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Conclusions and Future Perspectives 

 

 

Conclusions 
 

In this project, we have developed a computer program for de novo molecule design, 

the Molecule Evoluator. It is unique among programs for de novo molecule design 

since it combines three features: an atom-based approach, an evolutionary algorithm 

that can optimize structures, and its interactivity which allows it to profit from the 

knowledge, intuition and creativity of its user. 

 The first feature, the atom-based approach, helps the Molecule Evoluator to search 

all of chemical space, and fine-tune the structures. When using the much more 

common fragment-based approach, one first faces the problem of whether all 

synthetically possible and drug-like fragments have been included, and second there is 

the question whether the reconnection algorithm uses all realistic possibilities of 

synthesis. Covering chemical space with the atom-based approach is much easier and 

more natural. Secondly, our exhaustive repertoire of atom-based mutations (several of 

which lack in other work) allows the molecules to change gradually and adapt 

themselves to their target, instead of making big jumps in structure which usually result 

in large loss of fitness and may tend to force the population into premature 

convergence. 

 The second defining feature of the Molecule Evoluator is the evolutionary 

algorithm on which it is based. While several optimization methods exist (like random 

search, simulated annealing, or just molecular growth), evolutionary algorithms make 

good use of two features of molecular space. First, that molecules close in structure 

generally have related biological activity; evolution’s concept of heredity, of inheriting 

good genes from the parents, makes methods which base the new molecules on the 

previous ones (instead of searching randomly) a good choice. Secondly, both in 
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literature and in our own experiments we found that perhaps the most defining feature 

of evolutionary algorithms, namely crossing different solutions, is also advantageous 

and viable in drug design. Evolutionary algorithms not only use heredity, but also 

crossover, and therefore automatically use the structure of biological activity space to 

their advantage. 

 The third, and perhaps most distinguishing feature of the Molecule Evoluator is its 

interactiveness. While interactive evolutionary computing (IEC) has been used for 

quite some time in diverse applications, it had not yet been used for molecule evolution. 

However, there are good reasons to use interactive evolution in this field. First, there is 

a lack of good “fitness functions” – methods to calculate “how good” a molecule really 

is. Programs to estimate ligand binding energy and ease of synthesis are still very 

unreliable, so evolution without any human intervention will rarely yield good 

structures. However, human domain knowledge on ease-of-synthesis and pattern-

recognition may help. Second, it can be difficult for people to accept the computer 

“prescribing” molecules out of the blue: most chemists would either like a good reason 

or some input of their own. The limitations of current automatic structure evaluation 

would lead to rejection of flawed structures, instead of correction. Third, evolutionary 

algorithms do not only “exploit” existing knowledge, they also explore new 

possibilities. Since a computer can quickly generate many possibilities and has other 

prejudices than a human chemist, interactive evolution can be a valuable idea-

generating machine to complement human creativity. 

 During the development of the Molecule Evoluator, we discovered that the first 

versions needed to be refined to be acceptable to the chemists using them. In the 

following paragraphs we describe some of the problems encountered and the 

modifications implemented in response. 

 The main problem of the first version of the Molecule Evoluator was that many 

structures just did not seem possible to synthesize at all. In particular, common 

substructures like phenyl were almost completely absent, weird substructures like 

peroxide were common, and many structures had overly complicated rings or 

disobeyed chemical rules of thumb, like Bredt’s law which states that a bridgehead 

carbon atom cannot have a double bond (unless the rings have a certain minimum size). 

 To make the molecules more “appealing” and easier to synthesize, we first 

allowed the ME to not only add atoms to a growing molecule, but also a number of 

predefined fragments (carboxy, phenyl, cyanide, etc.). Secondly, we mined the NCI 

database to find the frequencies of the different atom types and 2/3/4-atom 

substructures. Based on the frequency of, for example, O-O in the NCI database we 
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modified the chance that an oxygen atom would be connected to another oxygen atom. 

This automatically enforced chemical rules that state that peroxides are rare, using 

statistics instead of qualitative human intervention. Third, we implemented a couple of 

rules, such as Bredt’s rule and a prohibition of CH2-imines. These rules act like filters 

that prevent molecules that do not obey the given chemical constraints from being 

shown to the user. Mining the NCI also gave us a catalog of ring structures (see the 

“Chemical Clichés” chapter) which were also implemented to filter unknown and 

probably strained rings out. Note that the filters can be activated and deactivated by the 

user, and that the full idea generation potential remains available if desired. 

