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Abstract 
 

We have developed an evolutionary algorithm-based program for drug design, the 

Molecule Evoluator. This program transforms known molecules into new molecules 

which may have improved properties relative to the parent molecule. Transforming the 

parent molecule into a derivative by mutation is necessary to find molecules with 

increased fitness. However, mutations that just randomly add and substitute atoms 

often result in molecules that contain undesirable chemical substructures, and can 

therefore not be used as drugs. We therefore want to add knowledge to the program 

about which mutations result in proper chemical structures and which ones do not. In 

this research we have mined a large chemical database, the World Drug Index, to 

obtain the frequencies of small substructures in drug-like molecules. Some of our 

mutation operators were subsequently modified to use these frequencies. Testing the 

new mutation frequencies on another large database of molecules, the NCI database, 
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we found that the knowledge-based mutations more often produced existing molecules 

than the original mutations. This suggests that the modified mutations produce 

molecules that are easier to synthesize and more drug-like compared to the molecules 

generated using the original uninformed mutation operators.  

 

 

Introduction 
 

Pharmaceuticals have a major impact on both public health and the economy. The 

worldwide sales of pharmaceuticals were 491.8 billion dollars in 2003, and were 

expected to grow by several billion dollars in 2004 (Class 2004). Pharmaceuticals have 

also greatly improved human health. Many diseases that used to be dangerous or even 

deadly, such as pneumonia and tetanus, have become much less dangerous, and people 

with chronic ailments, such as diabetics and heart patients, live longer and healthier 

lives thanks to the currently available medication. 

 There are however still a number of diseases which are difficult to treat or where 

current therapy has severe side effects. Dementias such as Alzheimer’s disease are yet 

untreatable, advanced cancer can only be cured in rare cases, and viral diseases remain 

difficult to fight.  

 Given this demand for more and better treatments, pharmaceutical companies are 

continually working to expand their arsenal of drugs. This is however not easy. A 

medication such as a tablet works since it contains a specific chemical compound, the 

molecules of which bind to large biological molecules (such as proteins) that are 

involved in the disease. Drug molecules make these biomolecules more or less active 

by binding to them. A good drug molecule should influence the biological process of 

the disease in a beneficial way, but it should also be able to enter the part of the body 

that needs to be treated, and should not cause side effects which would make the 

treatment more damaging than the disease itself. It turns out to be very difficult to 

create such a compound; it is estimated that only one out of 5000 screened candidate 

compounds reaches the market as a drug (Rees 2003). 

 The difficulty of finding new drug molecules has pushed the pharmaceutical 

industry to try to improve its output using both experimental and computational 

methods. Of these computational methods, the Evolutionary Algorithms (EAs) are 

widely applied. Not only are they used to gain insight in the structures and functions of 

genes and proteins (Fogel 2004), which is important for discovering which proteins to 

target with a drug, they have also been applied to designing the drug molecules 
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themselves, such as designing compound libraries, docking small molecules into 

proteins, and finding structure-activity relationships. Good overviews are given in the 

book edited by Clark (Clark 2000) and in chapter 2 of this thesis. However, one of the 

most interesting applications is the design of new drug molecules themselves, the so-

called de novo design. 

 Several EAs for de novo design have been described in literature (Brown 2004, 

Douguet 2000, Glen 1995, Globus 1999, Kamphausen 2002, Nachbar 1998, Pegg 2001, 

Schneider 2000, Vinkers 2003, and others). The main differences between the various 

methods are the molecule representations and the fitness functions.  

 The molecule representation methods in EAs for de novo design can be divided 

into atom-based and fragment-based methods. Atom-based methods build and modify 

molecules by adding and modifying individual atoms. While atom-based methods can 

create many more molecules than fragment-based methods, they often create molecules 

which are difficult to synthesize (Douguet 2000). Fragment-based methods on the other 

hand create molecules by connecting existing substructures. Fragment-based methods 

therefore tend to create molecules that are easier to synthesize (though this is not 

guaranteed (Vinkers 2003)), yet these methods seem less suitable for optimizing 

molecular structures. Since the mutations replace/add or delete entire fragments (5-20 

atoms), each mutation is a macromutation which results in a very different molecule, 

the fitness of which may be very dissimilar to that of the parent. Also, since fragment-

based methods use bigger building blocks which cover only a small fraction of all 

building blocks theoretically possible, they cannot cover the search space of drug-like 

molecules as fully as atom-based methods. 

