
Interactive evolutionary algorithms and data mining for
drug design
Lameijer, E.M.W.

Citation
Lameijer, E. M. W. (2010, January 28). Interactive evolutionary algorithms
and data mining for drug design. Retrieved from
https://hdl.handle.net/1887/14620

Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/14620

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/14620

219

8

Conclusions and Future Perspectives

Conclusions

In this project, we have developed a computer program for de novo molecule design,

the Molecule Evoluator. It is unique among programs for de novo molecule design

since it combines three features: an atom-based approach, an evolutionary algorithm

that can optimize structures, and its interactivity which allows it to profit from the

knowledge, intuition and creativity of its user.

 The first feature, the atom-based approach, helps the Molecule Evoluator to search

all of chemical space, and fine-tune the structures. When using the much more

common fragment-based approach, one first faces the problem of whether all

synthetically possible and drug-like fragments have been included, and second there is

the question whether the reconnection algorithm uses all realistic possibilities of

synthesis. Covering chemical space with the atom-based approach is much easier and

more natural. Secondly, our exhaustive repertoire of atom-based mutations (several of

which lack in other work) allows the molecules to change gradually and adapt

themselves to their target, instead of making big jumps in structure which usually result

in large loss of fitness and may tend to force the population into premature

convergence.

 The second defining feature of the Molecule Evoluator is the evolutionary

algorithm on which it is based. While several optimization methods exist (like random

search, simulated annealing, or just molecular growth), evolutionary algorithms make

good use of two features of molecular space. First, that molecules close in structure

generally have related biological activity; evolution’s concept of heredity, of inheriting

good genes from the parents, makes methods which base the new molecules on the

previous ones (instead of searching randomly) a good choice. Secondly, both in

220

literature and in our own experiments we found that perhaps the most defining feature

of evolutionary algorithms, namely crossing different solutions, is also advantageous

and viable in drug design. Evolutionary algorithms not only use heredity, but also

crossover, and therefore automatically use the structure of biological activity space to

their advantage.

 The third, and perhaps most distinguishing feature of the Molecule Evoluator is its

interactiveness. While interactive evolutionary computing (IEC) has been used for

quite some time in diverse applications, it had not yet been used for molecule evolution.

However, there are good reasons to use interactive evolution in this field. First, there is

a lack of good “fitness functions” – methods to calculate “how good” a molecule really

is. Programs to estimate ligand binding energy and ease of synthesis are still very

unreliable, so evolution without any human intervention will rarely yield good

structures. However, human domain knowledge on ease-of-synthesis and pattern-

recognition may help. Second, it can be difficult for people to accept the computer

“prescribing” molecules out of the blue: most chemists would either like a good reason

or some input of their own. The limitations of current automatic structure evaluation

would lead to rejection of flawed structures, instead of correction. Third, evolutionary

algorithms do not only “exploit” existing knowledge, they also explore new

possibilities. Since a computer can quickly generate many possibilities and has other

prejudices than a human chemist, interactive evolution can be a valuable idea-

generating machine to complement human creativity.

 During the development of the Molecule Evoluator, we discovered that the first

versions needed to be refined to be acceptable to the chemists using them. In the

following paragraphs we describe some of the problems encountered and the

modifications implemented in response.

 The main problem of the first version of the Molecule Evoluator was that many

structures just did not seem possible to synthesize at all. In particular, common

substructures like phenyl were almost completely absent, weird substructures like

peroxide were common, and many structures had overly complicated rings or

disobeyed chemical rules of thumb, like Bredt’s law which states that a bridgehead

carbon atom cannot have a double bond (unless the rings have a certain minimum size).

 To make the molecules more “appealing” and easier to synthesize, we first

allowed the ME to not only add atoms to a growing molecule, but also a number of

predefined fragments (carboxy, phenyl, cyanide, etc.). Secondly, we mined the NCI

database to find the frequencies of the different atom types and 2/3/4-atom

substructures. Based on the frequency of, for example, O-O in the NCI database we

221

modified the chance that an oxygen atom would be connected to another oxygen atom.

