Universiteit

w4 Leiden
The Netherlands

Interactive evolutionary algorithms and data mining for
drug design
Lameijer, EEM.W.

Citation

Lameijer, E. M. W. (2010, January 28). Interactive evolutionary algorithms
and data mining for drug design. Retrieved from
https://hdl.handle.net/1887/14620

Version: Corrected Publisher’s Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/14620

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/14620

131

Using Data Mining to Improve Mutation
in a Tool for Molecular Evolution

Eric-Wubbo Lameijerl, Ad P. IJzerman' and Joost N. Kok*

'Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, PO
Box 9502, 2300RA Leiden, The Netherlands

*Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1,
2333 CA Leiden, The Netherlands

This chapter was first presented at the Congress on Evolutionary Computation 2005.
Reference: Lameijer, E.-W.; IJzerman, A.P.; Kok, J.N. Using data mining to improve
mutation in a tool for molecular evolution. Congress on Evolutionary Computation
2005, 314-321.

Abstract

We have developed an evolutionary algorithm-based program for drug design, the
Molecule Evoluator. This program transforms known molecules into new molecules
which may have improved properties relative to the parent molecule. Transforming the
parent molecule into a derivative by mutation is necessary to find molecules with
increased fitness. However, mutations that just randomly add and substitute atoms
often result in molecules that contain undesirable chemical substructures, and can
therefore not be used as drugs. We therefore want to add knowledge to the program
about which mutations result in proper chemical structures and which ones do not. In
this research we have mined a large chemical database, the World Drug Index, to
obtain the frequencies of small substructures in drug-like molecules. Some of our
mutation operators were subsequently modified to use these frequencies. Testing the
new mutation frequencies on another large database of molecules, the NCI database,

132

we found that the knowledge-based mutations more often produced existing molecules
than the original mutations. This suggests that the modified mutations produce
molecules that are easier to synthesize and more drug-like compared to the molecules
generated using the original uninformed mutation operators.

Introduction

Pharmaceuticals have a major impact on both public health and the economy. The
worldwide sales of pharmaceuticals were 491.8 billion dollars in 2003, and were
expected to grow by several billion dollars in 2004 (Class 2004). Pharmaceuticals have
also greatly improved human health. Many diseases that used to be dangerous or even
deadly, such as pneumonia and tetanus, have become much less dangerous, and people
with chronic ailments, such as diabetics and heart patients, live longer and healthier
lives thanks to the currently available medication.

There are however still a number of diseases which are difficult to treat or where
current therapy has severe side effects. Dementias such as Alzheimer’s disease are yet
untreatable, advanced cancer can only be cured in rare cases, and viral diseases remain
difficult to fight.

Given this demand for more and better treatments, pharmaceutical companies are
continually working to expand their arsenal of drugs. This is however not easy. A
medication such as a tablet works since it contains a specific chemical compound, the
molecules of which bind to large biological molecules (such as proteins) that are
involved in the disease. Drug molecules make these biomolecules more or less active
by binding to them. A good drug molecule should influence the biological process of
the disease in a beneficial way, but it should also be able to enter the part of the body
that needs to be treated, and should not cause side effects which would make the
treatment more damaging than the disease itself. It turns out to be very difficult to
create such a compound; it is estimated that only one out of 5000 screened candidate
compounds reaches the market as a drug (Rees 2003).

The difficulty of finding new drug molecules has pushed the pharmaceutical
industry to try to improve its output using both experimental and computational
methods. Of these computational methods, the Evolutionary Algorithms (EAs) are
widely applied. Not only are they used to gain insight in the structures and functions of
genes and proteins (Fogel 2004), which is important for discovering which proteins to
target with a drug, they have also been applied to designing the drug molecules

133

themselves, such as designing compound libraries, docking small molecules into
proteins, and finding structure-activity relationships. Good overviews are given in the
book edited by Clark (Clark 2000) and in chapter 2 of this thesis. However, one of the
most interesting applications is the design of new drug molecules themselves, the so-
called de novo design.

Several EAs for de novo design have been described in literature (Brown 2004,
Douguet 2000, Glen 1995, Globus 1999, Kamphausen 2002, Nachbar 1998, Pegg 2001,
Schneider 2000, Vinkers 2003, and others). The main differences between the various
methods are the molecule representations and the fitness functions.

