors can also be represented

by real 4× 4 matrices acting on a ray vector � [12]. In the special case of isotropic elements,

all four 2 × 2 submatrices of the 4 × 4 ray matrix are proportional to the 2 × 2 unit matrix.

It follows that the transformation of the two transverse components (x, ϑx)T and (y, ϑy)T of

a ray � can be described by the same reduced 2 × 2 ray matrix. Such 2 × 2 ray matrices

are called ABCD matrices [12]. Free propagation as described by equation (1.9) is obviously

isotropic. It is an example of a transformation that can be described by an ABCD matrix. A

ray that lies in a plane through the optical axis of the element through which it passes can be

characterized by its distance to the optical axis R = |ρ| and the corresponding direction angle

ϑ = ∂ρ/∂z. One may show easily that also in this case the transformation due to an isotropic
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1.4 First-order optics

optical element can be represented by an ABCD matrix. If the two-dimensional vector that

characterizes such a ray is denoted � = (R, ϑ)T, this transformation can be expressed as

� out =

(
A B
C D

)
� in , (1.10)

with A, B,C,D ∈ R. The transverse position R and the propagation direction ϑ constitute a

pair of canonically conjugate variables. From the fact that this canonical structure is preserved

under the lossless transformation in equation (1.10), it follows that a physical ABCD matrix

must have a unit determinant so that AD − BC = 1. The transformation of a sequence of

optical elements can be constructed as the product of the ray matrices describing each of the

elements and, since the determinant of a matrix product equals the product of the determinants

of the matrices, it follows that the determinant of any ABCD matrix that describes a lossless

isotropic optical set-up is equal to 1.

The optical path length between a point R1 in the input plane and a point R2 in the output

plane of an isotropic optical set-up that is described by an ABCD matrix can be expressed as

[12]

L(R1,R2) = L0 +
1

2B

(
AR2

1 − 2R1R2 + DR2
2

)
, (1.11)

where L0 is the path length along the optical axis of the set-up. The corresponding path

integral, with � = 1/k again playing the role of �, takes the following form [32, 12]

E(ρ2, z2) =
2πkeikL0

iB

∫
d2ρ1 exp

⎛⎜⎜⎜⎜⎜⎜⎝
ik

(
AR2

1 − 2R1R2 + DR2
2

)
2B

⎞⎟⎟⎟⎟⎟⎟⎠ E(ρ1, z1) . (1.12)

This obviously reduces to equation (1.7) in case of free propagation A = D = 1 and B =
L0 = z2 − z1. The expression in equation (1.7) shows explicitly that the propagation of a wave
through an optical set-up is fully determined by the geometric-optical characteristics of the

optical set-up. This description of wave propagation is geometric in that it derives from the

Fermat principle, which has a clear geometric significance.

It is well-known from textbook quantum mechanics that the path-integral description is

exact in the case of first-order systems, the non-relativistic free particle and the harmonic

oscillator being the simplest examples [30]. Since Gaussian integrals can be solved exactly,

it follows that the evolution of Gaussian wave packets under the integral transformation for

a first-order system can be calculated analytically. Less well-known is that the path-integral

description is also exact for infinitely many complete sets of excited states, which, analogous

to the case of the harmonic oscillator, can be obtained from pairs of bosonic ladder opera-

tors. In the optical context, such excited states have the significance of higher-order trans-

verse modes [33]. Two very well-known examples are the Hermite-Gaussian and Laguerre-

Gaussian modes, which are of crucial importance in experiments with laser beams [12].
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1. Twisted light

1.5 Thesis outline

In this thesis, we study the spatial structure and physical properties of higher-order optical

modes that have a twisted nature due to the presence of astigmatism and optical vortices. Our

characterization of such twisted states of light involves pairs of bosonic ladder operators that

generate a basis set of optical modes. Although the ladder operators act in the wave-optical

domain, we shall demonstrate that their transformation under paraxial propagation and optical

elements can be expressed in terms of the ray matrix that also describes the transformation of

a ray. The ladder operators generate a complete set of higher-order mode patterns that exactly

solve the Huygens-Fresnel integral (1.12) for an arbitrary first-order system. In regions of free

propagation, the modes obey the paraxial wave equation (1.8). As opposed to the Huygens-

Fresnel integral, which cannot easily be generalized to the case of set-ups with non-isotropic

optical elements, the ladder operator-method allows for direct generalization to the case of

transverse modes with astigmatism. Although the method keeps its elegance and simplicity,

the spatial patterns of astigmatic higher-order modes display a very rich structure that gives

rise to vorticity and orbital angular momentum. In the first two chapters, we apply the ladder-

operator method to study the mode structure and the physical properties that arise from it in

the presence of twisted and rotating boundary conditions.

• In chapter 2 we show that the paraxial modes of a geometrically stable two-mirror cav-

ity with general astigmatism, i.e., a cavity that consists of two non-aligned astigmatic

mirrors, can be obtained from pairs of bosonic ladder operators. From the transforma-

tion property of the ladder operators it follows that the ladder operators that generate

the cavity modes can be constructed from the eigenvectors of the round-trip ray matrix

that describes the transformation of a ray after one round trip through the cavity. The

eigenvalues determine the frequency spectrum of the cavity. As a result of the twisted

nature of the astigmatic boundary conditions, the spatial structure of the cavity modes

becomes twisted as well. This twist induces vorticity and orbital angular momentum

in the cavity modes.

• In chapter 3 we generalize the concept of an optical cavity mode to the case of a cavity

in uniform rotation. We generalize the ladder-operator method developed in the second

chapter to account for the time dependence of a rotating cavity and obtain explicit

expressions of the rotating cavity modes. These are applied to study some of their

physical properties including the rotationally induced orbital angular momentum.