 In the EA-based program we are developing, the Molecule Evoluator (chapter 4 of 

this thesis), we want to be able to fine-tune molecular structures and to generate all 

possible drug-like molecules. Therefore we have chosen for the atom-based 

representation. 

 The second important aspect of the EAs for de novo design is the fitness function. 

The fitness functions that are most often used are “docking” (a procedure that fits the 

molecule into a three dimensional model of the target protein and returns the 

approximate binding energy), similarity to an existing drug molecule, and experiments. 

However, these have not yet proven to be very useful since they are either too slow and 

expensive to apply (experiments), or too inaccurate for optimization (docking, 

molecular similarity). The best result published so far seems to be a derivative evolved 

by Schneider (2000), which had a thousand-fold lower activity than the lead compound. 
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We therefore decided to try an alternative approach which could still use the 

optimization power of an EA but would tap a different source of knowledge, the 

medicinal chemist him/herself. Since the chemist performs the role of fitness function, 

the Molecule Evoluator can use the chemist’s knowledge about how the molecular 

structure influences the biological activity and how difficult the synthesis of the 

molecule would be. In a typical session, the user would take a known molecule to seed 

the population and let the program generate derivatives by applying various mutations, 

such as adding or deleting atoms, breaking or making rings, etc. The chemist will then, 

based on his/her estimates of structure-activity relationships and ease of synthesis, 

select the most interesting mutants, which will then be used by the program to generate 

a new population of derivatives. 

 The general mechanism of the Molecule Evoluator and a screenshot of the 

program in action are shown in figures 5.1 and 5.2, respectively. 

 

Now we arrive at the main topic of our paper: improved mutation. 

 One of the consequences of the atom-based mutations in the Molecule Evoluator 

is that changing an atom into another atom can result in a molecule that is unstable or 

difficult to synthesize, decomposing before it can exert any effect on the human body. 

For example, changing a hydrogen atom into a fluorine atom is fine when the hydrogen 

is attached to a carbon atom, but will result in a highly reactive and therefore un-drug-

like compound when the hydrogen is attached to an oxygen atom. Whether a mutation 

leads to a chemically acceptable molecule therefore depends for a large part on the 

atoms surrounding the mutation. We therefore want to modify the different mutation 

functions in such a way that they will result in more reasonable mutants. For this we 

however need knowledge about which mutations are reasonable.  

 Our plan is to derive this knowledge from large chemical databases and adapt our 

mutation operators accordingly.  

 The outline of the rest of the paper is as follows: first we discuss our data mining 

approach, then we introduce some of our mutation operators and discuss how we 

adapted them using the data mining results. Subsequently we will present the results of 

our experiments with the adapted mutation operators, comparing them with the original 

operators and finally we will give our conclusions and indicate some of the remaining 

questions and possibilities to use data mining for an EA such as the Molecule 

Evoluator. 
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Figure 5.1: Overview of the evolutionary algorithm of the Molecule Evoluator. 

 
 
 

            
 

Figure 5.2: The Molecule Evoluator generating variants of acetylsalicylic acid 

(AspirinTM), the top left molecule. 
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Data Mining Approach 
 

The process of discovering knowledge in databases is often called data mining. There 

are many data mining methods (Witten 2000), able to handle widely different kinds of 

data. However, the chemical applications of data mining are currently still quite limited. 

This is probably because the most important data mining one can do in this field is 

finding the relation between molecular structure and particular properties. This is 

however very difficult. One of the reasons for this is that many of the existing data sets 

are relatively small (dozens to hundreds of items). Also, the question remains how to 

represent a chemical structure (a graph) so that it can be related to its properties. This is 

still an open question and may depend on the specific application. 

 One of the problems of the Molecule Evoluator was that many of the molecules 

created by it were estimated by medicinal chemists to be difficult to synthesize. While 

of course the chemist can filter out these molecules manually, in general there were so 

many “bad” molecules per generation that evolution slowed down (many mutants were 

not attractive, had very low fitness), even to the point that the user, who provides the 

necessary fitness function, got annoyed. 

