
Interactive evolutionary algorithms and data mining for
drug design
Lameijer, E.M.W.

Citation
Lameijer, E. M. W. (2010, January 28). Interactive evolutionary algorithms
and data mining for drug design. Retrieved from
https://hdl.handle.net/1887/14620

Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/14620

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/14620

109

4

The Molecule Evoluator. An interactive
evolutionary algorithm for the design
of drug-like molecules

Eric-Wubbo Lameijer1, Joost N. Kok2, Thomas Bäck2 and Ad P. IJzerman1

1Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, PO

Box 9502, 2300RA Leiden, The Netherlands
2Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1,

2333 CA Leiden, The Netherlands

This chapter was first published in the Journal of Chemical Information and Modeling,

reference: Lameijer, E.W.; Kok, J.N.; Bäck, T.; IJzerman, A.P. The Molecule

Evoluator. An Interactive Evolutionary Algorithm for the Design of Drug-Like

Molecules. J. Chem. Inf. Model., 2006, 46(2), 545-552.

Abstract

We developed a software tool to design drug-like molecules, the “Molecule Evoluator”,

which we introduce and describe here. An atom-based evolutionary approach was used

allowing both several types of mutation and crossover to occur. The novelty we claim

is the unprecedented interactive evolution, in which the user acts as a fitness function.

This brings a human being’s creativity, implicit knowledge and imagination into the

design process, next to the more standard chemical rules. Proof-of-concept was

demonstrated in a number of ways, both computational and in-the-lab. Thus, we

synthesized a number of compounds designed with the aid of the Molecule Evoluator.

One of these is described here, a new chemical entity with activity on �-adrenergic

receptors.

110

Introduction

It has been estimated that the combination of the four elements C, N, O and S only may

lead to the design of 1060 molecules with maximally 30 non-hydrogen atoms1.

Currently, only over 26 million (in between 107 and 108) organic and inorganic

compounds have been synthesized since the foundation of organic chemistry in the 19th

century2. Obviously, designing new molecules (de novo design) is crucial to cover

more of the “chemical space”. Computational methods have been employed to this end,

among which so-called evolutionary algorithms (reviewed in ref. 3). These algorithms

are based on principles from biology, such as natural selection and Darwinian

evolution through mutation and crossover.
 There are at least two problems with the application of evolutionary algorithms in

drug design. The first is that linear ‘genes’ as used in biological evolution are ill-suited

to represent molecules. Molecules are graphs that have to obey certain chemical rules.

Converting a molecule into a bit string or fixed-size vector of numbers as used in

conventional evolutionary algorithms will therefore often result in mutation and

crossover operations that produce invalid molecules.

 The second problem relates to natural selection and a useful fitness function.

While currently the most common methods use a similarity index to a reference

compound4-7 or calculations of the binding strength to a target8,9, only a few examples

have been published of successful applications of evolutionary algorithms to find new,

biologically active structures. Only Schneider et al7 claimed success since their

algorithm found a ligand with a similar kind of activity as the lead compound, be it

approximately 1000 times less potent.

 In this study we propose a new approach for the use of evolutionary algorithms in

de novo drug design, called the “Molecule Evoluator”, to address these problems. We

introduce an atom-based method with a set of mutation operators that contains all one-

atom and one-bond mutations. This will enable a fuller search of the chemical space

and finer optimization of the molecular structure than is possible with most other

published methods. Secondly, we use another approach to natural selection that is new

in evolutionary algorithms in drug design: we make the medicinal chemist the “fitness

function” of the proposed structures. This would largely eliminate structures that are

difficult to make in the laboratory and enable the program to optimize the molecular

structure by using the chemist’s knowledge about structure-activity relationships.

 We will first introduce a new representation of molecules, the so-called

TreeSMILES notation, and the evolutionary operators we used. Subsequently we will

111

discuss how the user’s choices affect the fitness of the molecules. We will then shortly

describe the graphical user interface of the Molecule Evoluator, together with the

results of some of our experiments in interactive drug design.

