
Interactive evolutionary algorithms and data mining for
drug design
Lameijer, E.M.W.

Citation
Lameijer, E. M. W. (2010, January 28). Interactive evolutionary algorithms
and data mining for drug design. Retrieved from
https://hdl.handle.net/1887/14620

Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/14620

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/14620

131

5

Using Data Mining to Improve Mutation
in a Tool for Molecular Evolution

Eric-Wubbo Lameijer1, Ad P. IJzerman1 and Joost N. Kok2

1Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, PO

Box 9502, 2300RA Leiden, The Netherlands
2Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1,

2333 CA Leiden, The Netherlands

This chapter was first presented at the Congress on Evolutionary Computation 2005.

Reference: Lameijer, E.W.; IJzerman, A.P.; Kok, J.N. Using data mining to improve

mutation in a tool for molecular evolution. Congress on Evolutionary Computation

2005, 314-321.

Abstract

We have developed an evolutionary algorithm-based program for drug design, the

Molecule Evoluator. This program transforms known molecules into new molecules

which may have improved properties relative to the parent molecule. Transforming the

parent molecule into a derivative by mutation is necessary to find molecules with

increased fitness. However, mutations that just randomly add and substitute atoms

often result in molecules that contain undesirable chemical substructures, and can

therefore not be used as drugs. We therefore want to add knowledge to the program

about which mutations result in proper chemical structures and which ones do not. In

this research we have mined a large chemical database, the World Drug Index, to

obtain the frequencies of small substructures in drug-like molecules. Some of our

mutation operators were subsequently modified to use these frequencies. Testing the

new mutation frequencies on another large database of molecules, the NCI database,

132

we found that the knowledge-based mutations more often produced existing molecules

than the original mutations. This suggests that the modified mutations produce

molecules that are easier to synthesize and more drug-like compared to the molecules

generated using the original uninformed mutation operators.

Introduction

Pharmaceuticals have a major impact on both public health and the economy. The

worldwide sales of pharmaceuticals were 491.8 billion dollars in 2003, and were

expected to grow by several billion dollars in 2004 (Class 2004). Pharmaceuticals have

also greatly improved human health. Many diseases that used to be dangerous or even

deadly, such as pneumonia and tetanus, have become much less dangerous, and people

with chronic ailments, such as diabetics and heart patients, live longer and healthier

lives thanks to the currently available medication.

 There are however still a number of diseases which are difficult to treat or where

current therapy has severe side effects. Dementias such as Alzheimer’s disease are yet

untreatable, advanced cancer can only be cured in rare cases, and viral diseases remain

difficult to fight.

 Given this demand for more and better treatments, pharmaceutical companies are

continually working to expand their arsenal of drugs. This is however not easy. A

medication such as a tablet works since it contains a specific chemical compound, the

molecules of which bind to large biological molecules (such as proteins) that are

involved in the disease. Drug molecules make these biomolecules more or less active

by binding to them. A good drug molecule should influence the biological process of

the disease in a beneficial way, but it should also be able to enter the part of the body

that needs to be treated, and should not cause side effects which would make the

treatment more damaging than the disease itself. It turns out to be very difficult to

create such a compound; it is estimated that only one out of 5000 screened candidate

compounds reaches the market as a drug (Rees 2003).

 The difficulty of finding new drug molecules has pushed the pharmaceutical

industry to try to improve its output using both experimental and computational

methods. Of these computational methods, the Evolutionary Algorithms (EAs) are

widely applied. Not only are they used to gain insight in the structures and functions of

genes and proteins (Fogel 2004), which is important for discovering which proteins to

target with a drug, they have also been applied to designing the drug molecules

133

themselves, such as designing compound libraries, docking small molecules into

proteins, and finding structure-activity relationships. Good overviews are given in the

book edited by Clark (Clark 2000) and in chapter 2 of this thesis. However, one of the

most interesting applications is the design of new drug molecules themselves, the so-

called de novo design.

 Several EAs for de novo design have been described in literature (Brown 2004,

Douguet 2000, Glen 1995, Globus 1999, Kamphausen 2002, Nachbar 1998, Pegg 2001,

Schneider 2000, Vinkers 2003, and others). The main differences between the various

methods are the molecule representations and the fitness functions.

