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Spatial coherence of partially
coherent classical beams
with and without orbital

angular momentum

We study the spatial coherence of a partially coherent beam before and after
being transmitted through a spiral phase plate that changes the overall orbital
angular momentum of the field. The two-point coherence function is measured
and directly visualized on a CCD through interference in a Mach-Zehnder in-
terferometer equipped with an image rotator. We show, in particular, how the
coherence singularities associated with Airy rings are strongly affected by the

spiral phase plate.

H. Di Lorenzo Pires, J. Woudenberg, and M. P. van Exter, Measurements of spatial
coherence of partially coherent light with and without orbital angular momentum, J. Opt.
Soc. Am. A 27, 2630 (2010).
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8. SPATIAL COHERENCE OF PARTIALLY COHERENT CLASSICAL BEAMS WITH AND WITHOUT
ORBITAL ANGULAR MOMENTUM

8.1 Introduction

Coherent singular optics is a prominent field of optical sciences [138]. Since the
pioneering paper of Nye and Berry [139], great effort has been devoted to un-
derstand the fundamental properties of the “dislocations in wave trains” and to
develop its technological applications. Wave dislocations or phase singularities
are singular points of a complex-valued function, like in the complex represen-
tation of the electric field, where the amplitude is zero and the phase not well
defined. A prominent example of such singularities are the so-called optical vor-
tices. They are present in coherent beams, like the Laguerre-Gauss modes, and
are associated with a screw-like circulation of the phase around the center of the
beam, where the intensity is zero [140]. Another example of phase singularities
are the dark rings of an Airy pattern, which appears in the focal plane of a uni-
formly illuminated lens [141] or in the diffraction pattern of a spatially coherent
wave behind a circular aperture [142,143].

Recently, the field of singular optics was extended to the realm of partially co-
herent light and the concept of “phase singularities of correlation functions” was
introduced [127,128,144,145]. A partially coherent field can be mathematically
described by its cross-spectral density function (or coherence function) W (ry,rs3),
which determines how the fluctuations of the field at a certain point r; are corre-
lated with the fluctuations at ro. When a partially coherent beam is transmitted
through an aperture or a spiral phase plate, sets of points can be found where
the coherence is zero valued, implying the existence of phase singularities of this
function. These points usually form a line in the transition between positively
and negatively correlated field. The correlation singularity is considered a ‘vir-
tual’ feature of the field, as it cannot be associated with any zeros of intensities
but only with zeros of the two-point second-order coherence function [146].

This new branch of singular optics has been extensively studied, both theo-
retically [146-152] and experimentally [153-157]. Observations of a “coherence
vortex” for an incoherent field have been reported [156] and the robustness of
these singularities has been demonstrated [154]. The importance of correlation
singularities to imaging science, where partially coherent illumination is often
employed, has also been considered [150]. For a comprehensive discussion on
the subject, see Ref. [158].

In this Chapter we will present measurements of the cross-spectral density
W (ry,rs) for partially coherent light that exhibits two types of coherence singu-
larities. The first singularities are the Airy rings that appear in the coherence
function upon propagation behind a circular aperture with incoherent illumina-
tion. The second type of singularities are created by the transmission through a
spiral phase plate with topological charge ¢ = 1. The field now acquires an overall
orbital angular momentum ¢% per photon and an additional ring dislocation be-
comes visible in the coherence. We will show how these two types of singularities
interact when the transverse coherence length of the source is changed.

In theoretical analyses of spatial correlation vortices in partially coherent
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8.2. CROSS-SPECTRAL DENSITY

beams, the coherence of the initial field is often approximated by a Gaussian-
Schell correlator [2], such that the input contains no coherence singularities. Al-
though this approach allows analytical solutions, it can be an oversimplification
of the experimental geometry. This remark also applies to [154], in which the exis-
tence of a ring dislocation in the correlation function was experimentally verified
for the first time. In this Chapter we will develop a different theoretical approach
that allows us to compute the propagation of a more general class of partially
coherent fields, before and after being transmitted through a vortex phase plate.