 The most obvious fix, as proposed by the chemists, would be a library of 

“forbidden substructures”. However, this fix has some disadvantages. First, chemical 

rules are seldom absolute. Many substructures which are not particularly stable can and 

do occur in drug molecules, only relatively rarely. Eliminating them entirely would 

make the Molecule Evoluator incapable of finding some real drugs, which would 

strongly limit its usefulness. Second, forbidding substructures does not solve the 

problem of frequent versus infrequent substructures. While C-N-C is a perfectly 

reasonable substructure, it is much rarer than C-C-C, and a program creating equal 

amounts of both would produce molecules which look rather unusual and still may be 

difficult to synthesize. Third, all chemists are necessarily subjective and may have 

studied only about a few thousand structures in their lives, a small fraction of all 

molecules ever made. A computer can easily search the millions of molecules which 

have been created so far and can update its knowledge much more quickly.  

 This gave us the idea to use a large database of drug molecules (the World Drug 

Index) to find the frequencies of all occurring substructures and adapt the mutation 

operators so that the mutants will be more drug-like and easier to synthesize than when 

using “uninformed” mutations. 

 We used the 2002 edition of the World Drug Index (Daylight 2005), containing 

approximately 32000 drugs and other pharmacologically active compounds. An in-
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house program counted the frequencies of all atoms (X), atom pairs (X-Y), atom 

triplets (X-Y-Z) and sets of four atoms (both the linear X-Y-Z-A and the T-shaped X-

Y(-Z)-A). The types of substructures mined are shown in table 5.1. The substructures 

and their occurrences were collected in a file. The counting algorithm counted all 

groups starting at each atom in the molecule. So an N-C substructure yields 1 N-C and 

1 C-N count, while a C-C substructure yields 2 C-C counts. For our mutations we have 

corrected for this factor by dividing the counts of symmetric pairs and triplets of atoms 

by 2, the T-structure-occurrences were divided by 6 if the three atoms surrounding the 

core atom were identical, and divided by 2 if only two of them were the same. 

 For computational efficiency, the frequencies of the substructures are read into 

memory at the start of the program, so for each mutation there are typically only about 

10 numbers which have to be fetched and scaled to determine the type of mutation, 

which is a negligible amount (<0.1%) of the total runtime of the Evoluator. 

 

 
Table 5.1: The substructure patterns mined from the World Drug Index. The 

letters denote any possible atom type, the ‘-‘ characters all possible bond 

types, to wit single, double and triple bonds. 

  
Substructure 
pattern 

X X Y  X Y Z  

X
Y

A

Z  
Example 

 C C  C O C  

C
C

C

Cl

 
 

 
 
 
 
 
 
 
 
 
 

N
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Adaptation of the Mutation Operators  
 

To investigate the effects of adding knowledge to the mutation operators, we chose to 

modify three mutations that the Molecule Evoluator uses to create new molecules. 

These are the “add atom”, “insert atom” and “change atom” mutations, shown in table 

5.2. 

 

Table 5.2: The effects of the three mutation operators in this study. 
 

Mutation name Initial structure  Final structure 

Add atom  

  

Insert atom  
 

  

Change atom 

  
 
 

• The “add atom” mutation adds a non-hydrogen atom to the structure by replacing a 

hydrogen atom by another atom, and adding hydrogens as necessary to fill the 

remaining bonds of the new atom. 

• The “insert atom” mutation takes a single bond between two non-hydrogen atoms 

and inserts an atom between them.  

• The “change atom" mutation changes a non-hydrogen atom into another non-

hydrogen atom (so it can exchange a carbon atom for a nitrogen atom, for 

example).  

 

 

 

 

 

CH2

CH2 CH2

CH2 CH2

CH2 CH2

CH
NH2

CH2

CH2 CH2

CH2

CH2 CH2

CH2

C
H2

CH2

CH2

CH2 CH2

CH2 CH2

CH2 CH2

S
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The three mutations originally used estimated frequencies of the diverse atom types, 

chosen such that the resulting molecules seemed drug-like. These estimates are shown 

in table 5.3. 

 
Table 5.3: The initial probabilities to add a certain type of atom to a 

molecule using the “add” mutation. 

 

Atom type Add-

frequency 

C 0.725 

O 0.109 

N 0.109 

S 0.022 

P 0.000 

F 0.007 

Cl 0.014 

Br 0.007 

I 0.007 

 

However, since the mutations were still context-independent, rare and reactive 

subgroups such as O-O and N-F did occur much more frequently than would be 

expected from looking at the World Drug Index. For example, the reactive O-O bond 

occurs only 1.5 times per 10000 C-C bonds in the World Drug Index, but in the 

original Evoluator it was generated 62 times per 10000 C-C bonds, 40 times more 

frequently. 