 The molecule representation methods in EAs for de novo design can be divided

into atom-based and fragment-based methods. Atom-based methods build and modify

molecules by adding and modifying individual atoms. While atom-based methods can

create many more molecules than fragment-based methods, they often create molecules

which are difficult to synthesize (Douguet 2000). Fragment-based methods on the other

hand create molecules by connecting existing substructures. Fragment-based methods

therefore tend to create molecules that are easier to synthesize (though this is not

guaranteed (Vinkers 2003)), yet these methods seem less suitable for optimizing

molecular structures. Since the mutations replace/add or delete entire fragments (5-20

atoms), each mutation is a macromutation which results in a very different molecule,

the fitness of which may be very dissimilar to that of the parent. Also, since fragment-

based methods use bigger building blocks which cover only a small fraction of all

building blocks theoretically possible, they cannot cover the search space of drug-like

molecules as fully as atom-based methods.

 In the EA-based program we are developing, the Molecule Evoluator (chapter 4 of

this thesis), we want to be able to fine-tune molecular structures and to generate all

possible drug-like molecules. Therefore we have chosen for the atom-based

representation.

 The second important aspect of the EAs for de novo design is the fitness function.

The fitness functions that are most often used are “docking” (a procedure that fits the

molecule into a three dimensional model of the target protein and returns the

approximate binding energy), similarity to an existing drug molecule, and experiments.

However, these have not yet proven to be very useful since they are either too slow and

expensive to apply (experiments), or too inaccurate for optimization (docking,

molecular similarity). The best result published so far seems to be a derivative evolved

by Schneider (2000), which had a thousand-fold lower activity than the lead compound.

134

We therefore decided to try an alternative approach which could still use the

optimization power of an EA but would tap a different source of knowledge, the

medicinal chemist him/herself. Since the chemist performs the role of fitness function,

the Molecule Evoluator can use the chemist’s knowledge about how the molecular

structure influences the biological activity and how difficult the synthesis of the

molecule would be. In a typical session, the user would take a known molecule to seed

the population and let the program generate derivatives by applying various mutations,

such as adding or deleting atoms, breaking or making rings, etc. The chemist will then,

based on his/her estimates of structure-activity relationships and ease of synthesis,

select the most interesting mutants, which will then be used by the program to generate

a new population of derivatives.

 The general mechanism of the Molecule Evoluator and a screenshot of the

program in action are shown in figures 5.1 and 5.2, respectively.

Now we arrive at the main topic of our paper: improved mutation.

 One of the consequences of the atom-based mutations in the Molecule Evoluator

is that changing an atom into another atom can result in a molecule that is unstable or

difficult to synthesize, decomposing before it can exert any effect on the human body.

For example, changing a hydrogen atom into a fluorine atom is fine when the hydrogen

is attached to a carbon atom, but will result in a highly reactive and therefore un-drug-

like compound when the hydrogen is attached to an oxygen atom. Whether a mutation

leads to a chemically acceptable molecule therefore depends for a large part on the

atoms surrounding the mutation. We therefore want to modify the different mutation

functions in such a way that they will result in more reasonable mutants. For this we

however need knowledge about which mutations are reasonable.

 Our plan is to derive this knowledge from large chemical databases and adapt our

mutation operators accordingly.

 The outline of the rest of the paper is as follows: first we discuss our data mining

approach, then we introduce some of our mutation operators and discuss how we

adapted them using the data mining results. Subsequently we will present the results of

our experiments with the adapted mutation operators, comparing them with the original

operators and finally we will give our conclusions and indicate some of the remaining

questions and possibilities to use data mining for an EA such as the Molecule

Evoluator.

135

Figure 5.1: Overview of the evolutionary algorithm of the Molecule Evoluator.

Figure 5.2: The Molecule Evoluator generating variants of acetylsalicylic acid

(AspirinTM), the top left molecule.

136

Data Mining Approach

The process of discovering knowledge in databases is often called data mining. There

are many data mining methods (Witten 2000), able to handle widely different kinds of

data. However, the chemical applications of data mining are currently still quite limited.