This automatically enforced chemical rules that state that peroxides are rare, using

statistics instead of qualitative human intervention. Third, we implemented a couple of

rules, such as Bredt’s rule and a prohibition of CH2-imines. These rules act like filters

that prevent molecules that do not obey the given chemical constraints from being

shown to the user. Mining the NCI also gave us a catalog of ring structures (see the

“Chemical Clichés” chapter) which were also implemented to filter unknown and

probably strained rings out. Note that the filters can be activated and deactivated by the

user, and that the full idea generation potential remains available if desired.

 The second main point for improvement was user control. For example, chemists

often had certain ideas about which part of a molecule was important, and should be

conserved. Also they preferred that the best molecule from the previous generation was

to be saved always (which is not guaranteed in a normal evolutionary algorithm).

Thirdly, occasionally a chemist could see an obvious modification of an existing

molecule, and wanted to put the adapted molecule in the Molecule Evoluator. And

finally, the molecules produced should preferably be drug-like and obey a number of

physicochemical restraints.

 We made various adaptations to address these points. We added atom and bond

fixation, which can conserve any atom (even hydrogen atoms) and can therefore focus

evolution on the variable part of the molecule. Secondly, we added elitism, so the

chosen molecules of the previous generation appear as the first molecules of the current

generation, allowing a chemist to easily see if their offspring improves over them.

Thirdly, we added a molecule editing window, which allows the user to adapt ME-

generated molecules and feed them back into the evolution, or even to sketch new

molecules as input of the evolution. Lastly, we added physicochemical filters to allow

the user to determine the allowable physicochemical properties of a molecule, such as

the range in which the molecular weight should fall, and the maximum permissible

number of hydrogen bond donors.

 Finally, we tested the Molecule Evoluator to examine whether the concept was

sound and useful.

 First we ran a number of small experiments, in which we evolved certain drug

molecules from scratch (that is, without editing the molecules, though we fixed certain

atoms/bonds to accelerate optimization in a certain direction) to show that we can

indeed convert simple substances into drugs. We also were able to reproduce, using

experimental fitnesses, an optimization pathway of neuramidase inhibitors, which

shows that our mutations and selection work well with good (experimental) fitness

222

measures.

 The value of the idea-generating function was tested by creating 300 random

molecules that obeyed certain physicochemical restraints. A panel of chemists chose

the most “drug-like” 34 structures, of which a number did not appear as structure or

substructure in existing databases, and therefore could be considered potential new

molecule templates. Synthesis of eight of the compounds yielded four compounds

which showed biological activity in the used essays. It seems that chemists indeed have

a valuable intuition, and that the ME can inspire the synthesis of truly new classes of

molecules, unknown before yet possible to synthesize.

 The Molecule Evoluator has become more advanced over the years, and is at the

time of writing (May 2008) commercially available. In the Leiden group of Medicinal

Chemistry, where it has been developed, it is now used in each synthesis project as an

interactive, idea-generating but responsive aid to get new ideas for structure

modifications. Several companies have bought versions, and some are quite happy with

it, as is evident from the following quote:

"Both computational chemists and medicinal chemists have explored the Molecule
Evoluator and have been excited about the output in terms [of] novel ideas being
generated and the potential for further enhancements in the future. The real
advantage of the current programme is that it can be iteratively influenced by trained
chemists to propose new structures, some of which may look immediately obvious but
yet had not been previously suggested. Three of our current GPCR-based projects
have benefited in this way."

Software that allows humans and computers to combine their particular strengths is

still rare, for drug design the Molecule Evoluator is the only one to our knowledge

which is currently commercial. This has two likely causes. First of all, interactive

evolution is itself a young field, most programs for designers (of molecules or

buildings) are drawing programs which do not give any creative input of their own, as

they were designed to be computerized replacements for real drawing boards. Second,

most complex software for molecule design has been created for computational

chemists and therefore only runs under Unix/Linux workstations and has powerful but

complex interfaces. The medicinal chemists, the people who design and modify most

of the molecules and are experts on molecules rather than computers, have been left out.

Only in the last two or three years software companies are also starting to develop

versions for Windows and thus for the “normal” chemists. (See for example the

223

Software section in the biweekly ‘Chemical and Engineering News’ of the American

Chemical Society). But even when a Windows version is available, it will be a long

road for most programs to also become user-friendly for people who are not experts in

computational chemistry. As of yet, the Molecule Evoluator is quite lonely in the

software landscape, but we hope that in the coming years it will be joined by followers

and colleagues which bring both the computational and creative potential of computers

to the medicinal chemists directly. Software has a vast potential for changing drug

design, if we invest effort and creativity in it.