 The second main point for improvement was user control. For example, chemists 

often had certain ideas about which part of a molecule was important, and should be 

conserved. Also they preferred that the best molecule from the previous generation was 

to be saved always (which is not guaranteed in a normal evolutionary algorithm). 

Thirdly, occasionally a chemist could see an obvious modification of an existing 

molecule, and wanted to put the adapted molecule in the Molecule Evoluator. And 

finally, the molecules produced should preferably be drug-like and obey a number of 

physicochemical restraints. 

 We made various adaptations to address these points. We added atom and bond 

fixation, which can conserve any atom (even hydrogen atoms) and can therefore focus 

evolution on the variable part of the molecule. Secondly, we added elitism, so the 

chosen molecules of the previous generation appear as the first molecules of the current 

generation, allowing a chemist to easily see if their offspring improves over them. 

Thirdly, we added a molecule editing window, which allows the user to adapt ME-

generated molecules and feed them back into the evolution, or even to sketch new 

molecules as input of the evolution. Lastly, we added physicochemical filters to allow 

the user to determine the allowable physicochemical properties of a molecule, such as 

the range in which the molecular weight should fall, and the maximum permissible 

number of hydrogen bond donors. 

 Finally, we tested the Molecule Evoluator to examine whether the concept was 

sound and useful. 

 First we ran a number of small experiments, in which we evolved certain drug 

molecules from scratch (that is, without editing the molecules, though we fixed certain 

atoms/bonds to accelerate optimization in a certain direction) to show that we can 

indeed convert simple substances into drugs. We also were able to reproduce, using 

experimental fitnesses, an optimization pathway of neuramidase inhibitors, which 

shows that our mutations and selection work well with good (experimental) fitness 
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measures. 

 The value of the idea-generating function was tested by creating 300 random 

molecules that obeyed certain physicochemical restraints. A panel of chemists chose 

the most “drug-like” 34 structures, of which a number did not appear as structure or 

substructure in existing databases, and therefore could be considered potential new 

molecule templates. Synthesis of eight of the compounds yielded four compounds 

which showed biological activity in the used essays. It seems that chemists indeed have 

a valuable intuition, and that the ME can inspire the synthesis of truly new classes of 

molecules, unknown before yet possible to synthesize. 

 The Molecule Evoluator has become more advanced over the years, and is at the 

time of writing (May 2008) commercially available. In the Leiden group of Medicinal 

Chemistry, where it has been developed, it is now used in each synthesis project as an 

interactive, idea-generating but responsive aid to get new ideas for structure 

modifications. Several companies have bought versions, and some are quite happy with 

it, as is evident from the following quote:  

 

"Both computational chemists and medicinal chemists have explored the Molecule 
Evoluator and have been excited about the output in terms [of] novel ideas being 
generated and the potential for further enhancements in the future. The real 
advantage of the current programme is that it can be iteratively influenced by trained 
chemists to propose new structures, some of which may look immediately obvious but 
yet had not been previously suggested. Three of our current GPCR-based projects 
have benefited in this way." 
 
Software that allows humans and computers to combine their particular strengths is 

still rare, for drug design the Molecule Evoluator is the only one to our knowledge 

which is currently commercial. This has two likely causes. First of all, interactive 

evolution is itself a young field, most programs for designers (of molecules or 

buildings) are drawing programs which do not give any creative input of their own, as 

they were designed to be computerized replacements for real drawing boards. Second, 

most complex software for molecule design has been created for computational 

chemists and therefore only runs under Unix/Linux workstations and has powerful but 

complex interfaces. The medicinal chemists, the people who design and modify most 

of the molecules and are experts on molecules rather than computers, have been left out. 

Only in the last two or three years software companies are also starting to develop 

versions for Windows and thus for the “normal” chemists. (See for example the 
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Software section in the biweekly ‘Chemical and Engineering News’ of the American 

Chemical Society). But even when a Windows version is available, it will be a long 

road for most programs to also become user-friendly for people who are not experts in 

computational chemistry. As of yet, the Molecule Evoluator is quite lonely in the 

software landscape, but we hope that in the coming years it will be joined by followers 

and colleagues which bring both the computational and creative potential of computers 

to the medicinal chemists directly. Software has a vast potential for changing drug 

design, if we invest effort and creativity in it. 
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Future Perspectives 
 

 Prediction is very difficult, especially about the future. 