Experimentally, we measure the cross-spectral density function of the field
through interference in a Mach-Zehnder interferometer equipped with an image
rotator. Furthermore, we implement a powerful method that allows the coherence
singularities to be visualized in one single picture.

The Chapter is organized as follows: In Section 8.2 we formally introduce the
cross-spectral density and calculate this function for our particular source. In
Section 8.3 a convenient mathematical description of the propagation of partially
coherent fields is developed and results of numerical simulations are presented.
In section 8.4 we describe the experimental setup and present the results of our
measurements. A summary of the results and conclusions are presented in Sec-
tion 8.5.

8.2 Cross-spectral density

The state of coherence of light can be described by the cross-spectral density or
mutual coherence function W(py, ps, z;w) = (E*(py, z;w)E(py, 2; w)), where the
brackets (- - -) denotes average over an ensemble of strictly monochromatic waves.
We are considering here the correlations between the transverse positions p; and
p,, at a fixed plane z. The cross spectral density can be measured by superposing
the field with a phase delayed and spatially shifted copy of itself, yielding a
combined intensity pattern profile

I=1+ 15+ 2Re [W(pl,pz,z;w)ew] , (8.1)

where I; and I, are the intensities at positions p; and p,. By varying the phase
0 and subtracting the single intensities, both the real and imaginary components
of W can be obtained (see Sec. 4.7.2 of [2] for a more rigorous derivation). For
simplicity, we will omit the frequency w dependence in the derivation below of
the cross-spectral density function for our particular source.

Figure 8.1 shows the geometry considered for the calculations. A circular
aperture of diameter d; is uniformly illuminated by fully incoherent light. A
second aperture of diameter d» is placed at a distance L from the first aperture,
in a plane defined as z = 0. The field correlations between points p, and p, at
z = 0 can be computed with the van Cittert-Zernike theorem [2], which states
that the mutual coherence W (p,, p,) in the far field of a spatially incoherent
planar source is the Fourier transform of the intensity across the source. The
cross-spectral density of the beam at z = 0, just behind aperture 2 is thus given
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Figure 8.1: Geometry considered for the calculations. A circular aperture of diameter d; is
illuminated by fully incoherent light. A second aperture of diameter ds is placed at a distance
L from dy, at z = 0. A spiral phase plate (SPP) can be placed just after aperture 2. The field
correlations between the transverse positions p, and p, at the plane z are studied.

by
J « - i
Wo(p1, p2) = T(pl)T(p2)Meﬁ(p?—P§)7 (8.2)
alp1 — p2|

where J;( ) is the first order Bessel function of the first kind, a« = 7d; /AL, and
A is the optical wavelength. The function T'(p) describes the intensity profile at
z = 0. It describes both the transmission profile of the second aperture and the
illuminating intensity profile at = = 0, which itself is determined by the coherence
of the light in the source d;. The intensity at z = 0 is uniform only in the limit
of fully incoherent illumination [133].

The mutual coherence W, generally decreases at increased distance between
the two points p; and p,, up to a separation where the light is completely un-
correlated. This separation is defined as the coherence length L. of the beam.
Inspired by the theory of diffraction, the zeros of the function J; (z)/x are denoted
as the coherence Airy rings. For the first Airy ring we have

AL
L.=12222. (8.3)
dy
For a separation somewhat larger than L. the coherence reappears. The fluctua-
tions of the field are now slightly anti-correlated, associated with a 7 phase shift
in the complex coherence function.

In order to investigate the properties of a coherence vortex, we add a spiral
phase plate (SPP) centered inside aperture 2. This plate introduces a phase e%?
to the optical field, i.e., a phase factor that varies linearly with the azimuthal
angle ¢, and is able to change the overall angular momentum of the beam by /(7
per photon. If the incident field would be a coherent Gaussian beam, the output
beam would acquire a dip in the intensity that goes to zero and has an increasing
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width under propagation [159]. The effect of this same SSP on a partially coherent
beam is to change the cross-spectral density according to

W(p1,p2) = Wo(py, Pz)eié((bl_@)v (8.4)

where Wy and W are the cross-spectral density just before and just after the
SPP, respectively, and ¢; is the azimuthal angle corresponding to the transverse
position vector p;, for i = 1,2. Under partially coherent illumination, the intensity
after the SSP doesn’t go to zero anymore. The coherence function will, however,
still exhibit a zero, i.e., a coherence vortex in the form of a ring dislocation whose
radius increases as the beam propagates [154]. Part of this Chapter addresses
the question: “What is combined effect of this vortex ring with the Airy rings
already present in the incident beam?”