224

Future Perspectives

 Prediction is very difficult, especially about the future.

 Niels Bohr (1885 – 1962)

Science is never finished. The research described in this thesis may have produced a

useful computational tool for the medicinal chemist, and it may have given more

insight into chemical databases. However, we nor others have as of yet produced the

perfect medicinal chemistry tool, and many problems in drug design remain. The

previous chapters of this thesis have covered what we have done in our research. This

last part will contain reflections on where to go from here. I hope this chapter will

provide ideas and inspiration to researchers and non-researchers alike on what subjects

in computational drug design would be worthwhile to investigate, and in which

directions we could go.

 I will begin with some thoughts on future directions for the Molecule Evoluator,

then discuss the possible evolution of evolutionary algorithms in drug design, and will

end by zooming out to look at the general role of software in drug development, and

talk about some of the ways in which we can increase the ability of software to help us

design new drugs.

The future of the Molecule Evoluator

At the time of this writing, we have performed experiments which have shown that the

Molecule Evoluator can at the very least help find novel biologically active molecules.

We may never know if chemists without the Molecule Evoluator would have been as

creative as chemists using the Molecule Evoluator, but it is very likely that computer-

generated structures can complement the brainstorming by chemists, which may

mainly design variations on the molecules they already know. For that reason, the

Molecule Evoluator as it is now may remain useful for a long time to come.

 To enhance the usefulness of the Molecule Evoluator further, there are numerous

possibilities: improving the speed at which molecules are generated, comparing the

effects of different crossover functions, making the user interface even more intuitive,

improving the display so that the user can see very quickly which mutations have been

generated, offering calculations of more physicochemical properties (for example pKa)

or linking the Molecule Evoluator to third-party software that can calculate those

225

properties, and numerous other tweaks and enhancements. At the moment there are

however three points which I think most promising for future updates: changing the

structure generation to yield even better structures, linking the Molecule Evoluator to

other software and databases, and experimenting with computational fitness

evaluations.

Ease of synthesis: less boring, less impossible, more novel?

From conversations with users, we found that the main factor determining how much

they liked the Molecule Evoluator was the ratio of “good” molecules to “bad”

molecules. Good molecules are those molecules that are novel and seem relevant or at

least can be easily changed into a molecule with a good structure. “Bad” molecules are

those molecules which are boring (not very novel), irrelevant, or plainly impossible to

synthesize.

 The most significant way to enhance the use that chemists get out of the Molecule

Evoluator would therefore be increasing the number of good molecules while

preferably decreasing the number of bad molecules. With previous adaptations we have

already succeeded partially in this, and it is certainly possible to further improve our

results with some additional adaptations of the code.

 At the moment the best method to improve the ratio of good to bad molecules

seems to be to diminish the occurrence of the main types of bad molecules: the

'impossible' molecules, the 'irrelevant' molecules, and the 'boring' molecules.

 The 'impossible' molecules are those molecules which cannot be synthesized. We

have already reduced their number with chemical filters and giving the user the option

to only allow known ring structures; further feedback will undoubtedly allow us to

increase the number of filters that can be applied to a molecule. The 'irrelevant'

molecules are only created when the Molecule Evoluator cannot find a mutation that

works, which mostly occurs in molecules where many atoms or bonds have been 'fixed'

by the user. The solution to this is to rewrite the mutation algorithm: at the moment it

picks a random atom from the molecule to mutate, which fails if that atom has been

fixed by the user – forcing the Evoluator to create a random/irrelevant molecule instead.

Rewriting the mutation algorithm so it picks only from the atoms which are not fixed

will give a much greater mutation success rate and therefore a much lower production

of irrelevant molecules.

 The final way to decrease the amount of “bad” molecules is to tackle the boring

molecules (this is for interactive evolution. An automatic fitness function cannot be

bored). A chemist may find certain mutations boring or “not novel”. The aim therefore

226

is to find out which mutations are generally found interesting, and which are not.

Finding out these preferred or unpopular mutations can be done by either directly

observing a user or by creating special statistical subroutines to observe which

mutations (atom addition, deletion, insertion) produce molecules that are most often

selected or not selected, and what kind of additions/deletions/insertions are most

interesting. Such an investigation might for example find that adding a methyl group to

a benzene ring is “boring”, while adding a hydroxy group to the same ring is

“interesting”. The probabilities of those specific mutations can then be adjusted

appropriately.