 Niels Bohr (1885 – 1962) 

 

Science is never finished. The research described in this thesis may have produced a 

useful computational tool for the medicinal chemist, and it may have given more 

insight into chemical databases. However, we nor others have as of yet produced the 

perfect medicinal chemistry tool, and many problems in drug design remain. The 

previous chapters of this thesis have covered what we have done in our research. This 

last part will contain reflections on where to go from here. I hope this chapter will 

provide ideas and inspiration to researchers and non-researchers alike on what subjects 

in computational drug design would be worthwhile to investigate, and in which 

directions we could go. 

 I will begin with some thoughts on future directions for the Molecule Evoluator, 

then discuss the possible evolution of evolutionary algorithms in drug design, and will 

end by zooming out to look at the general role of software in drug development, and 

talk about some of the ways in which we can increase the ability of software to help us 

design new drugs. 

 

 

The future of the Molecule Evoluator 
 

At the time of this writing, we have performed experiments which have shown that the 

Molecule Evoluator can at the very least help find novel biologically active molecules. 

We may never know if chemists without the Molecule Evoluator would have been as 

creative as chemists using the Molecule Evoluator, but it is very likely that computer-

generated structures can complement the brainstorming by chemists, which may 

mainly design variations on the molecules they already know. For that reason, the 

Molecule Evoluator as it is now may remain useful for a long time to come. 

 To enhance the usefulness of the Molecule Evoluator further, there are numerous 

possibilities: improving the speed at which molecules are generated, comparing the 

effects of different crossover functions, making the user interface even more intuitive, 

improving the display so that the user can see very quickly which mutations have been 

generated, offering calculations of more physicochemical properties (for example pKa) 

or linking the Molecule Evoluator to third-party software that can calculate those 
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properties, and numerous other tweaks and enhancements. At the moment there are 

however three points which I think most promising for future updates: changing the 

structure generation to yield even better structures, linking the Molecule Evoluator to 

other software and databases, and experimenting with computational fitness 

evaluations. 

  

Ease of synthesis: less boring, less impossible, more novel? 

From conversations with users, we found that the main factor determining how much 

they liked the Molecule Evoluator was the ratio of “good” molecules to “bad” 

molecules. Good molecules are those molecules that are novel and seem relevant or at 

least can be easily changed into a molecule with a good structure. “Bad” molecules are 

those molecules which are boring (not very novel), irrelevant, or plainly impossible to 

synthesize. 

 The most significant way to enhance the use that chemists get out of the Molecule 

Evoluator would therefore be increasing the number of good molecules while 

preferably decreasing the number of bad molecules. With previous adaptations we have 

already succeeded partially in this, and it is certainly possible to further improve our 

results with some additional adaptations of the code. 

 At the moment the best method to improve the ratio of good to bad molecules 

seems to be to diminish the occurrence of the main types of bad molecules: the 

'impossible' molecules, the 'irrelevant' molecules, and the 'boring' molecules. 

 The 'impossible' molecules are those molecules which cannot be synthesized. We 

have already reduced their number with chemical filters and giving the user the option 

to only allow known ring structures; further feedback will undoubtedly allow us to 

increase the number of filters that can be applied to a molecule. The 'irrelevant' 

molecules are only created when the Molecule Evoluator cannot find a mutation that 

works, which mostly occurs in molecules where many atoms or bonds have been 'fixed' 

by the user. The solution to this is to rewrite the mutation algorithm: at the moment it 

picks a random atom from the molecule to mutate, which fails if that atom has been 

fixed by the user – forcing the Evoluator to create a random/irrelevant molecule instead. 

Rewriting the mutation algorithm so it picks only from the atoms which are not fixed 

will give a much greater mutation success rate and therefore a much lower production 

of irrelevant molecules. 

 The final way to decrease the amount of “bad” molecules is to tackle the boring 

molecules (this is for interactive evolution. An automatic fitness function cannot be 

bored). A chemist may find certain mutations boring or “not novel”. The aim therefore 
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is to find out which mutations are generally found interesting, and which are not. 