8.3 Propagation of a partially coherent beam

The theory of propagation of partially coherent beams is well known [2,4]. Since
the mutual coherence function satisfies two independent wave equations for the
two position coordinates, both coordinates can be independently propagated us-
ing the same propagation laws of fields. In the Fresnel regime, the propagation
of the cross-spectral density W (p;, p5;0) from the plane z = 0 to a certain plane
z > 0 can thus be written as

W(py, po; 2) = (8.5)

e Wi(o' . o i |py—pi 12 =it lPa—051° 1o dp!
JI W (P, py; 0)et2=1Pr=Pille=taz1P2=P21 dp! dpy,
— 00

where k = 27 /. Proportionality factors will be omitted in all equations through-
out the Chapter. Equation (8.5) is a four-dimensional (4D) integral that cannot be
easily solved, neither analytically nor numerically, except in a few special cases.
Different approaches have been proposed in order to numerically treat this prob-
lem, such as the coherent-mode decomposition [2], Fourier-transform method
[160], Monte Carlo simulation [161], and use of elementary functions [162]. One
strategy is trying to rewrite Eq. (8.5) as a two-dimensional (2D) integral, which
can then be numerically evaluated. With our particular problem in mind, we will
follow this route.

First, notice that just after the £ = 1 SPP the coherence function, given by
combining Egs. (8.2) and (8.4), assumes the form

W(p1,p2;0) = A(p1) A" (p2) f(P1 — P2), (8.6)
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Figure 8.2: Cross sections of the theoretical (normalized) intensity distributions in the plane
z = 45 mm for different values of the coherence length L. at the SPP and open second
aperture. The curves are vertically displaced by 0.25 from each other.

with
Alp) = T(p)e’ire®, 87)
_ Ji(ap)
flp) = ap (8.8)

Equation (8.6) is very general and applies to all quasihomogeneous light sources
[133]. The propagation of this coherence function to a plane z > 0 is given
by substituting Eq. (8.6) in Eq. (8.5). By introducing “sum” and “difference”
coordinates

/ + /
Py = %, Ap = p| — pb, (8.9)
+
o=t 5= pi—ps. (8.10)
we can simplify the propagation integral to
Wiprpaiz) = [ f(ap) e t40 7 (8.11)

A A "
U g (”* t 7p> g (”* - 7p> e d’”} 2.
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8.3. PROPAGATION OF A PARTIALLY COHERENT BEAM

where we defined the function
9(p) = Alp)e'E0". (8.12)

Next, we write the functions g and g* in the second integral (between brackets)
in terms of its Fourier transform, G(u) = F#[g]. After some straightforward
manipulations and simplifications one recognizes the Fourier transform F(u) =
F[f] of the function f(Ap). The propagated cross-spectral density can finally be
represented by the following 2D integral, instead of 4D

W(o,d;2) = (8.13)

/G (u— i&) F(u-i—ﬁa) G* (u+£6> du.
2z z 2z

Equation (8.13) is represented in the sum and difference coordinates according to
W(o,9d;z) = W(p1, p2; z). It allows us to compute the mutual coherence function
by solving one single 2D integral for each (o, §) combination. In practice, we are
mainly interested in two important cases: the intensity distribution in the plane z,
I(p; z) = W(p, p; z) which corresponds to o = p and § = 0, and the “coherence”
of the field X (p; z) = W(p, —p; z), which corresponds to o = 0 and § = 2p. From
Eq. (8.13) they can be calculated via

i) = [16 @ F (ws L) du (5.14)

X(p;2) = /G (u _ gp) F(u)G* (u+ Sp) du. (8.15)

Equation (8.13) is especially useful if one has analytical expressions for the
functions F'(u) and G(u). A straightforward numerical integration is then able
to provide the desired results. Even when such analytical expressions can't be
found, Eq. (8.13) is still very convenient, since (2D) FFT algorithms for numerical
Fourier transform are very efficient.