 In conclusion, adapting the Molecule Evoluator to change the ratio of good to bad

molecules in a beneficial way is certainly possible with user observation and feedback

and some reprogramming. Of all the possible options to improve the Evoluator, this

optimization may have the strongest impact on user-friendliness and frequency of use,

and would therefore be a prime target for implementation.

Linking the Molecule Evoluator to databases

A second area for improving the Molecule Evoluator turned up during our own tests.

While trying to find novel biologically active molecules, every compound the chemists

found interesting had to be manually looked up in the CAS database. While this

database search was by far not as much work as eventually went into synthesizing the

truly novel compounds, it taught us that it would be incredibly handy if one could look

up the Molecule Evoluator-generated structure or similar structures in the user's

favourite chemical databases by just pressing a button. A useful improvement would

therefore be a link to databases that would allow chemists to find whether the molecule

suggested by the Molecule Evoluator exists in its entirety or as a substructure, and if it

exists, how it can be synthesized (or ordered). For large and wealthy institutions, links

to commercial databases like Beilstein and CAS may be possible, but more exciting is

the opportunity brought by the advent of large public databases like PubMed,

PubChem, eMolecules and ChemSpider to give all users of the Molecule Evoluator the

chance to have structures automatically checked with literature.

 Databases could not only be used for checking structures, but can also help to

create structures. If, for example, a chemist is looking for alternatives for a certain ring

in a molecule, it would be very useful if he could view a list of the most common ring

systems from our 'chemical cliché' database next to the molecule editing window, as

that could give many ideas for changes. A similar approach could be taken for

substituents, where the chemical clichés fragment database or a specialized database

227

like a bioisosters database could be used to find replacements that the chemist might

not have thought of yet.

The Molecule Evoluator and automated evolution

Interactive evolution has some major advantages over automated evolution, mainly that

it can use expert knowledge much more easily than any fitness function designed by

computer programmers. However, this requirement for expensive expert time is also a

disadvantage, and given the successes of the interactive mode of the Molecule

Evoluator, one could consider adding options for computational chemists who want to

use automated evolution.

 While adding a feature for automated evolution is possible (in fact, it has already

been done in one or two individual cases), to make the automated evolution perform

optimally one needs to change more than the code for the fitness function. Automatic

evolution and interactive evolution, despite their apparent similarity in approach, are as

dissimilar (if not more dissimilar) as tennis and table tennis.

 The first dissimilarity of automated versus interactive evolution is the absence of

user fatigue. This opens up the desirable possibility to create larger generations than

the 12-20 which are practicable for user feedback (50-100 molecules seems to be about

the optimum size if we consider investigations such as that of Douguet et al.1, since it

may avoid the premature dead ends which endanger small populations and the

'drowning out' of the good genes in very large populations. Larger populations seem to

work better when split into 'islands'). Also, automated evolution doesn't need settings

that prevent molecules that differ only slighly from their ancestor being created, as a

small increase in fitness is useful, whereas such a molecule would strike a human as

uncreative and increase user fatigue.

 The absence of user selection, however, also has some disadvantages. First of all,

automatic evolution makes it necessary to implement a selection function: for if the

user isn't selecting the “good” molecules, the programmer has to decide how to select

the best molecules for further evolution. Take the best five molecules? Or ten

molecules? Use tournament selection? Roulette wheel selection? A second

disadvantage, which we discovered during the docking experiment (Chapter 6), is that

atom-based evolution when not supervised by humans tends to produce molecules

which over time become more and more difficult to synthesize. Therefore, automated

evolution needs stricter filters to sufficiently dispose of unwanted structures.

 In summary, unlocking the full potential of automated evolution requires changing

more parts of the Evoluator than the fitness function – the automatic evolution would

228

need to be at least partially split from the code for interactive evolution. On the positive

side, automated evolution also offers opportunities. Performing automated evolution

with a good fitness function may give us a better idea what parameter settings and what

mutations or crossover operations are optimal for drug design, and allow us to adjust

the Molecule Evoluator accordingly. If we keep studying drug design and evolutionary

strategies for drug design, the Molecule Evoluator may one day not only be the best

interactive evolutionary algorithm for drug design, but also the best evolution-based

program for automatic drug design available.

