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Abstract  
 

Traditionally, drugs have been discovered by scanning libraries of natural and synthetic 

compounds. Compounds that were identified as having a desirable biological activity 

were subsequently optimized for use as drugs, a process being performed by medicinal 

chemists suggesting and trying out structural modifications. Nowadays, however, there 

are also investigations to whether the design process can be sped up by letting 

computers do part of the molecule design. In theory, computers could generate and 

(virtually) test many more structures than a medicinal chemist could design in a similar 

amount of time, possibly yielding better compounds at a smaller cost. Of these 

computational methods for drug design, a prominent category is that of evolutionary 

algorithms, which attempt to optimize drug molecules similar to how nature optimizes 

animals and plants: by mutation, cross-over and selection. While the general approach 

of using evolutionary algorithms seems promising, current literature lacks comparisons 

on which approaches and parameter settings work better or worse for drug design. 

Since evaluation of new compounds is expensive, whether it is done computationally 

or experimentally, it is important to develop efficient evolutionary algorithms that 
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require as few evaluations as possible to find molecules with higher drug-likeness or 

enhanced affinity to the target protein. In this study, we investigate the effect of one of 

the major choices in evolutionary algorithms for drug design: what difference it makes 

in practice whether molecules are built up from atoms or from multi-atom building 

blocks. 

 

 

Introduction 
 

It is hard to develop a molecule that can activate or inhibit a particular disease-related 

enzyme or receptor, since there is usually barely any information on what kind of 

structure would be needed, nor on how to adapt a lead molecule to improve affinity or 

selectivity. Therefore, much effort goes into synthesizing and screening large numbers 

of compounds, in the hope that a large amount of trial and error will discover 

compounds with the desired properties (Rees, 2003). 

 However, investigators hope to be able to replace at least part of the expensive 

“wet” trial and error with “virtual” trial and error, on the computer. Nowadays, many 

computer programs exist that can aid in the design of new molecules and molecule 

libraries. Such approaches and programs have been summarized in a number of 

reviews (Westhead, 1996; Gillet, 2000; Hann, 2000), as well as in chapter 2 of this 

thesis. A major class of these computational methods applied in de novo drug design is 

that of the evolutionary algorithms (EAs). EAs are promising for drug design, since 

they mimic the powerful optimization process of natural evolution. Biological 

evolution can be considered to be an adaptation of designs (organisms) to optimally 

solve a specific problem (fill a biological niche). Evolutionary algorithms, following 

that example, also mutate and combine designs, and preferentially procreate designs 

with the highest quality (‘fitness’). EAs have been applied to fields as diverse as stock 

market prediction, optical systems, and car safety (Carter, 2005; Koza, 2005; Tan 

2005). Not surprisingly, there have been quite a few applications in drug design too, 

varying from docking to library design to QSAR (Hopfinger 1996; Jones, 1997; Morris, 

1998; Kimura, 1998; Gillet, 1999; Sheridan, 2000). In this investigation, however, we 

focus on their application in de novo molecule design. 

 Evolutionary algorithms have been applied quite often to de novo molecule design 

(Payne, 1995; Nachbar, 1998; Globus, 1999; Douguet, 2000; Schneider, 2000; Pegg, 

2001; Vinkers, 2003; Brown, 2004; Dey, 2008; Nicolaou, 2009), and most authors 

have claimed some success in optimizing molecular structures. However, the 
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abundance of methods hides the fact that we actually know very little about what 

kind(s) of evolutionary algorithm should be used for drug design.  

 While each published method has been claimed to have some success in designing 

new lead compounds, that unfortunately is not a good guide: all optimization methods, 

even random search, will eventually produce results that improve upon a given starting 

situation. If we assume that all optimization methods can theoretically produce all 

possible drug-like molecules, the main question is not so much whether a particular 

method can optimize molecules, but how efficiently it does so. If a search method is 

more efficient, it is superior. And efficiency in this field is not just a theoretical 

concern. When designing compounds for real world applications, it will always be 

necessary to synthesize and test a number of compounds, with all associated costs. 

Therefore, it matters a great deal whether an optimization process needs one hundred or 

one hundred thousand molecules to improve the activity of a lead compound to a 

certain extent. In this respect, it is unfortunate that the investigations described so far 

use different evolutionary approaches and different test systems, since this makes it 

difficult to compare evolutionary methods and settings, and find out which work best. 

 In our opinion, a good start of the investigation of how to design an evolutionary 

algorithm for drug design is by investigating the impact of which is perhaps the main 

decision for every EA designer in this field: the choice of molecular building blocks. 

From which “units” molecules are constructed determines in which ways a molecule 

can be changed and optimized, and which molecules can and cannot be created by the 

EA. For example, if the basic building set does not include halogen atoms, a large part 

of chemical space, including drugs such as fluoxetine and haloperidol, cannot be found. 

And if the building blocks are large, over 10 atoms, the evolutionary algorithm will not 

produce many small molecules. 

 In general, EA designers choose one of two main options. The first option is to 

consider atoms and bonds as the basic building blocks of molecule construction. This is 

called “atom-based” evolution. Alternatively, a molecule can be considered to be built 

out of several multi-atom fragments, considered to be unchangeable semi-independent 

units, like a carboxylic acid group, a phenyl ring, etc. This is called “fragment-based” 

evolution. The choice between atom-based evolution and fragment-based evolution 

influences which molecules can be designed by the evolutionary algorithm, in which 

ways molecules can be mutated and combined, and how much difference there is 

between a molecule and its offspring. The choice between atom- and fragment-based 

evolution could therefore have a great influence on the molecule optimization process, 

yet we could not find any previous investigations into the effect of building block 
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choice. We therefore chose to investigate this factor. 

 Literature shows that many if not most investigations (Payne, 1995; Nachbar, 

1998; Globus, 1999; Douguet, 2000; Brown, 2004) use the atom-based approach. 

Typical mutations are removing an atom, adding an atom, breaking a bond, or making 

a bond, for example in ring formation. Sometimes a method uses both atoms and 

fragments, such as the investigation by Nicolaou et al. (Nicolaou, 2009), but even then 

the method retains the basic benefits and drawbacks of atom-based approaches: since 

every individual atom can be changed, the entire chemical space can be covered, but 

some of the molecules suggested may be difficult to synthesize or chemically unstable. 

 Fragment-based evolution has also been applied by researchers (Schneider, 2000; 

Pegg, 2001; Vinkers, 2003; Dey, 2008), be it perhaps less frequently than the atom-

based approach. The main difference with the atom-based approach is that molecules 

are considered to consist of several independent multi-atom units, which are 

unchangeable. This means that an isopropyl-fragment could never be mutated into a t-

butyl fragment, though it could be replaced by one. Fragment-based mutations 

commonly add fragments to a molecule, remove them, or combine the fragments of 

two molecules. Fragment-based evolution also requires the designers to make some 

additional choices: what kind of fragments should be used, which and how many 

fragments should be used, in which ways are the fragments allowed to be attached to 

one another, and should one take the similarity of fragments into account when 

mutating a molecule (and if so: how?).  

 It is not clear from existing literature whether atom-based or fragment-based 

evolution should be preferred, as no study has compared them yet on the same problem. 