Finding out these preferred or unpopular mutations can be done by either directly 

observing a user or by creating special statistical subroutines to observe which 

mutations (atom addition, deletion, insertion) produce molecules that are most often 

selected or not selected, and what kind of additions/deletions/insertions are most 

interesting. Such an investigation might for example find that adding a methyl group to 

a benzene ring is “boring”, while adding a hydroxy group to the same ring is 

“interesting”. The probabilities of those specific mutations can then be adjusted 

appropriately. 

 In conclusion, adapting the Molecule Evoluator to change the ratio of good to bad 

molecules in a beneficial way is certainly possible with user observation and feedback 

and some reprogramming. Of all the possible options to improve the Evoluator, this 

optimization may have the strongest impact on user-friendliness and frequency of use, 

and would therefore be a prime target for implementation. 

 

Linking the Molecule Evoluator to databases 

A second area for improving the Molecule Evoluator turned up during our own tests. 

While trying to find novel biologically active molecules, every compound the chemists 

found interesting had to be manually looked up in the CAS database. While this 

database search was by far not as much work as eventually went into synthesizing the 

truly novel compounds, it taught us that it would be incredibly handy if one could look 

up the Molecule Evoluator-generated structure or similar structures in the user's 

favourite chemical databases by just pressing a button. A useful improvement would 

therefore be a link to databases that would allow chemists to find whether the molecule 

suggested by the Molecule Evoluator exists in its entirety or as a substructure, and if it 

exists, how it can be synthesized (or ordered). For large and wealthy institutions, links 

to commercial databases like Beilstein and CAS may be possible, but more exciting is 

the opportunity brought by the advent of large public databases like PubMed, 

PubChem, eMolecules and ChemSpider to give all users of the Molecule Evoluator the 

chance to have structures automatically checked with literature.  

 Databases could not only be used for checking structures, but can also help to 

create structures. If, for example, a chemist is looking for alternatives for a certain ring 

in a molecule, it would be very useful if he could view a list of the most common ring 

systems from our 'chemical cliché' database next to the molecule editing window, as 

that could give many ideas for changes. A similar approach could be taken for 

substituents, where the chemical clichés fragment database or a specialized database 
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like a bioisosters database could be used to find replacements that the chemist might 

not have thought of yet. 

 

The Molecule Evoluator and automated evolution 

Interactive evolution has some major advantages over automated evolution, mainly that 

it can use expert knowledge much more easily than any fitness function designed by 

computer programmers. However, this requirement for expensive expert time is also a 

disadvantage, and given the successes of the interactive mode of the Molecule 

Evoluator, one could consider adding options for computational chemists who want to 

use automated evolution. 

 While adding a feature for automated evolution is possible (in fact, it has already 

been done in one or two individual cases), to make the automated evolution perform 

optimally one needs to change more than the code for the fitness function. Automatic 

evolution and interactive evolution, despite their apparent similarity in approach, are as 

dissimilar (if not more dissimilar) as tennis and table tennis.  

 The first dissimilarity of automated versus interactive evolution is the absence of 

user fatigue. This opens up the desirable possibility to create larger generations than 

the 12-20 which are practicable for user feedback (50-100 molecules seems to be about 

the optimum size if we consider investigations such as that of Douguet et al.1, since it 

may avoid the premature dead ends which endanger small populations and the 

'drowning out' of the good genes in very large populations. Larger populations seem to 

work better when split into 'islands'). Also, automated evolution doesn't need settings 

that prevent molecules that differ only slighly from their ancestor being created, as a 

small increase in fitness is useful, whereas such a molecule would strike a human as 

uncreative and increase user fatigue.  

 The absence of user selection, however, also has some disadvantages. First of all, 

automatic evolution makes it necessary to implement a selection function: for if the 

user isn't selecting the “good” molecules, the programmer has to decide how to select 

the best molecules for further evolution. Take the best five molecules? Or ten 

molecules? Use tournament selection? Roulette wheel selection? A second 

disadvantage, which we discovered during the docking experiment (Chapter 6), is that 

atom-based evolution when not supervised by humans tends to produce molecules 

which over time become more and more difficult to synthesize. Therefore, automated 

evolution needs stricter filters to sufficiently dispose of unwanted structures. 