General perspectives on evolutionary algorithms in drug design

Useful as they are, evolutionary algorithms aren't the “cute new kid” in computational

drug design anymore. They were immensely popular in the late 1990's, but interest

waned as it grew more and more difficult to think of yet-unpublished applications and

it turned out that evolutionary algorithms, like all methods before them, were not the

“cure-all, one-size-fits-all”-solution that drug designers have been seeking for so long.

I have discussed my view of the future of Evolutionary algorithms in 2005 in my

review on evolutionary algorithms in drug design (Chapter 2), in which I discussed

various possible developments such as creating standardized test databases for

chemical problems and evaluating newer types of evolutionary algorithms. Currently,

evolutionary algorithms are already unobtrusively integrated as standard tools for

experiments, for example for descriptor selection in a virtual screening experiment2.

For new problems too, evolutionary algorithms are becoming easier to try out as

flexible optimization methods, due to the development of EA toolkits such as the GA

Playground, OAT, Lil-gp, and ECJ3. However, in my mind two ideas seem most

important: adding further domain knowledge to evolutionary algorithms, and the use of

evolutionary algorithms in novel or at least uncommon ways in drug design, such as

modelling and data mining.

Adding knowledge to evolutionary algorithms

The main bottleneck in successful application of evolutionary algorithms in drug

design is that finding the best solution (or even a very good solution) often takes more

computer time than is available. This is both because of the “high dimensionality” of

many drug design problems (many parameters need be optimized simultaneously) and

because fitness functions often take much time to be calculated. While the increasing

229

computer speeds may help here, it may even be more important to perform the

optimization itself in more intelligent ways.

 Evolutionary algorithms can be improved by testing and comparing different

models (differing in population size, selection pressure, etcetera), but more important

will be the collaboration between computer scientists and experts in the problem

domain, such as drug design. Currently, relatively simple evolutionary algorithms are

often used since they shorten programming time – unfortunately, these same

algorithms are afterwards too easily carried over into the commercial version where the

'saving' of programming time is paid back with interest as the inefficient algorithm is

run thousands of times. Only with knowledge of the problem itself can one develop

rough fitness functions which can eliminate patently bad candidates before they are

subjected to a more accurate fitness calculation, create meaningful mutations that turn

good solutions into other good solutions instead of impossible ones (for example,

producing a carbon atom with five bonds), split the solutions as much as possible in

semi-independent sub-systems for faster optimization, and make optimal use of the

knowledge obtained by the evolution so far (for example, learning that a certain type of

atom at a particular position produces very good scores). It may be difficult for

computer scientists and drug designers to understand each other and communicate

one's knowledge and aims clearly to the other party, but in the end the algorithms that

will survive and turn out to be most useful in a given problem domain will not be the

newest generic computer science methods, but well-chosen basic methods, carefully

optimized to suit the problem at hand.

Future applications of evolutionary algorithms

Evolutionary algorithms are currently experimentally or routinely used in most phases

of drug discovery. The most important of their current applications are their

contributions to the “core” business of finding new leads by computer, namely by

library design, de novo design, and virtual screening. Of these, “virtual screening”

(evaluation by computer) of a potential lead is hardest by far, since proper

computational evaluation needs to answer six questions: 1) is the target important in

the disease, 2) does the candidate molecule interact strongly enough with the target, 3)

can the molecule get to the place of action, 4) how and how fast is the molecule

metabolized, 5) are the molecule and/or its metabolites toxic, and if so, how much, and

6) is the molecule excreted slowly enough.

 While docking tries to answer question 2, and Lipinski's rules and calculating the

polar surface area of the molecule help us somewhat with 3 (barring active transport),

230

reliably predicting any of these relevant properties requires good-enough predictive

models, and even a much-researched subject such as docking can definitely be

improved greatly yet. The main challenge of computational drug design is therefore to

develop better models for the interaction of a molecule with the human body.