The molecule representation methods in EAs for de novo design can be divided
into atom-based and fragment-based methods. Atom-based methods build and modify
molecules by adding and modifying individual atoms. While atom-based methods can
create many more molecules than fragment-based methods, they often create molecules
which are difficult to synthesize (Douguet 2000). Fragment-based methods on the other
hand create molecules by connecting existing substructures. Fragment-based methods
therefore tend to create molecules that are easier to synthesize (though this is not
guaranteed (Vinkers 2003)), yet these methods seem less suitable for optimizing
molecular structures. Since the mutations replace/add or delete entire fragments (5-20
atoms), each mutation is a macromutation which results in a very different molecule,
the fitness of which may be very dissimilar to that of the parent. Also, since fragment-
based methods use bigger building blocks which cover only a small fraction of all
building blocks theoretically possible, they cannot cover the search space of drug-like
molecules as fully as atom-based methods.

In the EA-based program we are developing, the Molecule Evoluator (chapter 4 of
this thesis), we want to be able to fine-tune molecular structures and to generate all
possible drug-like molecules. Therefore we have chosen for the atom-based
representation.

The second important aspect of the EAs for de novo design is the fitness function.
The fitness functions that are most often used are “docking” (a procedure that fits the
molecule into a three dimensional model of the target protein and returns the
approximate binding energy), similarity to an existing drug molecule, and experiments.
However, these have not yet proven to be very useful since they are either too slow and
expensive to apply (experiments), or too inaccurate for optimization (docking,
molecular similarity). The best result published so far seems to be a derivative evolved
by Schneider (2000), which had a thousand-fold lower activity than the lead compound.

134

We therefore decided to try an alternative approach which could still use the
optimization power of an EA but would tap a different source of knowledge, the
medicinal chemist him/herself. Since the chemist performs the role of fitness function,
the Molecule Evoluator can use the chemist’s knowledge about how the molecular
structure influences the biological activity and how difficult the synthesis of the
molecule would be. In a typical session, the user would take a known molecule to seed
the population and let the program generate derivatives by applying various mutations,
such as adding or deleting atoms, breaking or making rings, etc. The chemist will then,
based on his/her estimates of structure-activity relationships and ease of synthesis,
select the most interesting mutants, which will then be used by the program to generate
a new population of derivatives.

The general mechanism of the Molecule Evoluator and a screenshot of the
program in action are shown in figures 5.1 and 5.2, respectively.

Now we arrive at the main topic of our paper: improved mutation.

One of the consequences of the atom-based mutations in the Molecule Evoluator
is that changing an atom into another atom can result in a molecule that is unstable or
difficult to synthesize, decomposing before it can exert any effect on the human body.
For example, changing a hydrogen atom into a fluorine atom is fine when the hydrogen
is attached to a carbon atom, but will result in a highly reactive and therefore un-drug-
like compound when the hydrogen is attached to an oxygen atom. Whether a mutation
leads to a chemically acceptable molecule therefore depends for a large part on the
atoms surrounding the mutation. We therefore want to modify the different mutation
functions in such a way that they will result in more reasonable mutants. For this we
however need knowledge about which mutations are reasonable.

Our plan is to derive this knowledge from large chemical databases and adapt our
mutation operators accordingly.

The outline of the rest of the paper is as follows: first we discuss our data mining
approach, then we introduce some of our mutation operators and discuss how we
adapted them using the data mining results. Subsequently we will present the results of
our experiments with the adapted mutation operators, comparing them with the original
operators and finally we will give our conclusions and indicate some of the remaining
questions and possibilities to use data mining for an EA such as the Molecule
Evoluator.

generate load
molecules molecules

population of

molecules
select
molecules
reproduce mutate Cross
molecules molecules molecules

Figure 5.1: Overview of the evolutionary algorithm of the Molecule Evoluator.

[W eiacute Erctuntor - [Goneration 331 ;:_TE_EEﬂ
[5e Bt o ey o |
D &0 R SE R e POk Logh T NTO W Actielt MDA |
|* | Pasamaters vl (=l
B i j Onigin OF Malaculag
2 --"_"j[“oH Nosicain® %
i L* 0 Comtbaraton |10 X
s [10etaw
o a
g Madification Type
= | o | Groups: (2] Add pues
= = 4] Bemarve i
) _{:}J I/ui ,J ‘“ Aty 'é;:;:u—.a:r
] & jlf';\.l o IL J"I 3 —
A | | PN | o [e——
¢ }.‘fhﬂ o rl:r L e j%‘x” [Dacinate co
S = J'-__ o Pinge: 7] Maka g
=} a} a} a)] bsse g
P Miscollanrous
ﬂ " d (2] Koo heched Hulocades
S L 0o 5 g |
| = Wy~ Y Il L | |
™ |y =
Mo ~ oy E]
u} o o
uade

Figure 5.2: The Molecule Evoluator generating variants of acetylsalicylic acid
(Aspirin™), the top left molecule.