 We therefore decided to try and improve the mutations by making them context-

dependent. We introduce new versions of three of our mutation operators, the add atom 

mutation, the insert atom mutation and the change atom mutation. 

 

Add atom mutation: The add atom mutation works by picking a hydrogen from the 

molecule and replacing it by a non-hydrogen atom. This non-hydrogen atom was 

originally picked from the standard frequency table (table 5.3). We however modified 

the algorithm to first look at the atom to which the hydrogen was attached (a hydrogen 

atom has only one bond and is therefore attached to only one atom). 

 If the hydrogen was attached to an atom of type X, the program looked up the 

counts of the various X-Y substructures and converted these into a probability table. 
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This table indicated the probability that the hydrogen atom would be replaced by an 

atom of type Y. So since there were 8246 C-Cl bonds, 2.5·10-3 part of the total number 

of C-X bonds, and 12 O-Cl bonds, 3.5·10-5 of the total of O-X bonds, the probability of 

substituting the hydrogen by Cl would be 2.5·10-3 in the case of a C-H group, and 

3.5·10-5 in the case of an O-H group. 

 Based on these frequencies, the Y-type was selected using a random-number 

generator. 

 In our experiments we found that using the raw WDI data improved upon our 

original frequencies. To our initial surprise, however, the substructure frequencies of 

the resulting molecules were significantly different from the WDI-frequencies. One of 

the causes seemed to be that carbon atoms, having four bonds, have on average 2-3 

hydrogens attached, other atoms less. This skewed the distribution markedly, resulting 

for example in 60% more nitrogen atoms per carbon than expected. We have improved 

on this situation by changing the input frequencies by an adaptive procedure until the 

output frequencies resembled those of the WDI fairly well. This algorithm is depicted 

as algorithm 5.1. Its results are illustrated in figure 5.3. 

 

Insert atom mutation: When the Molecule Evoluator must choose an atom type to 

insert between two atoms of type X and Y, the program searches for all X-A-Y-

patterns in the substructure database and makes a probability table of how likely it is to 

find an atom of type A bonded to type X and Y. For example, if the bond is between C 

and O, the probability of finding a carbon-in-between pattern (CCO) is 0.97, and 

nitrogen in between 0.012, in contrast to the “raw” probabilities of C versus N of 0.37 

versus 0.04 in the entire World Drug Index. 

 

Change atom mutation: The change atom mutation was the most complicated 

mutation to modify as the atom to be changed can have one, two or three non-hydrogen 

atoms surrounding it. Depending on the number of surrounding non-hydrogen atoms, 

the X-A, X-A-Y or X-A-(Z)-Y patterns are looked up and the frequency table is 

created. Table 5.4 is an example of one of these tables generated by the program. 

 

 

 

 

 

 
 



141 

 

Algorithm 5.1: Algorithm for iterative refinement of the input two-atom 
frequencies to produce molecules with similar two-atom substructure 
frequencies as the World Drug Index. 

 

 inputFrequencies = WDIfrequencies; 

 do 

   generate database of molecules using  

    inputFrequencies; 

   newFrequencies = count two-atom frequencies 

    in new database; 

   frequencyCorrectionFactors= 

    newFrequencies/WDIFrequencies 

 mediumCorrectionFactors  

  =(frequencyCorrectionFactors + 1 ) / 2 

   inputFrequencies = inputFrequencies *  

    mediumCorrectionFactors 

while newFrequencies differ significantly from  

 WDIFrequencies 

 
 
 

             
 

Figure 5.3: Iterative refinement results in the substructure counts getting 

closer and closer to those of the World Drug Index (all counts are scaled to 

make the count of CC-bonds 10000). Since the y-scale is logarithmic, some 

of the gains in accuracy seem smaller than they are: the number of C-N 

bonds went from 66% too much to 8% too much, and C-Cl from 23% too 

little to 2% too little. 
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Table 5.4: Using substructure counts to calculate the probability that an 

atom flanked by a C and a N atom is changed into a specific other atom 

type. Substructures which are chemically impossible, such as “C-H-N” in 

which the hydrogen has two bonds instead of the allowed maximum of one, 

are indeed not found in the database (count is 0). 

