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Twisted light

1.1 Introduction

In this thesis we theoretically investigate optical modes with a highly non-trivial spatial, and
in some cases also spectral, structure. We introduce an algebraic method to obtain explicit
expressions of the modes to all orders inside a two-mirror cavity with twisted boundary con-
ditions and apply these to study some of their physical properties. We generalize the concept
of a cavity mode to the case of a two-mirror cavity that is put into uniform rotation about
its optical axis and focus on the special case of a rotating astigmatic two-mirror cavity. We
extend our algebraic method to account for time-dependent mirror settings and study some
optical and opto-dynamical properties of this simple, but surprisingly rich, set-up. We dis-
cuss a complete and general characterization of the parameter space underlying basis sets of
paraxial optical modes and study the geometric phase shift that arises from it. This phase
shift constitutes the ultimate generalization of the Gouy phase in paraxial wave optics. We
show that, in free space, the concept of a rotating mode of the radiation field can be general-
ized beyond the paraxial regime and show that the field can be quantized in an orthonormal,
but otherwise arbitrary, basis of rotating modes, thereby constructing the first exact quantum
theory of rotating light.

In this first, introductory, chapter we put the material discussed in the rest of the thesis in
a somewhat broader context. Twisted and rotating boundary conditions are a natural source
of orbital angular momentum and vorticity in optical fields. In the next section we give a
brief historical introduction to these topics and discuss some applications in various branches
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of modern quantum optics. The mathematical method that we develop and apply to char-
acterize the dynamics of, mostly classical, wave fields generalizes well-established operator
techniques from quantum mechanics. It is exact up to leading order of the (time-dependent)
paraxial approximation and hinges upon the tight connection between wave and ray optics.
Throughout the thesis we shall mostly use it in its canonical operator representation. How-
ever, both the analogy with quantum mechanics and the connection with ray optics are more
conveniently discussed in the equivalent integral representation, which is the optical ana-
logue of the path-integral formulation of quantum mechanics. This is worked out explicitly
in sections 1.3 and 1.4. In the final section of this chapter, we give a detailed outline of this
thesis.

1.2 Optical angular momentum

The ability of light to exert torques and forces on a material object was first recognized by
Kepler. In his book De cometis libelli tres [1], published in 1619, he proposed that the
empirical fact that a comet’s tail always points away from the sun, is due to a radiative force
exerted by the sun light. Initially, this proposal attracted quite some attention, especially in
the context of the then ongoing debate whether light is composed of particles or should be
considered a wave phenomenon. However, since various attempts to experimentally observe
mechanical forces of light failed, the interest slowly dwindled [2].

When in the early 1860°s Maxwell was the first to realize that light is a manifestation of
the electromagnetic field [3], it became possible to study the mechanical properties of light,
such as its energy, momentum and angular momentum, within the framework of classical
electrodynamics. By studying the exchange of energy between a set of charged particles and
the electric and magnetic fields, Poynting showed in 1884 that the energy density associated
with the electromagnetic field in vacuum can be expressed as (eolEI2 + 1! IBI2) /2, where E
and B are respectively the electric and the magnetic field, and € and g are the permittivity
and the permeability of vacuum [4]. From similar considerations, one may deduce that the
momentum density of the electromagnetic field in vacuum can be expressed as P = gE x B
so that the angular momentum associated with the electromagnetic field is given by [4]

J:fdﬁ(rXP)=eofd3r(r><(E><B)). (1.1

By Helmholtz’s theorem, the electric and magnetic field can be decomposed into the trans-
verse radiation field and the longitudinal Coulomb field such thatE = E+E,, withV-E;, =0
and VX E; = 0. From Maxwell’s equations it follows that the longitudinal contribution to the
magnetic field vanishes so that the angular momentum arising from the radiation field can be
obtained from equation (1.1) by replacing the electric field by the transverse electric field E, .
In general, it is convenient to introduce a scalar potential ® and a vector potential A such that
E = -V® — A and B = V x A [4]. The scalar potential does not contribute to the radiation
field so that E; = —A . Substitution of E;, = —A, and B = V x A in the expression of the
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1.2 Optical angular momentum

angular momentum of the radiation field in vacuum yields after partial integration [5]
Jrad = Liag + Sraa (1.2)
with