135

136
Data Mining Approach

The process of discovering knowledge in databases is often called data mining. There
are many data mining methods (Witten 2000), able to handle widely different kinds of
data. However, the chemical applications of data mining are currently still quite limited.
This is probably because the most important data mining one can do in this field is
finding the relation between molecular structure and particular properties. This is
however very difficult. One of the reasons for this is that many of the existing data sets
are relatively small (dozens to hundreds of items). Also, the question remains how to
represent a chemical structure (a graph) so that it can be related to its properties. This is
still an open question and may depend on the specific application.

One of the problems of the Molecule Evoluator was that many of the molecules
created by it were estimated by medicinal chemists to be difficult to synthesize. While
of course the chemist can filter out these molecules manually, in general there were so
many “bad” molecules per generation that evolution slowed down (many mutants were
not attractive, had very low fitness), even to the point that the user, who provides the
necessary fitness function, got annoyed.

The most obvious fix, as proposed by the chemists, would be a library of
“forbidden substructures”. However, this fix has some disadvantages. First, chemical
rules are seldom absolute. Many substructures which are not particularly stable can and
do occur in drug molecules, only relatively rarely. Eliminating them entirely would
make the Molecule Evoluator incapable of finding some real drugs, which would
strongly limit its usefulness. Second, forbidding substructures does not solve the
problem of frequent versus infrequent substructures. While C-N-C is a perfectly
reasonable substructure, it is much rarer than C-C-C, and a program creating equal
amounts of both would produce molecules which look rather unusual and still may be
difficult to synthesize. Third, all chemists are necessarily subjective and may have
studied only about a few thousand structures in their lives, a small fraction of all
molecules ever made. A computer can easily search the millions of molecules which
have been created so far and can update its knowledge much more quickly.

This gave us the idea to use a large database of drug molecules (the World Drug
Index) to find the frequencies of all occurring substructures and adapt the mutation
operators so that the mutants will be more drug-like and easier to synthesize than when
using “uninformed” mutations.

We used the 2002 edition of the World Drug Index (Daylight 2005), containing
approximately 32000 drugs and other pharmacologically active compounds. An in-

137

house program counted the frequencies of all atoms (X), atom pairs (X-Y), atom
triplets (X-Y-Z) and sets of four atoms (both the linear X-Y-Z-A and the T-shaped X-
Y(-Z)-A). The types of substructures mined are shown in table 5.1. The substructures
and their occurrences were collected in a file. The counting algorithm counted all
groups starting at each atom in the molecule. So an N-C substructure yields 1 N-C and
1 C-N count, while a C-C substructure yields 2 C-C counts. For our mutations we have
corrected for this factor by dividing the counts of symmetric pairs and triplets of atoms
by 2, the T-structure-occurrences were divided by 6 if the three atoms surrounding the
core atom were identical, and divided by 2 if only two of them were the same.

For computational efficiency, the frequencies of the substructures are read into
memory at the start of the program, so for each mutation there are typically only about
10 numbers which have to be fetched and scaled to determine the type of mutation,
which is a negligible amount (<0.1%) of the total runtime of the Evoluator.

Table 5.1: The substructure patterns mined from the World Drug Index. The
letters denote any possible atom type, the ‘- characters all possible bond
types, to wit single, double and triple bonds.

Substructure X X—=Y X—Y—2Z A
pattern |
X/Y\z
Example N C=C C—0—C IC|
PION
C C

138
Adaptation of the Mutation Operators

To investigate the effects of adding knowledge to the mutation operators, we chose to
modify three mutations that the Molecule Evoluator uses to create new molecules.

These are the “add atom”, “insert atom” and ‘“change atom” mutations, shown in table
5.2.

Table 5.2: The effects of the three mutation operators in this study.

