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1
Twisted light

1.1 Introduction

In this thesis we theoretically investigate optical modes with a highly non-trivial spatial, and
in some cases also spectral, structure. We introduce an algebraic method to obtain explicit
expressions of the modes to all orders inside a two-mirror cavity with twisted boundary con-
ditions and apply these to study some of their physical properties. We generalize the concept
of a cavity mode to the case of a two-mirror cavity that is put into uniform rotation about
its optical axis and focus on the special case of a rotating astigmatic two-mirror cavity. We
extend our algebraic method to account for time-dependent mirror settings and study some
optical and opto-dynamical properties of this simple, but surprisingly rich, set-up. We dis-
cuss a complete and general characterization of the parameter space underlying basis sets of
paraxial optical modes and study the geometric phase shift that arises from it. This phase
shift constitutes the ultimate generalization of the Gouy phase in paraxial wave optics. We
show that, in free space, the concept of a rotating mode of the radiation field can be general-
ized beyond the paraxial regime and show that the field can be quantized in an orthonormal,
but otherwise arbitrary, basis of rotating modes, thereby constructing the first exact quantum
theory of rotating light.

In this first, introductory, chapter we put the material discussed in the rest of the thesis in
a somewhat broader context. Twisted and rotating boundary conditions are a natural source
of orbital angular momentum and vorticity in optical fields. In the next section we give a
brief historical introduction to these topics and discuss some applications in various branches
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1. Twisted light

of modern quantum optics. The mathematical method that we develop and apply to char-
acterize the dynamics of, mostly classical, wave fields generalizes well-established operator
techniques from quantum mechanics. It is exact up to leading order of the (time-dependent)
paraxial approximation and hinges upon the tight connection between wave and ray optics.
Throughout the thesis we shall mostly use it in its canonical operator representation. How-
ever, both the analogy with quantum mechanics and the connection with ray optics are more
conveniently discussed in the equivalent integral representation, which is the optical ana-
logue of the path-integral formulation of quantum mechanics. This is worked out explicitly
in sections 1.3 and 1.4. In the final section of this chapter, we give a detailed outline of this
thesis.

1.2 Optical angular momentum

The ability of light to exert torques and forces on a material object was first recognized by
Kepler. In his book De cometis libelli tres [1], published in 1619, he proposed that the
empirical fact that a comet’s tail always points away from the sun, is due to a radiative force
exerted by the sun light. Initially, this proposal attracted quite some attention, especially in
the context of the then ongoing debate whether light is composed of particles or should be
considered a wave phenomenon. However, since various attempts to experimentally observe
mechanical forces of light failed, the interest slowly dwindled [2].

When in the early 1860’s Maxwell was the first to realize that light is a manifestation of
the electromagnetic field [3], it became possible to study the mechanical properties of light,
such as its energy, momentum and angular momentum, within the framework of classical
electrodynamics. By studying the exchange of energy between a set of charged particles and
the electric and magnetic fields, Poynting showed in 1884 that the energy density associated
with the electromagnetic field in vacuum can be expressed as

(
ε0|E|2 + µ−1

0 |B|2
)
/2, where E

and B are respectively the electric and the magnetic field, and ε0 and µ0 are the permittivity
and the permeability of vacuum [4]. From similar considerations, one may deduce that the
momentum density of the electromagnetic field in vacuum can be expressed as P = ε0E × B
so that the angular momentum associated with the electromagnetic field is given by [4]

J =

∫
d3r

(
r × P

)
= ε0

∫
d3r

(
r × (E × B)

)
. (1.1)

By Helmholtz’s theorem, the electric and magnetic field can be decomposed into the trans-
verse radiation field and the longitudinal Coulomb field such that E = E‖+E⊥, with ∇·E⊥ = 0
and ∇×E‖ = 0. From Maxwell’s equations it follows that the longitudinal contribution to the
magnetic field vanishes so that the angular momentum arising from the radiation field can be
obtained from equation (1.1) by replacing the electric field by the transverse electric field E⊥.
In general, it is convenient to introduce a scalar potential Φ and a vector potential A such that
E = −∇Φ − Ȧ and B = ∇ × A [4]. The scalar potential does not contribute to the radiation
field so that E⊥ = −Ȧ⊥. Substitution of E⊥ = −Ȧ⊥ and B = ∇ × A in the expression of the

2



1.2 Optical angular momentum

angular momentum of the radiation field in vacuum yields after partial integration [5]

Jrad = Lrad + Srad , (1.2)

with

Lrad = ε0

∑

i

∫
d3r

(
Ė⊥

)
i (r × ∇) Ai and Srad = ε0

∑

i

∫
d3r Ė⊥ × A , (1.3)

where the index i runs over the vector components of the field. The first contribution in
equation (1.3) is extrinsic in that it depends on the origin of the coordinate system used. By
a proper choice of the origin, it can be made to vanish. As such, it may be viewed as the
wave-optical analogue of the orbital angular momentum associated with the center-of-mass
motion of two bodies, one of which orbits around the other [6]. The second contribution in
equation (1.3), on the other hand, is obviously intrinsic and has the flavor of spin. However,
although it may be shown that it indeed takes the form of the expectation value of the spin of
a spin-1 particle, its interpretation as a spin is not without severe and fundamental difficulties
[5]. These difficulties originate from the fact that the photon travels at the speed of light and,
therefore, by special relativity, must have zero rest mass. The spin of a massive particle may
be defined as its total angular momentum in a co-moving frame but, since the photon travels
at the speed of light, its co-moving frame is non-existent. As a result, its spin is ill-defined
[7]. This is illustrated by the fact that, in a quantized description of the radiation field, the
operators corresponding to the components of Srad do not obey the proper commutation rules
[8, 6].

Physically speaking, the intrinsic (or spin) contribution to the angular momentum of the
radiation field arises from its vector nature. In a circularly polarized beam it amounts to ~
per photon. Since a linearly polarized beam contains equal contributions of the two opposite
circular polarizations, it bears no net spin angular momentum. Already in 1936, it has been
demonstrated experimentally that the exchange of spin angular momentum between a circu-
larly polarized beam of light and a birefringent crystal through which it propagates, gives rise
to a torque on the crystal [9]. The extrinsic (or orbital) contribution to the angular momen-
tum, on the other hand, arises from the phase structure of the field. Although optical forces
arising from transverse phase gradients had been observed in optical tweezers [10], it was not
before 1992 that it was realized that optical beams bearing orbital angular momentum can
easily be produced and manipulated in experimental set-ups with laser beams [11]. In the
standard case of a Laguerre-Gaussian beam [12], the orbital angular momentum arises from
an optical vortex on the beam axis. Optical vortices are point singularities of the phase of the
radiation field and give rise to helical wave fronts, which characterize a circular rather than
a linear distribution of the transverse momentum [13]. During the past decades, the physics
of optical vortices has been studied widely in the field of singular optics [14, 15]. In addition
to vorticity, also general astigmatism contributes to the orbital angular momentum in optical
fields [16, 17]. General astigmatism arises when the transverse intensity and phase distribu-
tions of an optical beam are anisotropic and non-aligned [18]. It gives rise to tumbling of
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1. Twisted light

the beam under free propagation [17]. The orbital angular momentum per photon in opti-
cal beams with vortices and/or general astigmatism can be significantly larger than the spin
angular momentum per photon in a circularly polarized beam. Under realistic experimental
conditions, values of 10~ per photon can be achieved easily. Perhaps the most natural source
of optical orbital angular momentum is physical rotation of a transverse field pattern [19, 20].
However, under typical circumstances, this rotational contribution is very small compared to
the orbital angular momentum due to the transverse structure of a beam.

In the eighteen years that have passed since the first experiments were performed, optical
orbital angular momentum has played a central role in various branches of modern quan-
tum optics [21]. As opposed to the space of polarization states, which is inherently two-
dimensional, the space of optical orbital angular momentum states is infinite-dimensional.
Since in 2001, quantum entanglement in the orbital angular momentum of photons was first
demonstrated experimentally [22], this infinite-dimensional nature has offered a whole range
of interesting possibilities and challenges see, for instance, reference [23]. Also in the field
of optical tweezers, the orbital angular momentum has been used to manipulate small par-
ticles [24]. Recently, it has been shown theoretically that the orbital angular momentum in
a Laguerre-Gaussian beam can be sufficiently large to trap and cool the rotational degree
of freedom of a mirror [25]. This suggests possible application of optical orbital angular
momentum in the rapidly developing field of (cavity) opto-mechanics.

1.3 Classical optics and quantum mechanics

Long before the days of Maxwell, and even before the debate whether light consists of parti-
cles or should be considered a wave was settled in favor of the wave description by Young’s
famous double-slit experiments in 1801, the propagation and diffraction of waves was pretty
well-understood. In 1678, Huygens first formulated his principle that every point on a wave
front acts as a source of spherical waves. The wave front at a distant location is the enve-
lope of these spherical waves. It took until 1690 before Huygens published the principle in
his book Traité de la lumière [26]. Between 1815 and 1819, the wave theory of light was
significantly refined by Fresnel, who, in the spirit of Young’s double-slit experiment, added
the notion of interference to what is nowadays called the Huygens-Fresnel principle. For
monochromatic complex scalar waves E(r, t) = E(r) exp(−iωt) it can be expressed as [27]

E(ρ, z) =
2πk

i

∫
d2ρ0

exp
(
ik|r − r0|)
|r − r0| E(ρ0, z0) cos θ , (1.4)

where ρ = (x, y)T is the transverse position vector, k = ω/c is the wave number and θ is the
angle between the position vector r and the normal to the wave front in the z0 plane. The
Huygens-Fresnel integral (1.4) characterizes the complex spatial field E(ρ, z) in some trans-
verse plane z as a coherent superposition of spherical waves emanating from point sources
in the plane z0. The amplitudes and relative phases of the spherical waves are given by the
transverse field distribution E(ρ0, z0) in the plane z0. The additional obliquity factor cos θ is

4



1.3 Classical optics and quantum mechanics

related to the fact that only spherical waves that propagate away from the sources are taken
into consideration [28]. It gives the spherical waves an angular profile. In its original form,
the Huygens principle explains reflection and refraction of light at an interface. The modified
Huygens-Fresnel principle as described by equation (1.4) also describes phenomena arising
from interference and diffraction. At the time it was formulated, the Huygens principle was
more of brilliant but somewhat qualitative guess rather than a formal and mathematically
rigorous statement. However, in 1882 Kirchhoff derived the Huygens-Fresnel integral di-
rectly from Maxwell’s equations [4]. In hindsight, the Huygens-Fresnel integral (1.4) may be
considered as the first example of a path integral in physics.

The fundamental principle that underlies the ray-optical description of light is the prin-
ciple of least time, first formulated by Fermat in 1662. This principle states that a ray of
light optimizes the optical path length between two points in space and plays a role analo-
gous to that of the principle of least action in classical mechanics. Since the speed of light
is determined by the optical density of the medium, as characterized by the refractive index
n(x, y, z), the velocity of a ray of light is not an independent dynamical variable. It follows
that a ray of light can be fully characterized by its three spatial coordinates as a function of
some parameter, which we choose to be the z coordinate. In that case, the optical path length
of a ray can be expressed as

L =

∫ z2

z1

dz n(x, y, z)
√

1 + x′2 + y′2 , (1.5)

where z1 and z2 are the z coordinates of the begin and end points of the ray and where
x′ = ∂x/∂z and y′ = ∂y/∂z. Since the path length plays the role of the action, the argu-
ment of the integral in equation (1.5) is the Lagrangian L that describes the propagation
of optical rays through a medium characterized by the refractive index n(x, y, z). With the
corresponding momenta, which are defined as ∂L/∂x′ and ∂L/∂y′, this naturally leads to a
canonical formulation of geometric optics [29].

In many optical set-ups, the light propagates along a well-defined direction so that parax-
ial approximations (from the Ancient Greek παρα, which literally means alongside of) are
justified. In mathematical terms, the assumption that the light mainly propagates along the
z axis implies that x′, y′ << 1. In case of paraxial propagation through vacuum (n = 1), the
Lagrangian arising from the path length (1.5) can be approximated by

L = 1 +
1
2

(
x′2 + y′2

)
. (1.6)

The corresponding momenta are given by ϑx = ∂L/∂x′ = x′ and ϑy = ∂L/∂y′ = y′ and
correspond to direction angles measured with respect to the z axis. Following the standard
construction of the Feynman path integral [30], ~ being replaced by o = λ/2π = 1/k, the path
integral corresponding to the Lagrangian in equation (1.6) can be expressed as

E(ρ, z) =
2πkeik(z−z0)

i(z − z0)

∫
d2ρ0 exp


ik

(
(x − x0)2 + (y − y0)2

)

2(z − z0)

 E(ρ0, z0) , (1.7)
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1. Twisted light

which clearly is a paraxial approximation of the Huygens-Fresnel integral (1.4) [12]. If we
write the field as the product E(ρ, z) = u(ρ, z) exp(ikz) of a spatial profile u(ρ, z) and a carrier
wave exp(ikz), it follows that (1.7) corresponds to the general solution of the paraxial wave
equation (

∇2
ρ + 2ik

∂

∂z

)
u(ρ, z) = 0 , (1.8)

where ∇2
ρ = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplacian. The paraxial wave equation (1.8)

takes the form of the Schrödinger equation for a free particle in two dimensions, o = 1/k
playing the role of ~/m with m the mass of the particle. It describes the spatial evolution of
the profile u(ρ, z) of a paraxial beam, which characterizes its large-scale spatial structure, and
plays a central role in this thesis.

It is noteworthy that, in the present context of monochromatic scalar waves, the paraxial
approximation plays a role similar to that of the non-relativistic approximation in quantum
mechanics [31]. In the optical case, the exact wave equation reduces to the paraxial wave
equation for fields that mainly propagate along a well-defined direction while in quantum
mechanics, the Klein-Gordon equation, which describes a massive scalar field, reduces to the
ordinary Schrödinger equation for fields that only contain mainly time-like components.

1.4 First-order optics

An interesting property of the paraxial Lagrangian (1.6) is that the evolution of the transverse
coordinates ρ = (x, y)T and the corresponding momenta θ = (ϑx, ϑx)T = ∂ρ/∂z, which are
conveniently combined in a four-dimensional ray vector r T = (ρT, θT), is linear. The solution
of the Euler-Lagrange equation deriving from the Lagrangian (1.6) can be expressed as

r (z) =

(
1 1z
0 1

) r (0) , (1.9)

where 0 and 1 are the 2 × 2 zero and unit matrices. The fact that this transformation can be
represented by a 4×4 matrix is not a unique property of paraxial propagation through vacuum.
It is well-known that, in leading order of the paraxial approximation, the transformations due
to various lossless optical elements such as thin lenses and mirrors can also be represented
by real 4× 4 matrices acting on a ray vector r [12]. In the special case of isotropic elements,
all four 2 × 2 submatrices of the 4 × 4 ray matrix are proportional to the 2 × 2 unit matrix.
It follows that the transformation of the two transverse components (x, ϑx)T and (y, ϑy)T of
a ray r can be described by the same reduced 2 × 2 ray matrix. Such 2 × 2 ray matrices
are called ABCD matrices [12]. Free propagation as described by equation (1.9) is obviously
isotropic. It is an example of a transformation that can be described by an ABCD matrix. A
ray that lies in a plane through the optical axis of the element through which it passes can be
characterized by its distance to the optical axis R = |ρ| and the corresponding direction angle
ϑ = ∂ρ/∂z. One may show easily that also in this case the transformation due to an isotropic
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1.4 First-order optics

optical element can be represented by an ABCD matrix. If the two-dimensional vector that
characterizes such a ray is denoted r = (R, ϑ)T, this transformation can be expressed as

r out =

(
A B
C D

) r in , (1.10)

with A, B,C,D ∈ R. The transverse position R and the propagation direction ϑ constitute a
pair of canonically conjugate variables. From the fact that this canonical structure is preserved
under the lossless transformation in equation (1.10), it follows that a physical ABCD matrix
must have a unit determinant so that AD − BC = 1. The transformation of a sequence of
optical elements can be constructed as the product of the ray matrices describing each of the
elements and, since the determinant of a matrix product equals the product of the determinants
of the matrices, it follows that the determinant of any ABCD matrix that describes a lossless
isotropic optical set-up is equal to 1.

The optical path length between a point R1 in the input plane and a point R2 in the output
plane of an isotropic optical set-up that is described by an ABCD matrix can be expressed as
[12]

L(R1,R2) = L0 +
1

2B

(
AR2

1 − 2R1R2 + DR2
2

)
, (1.11)

where L0 is the path length along the optical axis of the set-up. The corresponding path
integral, with o = 1/k again playing the role of ~, takes the following form [32, 12]

E(ρ2, z2) =
2πkeikL0

iB

∫
d2ρ1 exp


ik

(
AR2

1 − 2R1R2 + DR2
2

)

2B

 E(ρ1, z1) . (1.12)

This obviously reduces to equation (1.7) in case of free propagation A = D = 1 and B =

L0 = z2 − z1. The expression in equation (1.7) shows explicitly that the propagation of a wave
through an optical set-up is fully determined by the geometric-optical characteristics of the
optical set-up. This description of wave propagation is geometric in that it derives from the
Fermat principle, which has a clear geometric significance.

It is well-known from textbook quantum mechanics that the path-integral description is
exact in the case of first-order systems, the non-relativistic free particle and the harmonic
oscillator being the simplest examples [30]. Since Gaussian integrals can be solved exactly,
it follows that the evolution of Gaussian wave packets under the integral transformation for
a first-order system can be calculated analytically. Less well-known is that the path-integral
description is also exact for infinitely many complete sets of excited states, which, analogous
to the case of the harmonic oscillator, can be obtained from pairs of bosonic ladder opera-
tors. In the optical context, such excited states have the significance of higher-order trans-
verse modes [33]. Two very well-known examples are the Hermite-Gaussian and Laguerre-
Gaussian modes, which are of crucial importance in experiments with laser beams [12].
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1. Twisted light

1.5 Thesis outline

In this thesis, we study the spatial structure and physical properties of higher-order optical
modes that have a twisted nature due to the presence of astigmatism and optical vortices. Our
characterization of such twisted states of light involves pairs of bosonic ladder operators that
generate a basis set of optical modes. Although the ladder operators act in the wave-optical
domain, we shall demonstrate that their transformation under paraxial propagation and optical
elements can be expressed in terms of the ray matrix that also describes the transformation of
a ray. The ladder operators generate a complete set of higher-order mode patterns that exactly
solve the Huygens-Fresnel integral (1.12) for an arbitrary first-order system. In regions of free
propagation, the modes obey the paraxial wave equation (1.8). As opposed to the Huygens-
Fresnel integral, which cannot easily be generalized to the case of set-ups with non-isotropic
optical elements, the ladder operator-method allows for direct generalization to the case of
transverse modes with astigmatism. Although the method keeps its elegance and simplicity,
the spatial patterns of astigmatic higher-order modes display a very rich structure that gives
rise to vorticity and orbital angular momentum. In the first two chapters, we apply the ladder-
operator method to study the mode structure and the physical properties that arise from it in
the presence of twisted and rotating boundary conditions.

• In chapter 2 we show that the paraxial modes of a geometrically stable two-mirror cav-
ity with general astigmatism, i.e., a cavity that consists of two non-aligned astigmatic
mirrors, can be obtained from pairs of bosonic ladder operators. From the transforma-
tion property of the ladder operators it follows that the ladder operators that generate
the cavity modes can be constructed from the eigenvectors of the round-trip ray matrix
that describes the transformation of a ray after one round trip through the cavity. The
eigenvalues determine the frequency spectrum of the cavity. As a result of the twisted
nature of the astigmatic boundary conditions, the spatial structure of the cavity modes
becomes twisted as well. This twist induces vorticity and orbital angular momentum
in the cavity modes.

• In chapter 3 we generalize the concept of an optical cavity mode to the case of a cavity
in uniform rotation. We generalize the ladder-operator method developed in the second
chapter to account for the time dependence of a rotating cavity and obtain explicit
expressions of the rotating cavity modes. These are applied to study some of their
physical properties including the rotationally induced orbital angular momentum.

Although relatively simple in terms of the number of degrees of freedom involved, a rotating
astigmatic two-mirror cavity turns out to be a surprisingly rich dynamical system. Chapters
4 and 5 are devoted to specific dynamical properties of a rotating cavity and its modes.

• In chapter 4 we show that rotation affects the focusing properties of the mirrors of an
astigmatic two-mirror cavity in such a way that the cavity can both be stabilized and
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1.5 Thesis outline

destabilized by rotation. As such it bears some similarity with both the Paul trap and
the gyroscope. We study the rotationally induced transition from a stable to an unstable
geometry and vice versa in terms of the structure of and the orbital angular momentum
in the rotating cavity modes.

• In chapter 5 we show that optical vortices appear in the modes of an astigmatic two-
mirror cavity when it is put into rotation about its optical axis. We study some physical
properties of the emerging vortex pattern. We make a comparison with rotationally
induced vortices in material systems and discuss explicit results for a specific case. In
section 5.5, we discuss limitations of possible experimental realizations of an optical
set-up that captures the essential features of the rotating astigmatic cavities that we
study in chapters 3, 4 and 5.

Since the transformations of the ladder operators can be expressed in terms of a ray matrix,
which has a clear geometric significance, it follows that also the ladder-operator method is
geometric in that it relates to the principle of Fermat.

• In chapter 6 we focus on such geometrical aspects. We study the geometry of the
parameter space underlying the pairs of bosonic ladder operators and the geometric
phase shifts that it gives rise to. Such phase shifts constitute the ultimate generalization
of the Gouy phase in paraxial wave optics. We recover both the ordinary Gouy phase
shift and the geometric phase that arises from cyclic transformations of optical beams
bearing orbital angular momentum as limiting cases. We discuss an analogy with the
Aharonov-Bohm effect in quantum eletrodynamics that reveals some deep insights in
the nature and origin of this geometric phase.

Finally, the last chapter completes the discussion of rotating light.

• In chapter 7 we show that the exact wave equation, which derives without approx-
imations from Maxwell’s equations, allows for solutions that are monochromatic in
a rotating frame. Since, in complex notation, monochromatic fields are separable in
space and time, it follows that these solutions are stationary in a rotating frame. As
a result, both the polarization and the spatial patterns of the vector components of the
corresponding fields rotate uniformly in a stationary frame. We discuss the quanti-
zation of the radiation field in an orthonormal but otherwise arbitrary basis of such
rotating modes. We derive the equations of motion for light in a rotating frame and
show that quantization in the rotating frame is consistent with quantization in the sta-
tionary frame. We discuss the paraxial counterpart of the exact theory and indicate how
a quantum-optical description of the rotating cavity modes, as introduced in chapter 3,
can be obtained.

Several chapters in this thesis are based on material that has been (or will be) published else-
where. Although all of them have been rewritten, I have tried to keep them independently
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1. Twisted light

readable. As a result, there is some overlap, in particular between the three chapters on
rotating cavities. Physics-oriented readers may at first read chapters 4 and 5, in which the
emphasis is on the physical phenomena rather than on the mathematical method used, and go
back to the relatively heavy mathematics in chapter 2 and 3 at a later stage. Mathematically
oriented readers, on the other hand, may consider first reading chapter 6, in which the math-
ematics underlying the ladder-operator method that is crucial to this thesis is discussed in its
most general and, as a result, abstract form.

The notation used in this thesis has been harmonized as much as possible without sacri-
ficing intuition. Generally speaking, vectors in three-dimensional space are set in a bold font
while vectors in the transverse plane are denoted with small Greek letters. Both two and four-
dimensional ray vectors are denoted in a script font while vectors in other (parameter) spaces
are denoted with arrows above the symbol. The bra-ket notation of quantum mechanics is
used to denote vectors in the Hilbert space of transverse states of classical light. Quantum
states of the radiation field are indicated with bra and ket vectors with round brackets. All
operators are denoted with a hat above the symbol. Matrices acting on the transverse spatial
coordinates (or momenta) are set in a sans serif font while ray matrices, which act on either
two- or four-dimensional rays are set in the standard roman font. These and other notational
conventions used in this thesis are listed in table 1.1.
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1.5 Thesis outline

Symbol Meaning

Coordinates
(x, y, z) Cartesian coordinates
(R cos φ,R sin φ, z) Cylindrical coordinates
(r sinϑ cosϕ, r sinϑ sinϕ, r cosϑ) Spherical coordinates
Vectors
r = (x, y, z)T Position in three dimensions
k = (kx, ky, kz)T Wave vector in three dimensions
ρ = (x, y)T Transverse position
θ = (ϑx, ϑy)T Transverse propagation direction
ε = (εx, εy)T Transverse polarizationr , s = (ρ, θ)T Two- and four-dimensional real ray vectors
µ, ν Normalized complex (eigen)rays
~A, ~R Vectors in a parameter space
|u〉, |v〉 Transverse states of classical light
|...) Quantum state of light
Fields
E, B Electric and magnetic fields
A Vector potential
C Vector potential in a rotating frame
F, G Vectorial mode functions
V Vectorial mode function in a rotating frame
Operators
â(†)

1,2, b̂(†)
x,y Raising and lowering operators

â(†)
λ , ĉ(†)

µ , v̂(†)
ν Creation and annihilation operators (chapter 7)

Generalized beam parameters
r1,2 and t1,2 Scalar coefficients of a ladder operator
R and T 2 × 2 coefficient matrices of a vector of ladder operators
S = V−1 2 × 2 matrices that characterize the astigmatism
χ1,2 Generalized Gouy phases
η, ξ Spinors on the Hermite-Laguerre sphere
Beam profiles
u, v Transverse profile of a paraxial beam
ũ Transverse Fourier transform of u

Table 1.1: List of Symbols
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2
Twisted cavity modes

2.1 Introduction

A typical optical cavity consists of two spherical mirrors facing each other. The modes of such
a cavity are transverse field distributions that are reproduced after each round trip, bouncing
back and forth between the mirrors [12]. The usual approach to the problem of finding the
modes of an optical cavity is by considering the free propagation of light from one mirror to
the other (in integral or differential form) and imposing the proper boundary conditions. In
the paraxial limit the propagation through free space can be described by the paraxial wave
equation, which has the Huygens-Fresnel integral equation as its integral form. The boundary
condition is that the electric field vanishes at the surface of the mirrors, which implies that
the mirror surfaces match a nodal plane of the standing wave that is formed by a bouncing
traveling wave. Conversely, a Gaussian paraxial beam, which has spherical wave fronts, can
be trapped between two spherical mirrors that coincide with a wave front, as indicated in
figure 2.1. This imposes a condition on the curvatures and the spacing L of the mirrors.
When the radii of curvature are R1 and R2, the condition is simply [12]

0 ≤ g1g2 ≤ 1 , (2.1)

where the parameters g1and g2 are defined by

gi = 1 − L
Ri

(2.2)
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2. Twisted cavity modes

Figure 2.1: A freely propagating Gaussian beam can be trapped by mirrors that coincide with
its wave fronts. Its wave fronts are then turned into nodal planes of the standing-wave pattern
inside the cavity.

for i = 1, 2. This is precisely the stability condition of the cavity. A stable cavity is a periodic
focusing system for which the round-trip magnification is equal to 1 so that it supports stable
ray patterns. Such a cavity has a complete set of Hermite-Gaussian modes, with a simple
Gaussian fundamental mode. For a two-mirror cavity with radii of curvature Ri and a spacing
L obeying the stability condition (2.1), the modes are characterized by the Rayleigh range zR

and the round-trip Gouy phase χ that are given by [12]

z2
R

L2 =
g1g2(1 − g1g2)

(g1 + g2 − 2g1g2)2 and cos
(
χ

2

)
= ±√g1g2 . (2.3)

The plus sign is taken if both g1 and g2 are positive whereas the minus sign is taken when
both are negative. The wave numbers of the Hermite-Gaussian modes HGnm with transverse
mode numbers n and m are determined by the requirement that the phase of the field changes
over a round trip by a multiple of 2π. This gives the resonance condition

2kL − (n + m + 1)χ = 2πq (2.4)

for the wave number k, with a longitudinal mode index q ∈ Z.
It is a simple matter to generalize this method to the case of astigmatic mirrors, provided

that the mirror axes are parallel. Each mirror i can be described by two radii of curvature
Riξ and Riη, corresponding to the curvatures along the two axes. In this case of simple, or
orthogonal, astigmatism the paraxial field distribution separates into a product of two con-
tributions, corresponding to the two transverse dimensions. Stability requires that each of
the two dimensions obey the stability condition (2.1) for the parameters giξ and giη, and each
dimension has its own Rayleigh range and Gouy phase. The resonance condition for a cavity
with simple astigmatism takes the modified form

2kL −
(
n +

1
2

)
χξ −

(
m +

1
2

)
χη = 2πq , (2.5)

where χξ and χη are the Gouy phases for the ξ and η direction respectively.
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2.2 Paraxial ray optics

The situation is considerably more complex when the axes of the two astigmatic mirrors
are non-aligned. In this case of twisted cavity, the light bouncing back and forth between the
mirrors becomes twisted as well and the cavity modes display general, or non-orthogonal,
astigmatism, which is characterized by the absence of transverse symmetry directions. Also
in this case the stability condition and the structure of the cavity modes is, in principle, de-
termined by the requirement that the mirror surfaces match a wave front of a traveling beam.
It is, however, not simple to derive the mode structure and the resonance frequencies of the
cavity from this condition. The stability of a twisted cavity or lens guide as well as the prop-
agation of the Gaussian fundamental mode, which is characterized by its elliptical intensity
distribution and its elliptical or hyperbolic wave fronts, has been studied by several authors
using analytical techniques [18, 34, 35, 36, 37]. Also higher-order modes have received some
attention [38].

A few years ago, a general description has been given of freely propagating paraxial
modes of arbitrary order with general astigmatism [17]. The method is based on the use of
bosonic ladder operators in the spirit of the quantum-mechanical description of the harmonic
oscillator [33] and has a simple algebraic structure. Here, we generalize this approach to
study the modes to all orders of geometrically stable twisted cavities. In this case, the basis
set of modes is fixed by the geometric properties of the cavity, i.e., the radii of curvature that
characterize the astigmatic mirrors, their (relative) orientation and their separation. Rather
than using the condition that the wave fronts match the mirror surfaces, our method is entirely
based on the eigenvalues and eigenvectors of the four-dimensional ray matrix that describes
the transformation of a ray after one round trip through the cavity. This matrix generalizes
the ABCD matrix, which describes the propagation of a ray through an isotropic optical set-
up [12]. We discuss the relevant (group-theoretical) properties of this ray matrix in section
2.2. After a brief discussion of paraxial wave optics in an astigmatic cavity in section 2.3, we
give in section 2.4 an operator description of fundamental Gaussian modes and higher-order
modes. Here we demonstrate that the cavity modes can be directly expressed in terms of the
properties of the ray matrix. In section 2.5, we discuss some physical properties of the modes
including the orbital angular momentum that is due to their twisted nature and their vorticity.
Explicit results for a specific case are briefly discussed in section 2.6.

2.2 Paraxial ray optics

2.2.1 One transverse dimension

In geometric optics, a light beam in vacuum is assumed to consist of a pencil of rays [29]. In
each transverse plane a ray is characterized by its transverse position x and its propagation
direction ϑ = ∂x/∂z, where z is the longitudinal coordinate. The angle ϑ gives the propagation
direction of the ray with respect to the optical axis of the set-up through which it propagates.
Both the transverse position x and the propagation direction ϑ of a ray transform under free
propagation and optical elements. In lowest order of the paraxial approximation (ϑ << 1)
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2. Twisted cavity modes

Figure 2.2: Unfolding a two-mirror cavity into an equivalent periodic lens guide; the mirrors
are replaced by lenses with the same focal lengths and the reference plane is indicated by the
dashed line.

this transformation is linear and can be represented by a 2×2 ray matrix acting on a ray vectorr = (x, ϑ)T
(

xout

ϑout

)
= M

(
xin

ϑin

)
. (2.6)

Here M is a ray matrix that transforms the input beam of the optical system into the output
beam. The matrices that represent various optical elements can be found in any textbook on
optics, see, for instance, reference [12]. The ray matrix for propagation through free space
over a distance z is given by

Mf(z) =

(
1 z
0 1

)
. (2.7)

The trajectory that corresponds to this transformation is a straight line with the direction
angle ϑ, where the transverse position x′ = x + ϑz changes linearly with the distance z. The
transformation of a ray through a paraxial thin lens can be expressed as

Ml( f ) =

(
1 0
−1/ f 1

)
, (2.8)

where f is the focal length of the lens which is taken positive for a converging lens. The
transverse position is invariant under this transformation. The angle ϑ, which specifies the
propagation direction, changes abruptly at the location of the lens. It can be easily shown that
this transformation reproduces the thin-lens equation.

The transformation matrix of a sequence of first-order optical elements can be constructed
by multiplying the matrices that correspond to the various elements in the correct order.
Closed optical systems such as a cavity can be unfolded into an equivalent periodic lens
guide, as indicated in figure 2.2. The mirrors are replaced by thin lenses with the same focal
lengths. One period of the lens guide is equivalent to a single round trip through the cavity.
When we choose the transverse reference plane just right of mirror 1 (or lens 1), we can
construct the ray matrix that describes the transformation of a single round trip in the form

Mrt = Ml( f1)Mf(L)Ml( f2)Mf(L) . (2.9)

16



2.2 Paraxial ray optics

Here L is the distance between the two mirrors of the cavity, and f1,2 are the focal lengths of
the mirrors that are related to the radii of curvature by f1,2 = R1,2/2.

The ray matrices that correspond to lossless optical elements are real and have a unit
determinant. Since the product of real matrices yields a real matrix whose determinant is
equal to the product of the determinants, it follows that this is also true for the ray matrix
that describes the transformation of any composite lossless system. In case of one transverse
dimension these are the defining properties of a physical ray matrix so that the reverse of the
above statement is also true: any real 2 × 2 matrix that has a unit determinant corresponds to
the transformation of a lossless optical set-up that can be constructed from first-order opti-
cal elements. Mathematically speaking, physical ray matrices constitute the group S L(2,R)
under matrix multiplication.

An important characteristic of an optical cavity is whether it is geometrically stable or
not. In many cases a cavity will support only rapidly diverging or converging ray paths. Only
in specific cases does a cavity support a stable ray pattern. Usually the stability criterion of
an optical cavity is formulated in terms of the parameters that characterize the geometry, i.e.,
the radii R1,2 of curvature of the mirrors and the distance L between them. For our purposes,
however, it is more convenient to relate the stability of a cavity to the eigenvalues λ1 and λ2

of the round-trip ray matrix Mrt. Since det Mrt = 1, it follows that λ1λ2 = 1. If we assume
that these eigenvalues are non-degenerate, i.e., λ1 , λ2, the corresponding eigenvectors µ1

and µ2 are linearly independent, so that an arbitrary input ray r 0 can be written as

r 0 = a1µ1 + a2µ2 . (2.10)

After n round trips through the cavity this ray transforms to

r n = Mn
rtr 0 = a1λ

n
1µ1 + a2λ

n
2µ2 . (2.11)

From this transformation of a ray through the cavity it is clear that the absolute values of the
eigenvalues determine the magnification of the ray. It follows that a cavity is stable only if
the absolute value of both eigenvalues is equal to 1. In case of a non-degenerate round-trip
ray matrix Mrt this condition requires that the eigenvalues, and therefore the eigenvectors, are
complex. Since Mrt is a real matrix, its eigenvectors as well as its eigenvalues must be each
other’s complex conjugates, so that

µ1 = µ∗2 = µ and λ1 = λ∗2 = eiχ = λ . (2.12)

The phase χ is the round-trip Gouy phase of the cavity, which determines its spectrum ac-
cording to equation (2.4). For a real incident ray r 0, equation (2.10) takes the form

r 0 = 2Re (aµ) , (2.13)

where a = a1 = a∗2. With equation (2.11) this leads to the expression

r n = 2Re
(
aµeinχ

)
, (2.14)
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2. Twisted cavity modes

for the transformed ray after n round trips. This shows that both the position and the prop-
agation direction of the ray at successive passages of the reference plane display a discrete
oscillatory behavior. An interesting case arises when the Gouy phase χ is a rational fraction
of 2π, i.e., if

χ =
2πK

N
, (2.15)

where K and N are integers. Then the two eigenvalues of MN
rt are both equal to 1, so that

MN
rt = 1. Inside a cavity this means that the trajectory of a ray will form a closed path after N

round trips.
For a different choice of the reference plane, the round-trip ray matrix Mrt takes a different

form. The two forms are related by a transformation determined by the ray matrix from
one reference plane to the other. The same transformation also couples the eigenvectors.
The eigenvalues, and therefore the notion of stability, are independent of the choice of the
reference plane.

2.2.2 Two transverse dimensions

The description that we have discussed in the previous subsection can be generalized to op-
tical set-ups with two independent transverse dimensions. In this case both the transverse
position and the propagation direction of a ray become two-dimensional vectors. The trans-
verse coordinates are denoted ρ = (x, y)T, and θ = (ϑx, ϑy)T are the angles that specify the
propagation direction in the xz and yz planes. Likewise, the transformation from the input
plane of an optical set-up to its output plane is represented by a 4 × 4 ray matrix, in the form

(
ρout

θout

)
= M

(
ρin

θin

)
. (2.16)

For an isotropic (non-astigmatic) optical element the 4 × 4 matrix is obtained by multiplying
the four elements of the 2 × 2 ray matrix with a 2 × 2 unit matrix 1. For instance, the
transformation for propagation through free space over a distance z can be expressed as

Mf(z) =

(
1 z1
0 1

)
, (2.17)

where 0 is the 2 × 2 zero matrix. In case of an astigmatic optical element, at least some
part of the ray matrix is not proportional to the identity matrix. For our present purposes,
the most relevant example is that of an astigmatic thin lens. The ray matrix that describes its
transformation can be written as

Ml(F) =

(
1 0
−F−1 1

)
, (2.18)

where F is a real and symmetric 2× 2 matrix. Its eigenvalues are the focal lengths of the lens,
while the corresponding, mutually perpendicular, real eigenvectors fix the orientation of the
lens in the transverse plane.
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2.2 Paraxial ray optics

Again, the ray matrix that describes a composite optical system can be constructed by
multiplying the ray matrices that describe the optical elements in the right order. In particular,
the ray matrix that describes the transformation of a round trip through an astigmatic cavity
can be obtained by unfolding the cavity into the corresponding lens guide and multiplying
the matrices that represent the transformations of the different elements in the correct order

Mrt = Ml(F1)Mf(L)Ml(F2)Mf(L) . (2.19)

Here L is again the distance between the two mirrors and F1,2 are the matrices that describe
the mirrors. If both mirrors have two equal focal lengths, i.e., if they are spherical, the cavity
has cylinder symmetry. If one of the mirrors has two different focal lengths, i.e., is astigmatic,
while the other is spherical or if both mirrors are astigmatic but with the same orientation,
the cavity has two transverse symmetry directions and is said to have simple (or orthogonal)
astigmatism. If this is not the case, i.e., if both mirrors are astigmatic and if they are in non-
parallel alignment there are no transverse symmetry directions and the cavity has general (or
non-orthogonal) astigmatism [18].

A typical ray matrix M is real, but not symmetric, so that its eigenvectors cannot be
expected to be orthogonal. However, it is easy to check that the ray matrices (2.17) and
(2.18) obey the identity

MTGM = G (2.20)

where G is the anti-symmetric 4 × 4 matrix

G =

(
0 1
−1 0

)
. (2.21)

The same identity must hold for a composite optical set-up, in particular for the round-trip
ray matrix Mrt (2.19). This is the defining property of a physical ray matrix that describes a
lossless first-order optical system. It generalizes the defining properties of a 2 × 2 ray matrix
to the astigmatic case. In mathematical terms, the above identity defines a symplectic group
under matrix multiplication [39]. Physical ray matrices must be in the real symplectic group
of 4×4 matrices, denoted as S p(4,R). The determinant of physical 4×4 ray matrices is equal
to 1. It is noteworthy that the 2 × 2 analogue of equation (2.20) defines S p(2,R) � S L(2,R).

From the general property (2.20) of the ray matrix (2.19) we can derive some important
properties of its eigenvalues and eigenvectors. The eigenvalue relation is generally written as

Mrtµi = λiµi (2.22)

where µi are the four eigenvectors and λi are the corresponding eigenvalues. By taking matrix
elements of the identity (2.20) between the eigenvectors, we find

λiλ jµ
T
i Gµ j = µT

i Gµ j . (2.23)

The matrix element µT
i Gµi vanishes, so this relation gives no information on the eigenvalue

for i = j. For different eigenvectors µi , µ j, we conclude that either λiλ j = 1, or µT
i Gµ j = 0.
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2. Twisted cavity modes

Figure 2.3: Hit points at a mirror of a ray in a cavity with degeneracy. The cavity has
no astigmatism (above), simple astigmatism (middle) or general astigmatism (below). The
cavity without astigmatism consists of two spherical mirrors with focal lengths ' 1.08L and
' 2.16L. The cavity with simple astigmatism consists of two identical aligned astigmatic
mirrors with focal lengths ' 1.47L and ' 2.94L. The cavity with general astigmatism consists
of two identical mirrors with focal lengths ' 1.075L and ' 2.15L which are rotated over
an angle φ = π/3 with respect to each other. In all cases the incoming ray is given by
r0 = (1, 1.8, 3, 0.02).
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2.2 Paraxial ray optics
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Figure 2.4: The dependence of the two Gouy phases on the relative orientation of two identi-
cal (left) and two slightly different (right) astigmatic mirrors. In the left window the mirrors
are identical with focal lengths fξ = L and fη = 10L, with ξ and η indicating the principal
axes of the mirrors. In the right figure the second mirror has focal lengths fξ = L and fη = 4L.
Rotation angle φ = 0 corresponds to the orientation for which the mirrors are aligned.

