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1
Introduction

1.1 Light

It is quite difficult to introduce the notion of light avoiding any philosophical
detour. Most of the time, physicists don’t even bother to say what the light is;
they are mainly interested in describing how it behaves. Quantum mechanics
provides a very good description of the behavior of light (and matter) in most of
its details and, in particular, on an atomic scale. However, as one of the fathers
of quantum electrodynamics, Richard Feynman, once expressed [1]:

At the quantum level things do not behave like waves, they do not behave
like particles, they do not behave like clouds, or billiard balls, or weights on
springs, or like anything that you have ever seen. Newton thought that light
was made up of particles, but then it was discovered that it behaves like a
wave. Later, however (in the beginning of the twentieth century), it was
found that light did indeed sometimes behave like a particle. Historically, the
electron, for example, was thought to behave like a particle, and then it was
found that in many respects it behaved like a wave. So it really behaves like
neither. Now we have given up. We say : “It is like neither."

The behavior of the fundamental particles of light∗, known as photons, can be
quite accurately described by a wave function. Although the photon is neither
a particle nor a wave, within the paradigm of the wave-particle duality one is
tempted to think that the photon will exhibit either a wave-like or a particle-like
behavior. An evidence of wave-like properties is the observation of interference
fringes in a Young double slit experiment. These fringes are, however, a signature
of the coherence of light. By modifying this property one can also make the fringes
disappear. In this case, the result of a Young’s experiment would be very similar

∗ We refer to any electromagnetic radiation, not only visible light.
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1. INTRODUCTION

Figure 1.1: (a) Young’s double-slit experiment. A monochromatic and incoherent light source
is first filtered by a narrow slit and is then transmitted through two slits. An interference
pattern is observed on a screen behind the slits; this is a signature of the coherence of the
incident field. (b) The first aperture is removed and the interference pattern disappears. Since
the incident field is now incoherent, the measured pattern is just the sum of the intensities
transmitted by each aperture individually.

to what is expected from a stream of particles. Coherence is thus also one of
the most fundamental concepts in both classical and quantum optics. With this
notion in mind, let’s revisit Young’s experiment.

1.2 Coherence in optics

Coherence is the property of waves that allow them to interfere. For an ideal
sinusoidal wave, if we know the amplitude and phase at a certain point in space,
we know how this wave will be oscillating in the entire space. In other words,
the swing of the wave at one point is perfectly correlated with all other points.

Figure 1.1(a) shows a schematic realization of the double-slit experiment. First,
a thin slit is used to filter a light beam, producing to a good approximation a co-
herent wave∗. The light is then transmitted through a plate with two narrow slits
and observed at a screen behind the slits. Since the oscillations at the upper and
lower slits are perfectly correlated, these two sources will produce a high-contrast
interference pattern. By removing the first plate, however, the interference pat-
tern will disappear. As shown in Fig. 1.1(b), the result is now just the sum of the
intensities transmitted through each aperture individually. The waves transmit-

∗ We are describing the experiment in a classical language.
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1.2. COHERENCE IN OPTICS

ted through both apertures don’t “feel” each other and no interference occurs. In
this situation we say that the two transmitted beams are incoherent with respect
to each other. The relative phase of the oscillations at the two slits is completely
random.

We have discussed the two extreme examples of complete coherence or com-
plete incoherence. However, by changing the width of the first slit, one can con-
tinuously change from the situation in Fig. 1.1(a) to the situation in Fig. 1.1(b).
The intermediate case corresponds to a partially coherent field. The field has both
wave-like and particle-like behavior at the same time. Curiously, all these re-
marks remain true even at the single photon level. The patterns shown in Figs.
1.1(a) and (b) are then interpreted as the probability distribution of measuring
the photon at a certain position.

The subject of coherence is extremely broad and rich. Entire books have been
written on diverse aspects of coherence in different domains, such as space, time,
frequency or polarization [2–4]. In this thesis we present an extensive study
of spatial coherence of light, in particular for a field containing two photons,
in which the quantum features become even more prominent. We begin by
introducing some of the basic mathematical tools necessary to understand one-
photon and two-photon spatial coherence.