Mutation name Initial structure Final structure
Add atom /NH2
g gH, 0~k
H,C—CH, H,C—CH,
Insert atom H2
/C\
5o o,
H,C—CH, H,C—CH,
Change atom H2?—?H2 H29—§
H,C—CH, H,C—CH,

e The “add atom” mutation adds a non-hydrogen atom to the structure by replacing a
hydrogen atom by another atom, and adding hydrogens as necessary to fill the
remaining bonds of the new atom.

¢ The “insert atom” mutation takes a single bond between two non-hydrogen atoms
and inserts an atom between them.

e The “change atom" mutation changes a non-hydrogen atom into another non-
hydrogen atom (so it can exchange a carbon atom for a nitrogen atom, for
example).

139

The three mutations originally used estimated frequencies of the diverse atom types,
chosen such that the resulting molecules seemed drug-like. These estimates are shown
in table 5.3.

Table 5.3: The initial probabilities to add a certain type of atom to a
molecule using the “add” mutation.

Atom type Add-
frequency
C 0.725
O 0.109
N 0.109
S 0.022
P 0.000
F 0.007
Cl 0.014
Br 0.007
I 0.007

However, since the mutations were still context-independent, rare and reactive
subgroups such as O-O and N-F did occur much more frequently than would be
expected from looking at the World Drug Index. For example, the reactive O-O bond
occurs only 1.5 times per 10000 C-C bonds in the World Drug Index, but in the
original Evoluator it was generated 62 times per 10000 C-C bonds, 40 times more
frequently.

We therefore decided to try and improve the mutations by making them context-
dependent. We introduce new versions of three of our mutation operators, the add atom
mutation, the insert atom mutation and the change atom mutation.

Add atom mutation: The add atom mutation works by picking a hydrogen from the
molecule and replacing it by a non-hydrogen atom. This non-hydrogen atom was
originally picked from the standard frequency table (table 5.3). We however modified
the algorithm to first look at the atom to which the hydrogen was attached (a hydrogen
atom has only one bond and is therefore attached to only one atom).

If the hydrogen was attached to an atom of type X, the program looked up the
counts of the various X-Y substructures and converted these into a probability table.

140

This table indicated the probability that the hydrogen atom would be replaced by an
atom of type Y. So since there were 8246 C-Cl bonds, 2.5-10 part of the total number
of C-X bonds, and 12 O-Cl bonds, 3.5- 107 of the total of O-X bonds, the probability of
substituting the hydrogen by Cl would be 2.5-107 in the case of a C-H group, and
3.5-107 in the case of an O-H group.

Based on these frequencies, the Y-type was selected using a random-number
generator.

In our experiments we found that using the raw WDI data improved upon our
original frequencies. To our initial surprise, however, the substructure frequencies of
the resulting molecules were significantly different from the WDI-frequencies. One of
the causes seemed to be that carbon atoms, having four bonds, have on average 2-3
hydrogens attached, other atoms less. This skewed the distribution markedly, resulting
for example in 60% more nitrogen atoms per carbon than expected. We have improved
on this situation by changing the input frequencies by an adaptive procedure until the
output frequencies resembled those of the WDI fairly well. This algorithm is depicted
as algorithm 5.1. Its results are illustrated in figure 5.3.

Insert atom mutation: When the Molecule Evoluator must choose an atom type to
insert between two atoms of type X and Y, the program searches for all X-A-Y-
patterns in the substructure database and makes a probability table of how likely it is to
find an atom of type A bonded to type X and Y. For example, if the bond is between C
and O, the probability of finding a carbon-in-between pattern (CCO) is 0.97, and
nitrogen in between 0.012, in contrast to the “raw” probabilities of C versus N of 0.37
versus 0.04 in the entire World Drug Index.

Change atom mutation: The change atom mutation was the most complicated
mutation to modify as the atom to be changed can have one, two or three non-hydrogen
atoms surrounding it. Depending on the number of surrounding non-hydrogen atoms,
the X-A, X-A-Y or X-A-(Z)-Y patterns are looked up and the frequency table is
created. Table 5.4 is an example of one of these tables generated by the program.