 Creating models generally starts with collecting large amounts of raw data (for

example, molecules and their intestinal absorption), calculating descriptors (properties

of the input molecules, such as the weight or the polar surface area of each molecule)

and picking a computational model (linear regression, neural network, support vector

machine) that links those descriptors to the measured property. With the unavoidable

measurement errors in experimental data, perfect mathemathical relationships are

generally not possible, but evolutionary algorithms could help in parameter selection

(as they have done for QSAR), and even with computational model selection. In some

relatively simple cases this is already possible, such as evolutionary algorithms

producing mathematical equations out of pictures of moving systems4. In the end,

evolutionary algorithms could become more independent and work on more complex

problems, becoming untiring generators and testers of hypotheses. Even more than

today, future evolutionary algorithms may supplement human brain power in making

better models to predict how a particular molecule will fare as a drug.

The future of computational medicinal chemistry

While medicinal chemistry changes, its basic challenges stay the same. People will

continue to have diseases and want to get rid of them, and unless genetic modification

of living humans becomes easy, reliable and safe (which seems very unlikely to happen

this century) we will in most cases need to fight the diseases with drug molecules.

These will remain difficult to find since we do not always know the mechanism of the

disease or the best protein to target, and even if we know those we may struggle to find

the molecule that interacts effectively with that target, can get to the place of action,

and does not have unacceptable side effects or toxicity.

Most current sub-fields of computational medicinal chemistry, such as docking and

prediction of ease of synthesis will probably grow and improve over time, though that

is likely to be a slow and laborious process. The algorithms may never be perfect, but

they may become so good as to be too useful to ignore. The three areas which interest

me most, however, are still much earlier in their development: automated data analysis,

231

simulations and interactive software.

Automated data analysis

In theory, knowing the DNA encoding for a protein should be enough to calculate the

three-dimensional structure of the protein and find molecules which bind to it, by

applying quantum mechanics and molecular dynamics. Similarly, an optimum-yield

synthetic route for a new molecule could be found by using retrosynthesis and quantum

mechanical calculations on a library of available reagents. In practice, however, we

need lots of data both as primary input (you can't understand an organism without

knowing at least its entire DNA), and as a substitute for calculations which would be

theoretically possible but far too computationally intensive to be practical. If you

would need either 50 years of computer time to correctly calculate the affinity of a lead

compound to a protein using quantum mechanics and thermodynamics, or one hour of

biochemical testing, the latter is far preferable. Therefore drug design still needs lots of

experimental data to be efficient.

 These experimental data are increasingly becoming available through scientific

journals creating online versions, electronic lab journals collecting the primary data

generated by researchers, and the growth of public databases such as PubChem and

Wikipedia. This increase of data is promising, but current search methods have

difficulties exploiting it: it can be incredibly hard to find the particular piece of data

one is looking for. For example, in my stints as a science journalist I have spent much

time being frustrated and giving up searches when Google couldn't locate a proper

answer to even elementary scientific questions such as which hormones affect the

release of GnRH from the hypothalamus. This information undoubtedly exists in

reviews and/or books, and a more elaborate searching through reviews could probably

uncover it, but still the (time) cost of finding particular information is much higher than

would be technologically necessary. Making information easier to find can reduce both

the time and the cost of any research project.

 A large part of making better use of existing data will be economical and

organizational: somebody has to pay for the servers to house the data and the

transformation of (scientific) texts and tables into a computer-readable format; in many

cases the 'owner' of the data (such as a scientific journal) will also want financial

compensation. But what are the technological aspects?

 The first part of technology will be disambiguation and transforming text into

something the computer can more easily relate to search queries; for example a text

like “the melting point of benzene is +5.5 oC” would fit better in a computer database

232

as “object=”benzene”::==reference=”www.merckindex.com/benzene”=>property =

“melting point”=>value=”278.5”=>unit=”K”. Ontologies/synonym lists and lists of

standard terminology will remain necessary to transform raw data into something that

is as standardized and unambiguous as programming language statements (for example,

instead of “melting point” my version of the Merck index occasionally uses the less

standard “solidif”).

 The second and probably greater challenge will be to make search methods less

“fussy” and more “fuzzy”. For example, when designing a synthesis route for a

compound, it may be that the compound has never been synthesized before, or that it

has been synthesized, but via a rather inefficient route. Finding the synthesis route for

similar compounds can help in both kinds of cases. However, despite Tanimoto

coeffients and fingerprint calculations, it is unlikely that there is an universal measure

of molecular similarity (similar molecular weight? Similar size? Similar melting point?