1.2.1 Second-order coherence: classical and quantum description

The ingenuity behind Young’s double slit experiment is that it allows the field at
two different space-time coordinates to be superposed before measuring the com-
bined intensity. In Fig. 1.1, the field at the position of the upper slit is diffracted
and superposed with the field at the position of the lower slit. Other optical ex-
periments can also be designed to allow such superposition, like a Michelson or
a Mach-Zehnder interferometer. In general, when the field E(+)(r1t1) at position
r1 and time t1 is superposed with E(+)(r2t2), the resulting intensity will be

I =

〈

∣

∣

∣
E(+)(r1t1) + E(+)(r2t2)

∣

∣

∣

2
〉

,

= I1 + I2 + 2Re
[〈

E(−)(r1t1)E
(+)(r2t2)

〉]

,

(1.1)

with the understanding that E(+) is the positive-frequency component of the
complex representation of the electric field. The first two terms are the contribu-
tions of the intensities of each field individually, whereas the last term represent
the interference effect of the superposed fields∗. The brackets 〈. . .〉 denote time
averaging†, as the measurement time is usually much longer than the period of

∗ To be more precise, the fields should be physically superposed at the same point rt. The

interference term can then be written as
D

E
(−)
1 (rt)E

(+)
2 (rt)

E

, where Ei is the transformation

or propagation of the field at point riti to the observation coordinate rt.
† We assume a stationary stochastic process. In this situation, time averaging equals ensemble

averaging.
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1. INTRODUCTION

the oscillation.

The coherence properties of the field is thus completely described by the
correlation function

Γ(r1t1, r2t2) =
〈

E(−)(r1t1)E
(+)(r2t2)

〉

. (1.2)

The field is said to be completely coherent if the correlation function factorizes
in the form

Γ(r1t1, r2t2) = E∗(r1t1)E(r2t2). (1.3)

This implies that there is a fixed phase relationship between E(r1t1) and E(r2t2)
and the contrast of the interference fringes will be maximum. This is precisely
the definition of coherence that optics has traditionally used.

In the quantum theory, measurable quantities, like the electric field, are no
longer associated with a complex number E(+), but with an operator Ê(+). The
state of the system is represented by a vector or ket | 〉. The electric field operator
Ê(+) is an annihilation operator in the sense that it lowers the number of quanta
present in the field by one. Likewise, the Hermitian conjugate Ê(−) = [Ê(+)]†

raises the number of quanta by one. If the field is in the pure state |ψ〉, the
second-order coherence∗ in quantum language is defined by

Γ(r1t1, r2t2) = 〈ψ| Ê(−)(r1t1)Ê
(+)(r2t2) |ψ〉 . (1.4)

However, most light sources don’t produce pure states. We should then con-
sider the state |ψ〉 as depending on some random and uncontrollable parameters
of the source, for instance, the fluctuating relative phases between the fields at
the two slits in Fig. 1.1(b). Partially-coherent fields in classical optics are repre-
sented by mixed states in the quantum language and are described by the density
operator

̺ = {|ψ〉 〈ψ|}av , (1.5)

where we consider a statistical average over the fluctuating parameters. The most
general quantum-theoretical form of the correlation function is

Γ(r1t1, r2t2) =
{

〈ψ| Ê(−)(r1t1)Ê
(+)(r2t2) |ψ〉

}

av
,

=Trace
{

̺Ê(−)(r1t1)Ê
(+)(r2t2)

}

.
(1.6)

For stationary fields, the correlation function depends per definition only on the
time difference τ = t1 − t2. For many applications, especially when monochro-
matic fields are involved, it is advantageous to work in the space-frequency do-
main. In this domain, one defines the cross-spectral density W as the Fourier

∗ Second order on the electric field operators.
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1.2. COHERENCE IN OPTICS

transform of the coherence function

W (r1, r2;ω) =

+∞
∫

−∞

Γ(r1, r2; τ)e
iωτ . (1.7)

Although the quantum treatment of coherence is generally carried out in the
space-time domain, recent studies have provided a more exact formulation in the
space-frequency domain. This quantum description can be made more compre-
hensible with the following notation. Let’s consider a single photon with fre-
quency ω that can be in one of a set of orthogonal states {|ψi〉} with probabilities
{Pi}. The density operator of this photon is then∗

̺ =
∑

i

Pi |ψi〉 〈ψi| . (1.8)

The cross-spectral density is the spatial-coordinate representation of the density
operator (Eq. 4.7-61 of Ref. [2]),

W (r1, r2;ω) = 〈r1| ̺ |r2〉 =
∑

i

Pi(ω) ψ∗(r1, ω)ψ(r2, ω). (1.9)

This decomposition is known classically as the coherent-mode representation. It rep-
resents the field generated by the source as a linear combination of completely
coherent fields; each of them can be found with probability Pi. The degree of
coherence of the field is related to the number of terms in this modal decom-
position. A completely coherent field has just one mode, whereas a completely
incoherent field has infinite terms.