Algorithm 5.1: Algorithm for iterative refinement of the input two-atom
frequencies to produce molecules with similar two-atom substructure
frequencies as the World Drug Index.

inputFrequencies = WDIfrequencies;
do

generate database of molecules using
inputFrequencies;

newFrequencies = count two-atom frequencies
in new database;

frequencyCorrectionFactors=
newFrequencies/WDIFrequencies

mediumCorrectionFactors
=(frequencyCorrectionFactors + 1) / 2

inputFrequencies = inputFrequencies *
mediumCorrectionFactors

while newFrequencies differ significantly from

WDIFrequencies

5

4 m Using Raw WDI
=3 Frequencies
33 O After 3 iterations
o
5 2
o° - O WDI Frequencies

O .

F IS S SS
Bond type

Figure 5.3: Iterative refinement results in the substructure counts getting
closer and closer to those of the World Drug Index (all counts are scaled to
make the count of CC-bonds 10000). Since the y-scale is logarithmic, some
of the gains in accuracy seem smaller than they are: the number of C-N
bonds went from 66% too much to 8% too much, and C-Cl from 23% too
little to 2% too little.

141

142

Table 5.4: Using substructure counts to calculate the probability that an
atom flanked by a C and a N atom is changed into a specific other atom
type. Substructures which are chemically impossible, such as “C-H-N" in
which the hydrogen has two bonds instead of the allowed maximum of one,
are indeed not found in the database (count is 0).

Substructure Count Probability

C-C-N 323618 0.964
C-H-N 0 0.000
C-O-N 1179 0.004
C-N-N 9060 0.027
C-S-N 1693 0.005
C-P-N 11 0.000
C-F-N 0 0.000
C-CI-N 0 0.000
C-Br-N 0 0.000
C-I-N 0 0.000

Experiments

After we had modified the three mutation operators to use the data of the World Drug
Index, we wanted to find out whether making the mutation operators context-sensitive
increased their likeliness to generate “normal” molecules. As a test, we took the
database of the National Cancer Institute (National Cancer Institute 2005), 250251
compounds. The NCI database contains molecules which were tested for biological
activity, i.e. anti-tumor activity. It has only about 3% overlap with the World Drug
Index (Voigt 2001), making it suitable for validation in this study.

The question then remaining is how to validate whether modifying the mutation
operators improves the drug-likeness and ease of synthesis of the mutants.

The best proof of this would take an existing compound, apply a mutation to it, and
find that the derived compound also exists in the database.

However, as it has been estimated that there are over 10° molecules possible
(Bohacek 1996), it seemed unreasonable to demand that our new algorithm would
transform all existing NCI molecules into other existing NCI molecules. However, we
can reduce the search space by splitting the molecules into fragments (figure 5.4). The

143

chance that a certain fragment is mutated into another known fragment is likely to be
much larger than the theoretical molecule to molecule “mutation success ratio” of
2,5-10°/10%, since the smaller size of the fragments will greatly reduce the search

ring systems N&:ﬁ
—_— 2
substituents O\/
ﬁb\/ O/ OH

linkers NH

space.

Figure 5.4: Splitting an example molecule, folic acid, into fragments.

The set of fragments we took from the NCI database was the 6765-item ‘one-connected
branches’ set, that is, all non-ring parts of the molecules that were attached to only one
ring, such as the =0, -NH, and —C(=O)NHC(COOH)CCCOOH groups in figure 4.
First we removed the branches with atom types that the Molecule Evoluator does not
recognize, such as metal atoms (which are extremely rare in drugs) to get a data set of
6564 branches. We then performed atom mutations on the 1000 most frequent branches
of the set and recorded how many were mutated into other existing branches. This
experiment was repeated 20 times for both the old and new versions of the three
mutations. Student’s t-test indicated that all three mutations were improved
significantly (values ranging from 0.01 to 7 10™*). The details of the runs are shown in
the appendix at page 152.
The results of the mutation-experiments are shown in table 5.5.

144

Table 5.5: Average probability that a specific mutation of a NCI branch will
produce another NCl-branch for the informed and uninformed mutations.
The t-test column contains the probability that the observed differences in

performance are due to chance.

Old average New average | t-test
Add atom 0.3107 0.3205 0.0108
Insert atom 0.3626 0.4134 6.73E-14
Change atom 0.0722 0.0768 1.4E-07

Discussion

Using knowledge to guide mutation seems to improve upon the old, uninformed

methods. Could we improve the Evoluator further by using even bigger substructures

to guide the mutations? To some extent, this may be desirable. For example, a

C(=0)OC is an ester group, and the second O can be easily exchanged for N, probably

more easily than when the (=O) is lacking. However, one should be cautious when

interpreting the extra data gained from using larger groups since:

1)

2)

3)

Larger groups have lower frequencies, conclusions drawn from them will be
statistically less reliable.