Since Mrt is real, when an eigenvalue λi is complex, the same is true for the eigenvector
µi. Moreover, µ∗i is an eigenvector of Mrt with eigenvalue λ∗i . Provided that the matrix ele-
ment µ†i Gµi , 0, the eigenvalue must then obey the relation λ∗i λi = 1, so that the complex
eigenvalue λi has absolute value 1. Just as in the case of one transverse dimension, stability
requires that all eigenvalues have absolute value 1. Apart from accidental degeneracies, we
conclude that a stable astigmatic cavity has two complex conjugate pairs of eigenvectors µ1,
µ∗1, and µ2, µ∗2 with eigenvalues λ1, λ∗1, and λ2, λ∗2, that can be written as

λ1 = eiχ1 and λ2 = eiχ2 . (2.24)

Hence the eigenvalues now specify two different round-trip Gouy phases, and the complex
eigenvectors obey the identities µT

1Gµ2 = 0 and µ†1Gµ2 = 0. On the other hand, the matrix
elements µ†1Gµ1 and µ†2Gµ2 are usually nonzero. These matrix elements are purely imaginary,
and without loss of generality we may assume that they are equal to the imaginary unit i times
a positive real number. This can always be realized, when needed by interchanging µ1 and µ∗1
(or µ2 and µ∗2), which is equivalent to a sign change of the matrix element. It is practical to
normalize the eigenvectors, so that

µ†1Gµ1 = µ†2Gµ2 = 2i . (2.25)

An arbitrary ray in the reference plane characterized by the real four-dimensional vector

r 0 =

(
ρ

θ

)
(2.26)

can be expanded in the four complex basis vectors as

r 0 = 2Re (a1µ1 + a2µ2) , (2.27)
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2. Twisted cavity modes

in terms of two complex coefficients a1 and a2. These coefficients can be obtained from a
given ray vector r0 by the identities

a1 =
µ†1Gr 0

2i
and a2 =

µ†2Gr 0

2i
. (2.28)

This is obvious when one substitutes the expansion (2.27) in the right-hand sides of (2.28).
After n round trips, the input ray (2.27) is transformed into the ray

r n = Mnr 0 = 2Re
(
a1µ1einχ1 + a2µ2einχ2

)
. (2.29)

This is a linear superposition of two oscillating terms that pick up a phase χ1 and χ2 re-
spectively after each passage of the reference plane. When the two Gouy phases are rational
fractions of 2πwith a common denominator N, the ray path will be closed after N round trips.
Then the cavity can be called degenerate. In this case the hit points of the ray on the mirrors
(or in any transverse plane) lie on a well-defined closed curve. For a cavity that has no astig-
matism this curve is an ellipse [12]. The transverse position and the propagation direction of
the incoming ray determine the shape of the ellipse. In special (degenerate) cases it can re-
duce into a straight line or a circle. In case of a degenerate cavity with simple astigmatism the
hit points lie on Lissajous curves [40, 41]. The ratio of the Gouy phases is equal to the ratio
of the numbers of extrema of the curve in the two directions, while the incoming ray and the
actual values of the Gouy phases determine its specific shape. The presence of general astig-
matism gives rise to skew Lissajous curves, which are Lissajous curves in non-orthogonal
coordinates. These properties are illustrated in figure 2.3.

The two round-trip Gouy phases of a cavity with two astigmatic mirrors depend on the
relative orientation of the mirrors φ. When the cavity consists of two identical mirrors that
are in parallel alignment, i.e., φ = 0, it has simple astigmatism and the plane halfway between
the mirrors is the focal plane for both components. Simple astigmatism also occurs for the
anti-aligned configuration φ = π/2, when the axis with the larger curvature of one mirror and
the axis with the smaller curvature of the other one lie in a single plane through the optical
axis. In this case both components necessarily have the same Gouy phase, and their foci lie
symmetrically placed on opposite sides of the transverse plane halfway between the mirrors.
The two Gouy phases attain extreme values for the aligned and the anti-aligned configuration.
For intermediate orientations the cavity has general astigmatism, with Gouy phases varying
between these extreme values. A crossing occurs in the anti-aligned geometry. The crossing
is avoided when the mirrors are slightly different. The behavior of the Gouy phases as a
function of the relative orientation φ is sketched in figure 2.4.

2.3 Paraxial wave optics

We describe the spatial structure of the modes in an astigmatic cavity in the same lens-guide
picture that we used for the rays. The longitudinal coordinate in the lens guide is indicated
by z, and ρ = (x, y)T denotes the two-dimensional transverse position. A monochromatic
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2.3 Paraxial wave optics

beam of light with uniform polarization in the paraxial approximation is characterized by the
expression

E(r, t) = Re
{
E0εu(ρ, z)eikz−iωt

}
(2.30)

for the transverse part of the electric field. It contains a carrier wave with wave number k
and frequency ω = ck, a normalized complex polarization vector ε and an amplitude E0. The
magnetic field is given by the analogous expression

B(r, t) =
1
c

Re
{
E0(ez × ε)u(ρ, z)eikz−iωt

}
, (2.31)

where ez is a unit vector along the propagation direction z. The transverse spatial structure
of the beam for each transverse plane is determined by the normalized profile u(ρ, z). During
propagation in free space, the z dependence of the profile is governed by the paraxial wave
equation (

∇2
ρ + 2ik

∂

∂z

)
u(ρ, z) = 0 . (2.32)

In a region of free propagation, the transverse profile u(ρ, z) varies negligibly with z over a
wavelength. On the other hand, u changes abruptly at the position of a thin lens. The effect
of an astigmatic lens is given by the input-output relation for the beam profile [27]

uout(ρ) = exp
(
− ikρTF−1ρ

2

)
uin(ρ) , (2.33)

where the real symmetric matrix F specifies the orientation and the focal lengths of the lens.
Again, an astigmatic lens in the lens guide models an equivalent astigmatic mirror in the
cavity.

The paraxial wave equation (2.32) has the form of the Schrödinger equation for a free
particle in two dimensions, where the longitudinal coordinate z plays the role of time. This
analogy suggest to adopt the Dirac notation of quantum mechanics to describe the dynamics
of classical light fields [42]. The beam profile is analogous to the particle wave function and
we associate a profile state vector |u(z)〉 to it, so that

u(ρ, z) = 〈ρ|u(z)〉 , (2.34)

where |ρ〉 is an eigenstate of the transverse position operator ρ̂ = (x̂, ŷ)T. The canonically con-
jugate momentum operator is given by kθ̂ = −i (∂/∂x, ∂/∂y)T. The average (or expectation)
value of this operator corresponds to the transverse momentum per photon in units of ~ [43].
The longitudinal momentum per photon equals ~k and it follows that the operator θ̂ represents
the ratio of the transverse and longitudinal momentum. Therefore, it corresponds to the local
propagation direction in a beam and is the wave-optical analogue of the propagation direction
θ of a ray. The components of ρ̂ and θ̂ satisfy the canonical commutation relations

[x̂, ϑ̂x] = [ŷ, ϑ̂y] = io , (2.35)
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2. Twisted cavity modes

where o = 1/k. The effect of free propagation and of astigmatic lenses can be represented by
unitary operators acting on the state vectors |u〉 in the Hilbert space of transverse modes. The
paraxial wave equation (2.32) can be represented in operator notation as

d
dz
|u(z)〉 = − ik

2
θ̂2|u(z)〉 . (2.36)

Hence free propagation over a distance z has the effect

|u(z0 + z)〉 = Ûf(z)|u(z0)〉 (2.37)

with

Ûf(z) = exp
(
− ikz

2
θ̂2

)
, (2.38)

while the effect of an astigmatic lens can be expressed as

|uout〉 = Ûl(F)|uin〉 (2.39)

with

Ûl(F) = exp
(
− ikρ̂TF−1ρ̂

2

)
. (2.40)

The unitary transformation of an optical system can be constructed by multiplying the op-
erators representing the elements in the proper order. Therefore, the unitary transformation
describing a single round trip through the astigmatic cavity can be written as

Ûrt = Ûl(F1)Ûf(L)Ûl(F2)Ûf(L) , (2.41)

where the reference plane is the same as sketched in figure 2.2. It is clear that other unitary
round-trip operators can be constructed for different reference planes. For different choices
the operators are related by unitary transformations.

The variation of the position ρ(z) and the direction θ(z) of a ray during propagation must
be reproduced by the variation of the average value of ρ̂ and θ̂ over the beam profile. Since
the variation of this profile during propagation is governed by the evolution operator Û(z),
the propagation of a ray in geometric optics should be reproduced by the expectation value
of Û†ρ̂Û and Û†θ̂Û, in analogy to the Heisenberg picture of quantum mechanics. Therefore,
the wave-optical propagation operator Û and the ray matrix M must be related by

Û†
(
ρ̂

θ̂

)
U = M

(
ρ̂

θ̂

)
. (2.42)

One may check explicitly that this relation holds in the case of free propagation (described
by Ûf and Mf) and for astigmatic lenses (described by Ûl and Ml). From this one verifies that
the relation (2.42) must hold generally for any optical system that is composed of regions of
free propagation, interrupted by astigmatic lenses (or mirrors).

It is noteworthy that the general property (2.20) of transfer matrices M can be repro-
duced by using this relation (2.42), combined with the fact that the Heisenberg-transformed
operators Û†ρ̂Û and Û†θ̂Û obey the canonical commutation rules (2.35).
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2.4 Operator description of Gaussian modes

2.4 Operator description of Gaussian modes

A characteristic of the paraxial wave equation is that a transverse beam profile with a Gaus-
sian shape retains its Gaussian structure under propagation through free space. The same is
true when the beam passes a thin lens (or a mirror) as described by the transformation of equa-
tion (2.40). The Gaussian shape is the general structure of a fundamental paraxial mode. The
standard set of higher-order modes have the form of the same complex Gaussian multiplied
by a Hermite polynomial in each of the transverse coordinates [12]. This provides the basis of
Hermite-Gaussian modes, which can be rearranged to yield the basis of Laguerre-Gaussian
modes. There is a clear similarity between these bases of paraxial optical modes and the
stationary states of the isotropic quantum-mechanical harmonic oscillator in two dimensions.
In analogy to the algebraic description of the harmonic oscillator, isotropic paraxial optical
modes of different order can be connected by bosonic ladder operators [33]. In reference
[17], it has been shown that the algebraic description of freely propagating paraxial modes
can be generalized to account for general astigmatism.

Here, we show that the complete set of modes of a geometrically stable two-mirror cavity
can be obtained from two pairs of bosonic ladder operators. These ladder operators are linear
combinations of the position operator ρ̂ and the propagation-direction operator θ̂ and can be
expressed in terms of the eigenvectors of the round-trip ray matrix Mrt.

2.4.1 Gaussian modes in one transverse dimension

For simplicity, we first consider a single period of the lens guide that represents the cav-
ity described in section 2.2, with one transverse dimension. In this case, the higher-order
modes are obtained by repeated application of a raising operator â†, acting on the fundamen-
tal mode. The raising operator is the Hermitian conjugate of the lowering operator, which
can be expressed as

â(z) =

√
k
2

(
rϑ̂ − tx̂

)
, (2.43)

where k is the wave number, and the z dependence of the ladder operators is determined only
by the variation of the complex parameters r and t as a function of the longitudinal coordinate
z. These parameters also determine the z dependent profile of the fundamental mode

u0(x, z) =

(
k

r2π

)1/4

exp
(

iktx2

2r

)
≡

(
k

r2π

)1/4

exp
(
−ksx2

2

)
, (2.44)

where s = −it/r. The parameters r, t and s have been defined such that they have a purely
geometric significance, in that they are fully determined by the geometric properties of the
cavity, the length L, and the focal lengths f1,2, independent of k. They determine the trans-
verse beam width and the radius of curvature of the wave front according to w =

√
2/(ksr)

and R = 1/si, where sr and si are respectively the real and imaginary parts of s.
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2. Twisted cavity modes

For each value of z, the ladder operators â and â† must obey the bosonic commutation
rule

[â(z), â†(z)] = 1 , (2.45)

which requires that r and t obey the normalization identity

r∗t − t∗r = 2i . (2.46)

With this condition, the fundamental mode profile (2.44) is normalized, in the sense that∫
dx|u(x, z)|2 = 1 for all values of z. Moreover, the lowering operator (2.43) gives zero when

acting on the fundamental mode (2.44), so that â(z)|u0(z)〉 = 0.
The z dependent propagation operator Û(z) is defined to transform the beam profile in

the reference plane at z = 0 of the lens guide into the profile in another transverse plane at
position z. Then |u(z)〉 = Û(z)|u(0)〉 describes a light beam propagating through the optical
system. This means that in the regions of free propagation between the lenses, |u(z)〉 solves
the paraxial wave equation (2.32), while it picks up the appropriate phase factor when passing
through a lens. The z dependence of the parameters r and t must be chosen in such a way that
the ladder operators â(z) and â†(z) acting on a z dependent mode |u(z)〉 create another mode
that solves the wave equation. This condition can be summarized as

â(z)|u(z)〉 = Û(z)â(0)|u(0)〉 , (2.47)

which, in view of the unitarity of the propagation operator, is equivalent to the operator
identity

â(z) = Û(z)â(0)Û†(z) . (2.48)

When this is the case, a complete orthogonal set of higher-order modes is obtained in terms
of the raising operator and the fundamental mode, in the well-known form

|un(z)〉 =
1√
n!

(
â†(z)

)n|u0(z)〉 . (2.49)

In reference [33], it has been shown that the transformation (2.48) of the lowering operator
(2.43) under free propagation, as described by the transformation in equation (2.38), implies
that the parameter t is constant in a region of free propagation, while r has the derivative
dr/dz = t. Upon passage through a lens with focal length f , as described by the transfor-
mation in equation (2.40), r does not change, whereas t modifies according to the relation
tout = tin− r/ f . This z dependence of the parameters can be summarized by the statement that
the transformation of the two-dimensional vector (r, t)T during propagation is identical to the
transformation of a ray (x, ϑ)T. This transformation is described by the ray matrix M(z) that
corresponds to Û(z) in accordance with equation (2.42), so that

(
r(z)
t(z)

)
= M(z)

(
r(0)
t(0)

)
. (2.50)
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2.4 Operator description of Gaussian modes

Now it is straightforward to obtain the modes and the eigenfrequencies of the cavity. The
condition for a mode is that the mode profile u(x, z) reproduces after a round trip, up to a
phase factor. This is accomplished when the two-dimensional vector

(
r(0), t(0)

)T
= µ is an

eigenvector of the round-trip ray matrix Mrt = M(2L), after proper normalization of µ to
ensure that r and t obey the identity (2.46). (In the case that r∗t− t∗r turns out to be a negative
imaginary number, we just take the other eigenvector µ∗ instead of µ.) With this choice, the
fundamental mode obeys the relation |u0(2L)〉 = exp(−iχ/2)|u0(0)〉, and the lowering operator
transforms after a round trip as â(2L) = exp(iχ)â(0), with χ the round-trip Gouy phase. The
nth-order mode (2.49) then obeys the well-known relation

|un(2L)〉 = e−i(n+1/2)χ|un(0)〉 . (2.51)

As indicated in equation (2.30), the complex electric field, which should reproduce exactly
after a round trip, is proportional to un(x, z) exp(ikz), so that the resonance condition reads

2kL −
(
n +

1
2

)
χ = 2πq , (2.52)

where q ∈ Z plays the role of the longitudinal mode number. This relation defines the fre-
quencies of the cavity modes ω = ck.

In conclusion, we have shown that the cavity modes are determined by the values of
the parameters r and t, such that in the reference plane the vector

(
r(0), t(0)

)T is equal to
the normalized eigenvector µ of the round-trip ray matrix Mrt. The z dependence of the
parameters r(z) and t(z) is governed by the ray matrix that connects the reference plane z = 0
in the lens guide to another transverse plane z. This is equivalent to the statement that the
vector

(
r(z), t(z)

)T coincides with the eigenvector of the ray matrix for a round trip starting in
the transverse plane z. Different modes of the cavity take a different form and have different
wave numbers k, but they are all characterized by the same complex parameters r and t.

Before turning to the case of two transverse dimensions, it is illuminating to relate the z
dependence of the ladder operators to their structure in terms of the matrix G. In the present
case of one transverse dimension, this matrix as defined in (2.21) is two-dimensional, just
as the vectors (r, t)T and (x, ϑ)T. Then the property (2.20) of Mrt is just equivalent to the
statement that det Mrt = 1. Also for a single transverse dimension the ray matrix Mrt is linked
to the propagation operator Ûrt by the identity (2.42). We can rewrite the expression (2.43)
for the lowering operator as

â(z) =

√
k
2
(
r(z), t(z)

)
G

(
x̂
ϑ̂

)
. (2.53)

When we substitute this expression in the transformation rule (2.47) for â, while using the
two-dimensional version of the relation (2.42), we obtain

â(z) =

√
k
2
(
r(0), t(0)

)
MT(z)G

(
x̂
ϑ̂

)
, (2.54)
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2. Twisted cavity modes

where we used the identity (2.20) in the form GM−1 = MTG. The equivalence of (2.53) and
(2.54) is in obvious accordance with the identity (2.50).

2.4.2 Astigmatic Gaussian modes

The formulation that we have given for the modes in one transverse dimension allows a
direct generalization to two transverse dimensions. In that case we must have two lowering
operators rather than one. Since these operators must return to their initial form after a full
round trip, they must be determined by the eigenvectors of the round-trip ray matrix Mrt. In
analogy to the expression (2.53), we introduce the two z dependent lowering operators

âi(z) =

√
k
2
µT

i MT(z)G
(
ρ̂

θ̂

)
, (2.55)

in terms of the two eigenvectors µi of Mrt with i = 1, 2. By the same argument as given
for equation (2.54), these operators obey the transformation rule (2.48), and in the reference
plane at z = 0 they are given by

âi(0) =

√
k
2
µT

i G
(
ρ̂

θ̂

)
. (2.56)

Over a full round trip, they transform as

âi(2L) = eiχi âi(0) , (2.57)

in terms of the eigenvalues (2.24) corresponding to µi. By using the identities (2.25), one
verifies that the ladder operators obey the commutation rules

[âi(z), â†i (z)] = 1 . (2.58)

By using the identities µ†1Gµ2 = µT
1Gµ2 = 0, we find that other commutators vanish, so that

[â2, â
†
1] = [â2, â1] = 0. For notational convenience we combine the two lowering operators

into a vector of operators

Â =

(
â1

â2

)
, (2.59)

for all values of z. In analogy to equation (2.43), this can be written as

Â =

√
k
2

(
RTθ̂ − TTρ̂

)
, (2.60)

where now R and T are z dependent 2 × 2 matrices. Comparison with equation (2.55) shows
that in the reference plane z = 0 the two matrices RT(0) and TT(0) can be combined into a
single 2 × 4 matrix, where the two rows coincide with the transposed eigenvectors µT

i . This
gives the formal identification (

R(0)
T(0)

)
=

(
µ1 µ2

)
. (2.61)
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2.4 Operator description of Gaussian modes

Equation (2.60) then shows that the z dependence of R and T can formally be expressed as
(

R(z)
T(z)

)
= M(z)

(
R(0)
T(0)

)
, (2.62)

where in the right-hand side a 4×4 matrix multiplies a 4×2 matrix, producing a 4×2 matrix.
The behavior of M as a function of z is fully determined by the expressions (2.17) and (2.18)
for free propagation and at passage of a lens. It follows that during free propagation, T is
constant, while R obeys the differential equation dR/dz = T. At passage through a lens with
focal matrix F, R does not change, whereas the change in T is given by

Tout = Tin − F−1R . (2.63)

The fundamental mode |u00(z)〉 in the astigmatic cavity is defined by the requirement that
it obeys the paraxial wave equation, and that it gives zero when acted on with the lowering
operators âi. It is easy to check that these conditions are obeyed by the normalized mode
function

u00(ρ, z) =

√
k

π det R
exp

(
ikρTTR−1ρ

2

)
≡

√
k

π det R
exp

(
−kρTSρ

2

)
(2.64)

in terms of the z dependent matrices R and T. The matrix S = −iTR−1 is symmetric and its
real part Sr is positive definite, as can be checked by using the properties of the eigenvectors
µi derived in section 2.2. Because of the definitions of R and T in terms of the eigenvectors
of the round-trip ray matrix Mrt, the fundamental mode returns to itself after a round trip, as
expressed by

|u00(2L)〉 = e−i(χ1+χ2)/2|u00(0)〉 . (2.65)

Higher-order modes are defined by repeated application of the raising operators, which gives

|unm(z)〉 =
1√

n!m!

(
â†1(z)

)n (
â†2(z)

)m |u00(z)〉 . (2.66)

The set of modes functions |unm(z)〉 is complete and orthonormal in each transverse plane.
Because of the round-trip properties (2.57) of the ladder operators, the modes transform over
a round trip as

|unm(2L)〉 = e−i(n+1/2)χ1−i(m+1/2)χ2 |unm(0)〉 . (2.67)

The requirement that the electric field of a mode, which is proportional to unm(ρ, z) exp(ikz),
picks up a phase that is a multiple of 2π, gives the resonance condition for the wave number

2kL −
(
n +

1
2

)
χ1 −

(
m +

1
2

)
χ2 = 2πq , (2.68)

so that the frequency of the mode specified by the transverse mode numbers n and m, and the
longitudinal mode number q is

ω =
c

2L

{
2πq +

(
n +

1
2

)
χ1 +

(
m +

1
2

)
χ2

}
. (2.69)
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Apparently, the general astigmatism does not show up in the frequency spectrum of the cavity.
All that can be seen is the presence of two different round-trip Gouy phases. There are two
different ways in which the corresponding frequency spectrum can be degenerate. For a cavity
that has cylinder symmetry the two eigenvalue spectrum of the ray matrix is degenerate (i.e.,
χ1 = χ2) and its modes are frequency degenerate in the total mode number n + m. As a result
any linear combination of modes with the same total mode number is a mode too. The second
kind of degeneracy arises when one of the Gouy phases is a rational fraction of 2π. Then the
combs of modes at different values of q overlap so that many different modes appear at the
same frequency.

2.5 Physical properties of the cavity modes

2.5.1 Symmetry properties

So far we have described the modes as a periodic solution of the paraxial equation in the
lens guide that is equivalent to the cavity. The electric and magnetic field in the cavity are
obtained by refolding the periodic lens-guide fields (2.30) and (2.31). The fields in two
successive intervals with length L in the lens guide then give the fields propagating back and
forth inside the cavity. The electric field (2.30) in the lens guide then gives the expression for
the field in the cavity

Ecavity(r, t) = Re
{
E0ε f (ρ, z)ie−iωt

}
(2.70)

for 0 < z < L, with

f (ρ, z) =
1
i

{
u(ρ, z)eikz − u(ρ,−z)e−ikz

}
. (2.71)

The minus sign in (2.71) ensures that the mirror surfaces coincide with a nodal plane. This
follows from the relation (2.63) between the input and the output of a lens. Applied to the
lens at z = 0, this shows that in the lens guide the transverse profile u(ρ, 0±) just left and right
of lens 1 can be written as

u(ρ, 0±) = u1(ρ) exp
∓

ikρTF−1
1 ρ

4

 , (2.72)

where u1 may be viewed as the transverse profile halfway lens 1. Substitution in equation
(2.71) shows that the cavity field f near mirror 1 is given by 2u1(ρ) sin

(
kz − kρTF−1

1 ρ/4
)
.

Since the value of k obeys the resonance condition (2.68), which makes u(ρ, z) exp(ikz) peri-
odic, a similar argument holds for mirror 2. When u2(ρ) is defined as the periodic lens-guide
field u(ρ, z) exp(ikz) at the plane halfway lens 2, the cavity field f near mirror 2 (where z ≈ L)
is 2u2(ρ) sin

(
k(z − L + kρTF−1

2 ρ/4)
)
.

The corresponding expression for the magnetic field in the cavity is

Bcavity(r, t) = Re
{
E0(ez × ε)b(ρ, z)e−iωt

}
, (2.73)
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with
b(ρ, z) =

1
c

{
u(ρ, z)eikz + u(ρ,−z)e−ikz

}
, (2.74)

for 0 < z < L. The expression (2.74) for the magnetic field has a plus sign, arising
from the fact that the propagation direction ez in (2.31) is replaced by −ez for the field
component propagating in the negative direction. Near mirror 1, the magnetic field func-
tion b is given by 2u1(ρ) cos

(
kz − kρTF−1

1 ρ/4
)
/c, while near mirror 2 we find b(ρ, z) =

2u2(ρ) cos
(
k(z − L + kρTF−1

2 ρ/4)
)
/c.

The paraxial field in the cavity as described here arises from refolding a periodic field in
the lens guide that propagates in the positive direction. We could just as well start from a
lens guide field propagating in the negative z direction. Such a field is obtained by replacing
u(ρ, z) exp(ikz) by its complex conjugate in equation (2.30). This leads to an alternative ex-
pression for the cavity field in the form (2.70) with f given by

[
u∗(ρ, z) exp(−ikz) − u∗(ρ,−z)

exp(ikz)
]
/i. For a non-degenerate mode, this alternative expression for f must be proportional

to the expression (2.71). This leads to the symmetry relation

u(ρ,−z) = u∗(ρ, z) , (2.75)

apart from an overall phase factor. This shows that the mode functions f (ρ, z) and b(ρ, z) are
real, so that they can be expressed as

f (ρ, z) = 2 Im
{
u(ρ, z)eikz

}
and b(ρ, z) =

2
c

Re
{
u(ρ, z)eikz

}
. (2.76)

From equations (2.70) and (2.73) we find that in a non-degenerate paraxial mode of a two-
mirror cavity the electric and the magnetic field can be written as

Ecavity(r, t) = − f (ρ, z)Im
{
E0εe−iωt

}
(2.77)

and
Bcavity(r, t) = b(ρ, z)Re

{
E0(ez × ε)e−iωt

}
, (2.78)

which are products of a real function of position and a real function of time. Both fields take
the form of a standing wave, with phase difference π/2. The curved transverse nodal planes
of the electric field are determined by the requirement that u(ρ, z) exp(ikz) is real. These nodal
planes coincide with the antinodal planes of the magnetic field.

2.5.2 Shape of the modes

It is interesting to notice that the real and the imaginary part of the complex propagating field
in the lens guide correspond to the electric and magnetic field in the cavity, as given by the
expression

u(ρ, z)eikz = cb(ρ, z) + i f (ρ, z) . (2.79)

This shows that the nodal planes of the electric or the magnetic field in the cavity are wave-
fronts of the traveling wave in the lens guide.
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2. Twisted cavity modes

Figure 2.5: Intensity (top) and false-color phase (bottom) patterns of the fundamental mode
of a lens guide with simple astigmatism. The corresponding cavity consists of two identical
astigmatic mirrors with focal lengths fξ = L and fη = 10L, where L is the mirror separation.
The ξ and η directions of the mirrors are aligned along the horizontal and vertical directions.
From left to right the plots show the mode structure close to mirror 1, in the transverse plane
in between the mirrors and close to mirror 2. The color code used to plot the phase patterns is
periodic; from 0 to 2π the color changes in a continuous fashion from red via yellow, green,
blue and purple back to red.

Figure 2.6: Intensity (top) and false-color phase (bottom) patterns of the fundamental mode
of a lens guide with general astigmatism. The corresponding cavity consists of two identical
astigmatic mirrors with focal lengths fξ = L and fη = 10L, where L is the mirror separation.
Compared to the plots in figure 2.5, the right mirror is rotated over π/6 in the positive (coun-
terclockwise) direction. From left to right the plots show the mode structure close to mirror
1, in the transverse plane in between the mirrors and close to mirror 2. The color code used
to plot the phase patterns is periodic; from 0 to 2π the color changes in a continuous fashion
from red via yellow, green, blue and purple back to red.
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2.5 Physical properties of the cavity modes

Figure 2.7: Intensity (top) and false-color phase (bottom) patterns of the (1, 1) mode of a lens
guide with simple astigmatism. The corresponding cavity consists of two identical astigmatic
mirrors with focal lengths fξ = L and fη = 10L, where L is the mirror separation. The ξ and η
directions of the mirrors are aligned along the horizontal and vertical directions. From left to
right the plots show the mode structure close to mirror 1, in the transverse plane in between
the mirrors and close to mirror 2. The color code used to plot the phase patterns is periodic;
from 0 to 2π the color changes in a continuous fashion from red via yellow, green, blue and
purple back to red.

Figure 2.8: Intensity (top) and false-color phase (bottom) patterns of the (1, 1) mode of a lens
guide with general astigmatism. The corresponding cavity consists of two identical astigmatic
mirrors with focal lengths fξ = L and fη = 10L, where L is the mirror separation. Compared
to the plots in figure 2.7, the right mirror is rotated over π/6 in the positive (counterclockwise)
direction. From left to right the plots show the mode structure close to mirror 1, in the
transverse plane in between the mirrors and close to mirror 2. The color code used to plot the
phase patterns is periodic; from 0 to 2π the color changes in a continuous fashion from red
via yellow, green, blue and purple back to red.
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2. Twisted cavity modes

From the symmetry property (2.75) it follows that the periodic lens-guide field
u(ρ, z) exp(ikz) is real in the transverse plane halfway each of the lenses. Since this con-
clusion holds for modes of all orders, also the ladder operators âi can be chosen real in these
two symmetry planes. As a result, the higher-order modes have the nature of astigmatic
Hermite-Gaussian modes, with a pattern of two sets of parallel straight nodal lines. However,
nodal lines in these two sets are not orthogonal in the case of a twisted cavity.

In the free space between the mirrors of a twisted cavity the modes attain a structure with
vortices, arising from an elliptical rather than a linear nature of the distribution of transverse
momentum. Only in the special case of simple astigmatism, the modes have a Hermite-
Gaussian structure in all transverse planes, with rectangular patterns of nodal lines that are
aligned to the axes of the two mirrors.

2.5.3 Orbital angular momentum

As a result of the twisted boundary conditions that are imposed by two astigmatic mirrors in
non-parallel alignment, the cavity modes become twisted as well. Both the elliptical intensity
distribution of the fundamental cavity mode as well as its elliptical or hyperbolic curves of
constant phase change their orientation under propagation from one mirror to the other. This
tumbling gives rise to orbital angular momentum in the cavity modes [17]. In the higher-order
modes both the general astigmatism and the vortices, which appear in intermediate transverse
planes, contribute to the orbital angular momentum [16].

The leading-order contribution to the orbital angular momentum per unit length in a
monochromatic paraxial beam, as characterized by equations (2.30) and (2.31), is longitu-
dinal. Its z component can be expressed as [43, 6]

L =
ε0|E0|2

2iω

∫
d2ρ u∗(ρ, z, t)

(
x
∂

∂y
− y

∂

∂x

)
u(ρ, z, t) . (2.80)

In terms of the transverse position and momentum operators this can be rewritten as N~〈u(z)|
ρ̂× kθ̂|u(z)〉, where N = ε0|E0|2/(2~ω) is the number of photons per unit length and × denotes
a cross product in the transverse plane. By the virtue of equation (2.60) and its hermitian
conjugate, the canonical operators ρ̂ and θ̂ can be expressed in terms of the ladder operators
Â and Â†. This leads to an expression for the orbital angular momentum in the (n,m) cavity
mode in terms of the vectors r1,2(0) and t1,2(0). It can be cast in the following form

Lnm = N~〈unm(z)|ρ̂ × kθ̂|unm(z)〉 =

N~
{ (

n +
1
2

)
Re

(
r∗1(0) × t1(0)

)
+

(
m +

1
2

)
Re

(
r∗2(0) × t2(0)

)}
. (2.81)

This very natural expression of the orbital angular momentum clearly shows its origin in the
geometry of the twisted cavity. In terms of the eigenvectors µ1 and µ2, it may be rewritten as

Lnm = N~
{ (

n +
1
2

)
µ†1GJµ1

2
+

(
m +

1
2

)
µ†2GJµ2

2

}
, (2.82)
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2.6 Examples

where

J =



0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


(2.83)

is the generator of rotations of a ray (ρ, θ) in the transverse plane, i.e., Mrot(α) = e−αJ is the ray
matrix ∈ S p(4,R) that rotates both the transverse position and the propagation direction of a
ray over an angle α. From the fact that the ray matrix for free propagation (2.17) commutes
with J, it is clear that the orbital angular momentum in the cavity modes is conserved under
free propagation from one mirror to the other. Since the lens-guide mode profiles close to the
lenses are real apart from the curved wave fronts, which locally fit on the mirror surfaces, it
follows that they are converted into their complex conjugates when passing a lens. As a result,
the orbital angular momentum in the cavity mode changes sign when the beam passes a lens
(mirror) so that there is no net orbital angular momentum in the cavity field as characterized
by equations (2.70) and (2.73).

2.6 Examples

We illustrate the intensity and phase structure and the orbital angular momentum of twisted
cavity modes by investigating a specific example. We consider a cavity that consists of two
identical astigmatic mirrors with focal lengths fξ = L and fη = 10L, where L is the mirror sep-
aration. The cavity has simple astigmatism when the mirrors are in parallel (or anti-parallel)
alignment whereas it has general astigmatism when they are non-aligned. It is geometrically
stable for all (relative) orientations of the mirrors.

2.6.1 Mode structure

It is convenient to plot the intensity and phase patterns in the corresponding lens guide. In
figures 2.5 and 2.6, we show the transverse intensity and phase patterns of the fundamental
lens-guide mode both in the immediate neighborhood of the lenses (mirrors) and in the trans-
verse plane between them. The plots in figure 2.5 correspond to the case in which the ξ and η
directions of the mirrors are aligned along the horizontal and vertical directions. In this case,
the cavity has transverse symmetry directions along the axes of the mirrors. The elliptical in-
tensity patterns of the fundamental mode are aligned along these symmetry directions. Since
the mirrors have different radii of curvature along their axes, the diffraction of the mode is
(slightly) different for the two directions so that the ellipticity of the curves of constant in-
tensity varies under propagation from one lens to the other. The phase patterns close to the
mirrors confirm that the wave fronts of the lens-guide mode fit on the mirror surfaces. Since
the cavity mirrors are identical, the lens guide has an additional inversion-symmetry plane in
between the lenses (mirrors). As a result, this plane is the focal plane of the lens-guide modes
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2. Twisted cavity modes
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Figure 2.9: Orbital angular momentum in the (1, 1) mode of a lens guide corresponding to
a cavity with two identical astigmatic mirrors as a function of the relative orientation of the
mirrors. The mirrors have focal lengths fξ = L and fη = 10L, where L is the mirror separation
and φ = 0 corresponds to the case in which the mirrors are aligned.

so that the wave fronts of the fundamental mode in the immediate neighborhood of this plane
are flat.

The plots in figure 2.6 show the fundamental lens-guide mode in the case in which the
right mirror is rotated over π/6 in the positive (counterclockwise) direction. This obviously
introduces a twist in the mode. The wave fronts close to the lenses (mirrors) fit on the lenses
(mirrors) while the orientation of the ellipses of constant intensity reflects their non-parallel
alignment. As a result of the twist, the inversion symmetry in the transverse plane between
the lenses is broken and the focal planes for the two transverse components do not coincide.
In between the focal planes, the lines of constant phase are hyperbolas rather than ellipses.

As an example of a higher-order mode, we show the intensity and phase patterns of the
(1, 1) lens-guide mode. The plots in figure 2.7 show the intensity and phase patterns of the
(1, 1) mode in the case in which the mirrors are aligned. The mode is aligned along the
mirror axes and, although propagation from one lens to the other does affect the scaling
of the mode pattern along the symmetry axes, propagation does not affect its orientation.
The mode takes the form of a Hermite-Gaussian in all transverse planes, which has two
mutually perpendicular lines of zero intensity (line dislocations) in the transverse plane. Up
to phase jumps of π, which are due to the dislocations, the phase structure in the immediate
neighborhood of the lenses reflects the shape of the mirrors. The plots in figure 2.8 show
how the phase and intensity patterns of the (1, 1) mode change when the cavity is twisted. In
this case, the intensity patterns close to the mirrors are not aligned along the mirror axes and
the lines of zero intensity are no longer mutually perpendicular. The orientation of both the
phase and the intensity patterns as well as the orientation of the line dislocations change upon
propagation from one mirror to the other. Moreover, the mode is Hermite-Gaussian only in
the immediate neighborhood of the lenses. In other transverse planes, it takes the form of a
generalized Gaussian mode [44] and has elliptical vortices, rather than line dislocations, in
the transverse plane. These are visible in the middle plots in figure 2.8.
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2.7 Discussion and conclusions

2.6.2 Orbital angular momentum

The amount of orbital angular momentum in twisted cavity modes depends on the (relative)
orientation of the mirrors. If the mirrors are in parallel or anti-parallel alignment, the cavity
has simple astigmatism so that the orbital angular momentum vanishes. For intermediate
orientations, the lens-guide modes do contain orbital angular momentum. A typical example
of its dependence on the relative orientation of the mirrors is shown in figure 2.9. As was
mentioned already, there is no net orbital angular momentum in the corresponding cavity
field. The cavity mirrors invert the orbital angular momentum while reflecting the light,
which implies that they experience a torque. This torque on mirror 2 amounts to 2cLnm

while mirror 1 experiences the opposite torque. If the mirrors were allowed to rotate freely,
the configurations with simple astigmatism (and therefore vanishing OAM) could either be
stable or metastable. If Lnm goes through zero with a negative slope as a function of the
orientation of mirror 2, the OAM of the modes gives rise to a torque that tends to restore
the configuration. If Lnm goes through zero with a positive slope it is the other way around.
The results shown in figure 2.9 indicate that the configuration that combines the largest and
smallest radii of curvature is the stable one.

2.7 Discussion and conclusions

We have presented an algebraic method to obtain the complete and orthonormal set of parax-
ial modes of a geometrically stable two-mirror cavity with astigmatism. If the axes of the
two mirrors are parallel, the modes take a factorized form and the problem of finding them
is equivalent to the case of a single transverse dimension. In that case standard analytical
techniques suffice to find expressions of the cavity modes. Finding expressions of the cavity
modes is considerably more complex when the astigmatic mirror are non-parallel. In that
case, the mode fields propagating between the mirrors display general astigmatism and no
simple analytical approach is known to solve the problem of finding them.

An essential ingredient in our characterization of the cavity modes is the real 4 × 4 ray
matrix Mrt, which is a purely geometric concept from ray optics and describes the trans-
formation of a ray over one round trip through the cavity. We have argued that a cavity is
geometrically stable only if the absolute values of all four eigenvalues of the round-trip ray
matrix Mrt are equal to 1. Because of the special (group-theoretical) properties of the round-
trip ray matrix, the requirement of geometric stability implies that both the eigenvectors and
the corresponding eigenvalues form complex conjugate pairs. The arguments of the unitary
eigenvalues play the role of round-trip Gouy phases χ1 and χ2 and determine the frequency
spectrum according to equation (2.69). The spatial structure of the cavity modes is fully de-
termined by the eigenvectors. They depend on the transverse reference plane that is taken as
the start of a round trip. The eigenvalues are independent of the choice of the reference plane.
As indicated in equation (2.61) and (2.62), the eigenvectors determine two 2 × 2 matrices
R(z) and T(z), which vary along the optical axis of the lens guide that corresponds to the cav-
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2. Twisted cavity modes

ity. The Gaussian fundamental mode depends on these two matrices according to equation
(2.64). Higher order modes arise after repeated application of bosonic raising operators as
in equation (2.66), where these operators are specified by equations (2.59) and (2.60). These
algebraic expressions can be used directly to calculate the mode profiles.

The spatial structure and physical properties of twisted cavity modes are significantly dif-
ferent from those of non-twisted (separable) cavity modes. The intensity and phase patterns
of twisted modes tumble under propagation from one mirror to the other. As a result, there is
orbital angular momentum in these modes. Moreover, the higher-order modes contain optical
vortices in the transverse planes between the mirrors.

Since the paraxial wave equation (2.32), which describes free propagation of a paraxial
beam, is identical in form to the Schrödinger equation of a free particle in two dimensions, the
methods and results of this chapter can be applied to study the time evolution of the quantum
states of a particle in free space. In the Schrödinger equation, the longitudinal coordinate
z is replaced by time, while the two transverse coordinates x and y are replaced by three
spatial coordinates. In that case, the approach discussed in this chapter involves three pairs of
bosonic ladder operators, which characterize a complete and orthonormal set of exact wave-
packet solutions of the Schrödinger equation.
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Twisted light between rotating mirrors

3.1 Introduction

The possibly very rich structure of optical cavity modes is fully determined by the boundary
condition that the electric field must vanish on the mirror surfaces. This implies that the
wave fronts (surfaces of equal phase) of a mode that propagates inside the cavity fit on the
mirror surfaces. As a result, the mirror surfaces are nodal planes of the standing wave pattern
that is formed inside the cavity. The common approach to finding the modes of a paraxial
optical cavity is by considering a freely propagating Gaussian beam and requiring its wave
fronts to fit on the mirror surfaces [12]. This is straightforward in the standard case of a
cavity with two spherical mirrors. The resulting equation can be solved to obtain the beam
parameters that characterize a complete and orthonormal set of Hermite-Gaussian modes.
Geometric stability comes in as the necessary and sufficient condition for a cavity to have
stationary modes and the round-trip Gouy phases determine the corresponding frequency
spectrum. This approach allows for generalization to the case of astigmatic mirrors, which
are curved differently in two mutually perpendicular transverse directions, provided that the
mirror axes are parallel. The problem of finding the paraxial modes of a cavity with non-
aligned astigmatic mirrors requires far more advanced analytical [38, 34] or, as discussed in
the previous chapter, algebraic techniques.

In this chapter we consider an additional, and surprisingly different, source of complexity.
We study the propagation and diffraction of light inside a two-mirror cavity that is rotating
at a uniform velocity about its optical axis. It remains true that the electric field vanishes
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3. Twisted light between rotating mirrors

on the mirror surfaces. Since cavity modes are usually defined as monochromatic solutions
of the wave equation that obey the boundary conditions imposed by the mirrors, the mode
concept requires special attention in this time-dependent case. As opposed to, for instance,
vibration, uniform rotation is homogeneous in time, which means that all instants of time,
and therefore all cavity round trips, are equivalent. In this special case, it is natural to require
that modes adopt the time-dependence of the cavity so that they rotate along with the mirrors.
We show that this property can be used as a defining property of rotating cavity modes. As an
example, we consider the case of a rotating astigmatic two-mirror cavity. We generalize the
geometric-algebraic method that we have developed in the previous chapter to derive explicit
expressions of the rotating cavity modes and apply these to study some of their physical
properties.

The material in this chapter is organized as follows. In the next section we discuss the
perturbative approach to the paraxial approximation [45] and its generalization to the time-
dependent case [46]. This helps us to ensure the consistency of our approach in that we retain
all terms up to the same order of the expansion. In section 3.3 and section 3.4 we generalize
the operator description of paraxial wave optics [42] to account for the time-dependence of
a rotating cavity and show how modes can be defined in such a system. Explicit expressions
of the rotating cavity modes are derived in section 3.5 and section 3.6, where we also discuss
some of their physical properties. In section 3.7 we focus on the role of spatial symmetries
in special limiting cases while section 3.8 is devoted to the orbital angular momentum in the
rotating cavity modes. Explicit results for specific cases are briefly discussed in section 3.9.

3.2 Time-dependent paraxial propagation

The spatial structure of an optical beam is characterized by a vector field u(r, t), which de-
scribes the spatial and temporal variations of the vector components of the field that are slow
compared to those arising from the carrier wave. The profile u(r, t) defines the electric field
of the beam by

E (r, t) = Re
{
E0u (r, t) eikz−iωt

}
, (3.1)

where E0 is an amplitude factor and ω = ck is the frequency of the carrier wave, with k the
wave number and c the speed of light. In vacuum the electric field obeys the wave equation

∇2E =
1
c2

∂2E
∂t2 , (3.2)

with the additional requirement that it has a vanishing divergence

∇ · E = 0 . (3.3)

Essential for the paraxial approximation is that the beam has a small opening angle, which we
indicate by the smallness parameter δ. Then the beam waist is of the order of the parameter
γ, and the diffraction length (or Rayleigh range) is of the order of the parameter b, where

1
k

= δγ = δ2b . (3.4)
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3.2 Time-dependent paraxial propagation

So the diffraction length is much larger than the beam waist, which is much larger than the
wavelength. The smallness of δ ensures that the variations of the profile u(r, t) with the
longitudinal coordinate z are slow compared to the variations with the transverse coordinates
ρ = (x, y)T, which are, in turn, slow compared to the variations of the carrier wave exp(ikz)
with z. By using δ as an expansion parameter, the time-independent paraxial wave equation
(2.32) can be obtained directly from the wave equation (3.2) while resolving the apparent
paradox that paraxial fields cannot have a completely vanishing divergence [45]. As we shall
discuss in a moment, this approach allows for generalization to the time-dependent case [46].