Analytical solutions can be found for our particular problem. F(u) is the
Fourier transform of the coherence term f(p) at the plane z =0, i.e.,

Ji(a iy
F(u)ﬁ“[f]/%e”’ dp
B 1, ug—deLl
- {07 iy (8.16)

Apart from being simple, this function conveniently limits the numerical integra-
tion to a finite range. G(u) is the Fourier transform of the function g(p) defined
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by Eq. (8.12), which reads
9(p) = T(p)e* FFE) e, (8.17)

where T'(p) is the intensity distribution after the second aperture. In connection
with our experiments, we will assume that d; is very large and that the intensity
is approximately uniform at z = 0. We have then

oo 2T

G(u) = F[g] = / / p dp dg e'r” eio+pm), (8.18)
0 0

(L + 1). This integral can be analytically solved and results in

T u? . u?
Gu) =e"ue s {Jl (5) +iJo <%)} ) (8.19)

where ¢ is the azimuthal angle of u and Jy and J; are the zeroth- and first-order
Bessel functions. If the illumination is nonuniform but Gaussian T'(p) = e=P"/w?,
due to partial coherence at the first aperture, the solution of Eq. (8.18) retains its
form, but with the substitution ia — ia — 1/w?.

Next, we will present results for numerical calculations performed for a range
of parameters similar to those used in our experiments. We consider the propaga-
tion of the coherence function to the plane z = 45 mm from the SPP for different
values of the coherence length L. of the beam.

Figure 8.2 shows cross sections of the calculated intensity profiles when the
coherence length of the source is varied. The predictions agree with those in [147],
namely, that the core of the beam behind the SPP fills with diffuse light when
the coherence at the SPP is decreased. The dip in the intensity drops to zero in
the limit of completely coherent illumination. The intensity for points far away
from the center remains uniform and is not affected by the SPP. With partially
coherent illumination, the signature of a coherence singularity is only revealed
in the coherence of the beam.

Figure 8.3 shows cross sections of the calculated coherence X (p) in the pres-
ence and absence of the SPP. The calculations are made using Eq. (8.15) for
various values of the input coherence length L.. The results are normalized to
modulus one. For completeness, we note that a different kind of normalization
is more often employed, namely, u(ri,ro) = Wi(ri,r2)/\/I(r1)I(r2). The so-
called spectral degree of coherence i reaches its upper bound |x| = 1 when pairs of
points are completely correlated. Experimentally, however, it is more convenient
to study the cross-spectral density W, instead of p, and normalize it to some
reference value.

The dashed lines show the coherence X (p) for propagation without a phase
plate. In this case we observe the coherence Airy rings, described by Ji(z)/x.
The coherence length L. at the plane z = 45 mm is slightly larger than the L.
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Figure 8.3: Cross sections of the theoretical coherence X (p) of the beam in the plane
z = 45 mm after the (open) second aperture. The dashed line is the prediction without phase
plate; the continuous line corresponds to a SPP placed at aperture 2. The calculations are
made for different values of the coherence length, (a) L. = 0.68 mm, (b) L. = 0.40 mm, (c)
L.=0.25 mm, (d) L. =0.20 mm, (e) L. = 0.16 mm, and (f) L. = 0.13 mm.

at z = 0 mm. This occurs because light “gains” coherence under the additional
propagation. The coherence length at the plane z can be approximated by LZ ~
L.(1+z/L).