High occurrence of very large substructures may just reflect existing chemicals,
chemical “prejudice” and biological coincidence rather than fundamental rules of
chemistry. For example, in the NCI database are many sugar groups attached to
purine rings. This however does not reflect any chemical rule that this is especially
easy to synthesize but merely the biological coincidence that some nucleosides
contain a purine attached to a sugar group, and since many nucleoside-like
compounds are active against cancer or HIV, many researchers have made variants
of sugar-purine compounds.

The further atoms are removed from the atom that is to be mutated, the smaller is
their influence; there will be diminishing returns in taking larger and larger
substructures, in which the new information will slowly become too noisy to be
useful.

145

So while we could enlarge the substructures used by the mutation operators, the value
of such an extension should be critically investigated.

Another extension would be to modify the other mutation operators so that they
use the knowledge in the database. This might not be very straightforward for some
operators: the “delete atom” would have to go over each 3-atom set in the molecule,
and delete atoms with a probability inversely proportional to the occurrence of the 3-
atom set relative to the two-atom set. On the other hand, to perfect the “make ring” and
“break ring” mutations we would have to mine the distribution of ring sizes and ring
frequencies instead of the substructure frequencies. Mining and implementing the
acquired data would probably be quite straightforward in that case.

Data mining to modify the mutation operators seems useful in this investigation.
While we do not know the extent in which data mining to make mutations context-
dependent is applied in the EA community, it may be quite useful when there are large
databases available of reasonably fit individuals. However, the question remains
whether an individual does not exist in the database because it is not fit or just because
it has not been thought of yet. A “negative” database of very unfit individuals could
help resolve such cases, though these unfortunately do not seem to be very prevalent, at
least not in the drug development community.

In any case, it seems useful to add data to our EA. Of course, we should apply the
mining with care, and not impose so many rules on newly generated compounds that
they cannot have novel or interesting structures anymore. Using our non-informed
mutations, the Molecule Evoluator was probably a bit too much “original”, making
large parts of the offspring molecules unsuitable for further evolution. Data mining will
help to diminish this percentage of molecules and thereby speed up evolution. However,
the logical limit would be requiring absolute certainty that a compound can be made.
And that can currently only be reached by knowing that the molecule already exists in
a molecular database. This would unfortunately preclude finding any novel molecules
and greatly limit the optimization. We should therefore find a way between unpractical
novelty and conservative clichés. But such a discussion will only be about how
important we allow data mining to become in our approach: that data mining is useful,
is clear.

146

Conclusions

In this research, we have improved the mutations of the molecule design program “The
Molecule Evoluator” by using data mined from a drug database. Using the counts of
various small substructures in the database, we found that the amount of unusual
substructures decreased, and that mutations had a larger chance to transform existing
molecular fragments into other existing molecular fragments. We think that the
enhanced generation of existing structures additionally suggests that also the non-
existing mutants generated by our “informed” mutation operators may be closer to
molecules that are drug-like and can be synthesized than the mutants generated by the
uninformed mutations are. Mining databases may be a good method to making the de
novo generated molecules easier to synthesize while keeping the advantages of
covering the full space of drug-like molecules and the likely faster and more robust
optimization that atom-based molecule optimization can give.

Acknowledgments
The authors thank Thomas Béck for his help in improving this document and for the
ongoing inspiration and support he provides to the Molecule Evoluator project.

References

Bohacek, R.S., McMartin, C., and Guida, W.C., The Art and Practice of Structure-Based
Drug Design: A Molecular Modeling Perspective. Medicinal Research Reviews 16
(1996) 3-50.

Brown, N., McKay, B., Gilardoni, F., and Gasteiger, J. A Graph-Based Genetic Algorithm
and Its Application to the Multiobjective Evolution of Median Molecules. Journal of
Chemical Information and Computer Sciences 44 (2004), 1079-1087.

Class, S. Health care in Focus. Chemical & Engineering News, Dec 6 2004, 18-29.