Methods

Molecule representation

A molecule can be considered to be a connected graph consisting of one or more atoms

(nodes) connected by bonds (undirected edges). One of the main constraining rules of

chemistry is the valence of each type of atom. Moreover, atoms such as sulfur can have

several valence states, of which bivalent sulfur and hexavalent sulfur are the most

common. In our genotype, the starting point in each evolutionary algorithm, we handle

this by creating a separate symbol for each valence state, so that divalent sulfur atoms

are encoded by “S” and hexavalent sulfur atoms by “Sh”. Thus, whether a graph

represents a valid molecule does not merely depend on the structure of the graph, but

also on the identity of each particular node.

 Molecules are graphs that can be of different sizes; they may also contain branches

and cycles. Since they too are subject to the laws of chemistry they additionally have to

obey certain rules that usually prohibit changing one node/edge without changing its

neighbors. To develop a computer representation of a molecule that can store these

properties and that is convenient to mutate and cross over, we looked at some common

molecular data formats.

 There are various ways to represent molecules on the computer. Nowadays, the

two most common representations are the MOL-file format10, which is a list of atoms

and bonds in the molecule, and the SMILES-notation11, a line notation/string that is

human-readable and that can easily be transformed into a 2D-structure. In the SMILES

notation the nonlinear parts of a molecule are encoded with brackets to indicate

branches and numbers to label rings, as is illustrated in Figure 4.1A. By default the

hydrogen atoms are not incorporated into the SMILES notation, since their presence

can be deduced from the rules of chemical valence.

 Neither of these representations is ideal, however, when molecules are mutated

and crossed over. Since chemical valence rules explicitly state how many bonds any

112

C1CC(C)C=C1=

A

B

C1CC(C)C=C1 (C(1)(H)(H)(C(H)(H)(C(H)(C(H)(H)(H))(C(H)(=C(H)(1))))))

SMILES TreeSMILES

SMILES

C
H

2C
H

2

C
H

C
H

CH CH
3

Figure 4.1:
A) Example of a SMILES representation of a molecule. One bond of each

ring is chosen at random (in this case, the bond from the top left to the

bottom left atom) and is designated by a unique number. Both atoms

participating in a ring bond get the bond number(s) immediately after them

in the line notation. Branches are indicated by brackets.

B) SMILES versus TreeSMILES. By making the hydrogen atoms explicit

going from SMILES to TreeSMILES the notation becomes less compact and

less human-readable. However, the positions available for substitution are

now readily interpreted by the computer.

atom has, both the most common 2D-MOL-file format and the SMILES notation take

the hydrogen atoms and the bonds to which they are attached for granted. We should

therefore calculate for each atom whether it has the right number of hydrogen atoms to

be mutated in some way. To avoid these recalculations, we decided to explicitly add

the hydrogen atoms to the representation. Also, we decided to use a SMILES-like

structure as our main molecule representation, particularly for reasons of computational

efficiency. Making the hydrogen atoms explicit we obtain a bracket-rich, expanded

SMILES representation (Figure 1B) to which we can apply mutation by relatively

simple algorithms. We coin this chemical notation “TreeSMILES”.

Crossover and mutation

Crossover is implemented like crossover in standard genetic programming12: subtrees

of two different molecules are selected and swapped. The only complication in the

113

present study is that the trees represent graphs and can contain cycles, while subgraphs

are not allowed to contain incomplete cycles. So when a subtree at a random “root”

atom is selected, the subtree is first checked for unmatched ring bonds, and if these are

present the current root is discarded and another subtree is selected for crossover.

 Mutation, however, is the most important variance operator in the Molecule

Evoluator. Theoretically, changing a graph into any other graph can be performed by a

limited set of operations: adding nodes, adding edges, deleting nodes, deleting edges.

While this would be sufficient from a graph-theoretical point of view, these operations

are more complicated in a chemical system since the valence rules must be obeyed, and

the graph must remain connected: deleting the indicated carbon atom in Figure 4.2

would also require deleting its three attached hydrogen atoms and attachment of a

hydrogen that replaces the carbon. In the Molecule Evoluator, deleting an atom

involves removal of the hydrogen atoms attached to it and renaming the atom itself into

a hydrogen atom.