The addition of a SPP at z = 0 mm considerably modifies the coherence
X (p), now depicted as continuous lines. When the coherence length of the beam
is relatively high, as in Figs. 8.3 (a) and (b), a coherence singularity manifest itself
as a ring dislocation in X (p), whose radius increases with decreasing coherence.
This would be the only effect observable if the cross-spectral density before the
SPP were described by a Gaussian function [147]. This trend changes when the
input beam already has phase dislocations, associated with Airy rings. We now
find that the vortex ring due to the SPP does not cross the first Airy ring when
L. is reduced, as has been hypothesized in Ref. [154], but modifies the coherence
function as a whole. In fact, the presence of the SPP can even reduce the number
of phase dislocations within a certain radius. For example, in Fig. 8.3(e) the
coherence function without SPP crosses the zero six times for |z| < 0.5 mm, but
only five times when the SPP is in place.

Another interesting feature concerns the relative phase of the Airy rings in
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Delay line

LED

f1 =25 mm
Pol.

f2 =150 mm

Figure 8.4: Experimental setup used to generate a partially coherent beam and to measure its
mutual coherence function (see text for details).

the cases with and without SPP. For radii larger than some x4, the phase of the
Airy rings with the SPP inserted is observed to shift by = with respect to the case
where the SPP is absent. The smaller the coherence length L., the larger x4. For
our geometry, the effect of the SPP on the coherence function is thus to shift the
phase of the Airy rings by @ when |z| — oo.

8.4 Measurements of the spatial coherence

The experimental determination of the mutual coherence function is a very impor-
tant task in optics. Different techniques have been proposed and implemented,
such as Young interferometers [163,164] and different types of image inversion
interferometers [165], like Sagnac [166-168] and Mach-Zehnder [169]. Most ap-
proaches, however, don't allow a direct visualization of the coherence function
and positions and angles must be scanned to allow full reconstruction. In the
following experiments, we will take advantage of our rotationally symmetric ge-
ometry and introduce a powerful method to visualize and measure the coherence
function.

Figure 8.4 shows the experimental setup used to generate a partially coherent
beam and to measure its mutual coherence function. A 15x magnified image of a
light emitting diode (LED), with central wavelength A = 826 nm, is centered on an
adjustable circular aperture of diameter d;, after being filtered by a polarizer. We
can regard this aperture as an incoherent, circular source of uniform intensity. The
light propagates a distance L to a second circular aperture of fixed diameter d»,
which is approximately uniformly illuminated. The coherence length L. of the
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Figure 8.5: Visualization of coherence singularities in X (p) as measured from interference
fringes. The SPP is absent and the aperture 2 is imaged at the ICCD. We set L. = 0.15 mm
and d2 = 0.59 mm. The arctangent of X is shown in order to enhance contrast.

light at aperture 2 can be controlled by modifying the diameter d; and the distance
L, according to Eq. (8.3). Our results will be labeled by this coherence length,
which we scan from L. = 0.13 — 0.68 mm, by adjusting the first aperture in the
range d; = 0.6 — 3.0 mm at L = 200 mm or L = 400 mm. A spiral phase plate
(SPP) with ¢ = 1 can be placed just after the second aperture, at an actual distance
of 10 mm. We will present results with and without the SPP. Lenses are used to
image the coherence function either at the plane of the second aperture, or, after
some propagation, at z = 45 mm after the SPP. In the first case, f» = 150 mm and
f3 = 250 mm lenses are used to make a 4x magnified image of d» at an intensified
CCD (ICCD) camera. In the second case, fo = 150 mm and f3 = 40 mm lenses
are used to make a 17.7x magnified image of the plane z = 45 mm at the ICCD.

In order to measure the mutual coherence function, the generated beam is
sent through a Mach-Zehnder interferometer, where it is initially split at beam
splitter BS1 and then recombined at BS2. In one of the arms of this interferometer
there is an image rotator (IR), which rotates the input image by ¢ degrees around
its axis. A delay line allows us to set both arms of the interferometer to the same
length. The original beam is then recombined with a rotated version of itself,
and the interference pattern is recorded with the ICCD. Following Eq. (8.1), the
cross spectral density W (p,, p,; ) can be obtained by measuring the interference
pattern and subtracting the single intensities, which are obtained by blocking
either arm of the interferometer.