The description presented here is sufficient to understand earlier experiments
on spatial coherence, in which single detectors were used to measure optical in-
tensities or counting rates. In the 1950’s, however, new experiments were devel-
oped that involved intensities or counts correlations between two detectors [5–7].
A more general theoretical approach was then necessary to explain, for instance,
unexpected results on the correlations in the arrival times of photons. Such a gen-
eralization was introduced by Glauber, in his prestigious paper “quantum theory
of optical coherence” [8]. In the next section we introduce the next higher-order
correlation function.

1.2.2 Fourth-order coherence and the two-photon field

In order to elucidate coherence phenomena when correlations between multiple
detectors are involved, Glauber defined higher order correlation functions Γ(2N).
The previous section discussed the case N = 1 of one detector. When two detec-

∗ By a proper change of basis, the density matrix can always be written in a diagonal form.
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1. INTRODUCTION

tors are involved, the relevant function is

Γ(4)(r1t1, r2t2, r3t3, r4t4) = Trace
{

̺Ê(−)(r1t1)Ê
(−)(r2t2)Ê

(+)(r3t3)Ê
(+)(r4t4)

}

,

(1.10)
which is known as the fourth-order correlation function.

When only one detector is used, the measured light intensity is
I(rt) ∝ Γ(2)(rt, rt). Similarly, when two detectors are used, the coincidences rate
is given by Rc(r1t1, r2t2) ∝ Γ(4)(r1t1, r2t2, r2t2, r1t1). Let’s now focus our atten-
tion on a light field containing exactly two photons that are in a pure state |ψ〉.
Since each of the electric field operators Ê(+) “annihilates” one photon from the
field, the coincidence rate is [9–11]

Rc(r1t1, r2t2) = 〈ψ| Ê(−)(r1t1)Ê
(−)(r2t2)Ê

(+)(r2t2)Ê
(+)(r1t1) |ψ〉 ,

=
∣

∣

∣
〈0| Ê(+)(r2t2)Ê

(+)(r1t1) |ψ〉
∣

∣

∣

2

,

= |A(r1t1, r2t2)|2 .

(1.11)

The coincidence rate can thus be written as the modulus squared of a field
A(r1t1, r2t2), which is known as the two-photon field. It gives the probability
amplitude of detecting one photon at position r1 and time t1 and the other photon
at r2t2. Similarly to the cross-spectral density, one can also write the two-photon
field in the frequency domain, A(r1ω1, r2ω2), as the double Fourier transform of
A(r1t1, r2t2). Much of this thesis is dedicated to investigate many of the very
intriguing properties of the two-photon field, especially when both photons have
the same frequency ω, i.e., when they are frequency degenerate. This can be
achieved experimentally by using narrow-band frequency filters. Under these
conditions, the frequency dependence of the field is trivial, being determined by
the filters only and will be omitted from the description from now on∗.

The function A(r1, r2) is the spatial-coordinate representation of the state |ψ〉
and, like W , it can also be represented in a natural set of biorthogonal mode
pairs as [12, 13]

A(r1, r2) =
∑

i

√

λifi(r1)gi(r2), (1.12)

where fi and gi are the eigenstates and λi the respective eigenvalues. This repre-
sentation is known as the Schmidt decomposition and it is closely related to the
concept of entanglement.

Entanglement is an extraordinary quantum property that allows two or more
particles (or degrees of freedom) to be strongly correlated. These correlations can-
not be explained by any classical (local) model. Consider Eq. (1.12), for instance,
which describes spatial entanglement between two photons. If we determine that
one photon is in the state |fi〉, we know for sure that the other photon will be in

∗ The coincidences rate is given by a convolution of the two-photon field with the transmission
functions of the filters, Rc =

R

|A(r1ω1, r2ω2)|2T1(ω1)T2(ω2)dω1dω2. We can only write Rc ∝
|A|2 when the filters are sufficiently narrow-banded.
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1.3. RESEARCH TOPICS IN THIS THESIS

the state |gi〉, even if these photons are separated by great distances. This prop-
erty alone does not yet characterize spatial entanglement, as such correlations
could in principle be classical∗. However, when measurements are made in dif-
ferent bases, the strong correlations persist. This persistence of correlations has
no classical analogous. Entanglement is an old concept in quantum mechanics
that has long challenged our understanding of nature, as it violates the philo-
sophical principles of realism and locality. More recently, however, physicists
have recognized that entanglement is also an important resource, with various
applications in the now established field of quantum information. The amount
of this resource present in the state (1.12) is related to the number of terms in
the decomposition. A very common measurement of the effective number of
entangled modes is the Schmidt number, defined by

K =
1

∑

i λ
2
i

. (1.13)

In the next chapters we will see how this number can be measured and manip-
ulated.