Figure 4.2. Why simple mutations are often wrong mutations. When

removing the rightmost carbon from the middle molecule, only removing the

carbon (left picture) results in a wrong molecule: due to the loose hydrogen

atoms the structure is unconnected (and therefore not a valid molecule),

also the carbon atom to which it was connected has three bonds instead of

four, violating chemical valence rules and also making the left molecule

invalid. The molecule on the right shows the valid version of this mutation:

the to-be-deleted atom is changed into a hydrogen and its own hydrogen

atoms are removed.

The implemented mutations, graphically shown in Table 4.1, are as follows:

114

1) Add atom/group: this replaces a hydrogen atom in the molecule with a non-

hydrogen atom or a larger chemical group such as a phenyl group. In the case of

atom addition, the remaining bonds of the added atom are filled with hydrogen

atoms.

2) Insert atom: also adds an atom, but does this by inserting the new atom (which

should have a valence of two or higher) into a bond. The remaining bonds of the

new atom are completed by adding hydrogen atoms to it.

3) Delete atom: this removes an atom that is attached to only one non-hydrogen atom

(with a single bond) by first deleting the hydrogen atoms attached to it, and

renaming the atom to a hydrogen atom.

4) Uninsert atom: This removes an atom that has exactly two non-hydrogen

neighbors. It removes the atom and its hydrogen atoms and subsequently creates a

bond between its two neighboring non-hydrogen atoms.

5) Increase bond order: if two atoms that are bonded to each other both have at least

one hydrogen atom, those hydrogen atoms are removed and an extra bond is

created between the atoms (the bond order is increased from single to double or

from double to triple).

6) Create ring: similar to increase bond order, but works between two atoms that are

not bonded to each other. These atoms are connected using a single bond (the two

hydrogen atoms are changed into ring indices).

7) Decrease bond order: if there is a double or triple bond between two atoms, its

bond order is decreased by one and a hydrogen atom is attached to each of the two

atoms.

8) Break ring: this mutation chooses a single bond in a ring, breaks that bond and

adds hydrogen atoms to correct the valences. The algorithm should be able to

break any bond in the ring, which is not easy to do with a tree structure13. To solve

this problem, we converted the TreeSMILES into an adjacency list. In the

adjacency list, any ring bond can be broken easily and afterwards a new

TreeSMILES representation is built. This is the only mutation where we found it

necessary to temporarily convert the TreeSMILES representation of the molecule

into an adjacency list format for easier modification. Since other operators such as

crossover are more easily implemented for a TreeSMILES string, we decided not

to use the adjacency list for the other mutations. Changing representations is

probably a convenient way to accommodate different mutations. To our knowledge,

this technique has not been used before in evolutionary algorithms in de novo

design, and is probably also rare in evolutionary algorithms in general. However,

115

we think that it might also have applications outside the Molecule Evoluator.

9) Mutate atom: a non-hydrogen atom is changed into another non-hydrogen atom

which has a valence of at least the number of bonds of the original atom with other

non-hydrogen atoms.

Table 4.1: Schematic overview of the different mutations in the Molecule Evoluator. Most

leave the TreeSMILES string fairly intact and can be performed by string editing. The only

exception is the "break ring" mutation, which can substantially rearrange the TreeSMILES.

Mutation
name

Initial
structure

Final
structure

Initial
TreeSMILES

Final TreeSMILES

Add atom

NH

...(C(H)(H)(C…

...(C(H)(N(H)(H))(C…

Insert
atom

NH

...(C(H)(H)(C...)...

...(C(H)(H)(N(H)(C...))...

Delete
atom

NH

..(C(H)(N(H)(H))(
C...

...(C(H)(H)(C...

Uninsert
atom

NH

...(C(H)(H)(N(H)(
C...))...