Lia =602fd3r(EL)i(r><V)Ai and  Spg =€()Zfd3l‘ E. xA, (13)

where the index i runs over the vector components of the field. The first contribution in
equation (1.3) is extrinsic in that it depends on the origin of the coordinate system used. By
a proper choice of the origin, it can be made to vanish. As such, it may be viewed as the
wave-optical analogue of the orbital angular momentum associated with the center-of-mass
motion of two bodies, one of which orbits around the other [6]. The second contribution in
equation (1.3), on the other hand, is obviously intrinsic and has the flavor of spin. However,
although it may be shown that it indeed takes the form of the expectation value of the spin of
a spin-1 particle, its interpretation as a spin is not without severe and fundamental difficulties
[5]. These difficulties originate from the fact that the photon travels at the speed of light and,
therefore, by special relativity, must have zero rest mass. The spin of a massive particle may
be defined as its total angular momentum in a co-moving frame but, since the photon travels
at the speed of light, its co-moving frame is non-existent. As a result, its spin is ill-defined
[7]. This is illustrated by the fact that, in a quantized description of the radiation field, the
operators corresponding to the components of S;,4 do not obey the proper commutation rules
[8, 6].

Physically speaking, the intrinsic (or spin) contribution to the angular momentum of the
radiation field arises from its vector nature. In a circularly polarized beam it amounts to 7
per photon. Since a linearly polarized beam contains equal contributions of the two opposite
circular polarizations, it bears no net spin angular momentum. Already in 1936, it has been
demonstrated experimentally that the exchange of spin angular momentum between a circu-
larly polarized beam of light and a birefringent crystal through which it propagates, gives rise
to a torque on the crystal [9]. The extrinsic (or orbital) contribution to the angular momen-
tum, on the other hand, arises from the phase structure of the field. Although optical forces
arising from transverse phase gradients had been observed in optical tweezers [10], it was not
before 1992 that it was realized that optical beams bearing orbital angular momentum can
easily be produced and manipulated in experimental set-ups with laser beams [11]. In the
standard case of a Laguerre-Gaussian beam [12], the orbital angular momentum arises from
an optical vortex on the beam axis. Optical vortices are point singularities of the phase of the
radiation field and give rise to helical wave fronts, which characterize a circular rather than
a linear distribution of the transverse momentum [13]. During the past decades, the physics
of optical vortices has been studied widely in the field of singular optics [14, 15]. In addition
to vorticity, also general astigmatism contributes to the orbital angular momentum in optical
fields [16, 17]. General astigmatism arises when the transverse intensity and phase distribu-
tions of an optical beam are anisotropic and non-aligned [18]. It gives rise to tumbling of
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the beam under free propagation [17]. The orbital angular momentum per photon in opti-
cal beams with vortices and/or general astigmatism can be significantly larger than the spin
angular momentum per photon in a circularly polarized beam. Under realistic experimental
conditions, values of 107 per photon can be achieved easily. Perhaps the most natural source
of optical orbital angular momentum is physical rotation of a transverse field pattern [19, 20].
However, under typical circumstances, this rotational contribution is very small compared to
the orbital angular momentum due to the transverse structure of a beam.

In the eighteen years that have passed since the first experiments were performed, optical
orbital angular momentum has played a central role in various branches of modern quan-
tum optics [21]. As opposed to the space of polarization states, which is inherently two-
dimensional, the space of optical orbital angular momentum states is infinite-dimensional.
Since in 2001, quantum entanglement in the orbital angular momentum of photons was first
demonstrated experimentally [22], this infinite-dimensional nature has offered a whole range
of interesting possibilities and challenges see, for instance, reference [23]. Also in the field
of optical tweezers, the orbital angular momentum has been used to manipulate small par-
ticles [24]. Recently, it has been shown theoretically that the orbital angular momentum in
a Laguerre-Gaussian beam can be sufficiently large to trap and cool the rotational degree
of freedom of a mirror [25]. This suggests possible application of optical orbital angular
momentum in the rapidly developing field of (cavity) opto-mechanics.