The setup is ideal to extract the intensity I(p) and the coherence X (p) and
to directly visualize the coherence singularities. The measured patterns will be
rotationally symmetric when all components are properly aligned. A rotational
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Figure 8.6: Cross sections of the interference pattern for different values of the angle of
rotation 0. The coherence length of the source is L. = 0.15 mm, the diameter of the second
aperture is do = 0.59 mm, and the imaged plane is z = 0 mm. The SPP is not in the setup.

average of the cross sections will fully characterize I(p) or X (p). Alternatively,
a more straightforward visualization of the singularities can be obtained by mis-
aligning beam splitter BSs, so that interference fringes are observed. Let us first
illustrate this fringes method.

Figure 8.5 shows how the singularities in the coherence X (p) can be visualized
by means of interference fringes. The SPP is absent and we choose L. = 0.15 mm
and dy = 0.59 mm. The plane of the aperture 2 is imaged at the ICCD. The
image rotation is maximum, at # = 180°. To enhance contrast, the arctangent
of the results is shown, while some noise is removed with a Savitzky-Golay
smoothing filter [170]. For # = 180°, we are basically interfering the points p
and —p, to reveal the coherence of the field. The singularities related to the
Airy rings are clearly visible as flips from dark to bright within a fringe line.
When the separation between these points equals the coherence length L., the
function is zero valued. For larger separations, the field fluctuations can be either
correlated or anti-correlated. A 7 phase shift indicates a coherence singularity
and the transition between correlation and anti-correlation.

Figure 8.6 shows rotationally averaged cross sections of the measured interfer-
ence pattern for different rotation angles ¢. These measurements are performed
with the interferometer completely aligned. According to Eq. (8.2), we expect
the interference to scale as

2 1 [a(0))
a@)p

where «(0) = 2nd;sin(6/2)/AL. At § = 0°, we observe only the intensity dis-
tribution, which is the top-hat transmission profile of aperture 2. At ¢ = 180°,

Wo(p,0) = |T(p)] (8.20)
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Figure 8.7: Rotationally averaged cross sections of the intensity profiles in the plane z = 45 mm
after the SPP. The dashed curve shows the intensity profile in the absence of the SPP. All
curves are normalized and are displaced by 0.25 from each other.

we observe the coherence of the field. Most noticeable, a rotation from 180° to
0° allows one to “zoom in” the (central structure) of the coherence, of which
the horizontal axis scale as 1/a(f). Notice how the coherence is strechted as 0
decreases.

Figures 8.7-8.9 present results of measurements performed when a ¢ = 1 SPP
is placed just after the second aperture. As discussed in Section 8.2, prominent
effects are expected to be observed only after propagation. In the following
experiments, the second aperture is wide open at d; = 2 mm and the plane
z = 45 mm is imaged on the ICCD. A magnification of 17.7x is used in order to
highlight the effects close to the beam center.

Figure 8.7 shows measurements of the intensity I(p) for different values of the
coherence length L. at the SPP. The curves are rotationally averaged cross sections
of the intensity profiles measured by the ICCD. The observed intensity dips are
similar to those reported in [147] and in agreement with our calculations and
Fig. 8.2. The dips are more prominent when the coherence length is large; the
dark core is filled with diffuse light at reduced L.. Furthermore, the maximum
in the intensity is closer to the center at large coherence (L. = 0.40) than at small
coherence (L. = 0.14). The dashed curve shows the intensity profile without SPP;
it varies just slightly in the considered range.

Figure 8.8 shows the coherence X (p) measured in the plane z = 45 mm
for different coherence lengths L. of the illumination. The rotationally averaged
cross-sections are displayed on the left (dashed curve without the SPP, solid curve
with SPP). The interference fringes made with beamsplitter B.S; misaligned are
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Figure 8.8: Measured coherence X (p) for (a) L.=0.40 mm, (b) L. = 0.20 mm, and
(c) L = 0.13 mm. Left column: rotationally averaged cross sections. Continuous curves are
measured with the SPP; dashed curves are without SPP. Right column: Interference patterns
measured with beam splitter BS> misaligned. Upper figures correspond to the case without
SPP and lower figures to the case with SPP.
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shown on the right (top pictures without SPP, bottom pictures with SPP). All the
results are normalized to modulus one.