This is probably because the most important data mining one can do in this field is

finding the relation between molecular structure and particular properties. This is

however very difficult. One of the reasons for this is that many of the existing data sets

are relatively small (dozens to hundreds of items). Also, the question remains how to

represent a chemical structure (a graph) so that it can be related to its properties. This is

still an open question and may depend on the specific application.

 One of the problems of the Molecule Evoluator was that many of the molecules

created by it were estimated by medicinal chemists to be difficult to synthesize. While

of course the chemist can filter out these molecules manually, in general there were so

many “bad” molecules per generation that evolution slowed down (many mutants were

not attractive, had very low fitness), even to the point that the user, who provides the

necessary fitness function, got annoyed.

 The most obvious fix, as proposed by the chemists, would be a library of

“forbidden substructures”. However, this fix has some disadvantages. First, chemical

rules are seldom absolute. Many substructures which are not particularly stable can and

do occur in drug molecules, only relatively rarely. Eliminating them entirely would

make the Molecule Evoluator incapable of finding some real drugs, which would

strongly limit its usefulness. Second, forbidding substructures does not solve the

problem of frequent versus infrequent substructures. While C-N-C is a perfectly

reasonable substructure, it is much rarer than C-C-C, and a program creating equal

amounts of both would produce molecules which look rather unusual and still may be

difficult to synthesize. Third, all chemists are necessarily subjective and may have

studied only about a few thousand structures in their lives, a small fraction of all

molecules ever made. A computer can easily search the millions of molecules which

have been created so far and can update its knowledge much more quickly.

 This gave us the idea to use a large database of drug molecules (the World Drug

Index) to find the frequencies of all occurring substructures and adapt the mutation

operators so that the mutants will be more drug-like and easier to synthesize than when

using “uninformed” mutations.

 We used the 2002 edition of the World Drug Index (Daylight 2005), containing

approximately 32000 drugs and other pharmacologically active compounds. An in-

137

house program counted the frequencies of all atoms (X), atom pairs (X-Y), atom

triplets (X-Y-Z) and sets of four atoms (both the linear X-Y-Z-A and the T-shaped X-

Y(-Z)-A). The types of substructures mined are shown in table 5.1. The substructures

and their occurrences were collected in a file. The counting algorithm counted all

groups starting at each atom in the molecule. So an N-C substructure yields 1 N-C and

1 C-N count, while a C-C substructure yields 2 C-C counts. For our mutations we have

corrected for this factor by dividing the counts of symmetric pairs and triplets of atoms

by 2, the T-structure-occurrences were divided by 6 if the three atoms surrounding the

core atom were identical, and divided by 2 if only two of them were the same.

 For computational efficiency, the frequencies of the substructures are read into

memory at the start of the program, so for each mutation there are typically only about

10 numbers which have to be fetched and scaled to determine the type of mutation,

which is a negligible amount (<0.1%) of the total runtime of the Evoluator.

Table 5.1: The substructure patterns mined from the World Drug Index. The

letters denote any possible atom type, the ‘-‘ characters all possible bond

types, to wit single, double and triple bonds.

Substructure
pattern

X X Y X Y Z

X
Y

A

Z
Example

 C C C O C

C
C

C

Cl

N

138

Adaptation of the Mutation Operators

To investigate the effects of adding knowledge to the mutation operators, we chose to

modify three mutations that the Molecule Evoluator uses to create new molecules.

These are the “add atom”, “insert atom” and “change atom” mutations, shown in table

5.2.

Table 5.2: The effects of the three mutation operators in this study.

Mutation name Initial structure Final structure

Add atom

Insert atom

Change atom

• The “add atom” mutation adds a non-hydrogen atom to the structure by replacing a

hydrogen atom by another atom, and adding hydrogens as necessary to fill the

remaining bonds of the new atom.

• The “insert atom” mutation takes a single bond between two non-hydrogen atoms

and inserts an atom between them.

• The “change atom" mutation changes a non-hydrogen atom into another non-

hydrogen atom (so it can exchange a carbon atom for a nitrogen atom, for

example).

CH2

CH2 CH2

CH2 CH2

CH2 CH2

CH
NH2

CH2

CH2 CH2

CH2

CH2 CH2

CH2

C
H2

CH2

CH2

CH2 CH2

CH2 CH2

CH2 CH2

S

139

The three mutations originally used estimated frequencies of the diverse atom types,

chosen such that the resulting molecules seemed drug-like. These estimates are shown

in table 5.3.