Time dependent optical fields necessarily have spectral structure in addition to their spa-
tial structure. The concept of a mode loses its meaning if the difference in diffraction of the
frequency components becomes significant, i.e., if the diffraction due to the time dependence
of the profile becomes important. Conversely, we shall show that the mode concept remains
meaningful if the time scale for variation of the cavity boundaries is slower than the transit
time through the focal range of the beam. This transit time is of the order of

a =
b
c

=
1
ωδ2 . (3.5)

In order to obtain the time-dependent paraxial wave equation, the profile u is expanded in
powers of the opening angle δ

u(r, t) =

∞∑

n=0

δnu(n)(r, t) . (3.6)

Since we need to account for the (relative) order of the magnitudes of the derivatives of u, it
is convenient to introduce the scaled variables ξ = x/γ, η = y/γ, ζ = z/b and τ = t/a. In
these variables, the derivatives can be treated as being of the same order in δ. Substituting the
expression (3.1) for the electric field in the wave equation (3.2) then gives

(
∂2

∂ξ2 +
∂2

∂η2 + 2i
∂

∂ζ
+ 2i

∂

∂τ

)
u(r, t) = δ2

(
∂2

∂τ2 −
∂2

∂ζ2

)
u(r, t) , (3.7)

while the transversality condition (3.3) yields

δ

(
∂ux

∂ξ
+
∂uy

∂η

)
= −δ2 ∂uz

∂ζ
− iuz . (3.8)

It is natural to assume that to zeroth order the z component of u vanishes, and equation (3.8)
shows that such a solution can be found. Then to zeroth order of the paraxial approximation
the electric field lies in the transverse plane. In the special case of uniform polarization it can
be written as

u(0)(r, t) = εu(r, t) , (3.9)

where ε is a transverse polarization vector. The scalar profile u(r, t) obeys the time-dependent
paraxial wave equation

(
∂2

∂x2 +
∂2

∂y2 + 2ik
∂

∂z
+

2ik
c
∂

∂t

)
u(r, t) = 0 . (3.10)
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3. Twisted light between rotating mirrors

The expansion (3.6) then shows that all even orders of the transverse components are coupled
by equation (3.7) while all odd orders can be assumed to vanish. Equation (3.8) connects odd
orders of the z component to the even orders of the transverse components, which implies that
all even orders (including the zeroth) of the longitudinal component vanish. The first-order
contribution to the profile is longitudinal and by using equation (3.8) it can be expressed in
the zeroth order term

δu(1)(r, t) =
i
k

(
εx
∂

∂x
+ εy

∂

∂y

)
u(r, t)ez , (3.11)

where ez is the unit vector in the z direction.
Up to first order of the paraxial approximation, finding the modes of a cavity with rotating

mirrors requires solving the time-dependent paraxial wave equation (3.10) with the boundary
condition that the electric field (3.1) vanishes at the mirror surfaces at all times. The range of
validity of this time-dependent wave equation provides a natural upper limit to the rotation
frequency of the mirrors. In a typical experimental set-up the diffraction length of the modes
of an optical cavity is of the order of magnitude of the mirror separation, so that the period
of the rotation of the mirrors can be at most comparable to the cavity round-trip time. This
yields an upper bound to the rotation frequency Ω

Ω .
cπ
L
, (3.12)

where L is the mirror separation and c is the speed of light. The average lifetime of a photon
inside the cavity, which we leave out of our consideration here, provides a natural lower
bound to the rotation frequency of the mirrors.

3.3 Operator description of time-dependent paraxial wave optics

3.3.1 Operators and transformations

The standard time-independent paraxial wave equation follows if we omit the time derivative
in equation (3.10). This has the same structure as the Schrödinger equation for a free particle
in two dimensions, with k taking the place of m/~ and the longitudinal coordinate z playing
the role of time. This analogy can be exploited by adopting the Dirac notation of quantum
mechanics to describe classical light beams [42]. This naturally leads to an operator descrip-
tion of paraxial wave optics. Here, we show that this description can be generalized to include
the time dependence of the scalar beam profile u(ρ, z, t), even though the time dependence of
an optical beam does not have an analogue in quantum mechanics.

We associate to the beam profile u(ρ, z, t) a vector |u(z, t)〉 in the Hilbert space of paraxial
modes of the radiation field

u(ρ, z, t) = 〈ρ|u(z, t)〉 , (3.13)

where |ρ〉 is an eigenstate of the transverse position operator ρ̂ = (x̂, ŷ)T. The correspond-
ing momentum operator can be represented by kθ̂ = (k̂ϑx, kϑ̂y)T = −i(∂/∂x, ∂/∂y)T. The
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3.3 Operator description of time-dependent paraxial wave optics

transformations of paraxial propagation and lossless optical elements such as thin lenses can
be expressed as unitary transformations in the transverse mode space. Expressing the time-
dependent paraxial wave equation (3.10) in terms of the momentum operators gives

(
∂

∂z
+

1
c
∂

∂t

)
|u(z, t)〉 = − ik

2
θ̂2|u(z, t)〉 , (3.14)

which is formally solved by

|u(z, t)〉 = exp
(
− ikz

2
θ̂2

)
|u(0, t − z/c)〉 = Ûf(z)|u(0, t − z/c)〉 , (3.15)

where Ûf(z) denotes the unitary operator that describes free propagation of a paraxial beam.
This result shows that the time-dependent paraxial wave equation (3.10) describes paraxial
beam propagation while incorporating retardation effects. A thin spherical lens imposes a
Gaussian phase profile. Hence, the transformation caused by such a lens can be expressed as
[27]

|uout〉 = exp
(
− ikρ̂2

2 f

)
|uin〉 , (3.16)

where f is the focal length of the lens. The generalization of this transformation to the case
of a lens that has astigmatism is given by

|uout〉 = exp
(
− ikρ̂TF−1ρ̂

2

)
|uin〉 = Ûl(F)|uin〉 , (3.17)

where F is a real and symmetric 2 × 2 matrix. The eigenvalues of F characterize the focal
lengths of the lens while the, mutually orthogonal, real eigenvectors fix its orientation in the
transverse plane.

3.3.2 Rotating lenses and frequency combs

The unitary operator that rotates a scalar function about the z axis can be expressed as

Ûrot(α) = exp(−iαL̂z) , (3.18)

where α is the rotation angle and L̂z = ρ̂×kθ̂ = −i(x∂/∂y−y∂/∂x) = −i∂/∂φ is the z component
of the orbital angular momentum operator. The inverse of this rotation is a rotation in the
opposite direction, so that Û†rot(α) = Ûrot(−α). The transformation of a rotated lens can be
expressed as

Ûrot(α)Ul(F)Û†rot(α) . (3.19)

This (anti-Heisenberg) transformation property makes sense if one realizes that rotating a lens
is equivalent to rotating the profile in the opposite direction, applying the lens and rotating the
profile backward. The beam transformation caused by an astigmatic lens (3.17) only involves
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Figure 3.1: Unfolding a rotating optical cavity into an equivalent periodic lens guide. The
mirrors are replaced by rotating lenses with the same focal lengths and the z = 0 reference
plane is indicated by the dashed line.

the position operator ρ̂ = (x̂, ŷ)T. The anti-Heisenberg transformation of the position operator
under a rotation about the z axis (3.18) can be expressed as

Ûrot(α)ρ̂Û†rot(α) =

(
cosα sinα
− sinα cosα

)
ρ̂ = PT(α)ρ̂ , (3.20)

with P(α) a two-dimensional rotation matrix. By using this transformation property of the
position operators, the transformation of a rotated lens (3.19) can be expressed as

Ûl

(
P(α)FPT(α)

)
. (3.21)

For a lens rotating at angular velocity Ω, the rotation angle is α = Ωt, so that the time-
dependent beam transformation caused by the rotating lens is given by Ûl

(
F(t)

)
where F(t) =

P(Ωt)F(0)PT(Ωt). Without loss of generality we can choose the real and symmetric matrix
F(t) diagonal at t = 0

F(0) =

(
fξ 0
0 fη

)
. (3.22)

By using equations (3.19-3.22) and introducing cylindrical coordinates with x = R cos φ,
y = R sin φ, the time-dependent transformation of a rotating lens can be expressed as

Ûl
(
F(t)

)
= exp

[
− ikR2

4

(
f −1
ξ + f −1

η

)
− ikR2

4

(
f −1
ξ − f −1

η

)
cos (2Ωt − 2φ)

]
. (3.23)

Using the Jacobi-Anger expansion of a plane wave in cylindrical waves: exp(iz cos φ) =∑∞
l=−∞ ilJl(z) exp(ilφ), where Jl are Bessel functions of the first kind [47], this result can be

rewritten as:

Û(F(t)) = exp
[
− ikR2

4

(
f −1
ξ + f −1

η

) ]
×

∑

l

{
Jl

(
ikR2

4

(
f −1
ξ − f −1

η

))
exp

[
− 2il

(
Ωt + φ +

π

4

) ]}
. (3.24)

It follows that a rotating lens introduces frequency side bands in a monochromatic optical
field at frequencies ω ± 2pΩ with p ∈ Z [48].
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3.4 Modes in a rotating cavity

3.4.1 Lens guide picture

In order to describe the evolution of a profile vector |u(z, t)〉 inside a rotating cavity it is
convenient to unfold the cavity into an equivalent lens guide. As illustrated in figure 3.1,
the mirrors are replaced by lenses with the same focal lengths. Rather than describing the
bouncing back and forth inside the cavity we describe the propagation along the axis of the
lens guide, with coordinate z. The dashed line on the left of the first lens in figure 3.1 indicates
the transverse reference plane of the lens guide, which is positioned at z = 0. The profile in
any transverse plane of the lens guide is connected to the profile in the input plane by a
unitary transformation. Just as in equation (3.15), this time-dependent connection involves
retardation, as described by

|u(z, t)〉 = Û(z, t)|u(0, t − z/c)〉 . (3.25)

The unitary operator Û(z, t) can be constructed by successive application of the transforma-
tions of the optical elements and free propagation that are in between the reference plane and
the z plane in the correct order. We need only two different transformation operators for the
lenses in the lens guide, which we denote for simplicity as Û1(t) and Û2(t). For the lens guide
that corresponds to a cavity rotating at the uniform angular velocity Ω, these time-dependent
operators are given by equation (3.19) with rotation angle α = Ωt, so that

Ûi(t) = Ûrot(Ωt)Ûl
(
Fi(0)

)
Û†rot(Ωt) , (3.26)

with i = 1, 2 labeling the two lens types. Since the orientations of the rotating lenses de-
pend on time, retardation effects must be included. As an example we give the operator that
connects the profile vectors in transverse planes that are separated by one period of the lens
guide

Û(2L, t) = Ûf(L)Û2(t − L/c)Ûf(L)Û1(t − 2L/c) . (3.27)

Obviously, all lenses that correspond to the same mirror of the cavity have the same orien-
tation at any instant of time. Nevertheless, as a result of the finiteness of the speed of light,
the orientation of two lenses that correspond to the same mirror of the cavity is perceived
differently by a light pulse that propagates through the lens guide.

3.4.2 Rotating modes

Cavity modes are resonant field distributions inside an optical cavity. In a stationary cavity, a
field pattern is resonant only if it repeats itself after each round trip through the cavity. The
natural generalization of this mode criterion to the rotating case is by requiring that the field
pattern in the corresponding lens guide is the same in every period, at a single given instant
of time. This implies that the mode vector |u(0, t)〉 in the reference plane for a given value of
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t repeats itself after one period 2L up to a phase factor

|u(2L, t)〉 = e−iχ|u(0, t)〉 . (3.28)

The phase χ generalizes the Gouy phase for the round trip in a stationary cavity. Since the
lens guide is rotating at a uniform velocity Ω, this mode criterion (3.28) can be obeyed only if
the mode pattern rotates along with the lenses, so that the time dependence of a mode vector
must be determined by

|u(z, t)〉 = Ûrot(Ωt)|v(z)〉 . (3.29)

The homogeneous time dependence of this profile (3.29) can be eliminated by introducing
the z dependent profile

|v(z)〉 = |u(z, 0)〉 , (3.30)

which has the significance of the profile vector in the co-rotating frame. By combining the
relation (3.29) with equations (3.25-3.27), we find that the propagation of a beam profile in
this frame is governed by the general relation

|v(z)〉 = Û(z, 0)Ûrot(−Ωz/c)|v(0)〉 , (3.31)

so that the product Û(z, 0)Ûrot(−Ωz/c) can be viewed as the operator for free propagation in
the co-rotating frame. In the special case of the propagation over one period of the lens guide,
we find

|v(2L)〉 = ÛrtÛ
†
rot(Ωt)|u(0, t)〉 = Ûrt|v(0)〉 , (3.32)

where Ûrt is given by the expression

Ûrt = Ûf(L)Ûrot(−ΩL/c)Û2(0)Ûf(L)Ûrot(−ΩL/c)Û1(0) (3.33)

and has the significance of the transformation operator over a single period of the lens guide in
the co-rotating frame. Notice that the operator for free evolution Ûf is denoted as a function of
length while the lens operators Ûi are denoted as a function of time and the rotation operator
Ûrot is denoted as a function of angle.

Now the mode criterion (3.28) in the reference plane z = 0 in the rotating frame is obeyed
by the eigenvectors of the round-trip operator Ûrt. Once these mode vectors are determined,
we can use the propagation equation (3.15) and the time dependence (3.29) to obtain the
shape of the modes at other time instants, and at any position within a period of the lens
guide. The eigenvalues, which are specified by the phase angles χ, determine the resonance
frequencies of the modes. In the next section we shall indicate how the modes can be obtained
explicitly from a ladder-operator method.

3.5 Ray matrices and ladder operators

3.5.1 Time-dependent ray matrices

The transverse spatial structure of paraxial modes in cavities with spherical mirrors is known
to be similar to the spatial structure of the stationary states of a two-dimensional quantum
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harmonic oscillator [12]. Complete sets of modes can be generated by using bosonic ladder
operators [33]. In chapter 2, we have derived a ladder operator method to find explicit expres-
sions of the paraxial modes of an optical cavity that has general astigmatism. These ladder
operators are conveniently expressed in terms of the eigenvectors of the ray matrix for one
period in the lens guide, or, equivalently, for one round trip in the cavity. Here we generalize
this approach to account for the time dependence that arises from the rotation of the cavity.
In this case, also the ray matrices depend on time.

In geometric paraxial optics, a light ray is specified by its position ρ = (x, y)T and its
propagation direction θ = ∂ρ/∂z in the transverse plane z. They can conveniently be combined
into a four-dimensional column vector

r (z) =

(
ρ(z)
θ(z)

)
. (3.34)

The linear transformation of a ray r through a paraxial astigmatic optical system can be de-
scribed by a product of 4 × 4 ray matrices, which generalize the well-known ABCD matrices
to the case of two independent transverse dimensions [12]. Here, we shall construct the ray
matrix M(z) that describes the transformation of a ray through the lens guide from the refer-
ence plane at z = 0 to the transverse plane z. In wave optics, the position of a light beam is the
expectation value of the operator ρ̂, while its propagation direction is the expectation value of
θ̂, which is the ratio of the transverse and the longitudinal momentum. This is confirmed by
the fact that the Heisenberg evolution of the operator vector r̂ = (ρ̂, θ̂)T reproduces the ray
matrix, as exemplified by the general identity

Û†(z)
(
ρ̂

θ̂

)
Û(z) = M(z)

(
ρ̂

θ̂

)
. (3.35)

The propagation operator Û acts on the operator nature of ρ̂ and θ̂, while the matrix M acts
on the four-dimensional ray vector. This relation may be viewed as the optical analogue of
the Ehrenfest theorem in quantum mechanics [49]. Note that the commutation relations for
the components of the position and propagation-direction operators take the form

[ρ̂x, θ̂x] = [ρ̂y, θ̂y] = io = i/k . (3.36)

The ray matrix M(z) for propagation from the plane z = 0 to the plane z of the lens guide
can be constructed as the product of the ray matrices for the regions of free propagation and
the lenses in between these planes in the right order. The ray matrix for free propagation is
described by

Û†f (z)
(
ρ̂

θ̂

)
Ûf(z) =

(
1 z1
0 1

) (
ρ̂

θ̂

)
= Mf(z)

(
ρ̂

θ̂

)
, (3.37)

where 1 and 0 are the 2× 2 unit and zero matrices respectively. The transformation for a thin
astigmatic lens can be expressed as

Û†l (F)
(
ρ̂

θ̂

)
Ûl(F) =

(
1 0
−F−1 1

) (
ρ̂

θ̂

)
= Ml(F)

(
ρ̂

θ̂

)
. (3.38)
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The ray matrix of a rotation about the z axis follows from the identity

Û†rot(α)
(
ρ̂

θ̂

)
Ûrot(α) =

(
P(α) 0

0 P(α)

) (
ρ̂

θ̂

)
= Mrot(α)

(
ρ̂

θ̂

)
. (3.39)

The identities (3.35) and (3.38) remain valid for rotating lenses, which makes both the oper-
ators Û and the ray matrices M depend on time. The transformation of a time-dependent ray
in the reference plane to another transverse plane z is given by

r (z, t) = M(z, t)r (0, t − z/c)) (3.40)

in analogy to equation (3.25). A co-rotating incident ray in the reference plane must give
a co-rotating ray everywhere in the lens guide, and the ray matrices in the rotating frame
become independent of time. In complete analogy to equation (3.32), this implies that the
transformation of a ray in the rotating frame over one period from the reference plane is
given by the round-trip ray matrix

Mrt = Mf(L)Mrot(−ΩL/c)M2(0)Mf(L)Mrot(−ΩL/c)M1(0) , (3.41)

with M1(0) and M2(0) the ray matrices for the lenses 1 and 2 at time 0.
Any ray matrix that describes the transformation of a (sequence of) lossless optical ele-

ments obeys the following identity

MTGM = G , where G =

(
0 1
−1 0

)
. (3.42)

This property generalizes the requirement that the determinant of a ray matrix must be equal
to 1 to optical systems that have two independent transverse dimensions. It is easy to show
that the ray matrices that we have used obey this identity (3.42). The product of matrices that
obey equation (3.42) obeys it as well and in mathematical terms the set of 4× 4 matrices that
obey this identity forms the real symplectic group Sp(4,R). Both the underlying algebra and
the physics of such linear phase space transformations have been studied in detail, see, for
instance, reference [39].

3.5.2 Ladder operators in reference plane

The similarity between Hermite-Gaussian modes of a cavity with spherical mirrors and har-
monic-oscillator eigenstates can be traced back to the fact that in the paraxial limit the Heisen-
berg evolution (3.35) of the position and propagation-direction operators ρ̂ and θ̂ is linear, so
that ladder operators, which are linear in these operators, preserve their general shape under
propagation and optical elements. In chapter 2 we have demonstrated that the ladder opera-
tors that generate the modes of a cavity with non-parallel astigmatic mirrors are determined
by the eigenvectors of the round-trip ray matrix. In the rotating frame, the relation between
the propagation operators and the ray matrix for a round trip is basically the same as for a
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stationary one, and equations (3.33) and (3.41) are obviously analogous. This allows us to
apply the same technique to obtain expressions for the modes of the rotating cavity. In order
to define the ladder operators we shall need the eigenvectors and eigenvalues of the ray matrix
equation (3.41). Stability of the rotating cavity requires that the eigenvalues are unitary, and
since the matrix Mrt is real, this implies that its eigenvectors come in two pairs µ1, µ∗1 and µ2,
µ∗2 that are each other’s complex conjugate. The eigenvalue relations are written as

Mrtµ1 = eiχ1µ1 and Mrtµ2 = eiχ2µ2 . (3.43)

From the general property (3.42) of ray matrices one directly obtains the generalized (sym-
plectic) orthogonality properties

µT
1Gµ2 = µ†1Gµ2 = 0 , (3.44)

while the eigenvectors can be normalized in order to obey the identities

µ†1Gµ1 = µ†2Gµ2 = 2i . (3.45)

We shall now prove that the ladder operators that define the shape of the modes in the refer-
ence plane z = 0 at time 0 are easily expressed in terms of the eigenvectors µ1 and µ2 of the
ray matrix Mrt. Following the approach discussed in the previous chapter, we introduce two
lowering operators

âi =

√
k
2
µiG

(
ρ̂

θ̂

)
, (3.46)

where i = 1, 2. From the generalized orthonormality properties (3.44) and (3.45) of the
eigenvectors µi combined with the canonical commutation rules (3.36) it follows that the
ladder operators obey the bosonic commutation rules

[
âi, â

†
j

]
= δi j . (3.47)

Any set of ladder operators that obey these commutation relations defines a complete and
orthonormal set of transverse modes according to

|vnm〉 =
1√

n!m!

(
â†1

)n (
â†2

)m |v00〉 . (3.48)

Apart from an overall phase factor, the fundamental mode (or ground state in the terminology
of quantum mechanics) |v00〉 is determined by the requirement that â1|v00〉 = â2|v00〉 = 0. The
bosonic ladder operators obviously determine a complete and orthogonal set of modes in the
reference plane z = 0. A more explicit expression of the fundamental mode will be given
below. In chapter 5 we shall derive analytical expressions of the higher-order modes.
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3.5.3 Ladder operators in arbitrary transverse plane

The eigenvectors µi(0) = µi refer to the transformation from the reference plane at z = 0 to
the plane z = 2L, in the rotating frame. We also need the modes |vmn(z)〉, and therefore the
eigenvectors µi(z) in an arbitrary transverse plane z in the lens guide, in the rotating frame.
The basic time-dependent transformation of a ray is given by equation (3.40), so that

µi(z) = M(z, 0)Mrot(−Ωz/c)µi(0) (3.49)

in analogy to equation (3.31) for the beam profile propagation in the rotating frame. In the
special case of propagation over one period, we should take z = 2L. Then the ray transfor-
mation in (3.49) is Mrt, which gives

µi(2L) = eiχiµi(0) . (3.50)

For notational convenience we separate the four-dimensional eigenvectors in their two-dimen-
sional subvectors as

µi(z) =

(
ri(z)
ti(z)

)
. (3.51)

Then we compose two 2×2 matrices out of the column vectors ri(z) and ti(z), by the definition

R(z) ≡ (r1(z), r2(z)) and T(z) ≡ (t1(z), t2(z)) . (3.52)

The relations (3.44) and (3.45) can be summarized as

RTT − TTR = 0 and R†T − T†R = 2i1 (3.53)

in all transverse planes z.
The dependence of the ladder operators on z in the rotating frame is determined by the

requirement that when acting on a rotating solution of the time-dependent paraxial wave
equation, they must produce another solution. In view of equation (3.31), this requirement
takes the form

âi(z) = Û(z, 0)Urot(−Ωz/c)âi(0)U†rot(−Ωz/c)Û†(z, 0) . (3.54)

In the right-hand sides of this equation the propagation operators Û act on the operators
ρ̂ and θ̂. In accordance with the general Ehrenfest relation (3.35), and the relation (3.42),
this gives rise to a product GM−1 = MTG when we substitute the expression (3.46) for the
lowering operator. This leads to the conclusion that the z dependent lowering operator obeys
the relation

âi(z) =

√
k
2
µi(z)G

(
ρ̂

θ̂

)
=

√
k
2
(
ri(z)θ̂ − ti(z)ρ̂

)
(3.55)

for all values of z.
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3.6 Structure of the modes

3.6.1 Algebraic expressions of the modes

The fundamental mode |v00(z)〉 in the rotating frame obeys the requirement that the lowering
operators âi(z) give zero when acting on it for all transverse planes z in the lens guide. An
explicit analytical expression of the normalized mode function as it propagates through the
lens guide can be found after a slight generalization of our results for a stationary cavity
discussed in chapter 2. There we have shown that the fundamental mode can be expressed in
terms of the z dependent eigenvectors, which give rise to the 2×2 matrices R(z) and T(z). For
rotating cavities, the same result applies in the rotating frame, where the time dependence
disappears. In the rotating frame, the beam profile of the fundamental mode is given by the
general Gaussian expression

v00(R, z) = 〈ρ|v00(z)〉 =

√
k

π det R(z)
exp

(
ikρTT(z)R−1(z)ρ

2

)
. (3.56)

From the properties (3.53) of the matrices R and T it follows that the matrix S = −iTR−1

is symmetric. In the intervals between the lenses, the corresponding time-dependent mode
|u00(z, t)〉 = Ûrot(Ωt)|v00(z)〉 obeys the time-dependent paraxial wave equation (3.10), and the
input-output relation for |u00(z, t)〉 across a lens of type 1 or 2 corresponds to the lens operator
Û1(t) or Û2(t) as in equation (3.17).

The periodicity (3.50) of the eigenvectors µi ensures that the matrix S(z) = −iT(z)R−1(z)
is periodic with period 2L. Moreover, the determinant of R picks up a phase factor after one
period, according to the identity

det R(2L) = ei(χ1+χ2) det R(0) . (3.57)

As a result, the fundamental mode (3.56) picks up a phase factor exp(−i(χ1 + χ2)/2) after a
period of the lens guide, or over a cavity round trip.

The higher-order modes |vnm(z)〉 in the rotating frame are obtained from the fundamental
mode by using the z dependent version of (3.48)

|vnm(z)〉 =
1√

n!m!

(
â†1(z)

)n (
â†2(z)

)m |v00(z)〉 . (3.58)

The periodicity (3.50) of the eigenvector is reflected in a similar periodicity of the lowering
operator, in the form

âi(z + 2L) = eiχi âi(z) , (3.59)

which in turn will give rise to a periodicity of the modes in the rotating frame |vnm(z)〉. From
this equation we find that the raising operator gets an additional phase exp(−iχi) after a round
trip. The phase factor picked up by the mode |vnm〉 (or by the time-dependent mode |unm〉) is
therefore specified by the relation

|vnm(2L)〉 = e−iχ1(n+1/2)−iχ2(m+1/2)|vnm(0)〉 . (3.60)
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The resonant wave numbers of the modes follow from the requirement that the complex
electric field

Enm (ρ, z, t) = E0εunm (ρ, z, t) eikz−iωt (3.61)

is periodic over a round trip. This implies that the wave number k of the transverse modes
must obey the identity

2kL − χ1

(
n +

1
2

)
− χ2

(
m +

1
2

)
= 2πq (3.62)

where q ∈ Z is the longitudinal mode index. Note that the round-trip Gouy phases χ1 and
χ2, and thereby the resonant wavelengths are affected by the rotation. This is obvious since
they arise from the eigenvalues of the round-trip ray matrix Mrt, which according to equation
(3.41) contains the angular velocity Ω.

3.6.2 Spectral structure

Just as in equation (3.29), the time-dependent mode as viewed from the (non-rotating) labo-
ratory frame follows from the mode |vnm(z)〉 by a simple rotation, so that:

|unm(z, t)〉 = Ûrot(Ωt)|vnm(z)〉 . (3.63)

The mode function unm(ρ, z, t) = 〈ρ|unm(z, t)〉 is a co-rotating solution of the time-dependent
paraxial wave equation (3.10). Since this mode function depends on time, the electric field
(3.61) is no longer monochromatic. The spectral structure follows directly from the polar
expansion

unm(ρ, z, t) = unm(R, φ −Ωt, z) =
∑

l

gnml(R, z)eil(φ−Ωt) . (3.64)

From this result it is clear that the rotation of a mode converts the lth Fourier component along
the azimuthal angle φ of the spatial distribution to a frequency component ω + lΩ. Since the
fundamental Gaussian mode (3.56) is even under inversion in the transverse plane ρ → −ρ,
the expansion (3.64) for u00 contains only even values of l, so that the fundamental mode only
contains side bands at frequencies ω + 2pΩ with p ∈ Z and ω = ck. The ladder operators âi

are obviously odd under this inversion, so that the modes |unm〉 with even values of n + m only
contain the even sidebands ω + 2pΩ, while the modes with odd values of n + m only contain
the odd sidebands ω + (2p + 1)Ω. The separation between neighboring sidebands is always
equal to 2Ω, which reflects that the cavity returns to an equivalent orientation after a rotation
over an angle of 180◦.

3.6.3 The cavity field

We have unfolded a cavity with rotating mirrors into a lens guide with rotating lenses and
described a method to obtain expressions of the transverse modes that are reproduced after
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each period of the lens guide. In order to obtain an expression of the electric field inside the
cavity, the lens-guide modes must be folded back into the cavity

Ecav(r, t) = Re
{
− iεE0

[
u(ρ, z, t)eikz − u(ρ, 2L − z, t)e−ikz

]
e−iωt

}
(3.65)

for 0 < z < L. In the transverse planes near the two mirrors the two terms between the square
brackets differ by phase factors exp(−ikρTF−1

1,2(t)ρ/2). For z ' 0 and z ' L the electric field
can be expressed as

Ecav(r, t) = 2Re

εE0 f1,2(ρ, t) sin

kz ∓
kρTF−1

1,2ρ

4

 e−iωt

 , (3.66)

where the − and + signs apply near mirror 1 and 2 respectively and f1,2(ρ, t) is the profile in the
imaginary plane halfway the lenses in the lens guide picture. The sine term in equation (3.65)
is the natural generalization of a standing wave to a field with transverse spatial structure. It
shows that the electric field vanishes on the mirror surfaces even if the mode profiles halfway
the mirrors f1,2(ρ, t) have phase structure so that the wave fronts of the field (3.65) do not fit
on the mirror surfaces.

3.7 Spatial symmetries

As discussed in the previous chapter (section 2.5), the lens guide corresponding to a station-
ary two-mirror cavity has inversion symmetry in the imaginary planes halfway the lenses.
Rotation breaks this symmetry and no spatial symmetries remain in the case of a rotating
cavity with general astigmatism. This is different in the case of a rotating cavity with simple
astigmatism. In this section, we give a more formal description of the inversion symmetry of
a stationary cavity as well as of the spatial symmetries associated with simple astigmatism.
We show that both survive in a modified fashion in the case of a rotating cavity with simple
astigmatism.

3.7.1 Inversion symmetry of a stationary cavity

We consider inversion zs + z → zs − z of the lens guide with respect to a given transverse
plane zs. As indicated in figure 3.2, the propagation direction of a ray θ = ∂ρ/∂z picks up a
minus sign under zs + z → zs − z so that the transformation of a ray r T = (ρT, θT) under this
inversion is given by

(
ρ

θ

)
→ N

(
ρ

θ

)
with N =



1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


≡

(
1 0
0 −1

)
. (3.67)

As a result, the inverted transformation corresponding to a ray matrix M takes the following
modified form

NM−1NT = M . (3.68)
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Figure 3.2: Inversion of an optical set-up. When both a ray trajectory and the elements of
which the set-up consists are inverted with respect to some transverse plane zs, the angles ϑx

and ϑy, which specify the propagation direction of a ray, change sign. This is accounted for
by the matrix N as defined in equation (3.67).

If the lens guide has inversion symmetry with respect to the plane z = zs, the ray matrix
Mrt(zs) that describes the transformation of a round trip starting from this plane must be equal
to the corresponding inverted transformation, so that

NM−1
rt (zs)NT = Mrt(zs) . (3.69)

In terms of the eigenvectors µi of the round-trip ray matrix Mrt(zs), this symmetry property
implies that

Mrt(zs)µi(zs) = NM−1
rt (zs)NTµi(zs) = λiµi(zs) , (3.70)

where λi = exp(−iχi) are the corresponding unitary eigenvalues. Using that µ∗i (zs) is an
eigenvector of M−1

rt (zs) with eigenvalue λi, we find that inversion symmetry implies that

Nµi(zs) = µ∗i (zs) . (3.71)

It follows that ri(zs) and R(zs) are real while ti(zs) and T(zs) are purely imaginary. As a result,
both the fundamental mode (3.56) and the ladder operators (3.46) are real in the symmetry
plane so that all modes are real in that plane.

Rotation obviously breaks the inversion symmetry in the transverse planes halfway the
lenses and the round-trip ray matrix in the co-rotating frame (3.41) does not obey the identity
(3.69). As a result the mode profiles halfway the lenses f1,2(ρ, t) are not real in general and
contribute to the phase structure of the cavity field close to the mirrors (3.66).

3.7.2 Simple astigmatism

The lens guide corresponding to a stationary two-mirror cavity with simple astigmatism has
symmetry directions parallel to the mirror axes in all transverse planes. These symmetry
directions arise from the invariance of the cavity under reflections in the planes through the
mirror axes and the cavity axis. In terms of the round-trip ray matrix M(z), this symmetry
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property can be expressed as

QMrt(z)QT = Mrt(z) with Q =



1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


≡

(
Q 0
0 Q

)
. (3.72)

The transformation Q describes a reflection in the xz plane. Similarly, −Q describes a reflec-
tion in yz plane. In terms of the eigenvectors, this invariance (3.72) implies that Qµi(z) = µi(z)
so that QR = R and QT = T. It follows that u(ρ, z) = u(Qρ, z) so that the phase and intensity
patterns of all the modes are aligned along the symmetry directions.

One may show easily that a stationary or rotating cavity with general astigmatism as well
as a rotating cavity with simple astigmatism lacks the symmetry described by equation (3.72).

3.7.3 Rotating cavities with simple astigmatism

Rotation breaks both the inversion symmetry of a stationary cavity (3.69) and the spatial
symmetries arising from simple astigmatism (3.72). As a result, no spatial symmetries remain
in the case of a rotating cavity with general astigmatism. In the special case of a rotating
cavity with simple astigmatism, however, one may prove explicitly that both symmetries
survive when combined with inversion of the rotation direction Ω → −Ω. These statements
can be expressed as

QMrt(z; Ω)QT = Mrt(z;−Ω) , (3.73)

and

NM−1
rt (zs; Ω)NT = Mrt(zs;−Ω) , (3.74)

where zs is an inversion-symmetry plane and Mrt(z;−Ω) is the ray matrix that describes the
transformation of a round trip starting from a transverse plane z. The ray matrix Mrt(z;−Ω)
depends on the rotation frequency Ω according to equation (3.41). Combining equations
(3.73) and (3.74) yields

QNM−1
rt (z; Ω)(QN)T = Mrt(z; Ω) . (3.75)

In terms of the eigenvectors µi(z; Ω) this implies that

QNµi(z; Ω) = µ∗i (z; Ω) , (3.76)

from which we conclude that QR(z; Ω) = R∗(z; Ω) and QT(z; Ω) = −T∗(z; Ω) so that v(Qρ, z) =

v∗(ρ, z). As a result, the intensity patterns |u(ρ, z, t)|2 of the modes of a rotating cavity with
simple astigmatism are aligned along the mirror axes at all times, while the phase patterns
are not.
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3. Twisted light between rotating mirrors

3.8 Orbital angular momentum

In section 2.5.3, we have shown that the twisted boundary conditions that are imposed by a
pair of non-parallel astigmatic mirrors induce orbital angular momentum in the modes of such
a cavity. In the present case of a rotating cavity, we expect the twisted mode propagation in the
rotating frame (3.31) combined with non-isotropic boundary conditions to give rise to orbital
angular momentum as well. In this section we analyze the orbital angular momentum in
rotating cavity modes. We discuss the contribution due to their phase structure and show that
the physical rotation of the mode patterns contributes only in higher-order of δ. As a result
this contribution is significant only in special cases where the orbital angular momentum due
to the mode structure vanishes [19, 20].

The leading-order contribution to the orbital angular momentum per unit length in a
monochromatic paraxial field is given by equation (2.80). The obvious extension of this
result to the present case of polychromatic modes involves a summation over the frequency
components ω + lΩ with l ∈ Z. Substitution of the spectral expansion (3.64) then gives the
following expression for the orbital angular momentum in the rotating cavity modes (3.63)

Lnm =

∞∑

l=−∞

ε0|E0|2
2(ω + lΩ)

∫ 2π

0
dφ

∫ ∞

0
RdR l|gnml(R, z)|2 . (3.77)

Using that the rotation frequency Ω is of the order of δ2 smaller than the optical frequency ω,
the leading-order contribution to the orbital angular momentum can be expressed as

L(0)
nm =

ε0|E0|2
2ω

∞∑

l=−∞

∫ 2π

0
dφ

∫ ∞

0
RdR l|gnml(R, z)|2 = N~〈vnm(z)|ρ̂ × kθ̂|vnm(z)〉 , (3.78)

where the superscript (0) refers to the fact that this contribution is of order 0 in Ω/ω. This con-
tribution obviously has the significance of the orbital angular momentum in the co-rotating
frame and it is due to the spatial phase and intensity structure of the modes. Its dependence
on the rotation frequency Ω can be traced back to fact that the round-trip ray matrix in the
rotating frame (3.41) depends on Ω so that the same is true for the modes |vnm(z)〉. In analogy
with equation (2.81), this result (3.78) can be expressed in terms of the eigenvectors of the
round-trip ray matrix (3.41)

L(0)
nm = N~

{ (
n +

1
2

)
Re

(
r∗1(z) × t1(z)

)
+

(
m +

1
2

)
Re

(
r∗2(z) × t2(z)

)}
, (3.79)

where N = ε0|E0|2/(2~ω) is the number of photons per unit length and ri(z) and ti(z) are
related to the eigenvectors µi(z) of the round-trip ray matrix (3.41) by equations (3.51) and
(3.49). Since free space is isotropic, L(0)

nm is conserved under propagation from one mirror
to the other. In the special case of a rotating cavity with simple astigmatism, the modified
inversion symmetry (3.75) requires that the orbital angular momentum takes the same value
0 < z < L and L < z < 2L so that the modes do not exert a torque on the mirrors. This
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is not true if the cavity has general astigmatism. In that case both the astigmatism and the
rotational deformation of the modes contribute to the orbital angular momentum, which takes
different values in the two intervals of the lens guide. As a result, rotating modes with general
astigmatism do exert a torque on the mirrors. However, also in the general-astigmatic case,
there is net orbital angular momentum in the rotating cavity field. In this respect, rotating
cavity modes with general astigmatism are different from their stationary counterparts.

The next-to-leading-order contribution to the orbital angular momentum is of the order
of Ω/ω ∼ δ2 smaller than the leading order term (3.78). It is non-negligible only in specific
cases where the orbital angular momentum due to the spatial structure of the modes vanishes,
for instance, for reasons of symmetry. It can be expressed as

L(1)
nm = − ε0|E0|2Ω

2ω2

∞∑

l=−∞

∫ 2π

0
dφ

∫ ∞

0
RdR l2|gnml(R, z)|2 . (3.80)

This contribution is due to the fact that the mode patterns unm(z, t) (3.64) in the laboratory
frame rotate as a function of time. This general expression of the orbital angular momentum
in a paraxial mode that does not possess orbital angular momentum in the co-rotating frame,
is a slight generalization of the results in references [19] and [20]. A naive interpretation of
the fact the rotational contribution to the orbital angular momentum is always negative would
be that a light field has a negative moment of inertia. However, even in free space rotation
has significant effects on the spatial and spectral structure of a light field so that it does not at
all resemble a rigid body. As a result the concept of a moment of inertia is ill-defined in this
wave-mechanical context [19, 20].

3.9 Examples

We illustrate some of the physical properties of rotating cavity modes by investigating two
specific examples. We discuss the spatial structure of the intensity patterns of rotating cavity
modes both in case of simple and in case of general astigmatism. The spectral structure
of simple-astigmatic rotating cavity modes is discussed as well. Typical examples of the
dependence of the orbital angular momentum on the rotation frequency are discussed in the
next chapter, while the rotational deformation of the phase structure of optical cavity modes
is discussed in detail in chapter 5.

3.9.1 Rotating simple astigmatism

The simplest realization of a uniformly rotating cavity consists of a stationary spherical and
a rotating astigmatic (or cylindrical) mirror. In the absence of rotation the modes of such a
cavity are astigmatic Hermite-Gaussian modes [12]. A cavity of this type has transverse sym-
metry directions parallel to the mirror axes along which the modes scale differently. Typical
examples of the intensity patterns of astigmatic Hermite-Gaussian modes in the immediate
neighborhood of the mirrors are shown in the upper windows in figure 3.3. Notice that the
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(1, 0) (1, 1) (1, 0) (1,1)

Figure 3.3: Intensity patterns of the (0, 0), (0, 1), (1, 0) and (1, 1) modes of the cavity between
a stationary spherical and a rotating astigmatic mirror for different values of the rotation
frequency Ω. The plots in the left column show the intensity patterns near the spherical
mirror while the plots in right column show the intensity pattern near the astigmatic mirror.
The radius of curvature of the spherical mirror is 4L, where L is the mirror separation. The
radius of curvature of the astigmatic mirror in the horizontal direction of the plot is equal to
2L while its radius of curvature in the vertical direction is 20L. From the top to the bottom
the rotation frequency is increased from Ω = 0 to Ω = cπ/(30L) and Ω = cπ/(6L).
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Figure 3.4: Spectral structure of the (0, 0), (0, 1), (1, 0) and (1, 1) modes of the cavity between
a stationary spherical and rotating astigmatic mirror. The radius of curvature of the spherical
mirror is equal to 4L, where L is the mirror separation and the radii of curvature of the
astigmatic mirror are equal to 2L and 20L respectively. The rotation frequency is equal to
Ω = cπ/(6L).

astigmatism of the intensity patterns is most pronounced on the spherical mirror. This is due
to the fact that the astigmatism of a mirror is visible in the intensity pattern of the reflected
beam only after free propagation over some distance.

If the astigmatic mirror is put into rotation the mode structure changes significantly. This
is shown in the other two windows of figure 3.3. As a result of the rotation, the cavity
is no longer invariant under reflection in the planes through the mirror axes and the cavity
axis. In the special case of simple astigmatism, it is invariant under reflection in these planes
combined with inversion of the rotation direction. As a result, the intensity patterns of the
modes are still aligned along the mirror axes but the phase distributions are not. Rotation
also breaks the inversion symmetry of the corresponding lens guide in the imaginary planes
halfway the mirrors. As a result, the higher-order modes are no longer Hermite-Gaussian
modes but generalized Gaussian modes with a nature in between Hermite- and Laguerre-
Gaussian modes [44]. As a result, phase singularities (optical vortices) appear, which are
best visible in the center of the (0, 1) and (1, 0) modes in figure 3.3.

The spectral structure of the rotating modes is illustrated in figure 3.4. These spectra
show that the modes are confined spectrally and confirm that they only have odd or even
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3. Twisted light between rotating mirrors

frequency components depending on the parity of the total mode number n + m. Due to the
reflection symmetry in the planes through the mirror axes and the cavity axis, the orbital-
angular-momentum spectrum of cavity modes with simple astigmatism is symmetric, i.e.,
gl(ρ) = g−l(ρ) in the absence of rotation. Rotation breaks this symmetry, as is confirmed by
the spectra in figure 3.4.

3.9.2 Rotating general astigmatism

The mode structure becomes significantly more complex if the cavity has general astigma-
tism, which is the case if it consists of two non-aligned astigmatic mirrors. Such a cavity
does not have reflection symmetry planes through the optical axis. In the stationary case,
the corresponding lens guide does have inversion symmetry in the imaginary plane halfway
the lenses so that the higher-order modes close to the mirrors have the nature of astigmatic
Hermite-Gaussian modes. Typical examples of the modes of a stationary astigmatic cavity
with general astigmatism are shown in the upper window of figure 3.5.