 

Substructure Count Probability 

C-C-N 323618 0.964 

C-H-N 0 0.000 

C-O-N 1179 0.004 

C-N-N 9060 0.027 

C-S-N 1693 0.005 

C-P-N 11 0.000 

C-F-N 0 0.000 

C-Cl-N 0 0.000 

C-Br-N 0 0.000 

C-I-N 0 0.000 

 

 

Experiments  
 

After we had modified the three mutation operators to use the data of the World Drug 

Index, we wanted to find out whether making the mutation operators context-sensitive 

increased their likeliness to generate “normal” molecules. As a test, we took the 

database of the National Cancer Institute (National Cancer Institute 2005), 250251 

compounds. The NCI database contains molecules which were tested for biological 

activity, i.e. anti-tumor activity. It has only about 3% overlap with the World Drug 

Index (Voigt 2001), making it suitable for validation in this study. 

The question then remaining is how to validate whether modifying the mutation 

operators improves the drug-likeness and ease of synthesis of the mutants. 

The best proof of this would take an existing compound, apply a mutation to it, and 

find that the derived compound also exists in the database.  

However, as it has been estimated that there are over 1060 molecules possible 

(Bohacek 1996), it seemed unreasonable to demand that our new algorithm would 

transform all existing NCI molecules into other existing NCI molecules. However, we 

can reduce the search space by splitting the molecules into fragments (figure 5.4). The 
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chance that a certain fragment is mutated into another known fragment is likely to be 

much larger than the theoretical molecule to molecule “mutation success ratio” of 

2,5·105/1060, since the smaller size of the fragments will greatly reduce the search 

space. 
      

ring systems

substituents

linkers

ring systems

substituents

linkers

 
 

Figure 5.4: Splitting an example molecule, folic acid, into fragments. 

 

 

The set of fragments we took from the NCI database was the 6765-item ‘one-connected 

branches’ set, that is, all non-ring parts of the molecules that were attached to only one 

ring, such as the =O, -NH2 and –C(=O)NHC(COOH)CCCOOH groups in figure 4. 

First we removed the branches with atom types that the Molecule Evoluator does not 

recognize, such as metal atoms (which are extremely rare in drugs) to get a data set of 

6564 branches. We then performed atom mutations on the 1000 most frequent branches 

of the set and recorded how many were mutated into other existing branches. This 

experiment was repeated 20 times for both the old and new versions of the three 

mutations. Student’s t-test indicated that all three mutations were improved 

significantly (values ranging from 0.01 to 7·10-14). The details of the runs are shown in 

the appendix at page 152. 

 The results of the mutation-experiments are shown in table 5.5. 
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Table 5.5: Average probability that a specific mutation of a NCI branch will 

produce another NCI-branch for the informed and uninformed mutations. 

The t-test column contains the probability that the observed differences in 

performance are due to chance. 

 

 Old average New average t-test 

Add atom 0.3107 0.3205 0.0108 

Insert atom 0.3626 0.4134 6.73E-14 

Change atom 0.0722 0.0768 1.4E-07 

 
 
Discussion 
 

Using knowledge to guide mutation seems to improve upon the old, uninformed 

methods. Could we improve the Evoluator further by using even bigger substructures 

to guide the mutations? To some extent, this may be desirable. For example, a 

C(=O)OC is an ester group, and the second O can be easily exchanged for N, probably 

more easily than when the (=O) is lacking. However, one should be cautious when 

interpreting the extra data gained from using larger groups since: 

 

1) Larger groups have lower frequencies, conclusions drawn from them will be 

statistically less reliable. 

2) High occurrence of very large substructures may just reflect existing chemicals, 

chemical “prejudice” and biological coincidence rather than fundamental rules of 

chemistry. For example, in the NCI database are many sugar groups attached to 

purine rings. This however does not reflect any chemical rule that this is especially 

easy to synthesize but merely the biological coincidence that some nucleosides 

contain a purine attached to a sugar group, and since many nucleoside-like 

compounds are active against cancer or HIV, many researchers have made variants 

of sugar-purine compounds.  

3) The further atoms are removed from the atom that is to be mutated, the smaller is 

their influence; there will be diminishing returns in taking larger and larger 

substructures, in which the new information will slowly become too noisy to be 

useful. 
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So while we could enlarge the substructures used by the mutation operators, the value 

of such an extension should be critically investigated. 