Table 5.3: The initial probabilities to add a certain type of atom to a

molecule using the “add” mutation.

Atom type Add-

frequency

C 0.725

O 0.109

N 0.109

S 0.022

P 0.000

F 0.007

Cl 0.014

Br 0.007

I 0.007

However, since the mutations were still context-independent, rare and reactive

subgroups such as O-O and N-F did occur much more frequently than would be

expected from looking at the World Drug Index. For example, the reactive O-O bond

occurs only 1.5 times per 10000 C-C bonds in the World Drug Index, but in the

original Evoluator it was generated 62 times per 10000 C-C bonds, 40 times more

frequently.

 We therefore decided to try and improve the mutations by making them context-

dependent. We introduce new versions of three of our mutation operators, the add atom

mutation, the insert atom mutation and the change atom mutation.

Add atom mutation: The add atom mutation works by picking a hydrogen from the

molecule and replacing it by a non-hydrogen atom. This non-hydrogen atom was

originally picked from the standard frequency table (table 5.3). We however modified

the algorithm to first look at the atom to which the hydrogen was attached (a hydrogen

atom has only one bond and is therefore attached to only one atom).

 If the hydrogen was attached to an atom of type X, the program looked up the

counts of the various X-Y substructures and converted these into a probability table.

140

This table indicated the probability that the hydrogen atom would be replaced by an

atom of type Y. So since there were 8246 C-Cl bonds, 2.5·10-3 part of the total number

of C-X bonds, and 12 O-Cl bonds, 3.5·10-5 of the total of O-X bonds, the probability of

substituting the hydrogen by Cl would be 2.5·10-3 in the case of a C-H group, and

3.5·10-5 in the case of an O-H group.

 Based on these frequencies, the Y-type was selected using a random-number

generator.

 In our experiments we found that using the raw WDI data improved upon our

original frequencies. To our initial surprise, however, the substructure frequencies of

the resulting molecules were significantly different from the WDI-frequencies. One of

the causes seemed to be that carbon atoms, having four bonds, have on average 2-3

hydrogens attached, other atoms less. This skewed the distribution markedly, resulting

for example in 60% more nitrogen atoms per carbon than expected. We have improved

on this situation by changing the input frequencies by an adaptive procedure until the

output frequencies resembled those of the WDI fairly well. This algorithm is depicted

as algorithm 5.1. Its results are illustrated in figure 5.3.

Insert atom mutation: When the Molecule Evoluator must choose an atom type to

insert between two atoms of type X and Y, the program searches for all X-A-Y-

patterns in the substructure database and makes a probability table of how likely it is to

find an atom of type A bonded to type X and Y. For example, if the bond is between C

and O, the probability of finding a carbon-in-between pattern (CCO) is 0.97, and

nitrogen in between 0.012, in contrast to the “raw” probabilities of C versus N of 0.37

versus 0.04 in the entire World Drug Index.

Change atom mutation: The change atom mutation was the most complicated

mutation to modify as the atom to be changed can have one, two or three non-hydrogen

atoms surrounding it. Depending on the number of surrounding non-hydrogen atoms,

the X-A, X-A-Y or X-A-(Z)-Y patterns are looked up and the frequency table is

created. Table 5.4 is an example of one of these tables generated by the program.

141

Algorithm 5.1: Algorithm for iterative refinement of the input two-atom
frequencies to produce molecules with similar two-atom substructure
frequencies as the World Drug Index.

 inputFrequencies = WDIfrequencies;

 do

 generate database of molecules using

 inputFrequencies;

 newFrequencies = count two-atom frequencies

 in new database;

 frequencyCorrectionFactors=

 newFrequencies/WDIFrequencies

 mediumCorrectionFactors

 =(frequencyCorrectionFactors + 1) / 2

 inputFrequencies = inputFrequencies *

 mediumCorrectionFactors

while newFrequencies differ significantly from

 WDIFrequencies

Figure 5.3: Iterative refinement results in the substructure counts getting

closer and closer to those of the World Drug Index (all counts are scaled to

make the count of CC-bonds 10000). Since the y-scale is logarithmic, some

of the gains in accuracy seem smaller than they are: the number of C-N

bonds went from 66% too much to 8% too much, and C-Cl from 23% too

little to 2% too little.