At first sight one might guess that physical rotation of the mirrors effectively modifies
their relative orientation so that it can help to reduce the effect of general astigmatism. This
is not the case. The effect of rotation of the mirrors is essentially different from the effect
of general astigmatism. This is illustrated in the lower window of figure 3.5. The rotation
frequency is chosen such that the rotation angle after one round trip is equal but opposite
to the angle between the orientations of the two mirrors. Putting the mirrors into physical
rotation breaks the inversion symmetry so that the modes are no longer Hermite-Gaussian
but generalized Gaussian modes that have general astigmatism. As a result, again, vortices
appear.

3.10 Discussion and conclusion

In this chapter we have derived an algebraic method to obtain explicit expressions of the
paraxial modes of an astigmatic optical cavity that is put into uniform rotation about its optical
axis. Uniform rotation is homogeneous in time so that the explicit time-dependence of a
rotating cavity can be eliminated by a transformation to the co-rotating frame. Its paraxial
modes can then be obtained as solutions of the time-dependent paraxial wave equation (3.10)
that are stationary in the rotating frame, i.e., rotate along with the mirrors in the laboratory
frame. Up to first order of the paraxial approximation, the boundary condition that the electric
field vanishes on the mirror surfaces is not affected by the transformation to the co-rotating
frame. Mixing of the electric and magnetic fields is a second-order, relativistic, effect. The
rotating cavity modes are thus obtained as stationary solutions in the co-rotating frame that
vanish on the mirror surfaces. The regime of validity of the time-dependent paraxial wave
equation provides a natural upper limit for the rotation frequency (3.12).

The method that we have used to derive expressions of the rotating cavity modes gen-
eralizes the ladder-operator method that we have introduced in the previous chapter to this
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time-dependent case. It involves two pairs of bosonic ladder operators that generate a com-
plete and orthogonal set of modes in the rotating frame (3.48). The transformation of the
ladder operators from a reference plane in the co-rotating frame to an arbitrary transverse
plane (3.54) can be expressed in terms of the 4 × 4 ray matrix that describes the linear trans-
formation of a ray through the same system. As a result, the ladder operators that generate the
cavity modes can be constructed from the eigenvectors of the ray matrix for a round trip in
the co-rotating frame (3.41). Just as in the case of a cavity with stationary mirrors, geometric
stability turns out to be the necessary and sufficient condition for the rotating cavity to have
modes. The time-dependent expressions of the the modes |u(z, t)〉 in an external observer’s
frame can be obtained from the corresponding modes in the rotating frame |v(z)〉 by using
equation (3.29).

In the rotating frame, the ray and wave dynamics is modified even though the ray matrices
do not depend on time. In section 3.7, we have studied how rotation modifies the symmetry
properties of a cavity and its modes while rotational effects on their orbital angular momen-
tum were discussed in section 3.8. In section 3.9 we have shown how the mode structure
is affected by rotation for different values of the rotation frequency and that the modes re-
main spectrally confined as well. In the last part of section 3.9 we have studied the interplay
between general astigmatism and rotation. In both cases the cavity no longer has inversion
symmetry so that the higher order modes are generalized Gaussian modes that have a nature
in between Hermite-Gaussian and Laguerre-Gaussian modes with optical vortices.

The mode criterion that we have formulated in this chapter hinges upon the homogeneous
time dependence of a rotating cavity and cannot be generalized to cavities with mirrors that
rotate at different frequencies. In principle one can define the period of such a system by
considering the number of round trips that is needed for both mirrors to return to positions
that are equivalent to their initial positions. Once this period is determined, the method
that we have developed here can be applied to find its modes, provided that the cavity is
geometrically stable at all times. Preliminary numerical calculations, however, suggest that
geometric stability is a heavy requirement in this, non-homogeneous, case.

The set-up that we have discussed in this chapter is hard to realize experimentally. In
section 5.5 we shall discuss several possible routes towards experimental realization of a
set-up that captures the essential optical properties a rotating astigmatic two-mirror cavity.
Moreover, the methods that we have developed here provide a much more general framework
to cope with propagation and retardation in optical set-ups that have elements with time-
dependent settings. The only restriction is that the time-dependent paraxial approximation,
which we have formulated in section 3.2, is justified.
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Figure 3.5: Modes of an optical cavity between two identical but non-aligned rotating astig-
matic mirrors for different rotation frequencies. The mirrors have radii of curvature that are
equal to 2L and 20L. The axes of the right mirror coincide with the horizontal and vertical
directions of the plots while the axes of the left mirror are rotated over an angle −π/3. From
the top to the bottom the rotation frequency is increased from Ω = 0 to Ω = cπ/(6L). The
latter frequency is chosen such that the angle over which the mirrors are rotated after each
round trip is equal but opposite to the angle between the orientations of the two mirrors.
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4
Rotational stabilization and destabilization

of an optical cavity

4.1 Introduction

Stability is a very distinctive property of the dynamics of a physical system. Characteristic for
unstable dynamics is that an arbitrary initial state evolves into a rapidly diverging state. Ex-
amples range from the simple case of a particle on the top of a hill to a wealth of instabilities
that can be observed and characterized in fluids and plasmas. External motion has significant
effects on the dynamics of physical systems and may modify its stability properties. This is
exemplified by the Paul trap [50], or more generally by a time-orbiting potential trap [51],
in which a particle is trapped in an oscillating potential from which it would escape in the
stationary case. The Paul trap is a close analogue of the rotational stabilization of a particle
in a saddle-point potential [52]. Another well-known example of rotational stabilization is
the gyroscope. Similar behavior has also been observed in thermodynamically large systems
such as granular matter [53] and fluids [54].

In recent years, optical cavities with moving elements have become topical. State-of-the-
art experiments focus on opto-mechanical oscillators driven by radiation pressure [55, 56] and
cavity-assisted trapping and cooling [57, 58, 59]. Possible applications range from weak-
force detection [60] to fundamental research on quantum entanglement [61, 62] and deco-
herence [63, 64] on macroscopic scales. In addition to the longitudinal radiation pressure,
electromagnetic fields can exert transverse forces due to their phase structure [65]. A specific
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4. Rotational stabilization and destabilization of an optical cavity

example is the transfer of optical orbital angular momentum [21], which can give rise to a
torque along the propagation axis of the beam. Recently, it has been shown that this torque
can in principle be sufficiently large to trap and cool the rotational degrees of freedom of a
mirror in a cavity-assisted set-up [25]. In this chapter, we focus on the complementary ques-
tion: How does rotation of a mirror affect the optical properties of a cavity and, in particular,
its (in)stability? As such, the work presented here constitutes the first analysis of rotational
effects on stability in optics.

We consider a cavity that consists of two mirrors facing each other. In the standard case
both mirrors are spherical. Depending on their focusing properties, a ray that is coupled into
such a cavity can either be captured, or escape after a finite (and typically small) number of
round trips. In the latter case the cavity is geometrically unstable whereas it is stable in the
former one. The stability criterion for this system can be expressed as [12]

0 < g1g2 < 1 , (4.1)

where g1,2 = 1 − L/R1,2 with R1,2 = 2 f1,2 the radii of curvature of the two mirrors, f1,2 the
corresponding focal lengths and L the mirror separation. The optical properties of unstable
cavities are fundamentally different from those of their stable counterparts [12]. Since a
geometrically stable cavity has the ability to confine light, its modes are spatially confined
and stationary. An unstable cavity, on the other hand, cannot confine light and is intrinsically
lossy even if the mirrors are perfectly reflecting. As a result, the propagation of light inside
an unstable cavity is dominated by diffraction at the sharp edges of the mirrors [66] and its
“modes” are self-similar diverging patterns that have a fractal nature [67]. Instability is a
necessary condition for an optical cavity to display chaotic behavior [68].

We consider rotations about the optical axis of a cavity and expect an effect only if at
least one of the mirrors is astigmatic (or cylindrical), so that the cavity lacks axial symmetry.
In general, both mirrors can be astigmatic with non-parallel axes but, for simplicity, we first
focus on a cavity that consists of a cylindrical (c) and a spherical (s) mirror. The more
general case of a cavity with two astigmatic mirrors is briefly discussed in section 4.4. In the
simple case of a cavity with one spherical and one astigmatic mirror, the curvature of each
mirror can be specified by a single g parameter so that the configuration space, spanned by
gs and gc, is two-dimensional. In the absence of rotation the stability criterion in the plane
through the optical axis in which the cylindrical mirror is curved is of the form of equation
(4.1): 0 < gsgc < 1. In the other perpendicular plane through the cavity axis, in which the
cylindrical mirror is flat, the stability criterion reads: 0 < gs < 1. As is indicated in the
stability diagram in the upper left window in figure 4.1, stable (dark blue) areas appear where
both criteria are met. The cavity is partially stable (light blue) in areas where only one of
the two is fulfilled. When a cavity is partially stable, both a ray that is coupled into it and its
modes are confined in one of the two transverse directions only. One may guess that rotation
disturbs the confinement of the light by the mirrors so that all (partially) stable cavities will
eventually lose stability if the rotation frequency is sufficiently increased. However, we will
show that this is not the case and that rotation has surprisingly rich and distinct effects on the
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stability of a two-mirror cavity.

4.2 Stability of a rotating cavity

In order to describe the diffraction of light inside a rotating cavity, we use the paraxial approx-
imation [45] and its generalization to the time-dependent case [46]. We write the transverse
electric field of a propagating mode as

E(r, t) = Re
{
E0εu(r, t)eikz−iωt

}
, (4.2)

where E0 is the amplitude of the field, ε is the polarization, k is the wave number and ω =

ck is the optical frequency with c the speed of light. The large-scale spatial structure and
slow temporal variations of the electric field are characterized by the complex scalar profile
u(r, t). In lowest order of the paraxial approximation and under the assumption that the time
dependence of the profile is slow compared to the optical time scale, the electric field is purely
transverse and the profile u(r, t) obeys the time-dependent paraxial wave equation

(
∇2
ρ + 2ik

∂

∂z
+

2ik
c
∂

∂t

)
u(r, t) = 0 , (4.3)

with ∇2
ρ = ∂2/∂x2 + ∂2/∂y2. If we omit the derivative with respect to time, this equation

reduces to the standard paraxial wave equation, which describes the diffraction of a freely
propagating stationary paraxial beam. The additional time derivative accounts for the time
dependence of the profile and incorporates retardation between distant transverse planes.

The dynamics of light inside a cavity is governed by the boundary condition that the
electric field vanish on the mirror surfaces. For a rotating cavity, this boundary condition
is explicitly time dependent. This homogeneous time dependence vanishes in a co-rotating
frame where it is sufficient to consider time-independent propagating modes v(r). The trans-
formation that connects v(r) and u(r, t) takes the form

u(r, t) = Ûrot(Ωt)v(r) , (4.4)

where Ω is the rotation frequency and Ûrot(α) = exp(−iαL̂z) is the operator that rotates a
scalar function over an angle α about the z axis with L̂z = −i(x∂/∂y− y∂/∂x) the z component
of the orbital angular momentum operator. Substitution of the rotating mode (4.4) in the
time-dependent wave equation (4.3) gives

(
∇2
ρ + 2ik

∂

∂z
+

2Ωk
c

L̂z

)
v(r) = 0 (4.5)

for v(r). The transformation to a rotating frame gives rise to a Coriolis term, in analogy with
particle mechanics. Since ∇2

ρ and L̂z commute, the formal solution of equation (4.5) can be
expressed as

v(ρ, z) = Ûf(z)Ûrot

(
−Ωz

c

)
v(ρ, 0) ≡ Û(z)v(ρ, 0) , (4.6)
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Figure 4.1: Stable (dark blue), partially stable (light blue) and unstable (white) areas of the
configuration space (gs, gc) for a cavity that consists of a stationary spherical and a rotating
cylindrical mirror, for different rotation frequencies. From left to right and from top to bottom
the rotation frequency is increased in equal steps Ω0/20 from 0 to Ω0/4.

where ρ = (x, y)T and Ûf(z) = exp
( iz

2k∇2
ρ

)
is the unitary operator that describes free propa-

gation of a paraxial beam in a stationary frame. The operator Û(z) has the significance of
the propagator in the rotating frame. The rotation operator arises from the Coriolis term in
equation (4.5) and gives the propagating modes a twisted nature.

The transformation of paraxial modes under propagation and optical elements can be
expressed in terms of a ray (ABCD) matrix [12, 32]. The standard 2 × 2 ray matrices that
describe optical elements with axial symmetry can be found in any textbook on optics. The
ray matrix of a composite system can be constructed by multiplying the ray matrices that
describe the optical elements and the distances of free propagation between them, in the
proper order. Generalization to astigmatic optical elements is straightforward and requires
4 × 4 ray matrices [12]. The ray matrix that describes propagation in a rotating frame is,
analogous to equation (4.6), given by M(z) = Mf(z)Mrot(−Ωz/c), where Mf(z) is the 4× 4 ray
matrix that describes free propagation over a distance z and Mrot(α) is the 4 × 4 ray matrix
that rotates the position ρ and propagation direction θ of a ray r T = (ρT, θT) over an angle α
about the z axis. Starting at the entrance plane of the spherical mirror, the time-independent
ray matrix that describes a round trip through the rotating cavity in the co-rotating frame is

66



4.2 Stability of a rotating cavity

Figure 4.2: Transverse intensity patterns in the co-rotating frame of the (1, 1) mode of cavity
I (top), which is specified by (gs, gc) = ( 3

4 ,
1
2 ) and destabilized by rotation, and cavity II

(bottom), which is specified by (gs, gc) = (− 3
4 ,− 1

2 ) and stabilized by rotation, for increasing
rotation frequencies. From left to right it increases from 0 to 0.166Ω0 for cavity I and from
0.21Ω0 to Ω0/4 for cavity II. The plots show the mode patterns close to the spherical mirror
and the vertical direction corresponds to the direction in which the cylindrical mirror is flat.

then

Mrt = M(L) · Mc · M(L) · Ms , (4.7)

where L is the mirror separation and Ms and Mc are the ray matrices for the spherical and
the cylindrical mirror. They are fully determined by the radii of curvature and the orientation
of the mirrors in the transverse plane. Explicit expressions of these ray matrices are given in
sections 2.2 and 3.5.

Typically, the round-trip ray matrix (4.7) has four distinct time-independent eigenvectors
µi with corresponding eigenvalues λi. In the rotating frame, any time-dependent incident rayr T

0 (t) =
(
ρT(t), θT(t)

)
can be expanded as r 0(t) =

∑
i ai(t)µi. After n times bouncing back and

forth between the mirrors, the ray evolves into r n(t + 2nL/c) =
∑

i ai(t)λn
i µi. The possibly

complex eigenvalues have the significance of the magnification of the eigenvector after one
round trip and it follows that a cavity is stable only if all four eigenvalues have absolute value
1. As shown in chapter 2, the eigenvalues of any physical ray matrix come in pairs λ and λ−1

so that possible deviations from |λ| = 1 appear in two of the four eigenvalues at the same time.
If only two eigenvalues have absolute value 1, the cavity is partially stable. The eigenvalues
of the round-trip ray matrix (4.7) do not depend on the frame of reference, and it follows that
the same is true for the notion of stability.

A ray that is bounced back and forth inside the cavity hits a mirror at time intervals L/c.
Since a rotation over π turns an astigmatic mirror to an equivalent orientation, it follows that
the stability of a cavity is not affected by a change in the rotation frequency Ω → Ω + pΩ0
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4. Rotational stabilization and destabilization of an optical cavity

with integer p and Ω0 = cπ/L. In the present case, in which one of the mirrors is spherical,
a ray hits the cylindrical mirror at time intervals 2L/c so that the eigenvalues λi are periodic
with Ω0/2. Moreover, an astigmatic cavity is not gyrotropic so that the eigenvalues do not
depend on the sign of Ω. It follows that it is sufficient to only consider rotation frequencies
in the range 0 < Ω < Ω0/4.

By using the expression of the ray matrix in the co-rotating frame (4.7) and the stabil-
ity criterion that its eigenvalues must have a unit length, we find the stable, partially stable
and unstable sections in the configuration space (gs, gc) for different values of the rotation fre-
quency. The results are shown in figure 4.1. These plots reveal that, already at relatively small
rotation frequencies, quite drastic changes take place. For instance, near (gs, gc) = (1, 0) sta-
ble configurations are destabilized to become (partially) unstable, while partially stable geo-
metries near the negative gc axis are stabilized by the rotation. An optical cavity can thus both
lose and gain the ability to confine light due to the fact that it rotates. It is noteworthy that
some configurations, for example those with small and positive gs and gc, are first partially
destabilized by rotation, but retrieve stability if the rotation frequency is further increased.
Another remarkable feature of the plots in figure 4.1 is the absence of partially stable areas
in the lower right plot. As we will argue below, this is more generally true for the rotation
frequency Ω0/4. In this specific case, the boundaries of stability are given by the hyperbolas
gc = 1/(2gs) and gc = 1/(2gs − 1) and their asymptotes.

4.3 Signatures of stabilization and destabilization

As discussed in chapter 3, the structure of the modes of a rotating cavity is fully determined
by the eigenvectors µi. The modes are defined as co-rotating solutions of the time-dependent
paraxial wave equation (4.3) that vanish on the mirror surfaces. Geometric stability comes in
as the necessary and sufficient requirement for them to exist. Here, we illustrate the effect of
rotational (de)stabilization on the mode structure by considering two cases of a cavity with a
spherical and a cylindrical mirror. Cavity I is specified by (gs, gc) = ( 3

4 ,
1
2 ). It is stable in the

absence of rotation and destabilized at a rotation frequency Ω = Ω0/6. Cavity II is specified
by the parameter values (gs, gc) = (− 3

4 ,− 1
2 ). It is partially stable in the absence of rotation

and stabilized by rotation at Ω ' 0.2098Ω0. The effect of rotation on the spatial structure of
the modes of cavities I and II is shown in figure 4.2. The upper frames show the transverse
spatial structure on the spherical mirror of the (1, 1) mode of cavity I. From left to right the
rotation frequency increases from 0 to 0.166Ω0 in equal steps. In the absence of rotation
(left frame) the mode is an astigmatic Hermite-Gaussian mode. Due to rotation, the mode is
deformed to a generalized Gaussian mode with a nature in between Hermite-Gaussian and
Laguerre-Gaussian modes [44]. As a result, phase singularities or so-called optical vortices
[14], which are visible as points with zero intensity, appear. For rotation frequencies close
to Ω0/6, the mode loses its confinement in the vertical direction. This reflects the fact that
the cavity approaches a region of partial instability. The lower frames in figure 4.2 show the
intensity pattern on the spherical mirror of the (1, 1) mode of cavity II, which is stabilized
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4.4 Two astigmatic mirrors

by rotation. From left to right the rotation frequency is increased from 0.21Ω0 to 0.25Ω0 in
equal steps. As a result of the rotation we retrieve a mode that is confined in both directions
and is similar to a Hermite-Gaussian mode. Deformation of the mode due to the rotation is
more pronounced for even larger values of the rotation frequency.

Obviously, the horizontal and vertical directions in figure 4.2, which correspond to the
curved and flat directions of the cylindrical mirror, are lines of symmetry. In the special
case of a rotation frequency Ω0/4, the cylindrical mirror is rotated over π/2 after each round
trip so that its orientation is periodic with two round-trip times as a period. This causes the
diagonal lines between the horizontal and vertical directions to be lines of symmetry of the
round-trip ray matrix (4.7) and the intensity patterns. This explains the apparent absence of
astigmatism in the lower right plot of figure 4.2. This additional symmetry also causes the
four eigenvalues λi to have the same absolute value, which explains the absence of partial
stability in the lower right plot of figure 4.1.

Although the intensity patterns of the modes are aligned along the axes of the cylindrical
mirror, their phase patterns are not. These attain a twist that is a signature of orbital angular
momentum [21, 17], proportional to

∫
dρv∗(ρ, z)L̂zv(ρ, z). The dependence of this orbital

angular momentum in the (1, 1) mode of cavity I on the rotation frequency is shown in figure
4.3 (left plot). The orbital angular momentum shows a divergence at Ω0/6, which arises from
the induced instability of the cavity. The opposite happens for cavity II (right plot), which is
stabilized by rotation. In this case the orbital angular momentum decreases with increasing
rotation frequencies and eventually vanishes for Ω = Ω0/4 due to the additional symmetry
at this specific rotation frequency. The vanishing orbital angular momentum does not imply
that there is no vorticity in the modes at this rotation frequency. The two contributions to the
orbital angular momentum add up to zero for modes with two equal mode numbers.

4.4 Two astigmatic mirrors

Some features of the set-up that we have discussed so far are specific for the relatively simple
geometry we have looked at. In particular, the plots in figure 4.1 show that no cavity with
one spherical and one cylindrical mirror that is unstable in the absence of rotation can be
(partially) stabilized by rotation. This is different in more general cases. As an example,
we consider a cavity with two astigmatic mirrors. We take one of the radii of curvature of
each of the mirrors fixed while we vary the others. In this case the corresponding parameter
space, spanned by the g parameters corresponding to the varying radii of curvature, is again
two-dimensional. The radii of curvature are chosen such that the g parameters are given by
(3/4, g1) for mirror 1 and (g2, 3/4) for mirror 2. The alignment of the mirrors is such that the
g1 direction of mirror 1 is parallel to the 3/4 direction of mirror 2 (and vice versa) so that
the cavity has simple astigmatism. In the absence of rotation each of the symmetry planes
through the mirror axes and the cavity axis can be considered as a cavity with two spherical
mirrors. The corresponding stability criteria are given by 0 < 3g1/4 < 1 for one symmetry
plane and 0 < 3g2/4 < 1 for the other. As is indicated in the upper left window in figure 4.4,
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Figure 4.3: Dependence on the rotation frequency of the orbital angular momentum per
photon in the (1, 1) mode of cavity I (left), which is destabilized by rotation, and cavity II
(right), which is stabilized by rotation.

these criteria are met in strips in the configuration space (g1, g2). A cavity with two astigmatic
mirrors lacks the additional symmetry at Ω0/4 so that we need to consider rotation frequen-
cies in the range 0 < Ω < Ω0/2. As the other windows in figure 4.4 reveal, again rotation
has profound effects on the (in)stability of the cavity. One of the striking differences with the
plots in figure 4.1 is that some unstable geometries, in particular close to (g1, g2) = (1, 1) are
fully stabilized by rotation at relatively small values of the rotation frequency. At the specific
value of the rotation frequency Ω0/2, the mirrors are rotated over π/2 while the light propa-
gates from one mirror to the other. From the stability point of view, this situation is equivalent
to the case in which the mirrors are in the anti-parallel alignment and non-rotating. In that
case, the stability criteria can be expressed as 0 < g1g2 < 1, which gives rise to hyperbolic
boundaries of stability, and 0 < 9/16 < 1, which is always fulfilled. As a result the cav-
ity is partially stable in all cases and fully stable between the hyperbola g1 = 1/g2 and the
g1 = 0 and g2 = 0 axes in the configuration space. This is confirmed by the stability diagram
in the lower right window in figure 4.4. As a result of the fact that all geometries are (at
least) partially stable at the rotation frequency Ω0/2, there is a strange discontinuity in the
stability diagrams. Here, it occurs at Ω ' 0.27Ω0. At this value of the rotation frequency
many unstable geometries are suddenly partially stabilized while stable geometries are fully
destabilized. Partially stable configurations are both stabilized to become stable and destabi-
lized to become unstable. However, no configurations are stable through this sharp transition,
which, physically speaking, corresponds to the boundary between “similar to anti-parallel
alignment” and “similar to parallel alignment” of the mirrors.
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Figure 4.4: Stable (dark blue), partially stable (light blue) and unstable (white) areas of the
configuration space (g1, g2) for a cavity that consists of two astigmatic mirrors, for different
rotation frequencies. The g parameters corresponding to the radii of curvature of mirror 1 are
given by (3/4, g1) while the g parameters for mirror 2 are given by (g2, 3/4). From left to
right and from top to bottom the rotation frequency is increased in equal steps Ω0/20 from 0
to Ω0/4.

4.5 Conclusion

We have investigated rotationally induced transitions between the areas of stability and partial
instability of an astigmatic two-mirror cavity. This is the first example of an optical system
where stability can be induced or removed by rotation. Mechanical systems with dynamical
stabilization are the Paul trap and the gyroscope. The most obvious signatures of rotational
(de)stabilization are the modification of the mode confinement and the divergence of the or-
bital angular momentum, discussed in section 4.3 and respectively shown in figures 4.2 and
4.3. The spatial structure of the rotating cavity modes may be difficult to measure, but since
their orbital angular momentum components appear at different frequencies due to the rota-
tional Doppler shift [48, 69], it should be possible to resolve the divergence of the orbital
angular momentum spectroscopically. The effects of transverse rotations on the optical prop-
erties of a cavity are significantly more complex than the resonance shifts that are associated
with small longitudinal displacements of the mirrors. This may have important consequences
in cavity-assisted opto-mechanical experiments in which the rotational degrees of freedom of
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4. Rotational stabilization and destabilization of an optical cavity

a mirror are addressed.
Although the set-up that we have studied here is rather specific, our method, which is ex-

act in the paraxial limit, can be applied to more complex optical systems. Moreover, it should
also be applicable to other, mathematically similar, wave-mechanical systems. Examples in-
clude the quantum-mechanical description of a particle in a rotating, partially stable potential
and rotating acoustical cavities. In particular, the modification of the mode confinement and
the rotationally induced angular momentum are expected to have analogues in such systems.
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5
Rotationally induced vortices in optical

cavity modes

5.1 Introduction

Rotation is a very natural source of vorticity: when a glass of water is stirred, a vortex appears
at the center. Such a vortex is a singularity of the water current and it is of the same type as
the vortex that appears above a sink. When a glass of water is put into uniform rotation,
for instance by placing it on a turntable, the water current vanishes at the rotation axis but
is not singular. It has been known for over half a century that this is different in case of a
superfluid [70]. Due to the zero viscosity of, and the vortex quantization in, a superfluid,
uniform rotations induce a regular pattern of equally charged vortices. Vortices appear only
if the rotation frequency exceeds a certain critical value and their number increases if the
rotation frequency is further increased. Eventually rotation may destabilize the superfluid.
More recently, similar experiments have been performed with Bose-Einstein condensates of
dilute gases both by optically stirring the condensate [71] and by trapping it in a rotating
elliptical potential [72].

During the past decades, optical vortices and their propagation have attracted a significant
amount of attention [73, 74, 75, 76, 77, 78]. An optical vortex is a singularity of the phase
of an optical beam and is characterized by its position in the transverse plane, its topological
charge and its morphology. The vortex charge is determined by the total phase change 2πq
along a contour around the vortex center and must be integer for reasons of continuity. As
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5. Rotationally induced vortices in optical cavity modes

opposed to the vortices that appear in superfluids and Bose-Einstein condensates, optical
vortices can be elliptical; their morphology is characterized by the partial derivatives of the
beam profile close to the vortex center and can be represented by a point on a sphere [79].
The polar angle on the sphere determines the degree of ellipticity while the azimuthal angle
fixes the orientation in the transverse plane. The interplay between astigmatism and the
propagation of optical vortices may give rise to very rich behavior [80, 81, 82]. The dynamics
of optical vortices in a laser cavity has also been studied [83].

In view of the recent interest in effects of rotating elements on optical beams [69] and
the physical properties of rotating mode patterns [19, 20], the above-mentioned examples
of rotationally induced vortices in material systems raise the question if and how rotation
induces vorticity in light fields [84]. In this chapter we address this topic by studying the
optical properties of a two-mirror cavity that is put into rotation about its optical axis. This
set-up is schematically drawn in figure 5.1. We expect an effect of rotation only if the cavity
lacks rotational symmetry. In analogy with the rotating elliptical potential in which Bose-
Einstein condensates can be trapped, we break the rotational symmetry by taking at least one
of the mirrors cylindrical or astigmatic. In the absence of rotation, such a cavity has astigmatic
Hermite-Gaussian modes [12], which have lines of zero intensity (line dislocations) in the
transverse plane. We show that rotation deforms the cavity modes into generalized Gaussian
modes [44] and that the line dislocations are deformed into optical vortices (point singularities
in the transverse plane). We study the properties of these rotationally induced optical vortices.

This chapter is organized as follows. In the next section we briefly review the propa-
gation of optical fields through time-dependent systems, focus on the specific case of a ro-
tating astigmatic cavity and summarize the ladder-operator method that we have introduced
in chapter 3. In the third section, we characterize the degrees of freedom associated with
the astigmatism and vorticity of the rotating cavity modes and apply the analogy with the
quantum-mechanical harmonic oscillator to derive analytical expressions of the rotating cav-
ity modes. These are used to discuss some general properties of the vortices that appear in
these modes. In the fourth section we show and discuss some explicit results for a specific
realization of a uniformly rotating two-mirror cavity.

5.2 Paraxial wave optics between rotating mirrors

5.2.1 Mode propagation in a rotating cavity

The mathematical description of the propagation of light through optical systems simplifies
significantly if the paraxial approximation is applied. This approximation is almost always
justified in experimental set-ups with optical beams. In the present case of a rotating cavity,
we must account for effects that arise from the time dependence of the mirror settings. As-
suming that the rotation frequency Ω is much smaller than the optical frequency ω, we use
the generalization of the paraxial approximation to the time-dependent case [46]. In this ap-
proximation, the electric field is purely transverse. For a propagating mode it can be written
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5.2 Paraxial wave optics between rotating mirrors

as
E(r, t) = Re

{
E0εu(r, t)eikz−iωt

}
, (5.1)

where E0 is the amplitude of the field, ε is the transverse polarization, k is the wave number
and ω = ck is the optical frequency with c the speed of light. The complex scalar profile
u(r, t) characterizes the large-scale spatial structure and slow temporal variations of the field.
It obeys the time-dependent paraxial wave equation

(
∇2
ρ + 2ik

∂

∂z
+

2ik
c
∂

∂t

)
u(ρ, z, t) = 0 , (5.2)

with ρ = (x, y)T and ∇2
ρ = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplacian. If we omit the

derivative with respect to time, this equation reduces to the standard paraxial wave equation,
which has the same form as the Schrödinger equation for a free particle in two dimensions, z
playing the role of time. It describes the diffraction of a freely propagating stationary paraxial
beam. The time derivative in equation (5.2) accounts for the time dependence of the profile
and incorporates retardation between distant transverse planes.

In addition to diffraction, the propagation of the light inside a cavity is governed by the
boundary condition that the electric field must vanish on the mirror surfaces. In case of
a rotating cavity this boundary condition is explicitly time dependent. A natural way to
eliminate this time dependence is by transforming to a co-rotating frame, where it is sufficient
to consider the behavior of time-independent propagating modes v(r). The transformation
that connects the profile in the rotating frame to the profile in the stationary frame can be
expressed as

u(ρ, z, t) = Ûrot(Ωt)v(ρ, z) , (5.3)

where Ω is the rotation frequency and Ûrot(α) = exp(−iαL̂z) is the operator that rotates a
scalar function over an angle α about the z axis with L̂z = −i(x∂/∂y− y∂/∂x) the z component
of the orbital angular momentum operator. Substitution of the rotating mode (5.3) in the
time-dependent paraxial wave equation (5.2) yields the wave equation for v(ρ, z)

(
∇2
ρ + 2ik

∂

∂z
+

2Ωk
c

L̂z

)
v(ρ, z) = 0 . (5.4)

In the rotating frame, the retardation term is replaced by a Coriolis term, which is familiar
from particle mechanics. Since ∇ρ and L̂z commute, the formal solution of the paraxial wave
equation in the rotating frame (5.4) can be expressed as

v(ρ, z) = Ûf(z)Ûrot

(
−Ωz

c

)
v(ρ, 0) ≡ Û(z)v(ρ, 0) , (5.5)

where Ûf(z) = exp
( iz

2k∇2
ρ

)
is the propagator corresponding to the time-independent paraxial

wave equation and describes free propagation of a paraxial beam in a stationary frame. The
operator Û(z) has the significance of the propagator in the rotating frame. The rotation oper-
ator arises from the Coriolis term in equation (5.4) and gives the propagating modes a twisted
nature.
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Figure 5.1: Schematic plot of the set-up that we study in this chapter: an astigmatic two-
mirror cavity that is put into rotation about its optical axis. The rotation frequency is denoted
Ω and z0 indicates the transverse reference plane.

5.2.2 The modes of a rotating cavity

In a stationary cavity, modes are usually defined as stationary solutions of the time-dependent
paraxial wave equation (5.2) that vanish on the mirror surfaces [12]. The transverse profiles of
these modes are reproduced after each round trip up to a Gouy phase factor exp(−iχ), which
determines the resonant wave numbers. From equation (5.1) it follows that the electric field
picks up a phase 2kL − χ, where L is the mirror separation, after each round trip so that the
resonance condition reads 2kL − χ = 2πq with q ∈ Z. The necessary and sufficient condition
for a stationary cavity to have long-lived modes is that it is geometrically stable, i.e., that the
round-trip Gouy phases χ are real so that the magnification | exp(−iχ)| is equal to 1.

Since a rotating cavity is time-dependent, we cannot expect time-independent modes in
this case. A natural and continuous generalization of the mode criterion to the rotating case
is to require that the modes adopt the time-dependence of the cavity, i.e., that they rotate
along with the mirrors. These modes are time-independent in the co-rotating frame so that
they obey equation (5.4) and vanish on the mirror surfaces. As discussed in the previous
chapter, the interplay between rotation and stability gives rise to surprisingly rich behavior,
but geometrically stable rotating two-mirror cavities exist. In chapter 3, we have derived an
analytical-algebraic method to find explicit expressions of their modes. The method involves
two pairs of bosonic ladder operators in the spirit of the quantum-mechanical harmonic os-
cillator that generate a complete and orthogonal set of cavity modes. In a given transverse
reference plane, which we take close to the first mirror and denote by z = z0 as is indicated in
figure 5.1 the profiles of the cavity modes can be expressed as

vnm(ρ, z0) =
1√

n!m!

(
â†1(z0)

)n (
â†2(z0)

)m
v00(ρ, z0) , (5.6)

where â†1(z0) and â†2(z0) are the two raising operators in the reference plane. The fundamen-
tal mode v00(z0) is fixed up to a phase factor by the requirement that acting on it with the
corresponding lowering operators must give zero, i.e., â1(z0)v00(z0) = â2(z0)v00(z0) = 0. The
ladder operators are linear combinations of the position operators ρ̂ = (x, y) and the conjugate
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momentum operators kθ̂ = −i∇ρ with k the wave number of the mode. The expectation val-
ues 〈v|ρ̂|v〉 and 〈v|θ̂|v〉 have the significance of the average transverse position and the average
propagation direction of the beam. The position and propagation direction operators obey
canonical commutation relations [ρ̂i, kθ̂ j] = iδi j, where the indices i and j run over x and y
and with δi j the Kronecker delta function. In the reference plane z0 the lowering operators
can be expressed as

âi(z0) =

√
k
2

(
rT

i (z0)θ̂ − tT
i (z0)ρ̂

)
, (5.7)

where the index i runs over 1 and 2. The complex vectors ti(z0) and ri(z0) have two compo-
nents and are chosen such that µT

i = (rT
i , t

T
i ) is an eigenvector of the round-trip ray matrix in

the co-rotating frame. In the present case of an astigmatic optical cavity, this is a real 4 × 4
matrix, which can be expressed as

Mrt = M1 · M(L) · M2 · M(L) , (5.8)

where M(z) = Mf(z) · Mrot(−Ωz/c) is the ray matrix that corresponds to Û(z) and describes
free propagation in the co-rotating frame, Mf(z) is the ray matrix that describes propagation
in a stationary frame and Mrot(α) is the ray matrix that describes a rotation over an angle α
in the transverse plane. The ray matrices M1,2 describe the mirrors 1 and 2 respectively and
are fully determined by their radii of curvature and orientation in the transverse plane. These
ray matrices are the generalizations to the astigmatic case of the standard 2 × 2 ray matrices,
which can be found in any textbook on optics. Explicit expressions of the 4 × 4 ray matrices
are given in section 3.5.

As opposed to the unitary propagator Û(z) and the rotation operator Ûrot(α), which act in
the Hilbert space of transverse modes, ray matrices describe real linear transformations in the
transverse phase space (ρ, θ). Formally speaking, this phase space is a symplectic manifold
and the real and linear transformations that preserve its mathematical structure form the real
symplectic group S p(R, 4). Symplectic groups and various physically relevant aspects of
symplectic geometry have been studied in detail, see, for instance, reference [39]. The ladder
operators act in the mode space, but since they are constructed from the ray vectors µT

i =

(rT
i , t

T
i ) and transform accordingly, the algebraic properties of the round-trip ray matrix (5.8)

are essential for the ladder operator approach to be applicable. From these properties, it
follows that its eigenvalues are either real or pairwise complex conjugate phase factors. The
rotating cavity is geometrically stable only in the latter case. In this case, the corresponding
pairwise complex conjugate eigenvectors µT

1,2 = (rT
i , t

T
i ) and µ†i = (r†i , t

†
i ) can be chosen such

that
rT

i (z0)t j(z0) − tT
i (z0)r j(z0) = 0 , (5.9)

and
r†i (z0)t j(z0) − t†i (z0)r j(z0) = 2iδi j , (5.10)

where the indices i and j take the values 1 and 2. The complex conjugate eigenvectors µ†1,2
generate the raising operators â†1,2 according to equation (5.7) and the special properties of the
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eigenvectors (5.9) and 5.10) guarantee that the ladder operators obey bosonic commutation
relations

[ai(z0), a j(z0)] = 0 and [âi(z0), â†j (z0)] = δi j , (5.11)

where the indices i and j run over 1 and 2, so that the modes (5.6) form a complete and
orthonormal set in the transverse reference plane.

The four eigenvalues of the round-trip ray matrix (5.8) can be written as exp(iχ1,2) and
exp(−iχ1,2), where χ1,2 are the round-trip Gouy phases that are picked up by the lowering
operators. They determine the resonant wave numbers for the (n,m) cavity mode according
to

2kL − χ1

(
n +

1
2

)
− χ2

(
m +

1
2

)
= 2πq , (5.12)

where q ∈ Z is the longitudinal mode index.
The ladder operators that generate the rotating cavity modes in an arbitrary transverse

plane inside the cavity can be constructed according to equation (5.7) and its hermitian con-
jugate by using that the z dependent eigenvectors µT

i (z) =
(
rT

i (z), tT
i (z)

)
are given by

(
ri(z)
ti(z)

)
= M(z − z0)

(
ri(z0)
ti(z0)

)
. (5.13)

The properties given by equations (5.9) and (5.10) are preserved under this transformation
so that the ladder operators obey the bosonic commutation relations (5.11) in all transverse
planes.

So far, we have considered only the mode that propagates from left to right (from mirror
1 to mirror 2 in figure 5.1). By using the ray matrix that describes one of the mirrors (say
mirror 2), one can construct the ladder operators that generate the modes that propagate in
the opposite direction

(
r←i (z)
t←i (z)

)
= M(z0 + L − z) · M2 · M(z0 + L − z)

(
r→i (z)
t→i (z)

)
. (5.14)

The actual field inside the cavity is a linear combination of the left and right propagating
modes and can be expressed as

Enm(r, t) = Re
{
− iE0ε

(
v→nm(ρ, z)eikz−iωt − v←nm(ρ, z)e−ikz−iωt)} , (5.15)

where the minus sign accounts for the fact that a mode changes sign when it is reflected by
a mirror. In the rest of this chapter, we focus on the mode profile vnm(ρ, z) rather than on
the actual cavity field (5.15), since this is the profile that would be measured in any realistic
experiment. The expressions of the modes that we have given in this section hold in the co-
rotating frame, the corresponding expressions of the rotating mode patterns unm(ρ, z, t) in the
stationary frame can be obtained by applying equation (5.3).
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Figure 5.2: The Hermite-Laguerre sphere, which describes the degrees of freedom associated
with the nature of higher-order paraxial optical modes. Each point (ϕHL, ϑHL) corresponds
to a complete and orthonormal set of modes; the poles (ϑHL = 0, π) correspond to Laguerre-
Gaussian modes while points on the equator (ϑHL = π/2) correspond to Hermite-Gaussian
modes. Intermediate values of the polar angle ϑHL give rise to generalized Gaussian modes.
The azimuthal angle ϕHL determines the orientation of the higher-order mode patterns in the
transverse plane.

5.3 Ladder operators and vortices

5.3.1 Analytical expressions of the modes

In order to derive more explicit expressions of the rotating cavity modes (5.6), we combine
the vectors r1,2 and t1,2 in two matrices, which are defined as

R(z) =
(
r1(z), r2(z)

)
and T(z) =

(
t1(z), t2(z)

)
, (5.16)

The special properties (5.9) and (5.10) can then be summarized as

RTT − TTR = 0 and R†T − T†R = 2i1 . (5.17)

As was mentioned already, the fundamental mode v00(ρ, z) is fixed by the requirement that
acting on it with both lowering operators must give 0. The two first order differential equa-
tions that are thus obtained have the solution

v00(ρ, z) =

√
k

π det R(z)
exp

(
−kρTS(z)ρ

2

)
, (5.18)

where S = −iTR−1 is a 2×2 matrix. It makes sense to decompose S into its real and imaginary
parts S = Sr + iSi. The matrices Sr and Si, respectively, characterize the astigmatism of the
Gaussian intensity and phase patterns. From the properties of R and T (5.17) it can be shown
easily that S is symmetric and that its real part Sr is positive definite so that the mode profile
is square-integrable. The profile in equation (5.18) has been normalized properly. In order to
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characterize the other degrees of freedom, it is convenient to rewrite the z dependent lowering
operators (5.7) as

(
â1(z)
â2(z)

)
=

√
k
2

(
RT(z)θ̂ − TT(z)ρ̂

)
=

√
k
2

RT(z)
(
θ̂ − iS(z)ρ̂

)
. (5.19)

By using equation (5.17) we find that RR† = S−1
r so that RT(z) can be written as σ(z)S(z)−1/2

r ,
where σ is a unitary 2 × 2 matrix. Notice that Sr is real, symmetric and positive definite so
that S−1/2

r is well defined. By making use of the operator identity eABe−A = B + [A, B] +
1
2! [[A, [A, B]] + ... and the canonical commutation relations [ρ̂, kθ̂] = iδi j we find that

Siρ̂ + θ̂ = e−ikρSiρ/2θ̂eikρSiρ/2 (5.20)

so that the z dependent lowering operators can be expressed as

(
â1

â2

)
= −i

√
k
2
σe−ikρSiρ/2

(
S1/2

r ρ̂ + iS−1/2
r θ̂

)
eikρSiρ/2 . (5.21)

By introducing real scaled coordinates ρ′ =
√

kS1/2
r ρ that account for the astigmatism of the

intensity pattern, the product of
√

k/2 and the linear combination of ρ̂ and θ̂ between the
brackets takes the form of the lowering operators of a dimensionless quantum-mechanical
harmonic oscillator in two dimensions. From right to left, both the z dependent lowering
operators (5.21) and the corresponding raising operators â†1,2 first remove the curved wave
front, then modify the mode pattern and eventually restore the wave front again. The uni-
tary matrix σ describes the additional degrees of freedom, which characterize the nature and
orientation of the higher-order modes. Overall phase factors in the rows of σ do not affect
the mode structure in a given transverse plane z and without loss of generality we can fix its
determinant such that σ ∈ S U(2). Since σ is unitary, its rows are not independent and we
can write

σ =

(
σx σy

−σ∗y σ∗x

)
, (5.22)

with |σx|2 + |σy|2. In complete analogy with the Poincaré sphere for polarization vectors (or
the Bloch sphere for spin-1/2 states) the degrees of freedom associated with the complex
vector (σx, σy) can be mapped onto the so-called Hermite-Laguerre sphere [17]. As is in-
dicated in figure 5.2, every point on the sphere corresponds to two pairs of bosonic ladder
operators that generate a complete set of higher-order modes. In this respect, it is different
from the Poincaré and Bloch spheres, on which every point corresponds to a single state.
The poles on the Hermite-Laguerre sphere correspond with (σx, σy) = (1,±i)/

√
2 and yield

ladder operators that generate Laguerre-Gaussian modes. Points on the equator correspond
to (σx, σy) = (cosϕHL, sinϕHL) and give rise to Hermite-Gaussian modes. Intermediate val-
ues of the polar angle 0 < ϑHL < π/2 correspond to generalized Gaussian modes [44]. The
azimuthal angle ϕHL fixes the orientation of the higher-order mode patterns in the transverse
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5.3 Ladder operators and vortices

Figure 5.3: A stationary cavity with simple astigmatism is equivalent to its mirror image (the
dashed line indicates the mirror plane). Since the rotation direction changes sign under this
reflection, rotation breaks this symmetry.

plane. The rows of σ (5.22) correspond to antipodal points on the sphere so that it is, strictly
speaking, sufficient to consider one of the hemispheres only. In general, the separation of
the degrees of freedom in terms of the symmetric matrix S, which characterizes the astig-
matism, and the unitary matrix σ, which determines the nature of the higher order modes, is
local in the sense that it only holds in a single transverse plane z. The evolution of σ under
propagation and optical elements depends on the astigmatism and vice versa.