...(C(H)(H)(C...)...

Increase
bond
order

...(C(H)(H)(C(H)(
H)(...

...(C(H)(=C(H)(…

Create
ring

(C(H)(H)(H)(C(H)
(H)(C(H)(H)(H)))

(C(1)(H)(H)(C(H)(H)(
C(1)(H)(H)))

Decrease
bond
order

...(C(H)(=C(H)(…

...(C(H)(H)(C(H)(H)(...

Break ring

(C(1)(H)(H)(C(H)(
H)(C(1)(H)(H)))

(C(C(H)(H)(H))(H)(H)(C
(H)(H)(H)))

Mutate
atom

S

...(C(H)(H)(C(H)(
H)(C...

…(C(H)(H)(S(C...

116

f ixed

f ixed

f ixed

f ixed

We also allow the user to select atoms and bonds that will remain unaltered by

crossover and mutation (‘fix’ option). Therefore we have further modified the data

structure of the TreeSMILES by using an array of character pairs instead of a normal

string/array of characters, in which the first character of the pair is the normal

TreeSMILES character and the second character is a flag, which indicates whether the

atom or bond designated by the first character can be modified (Figure 4.3).

Figure 4.3. The TreeSMILES notation of n-propane (C3H8) that incorporates

fixable characters ("charf"s). In this example, one atom and one bond are

fixed.

(C (H) (H) (H) (C (H) (H) (C (H)

ø F ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø F ø ø ø ø

(H) (H))))

ø ø ø ø ø ø ø ø ø

Fitness

The final component of the evolutionary algorithm is the fitness function. So far,

investigations on de novo design with evolutionary algorithms have used several types

of a fitness function, including:
• similarity to a target molecule4,5

• QSAR-functions13

• ligand-protein docking8,9

• experiment14

For drug design, each of these methods has its advantages and disadvantages.

Similarity approaches often result in molecules very similar to the target molecule, in

117

many cases even the target molecule itself, which is not useful for designing truly

novel molecules. QSAR functions should be able to optimize activity, yet have

important disadvantages. First they require quite a lot of reprogramming for each new

class of molecules that is investigated. Secondly, they are generally difficult to use for

finding very active compounds since they grow less and less reliable as the molecular

structures deviate more from the average structure (and thereby activity) of the training

dataset15. Unfortunately, this is exactly what would happen during optimization. The

last theoretical method (“docking”) is still too inaccurate for optimization, and may

yield molecules with an activity that is orders of magnitude lower than the calculated

value9. Experiments as fitness function, finally, are generally slow and expensive, and

so far have only been performed for a class of molecules that was particularly easy to

synthesize14. Thus experimental fitness has yet to prove to be practical in a more

realistic drug design scenario.

 As an entirely different approach, we decided to use the user as a fitness function.

This concept has been recently employed in other application areas and is often called

interactive evolutionary computing16-18. While a user cannot know the binding strength

of a given molecule, this defect may not be much worse than the inaccuracy of scoring

functions. A definite advantage in letting the user choose would be that intensive

feedback from a medicinal chemist would make the compounds easier to synthesize,

and steer the evolution away from areas which have already been explored.

Furthermore, the algorithm could still be easily coupled to experimental results or

advanced computed fitness functions if so desired. In Algorithm 4.1 the general

workflow within the Molecule Evoluator is detailed, from the creation of the initial

population to the interactive evolution of new molecules.

Algorithm 4.1: General workflow of the Molecule Evoluator

Create initial generation of 1..generation_size molecules

// (generation_size set by user, by default 12)

For each molecule, get molecule structures from one of

these sources:

a. MOL or SD-files

b. Sketches by user in editor of Molecule Evoluator

c. Random generation of molecules (see algorithm 4.2)

118

Evolve:

Repeat while the user wants to continue:

-The user may set or change ratios between

modification, combination and de novo molecule

generation.

-The user selects m most interesting molecules of

the current generation.

Copy the m selected molecules to the next

generation.