The main advantage of fragment-based evolution over atom-based evolution is that the 

produced structures seem easier to synthesize. While this apparent ease of synthesis 

can be quite deceptive in practice (Vinkers, 2003), it is certainly preferable over the 

much larger chance that a molecule created by atom-based algorithms needs major 

modifications before synthesis can take place (see for example the work of Douguet 

(Douguet, 2000)). On the other hand, atom-based evolution has advantages too. First of 

all, atom-based evolution does not require one to make the–always somewhat 

haphazard–choice of building blocks and attachment rules. Secondly, atom-based 

evolution can in theory construct all possible molecules, in contrast to the fragment-

based approach which can typically “only” create 1010 to 1020 (Pegg et al. estimate a 

lower bound of 1012 for their HIV-RT library (Pegg, 2001)). Being able to create 1012 

molecules may look impressive, however it represents only a tiny fraction of the total 

number of possible drug-like molecules, estimated to be 1060 or higher (Bohacek, 
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1996). This implies that fragment-based evolution can only construct about 1 of every 

1040 possible molecules, which is far less than one molecule in a database containing 

all compounds currently known to man (which would have about 107-108 entries, as the 

largest compound databases such as CAS (CAS, 2009), Beilstein (Beilstein, 2009) and 

PubChem (Pubchem, 2009) contain about 48 million, 10 million and 19 million entries 

respectively as around June 2009. Thirdly, the big jumps taken by fragment-based 

evolution through changing 5-10 atoms simultaneously may make optimization much 

more difficult than when only one or two atoms are changed at a time. This could be 

compared to carving a statue with a pickaxe instead of with a chisel: it is almost 

impossible to exert the precise and subtle control needed for creating the exact result 

one wants. Also, having fewer choices may result in fewer pathways to get to one's 

destination, and more dead ends.  

 Arguments such as the above can theoretically justify preferring either atom- or 

fragment-based evolution. However, the real relative efficiencies of the approaches are 

yet unknown since investigators have used one method or the other, and a comparison 

of atom-based evolution versus fragment-based evolution has not been reported. We 

therefore decided to undertake a study to find out what the differences in performance 

are, if any, between atom-based and fragment-based evolution. 

 We compared atom-based with fragment-based evolution by creating a population 

of 50 molecules, and evolving it for 10 generations with either method. To simulate the 

drug optimization process (at least the optimization of affinity), we decided to optimize 

molecule binding to HIV-reverse transcriptase (HIV-RT), one of the major targets for 

AIDS therapy. HIV-RT was used in earlier fragment-based evolution studies (Vinkers 

2004, Pegg 2001), and continues to be of interest to drug designers and a test for de 

novo design methodologies (for example Jorgensen, 2006; Barreiro, 2007). Therefore, 

HIV-RT seems more or less a benchmark drug target that can make comparisons 

between different de novo design algorithms easier. 

 The fitness of the molecules during the evolution was defined as their docking 

score in HIV-RT. While docking scores are not very accurate for predicting binding 

affinity of a potential drug to a protein, of all evaluation methods it seems best suited to 

base our investigations on. The highly complex interactions between a flexible ligand 

and a heterogeneous, irregularly shaped cavity, as modeled by docking, resemble the 

biological binding process more than for example 2D similarity to known ligands does. 

We do not expect docking in combination with the evolutionary algorithms described 

in this paper to result in 'true leads' for RT-inhibitors, as docking algorithms are not yet 

accurate enough for that purpose. However, for an investigation into making 
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evolutionary algorithms as efficient as possible in designing drug-like molecules, 

docking is probably a good approximative method to weed out inefficient evolutionary 

algorithms, before performing the final fine-tuning with the more realistic but also 

much more expensive and time-consuming synthesis and biological testing of 

compounds. One could compare this to first testing a probe for exploring the planet 

Mars in a cold desert on earth: while the circumstances of the test are not totally 

accurate, it is a much easier, faster and cheaper method to detect flaws than simply 

sending the design to Mars for the real test.  

 Specifically, the fitness of each molecule was defined as its docking score into the 

crystal structure model of HIV-RT using the docking program GOLD (Jones, 1997). 

The GoldScore is a unitless quantity which should be increased to obtain more 

favorable affinities. We use the same crystal structure as Vinkers (Vinkers, 2003) and 

Pegg (Pegg, 2001), pdb-code 1RTI (Ren, 1995). However, since the scoring functions 

in this investigation differs from that of, for example, Vinkers, we cannot easily 

compare our optimized molecules with those of others. Different scoring functions 

mean that molecules optimized for our scoring function may not do so well in Vinkers’ 

fitness measure, and vice versa. However, if ever more comparative studies such as this 

one are undertaken, 1RTI seems a good place to start. 

 

In this paper we will first discuss the evolution settings, the mutations we used, and the 

docking approach taken. After that we will focus on the structures of the compounds 

and on the improvements in docking scores over the course of the atom- and the 

fragment-based evolution. Finally, we will compare our methods and results with those 

of others and suggest directions for further investigations. 

 
 
Methods 

 

Description of the algorithm 

The evolution experiments required several steps: generating the initial population of 

molecules, selecting and modifying the molecules, and evaluating their fitness by 

docking and scoring them. The general algorithm of the evolution is given in 

Algorithm 6.1. The following paragraphs will discuss the various steps in more detail. 
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Algorithm 6.1: The basic algorithm used for evolving molecules with a high 

fitness (in our case, a high docking score). 

 

A) Create initial population 

-while the initial population contains fewer than 50 

    molecules: 

  -generate a molecule out of NCI fragments 

  -add this molecule to the population if it satisfies 

    the physicochemical restraints. 

B) Perform evolution 

 -while there are fewer than 10 generations 

  -calculate the fitness of each molecule in the current  

   generation by docking it into HIV-RT  

  -if the current generation is not the initial  

   generation: 

   -select 10 molecules by tournament selection 

    from the previous generation 

   -add these molecules and their fitnesses to the  

    current generation 

-make a new generation next to the current generation. 

-while there are fewer than 45 molecules in the new 

generation 

   1] choose one molecule from the current generation  

      by tournament selection. 

 

 

   2] choose crossover or mutation 

    -if crossover:  

     -select a second molecule from the current  

      generation by tournament selection 

     -cross the two molecules, and pick one of  

      the products at random 

     -if crossover cannot be performed since  

      there are no suitable breaking points, go  

      back to step 1. 

    -if mutation: 
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     -pick a mutation type at random 

     -perform the mutation on the selected  

      molecule 

     -if the mutation cannot be performed due to 

      lack of suitable atoms or bonds, go back  

      to step 1. 

   -if the resulting molecule obeys the 

    physicochemical constraints and was not part of a  

    previous generation: 

    -add the new molecule to the new generation 

  -endwhile 

  -for j=1 to 5 

   -generate a molecule at random 

 -if the molecule obeys the physicochemical 

    constraints: 

    -add the molecule to the new generation 

  -rename the current generation to “previous  

   generation”, and the new generation to “current  

   generation” 

 -endwhile 

 

The molecules of the initial population were built out of fragments from the NCI 

database (NCI, 2000). To obtain these fragments, the molecules in this database were 

divided into parts by an algorithm we described in chapter 3, which splits molecules 

into fragments by breaking the bonds which connect the ring systems with the rest of 

the molecule. This splitting results in ring systems, branches and linkers, as illustrated 

in Figure 6.1. The branches and linkers also store information about the atom type of 

the ring atom(s) they were attached to, to help virtual “reverse synthesis”.  