0

1

2

3

4

5

C-C
:

C-O
:

C-N
:

C-S
:

C-P
:

C-F
:

C-C
l:

C-B
r:

C-I:

Bond type

lo
g

(c
o

u
n

t)

Using Raw WDI
Frequencies

After 3 iterations

WDI Frequencies

142

Table 5.4: Using substructure counts to calculate the probability that an

atom flanked by a C and a N atom is changed into a specific other atom

type. Substructures which are chemically impossible, such as “C-H-N” in

which the hydrogen has two bonds instead of the allowed maximum of one,

are indeed not found in the database (count is 0).

Substructure Count Probability

C-C-N 323618 0.964

C-H-N 0 0.000

C-O-N 1179 0.004

C-N-N 9060 0.027

C-S-N 1693 0.005

C-P-N 11 0.000

C-F-N 0 0.000

C-Cl-N 0 0.000

C-Br-N 0 0.000

C-I-N 0 0.000

Experiments

After we had modified the three mutation operators to use the data of the World Drug

Index, we wanted to find out whether making the mutation operators context-sensitive

increased their likeliness to generate “normal” molecules. As a test, we took the

database of the National Cancer Institute (National Cancer Institute 2005), 250251

compounds. The NCI database contains molecules which were tested for biological

activity, i.e. anti-tumor activity. It has only about 3% overlap with the World Drug

Index (Voigt 2001), making it suitable for validation in this study.

The question then remaining is how to validate whether modifying the mutation

operators improves the drug-likeness and ease of synthesis of the mutants.

The best proof of this would take an existing compound, apply a mutation to it, and

find that the derived compound also exists in the database.

However, as it has been estimated that there are over 1060 molecules possible

(Bohacek 1996), it seemed unreasonable to demand that our new algorithm would

transform all existing NCI molecules into other existing NCI molecules. However, we

can reduce the search space by splitting the molecules into fragments (figure 5.4). The

143

chance that a certain fragment is mutated into another known fragment is likely to be

much larger than the theoretical molecule to molecule “mutation success ratio” of

2,5·105/1060, since the smaller size of the fragments will greatly reduce the search

space.

ring systems

substituents

linkers

ring systems

substituents

linkers

Figure 5.4: Splitting an example molecule, folic acid, into fragments.

The set of fragments we took from the NCI database was the 6765-item ‘one-connected

branches’ set, that is, all non-ring parts of the molecules that were attached to only one

ring, such as the =O, -NH2 and –C(=O)NHC(COOH)CCCOOH groups in figure 4.

First we removed the branches with atom types that the Molecule Evoluator does not

recognize, such as metal atoms (which are extremely rare in drugs) to get a data set of

6564 branches. We then performed atom mutations on the 1000 most frequent branches

of the set and recorded how many were mutated into other existing branches. This

experiment was repeated 20 times for both the old and new versions of the three

mutations. Student’s t-test indicated that all three mutations were improved

significantly (values ranging from 0.01 to 7·10-14). The details of the runs are shown in

the appendix at page 152.

 The results of the mutation-experiments are shown in table 5.5.

144

Table 5.5: Average probability that a specific mutation of a NCI branch will

produce another NCI-branch for the informed and uninformed mutations.

The t-test column contains the probability that the observed differences in

performance are due to chance.

 Old average New average t-test

Add atom 0.3107 0.3205 0.0108

Insert atom 0.3626 0.4134 6.73E-14

Change atom 0.0722 0.0768 1.4E-07

Discussion

Using knowledge to guide mutation seems to improve upon the old, uninformed

methods. Could we improve the Evoluator further by using even bigger substructures

to guide the mutations? To some extent, this may be desirable. For example, a

C(=O)OC is an ester group, and the second O can be easily exchanged for N, probably

more easily than when the (=O) is lacking. However, one should be cautious when

interpreting the extra data gained from using larger groups since:

1) Larger groups have lower frequencies, conclusions drawn from them will be

statistically less reliable.