Although relatively simple in terms of the number of degrees of freedom involved, a rotating

astigmatic two-mirror cavity turns out to be a surprisingly rich dynamical system. Chapters

4 and 5 are devoted to specific dynamical properties of a rotating cavity and its modes.

• In chapter 4 we show that rotation affects the focusing properties of the mirrors of an

astigmatic two-mirror cavity in such a way that the cavity can both be stabilized and
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1.5 Thesis outline

destabilized by rotation. As such it bears some similarity with both the Paul trap and

the gyroscope. We study the rotationally induced transition from a stable to an unstable

geometry and vice versa in terms of the structure of and the orbital angular momentum

in the rotating cavity modes.

• In chapter 5 we show that optical vortices appear in the modes of an astigmatic two-

mirror cavity when it is put into rotation about its optical axis. We study some physical

properties of the emerging vortex pattern. We make a comparison with rotationally

induced vortices in material systems and discuss explicit results for a specific case. In

section 5.5, we discuss limitations of possible experimental realizations of an optical

set-up that captures the essential features of the rotating astigmatic cavities that we

study in chapters 3, 4 and 5.

Since the transformations of the ladder operators can be expressed in terms of a ray matrix,

which has a clear geometric significance, it follows that also the ladder-operator method is

geometric in that it relates to the principle of Fermat.

• In chapter 6 we focus on such geometrical aspects. We study the geometry of the

parameter space underlying the pairs of bosonic ladder operators and the geometric

phase shifts that it gives rise to. Such phase shifts constitute the ultimate generalization

of the Gouy phase in paraxial wave optics. We recover both the ordinary Gouy phase

shift and the geometric phase that arises from cyclic transformations of optical beams

bearing orbital angular momentum as limiting cases. We discuss an analogy with the

Aharonov-Bohm effect in quantum eletrodynamics that reveals some deep insights in

the nature and origin of this geometric phase.

Finally, the last chapter completes the discussion of rotating light.

• In chapter 7 we show that the exact wave equation, which derives without approx-

imations from Maxwell’s equations, allows for solutions that are monochromatic in

a rotating frame. Since, in complex notation, monochromatic fields are separable in

space and time, it follows that these solutions are stationary in a rotating frame. As

a result, both the polarization and the spatial patterns of the vector components of the

corresponding fields rotate uniformly in a stationary frame. We discuss the quanti-

zation of the radiation field in an orthonormal but otherwise arbitrary basis of such

rotating modes. We derive the equations of motion for light in a rotating frame and

show that quantization in the rotating frame is consistent with quantization in the sta-

tionary frame. We discuss the paraxial counterpart of the exact theory and indicate how

a quantum-optical description of the rotating cavity modes, as introduced in chapter 3,

can be obtained.

Several chapters in this thesis are based on material that has been (or will be) published else-

where. Although all of them have been rewritten, I have tried to keep them independently
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1. Twisted light

readable. As a result, there is some overlap, in particular between the three chapters on

rotating cavities. Physics-oriented readers may at first read chapters 4 and 5, in which the

emphasis is on the physical phenomena rather than on the mathematical method used, and go

back to the relatively heavy mathematics in chapter 2 and 3 at a later stage. Mathematically

oriented readers, on the other hand, may consider first reading chapter 6, in which the math-

ematics underlying the ladder-operator method that is crucial to this thesis is discussed in its

most general and, as a result, abstract form.

The notation used in this thesis has been harmonized as much as possible without sacri-

ficing intuition. Generally speaking, vectors in three-dimensional space are set in a bold font

while vectors in the transverse plane are denoted with small Greek letters. Both two and four-

dimensional ray vectors are denoted in a script font while vectors in other (parameter) spaces

are denoted with arrows above the symbol. The bra-ket notation of quantum mechanics is

used to denote vectors in the Hilbert space of transverse states of classical light. Quantum

states of the radiation field are indicated with bra and ket vectors with round brackets. All

operators are denoted with a hat above the symbol. Matrices acting on the transverse spatial

coordinates (or momenta) are set in a sans serif font while ray matrices, which act on either

two- or four-dimensional rays are set in the standard roman font. These and other notational

conventions used in this thesis are listed in table 1.1.
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1.5 Thesis outline

Symbol Meaning

Coordinates

(x, y, z) Cartesian coordinates

(R cos φ,R sin φ, z) Cylindrical coordinates

(r sinϑ cosϕ, r sinϑ sinϕ, r cosϑ) Spherical coordinates

Vectors

r = (x, y, z)T Position in three dimensions

k = (kx, ky, kz)T Wave vector in three dimensions

ρ = (x, y)T Transverse position

θ = (ϑx, ϑy)
T Transverse propagation direction

ε = (εx, εy)
T Transverse polarization

� , � = (ρ, θ)T Two- and four-dimensional real ray vectors

μ, ν Normalized complex (eigen)rays
�A, �R Vectors in a parameter space

|u〉, |v〉 Transverse states of classical light

|...) Quantum state of light

Fields

E, B Electric and magnetic fields

A Vector potential

C Vector potential in a rotating frame

F, G Vectorial mode functions

V Vectorial mode function in a rotating frame

Operators

â(†)
1,2, b̂

(†)
x,y Raising and lowering operators

â(†)λ , ĉ(†)μ , v̂(†)ν Creation and annihilation operators (chapter 7)

Generalized beam parameters

r1,2 and t1,2 Scalar coefficients of a ladder operator

R and T 2 × 2 coefficient matrices of a vector of ladder operators

S = V−1 2 × 2 matrices that characterize the astigmatism

χ1,2 Generalized Gouy phases

η, ξ Spinors on the Hermite-Laguerre sphere

Beam profiles

u, v Transverse profile of a paraxial beam

ũ Transverse Fourier transform of u

Table 1.1: List of Symbols
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