 Splitting the molecules of the NCI database across ring attachment bonds also 

resulted in data about their fragment composition. For example, 7.5% of all molecules  

consisted of exactly two ring systems, two branches, and one linker connecting two 

fragments, like the acetophenazine molecule in Figure 6.1. This information was also 

used in constructing the random molecules of the initial population. Each molecule was 

created by first picking a fragment composition (for example, a 7.5% chance to have 

the “2-2-1” composition), and then picking the fragments themselves out of the 300 

most occurring ring systems and the 300 most occurring non-ring systems (branches 
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and linkers). The probability of a particular fragment being selected was proportional 

to its occurrence in the NCI. Since our database however also incorporated data to 

which atom type each non-ring fragment was attached, initially selected fragments for 

which there was no suitable atom type in the rings to connect to were replaced by other 

fragments. For example, the keto group created by dissecting the molecule in Figure 1 

would be stored as (bc)-C(=O)C, to indicate that it can only be re-attached to a carbon  

 

 

ring systems

branches

linkers

(bn)
(bc)

(bn) (bn)

S

N

N

N
OH

O

S

N

N

N

O
OH+

+

 
Figure 6.1. The fragments used in molecule construction and fragment-

based evolution were obtained by splitting the molecules in the NCI 

database into ring systems, linkers and branches. This example shows 

which fragments would be obtained from an acetophenazine molecule. 

 

atom, and not to for example a nitrogen atom in piperidine. In some cases, the atom 

type demanded by a particular fragment was not available in the fragments that should 

be linked to it: for example, a methyl fragment that in the NCI was attached to a 

nitrogen atom ( (bn)-CH3 ) could not be attached to a phenyl ring (other fragments, like 

(bc)-CH3, however, could). 

 Molecules were generated until there was a population of 50 molecules that 

satisfied the following demands that we considered suitable for lead-like molecules: 1) 

polar surface area (calculated according to (Ertl, 2000) smaller than 120 Å2, 2) 

molecular weight between 150 and 300, 3) at most 5 hydrogen bond donors, 4) at most 

10 hydrogen bond acceptors and 5) at least one hydrogen bond acceptor. In addition, a 

maximum of 5 rotatable bonds was allowed per molecule. 
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After the initial population was generated, it was evolved (via atom- and fragment-

based evolution) as follows. First the fitness scores of all molecules were calculated by 

docking them with GOLD in the HIV-RT crystal structure and selecting the best 

ranked pose for every molecule (the preparation of the molecules for docking in GOLD, 

and the settings used in GOLD, are described in more detail on page 167). Then the 

next population was made by first creating 45 molecules through mutating and crossing 

over parent molecules, selected by 4-sized tournament selection, which means that out 

of four random molecules in the parent population the molecule with the highest 

docking score was chosen. The 45 new molecules also had to obey the constraints 

listed in the previous paragraph, be it that after the first population up to 10 rotatable 

bonds were allowed, and the maximum molecular weight was increased to 500. In the 

last step, 5 molecules were added from the 200-molecule database containing random 

molecules similar to those of the initial population (the initial population actually 

consisted of molecules 1-50 of this database, the five molecules added to the first 

generation of the atom-based evolution were molecules 51-55, the five molecules 

added in the second generation of the atom-based evolution were molecules 56-60, etc. 

The fragment-based evolution added other series of five molecules from this same 

database, so a random molecule would never appear more than once in either the atom-

based evolution or fragment-based evolution). The new population therefore also 

consisted of 50 molecules in total. 

 Since we did not want to evaluate molecules more than once, we introduced the 

restraint that molecules created by mutation and crossover would only be added to the 

new population if they had not occurred yet in previous generations. This could, 

however, hamper optimization, since the best molecules would be forgotten after one 

generation. In contrast, most evolutionary algorithms allow a good individual to 

survive indefinitely and to even clone itself, so it can eventually fill the entire 

population. We tried to avoid such loss of diversity yet conserve the memory of the 

best molecules by adding some old molecules to each generation. After the 50 

molecules of a population were generated in the normal way, we added 10 of the best 

molecules of the previous generation (selected by tournament selection), making the 

effective population size 60. The next generation was created by mutating and crossing 

those 60 molecules. So, in principle, a superior molecule from generation 1 could 

contribute its genetic information directly to several generations by first being a parent 

for the molecules in the next generation (generation 2), and subsequently be added to 

the generation of its children by being chosen as one of the ten grandparents (so 

forming the extended generation 2 together with its direct offspring). In this way, it can 
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produce offspring into the generation of its grandchildren (generation 3). As a member 

of the extended generation 2 it could be also added to the generation 3 as one of the 

best of the generation 2, into the extended generation 3, becoming one of the sixty 

parents for the molecules in generation 4. While the randomness of tournament 

selection makes it unlikely that any molecule, no matter how good, will remain 

producing offspring for more than three generations, it will buy the best molecules two 

or three generations extra time to produce high quality offspring.  

 

Manual filtering of molecules 

Occasionally, a molecule generated by atom-based evolution seemed extremely 

difficult to synthesize. This was often the result of the evolutionary algorithm creating 

an extra bond within a benzene ring or another small ring. Examples are given in 

Figure 6.2. To prevent evaluation, evolution and accumulation of these ‘useless’ 

structures, we visually inspected all molecules created and removed the structures 

deemed unsynthesizable (to not fall below our target of 45 structures, we actually 

created initial populations of 50 molecules, of which the last five molecules were 

spares which could be used to replace molecules among the official 45 if any were 

flawed). Filtering did not take much time for these small-scale experiments, and 

molecules were only rarely rejected (typically two or three molecules out of 50). We 

have recently added a ring structure filter (based on existing NCI rings and NCI ring 

templates), which will probably make such manual filtering unnecessary in future 

experiments. 

      

NH

O NH2
N

NH

O

F

 
Figure 6.2: Atom-based evolution occasionally produced structures which 

contained ring systems that seemed far too strained to allow for a feasible 

synthesis. Such structures (a few examples are shown here) were manually 

removed from the population to prevent them from “polluting” the evolution. 
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Molecule modifications 

All evolution experiments were performed with the Molecule Evoluator (chapter 4), 

which was adapted to include fragment-based mutations and crossover. Both the atom-

based mutations (which were already present in the Molecule Evoluator) and the 

fragment-based mutations (which were added during this investigation) will be 

described in the next paragraphs. 

 The atom-based mutations either manipulate atoms (adding atoms, inserting atoms 

in a bond, removing atoms, ‘uninserting’ atoms, changing atom type) or bonds 

(increasing bond order, reducing bond order, making or breaking rings). These nine 

operators were also described in chapter 4. 

 While the mutations create a derivative from one parent molecule, the atom-based 

crossover operator combines two input molecules. The crossover first chooses a 

random non-ring single bond in each molecule, and, by breaking these bonds, splits the 

molecules into two parts. Subsequently, one part of the first molecule is recombined 

with one part of the second molecule, and the other part of the first molecule is 

recombined with the other part of the second molecule. This results in two offspring 

molecules, of which one is chosen randomly as the crossover product. The crossover is 

shown in Figure 6.3. 

 The second approach, fragment-based evolution, considers a molecule to consist 

of a small number of fragments, and its mutations therefore replace and move bigger  

parts of the molecules than the atom-based approach does. The mutations and 

crossover move the fragments which have been defined in the previous paragraphs: 

ring systems, linkers, and branches. In our implementation the fragment-based 

evolution uses two types of mutations: “rotation”, in which a ring substituent is moved 

to another position of the same ring, and “exchange”, in which two fragments that are 

connected to the same ring or linker swap positions. Examples of these mutations are 

given in Table 6.1. It should be noted that branches should always be attached to the 

same atom type to which they were originally attached, since this attachment 

information is part of our branch data (as explained above). 

 The fragment-based crossover, like its atom-based counterpart, takes two 

molecules, but instead of breaking a random bond, only breaks the bonds that connect  

fragments. Therefore, only intact fragments are moved around and recombined with 

each other. The requirements of the fragment-based crossover are that the fragments to 

be exchanged are of the same type (ring or non-ring) and that, if the fragments are 

rings, they are attached to the same number of non-ring fragments. For example, a 

phenyl ring with three substituents and a cyclobutadiene ring with two substituents 
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a. b. c. d.a. b. c. d.