Figure 8.8(a) shows that when the coherence length is relatively large
(Le = 0.40 mm), the effect of the SPP is to create an additional small ring dis-
location in the coherence X(p), indicated by arrow 1. The second dislocation,
associated with the Airy ring, is pushed slightly outwards (arrow 2). Two phase
jumps are clearly observable by following a fringe that goes through the center
of the pattern. Notice also that the phase of the Airy rings are w-shifted with
respect to the case without SPP. Figure 8.8(b) shows that as the coherence of the
source decreases, the radius of the vortex ring increases (arrow 3), up to a point
where it approaches the shrinking Airy rings (arrow 4).

Figure 8.8(c) shows the measured coherence X (p) at L. = 0.13 mm. At this
point, the first singularity with the SPP already coincides with the first Airy
ring in the coherence without SPP (arrow 5). The effect of the SPP is now far
from trivial, but one can clearly see that it does reduce the total number of
phase jumps, with respect to the case where the SPP is present. This is nicely
illustrated in the fringes patterns. Notice that, contrary to Figs. 8.8(a) and 8.8(b),
in Fig. 8.8(c) the fringes for the measurement with the SPP flip one time less than
for the measurements without the SPP. There are no phase jumps at the position
shown by arrow 6. It is also clear in the cross section that the coherence X (p)
approaches the zero axis, but doesn’t cross it. In the comparison of X (p) with
and without SPP in Fig. 8.8(c), we distinguish three regimes. For p < 0.14 mm the
coherence for the case with SPP coincides with the one for the case without SPP.
For p 2 0.25 mm these two functions approximately coincide, but are w-shifted
from each other; and for 0.14 mm < p < 0.25 mm, there is a transition region.
All measurements are in good agreement with the theoretical predictions shown
in Fig. 8.3.

Finally, we have tracked how the first ring dislocation depends on the coher-
ence length L. of the beam. Figure 8.9 shows the diameter D of the first zero of
the coherence X (p) as function of L.. Two regimes can be distinguished. When
L. is relatively large, D increases with decreasing L.. When the mutual coherence
before the SPP is described by a Gauss-Schell model, one expects [154]

2z

D= I (8.21)
In our experiments, we expect then a dependence D = 0.030/L.. A curve fitting
using only the last eight points of the plot provide D = (0.027 £ 0.001)/L. mm,
which is in reasonably good agreement. The other regime occurs for smaller
values of L.. In this regime the first zero of X (p) coincides with the Airy ring.
Since the first zero of the Airy ring is our definition of coherence length, we now
expect D = L. This line is also shown in the plot.
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8. SPATIAL COHERENCE OF PARTIALLY COHERENT CLASSICAL BEAMS WITH AND WITHOUT
ORBITAL ANGULAR MOMENTUM
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Figure 8.9: Dependence of the diameter of the first dislocation ring on the coherence length
L. of the input beam. The left line is defined as D = L.. The right curve is a curve fit of the
last eight points and has the form D = (0.027 £ 0.001)/Le..

8.5 Conclusion

In this Chapter we implement a method to directly visualize the coherence func-
tion of beams with two types of coherence singularities, Airy rings and a co-
herence vortex created by a spiral phase plate (SPP). As long as the radius of
this vortex ring is small compared to the first Airy ring, the general features can
be explained by the model presented in [147], which assumes a Gaussian shape
for the coherence. In this regime, the origin of the coherence singularity can be
well understood from a geometrical optics point of view, as discussed in [152].
For smaller values of the coherence length L., the presence of the SPP modifies
the coherence function in a more subtle way. A clear-cut physical picture of the
interaction between the Airy rings and the coherence vortex is not available. We
formulate a theoretical description of the problem and present numerical simu-
lations. Experimental and theoretical results are in good agreement. Curiously
and non intuitively, the phase plate can reduce the total number of phase singu-
larities in the field, instead of increasing it. Furthermore, the SPP shifts the phase
of the Airy rings by 7, for larger radii. These results provide new insights into
the spatial coherence of beams with non-zero overall orbital angular momentum
and into the properties of spatial correlation vortices.
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