Similar biological effects?). Domain experts and ideally data mining should be able to

discover what the similarities are in compounds synthesized via the same route, for

example, re-discovering that alcohols can be made out of available halo-alkanes using

a Grignard-reaction, but also in which cases Grignard fails or is not used at all. This

will be a complex piece of data mining where programmers and domain experts will

have to work together, but having a system that can learn from existing data and adapt

its knowledge when encountering new information would be extremely useful to build.

 There are already several individuals and groups striving to improve data

management in science from the 'let's do the same as always, only electronically' stage

to transforming global scientific knowledge into a truly useful search engine, for

example the Scientific Publishing Taskforce which is developing methods to make

scientific publications computer-readable (http://esw.w3.org/topic/HCLS/Scientific

PublishingTaskForce), attempts to unify data from many scientific sources into a single

encyclopedia/wiki (http://www.wikipathways.org/index.php/WikiPathways) and a

more fuzzy version of PubMed, eTBlast (http://invention.swmed.edu/etblast/

index.shtml). While the diversity of initiatives indicates that this field is far from ripe

yet and standards need to be developed to unify the different projects, going into the

direction of converting data into standardized formats and making search engines more

intelligent will in my opinion greatly improve data availability and increase literature-

search efficiency, and drug design can only profit from that.

233

Simulation

The paragraph on future applications of evolutionary algorithms focused on model

development. Models, however, are not limited to linear regression models or neural

network models or decision trees only. One of the most interesting directions that

modeling is going is the simulation of cells, tissues and even of entire human bodies.

Models for the heart are already available, as are models for blood flow and some

cancers5. Evolutionary algorithms already help find good parameters for conventional

models (such as neural networks), likewise they may help fine-tune simulations by

supplying good values for missing parameters. All in all, though, evolutionary

algorithms would only be a small part of the total work on simulations – many

computational methods and algorithms are likely to be necessary, from logic

programming and cellular automata for rough qualitative models to differential

equations working on small simulated 'boxes' of cellular cytoplasm and cell membrane

for the most advanced models.

 While it may be difficult to create good simulations, it would be amazingly useful

if we would have more reliable models for what happens in the various tissues in case

of disease, and what the effects of various interventions would likely be. In contrast to

biological experiments, it is very easy to knock a gene out in the computer or let a

protein be deactivated fully without the need to discover a strong and selective protein

antagonist first. Even better, good computer models could act as “living encyclopedias”

of current biological knowledge, linking the many findings of biological research into

one easily accessible and correctly interconnected whole, growing more and more

accurate the more we learn about biology. Creating excellent simulations of biological

systems may be one of the most difficult projects that could support drug design, but its

huge advantages in both allowing us to test compounds reliably without endangering

human volunteers and understanding the true mechanisms and complexities of disease

will also probably make it the most useful of all possible software if we succeed.

Interactivity

On the surface, interactive evolution may look like nothing more than a speeding up of

the usual process of the medicinal chemist stating the target and the constraints to the

computational chemist, who programs these into the computer, which produces new

molecules. It is indeed an advantage that interactive evolution can shorten and speed up

this cycle, but the truly qualitative difference is that interactive evolution can use one

resource which automated evolution can not take advantage of: the subconscious

knowledge and expertise of the medicinal chemists.

234

As I stated in the introduction of this thesis, major progress could be made by letting

people and computers work together more productively, complementing each other's

strengths. While delegating simple tasks to computers has of course been done since

the dawn of computing, for example by humans creating the formulas for the

spreadsheet and the computer doing the calculations, only more recently computer

programmers have deliberately started to try use human brain power. Interactive

evolutionary algorithms are one example of this, another is the program C3vision

which makes an EEG of the user's brain activity while (s)he is quickly browsing

images, and can detect when the user sees something interesting much faster than the

user him/herself realizes it, thereby speeding up scanning of images tenfold6. The

human processing capabilities can also be tapped via games, for example 'fold-it'

(http://fold.it) which lets humans predict protein folding quite successfully, as

predictions by fold-it players won seven prizes at the protein structure prediction

contest CASP8, outperforming purely computational methods, and in one case even

outperforming professional scientists.