 
 

Figure 6.3: The molecule crossover used in atom-based evolution. a) Two 

parent molecules are selected, b) the molecules are split in two by breaking 

random non-ring bonds, c) the molecule parts are recombined, d) one 

molecule is selected at random as the crossover product.  

 

cannot be interchanged, while a phenyl ring with two substituents could be 

interchanged with the cyclobutadiene. This second requirement was introduced to 

improve ease of synthesis, since it could prevent too big steps in chemical space, like 

for example replacing a phenyl ring with three substituents by a cyclopropane ring 

which usually has only one or two. Lastly, the branches and linkers should be 

reattached to their correct atom types; the crossover will not link a cyclohexane ring to 

a (bn)-isopropyl fragment. The fragment-based crossover is illustrated in Figure 6.4. 

 In both atom-based and fragment-based evolution, the mutation:crossover ratio 

was set to 85:15, based on experience with the interactive version of the Molecule 

Evoluator. All mutation subtypes were applied with equal probability; so the 

probability of applying one of the nine atom-based mutations, such as “insert atom”, 

was 11%, and the fragment mutations ‘exchange’ and ‘rotate’ both had a 50% chance 

of being chosen. While these ratios are almost certainly not optimal, we chose them as 

the starting point for this study, to be adjusted for future investigations depending on 

their apparent relative usefulness we would find here. 
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Table 6.1: The mutations used in fragment-based evolution. Rotation 

moves branches (non-ring structures) around rings, 'exchange' exchanges 

the positions of either two rings or two branches. 

 
Mutation type Initial structure Final structure 

Rotation 

Cl  

Cl

 

Exchange 

O

N

O

N

Cl

 

ON

O

N

Cl

 
 
 
Protein preparation and automated docking simulations 

The crystal structure we used, (pdb-code 1RTI (Ren, 1995)) is a co-crystal of the HIV-

RT with a small-molecule inhibitor, HEPT (1-(2-hydroxymethyloxymethyl)-6-phenyl 

thiothymine). Despite the similarity of this ligand to a nucleoside, HEPT does not bind 

to the site where the new DNA is synthesized. Instead, like nevirapine, it binds at some 

distance from it, at the so-called non-nucleoside binding site (Ren, 1995). Compounds 

binding at the non-nucleoside site force HIV-RT in a non-active conformation. Figure 

6.5 shows the binding mode of HEPT in the 1RTI crystal structure. In some HIV-RT-

ligand crystal structure complexes, H-bond interactions between the ligand and a water 

molecule located in the solvent channel are observed (Esnouf, 1997; Shen, 2003). 

While in many cases it is advisable to keep the water molecules in or near the binding 

site when docking (Klebe, 2006), this water molecule is not observed in the 1RTI 

crystal structure and is not conserved amongst all HIV-RT-ligand crystal structure 

complexes. Furthermore, it was not found to significantly influence automated docking 
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a. b. c. d.a. b. c. d.  
Figure 6.4: Fragment-based molecule crossover, which can both be 

performed on ring systems (top) and on branches (bottom). a) Two parent 
molecules are selected, b) the molecules are split: in both molecules a 
random fragment of the same type (branch or ring) is selected and the 

bonds between the chosen fragment and the rest of the molecule are 
broken c) the molecule parts are recombined, d) one molecule is selected at 
random as the crossover product. Note that the CH2NH2 group could also 

have been exchanged with the methyl or chlorine, the pyridine-
cyclopropane interchange is however not possible since the ring systems 
have one and three groups attached, respectively. 
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simulations of HIV-RT-ligands (Titmuss, 1999). Therefore, protein mol2 files for 

GOLD docking were generated using the Biopolymer module in Sybyl (TRIPOS) by 

removing the ligand and crystallographic water molecules from the pdb-file, and 

adding all hydrogen atoms. Molecules were generated as 2D structures in MDL MOL-

file format (Dalby, 1992) by the Molecule Evoluator and converted to 3D structures in 

mol2 format by the program MOE (Chemcomp. Corp.) GOLD docking was performed 

using “7-8 times speed up” settings (Jones, 1997). The active site centre as determined 

by the PASS program (Brady, 2000) was taken as the starting position of the GOLD 

flood fill algorithm. To meet aspects of calculation time and data size on one hand, and 

convergence criteria and statistical relevance on the other hand, 15 independent 

docking runs were performed for each docking case. 

 

Estimating ease of synthesis 

As last part of the experiment, we checked ease of synthesis. We asked an experienced 

medicinal chemist, J.B., to check of each structure whether it could be synthesized 

reasonably easily. If not, we asked him to suggest a suitable derivative. All suggested 

replacement structures were docked using the normal docking procedure, and their 

fitness values gathered and compared to the fitness scores of the original compounds. 

 

 

Results and discussion 
 

Docking the molecules into HIV-RT 

Docking the EA-generated compounds in the HIV-RT crystal structure resulted in the 

dockings shown in Figure 5. The binding pocket can be divided into a large 

hydrophobic subpocket 1 (enclosed at the top by residues Y188, W229, F227), and two 

small subpockets 2 (formed by L234, P236, and Y318) and 3 (formed by V178 and 

Y181) (Hopkins, 2004), which is located close to a hydrophilic solvent channel, 

proposed to be the ligand access channel (Shen, 2003). Typical NNRTIs like HEPT 

form H-bonds with the backbone of K101 and/or K103, and in some cases also with a 

water molecule located in the solvent channel (Ren, 1995; Esnouf, 1997). Furthermore 

typical NNRTIs bind to subpocket 1 via hydrophobic and aromatic interactions 

(Titmuss, 1999) and can form additional hydrophobic and aromatic interactions with 

subpockets 2 (e.g., HEPT and efavirenz) and 3. The compound with the highest fitness 

in the first generation only occupied subpocket 1, while the best compounds found by 

atom-based evolution and fragment-based evolution occupied subpockets 2 and 3,  
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Figure 6.5. The dockings of the compounds generated by the evolutionary 

algorithm into the original crystal structure of HEPT bound to HIV-reverse 

transcriptase. HEPT is shown as a transparent brown structure. In addition, 

(a) contains the compound with the highest fitness in the first generation 

(yellow) docked into the crystal structure, (b) the docking pose of the best 

compound found by atom-based evolution (green), and (c) the docking pose 

of the best compound found by fragment-based evolution (cyan). 

 

respectively, in addition to subpocket 1. None of the compounds formed H-bonds with 

the backbone of K101 and/or K103. However, hydrophobicity is another key feature 

driving the potency of inhibitor binding to the NNRTI site (while GoldScore does not 

have a separate term for hydrophobic interactions, it calculates van der Waals 
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interactions and therefore assigns a higher score to a ligand that better fits the three-

dimensional structure of the binding pocket). Optimization of hydrophobic interactions 

in pocket 1 is already observed in the first generation cycle (see the left panel of Figure 

6.5), in which an S-phenyl group attached to a two-ring ring system dips into the 

aromatic cluster of Y188, W229, F227. A two-ring core, consisting of two fused 6-

rings, is maintained throughout both atom-based and fragment-based evolution (see 

Figures 6.6 and 6.7), even though the original 1,2,3,4-tetrahydroisoquinoline ring 

system is changed during atom-based and fragment-based evolution into a 1,2-

dihydronaphthalene ring system and a naphthalene ring system, respectively. 