Clark, DE (ed) (2000) Evolutionary Algorithms in Molecular Design. Wiley-VCH,
Weinheim. Daylight (2005) http://www.daylight.com/products/ databases/WDI.html

Douguet, D., Thoreau, E. and Grassy, G. A genetic algorithm for the automated generation
of small organic molecules: Drug design using an evolutionary algorithm. Journal of
Computer-Aided Molecular Design 14 (2000), 449-466.

147

Glen, R.C., and Payne, A.W.R. A genetic algorithm for the automated generation of
molecules within constraints. Journal of Computer-Aided Molecular Design 9 (1995),
181-202.

Globus, A., Lawton, J. and Wipke, T. Automated molecular design using evolutionary
techniques. Nanotechnology 10 (1999), 290-299.

Kamphausen, S., Holtge, N., Wirsching, F., Morys-Wortmann, C., Riester, D., Goetz, R.,
Thiirk, M. and Schwienhorst, A. Genetic algorithm for the design of molecules with
desired properties. Journal of Computer-Aided Molecular Design 16 (2002), 551-567.

Nachbar, R.B. Molecular Evolution: A Hierarchical Representation for Chemical Topology
and Its Automated Manipulation. In Genetic Programming 1998: Proceedings of the
Third Annual Conference (University of Wisconsin, Madison, Wisconsin, July 22-25,
1998). Morgan Kaufmann, San Francisco, CA, 1998, 246-253.

National Cancer Institute (2005) http://cactus.nci.nih. gov/ncidb2/download.html. Most
recent access May 2005, last version of 2D database (August 2000) used.

Pegg, S.C.-H., Haresco, J.J., and Kuntz, I.D. A genetic algorithm for structure-based de
novo design. Journal of Computer-Aided Molecular Design 15 (2001), 911-933.

Rees, P. Big pharma learns how to love IT. Scientific Computing World (2003), 16-18.

Schneider, G., Clément-Chomienne, O., Hilfiger L. Schneider, P., Kirsch, S., Bohm, H.-J.,
and Neidhart, W. Virtual screening for bioactive molecules by evolutionary de novo
design. Angew., Chem. Int. Ed. 39 (2000), 4130-4133.

Vinkers, M.H., De Jonge, M.R., Daeyaert, F.F.D., Heeres, J., Koymans, L.M.H., Van
Lenthe, J.H., Lewi, P.J., Timmerman, H., Van Aken, K., and Janssen, P.A.J.
SYNOPSIS: SYNthesize and Optimize System in Silico. Journal of Medicinal
Chemistry 46 (2003), 2765-2773.

Voigt, J.H., Bienfait, B., Wang S., and Nicklaus M.C. Comparison of the NCI Open
Database with Seven Large Chemical Structural Databases. Journal of Chemical
Information and Computer Sciences 41 (2001), 702-712.

Witten, L. A., Frank, E. (2000) "Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations”, Academic Press, San Diego.

148

Appendix: Comparing the old with the new mutation operators

To assess whether incorporating mined data into the mutation operators of the
Molecule Evoluator resulted in producing more realistic molecules, the 1000 most
frequently occurring one-connected branches of the NCI database were mutated using
both the knowledge-less and the knowledge-including versions of three mutation
operators. The old versions did not use any substructure frequency data, the new
versions used this data to calculate the relative frequencies of each substitution. The
number of branches in each run that was mutated into one of the other 6564 branches
was counted for 20 runs (maximum score of each run is 1000). In the table the results
of the individual runs are shown, as well as the averages over the runs and the ¢-test
probabilities that the new mutation versions differ from the old mutations.

Run Index | Old New Old New Old New
Add Add Insert Insert Change | Change

1 299 305 373 416 68 75

2 309 355 344 406 77 77

3 317 326 356 418 75 78

4 303 315 374 401 69 77

5 316 317 350 423 74 78

6 305 320 354 413 72 78

7 320 297 355 408 74 76

8 317 350 387 410 78 77

9 302 309 376 419 71 79

10 313 317 349 421 72 75

11 300 324 349 400 69 75

12 311 318 361 419 74 77

13 312 323 365 415 69 77

14 325 318 356 412 72 78

15 314 328 352 429 72 77

16 300 321 389 419 71 76

17 316 302 365 404 71 76

18 305 331 371 409 73 76

19 324 321 388 404 70 75

20 306 312 337 422 72 78

AVERAGE | 310.7 | 320.45 362.55 413.4 72.15 76.75

TTEST 0.0108 6.73E-14 1.4E-07