Using the defining identity of the Hermite polynomials Hn(x) exp(−x2/2) =

(x − ∂
∂x )n exp(−x2/2) and the binomial expansion (a + b)n =

∑n
p=0

(
n
p

)
apbn−p for [a, b] = 0

the normalized higher order modes can be expressed as

vnm(ρ′, z) =


k
(

det Sr
)1/2

π


1/2

exp
−ρ

′(1 + iS−1/2
r SiS

−1/2
r )ρ′

2

 ×
n∑

p=0

m∑

q=0

(
n
p

)(
m
q

)
(i)n+m (

σ∗x′
)p

(
σy′

)q (
σ∗y′

)n−p
(σx′)m−q × Hk+l(x′)Hn+m−k−l(y′) , (5.23)

where ρ′ = (x′, y′)T are the scaled coordinates that account for the astigmatism of the in-
tensity patterns. The above expression holds in the co-rotating frame. The corresponding
expression for the rotating modes unm(ρ′, z, t) in the stationary frame, can be obtained by
applying equation (5.3).

5.3.2 Vortices in higher order modes

As discussed in section 3.7, a stationary two-mirror cavity has inversion symmetry in the
imaginary transverse planes halfway the lenses of the corresponding lens guide. In case of a
cavity with simple astigmatism, the symmetry property (3.72) is equivalent to the statement
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Figure 5.4: Intensity and false-color phase patterns of the first few modes of an optical
cavity consisting of a spherical and a stationary (left) and rotating (right) cylindrical mirror.
The radius of curvature of the spherical mirror is equal to 4L, with L the mirror separation.
The radius of curvature of the cylindrical mirror is equal to 2L. The plots show the mode
patterns in the co-rotating frame close to the spherical mirror. The cylindrical mirror is flat
in the vertical direction. In the right plots, the rotation frequency is equal to Ω0/10 with
Ω0 = cπ/L. The color code used to plot the phase patterns is periodic; from 0 to 2π the color
changes in a continuous fashion from red via yellow, green, blue and purple back to red.
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Figure 5.5: Dependence on the rotation frequency Ω of the polar angle ϑHL on the Hermite-
Laguerre sphere for a cavity consisting of a spherical and a rotating cylindrical mirror. The
characterization of the modes in terms of (ϕHL, ϑHL) is local and the plot specifies the nature
of the higher-order modes in the transverse plane close to the spherical mirror.

that a stationary cavity must have the same modes as its mirror image, as illustrated in figure
5.3, where the mirror plane is parallel to one of the planes through the mirror axes and the
cavity axis. This symmetry implies that the cavity modes are real apart from the overall
curved wave fronts. This symmetry property holds for modes of all order so that the higher
order modes are Hermite-Gaussian. Hermite-Gaussian modes do have line dislocations (lines
across which the phase jumps by π) in the transverse plane, but do not have vortices. As
discussed in section 3.7, the inversion symmetry in case of a stationary cavity with general
astigmatism is more subtle. In that case, the cavity modes are real only in the immediate
neighborhood of the mirrors.

Rotation obviously breaks the inversion symmetry of a stationary cavity. As a result, the
modes of a rotating cavity have additional phase structure. The fundamental mode attains
a twist; although the electric field vanishes on the mirror surfaces, its wave fronts do not
fit their local curvature. From equation (5.18), it is clear that no vortices can appear in the
fundamental mode. Vortices appear as zeros of the polynomial part of the profile of the higher
order modes (5.23). Due to the rotation of the cavity, the line dislocations in the higher-order
Hermite-Gaussian modes are deformed into elliptical vortices.

From the fact that σ (5.22) is a unitary matrix, it follows that the two raising operators
â†1,2 generate vortices with opposite charge. As a result, the vortices that appear at the center
of the v01 and v10 modes have equal but opposite topological charges ±1. Since both vortices
are spherical (canonical) in the scaled coordinates, their morphologies are determined only
by the astigmatism of the intensity pattern. In general, the raising operators split, displace and
introduce vortices in the cavity modes so that the vortex pattern in the higher-order modes
(5.23) can be very complicated. More explicit expressions have been given only in limiting
cases [80, 81].

The fundamental mode contains only even powers of the position coordinates ρ = (x, y)T
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5. Rotationally induced vortices in optical cavity modes

and is even under inversion in the transverse plane: ρ→ −ρ. The ladder operators are linear in
the position and propagation-direction operators and are obviously odd under this inversion.
It follows that the rotating cavity modes (5.23) are even or odd, depending on the parity of
the total mode number n + m. Odd modes have a vortex at the center of the mode patterns,
whereas even modes, in general, do not.

5.4 Examples

In this section we illustrate the rotational effects on the structure of two-mirror cavity modes
by further investigating a specific example. We focus on a cavity consisting of a stationary
spherical and a rotating cylindrical mirror, which is the simplest realization of a uniformly
rotating two-mirror cavity. The radius of curvature of the spherical mirror is taken as 4L, with
L the mirror separation while the radius of curvature of the cylindrical mirror is chosen as 2L.
This cavity is geometrically stable for rotation frequencies up to Ω0/6, where Ω0 = cπ/L
with c the speed of light, is the frequency corresponding to the cavity round-trip time.

In the absence of rotation, the modes unm(ρ, z) of the cavity are defined as the station-
ary solutions of the time-dependent paraxial wave equation (5.2) that vanish on both mirror
surfaces. The transverse intensity and phase patterns close to the spherical mirror of the
zeroth, first and second order modes of the cavity are plotted in the left column of figure
5.4. Although the astigmatism is different in other transverse planes (in particular close to
the cylindrical mirror), the modes are Hermite-Gaussian everywhere. Their phase structure
clearly reflects the fact that the wave fronts fit the curvature of the (spherical) mirror. The
phase structure of the higher-order modes reveals phase jumps of π (sign changes), which
appear along horizontal and vertical lines in the transverse plane and arise from the Hermite-
polynomials in equation (5.23). Although these line dislocations are not visible in the inten-
sity patterns, they are physical and can be observed interferometrically.

If the cylindrical mirror is put into rotation, the mode structure changes significantly. The
modes of a rotating cavity are defined as co-rotating solutions of equation (5.2), or equiva-
lently solutions of equation (5.4), that vanish on the mirror surfaces. In the co-rotating frame,
propagating modes attain a twist due to retardation, which is accounted for by the Coriolis
term in equation (5.4). The effect of rotation on the intensity and phase patterns of the zeroth,
first and second order cavity modes is illustrated in the right column of figure 5.4, for which
the rotation frequency is equal to Ω0/10. The mode patterns are clearly affected by rotation.
The intensity patterns become more similar to Laguerre-Gaussian modes and have obviously
the structure of generalized Gaussian modes. Although the electric field vanishes on the mir-
ror surface, the wave fronts no longer fit its curvature. This is most apparent in case of the
fundamental mode v00(ρ, z), where the curves of constant phase close to the spherical mirror
have become elliptical. The non-parallel orientation of the elliptical intensity and phase pat-
terns of the fundamental mode v00(ρ, z) reflects its twisted nature. The higher-order modes
also attain a twist. Moreover, vortices appear in their phase patterns. The results confirm that
the vortices in the v01(ρ, z) and v10(ρ, z) have opposite charges and that only modes with odd
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n + m have a vortex at the center. In the modes with equal mode numbers n and m, vortices
appear in pairs of equal but opposite charge so that the total vortex charge is equal to zero.
As a result, the curves of constant phase that enclose all vortices are closed.

Due to a combined symmetry that survives rotation, the intensity patterns of the rotating
modes are aligned along the axes of the cylindrical mirror while the phase patterns are not.
As a result the azimuthal angle on the Hermite-Laguerre sphere ϕHL, which specifies the
orientation of the higher-order mode patterns, does not depend on the rotation frequency. This
is not true for the polar angle ϑHL, which specifies whether the modes are Hermite-Gaussian,
Laguerre-Gaussian or generalized Gaussian modes and is a measure of the vorticity in their
phase structure. Its dependence on the rotation frequency Ω is shown in figure 5.5. In general,
the characterization of the cavity modes in terms of a point on the Hermite-Laguerre sphere
is local and the plot in figure 5.5 characterizes the higher-order cavity modes close the the
spherical mirror. It confirms that, due to the fact that rotation breaks the inversion symmetry
of a stationary cavity, the cavity modes are continuously deformed from Hermite-Gaussian
modes in the stationary case into generalized Gaussian modes in the rotating case. For not
too large values of the rotation frequency, the rotationally induced vorticity is proportional
to the rotation frequency. For larger values something surprising happens: at some point,
the vorticity starts to decrease with increasing rotation frequencies and eventually the modes
become Hermite-Gaussian again. This is due to the fact that this cavity is destabilized by
rotation at a rotation frequency Ω0/6. At this point, the modes lose their confinement in
one of the transverse directions (in this case in the vertical direction, i.e., the direction in
which the cylindrical mirror is flat) so that the elliptical vortices are stretched to become
line dislocations again. Although the vorticity in the modes disappears if this transition is
approached, the orbital angular momentum diverges due to the diverging astigmatism. As we
have shown in chapter 4, rotation may also stabilize a cavity that is unstable in the absence
of rotation. In such cases we expect the opposite behavior. Due to the rotation of the cavity,
we retrieve Hermite-Gaussian modes at the point where the cavity is stabilized, while mode
deformation and induced vorticity appear for even larger values of the rotation frequency.

5.5 Some remarks on experimental issues

In chapters 3, 4 and 5, we have discussed various optical and opto-dynamical properties of
astigmatic optical cavities with rotating mirrors. The essential feature that distinguishes those
from their stationary counterparts is the retardation L/c of a light pulse after propagation from
one mirror to the other. In the co-rotating frame, this gives rise to a twist ΩL/c, which signifi-
cantly modifies the mode structure and the focusing properties of the cavity. Since the speed
of light is very large, experimental observation of the effects that we have studied requires
very large values of the rotation frequency Ω. In this section we discuss some possibilities
and limitations of several routes towards realization of an experimental set-up that captures
the essential features of the one that we have studied in this thesis.

Under typical experimental conditions, the distance between the mirrors of a paraxial
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Figure 5.6: A rotating two-mirror cavity can be unfolded into a stationary four-mirror ring
cavity that captures the essential optical properties of the rotating cavity. The image rotators
between the mirror rotate the mode profile over an angle ΩL/c in order to account for the
twist of the modes under propagation in the rotating frame.

optical cavity ranges from a few centimeters to several meters. In this case, the rotation fre-
quency Ω0, which corresponds to the cavity round-trip time is of the order of 108 hertz so that
observation of the effects that we have discussed here, requires mechanical rotation frequen-
cies of 1 to 10 megahertz. Mechanical vibration frequencies close to this range have been
achieved with a piezoelectric actuator [85]. Developing a similar device to simulate rotations
at megahertz frequencies is challenging but seems, at least in principle, not impossible.

Lower values of the rotation frequency require larger values of the mirror separation.
Currently, high-finesse optical cavities as large as 2 to 4 kilometers are being operated in
attempts to optically detect gravitational waves [86]. In such a set-up rotation frequencies of
a few kilohertz would suffice. However, the mirrors that are used in these set-ups are large
and, therefore, heavy so that achieving mechanical rotation at kilohertz frequencies without
too much distortion is anything but straightforward. Moreover, fabrication of an astigmatic
mirror of this size is not at all trivial.

Another, perhaps more realistic, dynamical approach could be to apply a rotating astig-
matic mode pattern, which can be constructed from its stationary Doppler-shifted frequency
components [48], to optically induce a rotating refractive-index pattern in a material with a
Kerr nonlinearity. Such a pattern could be used in transmission to realize a two-mirror cavity
with a rotating lens. The optical properties of such a cavity could be observed at another
wavelength. The rotation frequency that can be achieved in this set-up is eventually limited
by the dynamical response of the Kerr medium.

In addition to the dynamical realizations, one could try to mimic the twisted mode prop-
agation in the rotating frame by using image rotators. Since it is essential that back and forth
propagating modes attain a twist in the same direction, a two-mirror cavity with an image
rotator between the mirrors does not do the job. Instead, one should use a ring resonator
with four, pairwise identical, mirrors in which the light passes an image rotator after each
mirror, as indicated in figure 5.6. Although the settings of the optical elements in this set-up
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are time-independent, it does capture the essential optical properties of a rotating two-mirror
cavity. A difficulty with this set-up is that the clockwise and counterclockwise propagating
modes are frequency degenerate. In a passive set-up one of the two modes can be selected by
injecting light in one direction only. In an active realization, this degeneracy could be lifted
by applying the polarization degree of freedom.

5.6 Conclusion and outlook

In this chapter, we have applied the ladder-operator that we introduced in chapter 3 to study
the vortices that appear in the modes of an astigmatic two-mirror cavity when it is put into
rotation about the optical axis. The modes of a rotating cavity are defined as solutions of the
time-dependent paraxial wave equation (5.2) that rotate along with the cavity and vanish on
the mirror surfaces. This mode criterion is a continuous generalization of the requirement
that the modes of a stationary cavity are stationary solutions of equation (5.2) that vanish
on the mirror surfaces. The rotating cavity modes are stationary solutions in a co-rotating
frame where mode propagation is twisted due to the finite speed of light. As a result, rotation
deforms the astigmatic Hermite-Gaussian modes of a stationary cavity into generalized Gaus-
sian modes. The line dislocations in the Hermite-Gaussian modes are deformed into elliptical
vortices. In chapter 4, we have shown that rotation can destabilize a two-mirror cavity that
is stable in the absence of rotation. When such a transition is approached, the cavity modes
lose their confinement in one transverse direction so that the elliptical vortices are stretched
to become line dislocations again. This is illustrated in figure 5.5.

An interesting but open question is how rotation would affect the optical properties of
a geometrically unstable cavity, especially when close to the rotationally induced transition
from an unstable to a stable geometry. A geometrically unstable cavity is intrinsically lossy
[12] and the propagation of light inside an unstable cavity is dominated by diffraction at the
sharp edges of the mirrors [66]. Both mathematically and physically this system is funda-
mentally different from the stable cavities that we have studied here and it is not possible to
apply or generalize our method to such a system.

As opposed to a normal fluid, a spatially confined optical cavity mode attains vorticity
when it is put into uniform rotation. In this respect, it has some similarity with superfluids
and Bose-Einstein condensates. Compared to those systems, however, optical beams have
many more degrees of freedom to cope with rotation. A Bose-Einstein condensate arises as
the collective ground state of an ensemble of interacting bosons (usually atoms) in thermal
equilibrium. It is a gauge-symmetry-broken state that is characterized by its uniform phase.
The only way in which such a system can attain orbital angular momentum, is by locally
creating cylindrically symmetric vortices while keeping its phase fixed elsewhere. As a re-
sult, vortices appear only when the rotation frequency exceeds a certain threshold and the
number of vortices increases when the rotation frequency is further increased. For optical
cavity modes, on the other hand, both the astigmatism of the phase and intensity patterns
and the properties of the optical vortices are affected by rotation. Both contribute to the or-
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bital angular momentum [17], which typically increases with increasing values of the rotation
frequency even though the number of vortices does, in general, not increase.
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6
Geometric phases for astigmatic optical

modes of arbitrary order

6.1 Introduction

In the twenty-five years that have passed since Berry published his landmark paper [87],
the geometric phase has turned out to be a very unifying concept in physics. Various phase
shifts and rotation angles both in classical and quantum physics have been proven to originate
from the geometry of the underlying parameter space. One of the first examples was given
by Pancharatnam [88] who discovered that the phase shift due to a cyclic transformation of
the polarization of an optical field is equal to half the enclosed area on the Poincaré sphere
for polarization states. Other optical examples of geometric phases are the phase shift that
arises from the variation of the direction of the wave vector of an optical field through a fiber
[89] and the phase that is associated with the cyclic manipulation of a squeezed state of light
[90]. The Gouy phase shift, which is due to the variation of the beam parameters (the beam
width and the radius of curvature of the wave front) of a Gaussian optical beam, can also be
interpreted geometrically [91].
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In analogy with the geometric phase for polarization (or spin) states of light, van Enk has
proposed a geometric phase that arises from cyclic mode transformations of paraxial optical
beams carrying orbital angular momentum [92]. The special case of isotropic first-order
modes is equivalent to the polarization case [93] and, as was experimentally demonstrated by
Galvez et. al., the geometric phase shift acquired by a first-order mode that is transformed
along a closed trajectory on the corresponding Poincaré sphere also equals half the enclosed
surface on this sphere [94]. Similar experiments have been performed with second-order
modes [95], in particular to show that exchange of orbital angular momentum is necessary
for a non-trivial geometric phase to occur [96]. However, in the general case of isotropic
modes of order N, the connection with the geometry of the N + 1-dimensional mode space is
not at all obvious.

In this chapter, we present a complete and general analysis of the phase shift of transverse
optical modes of arbitrary order when propagating through a paraxial optical set-up, thereby
resolving this issue. Paraxial optical modes with different transverse mode indices (n,m)
are connected by bosonic ladder operators in the spirit of the algebraic description of the
quantum-mechanical harmonic oscillator and complete sets of transverse modes |unm〉 can
thus be obtained from two pairs of ladder operators [17]. We show that the geometries of the
subspaces of modes with fixed transverse mode numbers n and m, which are closed under
mode transformations, are all carbon copies of the geometry underlying the ladder operators.
We fully characterize this geometry including both the generalized beam parameters, which
characterize the astigmatism and orientation of the intensity and phase patterns of a Gaussian
fundamental mode, and the degrees of freedom associated with the nature and orientation of
the higher-order modes. We find a dynamical and a geometric contribution to the phase shift
of a mode under propagation through an optical set-up, which both have a clear significance
in terms of this parameter space.

The material in this chapter is organized as follows. In the next section we briefly sum-
marize the operator description of paraxial wave optics. We discuss its group-theoretical
structure, which is essential for our ladder-operator approach, and show how paraxial ray op-
tics emerges from it. In section 6.3 we discuss how complete basis sets of transverse modes
can be obtained from two pairs of bosonic ladder operators. We discuss the transformation
properties of the ladder operators, and, thereby, of the modes and characterize the ten de-
grees of freedom that are associated with the choice of a basis of transverse modes. Two of
those degrees of freedom relate to overall phase factors of the ladder operators and, therefore,
of the modes. In section 6.4, we show that the variation of these phases under propagation
through a set-up originates from the variation of the other parameters. We discuss an analogy
with the Aharonov-Bohm effect in quantum mechanics and show that both contributions to
the phase shift are geometric in that they are fully determined by the trajectory through the
parameter space. However, only the geometric contribution relates to the geometry of this
space. Section 6.5 is devoted to the specific, but experimentally relevant, case of mode trans-
formations of non-astigmatic modes. In the final section, we summarize our results and draw
our conclusions.
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6.2 Canonical description of paraxial optics

6.2.1 Position and propagation direction as conjugate variables

A monochromatic paraxial beam of light that propagates along the z direction is conveniently
described by the complex scalar profile u(ρ, z), which characterizes the spatial structure of
the field beyond the structure of the carrier wave exp(ikz − iωt). The two-dimensional vector
ρ = (x, y)T denotes the transverse coordinates. The electric and magnetic fields of the beam
can be expressed as

E(ρ, z, t) = Re
{
E0εu(ρ, z)eikz−iωt

}
(6.1)

and

B(ρ, z, t) = Re
{E0

c
(ez × ε)u(ρ, z)eikz−iωt

}
, (6.2)

where E0 is the amplitude of the field, ε is the transverse polarization, ez is the unit vector
along the propagation direction and ω = ck is the optical frequency with c the speed of light.
The slowly varying amplitude u(ρ, z) obeys the paraxial wave equation

(
∇2
ρ + 2ik

∂

∂z

)
u(ρ, z) = 0 , (6.3)

where ∇2
ρ = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplacian. Under the assumption that the

transverse variation of the field appears on a much larger length scale than the wavelength,
this description of paraxial wave optics is consistent with Maxwell’s equations in free space
[45].

The paraxial wave equation (6.3) has the form the Schrödinger equation for a free particle
in two dimensions. The longitudinal coordinate z plays the role of time while the transverse
coordinates ρ = (x, y)T constitute the two-dimensional space. This analogy allows us to adopt
the Dirac notation of quantum mechanics to describe the evolution of a classical wave field
[42]. In the Schrödinger picture, we introduce state vectors |u(z)〉 in the Hilbert space L2 of
square-integrable transverse states of the wave field, where the z coordinate parameterizes the
trajectory along which the field propagates. The states are properly normalized 〈u(z)|u(z)〉 = 1
for all z and the field profile in real space can be expressed as u(ρ, z) = 〈ρ|u(z)〉. Just as in
quantum mechanics, the transverse coordinates may be viewed as a hermitian vector operator
ρ̂ = (x̂, ŷ)T acting on the Hilbert space. The derivatives with respect to these coordinates
constitute canonically conjugate operators. Rather than the conjugate transverse momentum
operator −i∂/∂ρ, which has the significance of the normalized transverse momentum of the
field, it is convenient to construct the propagation-direction operator by dividing the trans-
verse momentum operator by the normalized longitudinal momentum k. Thus, we obtain the
hermitian vector operator θ̂ = (ϑ̂x, ϑ̂y)T = −(i/k)(∂/∂x, ∂/∂y)T. The transverse position and
propagation-direction operators obey the canonical commutation rules

[ρ̂a, kθ̂b] = iδab , (6.4)
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6. Geometric phases for astigmatic optical modes of arbitrary order

where the indices a and b run over the x and y components. In analogy with quantum me-
chanics, we introduce the transverse field profile in propagation-direction representation

ũ(θ, z) = 〈θ|u(z)〉 =
k

2π

∫
d2ρ u(ρ, z)e−ikθTρ , (6.5)

which is the two-dimensional Fourier transform of u(ρ, z) and characterizes the transverse
propagation-direction distribution of the field.

In geometric optics, a ray of light is fully characterized in a transverse plane z by its
transverse position ρ and propagation direction θ, which are usually combined in the four-
dimensional ray vector r T =

(
ρT, θT). The operator description of paraxial wave optics

may be viewed as a formally quantized (wavized) description of light rays, where ρ and θ
have been replaced by hermitian operators ρ̂ and θ̂ that obey canonical commutation rules
(6.4) and 1/k = o plays the role of ~ [31]. These operators are conveniently combined in
the ray operator r̂ T =

(
ρ̂T, θ̂T). In analogy with quantum mechanics, where the expectation

values of the position and momentum operators have a clear classical significance in the limit
~ → 0, a paraxial wave field reduces to a ray in the limit of geometric optics o → 0. Its
transverse position and propagation direction in the transverse plane z are characterized by
the expectation values 〈u(z)|ρ̂|u(z)〉 and 〈u(z)|θ̂|u(z)〉.

6.2.2 Group-theoretical structure of paraxial wave and ray optics

Both the diffraction of a paraxial beam under free propagation, as described by the paraxial
wave equation (6.3), and the transformations due to lossless optical elements can be expressed
as unitary transformations |uout〉 = Û |uin〉 on the transverse state of the field. In general, a
unitary operator can be expressed as

Û
({a j}) = e−i

∑
j a jT̂ j , (6.6)

where {a j} is a set of real parameters and {T̂ j} a set of hermitian generators, i.e., T̂ †j = T j.
In the present case of paraxial propagation and paraxial (first-order) optical elements, the
generators are quadratic forms in the transverse position and propagation-direction operators.
This is exemplified by the paraxial wave equation (6.3), which in operator notation takes the
following form

∂

∂z
|u(z)〉 = − ik

2
θ̂2|u(z)〉 (6.7)

and is formally solved by

|u(z)〉 = exp
(
− ikzθ̂2

2

)
|u(0)〉 . (6.8)

This shows that that free propagation of a paraxial field is generated by kθ̂2/2, which is
obviously quadratic in the canonical operators. Since the ray operator r̂ has four components,
the number of squares of the operators is four while the number of mixed products is

(
4
2

)
= 6,
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6.2 Canonical description of paraxial optics

which gives a total of ten quadratic forms. They are hermitian and can be chosen as

T1 = x̂2 , T2 = ŷ2 , T3 = x̂ŷ , T4 = k
2

(
x̂ϑ̂x + ϑ̂x x̂

)
, T5 = k

2

(
ŷϑ̂y + ϑ̂yŷ

)
,

T6 = kx̂ϑ̂y , T7 = kŷϑ̂x , T8 = k2ϑ̂xϑ̂y , T9 = k2ϑ̂2
x and T10 = k2ϑ̂2

y . (6.9)

In terms of these generators, free propagation of a paraxial beam (6.8) is described by

|u(z)〉 = exp

−
i
(
T̂9 + T̂10

)
z

2k

 |u(0)〉 . (6.10)

The mixed product T̂8 appears in the generator of free propagation through an anisotropic
medium, i.e., a medium in which the refractive index depends on the propagation direction
θ. In that case the propagator can be expressed as exp(−ikθ̂TN−1θ̂z/2), where N is a real and
symmetric matrix that characterizes the (quadratic) variation of the refractive index with the
propagation direction. If the anisotropy of the refractive index is not aligned along the ϑx

and ϑy directions, this transformation involves T̂8. A thin astigmatic lens imposes a Gaussian
phase profile. The unitary transformation that describes it can be expressed as

|uout〉 = exp
(
− ikρTF−1ρ

2

)
|uin〉 , (6.11)

where F is a real and symmetric 2×2 matrix whose eigenvalues correspond to the focal lengths
of the lens while the corresponding, mutually perpendicular, eigenvectors fix its orientation
in the transverse plane. In the general case of an astigmatic lens that is not aligned along the
x and y directions, this transformation involves the generators T̂1, T̂2 and T̂3. A rotation of
the beam profile in the transverse plane can be represented by

|urot〉 = e−i(T̂6−T̂7)φ|u〉 , (6.12)

where T̂6 − T̂7 = −i(x∂/∂y − y∂/∂x) is the orbital angular momentum operator and φ is the
rotation angle. The operators T̂4 and T̂5 generate transformations that rescale a field profile
along the x and y directions respectively, i.e.,

uout(x, y, z) = 〈ρ|uout(z)〉 = 〈ρ|ei log(cx)T̂4+i log(cy)T̂5 |uin(z)〉 =
√

cxcy uin(cxx, cyy, z) . (6.13)

Physically speaking, such transformations correspond to the deformation of a field profile
due to refraction at the interface between two dielectrics with different refractive indices.

From the canonical commutation relations (6.4), it follows that the commutator of any
two generators (6.9) is a linear combination of the generators. In mathematical terms, the
algebra of the generators is closed, which means that [T̂k, T̂l] = i

∑
m gklmT̂m with real structure

constants gklm. We shall prove that the unitary transformations (6.6) with the generators (6.9)
form a ten-parameter Lie group. For reasons that will become clear this group is called the
metaplectic group Mp(4).
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6. Geometric phases for astigmatic optical modes of arbitrary order

Since the states |u(z)〉 are normalized, the expectation values 〈u(z)|ρ̂|u(z)〉 and 〈u(z)|θ̂|u(z)〉
have the significance of the average transverse position and the average propagation direction
of the field. A special property of the unitary transformations in equation (6.6) with the
quadratic generators given by (6.9), is that the Heisenberg transformation Û†r̂ Û of the vector
operator r̂ T =

(
ρ̂T, θ̂T) is linear, so that it can be expressed as

Û†
({a j})r̂ Û

({a j}) = M
({a j})r̂ , (6.14)

where M
({a j}) is the 4× 4 ray matrix that describes the transformation of a ray r T =

(
ρT, θT)

under the optical element that is described by the state-space operator Û
({a j}). The defining

properties of the position and momentum operators, i.e., that they are hermitian and obey
canonical commutation rules (6.4), are preserved under this unitary Heisenberg transforma-
tion. It follows that M

({α j}) is real and obeys the identity

MT({a j})GM
({a j}) = G with G =

(
0 1
−1 0

)
, (6.15)

where 0 and 1 denote the 2×2 zero and unit matrices respectively, so that G is a 4×4 matrix.
This identity (6.14) ensures that the operator expectation values 〈u(z)|r̂ |u(z)〉 of the transverse
position and propagation direction transform as a ray, i.e., trace out the path of a ray when the
field propagates through an optical set-up. This shows how paraxial ray optics emerges from
paraxial wave optics and, as such, the identity (6.14) may be viewed as an optical analogue of
the Ehrenfest theorem in quantum mechanics [49]. The manifold of rays r constitutes a phase
space in the mathematical sense. The real and linear transformations on this manifold that
obey the relation (6.15), or, equivalently, preserve the canonical commutation rules (6.4), are
ray matrices. The product of two ray matrices is again a ray matrix so that ray matrices form
a group. The group of real 4× 4 ray matrices, which preserve the bilinear form r TGs , wherer and s are ray vectors, is called the symplectic group S p(4,R). The term symplectic, which
is a syllable-by-syllable translation of the Latin “complex” to Ancient Greek and literally
means “braided together”, refers to the fact that a phase space is a joint space of position
and propagation direction (momentum). The 4 × 4 ray matrices in S p(4,R) emerge from
a set of unitary state-space transformations, which, as one may prove from equation (6.14),
constitute a group under operator multiplication. As was mentioned already, this group is
called the metaplectic group Mp(4). For real rays r , s ∈ R4, the products r TGr ands TGs vanish. The product r TGs does not vanish and is obviously conserved under paraxial
propagation and optical elements. It is called the Lagrange invariant [29, 97] and has the
significance of the phase-space extent of a pair of rays r and s . Conservation of this quantity
is an optical analogue of Liouville theorem in statistical mechanics.

The commutators of the quadratic generators T̂ j and the position and propagation-direction
operators are linear in these operators, so that we can write

−i[T̂ j, r̂ ] = J jr̂ , (6.16)
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6.3 Basis sets of paraxial modes

where the 4 × 4 matrices J j are real. Explicit expressions of these matrices are given in
appendix 6.A. Applying equation (6.14) to infinitesimal transformations immediately shows
that the ray matrix corresponding to the unitary state-space operator in equation (6.6) is given
by

M
({α j}) = e−

∑
j α j J j . (6.17)

Equation (6.16) provides a general relationship between the generators {T̂ j} of the unitary
state-space transformations (6.6) and the generators {J j} of the corresponding ray matrices
(6.17). By applying equation (6.15) to infinitesimal transformations, one finds that the gen-
erators obey JT

j G + GJ j = 0. Moreover, from equation (6.16) one may prove that

[
[T̂i, T̂ j], r̂ ]

= [Ji, J j]r̂ . (6.18)

Using the Lie algebra [T̂k, T̂l] = i
∑

m gklmT̂m we find that [Jk, Jl] = −∑
m gklmJm. This proves

that the metaplectic and symplectic groups are homomorphic, i.e., for every Û ∈ Mp(4) there
is a corresponding M ∈ S p(4,R). The reverse of this statement is not true; a ray matrix M
fixes a corresponding transformation Û up to an overall phase. The homomorphism is an
isomorphism up to this phase.

By using equation (6.15) and the expressions of the unitary transformations (6.10), (6.11),
(6.12) and (6.13) or, equivalently, the relation between (6.16) the sets of generators {T̂ j} and
{J j} and the definition (6.17) of the ray matrices, one finds the 4×4 ray matrices that describe
propagation, a thin lens, a rotation in the transverse plane and the rescaling of a beam profile
due to refraction at the interface between two dielectrics. These ray matrices, some of which
have been given explicitly in sections 2.2 and 3.5, generalize the well-known ABCD matrices
to the case of two independent transverse degrees of freedom [12].

The group-theoretical structure that we have discussed in this section can easily be gen-
eralized to the case of D spatial dimensions. In that case there are 2D canonical operators.
These give rise to 2D +

(
2D
2

)
= 2D2 + D linearly independent quadratic forms, which generate

state-space transformations that constitute the metaplectic group Mp(2D). The corresponding
ray matrices obey the 2D−dimensional generalization of equation (6.15) and form the cor-
responding symplectic group S p(2D,R). In case of a single transverse dimension, the three
hermitian quadratic forms can be chosen as x2, k(x̂ϑ̂x + ϑ̂x x̂)/2 and k2ϑ̂2

x. In the analogous
case of the quantum-mechanical description of a particle in three dimensions, the number of
quadratic forms is twenty-one.

6.3 Basis sets of paraxial modes

6.3.1 Ladder operators

As a result of the quadratic nature of the generators (6.9), a, possibly astigmatic, Gaussian
beam profile at the z = 0 input plane of a paraxial optical set-up will retain its Gaussian shape
in all other transverse planes z. This is the general structure of a transverse fundamental
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mode. Complete sets of higher-order transverse modes that preserve their general shape under
paraxial propagation and paraxial optical elements can be obtained by repeated application of
bosonic raising operators â†p(0) in the z = 0 plane [33]. In the present case of two transverse
dimensions, we need two independent raising operators so that p = 1, 2. Both the raising
operators and the corresponding lowering operators âp(0) are linear in the transverse position
and propagation-direction operators ρ̂ and θ̂. Their transformation property under unitary
transformations ∈ Mp(4) follows from the requirement that acting with a transformed ladder
operator on a transformed state must be equivalent to transforming the raised or lowered state,
i.e.,

â(†)
out|uout〉 = â(†)

outÛ |uin〉 = Ûâ(†)
in |uin〉 . (6.19)

In view of the unitarity of Û, this requires that

â(†)
out = Ûâ(†)

in Û† . (6.20)

Since the generators (6.9) are quadratic in the position and propagation-direction operators,
the ladder operators preserve their general structure and remain linear in these operators under
this transformation (6.20). Moreover, their bosonic nature is preserved so that they obey the
commutation rules

[âp(z), â†q(z)] = δpq (6.21)

in all transverse planes z of the optical set-up if (and only if) they obey bosonic commutation
rules in the z = 0 plane. When the fundamental Gaussian mode |u00(z)〉 is chosen such that
the lowering operators give zero when acting upon it, i.e., â1(z)|u00(z)〉 = â2(z)|u00(z)〉 = 0,
the commutation rules (6.21) guarantee that the modes

|unm(z)〉 =
1√

n!m!

(
â†1(z)

)n (
â†2(z)

)m |u00(z)〉 , (6.22)

form a complete set in all transverse planes z. For a given optical system, the complete set of
modes is thus fully characterized by the choice of the two bosonic ladder operators âp(0) in
the reference plane z = 0.

In chapter 2, we have shown that, in the special case of an astigmatic two mirror-cavity,
the ladder operators, and thereby the cavity modes, can be directly obtained as the eigen-
vectors of the ray matrix for one round trip inside the cavity. In the present case of an open
system, we are free to choose the parameters that specify the ladder operators in the z = 0
input plane. A convenient way to do this is to choose an arbitrary ray matrix M0 ∈ S p(4,R).
This ray matrix can be chosen independent of the properties of the optical system, and of the
ray matrices that describe the transformations of its elements. However, as we shall see, a
necessary and sufficient restriction is that M0 has four eigenvectors µ for which the matrix
element µ†Gµ does not vanish. It is obvious that this matrix element is purely imaginary so
that the eigenvectors must be complex. Since M0 is real, this implies that for each eigenvector
µp also µ∗p is one of the eigenvectors so that the eigenvectors come in two complex conjugate
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pairs, obeying the eigenvalue relations M0µp = λpµp and M0µ
∗
p = λ∗pµ

∗
p, with p = 1, 2. With-

out loss of generality we can assume that the matrix elements µ†pGµp are positive imaginary.
Then we can write

µ†pGµp = 2i and µT
pGµp = 0 , (6.23)

where p = 1, 2. The first relation can be assured by proper normalization of the eigenvectors,
whereas the second follows from the antisymmetry of G. By taking matrix elements of the
symplectic identity MT

0 GM0 = G, we find the relations

λ∗pλqµ
†
pGµq = µ†pGµq and λpλqµ

T
pGµq = µT

pGµq . (6.24)

Assuming that the two eigenvalues λ1 and λ2 are different, we conclude that

µ†1Gµ2 = 0 and µT
1Gµ2 = 0 . (6.25)

When the eigenvalues are degenerate, i.e., λ1 = λ2, one can find infinitely many pairs of
linearly independent vectors µ1 and µ2 that obey these symplectic orthonormality properties.
Following the approach discussed in chapter 2, we now specify the ladder operators in the
z = 0 input plane by the expressions

âp(0) =

√
k
2
µT

pGr̂ and â†p(0) =

√
k
2
µ†pGr̂ . (6.26)

The symplectic orthonormality properties (6.23) and (6.25) of the eigenvectors µp and µ∗p
ensure that the ladder operators in the input plane obey bosonic commutation relations (6.21).
From the general transformation property of the ladder operators (6.20), combined with the
Ehrenfest relation (6.14) between Û and M, one may show that the ladder operators in other
transverse planes z are given by the same expressions (6.26) when µp is replaced by µp(z) =

M(z)µp. Here, M(z) is the ray matrix that describes the transformation of ray from the z = 0
input plane to the transverse plane z. It can be constructed by multiplying the ray matrices that
describe the optical elements of which the set-up consists and free propagation between them
in proper order. The fact that the properties (6.23) and (6.25) are conserved under symplectic
transformations ∈ S p(4,R) confirms that the ladder operators remain bosonic in all transverse
planes of the set-up.

Since the modes are fully characterized by the choice of two complex vectors µp, we
expect that the expectation values of physically relevant operators can be expressed in terms
of these vectors. The average transverse position and momentum of the beam trace out the
path of a ray. This implies that the expectation values 〈unm|ρ̂|unm〉 and 〈unm|θ̂|unm〉 vanish.
In appendix 6.B we prove, however, that the expectation values of the generators T̂ j are, in
general, different from zero and can be expressed as

〈unm|T̂ j|unm〉 =
1
2

{(
n +

1
2

)
µ†1GJ jµ1 +

(
m +

1
2

)
µ†2GJ jµ2

}
. (6.27)

This result generalizes the expression (2.82) of the orbital angular momentum in twisted
cavity modes that we derived in chapter 2. It is noteworthy that these properties of the modes
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are fully characterized by the generators J j and the complex ray vectors µp, which both have
a clear geometric-optical significance.

Finally, it is worthwhile to notice that the results of this section remain valid when the
number of (transverse) dimensions is different. In particular, the same method gives explicit
expressions for complete orthogonal sets of time-dependent wave functions that solve the
Schrödinger equation of a free particle in three-dimensional space.

6.3.2 Degrees of freedom in fixing a set of modes

We have shown that there is a one-to-one correspondence between the defining properties
of a ray matrix, i.e., that it is real and obeys the identity (6.15), and the properties (6.23)
and (6.25) of the complex eigenvectors µp that ensure that the ladder operators (6.26) are
bosonic. This implies that all different basis sets of complex vectors µp that obey these
identities must be related by symplectic transformations, i.e., each of these sets can be written
as {Mµp} ∪ {Mµ∗p}, with M ∈ S p(4,R) and {µp} ∪ {µ∗p} the set of complex eigenvectors of a
specific ray matrix M0 ∈ S p(4,R). Since {Mµp} ∪ {Mµ∗p} constitutes the set of eigenvectors
of MM0M−1, it follows that the freedom in choosing a set of complex vectors that generate
two pairs of bosonic ladder operators (6.26) is equivalent to the freedom of choosing a ray
matrix M ∈ S p(4,R). As a result, the number of independent parameters associated with
this choice is equal to the number of generators of S p(4,R), which is ten. In order to give a
physical interpretation of these degrees of freedom, we follow the characterization discussed
in chapter 5 and decompose the complex ray vectors into two-dimensional subvectors so that
µT

p(z) =
(
rT

p(z), tT
p(z)

)
. In terms of these subvectors, the ladder operators take the following

form

âp(z) =

√
k
2
(
rT

p(z)θ̂ − tT
p(z)ρ̂

)
and â†p(z) =

√
k
2
(
r†p(z)θ̂ − t†p(z)ρ̂

)
, (6.28)

where p = 1, 2. An explicit expression of the Gaussian fundamental mode can be given if we
combine the two-dimensional column vectors rp and tp into

R(z) =
(
r1(z), r2(z)

)
and T(z) =

(
t1(z), t2(z)

)
. (6.29)

The objects R and T take the form of 2×2 matrices, but since rp and tp are transverse vectors,
R and T do not transform as such under ray-space transformations ∈ S p(4,R) nor under
transformations on the transverse plane. The symplectic orthonormality properties (6.23) and
(6.25) of the vectors µp can be expressed as

R†(z)T(z) − T†(z)R(z) = 2i1 and RT(z)T(z) − TT(z)R(z) = 0 , (6.30)

and hold for all values of z. Now, the fundamental transverse mode in plane z can be written
as

u00(ρ, z) =

√
k

π det R(z)
exp

(
−kρTS(z)ρ

2

)
, (6.31)
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where S = −iTR−1. As opposed to R and T, S is a 2 × 2 matrix in the transverse plane and
transforms accordingly. It can be checked directly that acting upon |u00(z)〉 with the lowering
operators â1(z) and â2(z) gives zero. The fundamental mode (6.31) is properly normalized
and has been constructed such that it solves the paraxial wave equation (6.3) under free prop-
agation. Moreover, one may check that it transforms properly under the transformations of
optical elements. The second relation in equation (6.30) guarantees that S is symmetric. This
is obvious when we multiply the relation from the left with

(
RT)−1, and from the right with

R−1. The real and imaginary parts Sr and Si of S respectively characterize the astigmatism of
the intensity and phase patterns. The real part can be written as Sr =

(− iTR−1 + i(R†
)−1T†)/2.