 In summary, unlocking the full potential of automated evolution requires changing 

more parts of the Evoluator than the fitness function – the automatic evolution would 
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need to be at least partially split from the code for interactive evolution. On the positive 

side, automated evolution also offers opportunities. Performing automated evolution 

with a good fitness function may give us a better idea what parameter settings and what 

mutations or crossover operations are optimal for drug design, and allow us to adjust 

the Molecule Evoluator accordingly. If we keep studying drug design and evolutionary 

strategies for drug design, the Molecule Evoluator may one day not only be the best 

interactive evolutionary algorithm for drug design, but also the best evolution-based 

program for automatic drug design available. 

 

 

General perspectives on evolutionary algorithms in drug design 
 

Useful as they are, evolutionary algorithms aren't the “cute new kid” in computational 

drug design anymore. They were immensely popular in the late 1990's, but interest 

waned as it grew more and more difficult to think of yet-unpublished applications and 

it turned out that evolutionary algorithms, like all methods before them, were not the 

“cure-all, one-size-fits-all”-solution that drug designers have been seeking for so long. 

I have discussed my view of the future of Evolutionary algorithms in 2005 in my 

review on evolutionary algorithms in drug design (Chapter 2), in which I discussed 

various possible developments such as creating standardized test databases for 

chemical problems and evaluating newer types of evolutionary algorithms. Currently, 

evolutionary algorithms are already unobtrusively integrated as standard tools for 

experiments, for example for descriptor selection in a virtual screening experiment2. 

For new problems too, evolutionary algorithms are becoming easier to try out as 

flexible optimization methods, due to the development of EA toolkits such as the GA 

Playground, OAT, Lil-gp, and ECJ3. However, in my mind two ideas seem most 

important: adding further domain knowledge to evolutionary algorithms, and the use of 

evolutionary algorithms in novel or at least uncommon ways in drug design, such as 

modelling and data mining. 

 

Adding knowledge to evolutionary algorithms 

The main bottleneck in successful application of evolutionary algorithms in drug 

design is that finding the best solution (or even a very good solution) often takes more 

computer time than is available. This is both because of the “high dimensionality” of 

many drug design problems (many parameters need be optimized simultaneously) and 

because fitness functions often take much time to be calculated. While the increasing 
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computer speeds may help here, it may even be more important to perform the 

optimization itself in more intelligent ways. 

 Evolutionary algorithms can be improved by testing and comparing different 

models (differing in population size, selection pressure, etcetera), but more important 

will be the collaboration between computer scientists and experts in the problem 

domain, such as drug design. Currently, relatively simple evolutionary algorithms are 

often used since they shorten programming time – unfortunately, these same 

algorithms are afterwards too easily carried over into the commercial version where the 

'saving' of programming time is paid back with interest as the inefficient algorithm is 

run thousands of times. Only with knowledge of the problem itself can one develop 

rough fitness functions which can eliminate patently bad candidates before they are 

subjected to a more accurate fitness calculation, create meaningful mutations that turn 

good solutions into other good solutions instead of impossible ones (for example, 

producing a carbon atom with five bonds), split the solutions as much as possible in 

semi-independent sub-systems for faster optimization, and make optimal use of the 

knowledge obtained by the evolution so far (for example, learning that a certain type of 

atom at a particular position produces very good scores). It may be difficult for 

computer scientists and drug designers to understand each other and communicate 

one's knowledge and aims clearly to the other party, but in the end the algorithms that 

will survive and turn out to be most useful in a given problem domain will not be the 

newest generic computer science methods, but well-chosen basic methods, carefully 

optimized to suit the problem at hand. 

 

Future applications of evolutionary algorithms  

Evolutionary algorithms are currently experimentally or routinely used in most phases 

of drug discovery. The most important of their current applications are their 

contributions to the “core” business of finding new leads by computer, namely by 

library design, de novo design, and virtual screening. Of these, “virtual screening” 

(evaluation by computer) of a potential lead is hardest by far, since proper 

computational evaluation needs to answer six questions: 1) is the target important in 

the disease, 2) does the candidate molecule interact strongly enough with the target, 3) 

can the molecule get to the place of action, 4) how and how fast is the molecule 

metabolized, 5) are the molecule and/or its metabolites toxic, and if so, how much, and 

6) is the molecule excreted slowly enough.  