 What will the future be of such interactivity between man and computer? For now,

humans seem to excel in combinatorial problems (such as finding the right folding for

a protein, where calculating the energy score is probably rather fast) and problems

which require knowledge which is hard to make explicit ('hunches'). Docking could

undoubtedly be performed similarly to fold-it, at least when the docking scoring

functions have become more accurate. And perhaps humans could be trained to get

toxicity “intuition” by showing different structures and making them guess whether a

compound is mutagenic or not, perhaps recognizing patterns which may be difficult to

find by computer.

 It may be that human-computer interactivity will one day be surpassed by

computers which either can process data in a human-like way or are so fast that they

won't need the speedup provided by human knowledge anymore. But such advances

are only likely to happen in the very far future, if at all. For now, the more we learn

about computers and problems, the more we find that computers are not yet the answer

to all our problems and that human experts are unexpectedly potent problem solvers.

Making human-computer interaction work well is a field of research in itself, but the

better we become at it, the more powerful our capabilities in science and drug research

will become, leaving 'computer-only' or 'human-only' techniques far behind.

235

In closing

Computational drug design has come far since the first QSAR programs and molecule

databases, and the Molecule Evoluator is certainly not the end point of its ongoing

evolution. There have been quite some successes already (for example with virtual

screening), but we can still do better. In my opinion, software developers should strive

to make drug design software grow in three directions: deeper, wider, and closer.

 Deeper software will be software that more elaborately uses core scientific

knowledge such as quantum mechanics, molecular dynamics and thermodynamics to

improve the accuracy of predicting ligand affinity, compound metabolism and other

phenomena. The main challenges here are integrating the diverse formulas and

principles of chemistry and physics (for example, ligand affinity prediction also needs

accurate prediction of the energy of (de)solvation of the ligand), and speeding up the

calculations so that accurate enough results are obtained in the computer time available.

Wider software, which focuses on combining and comparing data, may be able to help

us where calculations are yet too slow – by recognizing patterns in experiments we

may in some cases be able to predict important properties from 'data-based' models

where 'computation-based' models are as of yet too time-consuming. Software casting a

wider net over our current scientific knowledge may also help us find connections

between different subjects, by integrating the data on chemistry, biology and genetics

into one organized whole. Finally, developing closer software means that we should

strive to make software more accessible to 'lay' users, so it can be used more easily by

scientists who are not experts in computer programming. For some software products,

this would involve creating Windows versions, for almost all programmers it would

mean focusing much more on user-friendliness and the user's goals. Consciously

seeking to develop the most intelligent task division between computer and user will

also greatly increase the user's power to tackle scientific and drug design problems.

 Developing deeper, wider and closer software may never bring 'perfect'

computational drug design as was perhaps once envisioned. It is quite likely that it will

create computer programs which will be totally unexpected, and tackle problems we

may not even know about yet. Only one thing is certain: by working steadfastly on

finding new ideas and evolving our software, we will be able to increase our

understanding of biology and drug design to a depth we would now deem incredible.

May that understanding be used effectively for the progress of science, and for the

health of humanity.

236

References

[1] Douguet, D.; Thoreau, E.; Grassy, G. A genetic algorithm for the automated

generation of small organic molecules: Drug design using an evolutionary

algorithm. Journal of Computer-Aided Molecular Design 2000, 14, 449-466.

[2] Barreiro, G.; Guimarães, C. R. W.; Tubert-Brohman, I.; Lyons, T. M.; Tirado-

Rives, J.; Jorgensen, W. L. Search for Non-Nucleoside Inhibitors of HIV-1 Reverse

Transcriptase Using Chemical Similarity, Molecular Docking, and MM-GB/SA

Scoring. J. Chem. Inf. Model. 2007, 47, 2416-2428.

[3] Wilson, G. C.; McIntyre, A.; Heywood, M. I. Resource Review: Three Open

Source Systems for Evolving Programs-Lilgp, ECJ and Grammatical Evolution.

Genetic Programming and Evolvable Machines 2004, 5, 103-105.

[4] Schmidt, M.; Lipson, H. Distilling Free-Form Natural Laws from Experimental

Data. Science 2009, 324, 81-85.

[5] Gavaghan, D.; Garny, A.; Maini, P. K.; Kohl, P. Mathematical models in

physiology. Phil. Trans. R. Soc. A 2006, 364, 1099-1106.

[6] Sandhana, L. Man and machine vision in perfect harmony. New Scientist 2006,

2559, p30.