With the first relation in equation (6.30) this shows that RSrR† = 1. This leads to the identity

RR† = S−1
r , (6.32)

which shows that Sr is positive definite. As a result, the curves of constant intensity in the
transverse plane are ellipses. Moreover, the fundamental mode is square-integrable. Depend-
ing on the sign of det Si(z) the curves of constant phase in the transverse plane are ellipses,
hyperbolas or parallel straight lines. Under free propagation, S is a slowly varying smooth
function of z. Optical elements, on the other hand, may instantaneously modify the astigma-
tism. The astigmatism of both the intensity and the phase patterns is characterized by two
widths in mutually perpendicular directions and one angle that specifies the orientation of the
curves of constant intensity or phase. The total number of degrees of freedom that specify
the astigmatism, and, thereby, the matrix symmetric S, is thus equal to six.

Two of the remaining four degrees of freedom are related to the nature and orientation
of the higher-order mode patterns. From equation (6.32), we find that R can be expressed as
S−1/2

r σT, where σ is a unitary 2 × 2 matrix. Notice that Sr is real and positive so that S−1/2
r is

well-defined. It is illuminating to rewrite the complex ray vectors µ1 and µ2 as

(
µ1 µ2

)
=

(
R
T

)
=

(
1 0
−Si 1

)(
S−1/2

r 0
0 S1/2

r

)(
σT 0
0 σT

) (
µ̃x µ̃y

)
, (6.33)

where µ̃x = (1, 0, i, 0)T and µ̃y = (0, 1, 0, i)T are the complex ray vectors that correspond to
the ladder operators that generate the stationary states of an isotropic harmonic oscillator in
two dimensions. The first matrix in the second right-hand-side of this expression (6.33) is the
ray matrix that describes the transformation of a thin astigmatic lens. It imposes the elliptical
or hyperbolic wave front of the optical modes on the harmonic oscillator functions. The
second matrix has the form of the ray matrix that describes the deformation of a mode due to
refraction. It rescales the modes along two mutually perpendicular transverse directions and
accounts for the astigmatism of the intensity patterns. The third matrix involves the complex
matrix σ and obeys the generalization of equation (6.15) to complex matrices. Since it is
complex, however, it is not a ray matrix ∈ S p(4,R). In order to clarify its significance, we
rewrite equation (6.33) in terms of the ladder operators, which are conveniently combined in
the vector operator (â1, â2)T. By using the definition if the ladder operators (6.26) and the
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Ehrenfest relation (6.14), the transformation in equation (6.33) can be expressed as
(

â1

â2

)
=

√
k
2

(RTθ̂ − TTρ̂) =

−i

√
k
2
σ exp

(
− ikρTSiρ

2

) (
S1/2

r ρ̂ + iS−1/2
r θ̂

)
exp

(
ikρTSiρ

2

)
. (6.34)

The linear combination of the position and momentum operators between the brackets takes
the form of the lowering-operator vector for an isotropic harmonic oscillator in two dimen-
sions. Again, the 2 × 2 matrix Sr accounts for the astigmatism of the intensity patterns
by rescaling the ladder operators and, therefore, the modes they generate. The exponential
terms take the form of the mode-space transformation for a thin astigmatic lens and impose
the curved wave fronts. From right to left, the lowering operators (6.34) as well as the corre-
sponding raising operators, first remove the curved wave front, then modify the mode patterns
and eventually restore the wave front again. The 2× 2 matrix σ is a unitary transformation in
the space of the lowering operators â1 and â2 and transforms accordingly. It arises from the
U(2) symmetry of the isotropic harmonic oscillator in two dimensions and accounts for the
fact that any, properly normalized, linear combination of bosonic lowering operators yields
another bosonic lowering operator. Up to overall phases, to which we come in a moment,
this transformation can be parameterized as â1 → η1â1 + η2â2 and â2 → −η∗1â1 + η∗2â2 with
|η1|2 + |η2|2 = 1. The two obvious degrees of freedom that are associated with the spinor
η = (η1, η2)T are the relative amplitude and the relative phase of its components. Analogous
to the Poincaré sphere for polarization states (or the Bloch sphere for spin-1/2 states), they
can be mapped onto a sphere. For reasons that will become clear, this sphere is called the
Hermite-Laguerre sphere [17]. Since η1 and η2 are spinor components in a linear rather than
a circular basis, this mapping takes the following form

η =

(
η1

η2

)
=

1√
2


e

iϕ
2 cos ϑ

2 + e−i ϕ2 sin ϑ
2

−ie
iϕ
2 cos ϑ

2 + ie−i ϕ2 sin ϑ
2

 , (6.35)

where ϑ and ϕ are the polar and azimuthal angles on the sphere. The mapping is such that
the north pole (ϑ = 0) corresponds to ladder operators that generate astigmatic Laguerre-
Gaussian modes with positive helicity. The south pole (ϑ = π) corresponds to Laguerre-
Gaussian modes with the opposite helicity while the equator (ϑ = π/2) corresponds to
Hermite-Gaussian modes. Other values of the polar angle ϑ correspond to generalized Gaus-
sian modes [44]. The azimuth angle ϕ determines the transverse orientation of the higher-
order mode patterns. Since paraxial optical modes are invariant under rotations over π in the
transverse plane, the mapping in equation (6.35) is such that a rotation over ϕ on the sphere
corresponds to a rotation of the mode pattern over φ = ϕ/2.

The unitary matrix that describes the ladder operator transformation corresponding to the
spinor η is constructed as

σ0(η) =

(
η1 η2

−η∗2 η∗1

)
, (6.36)
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where the second row is fixed up to a phase factor by the requirement that σ0 must be unitary.
With this convention, the two rows of sigma correspond to antipodal points on the Hermite-
Laguerre sphere. Completely fixing the matrix σ ∈ U(2), however, requires four independent
degrees of freedom. The remaining two, which are not incorporated in η, are phase factors.
Any matrix σ ∈ U(2) can be written as

σ =

(
eiχ1 0
0 eiχ2

)
σ0(η) . (6.37)

The phase factors exp(iχp) correspond to overall phases of the vectors µp and, therefore, of
the ladder operators (6.26). The vectors µp can be written as

µp = eiχpνp(S, η) , (6.38)

where p = 1, 2 and νp(S, η) is completely determined by S and η according equation (6.33),
σ being replaced by σ0(η). Although the vectors ν1 and ν2 obey symplectic orthonormality
conditions (6.23) and are, therefore, not independent, the phases χ1 and χ2 are independent.
From equation (6.37) and the fact that R = S−1/2

r σT it is clear that the argument of det R
is equal to χ1 + χ2 so that the overall phase of the fundamental mode (6.31) is given by
−(χ1 + χ2)/2. The overall phases of the two raising operators are respectively −χ1 and −χ2,
so that the phase factors in the higher order modes |unm(z)〉 are given by exp(−iχnm) with

χnm =

(
n +

1
2

)
χ1 +

(
m +

1
2

)
χ2 . (6.39)

In a single transverse plane, such overall phase factors do not modify the physical properties
of the mode pattern. The evolution of these phase under propagation and optical elements,
however, can be measured interferometrically.

The astigmatism of the modes, as characterized by the 2× 2 matrix S, can be modified in
any desired way by appropriate combinations of the optical elements that we have discussed
in section 6.2. As will be discussed in section 6.5, the degrees of freedom associated with
the spinor η can be manipulated by mode convertors and image rotators. Although we shall
see that variation of the phase factors exp(iχp) is, in general, unavoidable when the other
parameters are modified, we show here that it is possible to construct a ray matrix ∈ S p(4,R)
that solely changes these phase factors. Such a ray matrix is defined by the requirement that

Mχ
({χp})

(
µ1 µ2 µ

∗
1 µ
∗
2

)
=

(
eiχ1µ1 eiχ2µ2 e−iχ1µ∗1 e−iχ2µ∗2

)
, (6.40)

so that the vectors µp and µ∗p are eigenvectors of Mχ. The corresponding eigenvalues are
unitary. In terms of R and T this relation can be expressed as

Mχ
({χp})

(
R R∗

T T∗

)
=

(
R R∗

T T∗

) (
C 0
0 C∗

)
, (6.41)

where

C =

(
eiχ1 0
0 eiχ2

)
. (6.42)
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By using that (
R R∗

T T∗

)−1

=
1
2i

( −T† R†

TT −RT

)
, (6.43)

which follows directly from the identities in equation (6.30), we find that Mχ can be expressed
as

Mχ({χp}) =
1
2i

(
R R∗

T T∗

) (
C 0
0 C∗

) ( −T† R†

TT −RT

)
=

1
2i

( −RCT† + R∗C∗TT RCR† − R∗C∗RT

−TCT† + T∗C∗TT TCR† − T∗C∗RT

)
(6.44)

This ray matrix adds overall phases exp(±iχp) to the eigenvectors µp and µ∗p. It is real and
one may check that it obeys the identity (6.15) so that it is a physical ray matrix ∈ S p(4,R).

In this section, we have argued that the number of degrees of freedom associated with
the choice of two pairs of ladder operators that generate a basis set of modes in a transverse
plane z is equal to number of generators of S p(4,R), which is ten. We have shown that six
of those are related to the astigmatism of the modes as characterized by a the complex and
symmetric 2 × 2 matrix S. Two of the other four are angles on the Hermite-Laguerre sphere
that characterize a spinor η, which determines the nature and orientation of the higher-order
modes. The remaining two are overall phases of the ladder operators. All these degrees of
freedom can be manipulated in any desired way by choosing a suitable ray matrix ∈ S p(4,R).

6.3.3 Gouy phase

In the limiting case of non-astigmatic modes that propagate through an isotropic optical sys-
tem the 2 × 2 matrix S is a symmetric matrix with degenerate eigenvalues so that it can
be considered a scalar s = sr + isi. If we choose σ0 = 1, the higher-order modes are
Hermite-Gaussian. In that case, the complex ray vectors are given by µ1 = (r, 0, t, 0)T and
µ2 = (0, r, 0, t)T, with r, t ∈ C. The symplectic normalization condition (6.23) implies that
r∗t − t∗r = 2i. The real part sr of s = −it/r determines the beam width w =

√
2/(ksr) of

the fundamental mode while the imaginary part si fixes the radius of curvature of its wave
fronts according to R = 1/si. Under free propagation over a distance z, the vectors µ1 and µ2

transform according to

µ1(z) =



r + zt
0
t
0


and µ2(z) =



0
r + zt

0
t


. (6.45)

The parameters r, t and s remain scalar and free propagation does not introduce an overall
phase difference between µ1 and µ2 so that η, or, equivalentlyσ0, is independent of z. Without
loss of generality we can choose z = 0 to coincide with the focal plane of the mode, which
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implies that s ∈ R so that r∗t = −t∗r = i. Since sr, and, therefore, R = σ0sr cannot pick up a
phase, we find that

χ(z) − χ(0) = arg
( r + zt

r

)
= arctan

( tz
r

)
= arctan

(
z

zR

)
, (6.46)

where zR = ir/t is the Rayleigh range. This is the well-known Gouy phase for a Gaussian
mode [12]. Since the vectors µ1 and µ2 pick up an overall phase χ(z), the raising operators
pick up a phase −χ(z). The phase shift of the higher-order modes (6.22) is then given by
exp(−i(n + m + 1)χ) and depends on the total mode number N = n + m only. As a result of
this degeneracy, the same expression holds in the non-astigmatic case with σ0 , 1. In that
case, it is still true that the components of η are independent of z.

Generalization to astigmatic modes is straightforward only if the modes have simple astig-
matism and if the orientation of the higher-order mode patterns is aligned along the astigma-
tism of the fundamental mode. In that case, the vectors µp pick up different Gouy phases
and the components of η are independent of z. As will be discussed in section 6.5, this is not
true in the case of non-astigmatic modes that propagate through an optical set-up with sim-
ple astigmatism. In the more general case of modes with general astigmatism that propagate
through an arbitrary set-up of paraxial optical elements, the z dependence of S depends on η
and vice versa [17]. In this case no simple expressions of the Gouy phases can be derived.
The phase in equation (6.39) may be viewed as the ultimate generalization of the Gouy phase
within paraxial wave optics.

6.4 The geometric interpretation of the variation of the phases χnm

6.4.1 Evolution of the phases χnm

In this section we show that variation of the phase differences χp between µp and νp (6.38) is,
in general, unavoidable under (a sequence of) mode transformations that modify the degrees
of freedom associated with S and η. From the discussion in the previous section it is clear
that the generalized Gouy phases were defined such that they vary only under transformations
that involve free propagation. However, for later purposes, it is convenient to formulate the
description of mode transformations that give rise to phase shifts in a slightly more general
way.

Suppose that the unitary state-space transformation that describes (a part of) a trajectory
through the parameter space is given by Û(ζ) = exp(−iT̂ζ), where T̂ is a (linear combination
of the) generator(s) defined in equation (6.9) and ζ is a real parameter that parameterizes
the trajectory. In this case, the ζ dependent ladder operators (6.20) obey the anti-Heisenberg
equation of motion

[
â(†)(ζ), T̂

]
= −i

∂â(†)

∂ζ
. (6.47)

In terms of the complex ray vectors µp(ζ) and the ray matrix M(ζ) = exp(−Jζ) that cor-
responds to Û(ζ) according to relation (6.14), this equation of motion takes the form of a
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symplectic Schrödinger equation and can be expressed as

∂µp

∂ζ
= −Jµp(ζ) . (6.48)

Substitution of µp(ζ) = exp(iχp)νp(ζ) yields after dividing by exp(iχp)

i
∂χp

∂ζ
νp(ζ) +

∂νp

∂ζ
= −Jνp(ζ) . (6.49)

By multiplying from the left with ν†pG, using the normalization condition ν†pGνp = 2i and
rearranging the terms we find that

∂χp

∂ζ
=

1
2

{
ν†pGJνp + ν†pG

∂νp

∂ζ

}
. (6.50)

The generator J represents a conserved quantity. Hence, the first term between the curly
brackets does not depend on the parameter ζ and the above equation (6.50) can be integrated
to obtain

χp(ζ) =
1
2

{(
ν†pGJνp

)
ζ +

∫ ζ

0
dζ′ν†pG

∂νp

∂ζ′

}
. (6.51)

The first term between the curly brackets constitutes a dynamical contribution to the phase
shift and arises from the fact that J corresponds to a constant of motion. The second term,
on the other hand, relates to the geometry of the complex ray space and is the natural gener-
alization of Berry’s geometric phase to this case. In the next section, we derive an equivalent
expression from which the geometric significance of the phase shifts (6.51) is more obvious.

6.4.2 Analogy with the Aharonov-Bohm effect

In quantum mechanics, it is well-known that the coupling of a particle with charge q to the
magnetic vector potential A(r) gives rise to a measurable phase shift (q/~)

∫
C A · dr of the

wave function when the particle moves along a trajectory C = r(t). This effect occurs even
when the magnetic field B = ∇ × A vanishes everywhere along the trajectory and is known
as the Aharonov-Bohm effect [98].

The physical properties that are associated with the wave function that describes a particle
in quantum mechanics are not affected by the transformation ψ(r, t)→ exp(iφ(r))ψ(r, t). The
Schrödinger equation is obviously not invariant under this local U(1) gauge transformation.
When gauge invariance of the Schrödinger equation is imposed, the vector potential A(r)
arises as the corresponding gauge field. In this picture, the Aharonov-Bohm phase is due to
the coupling to a gauge field, the conserved charge q being the coupling constant. As such it
is a direct consequence of the U(1) gauge invariance of quantum electrodynamics.

In this section, we point out an analogy between the generalized Gouy phase and the
Aharonov-Bohm effect. This gives some new insights in the nature and origin of this ge-
ometric phase and allows us to derive an expression of the phase (6.51) from which its
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origin in the geometry of the underlying parameter space is obvious. It is convenient to
combine the parameters that characterize the eight degrees of freedom that are associated
with the matrix S and the spinor η into a vector ~R = (R1,R2, ...)T. The corresponding dif-
ferential operator, which is a vector in the eight-dimensional parameter space, is defined as
~∇~R = (∂/∂R1, ∂/∂R2, ...)T.

The physical properties, for example those in equation (6.27), of the transverse mode
fields (6.22), which are generated by the ladder operators constructed from the vectors µp,
are not affected by transformations of the type

µp → eiψp

(
~R
)
µp , (6.52)

where p = 1, 2. This symmetry property can be thought of as local U(1) ⊗ U(1) gauge in-
variance. The ray matrix ∈ S p(4,R) that describes such gauge transformations (6.52) figures
in equation (6.44). As shown in appendix 6.C, the two corresponding real generators Jχp can
be constructed from the eigenvectors µp. The vector µ1 is an eigenvector of Jχ1 with eigen-
value −i. Since Jχ1 is real, the complex conjugate vector µ∗1 is an eigenvector of Jχp with
eigenvalue i. Moreover, Jχ1µ2 = Jχ1µ

∗
2 = 0. Similarly, µ2 and µ∗2 are eigenvectors of Jχ2 with

eigenvalues −i and i and Jχ2µ1 = Jχ2µ
∗
1 = 0. Since invariance under the gauge transformation

(6.52) is a local and continuous symmetry, it gives rise to conserved Noether charges. The
gauge transformations are generated by two different generators, hence there are two Noether
charges, which can be expressed as ν†pGJχpνp/2 = 1, where the factor 1/2 arises from the fact
that a symplectic vector space is a joint space of position and momentum and where we have
used that Jχpνp = −i and ν†pGνp = 2i. In appendix 6.C, we prove that the corresponding
state-space generators T̂χp can be expressed as

(
â†pâp + âpâ†p

)
/2 so that the charges of a mode

(6.22) are given by 〈unm|T̂χ1 |unm〉 = (n + 1/2) and 〈unm|T̂χ2 |unm〉 = (m + 1/2). Since the gauge
transformation in equation (6.44) is constructed from the eigenvectors µp, it varies through-
out the parameters space. As a result, the generators T̂χp can be constructed only locally and
vary through the parameter space according to the ladder-operator transformation in equation
(6.20). However, since the modes also vary, it follows that Noether charges (n + 1/2) and
(m + 1/2) of the modes |unm〉 are globally conserved.

In terms of ~R and ~∇~R, the equations of motion of the vectors µp (6.48) can be rewritten as

(
~∇~Rµp

)
· ∂
~R
∂ζ

= −Jµp . (6.53)

These equations are obviously not invariant under the gauge transformations (6.52). Imposing
gauge invariance yields the modified equations of motion

( (
~∇~R + i~Ap

)
νp

)
· ∂
~R
∂ζ

= −Jνp , (6.54)

where the gauge fields ~Ap are vector fields in the parameter space of ~R that are defined by
their transformation property under the gauge transformations (6.52)

~Ap → ~Ap − ~∇~Rψp . (6.55)
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With these transformation properties, the equation of motion (6.54) is manifestly invariant
under the gauge transformations (6.52). The general solution of this equation (6.54) can be
expressed as

νp = µpe−i
∫
C
~Ap·d~R , (6.56)

where C is a trajectory ~R(ζ) and µp solves the equation of motion without the gauge field
(6.53). In full analogy with the Aharonov-Bohm effect, this shows that the phase difference
between µp and νp is due to the fact that the latter is coupled to the gauge field ~Ap. Since
we have defined the vectors µp so as to include the appropriate geometric-phase factor while
they are not coupled to the gauge fields, the coupling of νp to the gauge fields removes the
geometric phase rather than introducing it. The geometric origin of the phases is evident in
that they are determined only by the trajectory C and do not depend on the velocity ∂~R/∂ζ.
By using equation (6.54) they can be expressed as

χp =

∫

C
~Ap · d~R =

1
2

∫ ζ

0
dζ′

νpGJνp +
(
ν†pG~∇Rνp

)
· ∂
~R
∂ζ

 , (6.57)

which is in obvious agreement with equation (6.51).

In analogy with the Aharonov-Bohm effect, the Noether charges ν†pGJχpνp/2 = 1 deter-
mine the strength of the coupling of the vectors µp to the gauge fields ~Ap. This is consistent
with the fact that the vectors νp pick up phases χp. The Noether charges of the modes (6.22),
however, are equal to n + 1/2 and m + 1/2 and depend on the mode numbers n and m. As
a result, the modes |unm〉 couple differently to the (corresponding state-space) gauge fields
and, therefore, experience different phase shifts. This is in obvious agreement with equation
(6.39).

The Noether currents (ν†pGJχpνp/2)∂~R/∂ζ = ∂~R/∂ζ are uniform throughout the param-
eters space of ~R. It follows that the “physical” fields or Berry curvatures Fαβ = ∂α(Ap)β −
∂β(Ap)α, where the indices α and β run over the parameter-space vector components, are con-
stant so that the gauge fields ~Ap(~R) cannot possess any non-trivial dynamics. Attributing the
generalized Gouy phases χp to coupling to gauge fields ~Ap, which do not have any dynamical
properties in their own rights, may seem a bit tautological. On the other hand, the analysis
discussed here shows that the structure that underlies the generalized Gouy phase shifts (6.39)
is that of a gauge theory. In this picture, the appearance of phase shifts under propagation
through an optical set-up is the unavoidable consequence of the U(1)×U(1) gauge invariance
of the dynamics of paraxial optical modes, or, equivalently, of the fact that the mode charges
n + 1/2 and m + 1/2 are conserved under state-space transformations ∈ Mp(4,R).

The connection between the gauge invariance as discussed here does not depend on the
specific structure of the symplectic vector space. Our results as well as the Aharonov-Bohm
effect indicate that there is a more general connection between local gauge invariance and the
appearance of geometric phases, see, for instance, reference [99].
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6.5 Geometric phases for non-astigmatic modes

6.5.1 Ray matrices on the Hermite-Laguerre sphere

A particulary interesting limiting case of the geometric phases that we discuss in this chapter,
are the phase shifts due to mode conversions on the Hermite-Laguerre sphere, each point on
which characterizes a basis set of higher-order modes. We focus on non-astigmatic modes
in their focal planes so that S can be considered a real scalar s ∈ R. We shall construct ray
matrices and corresponding state-space operators that solely modify the degrees of freedom
associated with the Hermite-laguerre sphere and study the geometric phases arising from such
transformations.

The azimuth angle ϕ on the Hermite-Laguerre sphere specifies the orientation in the trans-
verse plane of the set of higher-order modes. It can be modified by the rotation operator
exp(−iϕŝ3), where ŝ3 = k(x̂ϑ̂y − ŷϑ̂x)/2 = (T̂6 − T̂7)/2 is the corresponding generator. The
factor 1/2 accounts for the fact that a rotation angle ϕ on the Hermite-Laguerre sphere corre-
sponds to a φ = ϕ/2 in the transverse plane. For reasons that will become clear, the ray matrix
that describes a rotation in a plane parallel to an equatorial plane on the Hermite-Laguerre
sphere is denoted M3. It takes the following form

M3(ϕ) = e−ϕΣ3 =


P

(
ϕ
2

)
0

0 P
(
ϕ
2

)
 =



cos
(
ϕ
2

)
− sin

(
ϕ
2

)
0 0

sin
(
ϕ
2

)
cos

(
ϕ
2

)
0 0

0 0 cos
(
ϕ
2

)
− sin

(
ϕ
2

)

0 0 cos
(
ϕ
2

)
sin

(
ϕ
2

)


, (6.58)

where Σ3 = (J6 − J7)/2 is the corresponding ray-space generator and P ∈ S O(2) is a 2 × 2
rotation matrix. When this ray matrix acts on an arbitrary pair of complex ray vectors µp that
obey the identities (6.23) and (6.25), the matrix S transforms according to S → PSPT. In
the present case of scalar S, this transformation only modifies the orientation of the mode
patterns and does not affect S.

Another class of transformations that solely act upon the Hermite-Laguerre sphere are
those that describe mode converters. Mode converters consists of a pair of astigmatic or
cylindrical lenses [100]. The distance between the lenses and their radii of curvature are cho-
sen such that the Gouy phase shift introduces a phase difference ϑ between the eigenvectors
µ1 and µ2 of the transformation of the mode converter. If the input and output plane of the
mode converter are chosen such that they respectively coincide with focal planes of the in-
cident and outgoing modes and if the modes are matched to the mirrors so that S is scalar
and equal to 1 in appropriate units determined by the mirrors, the eigenvectors of the mode
converter are given by µ̃1 = (1, 0, i, 0)T and µ̃2 = (0, 1, 0, i)T and their complex conjugates.
The ray matrix that describes the transformation that introduces a phase difference ϑ between
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µ̃1 and µ̃2 can then be constructed as

M1(ϑ) = e−ϑΣ1 =



cos
(
ϑ
2

)
0 sin

(
ϑ
2

)
0

0 cos
(
ϑ
2

)
0 − sin

(
ϑ
2

)

− sin
(
ϑ
2

)
0 cos

(
ϑ
2

)
0

0 sin
(
ϑ
2

)
0 cos

(
ϑ
2

)


, (6.59)

where Σ1 = k(J1 − J2)/4 + (J9 − J10)/(4k) is the corresponding generator. Again, one may
prove easily that this transformation does not affect the astigmatic degrees of freedom if S
is scalar and equal to 1. The corresponding state-space generator is given by ŝ1 = k(T̂1 −
T̂2)/4 + (T̂9 − T̂10)/(4k) = k(x̂2 − ŷ2 + ϑ̂2

x − ϑ̂2
y)/4.

So far, we have constructed two of the three ray matrices that only modify the nature and
orientation of the higher-order modes. The third corresponds to a mode converter in a basis
that is rotated over π/4 in the transverse plane, or, equivalently over π/2 in the equatorial
plane of the Hermite-Laguerre sphere. The ray matrix that describes such a transformation
can be obtained as

M2(ϑ) = M3(π/4)M1(ϑ)M−1
3 (π/4) = e−ϑΣ2 =



cos
(
ϑ
2

)
0 0 sin

(
ϑ
2

)

0 cos
(
ϑ
2

)
sin

(
ϑ
2

)
0

0 − sin
(
ϑ
2

)
cos

(
ϑ
2

)
0

− sin
(
ϑ
2

)
0 0 cos

(
ϑ
2

)


, (6.60)

where Σ2 = kJ3/2 + J8/(2k) is the corresponding generator. The corresponding state-space
generator is given by ŝ2 = kT̂3/2 + T̂8/(2k) = k(xy + ϑ̂xϑ̂y)/2. Since M3 and M1 do not affect
the astigmatic degrees of freedom if S is scalar and equal to 1, it follows that the same is true
for M3.

By using the canonical commutation relations (6.4) and the definitions of the generators
ŝ1, ŝ2 and ŝ3 in terms of the canonical operators, one may easily show that the generators
obey an S U(2) algebra

[ŝ1, ŝ2] = iŝ3 (6.61)

and cyclic permutations. The ray-space generators obey

[Σ1,Σ2] = Σ3 (6.62)

so that the matrices iΣ1, iΣ2 and iΣ3 also constitute an S U(2) algebra. Thus we have obtained
both a metaplectic and a symplectic realization of an S U(2) algebra. This proves the well-
known fact that S U(2) is a subgroup of Mp(4) and, therefore, of S p(4,R).

6.5.2 Spinor transformations

Since the generators Σ1, Σ2 and Σ3 constitute an S U(2) algebra, an arbitrary pair of ray
vectors µp on the Hermite-Laguerre sphere can be expressed as a linear combination of the
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6.5 Geometric phases for non-astigmatic modes

eigenvectors of one of these generators. In analogy with section 6.3, where we introduced the
components of η as the coefficients of the expansion of an arbitrary bosonic lowering operator
in terms of the two lowering operators for a harmonic oscillator in two dimensions, we can
write an arbitrary pair of complex ray vectors on the Hermite-Laguerre sphere as

µ1 = η1µ̃1 + η2µ̃2 and µ2 = −η∗2µ̃1 + η∗1µ̃2 , (6.63)

where µ̃1 = (1, 0, i, 0)T and µ̃2 = (1, 0, i, 0)T are eigenvectors of Σ1 with eigenvalues −i and i
respectively, (they are also eigenvectors of JHO = k(J1+J2)/4+(J9+J10)/(4k) with degenerate
eigenvalues i). Notice that, analogous to the construction in section 6.3 and the mapping in
equation (6.35), the components of η are spinor components in a linear rather than in a circular
basis. The symplectic orthogonality properties (6.23) and (6.25) require that the expansions
in equation (6.63) do not involve the complex conjugate vectors µ∗p. Moreover, they ensure
normalization of η such that |η1|2 + |η2|2 = 1.

Since the ray matrices M1, M2 and M3, as defined in equations (6.59), (6.60) and (6.58),
only modify the degrees of freedom associated with η, these transformations can be expressed
in the two-dimensional spinor space. In particular, the transformation described by M3 (6.58)
can be expressed as

(
η1

η2

)
→


cos

(
ϕ
2

)
− sin

(
ϕ
2

)

sin
(
ϕ
2

)
cos

(
ϕ
2

)

(
η1

η2

)
= e−iϕτ3/2

(
η1

η2

)
, (6.64)

where

τ3 =

(
0 −i
i 0

)
(6.65)

is the corresponding generator. Similarly, the transformations (6.59) and (6.60) of mode
converters can be rewritten in terms of the spinor components as

(
η1

η2

)
→

 e
iϑ
2 0

0 e
−iϑ

2


(
η1

η2

)
= e−iϑτ1/2

(
η1

η2

)
(6.66)

and (
η1

η2

)
→


cos

(
ϑ
2

)
i sin

(
ϑ
2

)

i sin
(
ϑ
2

)
cos

(
ϑ
2

)

(
η1

η2

)
= e−iϕτ2/2

(
η1

η2

)
, (6.67)

where the corresponding spinor generators are given by

τ1 =

( −1 0
0 1

)
and τ2 =

(
0 −1
−1 0

)
. (6.68)

As a result of the fact that we have the defined the spinor components with respect to the
eigenvectors of Σ1 rather than of Σ3, the spinor generators τ1, τ2 and τ3 take the form of Pauli
matrices in a rotated basis. They also form an S U(2) algebra, i.e., [τ1, τ2] = iτ3 and cyclic
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6. Geometric phases for astigmatic optical modes of arbitrary order

permutations. This algebra is closed and the matrix transformations of η on the Hermite-
Laguerre sphere that are generated by τ1, τ2 and τ3 are analogues of Jones matrices in polar-
ization optics.

Since the complex vectors µ̃1 and µ̃2 are eigenvectors of Σ1 with eigenvalues −i and i
respectively, the spinor corresponding to a point (φ, θ) on the Hermite-Laguerre sphere can
be expressed as

η(φ, θ) = (−i)1/2e−i(φ+π/2)τ3 e−iθτ1 eiπτ2/2
(

1
0

)
, (6.69)

where the factor (−i)1/2 = exp(−iπ/4) is introduced to make this identity consistent with
equation (6.35).

6.5.3 Mode-space transformations

In dimensionless notation, the lowering operators corresponding to the complex ray vectors
µ̃p can be expressed as

b̂x =

√
k
2
(
x̂ + iϑ̂x

)
and b̂y =

√
k
2
(
ŷ + iϑ̂y

)
. (6.70)

The corresponding raising operators b̂†x and b̂†y generate the set of harmonic-oscillator states
in two dimensions |vnm〉 according to equation (6.22), the raising operators being replaced by
the harmonic-oscillator raising operators. This set corresponds to η = (1, 0)T, which is on
the equator of the Hermite-Laguerre sphere. The antipodal point η = (0, 1)T gives rise to the
same set of modes |vmn〉, the mode indices being interchanged. The modes corresponding to
an arbitrary point on the Hermite-Laguerre sphere can be expanded as

|unm(η)〉 =
1√

n!m!

(
η∗1b̂†x + η∗2b̂†y

)n (
−η2b̂†x + η1b̂†y

)m |v00〉 . (6.71)

By using that
[
b̂†x, b̂

†
y
]

= 0, this can be rewritten as

|unm(η)〉 =

n∑

p=0

m∑

q=0

√
(n + m − p − q)!(p + q)!

n!m!

(
n
p

)(
m
q

)
×

(η∗1)n−p(η∗2)p(−η2)m−q(η1)q|v(n+m−p−q)(p+q)〉 , (6.72)

which expresses the transformed state |unm(η)〉 as an expansion in two-dimensional harmonic-
oscillator states of the same order N = n+m. Conversely, this result shows that the subspaces
of modes of fixed order N = n + m are closed under transformations (mode conversions) on
the Hermite-Laguerre sphere.

In general, the subspace of modes of fixed order N is an N + 1-dimensional subspace
of the Hilbert space of transverse states of the field. The unitary transformations on this
subspace form the group S U(N + 1). Only in the special case of first order modes, the
most general unitary transformation is equivalent to the S U(2) transformation that figures
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6.5 Geometric phases for non-astigmatic modes

Figure 6.1: Intensity and false-color phase patterns of the modes that lie in the ϕ = 0 plane
of the Hermite-Laguerre, or, equivalently, Poincaré sphere for the non-astigmatic first-order
modes |u01〉. The north and a south poles (ϑ = 0, π) respectively correspond to Laguerre-
Gaussian modes with l = n − m = −1 and l = m − n = 1. On both poles p = min(n,m) = 0.
The modes on the equator (ϑ = π/2) are Hermite-Gaussian while modes for intermediate
values of ϑ are generalized Gaussian modes. The color coding in the phase patterns is such
that the color changes in a continuous fashion from red via yellow, green, blue and purple
back to red when the phase changes from 0 to 2π.
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6. Geometric phases for astigmatic optical modes of arbitrary order

in equation (6.72). It follows that the subspace of first-order modes is isomorphic to the
Hermite-Laguerre sphere for the ladder operators. This sphere, which is an analogue of the
Poincaré sphere for polarization states [93], as well as the intensity and phase structure of
some of the modes that lie on it, is plotted in figure 6.1. In the general case of N > 1,
S U(2) is a subgroup of the group S U(N + 1) of unitary transformations on the subspace of
modes of fixed order N. This accounts for the fact that only specific transformations on the
Hilbert space of transverse states of the field can be achieved by mode converters and image
rotators. In case of N > 1, the transformation in equation (6.72) gives rise to a sphere for each
combination (n,m) of the transverse mode numbers. Since |unm(η)〉 and |umn(η)〉 correspond
to antipodal points on the same sphere, it follows that, depending on the parity of N, only
(N + 2)/2 (for even N) or (N + 1)/2 (for odd N) of these spheres are independent, i.e., not
related by rotations over π. All of these spheres are isomorphic to the Hermite-Laguerre
sphere for the ladder operators. Since, in general, the modes on a given sphere cannot be
expressed as a linear combination of the modes on the poles, it follows that, for N > 1, these
spheres are not Poincaré spheres in the strict sense. The two spheres for second-order modes,
as well as the intensity and phase patterns of some of the modes that lie on them, are plotted
in figure 6.2.

The mode-transformation in equation (6.72), together with the matrix representation of
the spinor transformation that we have discussed above, provides a matrix description of
beam transformations of non-astigmatic optical modes of arbitrary order. It generalizes the
description discussed in references [101, 102], which applies to first order modes.

By inverting the relations in equation (6.70) and their hermitian conjugates, the posi-
tion and propagation-direction operators can be expressed in terms of the ladder opera-
tors. Using this result, the state-space generators can be written as ŝ1 = (b̂†xb̂x − b̂†y b̂y)/2,
ŝ2 = (b̂†xb̂y + b̂xb̂†y)/2 and ŝ3 = (b̂†xb̂y − b̂xb̂†y)/(2i), which is a Schwinger representation of
the S U(2) algebra. Here, the S U(2) algebra (6.61) is ensured by the boson commutation
relations (6.21). This representation provides a complete and closed description of the modes
and transformations on the Hermite-Laguerre sphere in terms of the ladder operators.

6.5.4 Geometric phases and the Aharonov-Bohm analogy

The spinor η, as defined by equation (6.35), is completely determined by the azimuthal and
polar angles on the Hermite-Laguerre sphere. The reverse of this statement is not true; choos-
ing a point on the Hermite-Laguerre sphere fixes a properly normalized spinor ξ†ξ = 1 up
to an overall phase factor so that ξ = exp(iχ)η(φ, ξ) with χ ∈ R. In the limiting case of
transformations on the Hermite-Laguerre sphere, it follows from equation (6.63), or from the
equivalent expansion in terms of the lowering operators in equation (6.70), that the two rais-
ing operators a†1 and â†2 pick up equal but opposite phases −χ and χ respectively. The modes
|unm(η)〉 (6.71) pick up a phases exp(−iχnm) with

χnm = (n − m)χ . (6.73)
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6.5 Geometric phases for non-astigmatic modes

Such phases do not modify the physical properties of the modes but their variation under (a
sequence of) transformations on the Hermite-Laguerre sphere can be measured interferomet-
rically. Analogous to the discussion in section 6.4, we shall show that the variation χ has a
geometric interpretation in terms of the Hermite-Laguerre sphere. We consider (a sequence
of) state-space transformations that only modify the degrees of freedom associated with the
nature and orientation of the higher-order modes. The evolution of the ladder operators un-
der such transformations is described by the anti-Heisenberg equation of motion (6.47) when
T̂ is replaced by a generator ŝ/2, which is a linear combination of ŝ1, ŝ2 and ŝ3, and ζ pa-
rameterizes a trajectory on the Hermite-Laguerre sphere. The factor 1/2 in the generator is
introduced for notational convenience. In terms of a spinor ξ, the equation of motion (6.48)
takes the following form

∂ξ

∂ζ
= − iτξ(ζ)

2
, (6.74)

where τ is the spinor generator that corresponds to ŝ. It is a linear combination of τ1, τ2 and
τ3. The spinor ξ picks up the appropriate phase factor. Substitution of ξ = exp(iχ)η gives

iη
∂χ

∂ζ
+
∂η

∂ζ
= − iτη

2
. (6.75)

Using that η†η = 1, this result can be rewritten as

∂χ

∂ζ
= iη†

∂η

∂ζ
− η†τη

2
. (6.76)

The generator τ represents a constant of motion so that this result can be integrated to yield

χ(ζ) = −
(
η†τη)ζ

2
+ i

∫ ζ

0
dζ′η†

∂η

∂ζ′
. (6.77)

This result can also be obtained directly from substitution of the complex ray vectors µp,
as defined by equation (6.63), in the general expression of the geometric phase shift (6.51).
The first term in equation (6.51) arises from the fact that τ/2 represents a conserved quan-
tity. The second term constitutes the well-known geometric phase shift that is experienced by
a spinor when it is transported along a trajectory on the Hermite-Laguerre sphere. Anal-
ogous to the discussion in section 6.4, both contributions are geometric in that they are
fully determined by the trajectory on the Hermite-Laguerre sphere but only the second re-
lates to the geometry of the Hermite-Laguerre sphere. It is natural to use spherical coordi-
nates ~R =

(
r sin(ϑ) cos(ϕ), r sin(ϑ) sin(ϕ), r cos(ϑ)

)T to parameterize points on the Hermite-
Laguerre sphere. For a closed trajectory that consists of geodesics, the first contribution in
equation (6.77) vanishes [103]. Then, the phase shift (6.77) can be rewritten as

χ = i
∫ z

0
dz′η†

∂η

∂z′
= i

∫ z

0
dz′η†

(
~∇~Rη

)
· ∂
~R
∂z′

= i
∮

C
η†

(
~∇~Rη

)
· d~R , (6.78)
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Figure 6.2: Intensity and false-color phase patterns of the modes that lie in the ϕ = 0 plane
of two the Hermite-Laguerre spheres for non-astigmatic second-order modes |u11〉 (this page)
and |u02〉 (next page). In the figure on this page, the north and south poles (ϑ = 0, π) re-
spectively correspond to Laguerre-Gaussian modes with l = n − m = m − n = 0 and
p = min(n,m) = 0 while the modes on the equator (ϑ = π/2) are Hermite-Gaussian.
The intermediate modes are generalized Gaussian modes. In the figure on the next page
the north and south poles (ϑ = 0, π) respectively correspond to a Laguerre-Gaussian mode
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6.5 Geometric phases for non-astigmatic modes

(continued) with l = n − m = −2 and l = m − n = 2. In both cases p = min(n,m) = 1.
Again, the modes on the equator (ϑ = π/2) are Hermite-Gaussian while generalized Gaussian
modes appear for intermediate values of ϑ. The color coding in the phase patterns is such
that the color changes in a continuous fashion from red via yellow, green, blue and purple
back to red when the phase changes from 0 to 2π. Both spheres are carbon-copies of the
Hermite-Laguerre sphere on which every point characterizes two pairs of bosonic ladder
operators.
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6. Geometric phases for astigmatic optical modes of arbitrary order

where ~∇~R is the gradient in spherical coordinates and C = ~R(z) is a closed trajectory on the
Hermite-Laguerre sphere. In the Aharonov-Bohm picture, this phase shift is due to the cou-
pling of η to a gauge field that arises from the U(1) gauge invariance of the spinor dynamics.
Comparison with equation (6.56) shows that this gauge field is given by

~A = η†
(
~∇~Rη

)
. (6.79)

By using the gradient in spherical coordinates and equation (6.35) ~A can be written as

~A =
i cotϑ

2r
. (6.80)

The corresponding “magnetic” field or Berry curvature is given by

~B = ~∇~R × ~A = − i
2r2 (6.81)

and is homogeneous on the Hermite-Laguerre sphere. It may be viewed as the field of a
monopole located at the center of the Hermite-Laguerre sphere. By the virtue of Stokes’
theorem, the geometric phase can be expressed as

χ = i
∮

C
η†

(
~∇~Rη

)
· d~R = i

∮

C
~A · d~R = i

∮

S
~B · d ~S =

1
2

∮

S
dΩ =

1
2

Ω , (6.82)

where S is the enclosed surface on the Hermite-Laguerre sphere and Ω is the solid angle.
This result establishes the well-known connection between the geometric phase acquired by
a spinor that is transported along a closed trajectory on the Hermite-Laguerre sphere and the
enclosed solid angle Ω on the sphere. Since we have defined the phase picked up by the
higher-order modes as exp(−iχnm) with χnm = (n − m)χ, the result in equation (6.82) has the
opposite sign of the analogous result for the standard case in which a spinor with positive
helicity picks up a phase shift exp(iχ).

The phase shift the modes |vnm〉, as given by equation (6.73), depends only on the dif-
ference between the mode numbers n and m. In the Aharonov-Bohm picture, n − m has
the significance of the topological charge of a non-astigmatic mode |vnm〉 and determines the
strength of the coupling to the (corresponding state-space) gauge field. For modes with equal
mode numbers n = m, the topological charge vanishes so that they do not couple to the
gauge field and, therefore, do not experience a phase shift. The orbital angular momentum
in non-astigmatic modes |vnm〉 can be expressed as (n − m) cosϑ [17] and is proportional to
their topological charge. It follows that in the case of a non-astigmatic mode, the exchange
of orbital angular momentum between the mode and the set-up through which it propagates
is necessary for a non-trivial geometric phase to occur [96, 95].