 While docking tries to answer question 2, and Lipinski's rules and calculating the 

polar surface area of the molecule help us somewhat with 3 (barring active transport), 



230 

 

reliably predicting any of these relevant properties requires good-enough predictive 

models, and even a much-researched subject such as docking can definitely be 

improved greatly yet. The main challenge of computational drug design is therefore to 

develop better models for the interaction of a molecule with the human body.  

 Creating models generally starts with collecting large amounts of raw data (for 

example, molecules and their intestinal absorption), calculating descriptors (properties 

of the input molecules, such as the weight or the polar surface area of each molecule) 

and picking a computational model (linear regression, neural network, support vector 

machine) that links those descriptors to the measured property. With the unavoidable 

measurement errors in experimental data, perfect mathemathical relationships are 

generally not possible, but evolutionary algorithms could help in parameter selection 

(as they have done for QSAR), and even with computational model selection. In some 

relatively simple cases this is already possible, such as evolutionary algorithms 

producing mathematical equations out of pictures of moving systems4. In the end, 

evolutionary algorithms could become more independent and work on more complex 

problems, becoming untiring generators and testers of hypotheses. Even more than 

today, future evolutionary algorithms may supplement human brain power in making 

better models to predict how a particular molecule will fare as a drug. 

 

 

The future of computational medicinal chemistry 
 

While medicinal chemistry changes, its basic challenges stay the same. People will 

continue to have diseases and want to get rid of them, and unless genetic modification 

of living humans becomes easy, reliable and safe (which seems very unlikely to happen 

this century) we will in most cases need to fight the diseases with drug molecules. 

These will remain difficult to find since we do not always know the mechanism of the 

disease or the best protein to target, and even if we know those we may struggle to find 

the molecule that interacts effectively with that target, can get to the place of action, 

and does not have unacceptable side effects or toxicity. 

 

Most current sub-fields of computational medicinal chemistry, such as docking and 

prediction of ease of synthesis will probably grow and improve over time, though that 

is likely to be a slow and laborious process. The algorithms may never be perfect, but 

they may become so good as to be too useful to ignore. The three areas which interest 

me most, however, are still much earlier in their development: automated data analysis, 



231 

 

simulations and interactive software. 

 

Automated data analysis 

In theory, knowing the DNA encoding for a protein should be enough to calculate the 

three-dimensional structure of the protein and find molecules which bind to it, by 

applying quantum mechanics and molecular dynamics. Similarly, an optimum-yield 

synthetic route for a new molecule could be found by using retrosynthesis and quantum 

mechanical calculations on a library of available reagents. In practice, however, we 

need lots of data both as primary input (you can't understand an organism without 

knowing at least its entire DNA), and as a substitute for calculations which would be 

theoretically possible but far too computationally intensive to be practical. If you 

would need either 50 years of computer time to correctly calculate the affinity of a lead 

compound to a protein using quantum mechanics and thermodynamics, or one hour of 

biochemical testing, the latter is far preferable. Therefore drug design still needs lots of 

experimental data to be efficient. 

 These experimental data are increasingly becoming available through scientific 

journals creating online versions, electronic lab journals collecting the primary data 

generated by researchers, and the growth of public databases such as PubChem and 

Wikipedia. This increase of data is promising, but current search methods have 

difficulties exploiting it: it can be incredibly hard to find the particular piece of data 

one is looking for. For example, in my stints as a science journalist I have spent much 

time being frustrated and giving up searches when Google couldn't locate a proper 

answer to even elementary scientific questions such as which hormones affect the 

release of GnRH from the hypothalamus. This information undoubtedly exists in 

reviews and/or books, and a more elaborate searching through reviews could probably 

uncover it, but still the (time) cost of finding particular information is much higher than 

would be technologically necessary. Making information easier to find can reduce both 

the time and the cost of any research project. 

 A large part of making better use of existing data will be economical and 

organizational: somebody has to pay for the servers to house the data and the 

transformation of (scientific) texts and tables into a computer-readable format; in many 

cases the 'owner' of the data (such as a scientific journal) will also want financial 

compensation. But what are the technological aspects? 