2) High occurrence of very large substructures may just reflect existing chemicals,

chemical “prejudice” and biological coincidence rather than fundamental rules of

chemistry. For example, in the NCI database are many sugar groups attached to

purine rings. This however does not reflect any chemical rule that this is especially

easy to synthesize but merely the biological coincidence that some nucleosides

contain a purine attached to a sugar group, and since many nucleoside-like

compounds are active against cancer or HIV, many researchers have made variants

of sugar-purine compounds.

3) The further atoms are removed from the atom that is to be mutated, the smaller is

their influence; there will be diminishing returns in taking larger and larger

substructures, in which the new information will slowly become too noisy to be

useful.

145

So while we could enlarge the substructures used by the mutation operators, the value

of such an extension should be critically investigated.

 Another extension would be to modify the other mutation operators so that they

use the knowledge in the database. This might not be very straightforward for some

operators: the “delete atom” would have to go over each 3-atom set in the molecule,

and delete atoms with a probability inversely proportional to the occurrence of the 3-

atom set relative to the two-atom set. On the other hand, to perfect the “make ring” and

“break ring” mutations we would have to mine the distribution of ring sizes and ring

frequencies instead of the substructure frequencies. Mining and implementing the

acquired data would probably be quite straightforward in that case.

 Data mining to modify the mutation operators seems useful in this investigation.

While we do not know the extent in which data mining to make mutations context-

dependent is applied in the EA community, it may be quite useful when there are large

databases available of reasonably fit individuals. However, the question remains

whether an individual does not exist in the database because it is not fit or just because

it has not been thought of yet. A “negative” database of very unfit individuals could

help resolve such cases, though these unfortunately do not seem to be very prevalent, at

least not in the drug development community.

 In any case, it seems useful to add data to our EA. Of course, we should apply the

mining with care, and not impose so many rules on newly generated compounds that

they cannot have novel or interesting structures anymore. Using our non-informed

mutations, the Molecule Evoluator was probably a bit too much “original”, making

large parts of the offspring molecules unsuitable for further evolution. Data mining will

help to diminish this percentage of molecules and thereby speed up evolution. However,

the logical limit would be requiring absolute certainty that a compound can be made.

And that can currently only be reached by knowing that the molecule already exists in

a molecular database. This would unfortunately preclude finding any novel molecules

and greatly limit the optimization. We should therefore find a way between unpractical

novelty and conservative clichés. But such a discussion will only be about how

important we allow data mining to become in our approach: that data mining is useful,

is clear.

146

Conclusions

In this research, we have improved the mutations of the molecule design program “The

Molecule Evoluator” by using data mined from a drug database. Using the counts of

various small substructures in the database, we found that the amount of unusual

substructures decreased, and that mutations had a larger chance to transform existing

molecular fragments into other existing molecular fragments. We think that the

enhanced generation of existing structures additionally suggests that also the non-

existing mutants generated by our “informed” mutation operators may be closer to

molecules that are drug-like and can be synthesized than the mutants generated by the

uninformed mutations are. Mining databases may be a good method to making the de

novo generated molecules easier to synthesize while keeping the advantages of

covering the full space of drug-like molecules and the likely faster and more robust

optimization that atom-based molecule optimization can give.

Acknowledgments

The authors thank Thomas Bäck for his help in improving this document and for the

ongoing inspiration and support he provides to the Molecule Evoluator project.

References

Bohacek, R.S., McMartin, C., and Guida, W.C., The Art and Practice of Structure-Based

Drug Design: A Molecular Modeling Perspective. Medicinal Research Reviews 16

(1996) 3-50.

Brown, N., McKay, B., Gilardoni, F., and Gasteiger, J. A Graph-Based Genetic Algorithm

and Its Application to the Multiobjective Evolution of Median Molecules. Journal of

Chemical Information and Computer Sciences 44 (2004), 1079-1087.

Class, S. Health care in Focus. Chemical & Engineering News, Dec 6th 2004, 18-29.

Clark, DE (ed) (2000) Evolutionary Algorithms in Molecular Design. Wiley-VCH,

Weinheim. Daylight (2005) http://www.daylight.com/products/ databases/WDI.html

Douguet, D., Thoreau, E. and Grassy, G. A genetic algorithm for the automated generation

of small organic molecules: Drug design using an evolutionary algorithm. Journal of

Computer-Aided Molecular Design 14 (2000), 449-466.