Furthermore, the initial aromatic ring dipping into pocket 1 is only slightly changed 

into other functional groups of the same hydrophobic character along the different 

evolution pathways. The evolution has led to probing and optimization of hydrophobic 

interactions with different smaller subpockets of the HIV-RT binding site. Re-

positioning of the pocket 1-occupying subsituent from the 5’ to the 6’ position 

accommodates interactions of hydrophobic substituents on other positions at the two-

ring core with subpockets 2 and 3. In the atom-based evolution, the initial hydroxyl 

group sticking out in the direction of subpocket 2 (Figure 6.5a) is replaced by an S-

phenyl group which can interact with subpocket 2 formed by L234, P236, and Y318 

(Figure 6.5b). During fragment-based evolution, an ethenesulfinate group was attached 

meta to the hydrophobic group interacting with subpocket 1. This ethylenesulfinate 

group has just the appropriate size to dip into the small subpocket 3 (Hopkins, 2004). 
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Figure 6.6. The optimization trajectory leading to the best molecule of the atom-

based evolution. The numbers under the structures indicate their fitness score. 
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Figure 6.7: The optimization trajectory leading to the best molecule 

produced by the fragment-based evolution. The numbers under the 

structures indicate their fitness score. Note that the SO3C2H3-group of the 

second parent molecule was modified to a SO2C2H3-group by an error in 

our program. This bug was later fixed. In later fitness comparisons, not 

much influence on fitness was found by the presence or absence of the 

extra oxygen atom, so this glitch will probably not have influenced evolution 

much. 

 

 
The change in fitness over the generations 

To study the differences between the atom-based and fragment-based evolution, we 

first gathered of each generation the maximum fitness value (the fitness of the “best” 

molecule) and the average fitness value. These values are plotted in Figure 6.8.  
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Figure 6.8: The average and the best fitness of molecules in each 

generation for the atom-based and fragment-based evolution. 

 

Figure 6.8 shows that both the average fitness and the maximum fitness of the 

molecules in the population grow as the evolution proceeds. This means that new and 

better molecules are found, which implies that evolution improves upon pure selection 

(since pure selection would cause the average and maximum fitnesses of the later 

generations to approach the maximum of the first generation). However, virtual 

screening of a large library will also increase maximum fitness, as there is always a 
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probability that a new molecule will improve upon the known compounds. We should 

therefore analyze our data further to be able to say whether evolution is truly more 

effective or efficient than random search. 

 Fitting the fitnesses of the randomly generated first generation to a Gaussian 

(Figure 6.9) results in a best fit with mean value 36.7 and a standard deviation of 4.3.  
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Figure 6.9: The distribution of fitness scores of the molecules of three 

populations fitted to Gaussians. The populations are the initial population, 

the atom-based population containing the highest-scoring atom-based 

molecule (8th atom-based generation), and the fragment-based population 

containing the highest-scoring fragment-based molecule (the 10th fragment-

based generation). 

 

 

The best overall result of evolution (score=76) lies about 9 standard deviations from 

this average. Therefore the probability that a random search would produce a molecule 

with this or a higher fitness would be smaller than 10-9%. Scanning 500 molecules and 

getting the improvement shown in Figure 6.9 suggests that this improvement cannot be 

the result of a random search only. Therefore evolution seems truly more efficient than 

random search. We should note hereby that the distribution of the initial population, as 

shown in Figure 9, is Gaussian-like, but not exactly Gaussian. For example, there are 

about 5 molecules with a fitness score of about 50, which is more than would be 

expected from a true Gaussian distribution. Therefore, putting the odds that random 
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search produces a similar improvement as the evolutionary algorithm at 1:1011 may be 

mathematically questionable. However, the distance between the best fitness found by 

the EAs and the average and best fitnesses of randomly produced molecules seems 

large enough to indicate that both of our evolutionary algorithms noticeably improve 

on random search.  

 

Fitness peaks/plateaus 

While evolution improves molecular structures significantly, the improvement (at least 

in atom-based evolution) stops quite quickly, around the 8th generation. It is very 

unlikely that by then the ‘best possible’ molecule has already been found. What then 

causes this stagnation? And how could it be prevented in future experiments? 

 The first explanation is that we simply have evaluated too few generations for full 

optimization. EAs are known to have periods of stasis, and are usually run over many 

more generations than 10: in other applications of evolutionary algorithms to de novo 

design molecules are evolved over 50 to 20,000 generations (Nachbar, 1998; Vinkers, 

2003; Brown, 2004). Often, lack of improvement in fitness only means that the 

population is at some local optimum, and needs to be evolved for a few more 

generations before better molecules are found. Running the EA for more generations 

(something we did not do due to limitations on computational time and our own time – 

a number of steps such as screening for unusual structures had not yet been automated 

and required manual intervention) may result in renewed improvement with better 

molecules found. 

 Our second hypothesis is that the stagnation and deterioration of scores has 

uncovered an inefficiency in the EA that should be addressed instead of compensated 

through evaluating more generations. The most likely explanation of the decrease is 

that our rule that each molecule generated must be “new” forces the evolution away too 

quickly from a local optimum; better variants of the best molecule cannot be built 

anymore since the best molecule has already been “forgotten”. The result is a downhill 

trend in the fitness scores, the molecular structures going away from the last found 

optimum, until a novel structure is found which can be optimized again. In our case, it 

may be that the requirement that each molecule must be new may prevent a true local 

optimum to be reached since eight generations is too short for full optimization; of any 

compound, including the best compound, several hundreds of derivatives can be made 

through atom-based mutation. Therefore, the one or two generations the best molecule 

had to procreate are not enough for a good “full” local optimization. Therefore, it 

would be best to drop the “only new molecules” requirement. Interestingly, the 
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fragment-based evolution does not show a similar deterioration. It is possible that the 

fragment-evolution has not reached a similar plateau yet, since it reached its peak later 

than the atom-based evolution. 

 

Comparing the molecules created by atom-based and fragment-based 

evolution 

Next to the fitness scores, we compared the molecules resulting from atom-based and 

fragment-based evolution. The top 5 molecules found by both approaches are shown in 

Figure 6.10, together with their fitness scores. 

 The most interesting observation to us was that fragment-based evolution seems 

approximately as good as atom-based evolution. This seems to refute our hypothesis 

that atom-based evolution should go more smoothly and therefore be better than 

fragment-based evolution. Why were we wrong? To find an explanation, we studied 

the different optimization trajectories and the molecules produced in more detail. The 

evolution trajectories leading to the best molecules found by the atom-based and the 

fragment-based evolution, respectively, are shown in Figures 6.6 and 6.7. 

 Though there are obviously differences between the optimization trajectories, the 

atom-based evolution and the fragment-based evolution are quite similar in terms of 1) 

the part of the initial population that is used, 2) the presence of local optima, and 3) the 

high occurrence of crossover. Each of these similarities will be discussed shortly below. 

 To produce their best molecules, both atom-based and fragment-based evolution 

apparently use only a small part of the initial population (3 to 5 molecules), and no de 

novo molecules which have been later added appear in the trajectories of Figures 6.6 

and 6.7. This suggests that the 4-size tournament selection is quite strict, and quickly 

fills the population with high-scoring mutants of the best molecules, giving 

“newcomers” little chance to contribute to the gene pool. It may be worthwhile to 

experiment with less strict selection (such as 3-sized tournaments or 2-sized 

tournaments) to see if this allows more of the information in the population to be used 

in developing more diverse and eventually even better molecules.  
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Figure 6.10: The most highly scoring five molecules found by atom-based 

evolution (left) and fragment-based evolution (right). The numbers in the 
brackets indicate the docking score. 