1.3 Classical optics and quantum mechanics

Long before the days of Maxwell, and even before the debate whether light consists of parti-
cles or should be considered a wave was settled in favor of the wave description by Young’s
famous double-slit experiments in 1801, the propagation and diffraction of waves was pretty
well-understood. In 1678, Huygens first formulated his principle that every point on a wave
front acts as a source of spherical waves. The wave front at a distant location is the enve-
lope of these spherical waves. It took until 1690 before Huygens published the principle in
his book Traité de la lumiere [26]. Between 1815 and 1819, the wave theory of light was
significantly refined by Fresnel, who, in the spirit of Young’s double-slit experiment, added
the notion of interference to what is nowadays called the Huygens-Fresnel principle. For
monochromatic complex scalar waves E(r, ) = E(r) exp(—iwt) it can be expressed as [27]

2rtk exp (ik|r — rop|
Bl = 2 [y 20—
i [r — 19|

E(pg, z0) cos 8, (1.4)
where p = (x, y)T is the transverse position vector, k = w/c is the wave number and 6 is the
angle between the position vector r and the normal to the wave front in the zy plane. The
Huygens-Fresnel integral (1.4) characterizes the complex spatial field E(p, z) in some trans-
verse plane z as a coherent superposition of spherical waves emanating from point sources
in the plane zy. The amplitudes and relative phases of the spherical waves are given by the
transverse field distribution E(py, z9) in the plane zo. The additional obliquity factor cos 6 is
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1.3 Classical optics and quantum mechanics

related to the fact that only spherical waves that propagate away from the sources are taken
into consideration [28]. It gives the spherical waves an angular profile. In its original form,
the Huygens principle explains reflection and refraction of light at an interface. The modified
Huygens-Fresnel principle as described by equation (1.4) also describes phenomena arising
from interference and diffraction. At the time it was formulated, the Huygens principle was
more of brilliant but somewhat qualitative guess rather than a formal and mathematically
rigorous statement. However, in 1882 Kirchhoff derived the Huygens-Fresnel integral di-
rectly from Maxwell’s equations [4]. In hindsight, the Huygens-Fresnel integral (1.4) may be
considered as the first example of a path integral in physics.

The fundamental principle that underlies the ray-optical description of light is the prin-
ciple of least time, first formulated by Fermat in 1662. This principle states that a ray of
light optimizes the optical path length between two points in space and plays a role analo-
gous to that of the principle of least action in classical mechanics. Since the speed of light
is determined by the optical density of the medium, as characterized by the refractive index
n(x,y, 2), the velocity of a ray of light is not an independent dynamical variable. It follows
that a ray of light can be fully characterized by its three spatial coordinates as a function of
some parameter, which we choose to be the z coordinate. In that case, the optical path length

of a ray can be expressed as
72
L:f dz n(x,y,z) 1 + X2 +y?, (1.5)

21
where z; and 7z, are the z coordinates of the begin and end points of the ray and where
X' = 0x/dz and y’ = dy/dz. Since the path length plays the role of the action, the argu-
ment of the integral in equation (1.5) is the Lagrangian £ that describes the propagation
of optical rays through a medium characterized by the refractive index n(x,y,z). With the
corresponding momenta, which are defined as 0£/dx’ and 0.L/dy’, this naturally leads to a
canonical formulation of geometric optics [29].

In many optical set-ups, the light propagates along a well-defined direction so that parax-
ial approximations (from the Ancient Greek mapa, which literally means alongside of) are
justified. In mathematical terms, the assumption that the light mainly propagates along the
z axis implies that x’,y" << 1. In case of paraxial propagation through vacuum (n = 1), the
Lagrangian arising from the path length (1.5) can be approximated by

L=1+ %(x’2+y’2). (1.6)

The corresponding momenta are given by ¥, = 0L/0x" = x" and 9y, = dL/dy’ = y’ and
correspond to direction angles measured with respect to the z axis. Following the standard
construction of the Feynman path integral [30], 7 being replaced by 2 = 1/2m = 1/k, the path
integral corresponding to the Lagrangian in equation (1.6) can be expressed as

ik ((x = x0)? + (v = y0)?)
2(z - 20)

D ke@=20)

i(z - 20)

E(p,2) = dapo eXP[ E(po, 20) » (1.7)
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which clearly is a paraxial approximation of the Huygens-Fresnel integral (1.4) [12]. If we
write the field as the product E(p, z) = u(p, z) exp(ikz) of a spatial profile u(p, z) and a carrier
wave exp(ikz), it follows that (1.7) corresponds to the general solution of the paraxial wave
equation

.0
(v; s 21ka—z)u(p,z) ~0, (18)

where V2 = 8%/dx* + 8% /dy* is the transverse Laplacian. The paraxial wave equation (1.8)
takes the form of the Schrodinger equation for a free particle in two dimensions, 1 = 1/k
playing the role of 7/m with m the mass of the particle. It describes the spatial evolution of
the profile u(p, z) of a paraxial beam, which characterizes its large-scale spatial structure, and
plays a central role in this thesis.