In this section, we have studied the geometric phase that arises from (cyclic) transfor-
mations on the Hermite-Laguerre sphere for higher-order modes. We have constructed ray
matrices that solely modify the nature and orientation of the higher-order modes and derived
the corresponding spinor and mode-space transformations. In terms of the spinor η the phase
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shift due to a (cyclic) transformation takes the familiar form of the geometric phase for a
spinor. In experimental realizations, mode converters consist of pairs of astigmatic lenses in
which the degrees of freedom associated with S are employed to achieve mode conversion
[100]. As a result, there will be an additional contribution to the phase shift of the modes.
This can be compensated for by measuring the interference between fields that have passed
the same sequence of mode converters and image rotators but with different relative orienta-
tions [94].

6.6 Concluding remarks

We have explored the parameter space that is associated with the choice of a complete and
orthonormal set of paraxial optical modes in the transverse plane. Modes are defined as
solutions of the paraxial wave equation (6.3) that are fully characterized by a set of mode pa-
rameters whose variation through a paraxial optical set-up is described by the 4×4 ray matrix
M(z), which describes the transformation of a ray r = (ρ, θ)T from the z = 0 input plane of the
set-up to the transverse plane z. Complete sets of transverse modes can be obtained from two
pairs of bosonic ladder operators. The ladder operators are fully specified by two complex ray
vectors µp with p = 1, 2, which characterize the mode parameters. Their variation through
an optical set-up, and, thereby, the variation of the ladder operators, can conveniently be ex-
pressed in terms of M(z). We have argued that there is a one-to-one correspondence between
the algebraic properties of the ladder operators and the defining properties of a physical ray
matrix ∈ S p(4,R), i.e., that it is real and obeys the identity (6.15). It follows that all sets
of modes can be expressed in terms of two pairs of ladder operators and, moreover, that the
freedom in choosing a set of modes is equivalent to the choice of an arbitrary ray matrix
M0 ∈ S p(4,R). Since S p(4,R) is a ten-parameter Lie group, the number of free parameters
associated with this choice is equal to ten. A possible physical characterization of these de-
grees of freedom involves a symmetric 2 × 2 matrix S, which characterizes the astigmatism
of the phase and intensity patterns of the fundamental mode, and a spinor η, which specifies
the nature and orientation of the higher-order modes. The matrix S is fully specified by six
parameters while characterization of η requires two independent parameters, which can be
mapped on a Poincaré sphere. The remaining two degrees of freedom are overall phases of
the ladder operators. They do not modify the physical properties of the modes in a given
transverse plane z. Their variation through an optical set-up, however, gives rise to a gener-
alized Gouy phase shift of the modes, which can be measured interferometrically. We have
shown that both contributions to the variation of the overall phases through an optical set-up,
as described by equation (6.51), are geometric in that they are fully determined by the trajec-
tory ~R(z) and do not depend on the velocity ∂~R/∂z. However, only the second contribution in
equation (6.51) relates to the geometry of the parameter space. In the specific case of a closed
trajectory on the Hermite-Laguerre sphere for non-astigmatic optical modes, the phase shifts
of the two raising operators are equal but opposite. In full analogy with the Pancharatnam
phase for polarization states, they are equal to half the enclosed surface on the sphere.
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It is noteworthy that the overall phases χp of the vectors µp are in general only unam-
biguously defined in case of a closed trajectory. In particular, in the propagation-direction
representation, the astigmatism of the fundamental mode ũ00(θ, z) is fully specified by the
symmetric matrix V = S−1. Analogous to the discussion in section 6.3, the remaining de-
grees of freedom can be characterized by a unitary 2 × 2 matrix υ, which is defined such
that T = V−1/2

r υT. It follows that υ and σ are related by σ = −iυV−1/2
r VS1/2

r . In general
det

(
V−1/2

r VS1/2
r

)
, 1 so that defining σ = Cσ0 and υ = C′υ0 such that σ0 and υ0 have

unit determinants, requires different phase matrices C , C′. The phase shift along a closed
trajectory, however, does not depend on the phase convention used. In the limiting case of
transformations of non-astigmatic modes in their focal planes, i.e., when S and V can be con-
sidered real scalars, the phases are also unambiguously defined along an open trajectory. All
results presented in this chapter are, of course, independent of the phase convention that is
chosen.

We have shown that the symplectic group of ladder-operator transformations S p(4,R)
corresponds to the metaplectic group Mp(4) of unitary transformations on the Hilbert space
of state vectors |u〉. The metaplectic group constitutes a subgroup of the set of all possible
unitary transformations. This accounts for the fact that only specific linear combinations of
paraxial optical modes are modes as well, i.e., are fully characterized by a set of parameters
whose variation through a paraxial optical set-up is fully described by the ray matrix M(z).
Each combination (n,m) of the transverse mode indices gives rise to a subspace of the Hilbert
space of transverse states of the field, which is closed under metaplectic transformations.
The geometries of these subspaces are all carbon copies of the geometry of the symplectic
manifold underlying the ladder operators. In the limiting case of mode conversions of non-
astigmatic modes, the metaplectic group reduces to S U(2) and all those subspaces become
spheres, which are all carbon copies of the Hermite-Laguerre sphere for the ladder operators.

We have pointed out an analogy between the Aharonov-Bohm effect in quantum electro-
dynamics and the generalized Gouy effect in classical wave mechanics. This reveals deep
insights in the geometric origin of the latter. The physical properties of the modes (6.22) that
are generated by two pairs of ladder operators are not affected by the U(1)⊗U(1) gauge trans-
formation described by equation (6.52), or, equivalently (6.44). Imposing gauge invariance
of the equations of motion (6.47) or (6.48), gives rise to two gauge fields ~Ap in the parame-
ter space. Analogous to the Aharonov-Bohm effect, the geometric phase shift of the ladder
operators through an optical set-up is due to the coupling these gauge fields. The raising and
corresponding lowering operators have pairwise equal but opposite topological charges and
experience opposite phase shifts. The topological charges of the modes |unn〉, i.e., the Noether
charges that arise from the gauge invariance of the description of their propagation through
an optical set-up, are given by n + 1/2 and m + 1/2 and depend on the mode numbers. As a
result, the modes |unm〉 couple differently to the gauge fields and experience different phase
shifts given by equation (6.39). Notice that the above-mentioned subspaces of modes with
transverse mode indices n and m are all uniquely characterized by their coupling to the two
(state-space) gauge fields. In the specific case of transformations on the Hermite-Laguerre
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sphere for higher-order modes, the phase shifts of the two lowering operators are equal but
opposite. In that case, the phase shift of the modes is given by equation (6.73). In the
Aharonov-Bohm picture, the variation of this phase is due to the coupling of the spinor η to a
single gauge field ~A that arises from the U(1) gauge invariance of the spinor dynamics. The
topological charge of the modes |vnm〉 on the Hermite-Laguerre sphere is equal n −m and the
“magnetic” field (Berry curvature) due to the gauge field is uniform on the Hermite-Laguerre
sphere. It may be viewed as the field of a monopole located at the center of the sphere.

Although we have focused on the optical case, the mathematical structure that underlies
the ladder-operator method and the phase shifts that arise from the geometry underlying the
ladder operators are more general. The ray space (ρ, θ) is a phase space in the mathematical
sense and the operator description of paraxial wave optics that we have discussed in sec-
tion 6.2 may be viewed as a formally quantized (wavized) description of rays. Although the
interpretation is different, all this is in full analogy with the quantization of classical me-
chanics to obtain quantum mechanics. As a result, the methods and results of this chapter
can be applied to the quantum-mechanical description of wave packets. The only restriction
for the ladder-operator approach to apply is that the state-space generators (or Hamiltonian
in the quantum language) are quadratic in the canonical operators. The methods and results
in this chapter have been formulated such that it is evident how they can be generalized to
account for more independent spatial dimensions. In the general case of D dimensions, the
number of generators of Mp(2D) and S p(2D,R) is equal to 2D2 + D, D2 + D of which are
associated with a D × D symmetric matrix that generalizes S. The remaining D2 parameters
specify a unitary matrix ∈ U(D), which generalizes σ, and corresponds to the choice of D
orthonormal D−component spinors and D overall phase factors. The variation of the phases
under propagation (evolution) have a geometric interpretation in terms of the other degrees
of freedom.
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Appendices

6.A The ray-space generators J j

In this appendix we give explicit expressions of the ray-space generators J j. They are defined
by equation (6.16) and correspond to the state-space generators T̂ j as defined in equation
(6.9). They are given by

J1 =
2
k



0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0


J2 =

2
k



0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0


J3 =

1
k



0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0



J4 =



−1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


J5 =



0 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 1



J6 =



0 0 0 0
−1 0 0 0
0 0 0 1
0 0 0 0


J7 =



0 −1 0 0
0 0 0 0
0 0 0 0
0 0 1 0



J8 = k



0 0 0 −1
0 0 −1 0
0 0 0 0
0 0 0 0


J9 = 2k



0 0 −1 0
0 0 0 0
0 0 0 0
0 0 0 0


J10 = 2k



0 0 0 0
0 0 0 −1
0 0 0 0
0 0 0 0



(6.83)

6.B Expectation values of the generators T̂ j

This appendix is devoted to a proof of equation (6.27), which expresses the expectation values
〈unm|T̂ j|unm〉 of the generators T̂ j in equation (6.9) in terms of the corresponding ray-space
generators Ĵ j as defined by equation (6.16). We prove this by mathematical induction. The
special cases 〈u00|T̂ j|u00〉 involve Gaussian standard integrals and can be proven explicitly. A
formal proof by mathematical induction thus requires showing that the identity (6.27) holds
for modes |un+1m〉 and |unm+1〉 if it holds for |unm〉. In order to prove this, we notice that

〈un+1m|T̂ j|un+1m〉 =
1

n + 1
〈unm|â1T̂ jâ

†
1|unm〉 . (6.84)

Using that

[
T̂ j, âp

]
=

√
k
2

(
µT

pGT̂ jr̂ − µT
pGr̂ T̂ j

)
=

√
k
2
µT

pG
[
T̂ j, r̂ ]

= i

√
k
2
µT

pGJ jr̂ , (6.85)
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this can be rewritten as
(

1
n + 1

)
〈unm|

T̂ jâ1 − i

√
k
2
µT

1GJ jr̂
 â†1|unm〉 =

〈unm|T̂ j|unm〉 −
( i
n + 1

) √
k
2
µT

1GJ j〈unm|r̂ â†1|unm〉 . (6.86)

The analogous result may be derived for |unm+1〉 and proving equation (6.27) thus boils down
to proving that

−
( i
n + 1

) √
k
2
µT

pGJ j〈unm|r̂ â†p|unm〉 =
1
2
µ†pGJ jµp =

1
2

(
µ†pGJ jµp

)T
=

1
2
µT

pGJ jµ
∗
p , (6.87)

where we used that GT = −G and that JTG = −GJ. This expression can be rewritten as

〈unm|r̂ â†p|unm〉 = i(n + 1)

√
1
2k
µ∗p , (6.88)

which we also prove by mathematical induction. Again, the special case of |u00〉 can be
checked explicitly. In order to prove that it is true for |un+1m〉 and |unm+1〉, we use that

[r̂ , â†p] = r̂

√

k
2
µ†pGr̂

 −

√

k
2
µ†pGr̂

 r̂ =

√
k
2

[r̂ , r∗pθ̂ − t∗pρ̂
]

= i

√
1
2k
µ∗p (6.89)

and find

〈un+1m|r̂ â†1|un+1m〉 =

(
1

n + 1

)
〈unm|â1r̂ â†1â†1|unm〉 =

(
1

n + 1

)
〈unm|â1

â†1r̂ + i

√
1
2k
µ∗1

 â†1|unm〉 = 〈unm|r̂ â†1|unm〉 + i

√
1
2k
µ∗1 . (6.90)

The analogous result may be derived for |unm+1〉. This completes the proof of equation (6.88)
and, thereby, of equation (6.27).

6.C Mode-space operators corresponding to the Noether charges

In this appendix we construct both the ray-space and the corresponding state-space generators
of the U(1)⊗U(1) gauge transformations. The ray matrix that describes such transformations
is given by equation (6.44). To first order in the phases χ1 and χ2 the matrix C (6.42) is given
by

C =

(
1 + iχ1 0

0 1 + iχ2

)
=

(
1 0
0 1

)
+ χ1

(
i 0
0 0

)
+ χ2

(
0 0
0 i

)
. (6.91)

Substitution in equation (6.44) then gives

Mχ
({χp}) = 1 +

χ1

2

( −r1t†1 − r∗1tT
1 r1r†1 + r∗1rT

1
−t1t†1 − t∗1tT

1 t1r†1 + t∗1rT
1

)
+

χ2

2

( −r2t†2 − r∗2tT
2 r2r†2 + r∗2rT

2
−t2t†2 − t∗2tT

2 t2r†2 + t∗2rT
2

)
, (6.92)
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where r1t†1 = r1 ⊗ t†1 etcetera are direct vector products. From Mχ
({χp}) = exp

(
−χpJχp

)
'

1 − χpJχp , we find that

Jχp =
1
2

(
rpt†p + r∗ptT

p −rpr†p − r∗prT
p

tpt†p + t∗ptT
p −tpr†p − t∗prT

p

)
(6.93)

where p = 1, 2. These generators are 4 × 4 matrices in the ray space. By carefully inspecting
the form of the direct products and the structure of the generators J j as given in appendix 6.A
we find that

T̂χp = − k
4

{
rT

p θ̂ρ̂
Tt∗p + r†pθ̂ρ̂

TtT
p − rT

p θ̂θ̂
Tr∗p − r†pθ̂θ̂

TrT
p +

tT
p ρ̂θ̂

Tr∗p + t†pρ̂θ̂
TrT

p − tT
p ρ̂ρ̂

Tt∗p − t†pρ̂ρ̂
TtT

p

}
. (6.94)

This can be rewritten as

T̂χp = − k
4

{(
−t†p r†p

) ( ρ̂ρ̂T ρ̂θ̂T

θ̂ρ̂T θ̂θ̂T

) (
tp

−rp

)
+

(
−tT

p rT
p

) ( ρ̂ρ̂T ρ̂θ̂T

θ̂ρ̂T θ̂θ̂T

) (
t∗p
−r∗p

)}
, (6.95)

which equals

T̂χp =
k
4

{
µ†pGr̂ r̂ TGµp + µT

pGr̂ r̂ TGµ∗p
}

=

k
2

{
µ†pGr̂ µT

pGr̂ + µT
pGr̂ µ†pGr̂ }

=
1
2

(
â†pâp + âpâ†p

)
, (6.96)

where, we used that r̂ TGµp is scalar so that r̂ TGµp =
(r̂ TGµp

)T
= −µT

pGr̂ .

122



7
An exact quantum theory of rotating light

7.1 Introduction

During the past decades, both the propagation and the diffraction of light through optical
set-ups with rotating optical elements [104, 105, 48, 69], as well as the physical properties
of rotating beams of light [19, 106, 20] have attracted a steady amount of attention. So far,
both theoretical and experimental work has focused mainly on classical aspects of rotating
light. Only recently, van Enk and Nienhuis have proposed a first quantum theory of rotating
photons [107]. They construct rotating field operators as coherent superpositions of the field
operators corresponding to the rotational Doppler-shifted [48] angular-momentum compo-
nents of the field. In leading order of the paraxial approximation, the spin and orbital degrees
of freedom of the radiation field decouple [45] and fields with a rotating polarization and a
stationary spatial pattern can be constructed as superpositions of rotational Doppler-shifted
circular-polarization states. Similarly, fields with a rotating mode pattern and a stationary po-
larization can be built up from the rotational Doppler-shifted angular-momentum components
of the spatial field distribution. It is, of course, also possible to construct fields with both a
rotating polarization and a rotating spatial pattern. Since, in the paraxial approximation, the
polarization and spatial degrees of freedom are decoupled, the rotation frequencies may even
have different values. The rotation of the polarization and spatial patterns of the fields that
are thus constructed are uniform only in the paraxial limit. Moreover, the approach requires
that the differences in diffraction of the Doppler-shifted angular-momentum components of
the field are negligible, i.e that the the rotation frequency is small compared to the optical
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7. An exact quantum theory of rotating light

frequency.
In this chapter, we introduce the first exact quantum theory of rotating light. We show

that Maxwell’s equations in free space have complete sets of solutions that rotate uniformly
as a function of time, i.e., that are monochromatic in a rotating frame. Our approach does not
necessarily involve paraxial approximations and both the spatial structure and the polarization
of the rotating modes of free space rotate at a uniform velocity about the rotation axis. Once
such rotating solutions have been obtained, quantization is relatively straightforward. We
follow the standard procedure of canonical quantization and show that quantization in the
co-rotating frame is consistent with quantization in the stationary frame. We show how this
approach can be applied to obtain a quantum-mechanical description of the dynamics of the
set of modes that obey rotating boundary conditions. We derive the paraxial counterpart of
the exact theory and discuss quantization of the rotating cavity modes that we have studied in
chapters 3 and 5 as an example.

The material in this chapter is organized as follows. In the next section, we summarize
the equations of motion of the radiation field, show how they may be derived from the stan-
dard Lagrangian for the free electromagnetic field and discuss canonical quantization in the
Coulomb gauge [5]. In section 7.3 we study the dynamics of light in a rotating frame and
derive complete sets of monochromatic solutions of the wave equation in such a frame. The
corresponding field operators in a stationary frame are introduced and discussed in section
7.4, where we also discuss quantization in the rotating frame. In the final section we summa-
rize our results and draw our conclusions.

7.2 Preliminaries

7.2.1 Equations of motion of the free radiation field

It is well-known from textbook electrodynamics that the electric and magnetic fields are fully
characterized by a scalar potential Φ(r, t) and a vector potential A(r, t). In terms of these
potentials the fields are given by [4]:

B(r, t) = ∇ × A(r, t) and E(r, t) = −∇Φ(r, t) − ∂A
∂t

, (7.1)

where c is the speed light. These definitions ensure that the homogeneous Maxwell equations
are obeyed [4]. Although the fields are fully specified by the potentials Φ(r, t) and A(r, t), the
reverse is not true; there is some arbitrariness (gauge freedom) in the choice of the potentials.
The dynamics of the free radiation field is most conveniently described in the Coulomb gauge,
which is defined by the requirement that [4]

∇ · A(r, t) = 0 . (7.2)

In the absence of electric charges and currents, it follows from the inhomogeneous Maxwell
equations that the scalar potential Φ vanishes while the vector potential obeys the wave equa-
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tion (
∇2 − 1

c2

∂2

∂t2

)
A(r, t) = 0 , (7.3)

which, together with the requirement that the field is divergence free (7.2), fully describes the
dynamics of the free radiation field in the Coulomb gauge.

In general, the dynamics of the free electromagnetic field may be described by the La-
grangian [5]

L =

∫
d3r L(A, Ȧ) =

ε0

2

∫
d3r

{
|Ȧ|2 − c2|(∇ × A)|2

}
=

ε0

2

{
〈Ȧ|Ȧ〉 − c2〈∇ × A|∇ × A〉

}
, (7.4)

where L is the Lagrangian density in real space and we have adopted the Dirac notation of
quantum mechanics to denote the state of the classical radiation field. In case of the free
radiation field it is natural to assume that the field A and its derivatives vanish at infinity
while, for the radiation field enclosed by an ideal cavity with a perfectly conducting boundary,
the Maxwell boundary conditions [4] require that A at the boundary is locally normal to it.
In both cases, and under the assumption that the field is locally transverse so that it obeys
equation (7.2), partial integration of the second term in equation (7.4) yields

∫
d3r |∇ ×A|2 =

−
∫

d3r A ·
(
∇2A

)
. Using this, one may show that the Euler-Lagrange equation that derives

from the Lagrangian (7.4) reproduces the wave equation (7.3). The canonical momentum
density corresponding to the field A is given by

ΠA =
∂L
∂Ȧ

= ε0Ȧ . (7.5)

The Hamiltonian may be obtained as

H =

∫
d3r

{
ΠA · Ȧ − L

}
=

1
2ε0

{
〈ΠA|ΠA〉 + ε2

0 c2〈∇ × A|∇ × A〉
}

=

1
2ε0

{
〈ΠA|ΠA〉 − ε2

0 c2〈A|∇2A〉
}
. (7.6)

The second equality only holds in the Coulomb gauge as defined by equation (7.2). In this
gauge, the corresponding Hamilton equations reproduce the wave equation (7.3).

7.2.2 Modes and quantization

Optical modes are usually defined as monochromatic solutions of the wave equation (7.3).
Although the vector potential is real, it is convenient to allow for complex mode func-
tions Fλ(r) so that the vector potential corresponding to a mode Fλ is given by A(r, t) =

Re
{
Fλ(r) exp(−iωλt)

}
. The subscript λ denotes a set of mode indices, which characterizes the

spatial and polarization structure of the mode function Fλ. For a given set of modes, the am-
plitudes 〈Fλ|A〉 and their derivatives 〈Fλ|Ȧ〉 obey harmonic equations of motion and it follows
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that the radiation field can be quantized as a set of harmonic oscillators. In case of the free
field it is customary to quantize the field in a basis of plane waves. It is well-known, however,
that quantization can be performed in a manifestly basis-independent manner, which also ap-
plies to the case of a set of cavity modes with finite spatial extent [108]. For later reference,
we briefly summarize the quantization of the radiation field in an orthonormal but otherwise
arbitrary set of modes {Fλ}. Since the complex vector potential corresponding to a mode Fλ

is given by Fλ(r) exp(−iωλt), it follows from the wave equation (7.3) that the mode functions
obey the Helmholtz equation (

∇2 + k2
λ

)
Fλ(r) = 0 , (7.7)

where k2
λ = ω2

λ/c
2 so that also Fλ(r) exp(iωλt) is a solution of the wave equation (7.3).

However, since also F∗λ(r) obeys the Helmholtz equation (7.7), and since Re{Fλ(r)eiωλt} =

Re{F∗λ(r)e−iωλt}, it follows that without loss of generality we can assume that ωλ > 0. It is
convenient to define λ∗ such that F∗λ(r) = Fλ∗(r). Notice that this convention implies that,
in general, λ∗ is not the complex conjugate of λ. In the specific case of real mode functions
Fλ = F∗λ it implies that λ∗ = λ. The mode functions {Fλ} are eigenfunctions of the Hermitian
operator ∇2 and form, therefore, a complete basis in real space. This implies that any solution
of the wave equation (7.3) can be expanded as

A(r, t) =
∑

λ

〈Fλ|A(t)〉Fλ(r) . (7.8)

In order to quantize the field, we introduce the normal variables, which are defined as

aλ(t) =

(
ε0

2~ωλ

)1/2 (
i〈Fλ|Ȧ(t)〉 + ωλ〈Fλ|A(t)〉

)
(7.9)

and

(aλ∗)∗ (t) =

(
ε0

2~ωλ

)1/2 (
−i〈Fλ|Ȧ(t)〉 + ωλ〈Fλ|A(t)〉

)
, (7.10)

where we used that the physical field A and its time derivative Ȧ are real. Notice that in case
of real mode functions Fλ = Fλ∗ it follows that aλ = aλ∗ . Inverting the definitions (7.9) and
(7.10) yields

A(r, t) =
∑

λ

(
~

2ε0ωλ

)1/2 (
aλ(t)Fλ(r) + a∗λ(t)F∗λ(r)

)
(7.11)

and

Ȧ(r, t) = −i
∑

λ

(
~ωλ
2ε0

)1/2 (
aλ(t)Fλ(r) − a∗λ(t)F∗λ(r)

)
. (7.12)

The corresponding expressions for the electric and magnetic fields can be obtained by apply-
ing equation (7.1). From equation (7.5), it follows that the canonical momentum density can
be expressed as

Π(r, t) = −i
∑

λ

(
~ωλε0

2

)1/2 (
aλ(t)Fλ(r) − a∗λ(t)F∗λ(r)

)
. (7.13)
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Since the mode functions Fλ do not depend on time, equations (7.11) and (7.12) imply that

ȧλ(t) = −iωλaλ(t) , (7.14)

which also follows from the fact that the field (7.12) obeys the wave equation (7.3). Substi-
tution in the Hamiltonian (7.6) gives

H =
∑

λ

~ωλ
2

(
a∗λaλ + aλa∗λ

)
, (7.15)

which, in view of equation (7.14), does not depend on time and takes the form of the Hamil-
tonian of a harmonic oscillator for each mode Fλ.

Canonical quantization of the field involves replacing the field and the canonical mo-
mentum density by hermitian vector operators Â and Π̂ whose components obey canonical
commutation relations. In the Coulomb gauge these take the following form [5]

[
Âi(r, t), Π̂ j(r′, t)

]
= i~δ⊥(r − r′)δi j , (7.16)

where the indices i and j run over the vector components, δ⊥(r − r′) denotes the transverse
delta function [5] and δi j denotes the Kronecker delta. As opposed to, for instance, ∇2,
which acts as an operator in the Hilbert space of physical states of the classical radiation field
A(r, t), the field and momentum operators Â(r, t) and Π̂(r, t) are operators in the Hilbert space
of quantum states of the radiation field. By replacing the classical field and momentum in the
definitions of the normal variables (7.9) and (7.10) by the corresponding operators, one finds
the operators âλ and â†λ that correspond to these variables. They obey boson commutation
rules [

âλ, â
†
λ′
]

= δλλ′ . (7.17)

The operators â†λ and âλ respectively create and annihilate a photon in the mode Fλ. The
vacuum state, which is the quantum state of the field in which none of the modes Fλ contains
photons, is defined by

âλ|vac) = 0 ∀λ , (7.18)

where a bra vector |...) with a round bracket denotes a vector in the Hilbert space of quantum
states of the radiation field. Other states can be generated by acting with (functions of) the
creation operators â†λ on the vacuum. The quantum dynamics of the radiation field is governed
by the Heisenberg equation of motion for the field operators, or, equivalently, the Schrödinger
equation for the quantum states. The Hamilton operator takes the form of equation (7.15),
the normal variables being replaced by the creation and annihilation operators. Similarly, the
field and momentum operators take the form of equation (7.12) and (7.13), the creation and
annihilation operators replacing the normal variables. The canonical commutation relations
(7.16) are ensured by the boson commutation rules (7.17). The definition of the vacuum
state (7.18), the field and momentum operators (7.16) and the Hamiltonian (7.15) provide a
complete description of the quantum dynamics of the radiation field.
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So far, we have assumed that {Fλ} constitutes a discrete set of modes. In case of a con-
tinuous set, the mode functions are normalized to δ functions and the summations over λ
are replaced by integrals over the continuous variables that characterize the modes. In the
particular case of normalized plane waves exp(ik · r)/(2π)3/2 the summations are replaced by∑
λ → (2π)−3/2

∫
d3k.

7.3 Wave optics in a rotating frame

7.3.1 Equations of motion

In chapter 3, we have shown that the modes of an optical cavity that is put into uniform
rotation about its optical axis can be defined as solutions of the time-dependent wave equation
that rotate along with the mirrors. These solutions are monochromatic in the co-rotating
frame. The corresponding complex fields, whose real parts correspond to the physical fields,
are separable in space and time and, therefore, stationary in the co-rotating frame. We shall
generalize the rotating-mode concept to the case of a freely propagating non-paraxial field and
obtain complete sets of rotating modes of the free radiation field as monochromatic solutions
in a rotating frame. First, we derive the equations of motion for light in a rotating frame.

Analogous to the discussion in chapter 5, we express the time-dependent vector potential
in the stationary frame in terms of the vector potential in a rotating frame. The latter is
denoted C(r, t). Since rotation of both the vector components and their spatial structure of
a vector field in R3 is a real transformation of the field, it follows that C(r, t) can be defined
real. It is related to the vector potential in the stationary frame by the identity

A(r, t) = 〈r|e−iΩtĴz |C〉 , (7.19)

where |r〉 is an eigenket of the position operator so that C(r, t) = 〈r|C〉 is the real-space rep-
resentation of the vector potential in the rotating frame. The operator exp(−iĴzΩt) describes
a time-dependent rotation of both the spatial structure and the polarization of a vector field,
where Ω is the rotation frequency and Ĵz is the corresponding generator. By considering in-
finitesimal rotations exp(−iαĴz)A = A − iαĴzA + O(α2) of both the vector components of a
field A and their spatial structure, we find that Ĵz may be expressed as

〈r|Ĵz|A〉 = 〈r|L̂z + Ŝ z|A〉 � −i
∂

∂φ
A(r, t) + i


0 −1 0
1 0 0
0 0 0

 A(r, t) . (7.20)

The spin part Ŝ z acts upon the vector nature of the field and generates rotations of the vector
components. The orbital part, on the other hand, solely acts upon the spatial structure of
each of the vector components and generates rotations of their spatial patterns. Notice that
the form of the real-space representation of Ĵz, which figures in the second right-hand side in
equation (7.20), confirms that the rotation of a vector field in R3 is a real transformation so
that the vector potential can be assumed real in both frames.
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Substitution of the rotating field |A〉 = e−iΩtĴz |C〉 and its time derivative |Ȧ〉 =

e−iΩtĴz
(
|Ċ〉 − iΩĴz|C〉

)
in the Lagrangian (7.4) yields the Lagrangian in the rotating frame

Lrot =
ε0

2

{
〈Ċ|Ċ〉 + iΩ〈C|Ĵz|Ċ〉 − iΩ〈Ċ|Ĵz|C〉 + Ω2〈C|Ĵ2

z |C〉 − c2〈∇ × C|∇ × C〉
}
, (7.21)

where we have used that ∇ × (ĴzC) = Ĵz(∇ × C) so that 〈∇ × A|∇ × A〉 = 〈∇ × C|∇ × C〉.
Using the real-space representation of Ĵz, which figures in equation (7.20), one may show
that ∇ · (ĴzC) = L̂z(∇ · C). It follows that the transversality condition (7.2) is not affected by
a transformation to a rotating frame so that

∇ · C(r, t) = 0 . (7.22)

By using that, for a transverse field, 〈∇×C|∇×C〉 = −〈C|∇2C〉, the Euler-Lagrange equation
for C(r, t) yields the wave equation in the rotating frame

∇2 +
Ω2 Ĵ2

z

c2 +
2iΩĴz

c2

∂

∂t
− 1

c2

∂2

∂t2

 C(r, t) = 0 . (7.23)

This equation can also be obtained directly from substitution of the rotating field (7.19) in the
wave equation in the stationary frame (7.3). Notice that, iĴz is real so that the wave equation
(7.23) in the rotating frame is real.

The canonical-momentum density in the rotating frame is given by

ΠC(r, t) =
∂L
˙∂C

= ε0

(
Ċ(r, t) − iΩ〈r|Ĵz|C〉

)
= ε0

(
Ċ(r, t) + iΩ〈C|Ĵz|r〉

)
, (7.24)

which is also real. By using the expression (7.5) of the momentum in a stationary frame and
|Ȧ〉 = e−iΩtĴz

(
|Ċ〉 − iΩĴz|C〉

)
, we find that

ΠA(r, t) = 〈r|e−iΩtĴz |ΠC〉 . (7.25)

The Hamiltonian in the rotating frame can be expressed as

Hrot = ΠC · Ċ − L =

1
2ε0
〈ΠC|ΠC〉 + iΩ〈ΠC|Ĵz|C〉 − iΩ〈C|Ĵz|ΠC〉 + ε0c2

2
〈∇ × C|∇ × C〉 . (7.26)

By using that the field is transverse (7.22), one may show that the Hamilton equations that
derive from this Hamiltonian are equivalent to the wave equation in the rotating frame (7.23).

7.3.2 Rotating modes in free space

Analogous to the discussion in chapter 3, rotating modes of the free radiation field are defined
as solutions of the wave equation (7.3) that are monochromatic in a rotating frame. In com-
plex notation, such solutions can be expressed C(r, t) = Re{C(r) exp(−iωt)}, where C(r) is
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7. An exact quantum theory of rotating light

the complex spatial vector potential in the rotating frame. Substitution in the wave equation
in the rotating frame (7.23) gives

∇2 +
Ω2 Ĵ2

z

c2 +
2ωΩĴz

c2 +
ω2

c2

 C(r) = 0 . (7.27)

This equation plays the role analogous to that of the Helmholtz equation (7.7) in the rotating
frame. Notice that due to the presence of Ĵz, which is a purely imaginary operator, equation
(7.27) is not real so that C(r) is, in general, a complex vector field.

Since [∇2, Ĵz] = 0, it follows that ∇2 and Ĵz must have simultaneous eigenfunctions for
which the wave equation (7.23) reduces to an algebraic equation, which can be solved to
obtain a dispersion relation. We shall derive the simultaneous eigenfunctions of ∇2 and Ĵz,
which allow us to obtain exact expressions of rotating modes in free space. For reasons of
convenience, we first discuss the analogous case of a rotating scalar field A(r, t). Later on,
we shall construct rotating complex vector fields A(r, t) from these scalar ones. Analogous
to equation (7.19), the negative frequency part of a rotating scalar field is defined as

A(r, t) = e−iL̂zΩtC(r)e−iωt , (7.28)

where C(r) is spatial field in the rotating frame. In case of a scalar field, equation (7.27)
reduces to ∇2 +

Ω2L̂2
z

c2 +
2ωΩL̂z

c2 +
ω2

c2

C(r) = 0 . (7.29)

Since also [∇2, L̂z] = 0 and since L̂z and ∇2 are both hermitian, L̂z and ∇2 must have an
orthonormal set of simultaneous eigenfunctions for which the wave equation (7.29) becomes
an algebraic equation. Since [L̂z,−i∂/∂z] = 0 and since the eigenfunctions of L̂z are propor-
tional to exp(ilφ) while the eigenfunctions of −i∂/∂z are proportional to exp(iqz), it is natural
to introduce cylindrical coordinates (R, φ, z) and look for solutions of the following type

C(R, φ, z) = G(R)eilφeiqz , (7.30)

with l ∈ Z and q ∈ R. Substitution in the scalar wave equation (7.29) yields after rearranging
the terms (

R2 ∂2

∂R2 + R
∂

∂R
+ (κR)2 − l2

)
G(R) = 0 , (7.31)

where κ ∈ R+ is defined by the dispersion relation

(ω + lΩ)2 = c2(κ2 + q2) . (7.32)

The solutions of equation (7.31) are Bessel functions of the first kind Gκl(R) = Jl(κR) so that
a set of scalar Bessel mode functions can be introduced as

Gλ(r) =

(
1

2π

)
Jl(κR)eilφeiqz , (7.33)
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where λ = (κ, l, q) denotes the set of spatial mode indices and the factor 1/(2π) is introduced
for reasons of normalization. The corresponding frequencies can be obtained from (7.32)

ωλ± = ±c
√
κ2 + q2 − lΩ . (7.34)

For every solution Gλ with ωλ±, the mode function G∗λ = Gλ∗ with λ∗ = (κ,−l,−q) obeys the
scalar wave equation (7.29) with the frequencies ωλ∗± = ±c

√
κ2 + q2 + lΩ. Since the mode

functions are in general complex, the real scalar field in the rotating frame corresponding to
the mode Gλ with ωλ+ is given by

C(r, t) =

eiΩtĴz

(
Gλe−ic

√
κ2+q2t + Gλ∗eic

√
κ2+q2t

)

2
, (7.35)

where we have used that exp(−iΩtĴz) is real. Since Re
(
Gλe−ic

√
κ2+q2t

)
= Re

(
Gλ∗eic

√
κ2+q2t

)
,

it follows that without loss of generality we can choose

ωλ = c
√
κ2 + q2 − lΩ so that ωλ∗ = c

√
κ2 + q2 + lΩ . (7.36)

By using the orthonormality property of Bessel functions of the first kind [47], one may show
that the mode functions {Gλ} are normalized to δ functions

〈Gλ|Gλ′〉 =

∫ ∞

0
RdR

∫ 2π

0
dφ

∫ ∞

−∞
dz G∗λ(R, φ, z)Gλ′(R, φ, z) =

1
κ
δ(κ− κ′)δ(q−q′)δll′ , (7.37)

where δ(κ − κ′) and δ(q − q′) denote Dirac delta functions while δll′ denotes the Kronecker
delta. By the Fourier-Bessel theorem and the Fourier theorem [47], the set of mode functions
{Gλ} constitutes a complete basis in real space.

It is clear that the vector field (ez × ∇)A is locally transverse so that it obeys the transver-
sality condition (7.2). It is easy to show that this is an exact solution of the wave equation
(7.3) if (and only if) A(r, t) obeys the scalar equivalent of the wave equation. Since the cor-
responding electric field has a vanishing z component, it is customary to call this a transverse
electric (TE) mode [4, 6]. The transversality condition (7.2) allows for two linearly inde-
pendent polarization states. The other, for which the magnetic field is transverse (TM), can
be constructed as −(ic/ω)∇ × (ez × ∇)A, where ω is the frequency in a stationary frame. In
general, the TE and TM mode functions corresponding to a set of scalar modes A are globally
orthonormal. The vectorial mode functions corresponding the TE and TM Bessel modes can
be expressed as

GTE
λ (r) = (ez × ∇)Gλ(r) (7.38)

and
GTM
λ (r) =

−i√
κ2 + q2

∇ × (ez × ∇)Gλ(r) , (7.39)

where
√
κ2 + q2 arises as the length of the wave vector of the Bessel modes in a stationary

frame. The frequencies in the rotating frame depend on Ω and are given by (7.36). It is
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convenient to define the subscript mode index of the vector fields such that it characterizes
both the spatial and the polarization degrees of freedom associated with the modes. In order
to do so, we introduce vectorial mode functions Gµ with µ = (λ, σ), where σ runs over the TE
and TM polarizations. One may prove that both the TE and TM mode are exact eigenstates
of Ĵz with eigenvalues l, but not of L̂z and Ŝ z separately. Moreover, both are eigenfunctions of
∇2 with eigenvalues −(κ2 + q2), of −i∂/∂z with eigenvalues q and of the transverse laplacian
∇2
ρ = ∇2 − ∂2/∂z2 with eigenvalues −κ2. Analogous to equation (7.37), the vectorial mode

functions Gµ obey the closure relation

〈Gµ|Gµ′〉 =

∫ ∞

0
RdR

∫ 2π

0
dφ

∫ ∞

−∞
dz G∗µ(R, φ, z) ·Gµ′ (R, φ, z) =

1
κ
δ(κ − κ′)δ(q − q′)δll′δσσ′ , (7.40)

where µ = (κ, l, q, σ). It follows that the set {Gµ} of vectorial Bessel mode functions consti-
tutes a complete basis of transverse vector fields in C3 so that the general solution of the wave
equation in the rotating frame (7.23) can be expanded as

C(r, t) =
∑

σ

∫ ∞

0
κdκ

∫ ∞

−∞
dq

∑

l

〈Gµ|C(t)〉Gµ(r) . (7.41)

Since the vectorial Bessel modes are eigenfunctions of Ĵz and, therefore, of the rotation op-
erator exp(−iαĴz), it follows that the corresponding fields are monochromatic both in the
rotating and in the stationary frame. As such, the Bessel modes {Gµ} accommodate the trans-
formations from a stationary to a rotating frame and vice versa.

7.3.3 Basis transformations

In this section we discuss how an arbitrary set of rotating modes, in particular the set of
mode functions that obey rotating boundary conditions, can be expanded in the vectorial
Bessel modes. We consider an orthonormal set of mode functions {Vν} that correspond to
transverse and monochromatic fields in the rotating frame, i.e., vector fields in C3 that obey
equations (7.22) and (7.23). Again, the subscript mode index ν characterizes both the spatial
and polarization degrees of freedom. The frequency of the mode Vν is denotedων. Analogous
to equation (7.41), the modes can be expanded as

Vν(r) =
∑

σ

∫ ∞

0
κdκ

∑

l

∫ ∞

−∞
dq 〈Gµ|Vν〉Gµ(r) , (7.42)

where µ = (κ, l, q, σ) and the coefficients of the expansion are given by

〈Gµ|Vν〉 =

∫ ∞

0
RdR

∫ 2π

0
dφ

∫ ∞

0
dq G∗µ(R, φ, z) · Vν(R, φ, z) . (7.43)

By using that both Vµ and Gν correspond to monochromatic solutions of the wave equation in
the rotating frame (7.23), one may show by partial integration that the matrix elements (7.43)
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7.3 Wave optics in a rotating frame

differ from 0 only if ω2
µ = ω2

ν . This can be exploited by eliminating one of the spatial mode
indices, for instance, |q|, in favor of the frequency ω = ων. For a fixed value of ω, the scalar
mode functions (7.33) can be expressed as

Hλ(r;ω) =

(
1

2π

)
Jl(κR)eilφe±

iz
c

√
ω2+2lωΩ+l2Ω2−c2κ2

, (7.44)

where λ = (κ, l,±, ω) and the + and − signs correspond to fields that propagate in the positive
and negative z directions respectively. The corresponding vectorial modes Hµ can be obtained
by applying equations (7.38) and (7.39). In terms of these mode functions, the expansion
(7.42) reduces to

Vν(ρ, z) =
∑

σ

∫ ∞

0
κdκ

∑

l

∑

±
〈Hµ|Vν〉Hµ(r) , (7.45)

where the summation over ± denotes a summation over the two propagation directions along
the z axis. If we limit the discussion to fields for which the expansion (7.44) only involves
components with a fixed sign of q, the coefficients of the expansion (7.45) can be obtained
from integration in the transverse plane

〈Hν|Vµ〉 =

∫ ∞

0
RdR

∫ 2π

0
dφ

(
Hν(R, φ, z)

)∗ · Vµ(R, φ, z) . (7.46)

This result shows that, for a given value of the frequency in the rotating frame ω and a given
propagation direction along the z axis, the spatial dependence of a transverse vectorial mode
is fully determined by the field pattern in a single transverse plane. In the more general case
of monochromatic fields that contain components that propagate in both directions along the
z axis, the field can be separated in two parts that propagate in opposite directions along the z
axis. In that case, the analogous expressions can be derived for each of these two parts.

7.3.4 Rotating modes in the paraxial approximation

The expansion (7.45) of a set of monochromatic vectorial modes Vµ in the basis of TE and
TM modes corresponding to monochromatic scalar Bessel modes Hλ(r) establishes the con-
nection with the paraxial description discussed in chapter 3 in a very natural way. Essential
to the paraxial approximation is the assumption that the field propagates mainly along a well-
defined direction, so that the wave-vector components transverse to the dominant propaga-
tion direction are small compared to the length of the wave vector. In the case of the scalar
monochromatic Bessel modes (7.44), this implies that c2κ2 << ω2. In the terminology of sec-
tion 3.2, the ratio cκ/ω can be used as a smallness parameter δ. Analogous to the discussion
in chapter 3, we also assume that Ω ∼ δ2ω, which is a slowly-varying envelope approxima-
tion. Then, by expanding the square root in the argument of the exponent in equation (7.44)
up to first order in powers of δ, the monochromatic scalar Bessel modes (7.44) reduce to

Hλ(ρ, z;ω) ' exp
(
± iωz

c

(
1 +

lΩ
ω
− c2κ2

2ω2

))
Hλ(ρ, 0;ω) , (7.47)
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where the + and − signs again correspond to fields that propagate in the positive and negative
z directions. Since ∇2

ρHλ = −κ2Hλ and L̂zHλ = lHλ, the exponential term in equation (7.47)
takes the form of the paraxial propagator in the rotating frame (3.31), acting on the trans-
verse Bessel mode function Hλ(ρ, 0), z being replaced by −z for modes propagating in the
negative z direction. This shows that the paraxial Bessel modes (7.47) are exact solutions of
the paraxial wave equation in a rotating frame (5.4). The longitudinal components of the TM
modes are of the order of δ smaller than the transverse components and, in leading order of
the paraxial approximation, both the TE and the TM modes corresponding to the scalar mode
functions (7.47) are polarized in the transverse plane. Moreover, the transverse variation of
the polarization is slow compared to that of the transverse beam profile as characterized by
Hλ(ρ, z) so that, up to first order in δ, the transverse polarization of the Bessel modes can be
chosen independent of the spatial mode indices. In the paraxial approximation, a vectorial
Bessel mode Gµ thus reduces to εσHλ, where σ labels two linearly independent transverse
polarization states and λ is a set of spatial mode indices. Analogous to the discussion above,
the paraxial Bessel modes εσHλ constitute a complete basis set of paraxial modes. An arbi-
trary (set of) paraxial modes ετVλ, where τ labels the polarization states, can be expanded in
this basis. In the case of the rotating cavity modes that we have described in chapters 3 and
5, the paraxial mode functions are given by Vλ = vnm exp(ikz) with λ = (n,m, k) the mode
profiles in the rotating frame vnm given by equation (3.58). The uniform polarization ε can be
chosen independently of the spatial indices λ.