-For each of the (generation_size – m) molecule

slots left in the next generation, do the

following:

-generate a new molecule with one of the

three methods in ratios set by the user:

-modification: create a new molecule by

mutating the old molecule

-combination: create a new molecule by

crossing over two selected molecules (can

be the same molecule – this is allowed in

tree-crossover)

-de novo generation: create a new molecule

by de novo generation, see algorithm 2.

-add the new molecule to the next

generation.

-The user may change molecules by fixing (as

explained in the text) or editing, or replace

molecules by loading or drawing new molecules.

-Make the next generation the current generation.

As a further example, Algorithm 4.2 performs the random generation of molecules as

mentioned in Algorithm 4.1.

119

Algorithm 4.2: Random generation of a molecule

 set the current molecule to a methane molecule

pick a random number x from 1 to MaxNumberOfAtoms

repeat x times:

replace a hydrogen atom of the current molecule

by a random atom or fragment from the

atom/fragment database

pick a random number y from 0 to MaxNumberOfRings

repeat y times or until no more rings can be made:

 make a ring in the current molecule

pick a random number z from 0 to

MaxNumberOfDoubleBonds

repeat z times or until no more bonds can be oxidized:

oxidize a random bond in the current molecule,

so increment the bond order

Since a user cannot evaluate as many structures as a computer program and preliminary

experiments have shown that users only want to see “good” structures, we added

several descriptor calculations to the Molecule Evoluator. The selected descriptors are

(physico-)chemical parameters of a compound, such as the number of hydrogen bond

donors/acceptors, molecular weight, logP (lipophilicity), Polar Surface Area, the

number of rotatable bonds, and the number of aromatic systems and substituents.

Physico-chemical parameters of a compound, either calculated or experimentally

determined, can also constitute a useful fitness function, for instance in a certain

weighed combination. It is increasingly realized that they determine e.g., aspects of

absorption and blood-brain barrier passage19, although they usually are of lesser

importance for the interaction with the target protein. Upper and lower bounds for all

these descriptors can be set by the user as a filter to create more ‘realistic’ molecules.

Additionally, we implemented some ‘chemical’ filters. The aim was to eliminate

molecules with undesirable (sub)structures such as strained paracyclophanes. Similarly,

molecules not allowed because of Bredt’s rule20 are also automatically discarded. Both

120

the physical and the chemical filters can be switched on and off.

Results

The graphical user interface of the Molecule Evoluator

When the program is started, a ‘seed’ molecule (indole in this case) can be either

loaded or drawn and used for a first generation of derivatives (Figure 4.4).

Alternatively, the Molecule Evoluator itself can initialize the population with random

molecules. The latter is done by taking the computer’s clock time and using it as a seed

in the rand function in the C programming language.

 As an example one of the suggested molecules (3-methylindole) was selected for

yet another round of evolution. Again by pressing the "Go" button a window appears

that contains the selected molecule (this so-called elitism is on by default) together

with the newly generated analogs (Figure 4.5). The user can again select the most

attractive molecules, press “Go”, and this process is repeated until the user has

gathered enough ideas.

 Comments from medicinal chemists on previous test versions of the program have

led us to include three extra features that allow the user more control over the evolution,

i) editing the molecules directly, ii) fixing parts of the molecule, and iii) using filters to

prevent that certain unrealistic molecules are shown to the user. We next discuss these

features in more detail.

 Editing molecules is useful when the user wants to start the evolution with a

molecule that has not been stored yet in the computer and must be drawn. Additionally,

if during the evolution a given molecule suggests a more interesting structure, editing

the molecule into the desired structure can be done ‘on-the-fly’. This will allow the

user to evolve molecules immediately from the desired structure, rather than wait until

it will be generated by the program. Editing the molecules is performed in the

"Molecule Edit" window (not shown), which pops up when the user clicks on a

molecule in the main window. Editing is quite similar to that in normal chemical

drawing programs. After the popup window has been closed, the drawn structure is

converted into TreeSMILES-format.