 The first part of technology will be disambiguation and transforming text into 

something the computer can more easily relate to search queries; for example a text 

like “the melting point of benzene is +5.5 oC” would fit better in a computer database 
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as “object=”benzene”::==reference=”www.merckindex.com/benzene”=>property =  

“melting point”=>value=”278.5”=>unit=”K”. Ontologies/synonym lists and lists of 

standard terminology will remain necessary to transform raw data into something that 

is as standardized and unambiguous as programming language statements (for example, 

instead of “melting point” my version of the Merck index occasionally uses the less 

standard “solidif”). 

 The second and probably greater challenge will be to make search methods less 

“fussy” and more “fuzzy”. For example, when designing a synthesis route for a 

compound, it may be that the compound has never been synthesized before, or that it 

has been synthesized, but via a rather inefficient route. Finding the synthesis route for 

similar compounds can help in both kinds of cases. However, despite Tanimoto 

coeffients and fingerprint calculations, it is unlikely that there is an universal measure 

of molecular similarity (similar molecular weight? Similar size? Similar melting point? 

Similar biological effects?). Domain experts and ideally data mining should be able to 

discover what the similarities are in compounds synthesized via the same route, for 

example, re-discovering that alcohols can be made out of available halo-alkanes using 

a Grignard-reaction, but also in which cases Grignard fails or is not used at all. This 

will be a complex piece of data mining where programmers and domain experts will 

have to work together, but having a system that can learn from existing data and adapt 

its knowledge when encountering new information would be extremely useful to build. 

 There are already several individuals and groups striving to improve data 

management in science from the 'let's do the same as always, only electronically' stage 

to transforming global scientific knowledge into a truly useful search engine, for 

example the Scientific Publishing Taskforce which is developing methods to make 

scientific publications computer-readable (http://esw.w3.org/topic/HCLS/Scientific 

PublishingTaskForce), attempts to unify data from many scientific sources into a single 

encyclopedia/wiki (http://www.wikipathways.org/index.php/WikiPathways) and a 

more fuzzy version of PubMed, eTBlast (http://invention.swmed.edu/etblast/ 

index.shtml). While the diversity of initiatives indicates that this field is far from ripe 

yet and standards need to be developed to unify the different projects, going into the 

direction of converting data into standardized formats and making search engines more 

intelligent will in my opinion greatly improve data availability and increase literature-

search efficiency, and drug design can only profit from that.  

 

 

 



233 

 

Simulation 

The paragraph on future applications of evolutionary algorithms focused on model 

development. Models, however, are not limited to linear regression models or neural 

network models or decision trees only. One of the most interesting directions that 

modeling is going is the simulation of cells, tissues and even of entire human bodies. 

Models for the heart are already available, as are models for blood flow and some 

cancers5. Evolutionary algorithms already help find good parameters for conventional 

models (such as neural networks), likewise they may help fine-tune simulations by 

supplying good values for missing parameters. All in all, though, evolutionary 

algorithms would only be a small part of the total work on simulations – many 

computational methods and algorithms are likely to be necessary, from logic 

programming and cellular automata for rough qualitative models to differential 

equations working on small simulated 'boxes' of cellular cytoplasm and cell membrane 

for the most advanced models. 

 While it may be difficult to create good simulations, it would be amazingly useful 

if we would have more reliable models for what happens in the various tissues in case 

of disease, and what the effects of various interventions would likely be. In contrast to 

biological experiments, it is very easy to knock a gene out in the computer or let a 

protein be deactivated fully without the need to discover a strong and selective protein 

antagonist first. Even better, good computer models could act as “living encyclopedias” 

of current biological knowledge, linking the many findings of biological research into 

one easily accessible and correctly interconnected whole, growing more and more 

accurate the more we learn about biology. Creating excellent simulations of biological 

systems may be one of the most difficult projects that could support drug design, but its 

huge advantages in both allowing us to test compounds reliably without endangering 

human volunteers and understanding the true mechanisms and complexities of disease 

will also probably make it the most useful of all possible software if we succeed. 

 

Interactivity 

On the surface, interactive evolution may look like nothing more than a speeding up of 

the usual process of the medicinal chemist stating the target and the constraints to the 

computational chemist, who programs these into the computer, which produces new 

molecules. It is indeed an advantage that interactive evolution can shorten and speed up 

this cycle, but the truly qualitative difference is that interactive evolution can use one 

resource which automated evolution can not take advantage of: the subconscious 

knowledge and expertise of the medicinal chemists. 