Notice that, analogous to the description in section 3.2, this approach is perturbative in
that it allows for obtaining higher-order corrections by taking higher-order powers of δ into
account. However, the spatial and polarization degrees of freedom are decoupled only in
lowest non-vanishing order of the paraxial approximation.

7.4 Quantization

7.4.1 Normal variables for a rotating field

As discussed in the previous section, the vectorial Bessel mode functions accommodate the
transformation from the rotating to the stationary frame and vice versa. In order to derive
expressions of the normal variables associated with the Bessel-mode components of the field
in a rotating frame, we substitute the expansion (7.41) in the expression (7.19) of the rotating
field in the stationary frame and obtain

A(r, t) =
∑

σ

∫ ∞

0
κdκ

∑

l

∫ ∞

−∞
dq 〈Gµ|C〉e−ilΩtGµ(r) (7.48)

for the real vector potential in the stationary frame. Its time derivative can be expressed as

Ȧ(r, t) =
∑

σ

∫ ∞

0
κdκ

∑

l

∫ ∞

−∞
dq

(
〈Gµ|Ċ(t)〉 − ilΩ〈Gµ|C(t)〉

)
e−ilΩtGµ(r) . (7.49)
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From the definitions (7.9) and (7.10), we find that the normal variables corresponding to the
Bessel-mode components of the rotating field are given by

aµ(t) =


ε0

2~c
√
κ2 + q2


1/2

e−ilΩt
(
i〈Gµ|Ċ(t)〉 + ωµ∗〈Gµ|C(t)〉

)
(7.50)

and

aµ∗ (t) =


ε0

2~c
√
κ2 + q2


1/2

eilΩt
(
i〈Gµ∗ |Ċ(t)〉 + ωµ〈Gµ∗ |C(t)〉

)
(7.51)

where c
√
κ2 + q2 arises as the frequency of the Bessel modes in the stationary frame and ωµ∗

andωµ are given by equation (7.36). With the normal variables in equations (7.50) and (7.51),
the field in the stationary frame and the corresponding momentum take the form of equations
(7.12) and (7.13), the mode functions Fλ being replaced by the vectorial Bessel modes Gµ.

7.4.2 Normal variables in the rotating frame

In case of a complete set of rotating modes {Vµ}, it is more natural to describe the dynamics
of the radiation field in terms of a set of normal variables that characterize the amplitudes and
corresponding momenta in these rotating modes. In this section, we show that it is possible to
introduce such variables and derive the corresponding Hamiltonian. The expressions in equa-
tions (7.50) and (7.51) suggest to introduce normal variables for the Bessel-mode components
in the rotating frame as

cµ(t) =


ε0

2~c
√
κ2 + q2


1/2 (

i〈Gµ|Ċ(t)〉 + ων∗〈Gµ|C(t)〉
)

(7.52)

and

cµ∗(t) =


ε0

2~c
√
κ2 + q2


1/2 (

i〈Gµ∗ |Ċ(t)〉 + ωµ〈Gν∗ |C(t)〉
)
. (7.53)

Notice that, although their shape is very similar to that of normal variables in a stationary
frame, both the anti-symmetric way in which the frequencies ων and ων∗ appear and the
square-root factor, which involves the frequency of the Bessel mode in a stationary frame, are
signatures of the fact that these are normal variables in a non-inertial frame. They are related
to the normal variables (7.50) and (7.51) in the stationary frame by the unitary transformations

aµ(t) = e−ilΩtcµ(t) and aµ∗ (t) = eilΩtcµ∗ (t) . (7.54)

The field in the rotating frame and its derivative can be expressed as

C(r, t) =
∑

σ

∫ ∞

0
κdκ

∑

l

∫ ∞

−∞
dq


~

2ε0c
√
κ2 + q2


1/2 (

cµ(t)Gµ(r) + c∗µ(t)Gµ∗(r)
)

(7.55)
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and

Ċ(r, t) = −i
∑

σ

∫ ∞

0
κdκ

∑

l

∫ ∞

−∞
dq


~

2ε0c
√
κ2 + q2


1/2

×

ωµ
(
cµ(t)Gµ(r) − c∗µ(t)Gµ∗(r)

)
, (7.56)

where we have used that ωµ∗ + ωµ = 2c
√
κ2 + q2 and ωµ∗ − ωµ = 2lΩ. Since the Gµ and

Gµ∗ obey the wave equation in the rotating frame at the frequencies ωµ and −ωµ, this result is
consistent with the fact that C(r, t) obeys equation (7.23). By using equation (7.24), we find
that

ΠC(r, t) = −i
∑

σ

∫ ∞

0
κdκ

∑

l

∫ ∞

−∞
dq


~ε0c

√
κ2 + q2

2


1/2 (

cµ(t)Gµ(r)−c∗µ(t)Gµ∗(r)
)
. (7.57)

The hamiltonian in the rotating frame (7.26) can be expressed as

Hrot =
1
2

∑

σ

∫ ∞

0
κdκ

∑

l

∫ ∞

−∞
dq ~ωµ

(
c∗µcµ + cµc∗µ

)
. (7.58)

The form of this Hamiltonian confirms that the harmonic structure of the dynamics of the
modes survives in the rotating frame. The classical dynamics of the Bessel modes in the
rotating frame is described the Hamilton equations with the Hamiltonian (7.58) and with the
field and corresponding momentum as specified by equations (7.56) and (7.57).

From the expansion in equation (7.41), it follows that the normal variables that character-
ize the amplitude and momentum in a complete and orthonormal set of rotating modes {Vν}
may be defined as properly normalized linear combinations of the normal variables for the
Bessel modes, i.e.,

vν(t) =
∑

σ

∫ ∞

0
κdκ

∑

l

∫ ∞

−∞
dq 〈Vν|Gµ〉cµ(t) (7.59)

and

vν∗(t) =
∑

σ

∫ ∞

0
κdκ

∑

l

∫ ∞

−∞
dq 〈Vν∗ |Gµ∗〉cµ∗(t) , (7.60)

where µ = (κ, l, q, σ). By using the definitions (7.52) and (7.53) of cµ and cµ∗ and the fact that
the matrix element 〈Vν|Gµ〉 differs from zero only when ω2

ν = ω2
µ while the matrix element

〈Vν∗ |Gµ∗〉 differs from zero only when ω2
ν∗ = ω2

µ∗ , we find that

vν(t) =
∑

σ

∫ ∞

0
κdκ

∑

l

∫ ∞

−∞
dq

(
ε0

2~(ων + lΩ)

)1/2

×

〈Vν|Gµ〉
(
i〈Gν|Ċ(t)〉 + (ων + 2lΩ)〈Gµ|C(t)〉

)
(7.61)
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and

vν∗(t) =
∑

σ

∫ ∞

0
κdκ

∑

l

∫ ∞

−∞
dq

(
ε0

2~(ων − lΩ)

)1/2

×

〈Vν∗ |Gµ∗〉
(
i〈Gν∗ |Ċ(t)〉 + (ων − 2lΩ)〈Gµ∗ |C(t)〉

)
. (7.62)

Notice that the normal variables (7.61) and (7.62) reduce to the ordinary normal variables in
the stationary frame in the absence of rotation, i.e., for Ω = 0. Using the completeness of the
vectorial Bessel modes (7.40), the definitions in equations (7.59) and (7.60) can be inverted
to obtain

cµ(t) =
∑

ν

〈Gµ|Vν〉vν(t) and cµ∗(t) =
∑

ν

〈Gµ∗ |Vν∗〉vν∗(t) , (7.63)

where we have assumed that {Vν} is a discrete set of modes. Again using that the matrix
elements 〈Gµ|Vν〉 differ from 0 only when ω2

µ = ω2
ν , the Hamiltonian (7.58) can be expressed

as
Hrot =

1
2

∑

ν

~ων
(
v∗νvν + vνv∗ν

)
. (7.64)

Thus, we have obtained a complete description of the classical dynamics of the radiation field
in terms of normal variables for an orthonormal but otherwise arbitrary set of rotating modes
{Vν}.

7.4.3 Canonical quantization

In the stationary frame, quantization is performed by replacing the real field A and canonical
momentum ΠA by hermitian operators that obey canonical commutation rules (7.16). The
normal variables aµ, as specified by equation (7.50), and their complex conjugates a∗µ become
bosonic annihilation and creation operators. The field operator in the stationary frame takes
the form of equation (7.12) when the modes Fλ are replaced by the Bessel modes Gν and
the normal variables are replaced by the creation and annihilation operators. The quantum
evolution of the rotating field operators is governed by the Heisenberg equation of motion.
The Hamiltonian takes the form of equation (7.15) when the normal variables are replaced
by the creation and annihilation operators that correspond to the normal variables defined in
equation (7.50) and (7.51).

Quantization in the rotating frame involves replacing the field in the rotating frame C(r, t)
and the corresponding momentum ΠC(r, t) (7.24) by vector operators Ĉ(r, t) and Π̂C(r, t)
whose components obey canonical commutation rules

[
Ĉi(r), Π̂C j(r′)

]
= i~δ⊥(r − r′)δi j , (7.65)

where the indices i and j run over the vector components. The other, independent, commuta-
tors of the components of Ĉ and Π̂C vanish. From the definition (7.19) of the complex field
in the rotating frame and the expression (7.25) of the corresponding momentum, it is evident
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that quantization in the rotating frame is consistent with quantization in the stationary frame.
Substitution of the expansions (7.55) and (7.57) in the canonical commutation rules in the ro-
tating frame (7.65) shows that also the normal variables in the rotating frame become bosonic
creation and annihilation operators. This is in obvious agreement with the transformations
in equation (7.54). Since the transformation described by the equations (7.59) and (7.60) is
a properly normalized unitary transformation in the space of the normal variables, it follows
that the same is true for the normal variables that describe the dynamics of the field in terms
of the amplitudes and momenta of the rotating modes Vµ. The quantum dynamics in the
rotating frame is described by the Heisenberg equation of motion with the Hamiltonian in
equation (7.58) or, equivalently, (7.64) when the normal variables are replaced by creation
and annihilation operators.

Notice, that since the transformation in equation (7.54), and also the transformations in
equations (7.59) and (7.60), are properly normalized unitary transformations, the vacuum as
perceived from the rotating frame is the same as that perceived from the stationary frame
(7.18).

7.5 Summary, conclusion and outlook

In this chapter we have presented the first exact quantum-optical description of rotating light,
or, equivalently, quantized the radiation field in an orthonormal but otherwise arbitrary basis
of rotating modes {Vµ}. Rotating modes are defined as divergence free (7.22) monochromatic
solutions of the wave equation in a rotating frame (7.23). In complex notation, these fields are
separable in space and time so that the corresponding physical fields are stationary in the ro-
tating frame. As a result, they rotate uniformly in a stationary frame. We have shown that the
set of vectorial Bessel modes both with transverse electric (TE) and transverse magnetic (TM)
polarization are exact eigenstates of Ĵz and, therefore, of the rotation operator exp(−iΩtĴz).
It follows that the fields corresponding to these modes only pick up a frequency shift under
the transformation from a stationary to a rotating frame. As a result, the Bessel-mode fields
are monochromatic in both frames. As the Bessel modes are monochromatic in the stationary
frame, the free radiation field can be quantized in this basis in the usual way. Since they are
also monochromatic in the rotating frame, an arbitrary rotating mode Vµ, which is monochro-
matic in the rotating frame, can be expanded in the subset of Bessel modes that have the same
frequency in the rotating frame. The simple transformation property of Bessel modes to the
stationary frame naturally leads to an expression of the field operator corresponding to the
rotating mode as a linear combination of the field operators for the Bessel modes in the sta-
tionary frame. Alternatively, the field can be quantized directly in the rotating frame. We
have shown that this is equivalent to quantization in the stationary frame.

The approach discussed in this chapter is particulary suited to describe the quantum dy-
namics of a set of modes that solve rotating boundary conditions, such as the rotating cavity
modes discussed in chapters 3 and 5. In that respect it is complementary to the approach dis-
cussed in reference [107], where approximate rotating solutions in free space are constructed
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from stationary ones. As opposed to reference [107], the theory presented here is exact and
does not require paraxial and/or slowly-varying-envelope approximations. On the other hand,
the approach in reference [107] is more flexible in that it allows for a quantum description of
fields with a rotating polarization and/or a rotating mode pattern whereas the work discussed
here only concerns uniformly rotating fields.

The method discussed in this chapter concerns quantization of the free radiation field in
the Coulomb gauge. As a result, its validity is restricted to energy scales where vacuum
fluctuations in full quantum electrodynamics (e.g. electron-positron pair creation) are negli-
gible. A special property of the transformation to a rotating frame that we have applied in
this chapter is that it does not affect the vacuum state of the radiation field. From a relativistic
point-of-view, other definitions of the transformation to a rotating frame may be more natural
[109, 110]. These lead to a different definition of the vacuum in the rotating frame [111]. The
transformation to a rotating frame that we have used here is fundamentally different from the
transformation to the co-moving frame of an orbiting observer. Also in that case the vacuum
is perceived differently, which may be understood as an example of the Unruh effect [112].

The scalar Bessel beams Gλ that we have studied in section 7.3, were first proposed some
twenty years ago [113, 114] and have been investigated in detail both theoretically and exper-
imentally, see, for instance, reference [115] for a recent review. The vectorial Bessel beams
Gµ are less well-known but have also been studied before [6, 116]. Since the production
of Bessel beams in experiments is well-established, it should be possible to construct the
rotating fields that we have discussed in this chapter as a superposition of their rotational-
Doppler shifted components. Production of quantum coherent superpositions of such modes
is probably far more involved.

An interesting application of the theory discussed in this chapter would be to study the
quantum interference of two single-photon fields that have the same spectral and spatial
structure in a given transverse plane of their own co-rotating frames but rotate at different
frequencies and, possibly, in opposite directions. From the results of section 7.3, it is clear
that rotation has strong and distinct effects on the spectral and spatial structure of the modes.
As a result, the probability of photon bunching in a quantum-interferometric set-up, which is
essentially determined by the spatial and spectral overlap of the two modes, depends strongly
on the two rotation frequencies.
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Samenvatting

In deze samenvatting bespreek ik de essentiële concepten en onderzoeksresultaten uit dit
proefschrift op een manier waarop ze toegankelijk zijn voor wie niet zo goed ingevoerd is
in de moderne natuur- en wiskunde dan wel niet zo vertrouwd is met de Engelstalige termi-
nologie die gebruikt wordt. Zoals Einstein in een ander verband ooit opmerkte is het in de
natuurkunde van belang de zaken zo eenvoudig voor te stellen als mogelijk, maar niet een-
voudiger. Om die reden probeer ik in deze samenvatting de essentie van dit proefschrift te
vatten, maar vermijd ik oversimplificatie. De titel van dit boek laat zich het beste vertalen
als ’Licht met een draai - straalaspecten in singuliere golf- en quantumoptica’. Na het lezen
van deze samenvatting zou de betekenis van ieder van deze woorden en hun verband met het
werk in dit proefschrift duidelijk moeten zijn.

Hoofdstuk 1: Verdraaid licht

Dit proefschrift gaat over licht. Fysisch gesproken is licht een electromagnetisch golfver-
schijnsel. Anders dan een golf die zich voortplant door een gitaarsnaar en waarin de uitwij-
king van de snaar ten opzichte van de evenwichtspositie trilt (oscilleert), bestaat licht uit twee
oscillerende componenten. Zowel het electrische als het magnetische veld in een lichtbundel
oscilleren in alle vlakken die loodrecht staan op de richting waarin de golf zich voortplant.
Zulke vlakken worden transversale vlakken genoemd. Bovendien oscilleren de electrische
en magnetische velden in onderling loodrechte richtingen. De richting waarin het electrische
veld oscilleert, bepaalt de polarisatie van het licht. In een circulair gepolariseerde lichtbundel
draait de polarisatie als functie van de tijd. In het eenvoudigste geval is de richting waarin
het licht zich voortplant en de polarisatie overal hetzelfde. De locale voortplantingsrichting
en polarisatie van het licht kunnen echter ook variëren als functie van de positie in de ruimte
en als functie van de tijd. In dat geval heeft het licht ruimtelijke structuur. Dit proefschrift
gaat over zulke structuren van licht. Voordat ik de andere hoofdstukken van dit proefschrift
bespreek, zal ik kort aangeven waarom structuren van licht de interesse van natuurkundigen
hebben. Deze interesse is tenminste drieledig.

Ten eerste kan de structuur van een lichtbundel en de interactie tussen het licht een deeltje
aanleiding geven tot krachten en krachtmomenten op deeltjes. Hoewel zulke krachten onder
realistische omstandigheden klein zijn (typisch enkele piconewtons), wordt dit principe on-
der meer gebruikt in het zogeheten optische pincet (optical tweezers) waarmee deeltjes vast-
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gepakt en verplaatst kunnen worden. Daarnaast zijn optische krachten en krachtmomenten
van belang in het vakgebied optomechanica waarin de gekoppelde (quantum)mechanica van
het stralingsveld en een mechanische oscillator wordt gemanipuleerd en bestudeerd.

Daarnaast kan een lichtbundel interessante fysische eigenschappen hebben die samen-
hangen met zijn ruimtelijke structuur. Het belangrijkste voorbeeld hiervan is het baanim-
pulsmoment. Het impulsmoment is een grootheid die de hoeveelheid draaiing van een fy-
sisch object karakteriseert (zoals de gewone lineaire impuls een maat is voor de hoeveelheid
lineaire beweging van een object). Voor deeltjes zijn er twee verschillende bijdragen aan
het totale impulsmoment die grofweg corresponderen met het draaien om de eigen as (tollen
of spinnen) en het draaien om een andere as (meestal om een ander object). Een soortge-
lijke tweedeling bestaat ook voor het impulsmoment in licht dat één welbepaalde kleur heeft
(monochromatisch licht). Enerzijds kan licht een spinimpuls moment hebben dat samenhangt
met draaiing van zijn polarisatie. Anderzijds is er het baanimpulsmoment dat het gevolg is
van specifieke structuren in de voortplantingsrichting van het licht in de bundel. In het laat-
ste geval is het de energiestroom die draait om de as waarlangs de bundel zich voortplant.
De meest voor de hand liggende bijdrage aan het impulsmoment in niet-monochromatische
lichtbundels is wellicht het baanimpulsmoment als gevolg van fysieke draaiing van het bun-
delpatroon. Onder realistische omstandigheden is deze bijdrage echter veel kleiner dan de
andere twee. In een baanbrekend experiment dat werd uitgevoerd in 2001 werd aangetoond
dat lichtdeeltjes (fotonen) verstrengeld kunnen zijn in hun baanimpulsmoment. Verstren-
geling is een merkwaardig quantummechanisch verschijnsel waarbij de individuele toes-
tanden van twee deeltjes op verschillende plaatsen (bijvoorbeeld hun baanimpulsmomenten)
volledig onbepaald zijn, terwijl hun gezamenlijke toestand (het totale baanimpulsmoment)
goed gedefinieerd is. Wanneer de toestand van een van de deeltjes gemeten wordt, ligt de
toestand van het andere deeltje instantaan vast. Quantumverstrengeling ligt aan de basis van
onderzoek naar quantumcomputers en quantuminformatica. Aangezien het baanimpulsmo-
ment samenhangt met de structuur van licht, is de structuur van licht een mogelijke kandidaat
voor het coderen, manipuleren en transporteren van een pakketje quantuminformatie.

Afgezien van mogelijke toepassingen van optische krachten en quantumverstrengeling is
er tenslotte ook interesse in de meer theoretische en mathematische aspecten van structuren
van licht. Baanimpulsmoment in lichtbundels hangt vaak (maar, anders dan soms gedacht
wordt, niet altijd) samen met de aanwezigheid van optische vortices. Dat zijn draaikolken
in een lichtbundel. In het centrum van de vortex is het donker (zoals het in het oog van
een orkaan niet stormt) en de variatie van de voortplantingsrichting van het licht rondom de
vortex is zodanig dat het licht om het vortexcentrum heen draait. Het vortexpatroon in een
lichtbundel kan zeer complex zijn en aanleiding geven tot topologisch interessante structuren
als knopen en lussen. Het vakgebied dat zich bezighoudt met vortices en vortexpatronen in
lichtbundels wordt singuliere optica genoemd.

Hoewel het foton inmiddels even ter sprake is geweest, hebben we het vooral gehad over
licht als golfverschijnsel. Nadat in de negentiende eeuw het golfkarakter van licht zowel theo-
retisch als experimenteel uitgebreid bestudeerd was en goed begrepen werd, bleek in de eerste
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helft van de twintigste eeuw dat licht ook een deeltjeskarakter heeft. Dat wordt beschreven
door de quantummechanica of, meer specifiek, de quantumelectrodynamica (QED). In quan-
tummechanische zin is licht niet óf een deeltje óf een golf, maar vertoont het eigenschappen
van beide. Hoewel dit op het eerste gezicht tegenstrijdig lijkt, beschrijft de quantumelec-
trodynamica nauwkeurig hoe deze ogenschijnlijk verschillende gedaanten met elkaar samen-
hangen. Veel van de eerder genoemde eigenschappen vloeien voort uit het golfkarakter van
licht en zijn dus uitstekend te beschrijven en te bestuderen door gebruikmaking van een
klassieke (dat wil zeggen niet-quantummechanische) theorie. Bovendien is het formuleren
van een quantummechanische beschrijving van licht in het algemeen relatief eenvoudig wan-
neer het klassieke golfgedrag goed begrepen wordt. Het grootste deel van dit proefschrift
gaat dan ook over licht als klassiek golfverschijnsel. Alleen in hoofdstuk 7 bestuderen we
quantumtoestanden van licht.

Hoofdstuk 2: Verdraaide resonatormodes

In het tweede hoofdstuk bestuderen we de ruimtelijke structuur van resonatormodes. Een
resonator (ook wel trilholte) is een opstelling van twee, meestal gekromde, spiegels waar-
tussen het licht heen en weer stuitert. Zo’n geometrie vormt het optische hart van iedere
laser. Analoog aan een gitaarsnaar, waarin staande-golfpatronen ontstaan door het heen en
weer bewegen van lopende golven, passen alleen specifieke patronen van licht precies tussen
de twee spiegels. Zulke patronen worden modi (enkelvoud modus) of, in het Engels, modes
(enkelvoud mode) van de resonator genoemd. Anders dan in een gitaarsnaar, waarvan de
vaste uiteinden punten zijn, zijn de spiegels waaruit de resonator bestaat gekromd in het vlak
loodrecht op de richting waarlangs het licht heen en weer stuitert. De modes moeten dus niet
alleen tussen maar ook op de spiegeloppervlakken passen. Als gevolg hiervan hebben reso-
natormodes ook structuur in de vlakken loodrecht op de richting waarlangs het licht heen en
weer stuitert (de transversale vlakken in de resonator). In het gebruikelijke geval zijn beide
spiegels sferisch, dat wil zeggen dat ze de vorm hebben van een deel van een boloppervlak.
In dit hoofdstuk zijn we echter geïnteresseerd in resonatormodes die verdraaid zijn. Daarmee
bedoelen we dat ze vervormd zijn als een doek die uitgewrongen wordt. Om dat te bereiken
moeten beide spiegels asferisch zijn. De eenvoudigste manier om een asferische spiegel te
maken is door het spiegeloppervlak elliptisch te krommen. Daarmee wordt bedoeld dat het
zo gekromd is dat de hoogtelijnen op het oppervlak ellipsen in plaats van cirkels zijn. Het
oppervlak is dan verschillend gekromd in verschillende richtingen en we spreken wel van een
astigmatische spiegel. Een resonator met twee astigmatische spiegels die een verschillende
oriëntatie in het transversale vlak hebben, noemen we verdraaid. Omdat de modes van een
resonator op beide spiegeloppervlakken passen, zijn de modes van een verdraaide resonator
ook verdraaid. De structuur van de modes is zodanig dat hun oriëntatie in het transversale
vlak verdraait terwijl het licht zich van de ene naar de andere spiegel voortplant. Het effect
van het verdraaien van een resonator op de structuur van zijn modes is te zien in de figuren
2.5 en 2.6 op pagina 32. In figuur 2.5 tonen we de structuur van een mode van een resonator
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waarvan beide spiegels astigmatisch zijn, maar dezelfde oriëntatie hebben. In dat geval is
de resonator niet verdraaid. De paarswitte plaatjes tonen het intensiteitspatroon. Dat is wat
men zou zien wanneer men een foto van het licht zou maken. De kleurenplaatjes tonen de
vorm van het golffront van het licht. Een golffront is een denkbeeldig oppervlak dat elkaar
aanrakende golftoppen (of dalen) met elkaar verbindt. Denk bijvoorbeeld aan de cirkels die
zichtbaar zijn rondom de plaats waar een steen in het water gegooid is. De linker en rechter
figuren tonen de transversale modestructuur vlakbij de spiegels. De golffronten hebben de el-
liptische vorm van de spiegels aangenomen. Ook de intensiteitpatronen zijn elliptisch. Omdat
de spiegels identiek zijn, is het golffront in het vlak tussen de spiegels vlak. De plaatjes in
figuur 2.6 tonen hoe de structuur van deze mode verandert wanneer een van de spiegels (in dit
geval de rechter) verdraaid wordt. Het elliptische intensiteitpatroon heeft niet langer dezelfde
oriëntatie in de drie transversale vlakken. Bovendien wordt het golffront hyperbolisch in
het vlak tussen de spiegels in. De resonatormode waarvan het intensiteitspatroon bestaat uit
één ellipsvormige druppel noemen we de fundamentele mode. Andere (zogenaamde hogere-
orde-modes) hebben een complexere structuur. Het effect van het verdraaien van een van
de spiegels op zo’n mode is te zien in de figuren 2.7 en 2.8 op pagina 33. De elliptische
vorm van de spiegels is nog steeds terug te zien in de vorm van het golffront, maar zowel het
golffront als het intensiteitspatroon hebben nu een rijkere structuur. In het golffront zien we
zogenaamde lijndislocaties. Dat zijn lijnen waarlangs de top van een golf met een oneindig
scherpe overgang overgaat in een dal. Wanneer één van de spiegels verdraaid wordt (figuur
2.8), worden de lijndislocaties in de transversale vlakken tussen de spiegels in vervormd in
optische vortices. Deze zijn zichtbaar als punten waar alle kleuren bij elkaar komen. Merk
op dat dat alleen gebeurt in de vlakken tussen de spiegels. Vlakbij de spiegels blijven de
lijndislocaties intact, maar verliezen hun loodrechte oriëntatie. Ook dat is een gevolg van de
verdraaide modestructuur.

De wiskundige methode die we ontwikkelen om de structuur van deze modes te beschrij-
ven maakt gebruik van ladderoperatoren. Vergelijkbare technieken worden toegepast in de
quantummechanica en wij breiden ze uit zodat ze toepasbaar zijn op de optische systemen
die we bestuderen. In het eenvoudigere geval van een tweedimensionale resonator (dus met
één transversale dimensie) vormen de modes een ladder waarop ieder trede met een andere
mode correspondeert. De onderste trede correspondeert met de fundamentele mode. De
hogere orde modes kunnen worden gevonden door gebruikmaking van ladderoperatoren. Er
zijn twee verschillende ladderoperatoren: één die het effect van een stap omhoog beschrijft
en één die het (tegengestelde) effect van een stap naar beneden beschrijft. Vanaf de onderste
trede is het niet mogelijk verder naar beneden te gaan en dus moet de daaloperator werkend
op de fundamentele mode 0 geven. Op deze manier kunnen alle modes op de ladder gevon-
den worden. In het geval van driedimensionale modes vormen de modes geen ladder, maar
een tweedimensionaal rooster waarop ieder punt met een mode correspondeert. We hebben
nu dus twee paren van twee ladderoperatoren (of eigenlijk roosteroperatoren) nodig, één paar
voor de horizontale richting en één paar voor de verticale richting. Ieder van deze opera-
toren beschrijft een stap in de bijbehorende richting en voor de tegengestelde richtingen (naar

152



boven en naar beneden dan wel naar links en naar rechts) worden wederom verschillende op-
eratoren gebruikt. Net als een ladder heeft het rooster van modes een punt van waaruit men
niet verder naar beneden en niet verder naar links kan. Dit punt correspondeert met de funda-
mentele mode van de resonator. Het bijzondere aan de ladderoperatoren is dat ze thuishoren
in het golfoptische domein, maar dat hun eigenschappen direct samenhangen met het gedrag
van lichtstralen in de resonator. In die zin slaat deze methode een brug tussen het straalop-
tische gedrag van de resonator en de structuur van zijn golfoptische modes. Dat maakt deze
methode erg inzichtelijk en elegant. Daarnaast is de ladderoperatormethode wiskundig exact
onder de (realistische) aanname dat de afstand tussen de spiegels groter is dan de diameter
van de mode patronen.

Hoofdstuk 3: Verdraaid licht tussen roterende spiegels

In hoofdstuk 3 bespreken we een beschrijving van het gedrag van licht in optische systemen
met bewegende elementen en passen deze toe om de modes van een roterende resonator te
vinden. Opnieuw geldt dat we alleen een effect verwachten als ten minste één van de spiegels
asferisch is en we beschouwen een resonator met roterende astigmatische spiegels. Omdat
modes normaal gesproken gedefinieerd worden als tijdonafhankelijke golfpatronen, behoeft
het modeconcept in een roterende resonator enige aandacht. We laten zien dat meeroterende
oplossingen een zinvolle generalisatie van het modeconcept vormen en, bovendien, dat ze
bestaan. Dat wil zeggen dat de wiskundige vergelijkingen waaraan zulke patronen moeten
voldoen roterende oplossingen hebben. We breiden de ladderoperatormethode uit naar dit,
tijdafhankelijke, geval en bespreken enkele fysische eigenschappen van de roterende resona-
tormodes. De intensiteitspatronen van een aantal van zulke modes zijn te zien in de figuren
3.3 en 3.5 respectievelijk op pagina 58 en pagina 62. De plaatjes in figuur 3.3 betreffen een
resonator met een stilstaande sferische en een draaiende astigmatische spiegel terwijl figuur
3.5 een resonator met twee draaiende astigmatische spiegels betreft. In beide figuren tonen
de plaatjes in de linker kolom de modestructuur op de linker spiegel en de plaatjes in de
rechter kolom de modestructuur op de rechter spiegel. De plaatjes zijn steeds gegroepeerd
in groepjes van vier die de intensiteitspatronen van verschillende modes bij dezelfde rotatie-
snelheid tonen. In beide figuren betreft de bovenste rij een stilstaande resonator en neemt de
draaisnelheid van boven naar onder toe. De plaatjes laten zien dat de modepatronen aanzien-
lijk vervormd worden door rotatie en dat fysieke rotatie van de spiegels een wezenlijk ander
effect heeft dan het algemeen astigmatisme dat we in hoofdstuk 2 besproken hebben. We
laten zien dat zowel de rotationele vervorming van de modes als het feit dat ze roteren bij-
dragen aan het impulsmoment in deze modes. De bijdrage als gevolg van de rotatie van de
modepatronen is, in het algemeen, verwaarloosbaar klein ten opzichte van de bijdrage door
de modestructuur. Omdat de roterende modepatronen tijdafhankelijk zijn, hebben de modes
ook spectrale structuur. Ze zijn wat we noemen polychromatisch en bevatten licht van ver-
schillende kleuren. De spectrale structuur van de modepatronen uit de onderste rij in figuur
3.5 is te zien in figuur 3.4 op pagina 59. In de praktijk zullen de kleurverschillen tussen de
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verschillende componenten erg klein zijn.

Hoewel relatief eenvoudig, is een draaiende resonator met astigmatische spiegels een
verrassend rijk fysisch systeem. Om die reden gaan we in de hoofdstukken 4 en 5 verder in
op een aantal optische en optodynamische eigenschappen van zo’n opstelling.

Hoofdstuk 4: Rotationele stabilisatie en destabilisatie van een optische reso-
nator

Tot nu toe hebben we steeds aangenomen dat het licht oneindig lang heen en weer blijft stui-
teren tussen de twee spiegels waaruit een optische trilholte bestaat. In het algemeen hoeft dit
niet het geval te zijn, zelfs niet wanneer men gebruik maakt van ideale (dat wil zeggen perfect
reflecterende) spiegeloppervlakken. Omdat de spiegels gekromd zijn, verandert de richting
van een lichtstraal wanneer deze weerkaatst wordt. Aangezien de resonator open is, gebeurt
het in veel gevallen dat een lichtstraal vroeg of laat uit de resonator gekaatst wordt. In dat
geval is de resonator niet in staat licht lang vast te houden en wordt deze geometrisch insta-
biel genoemd. Hoewel stabiliteit primair een straaloptische eigenschap van een resonator is,
is het een voorwaarde voor het bestaan van (golfoptische) modes. In hoofdstuk 4 bestuderen
we effecten van rotatie op de stabiliteit van een optische resonator. We laten zien dat stabiele
resonatoren in het algemeen tenminste gedeeltelijk instabiel worden (dat wil zeggen instabiel
in één richting) als ze in voldoende snelle rotatie worden gebracht. Het licht vliegt dan, als
het ware, uit de bocht. Daarnaast tonen we ook aan dat sommige instabiele resonatoren juist
stabiel worden als gevolg van rotatie. In dat geval helpt rotatie juist om het licht in te vangen.
Dit verrassende effect heeft een mechanisch analogon in de zogeheten paulval (Paul trap). De
paulval lijkt op het opsluiten van een knikker in een roterend zadelpunt. Een zadelpunt is een
punt op een oppervlak waar de kromming in de ene richting hol en in de andere richting bol
is. Een knikker die op een stilstaand zadelpunt gelegd wordt, valt langs de bolle flank naar
beneden. Wanneer het zadelpunt echter voldoende snel ronddraait, wordt de knikker ingevan-
gen door de holle flank van het zadelpunt voordat deze langs de bolle flank naar beneden kan
vallen. De knikker wordt door de rotatie gevangen net als het licht in een resonator die door
rotatie gestabiliseerd wordt. We bestuderen de effecten van stabilisatie en destabilisatie op
de structuur van de resonatormodes en laten zien dat het licht inderdaad uit dan wel in de
bocht vliegt. Dat is te zien in de plaatjes in figuur 4.2 op pagina 67. De bovenste rij toont de
modestructuur in een resonator die gedestabiliseerd wordt terwijl de onderste rij een resona-
tor betreft die gestabiliseerd wordt door rotatie. In beide gevallen neemt de draaisnelheid van
links naar rechts toe. Tenslotte kijken we ook naar het impulsmoment in de resonatormodes
en laten zien dat dat oneindig groot wordt op de grens van stabiliteit en (gedeeltelijke) insta-
biliteit. Dat is te zien in de grafieken in figuur 4.3 op pagina 70. De linker grafiek toont het
geval van een resonator die gedestabiliseerd wordt, terwijl de rechter een resonator betreft die
gestabiliseerd wordt door rotatie. In beide grafieken staat het impulsmoment op de verticale
en de draaisnelheid op de horizontale as.
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Hoofdstuk 5: Optische vortices geïnduceerd door rotatie van een resonator

Fysieke rotatie en het verschijnen van vortices hangen in het algemeen nauw met elkaar
samen. In hoofdstuk 5 bestuderen we het door rotatie geïnduceerde vortexpatroon in de
modes van een optische resonator. Omdat we alleen naar het effect van rotatie willen kijken,
nemen we een resonator die niet verdraaid is. We beschouwen een resonator die bestaat
uit een sferische en een astigmatische spiegel. We vatten de wiskundige aanpak uit het
derde hoofdstuk kort samen en bespreken enkele algemene eigenschappen van de vortices
in roterende resonatormodes. We laten onder andere zien dat even modes in het algemeen
een vortex in het midden van het modepatroon hebben en dat dat niet zo kan zijn voor oneven
modes. In figuur 5.4 op pagina 82 tonen we resultaten voor een specifiek geval. De linker
kolom toont de modestructuur in geval van een stilstaande resonator. De rechterkolom toont
dezelfde modes maar dan wanneer de resonator roteert. De resultaten laten opnieuw zien dat
rotatie opvallende effecten heeft op de modestructuur en, bovendien, dat de lijndislocaties
in de golffronten vervormd worden tot optische vortices. Anders dan in het geval van een
verdraaide resonator (hoofdstuk 2) gebeurt dat nu in alle transversale vlakken, ook in die bij
de spiegels.

Onder typische experimentele omstandigheden vereisen de effecten die we in de hoofd-
stukken 3, 4 en 5 besproken hebben rotatiesnelheden van tienduizenden tot miljoenen omwen-
telingen per seconde. Hoewel in principe niet onmogelijk, is het niet eenvoudig zulke hoge
rotatiesnelheden te realiseren. Om die reden bespreken we in paragraaf 5.5 enkele andere
mogelijkheden om de een opstelling te realiseren die de essentiële eigenschappen van een
draaiende astigmatische resonator nabootst.

Hoofdstuk 6: Geometrische fasen voor astigmatische optische modes van
willekeurige orde

De laatste decennia is er in de natuurkunde veel aandacht besteed aan het vinden van geo-
metrische interpretaties van fysische verschijnselen. Het bekendste voorbeeld is Einsteins
algemene relativiteitstheorie die een geometrische verklaring geeft voor de zwaartekracht. In
vergelijking met analytische en algebraïsche beschrijvingen, zijn geometrische interpretaties
meestal eenvoudig en elegant. Bovendien geven ze vaak een dieper inzicht in de oorsprong
van fysische verschijnselen. In geometrische beschrijvingen van fysische verschijnselen spe-
len geometrische fasen een cruciale rol. In het algemeen treden geometrische fasen op wan-
neer de parameters die een fysisch systeem karakteriseren via een gesloten pad door de pa-
rameterruimte terugkomen op hun oorspronkelijke waarden. Een eenvoudig voorbeeld van
een geometrische fase treedt op wanneer iemand met een pijl in zijn handen over een bolop-
pervlak (laten we zeggen de aardbol) wandelt en de richting van zijn pijl onveranderd laat
als hij zelf van richting verandert. Stel dat deze persoon vanaf de evenaar via de noordpool
naar de andere kant van de evenaar loopt en vervolgens over de evenaar terugloopt naar zijn
beginpositie. Dan is zijn pijl bij terugkomst precies 180 graden gedraaid ten opzichte van zijn
oorspronkelijke richting. Als hij op de noordpool niet rechtdoor loopt maar rechtsaf slaat, is
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zijn pijl precies 90 graden verdraaid ten opzichte van de oorspronkelijke positie. In het alge-
meen wordt de hoek waarover de pijl verdraaid is na het bewandelen van een gesloten pad op
de aardbol bepaald door het ingesloten oppervlak (ten opzichte van het totale oppervlak van
de bol). Dit effect hangt samen met de kromming van het boloppervlak en treedt niet op in
een (plat) vlak. Bovendien is de hoek waarover de pijl bij terugkomst verdraaid is onafhanke-
lijk van de snelheid waarmee het pad doorlopen is. De hoek wordt dus uitsluitend bepaald
door de geometrische eigenschappen van het boloppervlak (de kromming) en door die van
het pad (het ingesloten oppervlak).

In hoofdstuk 6 bespreken we soortgelijke effecten voor optische modes die zich voort-
planten door een optische opstelling dan wel door de vrije ruimte. We introduceren een
speciale klasse optische modes met transversale structuur en laten zien dat deze gesloten is
onder een groep optische transformaties die onder andere vrije voorplanting van het licht,
de effecten van gekromde spiegels en lenzen en effecten door breking op de modestructuur
bevat. We karakteriseren de parameters die samenhangen met de transversale structuur van
de modes en laten zien dat een gesloten pad door de bijbehorende parameterruimte aanlei-
ding geeft tot een faseverschuiving die een geometrische interpretatie heeft in termen van
de parameterruimte en het afgelegde pad. In het geval van optische modes correspondeert
deze niet met een verdraaiing maar met een (kleine) verschuiving van de pieken en dalen van
de golf. Zulke verschuivingen zijn te meten door het originele patroon te laten interfereren
met het patroon dat een gesloten cyclus heeft afgelegd door de parameterruimte. Als speciale
gevallen vinden we de gouyfase en de geometrische fase die optreedt als gevolg van een reeks
modeconversies en rotaties van niet-astigmatische modes. In het laatste geval reduceert de
parameterruimte weer tot een bol. Voorbeelden van zulke bollen en de bijbehorende mode-
patronen zijn te zien in de figuren 6.1 en 6.2 respectievelijk op pagina 111 en op pagina 114
en 115.

Hoofdstuk 7: Een exacte quantumtheorie voor draaiend licht

Het laatste hoofdstuk besluit de discussie over draaiend licht in dit proefschrift. Hoewel
draaiende lichtbundels gedurende de laatste decennia door verschillende onderzoeksgroepen
vanuit verschillende invalshoeken zowel theoretisch als experimenteel bestudeerd werden,
werd de eerste quantumtheorie voor draaiend licht pas in 2006 gepubliceerd. Deze theorie
beschrijft quantumtoestanden van licht met draaiende polarisaties en draaiende voortplan-
tingsrichtingen. Ze beschrijft ook quantumtoestanden waarin beide draaien. Hoewel deze
theorie in veel praktische situaties uitstekend toepasbaar is, is zij niet exact. De belangrijk-
ste beperking is dat deze theorie alleen van toepassing is op lichtbundels waarvan de po-
larisatiestructuur onafhankelijk is van de ruimtelijke variatie van de voortplantingsrichting.
Daarnaast beperkt zij zich tot (relatief) kleine draaisnelheden.

In hoofdstuk 7 presenteren we de eerste exacte quantumtheorie voor draaiend licht. We
laten zien dat de vergelijkingen die licht in de vrije ruimte beschrijven exacte draaiende
oplossingen hebben en dat zulke oplossingen alleen bestaan als het gehele veld, inclusief
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zijn polarisatie, uniform draait. We bestuderen zulke oplossingen en formuleren een quan-
tumtheorie voor dit type draaiend licht. Ook bespreken we het verband met de draaiende
resonatormodes die we bestudeerd hebben in de hoofdstukken 3, 4, 5 en laten zien dat de
quantumtheorie ook in dat geval van toepassing is.
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