There is certainly much more to be told about coherence, but the concepts
introduced so far should be sufficient and indispensable in order to follow the
remaining of this thesis. I wish you a pleasant reading!

1.3 Research topics in this thesis

In this thesis we investigate diverse aspects of spatial coherence of light. Non-
classical fields containing two photons can be generated by a nonlinear optical
process known as spontaneous parametric down conversion (SPDC), which will
be described in more details in the coming chapters. Among the questions we
consider are: What is so special about spatial entanglement? How is it revealed
in the fourth-order correlations? What are the differences between a highly en-
tangled and a classically correlated state? How can the number of modes be
manipulated and measured? For a two-photon system, we measure both intensi-
ties and two-photon correlations. Therefore both second-order and fourth-order
coherence are relevant. To get deeper insights into how coherence affects interfer-
ence, we also investigate completely classical sources. The chapters are organized
as follows:

• Chapters 2 and 3 investigate the spatial properties of the two-photon field.
Contrary to the far-field (i.e. momentum) properties, which are widely
known, the near-field correlations in the two-photon field have hardly been
studied. We find extremely rich structures and many interesting parallels
with other fields of optics. Chapter 2 presents a short overview of the ex-
periment and the most important results, while Chapter 3 provides a more

∗ i.e., the mixed state ̺ =
P

i λ2
i |fi〉 〈fi|⊗ |gi〉 〈gi|, which is completely classical, also exhibits the

correlations just described.
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1. INTRODUCTION

complete theoretical description and extensive discussions on the conse-
quences of the near-field structures.

• Chapter 4 describes how the two-photon field is affected when the pump
laser that generates entangled photons is strongly focused. We generate a
state that is almost separable (i.e., non entangled) and investigate intensities
and two-photon correlations. We also propose a semi-classical model of
SPDC that explains the classical measurements made with a CCD.

• Chapter 5 shows how the full dimensionality of the spatial entanglement
can be manipulated and measured. We exploit a very interesting connection
between second-order and fourth-order coherence in order to provide the
first operational definition of the Schmidt number.

• Chapter 6 investigates entanglement in orbital angular momentum (OAM)
of light. Similar to the Schmidt decomposition introduced in Sec. 1.2.2,
entanglement in OAM implies, in our geometry, that if one photon has an
orbital angular momentum ℓ~, the other photon will have −ℓ~. We imple-
ment an interferometric method that allows the full probability distribution
Pℓ of finding (ℓ,−ℓ) pairs to be measured.

• Chapter 7 studies the orbital angular momentum spectrum of partially co-
herent light. Although most partially coherent fields do not carry an overall
OAM, the statistical nature of the field implies that there is still a proba-
bility that the photon will have an angular momentum ℓ~. We show how
the interferometric method and the theoretical framework of Chapter 6 can
be used to investigate this OAM modal decomposition of partially coher-
ent light. Contrary to the previous chapters, which focus on the quantum
properties, this Chapter investigates completely classical beams.

• Chapter 8 studies partially coherent classical light with an overall OAM. In
particular, we address the question: “How does a spiral phase plate affect
a partially coherent field?” Spiral phase plates are usually employed to
transform a completely coherent beam into an approximate Laguerre-Gauss
mode carrying OAM. When a partially coherent beam is used instead, the
effect of the phase plate is shown to be much less visible in the intensity
and much more dramatic in the coherence function, which now acquires a
ring singularity.

• Chapter 9 investigates the statistical properties of non-local speckle pat-
terns that are obtained when entangled light is scattered through a random
medium. In this Chapter, the connection between second-order coherence
and fourth-order coherence is very prominent, as the statistics measured by
a single detector and by two detectors are deeply linked. The differences
between an entangled state and a separable state are very appealing. Fi-
nally, we use the statistics of the observed speckles as an alternative method
to measure the Schmidt number. In this Chapter, many of the concepts dis-
cussed in the previous chapters are put together in a single context.

8