It is noteworthy that, in the present context of monochromatic scalar waves, the paraxial
approximation plays a role similar to that of the non-relativistic approximation in quantum
mechanics [31]. In the optical case, the exact wave equation reduces to the paraxial wave
equation for fields that mainly propagate along a well-defined direction while in quantum
mechanics, the Klein-Gordon equation, which describes a massive scalar field, reduces to the
ordinary Schrodinger equation for fields that only contain mainly time-like components.

1.4 First-order optics

An interesting property of the paraxial Lagrangian (1.6) is that the evolution of the transverse
coordinates p = (x,y)T and the corresponding momenta 6 = (¢, 97 = dp/dz, which are
conveniently combined in a four-dimensional ray vector 2T = (pT, 87), is linear. The solution
of the Euler-Lagrange equation deriving from the Lagrangian (1.6) can be expressed as

1 1z

z(Z):(o 1

) 2(0), (1.9)
where 0 and 1 are the 2 X 2 zero and unit matrices. The fact that this transformation can be
represented by a 4x4 matrix is not a unique property of paraxial propagation through vacuum.
It is well-known that, in leading order of the paraxial approximation, the transformations due
to various lossless optical elements such as thin lenses and mirrors can also be represented
by real 4 x 4 matrices acting on a ray vector 2 [12]. In the special case of isotropic elements,
all four 2 x 2 submatrices of the 4 X 4 ray matrix are proportional to the 2 X 2 unit matrix.
It follows that the transformation of the two transverse components (x,%,)" and (y, ﬁy)T of
aray 2 can be described by the same reduced 2 X 2 ray matrix. Such 2 X 2 ray matrices
are called ABCD matrices [12]. Free propagation as described by equation (1.9) is obviously
isotropic. It is an example of a transformation that can be described by an ABCD matrix. A
ray that lies in a plane through the optical axis of the element through which it passes can be
characterized by its distance to the optical axis R = |p| and the corresponding direction angle
¥ = 0p/0z. One may show easily that also in this case the transformation due to an isotropic
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1.4 First-order optics

optical element can be represented by an ABCD matrix. If the two-dimensional vector that
characterizes such a ray is denoted 2 = (R, 7T, this transformation can be expressed as

A B
out = in » 1.10
2 out (C D)z (1.10)

with A, B,C, D € R. The transverse position R and the propagation direction ¢ constitute a
pair of canonically conjugate variables. From the fact that this canonical structure is preserved
under the lossless transformation in equation (1.10), it follows that a physical ABCD matrix
must have a unit determinant so that AD — BC = 1. The transformation of a sequence of
optical elements can be constructed as the product of the ray matrices describing each of the
elements and, since the determinant of a matrix product equals the product of the determinants
of the matrices, it follows that the determinant of any ABCD matrix that describes a lossless
isotropic optical set-up is equal to 1.

The optical path length between a point R in the input plane and a point R, in the output
plane of an isotropic optical set-up that is described by an ABCD matrix can be expressed as
[12]

1
L(Ry.Ry) = Lo + 7 (AR} - 2R\R, + DR3) (1.11)

where Ly is the path length along the optical axis of the set-up. The corresponding path
integral, with 2 = 1/k again playing the role of 7, takes the following form [32, 12]

E(p2,20) =

B B E(p1,21) . (1.12)

> kel ik (AR? = 2R\R, + DR3)
f drp1 exp[

This obviously reduces to equation (1.7) in case of free propagation A = D = 1 and B =

Ly = 2o —71. The expression in equation (1.7) shows explicitly that the propagation of a wave

through an optical set-up is fully determined by the geometric-optical characteristics of the

optical set-up. This description of wave propagation is geometric in that it derives from the

Fermat principle, which has a clear geometric significance.