 

 

Another reason for not making the selection pressure too high is the presence of local 

optima. It is quite common for a high-scoring molecule (like the bottom-left molecule 

in the atom-based evolution, score 53) to produce a lower-scoring molecule (score 46 

in this case) which however gives birth to new molecules that have a fitness 

comparable to or even higher than that of its (great)grandparent (52 and 57, 

respectively). One may argue that this could be caused by imprecision in the docking 

procedure, which may assign somewhat different scores to one molecule if the docking 

experiment were to be repeated. In such a case the intermediate molecule may indeed 

have an intermediate score if more calculations would be performed. Alternatively, 

there could really be local maxima in an optimization trajectory, which would trap a 

greedy (“only better offspring”) algorithm too easily. Methods like evolutionary 

algorithms (used here) or simulated annealing, which generally explore around local 

optima, may therefore be inherently more suitable for molecular space than a greedy 

search which discards all variants with a lower score than the highest scorer. Another 

reason not to select too greedily is that both computational fitness functions and 
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experimental affinity measures are bound to have some noise, with some superior 

molecules perhaps scoring slightly worse than their competition due to the random 

nature of the docking process and the random variations in experimental measurements. 

An evolutionary algorithm, to be effective, should therefore tolerate this noise and not 

select too strictly and too greedily. We also stress that the accuracy of the docking 

score is not too relevant for the comparisons made here. Our aim was not to find novel 

HIV-RT inhibitors, but to evaluate the two EAs in a realistic setting. Docking 

procedures possibly assigning different scores over different runs to the same molecule 

can even be considered to incorporate an extra element of realism since biological 

experiments also tend to yield ranges of values, and a good optimization algorithm 

should work despite these irregularities.  

 The third similarity between the different evolution methods is the relatively high 

occurrence of crossover. While our settings should have led to about 15% crossover 

versus 85% mutation for modifying molecules, the optimization tree of highest scoring 

compound in the atom-based evolution had 4 crossovers versus 9 mutations, 31%, 

while that of the highest-scoring compound in fragment-based evolution had 7 

crossovers versus 10 mutations, 41%. The reason the crossover was set at 15% in the 

first place was because medicinal chemists evaluating the Molecule Evoluator did not 

like the large changes in molecules introduced by crossover; the structure of crossover 

products was often so different from that of its parents that the compounds created by 

crossover seemed unlikely to have any related biological activity. Apparently, however, 

crossover does not always make such activity-destroying changes, and is a useful 

operator for finding good molecules. Therefore, we should consider setting its 

prevalence higher in follow-up experiments. Interestingly, molecule crossover has also 

been found useful to create drug molecules in practice (Lazar, 2004).  

 

Surveying our results, we learned that atom-based and fragment-based evolution have 

lots in common and that both seem approximately equally efficient in this experiment. 

However, there are also differences. First of all, the evolution trees show more clearly 

than the fitness plot that atom-based evolution does run more smoothly. It reaches a 

better molecule than the fragment-based evolution, and it does so in fewer generations. 

It truly seems to be more efficient, though not by a large amount. In the fragment-based 

evolution shown in Figure 6.7, big substituents make large jumps around the molecular 

core. An example would be the SO2C2H3 group in the middle column of Figure 6.7, 

which moves to very different positions of the ring system. If a large substituent is 

attached at very different positions in parent and offspring molecules, this would imply 
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that either the substituent of the offspring molecule is docked in another part of the 

binding pocket than it was in the parent molecule or that the offspring’s core is docked 

in another place. Since the dockings of parents and offspring in fragment-based 

evolution are therefore more likely to be dissimilar, the evolution is probably less 

efficient. If, for example, in fragment-based evolution only half of the offspring of a 

good molecule is docked in the way of their parent, it is likely that only this half will 

have a good or even better score than the parent molecule, and the time spent to 

evaluate the other half of the offspring is wasted. The smaller changes in atom-based 

evolution should result in offspring of which a large part will be docked similarly to the 

parent, say 90%, leading to fewer offspring with low fitness scores due to radically 

different docking. Quantitatively, one would have to analyze the correlation between 

the fitness scores of parent and offspring. It would definitely be interesting in future 

investigations to automate such a “docking comparison” process and get the actual 

numbers. 

 The second difference between the atom-based and fragment-based approaches is 

the result of the optimization. While the molecules found by the atom- and the 

fragment-based evolution have similar fitnesses, their structures are definitely 

dissimilar (Figure 6.10). The most striking difference between the best molecules 

found by the atom-based evolution and those found by the fragment-based evolution is 

the lack of diversity in the top-5 fragment-based molecules. These molecules all have a 

sulfur-bound cyclohexadiene group and a ethylenesulfinate group attached to 

naphthalene or a naphthalene-like ring system. In contrast, the top-5 of atom-based 

molecules contains four different structural classes. This diversity is beneficial, since it 

improves the chance that at least one class of molecules is found with suitable 

biological and physicochemical properties. 

 The difference in diversity between the molecules optimized by atom- and 

fragment-based evolution led us to investigate the cause of the similarity of the top-5 

molecules created by fragment-based evolution. Was the fragment-based population 

highly diverse and did it contain several different structural groups, of which one was 

superior, or were all molecules in generation 10 similar, and hence the best molecules 

too? We measured population diversity by counting the number of different ring 

systems in each generation of the atom- and the fragment-based evolution. Figure 6.11 

plots generation number versus ring system diversity. 
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Figure 6.11. The number of different ring systems in the population during 

the atom-based and the fragment-based evolution. In the last generations, 

the fragment-based population only contains cyclohexadiene, naphtalene 

and the 1,2,3,4-tetrahydroisoquinoline system from the best compound n 

the first generation, while the atom-based population has 3-, 4-, 5-, 6- and 

7-rings with a variable number of double bonds, and a number of two-ring 

systems (5:6, 6:6) and three-ring systems. 
 
 
The diversity plot shows that while the diversity of the population undergoing atom-

based evolution fluctuates, the diversity of the population undergoing fragment-based 

evolution dwindles fast. This difference probably arises because the atom-based 

evolution has several options to generate new ring systems: oxidizing/reducing bonds, 

breaking rings and making rings, as well as mutating, inserting and uninserting atoms. 

In contrast, the fragment-based evolution currently implemented in the Molecule 

Evoluator cannot introduce new fragments, only recombine and copy existing 

fragments. Therefore, it entirely depends for its new ring systems on the 5 de novo 

molecules that are inserted at every generation, and we have seen that these molecules 

rarely survive in a population of already optimized molecules due to the high selection 

pressure. Fragments which are less competitive in the current generation can thus go 

quickly extinct, with no chance of reappearing. The resulting lack in diversity bodes ill 

for further optimization. While the atom-based evolution may crawl out of its crisis 

into a new optimum, the fragment-based evolution seems doomed to stagnate in a few 

more generations. 
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It is interesting to compare the change in fitness over the generations to the change in 

diversity over the generations. It turns out that the minimum of the atom-based 

diversity (generation 8) coincides with the occurrence of the best compound found in 

the run. Apparently, before generation 8, the evolution is on the trail of a good 

compound and concentrates the search in that direction, diminishing structural diversity 

to focus on a few good groups. Afterwards, the obligatory removal of the best 

molecules pushes the evolution away from the local optimum, and thus back into the 

high diversity that is necessary for efficient exploration. 

 

Synthetic feasibility 

So far we have seen that atom-based evolution seems slightly better than fragment-

based evolution regarding the speed of evolution and the fitness of the molecules 

obtained. However, this does not address the argument of some investigators that 

fragment-based evolution should be used because the molecules created by it are easier 

to synthesize. In reality, the difference in ease of synthesis may be not as important as 

it seems, since both atom- and fragment-based molecules often need to be adapted by 

experienced medicinal chemists to create molecules which can be synthesized within 

reasonable time (Douguet, 2000; Vinkers, 2003). Fragment-based molecules might 

need fewer adaptations than atom-based molecules, but the importance of this 

difference in ease of synthesis has, to our knowledge, not been investigated yet. 