147

Glen, R.C., and Payne, A.W.R. A genetic algorithm for the automated generation of

molecules within constraints. Journal of Computer-Aided Molecular Design 9 (1995),

181-202.

Globus, A., Lawton, J. and Wipke, T. Automated molecular design using evolutionary

techniques. Nanotechnology 10 (1999), 290-299.

Kamphausen, S., Höltge, N., Wirsching, F., Morys-Wortmann, C., Riester, D., Goetz, R.,

Thürk, M. and Schwienhorst, A. Genetic algorithm for the design of molecules with

desired properties. Journal of Computer-Aided Molecular Design 16 (2002), 551-567.

Nachbar, R.B. Molecular Evolution: A Hierarchical Representation for Chemical Topology

and Its Automated Manipulation. In Genetic Programming 1998: Proceedings of the

Third Annual Conference (University of Wisconsin, Madison, Wisconsin, July 22-25,

1998). Morgan Kaufmann, San Francisco, CA, 1998, 246-253.

National Cancer Institute (2005) http://cactus.nci.nih. gov/ncidb2/download.html. Most

recent access May 2005, last version of 2D database (August 2000) used.

Pegg, S.C.-H., Haresco, J.J., and Kuntz, I.D. A genetic algorithm for structure-based de

novo design. Journal of Computer-Aided Molecular Design 15 (2001), 911-933.

Rees, P. Big pharma learns how to love IT. Scientific Computing World (2003), 16-18.

Schneider, G., Clément-Chomienne, O., Hilfiger L. Schneider, P., Kirsch, S., Böhm, H.-J.,

and Neidhart, W. Virtual screening for bioactive molecules by evolutionary de novo

design. Angew., Chem. Int. Ed. 39 (2000), 4130-4133.

Vinkers, M.H., De Jonge, M.R., Daeyaert, F.F.D., Heeres, J., Koymans, L.M.H., Van

Lenthe, J.H., Lewi, P.J., Timmerman, H., Van Aken, K., and Janssen, P.A.J.

SYNOPSIS: SYNthesize and Optimize System in Silico. Journal of Medicinal

Chemistry 46 (2003), 2765-2773.

Voigt, J.H., Bienfait, B., Wang S., and Nicklaus M.C. Comparison of the NCI Open

Database with Seven Large Chemical Structural Databases. Journal of Chemical

Information and Computer Sciences 41 (2001), 702-712.

Witten, I.A., Frank, E. (2000) "Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations”, Academic Press, San Diego.

148

Appendix: Comparing the old with the new mutation operators

To assess whether incorporating mined data into the mutation operators of the
Molecule Evoluator resulted in producing more realistic molecules, the 1000 most
frequently occurring one-connected branches of the NCI database were mutated using
both the knowledge-less and the knowledge-including versions of three mutation
operators. The old versions did not use any substructure frequency data, the new
versions used this data to calculate the relative frequencies of each substitution. The
number of branches in each run that was mutated into one of the other 6564 branches
was counted for 20 runs (maximum score of each run is 1000). In the table the results
of the individual runs are shown, as well as the averages over the runs and the t-test
probabilities that the new mutation versions differ from the old mutations.

Run Index Old
Add

New
Add

 Old
Insert

New
Insert

 Old
Change

New
Change

1 299 305 373 416 68 75
2 309 355 344 406 77 77
3 317 326 356 418 75 78
4 303 315 374 401 69 77
5 316 317 350 423 74 78
6 305 320 354 413 72 78
7 320 297 355 408 74 76
8 317 350 387 410 78 77
9 302 309 376 419 71 79
10 313 317 349 421 72 75
11 300 324 349 400 69 75
12 311 318 361 419 74 77
13 312 323 365 415 69 77
14 325 318 356 412 72 78
15 314 328 352 429 72 77
16 300 321 389 419 71 76
17 316 302 365 404 71 76
18 305 331 371 409 73 76
19 324 321 388 404 70 75
20 306 312 337 422 72 78
AVERAGE 310.7 320.45 362.55 413.4 72.15 76.75
TTEST 0.0108 6.73E-14 1.4E-07