It is well-known from textbook quantum mechanics that the path-integral description is
exact in the case of first-order systems, the non-relativistic free particle and the harmonic
oscillator being the simplest examples [30]. Since Gaussian integrals can be solved exactly,
it follows that the evolution of Gaussian wave packets under the integral transformation for
a first-order system can be calculated analytically. Less well-known is that the path-integral
description is also exact for infinitely many complete sets of excited states, which, analogous
to the case of the harmonic oscillator, can be obtained from pairs of bosonic ladder opera-
tors. In the optical context, such excited states have the significance of higher-order trans-
verse modes [33]. Two very well-known examples are the Hermite-Gaussian and Laguerre-
Gaussian modes, which are of crucial importance in experiments with laser beams [12].
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1.5 Thesis outline

In this thesis, we study the spatial structure and physical properties of higher-order optical
modes that have a twisted nature due to the presence of astigmatism and optical vortices. Our
characterization of such twisted states of light involves pairs of bosonic ladder operators that
generate a basis set of optical modes. Although the ladder operators act in the wave-optical
domain, we shall demonstrate that their transformation under paraxial propagation and optical
elements can be expressed in terms of the ray matrix that also describes the transformation of
aray. The ladder operators generate a complete set of higher-order mode patterns that exactly
solve the Huygens-Fresnel integral (1.12) for an arbitrary first-order system. In regions of free
propagation, the modes obey the paraxial wave equation (1.8). As opposed to the Huygens-
Fresnel integral, which cannot easily be generalized to the case of set-ups with non-isotropic
optical elements, the ladder operator-method allows for direct generalization to the case of
transverse modes with astigmatism. Although the method keeps its elegance and simplicity,
the spatial patterns of astigmatic higher-order modes display a very rich structure that gives
rise to vorticity and orbital angular momentum. In the first two chapters, we apply the ladder-
operator method to study the mode structure and the physical properties that arise from it in
the presence of twisted and rotating boundary conditions.

e In chapter 2 we show that the paraxial modes of a geometrically stable two-mirror cav-
ity with general astigmatism, i.e., a cavity that consists of two non-aligned astigmatic
mirrors, can be obtained from pairs of bosonic ladder operators. From the transforma-
tion property of the ladder operators it follows that the ladder operators that generate
the cavity modes can be constructed from the eigenvectors of the round-trip ray matrix
that describes the transformation of a ray after one round trip through the cavity. The
eigenvalues determine the frequency spectrum of the cavity. As a result of the twisted
nature of the astigmatic boundary conditions, the spatial structure of the cavity modes
becomes twisted as well. This twist induces vorticity and orbital angular momentum
in the cavity modes.

e In chapter 3 we generalize the concept of an optical cavity mode to the case of a cavity
in uniform rotation. We generalize the ladder-operator method developed in the second
chapter to account for the time dependence of a rotating cavity and obtain explicit
expressions of the rotating cavity modes. These are applied to study some of their
physical properties including the rotationally induced orbital angular momentum.

Although relatively simple in terms of the number of degrees of freedom involved, a rotating
astigmatic two-mirror cavity turns out to be a surprisingly rich dynamical system. Chapters
4 and 5 are devoted to specific dynamical properties of a rotating cavity and its modes.

e In chapter 4 we show that rotation affects the focusing properties of the mirrors of an
astigmatic two-mirror cavity in such a way that the cavity can both be stabilized and
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destabilized by rotation. As such it bears some similarity with both the Paul trap and
the gyroscope. We study the rotationally induced transition from a stable to an unstable
geometry and vice versa in terms of the structure of and the orbital angular momentum
in the rotating cavity modes.

e In chapter 5 we show that optical vortices appear in the modes of an astigmatic two-
mirror cavity when it is put into rotation about its optical axis. We study some physical
properties of the emerging vortex pattern. We make a comparison with rotationally
induced vortices in material systems and discuss explicit results for a specific case. In
section 5.5, we discuss limitations of possible experimental realizations of an optical
set-up that captures the essential features of the rotating astigmatic cavities that we
study in chapters 3, 4 and 5.