 To assess the effects of ease-of-synthesis requirements on the molecules reached 

by atom-based and fragment-based evolution, we submitted a selection of the top-10 

atom-based molecules and top-10 fragment-based molecules to a chemist, who 

suggested improvements to enhance ease of synthesis. The resulting modified 

molecules were docked in HIV-transcriptase to determine their fitness values. The 

results of six of the compounds, selected for diversity in structure, are shown in Table 

6.2. 

 From comparing the structures and scores of the molecules in Table 6.2 we 

conclude that fragment-based evolution indeed produces superior results respecting 

ease of synthesis. This is mainly because fragment-based molecules need fewer 

modifications, which leads to a smaller change in structure, which leads to a smaller 

change in activity, and since changing an optimized structure is likely to decrease 

activity, the smaller adaptation needed for the fragment-based molecules is beneficial. 

From our results, it seems that the position of the modifications also plays a role; if 

modifications are in or near the core of the molecule, the change in activity is much 

more dramatic than when a substituent at the “edge” is changed. For example, only 
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modifying the central ring of the 4th best atom-based compound (Figure 6.10) from 

cyclobutadiene to phenyl made the docking score fall from 66 to 9. In contrast, the 

decrease in fitness in the fragment-based molecules is generally much smaller, about 

10 units, probably because only the substituents are changed. 

 

 
Table 6.2: Some of the molecules designed by the evolutionary algorithm, 

their derivatives with improved ease of synthesis suggested by our chemist, 

and the docking scores of the original and derived molecules. 
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Comparison with literature 

As last part of this discussion, we compare our work with literature and investigate 

whether our results are consistent with the findings of others, and whether literature 

together with our own results can suggest directions for further investigations. 

 

Atom-based evolution. To our knowledge, the earliest publication that described 

computational evolution of molecules was by Glen and Payne (Payne, 1995). Their 

mutations and crossover were more or less the same as our atom-based operators, 

though they included a 2-point crossover (which exchanged the central parts of two 

molecules) and limited insertions to methylene (only carbon-atoms could be inserted). 

Douguet et al. (Douguet, 2000) also included the 2-point crossover, but did not use a 

ring breaking operator, and seemed to focus much on changing larger parts of the 
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molecule at once, which resulted in a hybrid fragment-atom evolution. Globus et al. 

(Globus, 1999) used only one-point crossover, and no mutations. According to the 

authors, their algorithm worked quite well, even though it was sometimes impossible to 

reach a certain target structure because the starting population or an intermediate 

population did not contain all necessary structural elements (the same can be said of 

our current fragment-based evolution). The crossover of Nachbar (Nachbar, 1998) also 

was one-point, and his mutations were similar to our own atom-based mutations 

(insertion, deletion, atom type mutation, oxydation and reduction of bonds, etc.) 

However, there were more restrictions on atom change mutations, as insertion and 

uninsertion were apparently only allowed in rings, and rings could only be broken at 

one predefined ring bond (though this latter shortcoming was corrected in his later 

work (Nachbar, 2000)). Brown et al. (Brown, 2004) used mutations similar to ours, 

though the two crossover operators were quite elaborate and differed considerably from 

our simple one-point crossover. Finally, the atom-based mutations of Nicolaou et al. 

(Nicolaou, 2009) also involved modifying atom and bond types and insertion and 

removal of atoms. However, it seems that cycles were neither formed nor broken in 

this investigation, possibly because the atom-based mutations were supplemented with 

fragment-based mutations which could simply insert entire ring systems. Nicolaou's 

atom-based crossover is similar to that of Globus (and ours), picking one bond to break 

in two molecules and pasting one of the parts of the first molecule to one of the 

fragments of the second molecule. The general impression left by comparing the work 

of others to our atom-based mutation and crossover operators seems to be that our set 

of atom-based mutations is essentially complete, and at least as versatile as in other 

work. However, of crossover many variants seem possible, and it should be 

investigated which types of crossover are most beneficial for de novo design, especially 

considering the large contribution crossover made in our investigation. 

 

Fragment-based evolution. The fragment-based evolutionary approaches we found in 

literature are those of Schneider et al. (Schneider, 2000), Pegg et al. (Pegg, 2001), 

Vinkers et al. (Vinkers, 2003) and Dey et al. (Dey, 2008). The evolutionary algorithm 

of Nicolaou et al. (Nicolaou, 2009) used both atom-based and fragment-based 

evolution, their atom-based operators were discussed in the preceding paragraph, while 

their fragment-based operators will be discussed here. Schneider obtained his 

fragments by using retrosynthetic rules on the WDI database (Daylight, 2005), 

resulting in over 24,000 fragments. From these fragments, molecules were constructed 

by applying the same retrosynthetic rules in the reverse direction. The algorithm did 
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not contain crossover, just mutation which replaced a fragment by another fragment of 

the same type. Dey et al. (Dey, 2008) used a commercially available database of 20,000 

pre-selected fragments. Interestingly, the genotypes in their algorithm did not encode 

for a complete molecule, each gene encoded a docked pose of an unattached fragment; 

every member of their population was therefore not a molecule, but a collection of 

unconnected fragments, which were connected later by another optimization algorithm. 

Mutation and crossover involved changing the value of a gene (making it represent 

another docked fragment) or exchanging the values of the genes at a certain position 

between two members of the population. Nicolaou et al. used a smaller database, 

consisting of 2363 fragments of tested ligands (so somewhat focused on the problem at 

hand, not a truly general search through molecular space). Fragments could be inserted, 

removed or exchanged, according to the retrosynthetic rules as defined by RECAP 

(Lewell, 1998). In stark contrast to Schneider and Dey, Pegg et al. used only a handful 

of fragments (about 15 in one experiment), which could be attached randomly to each 

other. The mutations here were replacing fragments and connecting fragments to other 

points, which is similar to our “rotation”. Finally, Vinkers et al. used 32,000 molecules 

and a collection of 70 reactions which could extend and combine molecules. In the first 

iterations, molecules could only “grow” by reacting with other compounds, in the later 

phase of evolution, reactants in any position of the chain could be replaced by other 

ones from the database.  

 From the diversity in the fragment-based studies one can conclude that many 

different approaches to fragment-based evolution are possible, with a varying role of 

synthesis rules in molecule construction, and fragment databases that vary from under 

20 fragments to over 30,000 fragments. One of the few similarities between the 

fragment-based methods is that they can replace fragments in a molecule with 

fragments from the database, something our fragment-based evolution cannot do yet, 

but may be good to implement. Our fragment-based evolution does have an extra 

feature, however, as it considers each ring atom a potential attachment point; therefore 

exchange and rotation can create many more combinations from the same fragments 

than the more synthetically strict methods can. Not being able to get new fragments 

into the population is a disadvantage for optimization, but is partially compensated in 

our algorithm by this ability to create more combinations out of a fixed number of 

fragments. The flexibility in attachment points might reduce the synthetic feasibility of 

the designs, but could increase the speed and efficiency of the optimization, since the 

structural changes may be smaller than those of fragment replacement. 
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Next to comparing the mutation and crossover operators, it may be useful to compare 

the parameters of evolution of our investigation with those in literature. In the above-

mentioned investigations, population sizes ranged from 30 to 1000, and the number of 

generations allowed ranged from 50 to 1000. Settings were varied to some extent; 

Douguet et al. tested population sizes from 10 to 80, and found 20 to 40 to be an 

optimal size. Glen and Payne investigated sizes from 10 to 100, and considered 50 to 

100 to be the best size. In general, too small sizes are thought to result in premature 

convergence, too large sizes produce slower running optimizations, and may “drown” 

the best compounds by making the probability that they are selected for procreation too 

small. However, premature convergence can also be caused by high selection pressure, 

and this is likely to be the case with our atom-based evolution.  