 Another extension would be to modify the other mutation operators so that they 

use the knowledge in the database. This might not be very straightforward for some 

operators: the “delete atom” would have to go over each 3-atom set in the molecule, 

and delete atoms with a probability inversely proportional to the occurrence of the 3-

atom set relative to the two-atom set. On the other hand, to perfect the “make ring” and 

“break ring” mutations we would have to mine the distribution of ring sizes and ring 

frequencies instead of the substructure frequencies. Mining and implementing the 

acquired data would probably be quite straightforward in that case. 

 Data mining to modify the mutation operators seems useful in this investigation. 

While we do not know the extent in which data mining to make mutations context-

dependent is applied in the EA community, it may be quite useful when there are large 

databases available of reasonably fit individuals. However, the question remains 

whether an individual does not exist in the database because it is not fit or just because 

it has not been thought of yet. A “negative” database of very unfit individuals could 

help resolve such cases, though these unfortunately do not seem to be very prevalent, at 

least not in the drug development community. 

 In any case, it seems useful to add data to our EA. Of course, we should apply the 

mining with care, and not impose so many rules on newly generated compounds that 

they cannot have novel or interesting structures anymore. Using our non-informed 

mutations, the Molecule Evoluator was probably a bit too much “original”, making 

large parts of the offspring molecules unsuitable for further evolution. Data mining will 

help to diminish this percentage of molecules and thereby speed up evolution. However, 

the logical limit would be requiring absolute certainty that a compound can be made. 

And that can currently only be reached by knowing that the molecule already exists in 

a molecular database. This would unfortunately preclude finding any novel molecules 

and greatly limit the optimization. We should therefore find a way between unpractical 

novelty and conservative clichés. But such a discussion will only be about how 

important we allow data mining to become in our approach: that data mining is useful, 

is clear. 
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Conclusions  
 

In this research, we have improved the mutations of the molecule design program “The 

Molecule Evoluator” by using data mined from a drug database. Using the counts of 

various small substructures in the database, we found that the amount of unusual 

substructures decreased, and that mutations had a larger chance to transform existing 

molecular fragments into other existing molecular fragments. We think that the 

enhanced generation of existing structures additionally suggests that also the non-

existing mutants generated by our “informed” mutation operators may be closer to 

molecules that are drug-like and can be synthesized than the mutants generated by the 

uninformed mutations are. Mining databases may be a good method to making the de 

novo generated molecules easier to synthesize while keeping the advantages of 

covering the full space of drug-like molecules and the likely faster and more robust 

optimization that atom-based molecule optimization can give. 
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Appendix: Comparing the old with the new mutation operators 
 
To assess whether incorporating mined data into the mutation operators of the 
Molecule Evoluator resulted in producing more realistic molecules, the 1000 most 
frequently occurring one-connected branches of the NCI database were mutated using 
both the knowledge-less and the knowledge-including versions of three mutation 
operators. The old versions did not use any substructure frequency data, the new 
versions used this data to calculate the relative frequencies of each substitution. The 
number of branches in each run that was mutated into one of the other 6564 branches 
was counted for 20 runs (maximum score of each run is 1000). In the table the results 
of the individual runs are shown, as well as the averages over the runs and the t-test 
probabilities that the new mutation versions differ from the old mutations. 
 
 

Run Index Old 
Add 

New 
Add 

 Old  
Insert 

New 
Insert 

 Old 
Change 

New 
Change 

1 299 305  373 416  68 75 
2 309 355  344 406  77 77 
3 317 326  356 418  75 78 
4 303 315  374 401  69 77 
5 316 317  350 423  74 78 
6 305 320  354 413  72 78 
7 320 297  355 408  74 76 
8 317 350  387 410  78 77 
9 302 309  376 419  71 79 
10 313 317  349 421  72 75 
11 300 324  349 400  69 75 
12 311 318  361 419  74 77 
13 312 323  365 415  69 77 
14 325 318  356 412  72 78 
15 314 328  352 429  72 77 
16 300 321  389 419  71 76 
17 316 302  365 404  71 76 
18 305 331  371 409  73 76 
19 324 321  388 404  70 75 
20 306 312  337 422  72 78 
AVERAGE 310.7 320.45  362.55 413.4  72.15 76.75 
TTEST 0.0108   6.73E-14   1.4E-07  