Since the transformations of the ladder operators can be expressed in terms of a ray matrix,
which has a clear geometric significance, it follows that also the ladder-operator method is
geometric in that it relates to the principle of Fermat.

e In chapter 6 we focus on such geometrical aspects. We study the geometry of the
parameter space underlying the pairs of bosonic ladder operators and the geometric
phase shifts that it gives rise to. Such phase shifts constitute the ultimate generalization
of the Gouy phase in paraxial wave optics. We recover both the ordinary Gouy phase
shift and the geometric phase that arises from cyclic transformations of optical beams
bearing orbital angular momentum as limiting cases. We discuss an analogy with the
Aharonov-Bohm effect in quantum eletrodynamics that reveals some deep insights in
the nature and origin of this geometric phase.

Finally, the last chapter completes the discussion of rotating light.

e In chapter 7 we show that the exact wave equation, which derives without approx-
imations from Maxwell’s equations, allows for solutions that are monochromatic in
a rotating frame. Since, in complex notation, monochromatic fields are separable in
space and time, it follows that these solutions are stationary in a rotating frame. As
a result, both the polarization and the spatial patterns of the vector components of the
corresponding fields rotate uniformly in a stationary frame. We discuss the quanti-
zation of the radiation field in an orthonormal but otherwise arbitrary basis of such
rotating modes. We derive the equations of motion for light in a rotating frame and
show that quantization in the rotating frame is consistent with quantization in the sta-
tionary frame. We discuss the paraxial counterpart of the exact theory and indicate how
a quantum-optical description of the rotating cavity modes, as introduced in chapter 3,
can be obtained.

Several chapters in this thesis are based on material that has been (or will be) published else-
where. Although all of them have been rewritten, I have tried to keep them independently
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readable. As a result, there is some overlap, in particular between the three chapters on
rotating cavities. Physics-oriented readers may at first read chapters 4 and 5, in which the
emphasis is on the physical phenomena rather than on the mathematical method used, and go
back to the relatively heavy mathematics in chapter 2 and 3 at a later stage. Mathematically
oriented readers, on the other hand, may consider first reading chapter 6, in which the math-
ematics underlying the ladder-operator method that is crucial to this thesis is discussed in its
most general and, as a result, abstract form.

The notation used in this thesis has been harmonized as much as possible without sacri-
ficing intuition. Generally speaking, vectors in three-dimensional space are set in a bold font
while vectors in the transverse plane are denoted with small Greek letters. Both two and four-
dimensional ray vectors are denoted in a script font while vectors in other (parameter) spaces
are denoted with arrows above the symbol. The bra-ket notation of quantum mechanics is
used to denote vectors in the Hilbert space of transverse states of classical light. Quantum
states of the radiation field are indicated with bra and ket vectors with round brackets. All
operators are denoted with a hat above the symbol. Matrices acting on the transverse spatial
coordinates (or momenta) are set in a sans serif font while ray matrices, which act on either
two- or four-dimensional rays are set in the standard roman font. These and other notational
conventions used in this thesis are listed in table 1.1.

10
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Symbol Meaning
Coordinates
(x,9,2) Cartesian coordinates

(Rcos ¢, Rsin ¢, 7)
(rsin ¥ cos ¢, r sin ¥ sin ¢, r cos 1)
Vectors
r=(xy2"

K = (ky, ky, k)T

p =y

0 = (¥, ﬁy)T
€=(en6)"

2,7 =(p,0)"

J7RY

AR

lue), [v)

[...)

E,B

A

C

F,G

\Y%

Operators
a0

&(j)’ & o
Generalized beam parameters

T2 and 1)
Rand T
S=Vv!

X1.2

¢

Beam profiles
u, v

u

Cylindrical coordinates
Spherical coordinates

Position in three dimensions

Wave vector in three dimensions
Transverse position

Transverse propagation direction
Transverse polarization

Two- and four-dimensional real ray vectors
Normalized complex (eigen)rays

Vectors in a parameter space

Transverse states of classical light
Quantum state of light

Electric and magnetic fields

Vector potential

Vector potential in a rotating frame
Vectorial mode functions

Vectorial mode function in a rotating frame

Raising and lowering operators

Creation and annihilation operators (chapter 7)

Scalar coefficients of a ladder operator

2 x 2 coefficient matrices of a vector of ladder operators

2 X 2 matrices that characterize the astigmatism

Generalized Gouy phases
Spinors on the Hermite-Laguerre sphere

Transverse profile of a paraxial beam
Transverse Fourier transform of u

Table 1.1: List of Symbols
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