234 

 

As I stated in the introduction of this thesis, major progress could be made by letting 

people and computers work together more productively, complementing each other's 

strengths. While delegating simple tasks to computers has of course been done since 

the dawn of computing, for example by humans creating the formulas for the 

spreadsheet and the computer doing the calculations, only more recently computer 

programmers have deliberately started to try use human brain power. Interactive 

evolutionary algorithms are one example of this, another is the program C3vision 

which makes an EEG of the user's brain activity while (s)he is quickly browsing 

images, and can detect when the user sees something interesting much faster than the 

user him/herself realizes it, thereby speeding up scanning of images tenfold6. The 

human processing capabilities can also be tapped via games, for example 'fold-it' 

(http://fold.it) which lets humans predict protein folding quite successfully, as 

predictions by fold-it players won seven prizes at the protein structure prediction 

contest CASP8, outperforming purely computational methods, and in one case even 

outperforming professional scientists.  

 What will the future be of such interactivity between man and computer? For now, 

humans seem to excel in combinatorial problems (such as finding the right folding for 

a protein, where calculating the energy score is probably rather fast) and problems 

which require knowledge which is hard to make explicit ('hunches'). Docking could 

undoubtedly be performed similarly to fold-it, at least when the docking scoring 

functions have become more accurate. And perhaps humans could be trained to get 

toxicity “intuition” by showing different structures and making them guess whether a 

compound is mutagenic or not, perhaps recognizing patterns which may be difficult to 

find by computer.  

 It may be that human-computer interactivity will one day be surpassed by 

computers which either can process data in a human-like way or are so fast that they 

won't need the speedup provided by human knowledge anymore. But such advances 

are only likely to happen in the very far future, if at all. For now, the more we learn 

about computers and problems, the more we find that computers are not yet the answer 

to all our problems and that human experts are unexpectedly potent problem solvers. 

Making human-computer interaction work well is a field of research in itself, but the 

better we become at it, the more powerful our capabilities in science and drug research 

will become, leaving 'computer-only' or 'human-only' techniques far behind. 
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In closing 
 

Computational drug design has come far since the first QSAR programs and molecule 

databases, and the Molecule Evoluator is certainly not the end point of its ongoing 

evolution. There have been quite some successes already (for example with virtual 

screening), but we can still do better. In my opinion, software developers should strive 

to make drug design software grow in three directions: deeper, wider, and closer. 

 Deeper software will be software that more elaborately uses core scientific 

knowledge such as quantum mechanics, molecular dynamics and thermodynamics to 

improve the accuracy of predicting ligand affinity, compound metabolism and other 

phenomena. The main challenges here are integrating the diverse formulas and 

principles of chemistry and physics (for example, ligand affinity prediction also needs 

accurate prediction of the energy of (de)solvation of the ligand), and speeding up the 

calculations so that accurate enough results are obtained in the computer time available. 

Wider software, which focuses on combining and comparing data, may be able to help 

us where calculations are yet too slow – by recognizing patterns in experiments we 

may in some cases be able to predict important properties from 'data-based' models 

where 'computation-based' models are as of yet too time-consuming. Software casting a 

wider net over our current scientific knowledge may also help us find connections 

between different subjects, by integrating the data on chemistry, biology and genetics 

into one organized whole. Finally, developing closer software means that we should 

strive to make software more accessible to 'lay' users, so it can be used more easily by 

scientists who are not experts in computer programming. For some software products, 

this would involve creating Windows versions, for almost all programmers it would 

mean focusing much more on user-friendliness and the user's goals. Consciously 

seeking to develop the most intelligent task division between computer and user will 

also greatly increase the user's power to tackle scientific and drug design problems.  

 Developing deeper, wider and closer software may never bring 'perfect' 

computational drug design as was perhaps once envisioned. It is quite likely that it will 

create computer programs which will be totally unexpected, and tackle problems we 

may not even know about yet. Only one thing is certain: by working steadfastly on 

finding new ideas and evolving our software, we will be able to increase our 

understanding of biology and drug design to a depth we would now deem incredible. 

May that understanding be used effectively for the progress of science, and for the 

health of humanity. 
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