 Another issue is whether we should or should not use elitism to conserve our best 

molecules. Both approaches are present in literature: occasionally (Pegg, Vinkers, Dey) 

elitism has been used, but in other cases (Glen, Nachbar) not. Douguet tested whether 

elitism was advantageous, and found that it is. Douguet’s findings on elitism support 

our impression that it would be good to allow molecules be copied unmodified into the 

next generation, in a more reliable way and perhaps a larger scale than is used now.  

 A final point is that we have used far fewer generations than the other researchers. 

This was mostly because we wanted to optimize the efficiency of the evolution itself, 

and expose poor methodology which would have been masked by throwing in huge 

computational resources. We can only guess what would have happened if evolution 

had been allowed to go on for more generations. In the current setup, the fragment-

based evolution would have converged in a few more generations, the atom-based 

evolution would have intermittently found new structures with activities comparable to 

or even better than our current maximum. However, in drug discovery it would have 

probably been more efficient to use 50 independent populations of 20 runs than it 

would have been to evaluate one population during 1000 runs. Having many diverse 

ideas is likely to be better than spending many generations refining a local maximum, 

which, despite advanced docking scores, would only have a small chance of being a 

suitable and active lead (Vinkers, 2003). Another argument for having many short runs 

instead of a few long ones is that using atom-based mutations on the fragment-based 

initial population tends to guide the evolution into generating increasingly uncommon 

groups, so ease of synthesis will probably decrease as molecules are “optimized” by 

the evolutionary algorithm. 

 One important point to consider is whether our test system, docking and its score, 

are suitable as fitness function. For example, Verdonk et al. (Verdonk, 2004) have 
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shown that docking scores tend to increase approximately linearly with the number of 

heavy atoms in a compound. Chemically, it is reasonable that the average compound 

with 20 heavy atoms should bind more tightly than the average compound with 10 

heavy atoms for the simple reason that having more atoms allows a compound to have 

more interactions with the target. However, we should be wary if the fitness scores of 

individual compounds correlate linearly with the number of heavy atoms. After all, this 

would mean that the fitness score is biologically unrealistic, since the specific types of 

atoms and the three-dimensional shape of the molecule should influence ligand binding 

much more than the atom count. We therefore took all of the compounds generated by 

the evolution and plotted fitness against heavy atom count. For the atom-based 

evolution, the plot is shown in Figure 6.12. For both atom and fragment-based 

evolution, the r2 values of the correlation were less than 0.35, implying that most of the 

docking score could not be explained by heavy atom count. Our findings imply that the 

GOLD scoring function is in line with biochemical expectations: bigger molecules in 

general bind better, but atom count is not the only contribution to binding. 
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Figure 6.12: The relationship between heavy atom count and docking score 

for the molecules produced by the atom-based evolution; while a higher 

heavy atom count allows a higher score, it does not automatically lead to 

improved fitness. 
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Future perspectives 
 

One of the main practical obstacles during this investigation was that it required quite 

some manual intervention to convert the 2D structures generated by the Molecule 

Evoluator to 3D structures, dock them, and feed the results back into the evolutionary 

algorithm. While the small scale (about 1000 molecules in total) allowed us to 

thoroughly analyse the strengths and weaknesses of the competing algorithms and give 

us some ideas of what we should or could change and improve, it would be impractical 

to scale our current method up for proper statistical analysis on dozens of runs. For 

future investigations, it would be certainly worth the time and effort to either create 

intermediate software or batch-files to automate as many of the intermediate steps as 

possible. 

 Next to automating the evolution-docking cycle, it would also be beneficial to 

'trace' the evolution of compounds automatically, for example creating a sort of 

extended file format identifying the parent(s) of each compound and which mutation 

gave rise to it. This would be similar to the approach Nicolaou et al. (Nicolaou, 2009) 

use for their graph-based chromosomes, even though it is unclear from their paper 

whether they indeed used that data to optimize their evolutionary algorithm. In this 

way, we could automatically collect data detailing the average change in fitness after 

specific mutations, and let the computer quickly create all evolutionary trees, which 

could be helpful in analyzing exactly when and why a particular run stagnates or 

improves. 

 In addition, there are some factors which may hamper the optimization. One of 

those is the conversion of the molecules from 2D to 3D. The encoding of molecules in 

the current version of the Molecule Evoluator does not specify stereochemistry. This 

means that the conversion of the molecule “genome” to 2D will give rather randomly a 

cis or trans stereoisomer for each double bond outside rings, and the subsequent 2D to 

3D conversion with MOE will add undefined R/S stereocenters. The Molecule 

Evoluator and (as far as we could observe) MOE are deterministic in their conversion 

procedures, which would ensure that a molecule genome would always be converted 

into one specific stereoisomer, so this will not affect reproducibility. However, 

offspring, even if modified outside the stereocenters, might have different 

stereochemistry assigned to them. Such “non-genetic” jumps in fitness would add noise 

and hamper the optimization. It would therefore be useful to encode stereochemistry in 

future versions of the Molecule Evoluator. Another concern is that some structures 

might be in a different tautomeric state in a biological environment (an enol might be a 
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keto group in solution). Since bonds are coded into the genes, the tautomer remains 

fixed over generations and does not give rise to offspring in a different configuration, 

in contrast to enantiomerism. Therefore tautomerism will disturb evolution less than 

enantiomerism. However, a chemist should inspect the molecules with the highest 

scores for possible tautomerism, and dock the tautomers to explore the effects of the 

equilibria on the fitness score. 

 

 

Summary and conclusion 
 

In this investigation we compared the relative usefulness of atom based (small step) 

evolution and fragment based (large step) evolution for optimizing potential drug 

molecules. As was expected, atom-based evolution found a better molecule after fewer 

steps (although the difference was not large), while the fragment-based evolution 

produced molecules that seemed easier to synthesize. By comparing the two 

approaches, also a number of other lessons were learned concerning molecule 

evolution and how to improve the Molecule Evoluator. 

 Firstly, there is no need to add entirely novel molecules after the first generation. 

The fitness of the population increases so steeply, that the new molecules do not 

contribute any useful “genes”.  

 Secondly, and somewhat surprisingly, crossover can be a valuable operator in 

molecule optimization; in contrast to “normal” optimization strategies in 

pharmaceutical research, in which variations are made on one molecule, it may be 

worthwhile to combine one molecular core and some of the side groups of other high-

scoring molecules.  

 Future modifications to improve the Molecule Evoluator would be to stop adding 

de novo molecules each generation, experiment whether allowing a molecule to appear 

more than once in a generation would find an even better optimum, and implement 

automatic gathering of statistical data of all evolved molecules to analyze the 

contributions of the various possible mutations or crossovers to molecule fitness. 

Finally, new mutation operators such as “add/delete fragment” will have to be added to 

the fragment-based evolution to prevent excessive loss of diversity and premature 

convergence. 

 Optimizing molecule optimization techniques is still complicated and requires lots 

of experiments and sufficiently sophisticated fitness functions. However, if drug 

designers want to explore a greater part of the huge number of potential drug-like 
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molecules (over 1060) or want to use accurate and therefore slow fitness functions for a 

more reliable in silico screening, efficiency in optimization is needed. We hope that 

studies like this one will not only lead to faster optimization methods, but will also give 

insight into the general craft of molecule optimization. 
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