121

Figure 4.4: A molecule, in this case indole (#1), is drawn or loaded as a

‘seed’ for a population of 12 derivatives generated by pushing the “Go”

button (green arrow in left-hand toolbar). In this simple example with atom

additions only the methylated analog #6 was selected for further evolution

(see Figure 5).

Fixing part(s) of the molecule can be useful in cases where structure-activity

relationships demand that a particular, necessary part of the molecule is present in all

its descendants. The Molecule Evoluator allows this conservation with the “fix atoms

or bonds” option in the “Molecule Edit” window, which enables the user to generate

new molecules with the conserved part remaining intact, and only variation on the “free”

atoms.

122

Figure 4.5: Pressing “Go” (green arrow in the left-hand toolbar) generates

mutants of methylindole (see Figure 4) according to preset filters (PSA, logP

and MW in right-hand panel). PSA and logP values are displayed in the

individual boxes, according to buttons pushed in the upper toolbar.

The filters are the third extra feature. In the “Physical Filters” panel (see also Figure

4.5) the ranges are set within which the physicochemical properties of a molecule must

lie for the molecule to be incorporated into the population (for example: molecular

weight between 100 and 300). Molecules outside these boundaries imposed by the user

will be automatically eliminated by the Molecule Evoluator and will therefore not be

shown to the user. Additionally, some chemical structures which are usually

undesirable, such as hemiketals, can be forbidden in the “Chemical Filters” panel. The

Molecule Evoluator creates offspring molecules using mutation and crossover until

feasible molecules – fulfilling all filter conditions – have been found.

In addition to these three main control features, there is a “Parameters” panel (not

shown), in which the user can influence the evolutionary process itself. The user is

allowed to steer evolution by, amongst other things, enabling/disabling certain kinds of

123

mutations. For example, the “decrease bond order” mutation tends to partially reduce

phenyl rings, which is chemically undesirable. As an alternative to fixing the phenyl

bonds explicitly, disabling this mutation will protect the bonds from being reduced.

This will however also prevent useful mutations, such as those which reduce a ketone

(C=O) to an alcohol (CHOH). Another option would be a special version of the

"decrease bond order" mutation that does not reduce aromatic rings; this is something

we are currently considering. Other mutation types (eight in total) can also be toggled

‘on’ or ‘off’. By default, each of these eight categories of mutations is applied with the

same frequency (0.125). When mutation types are disabled, the remaining active

mutation types are still applied with identical frequency, so if for example only three

mutations are allowed, the probability of each of them is 0.33. Another option is to

change the ratio of mutation/crossover. Since we learned that most medicinal chemists

prefer mutation over crossover, the default settings are 90% mutation and 10%

crossover (and so are applied with probabilities of 0.9 and 0.1, respectively). A third

option is to allow the Molecule Evoluator to occasionally add random molecules to the

population. The relative amount of random molecules is approximately 16% (so 1-2

new random molecules in a new population). This option is off by default. Lastly, the

user can toggle elitism on and off. Elitism conserves the selected molecules and makes

them also the first molecules on the screen in the next generation.

Experiments

We conducted a computational experiment first for a simple proof-of-concept. For this

we used a dataset of biological activities of neuramidase inhibitors21. Using the

measured activities as input for the evolutionary algorithm we located the experimental

minimum (IC50 = 1 nM, a 6300-fold improvement over the original structure) within

four generations.

 To test whether we could use the Molecule Evoluator to discover interesting new

molecules with possible biological activity, we performed an experiment using its

option for random molecule generation.

 First we generated a library of 10,000 small molecules (150D < MW <250D) with

drug-like features: either one or two aromatic rings, 5 or fewer rotatable bonds, 2 or

fewer hydrogen donors, 4 or fewer hydrogen acceptors, and a polar surface area of at

most 70Å2. Out of this library, three sublibraries of 100 compounds were chosen

randomly. Each of these sublibraries was presented to a different chemist, who could

choose and modify the molecules created by the program. Out of the 300 compounds,

35 were chosen for further investigation.

124

Checking the latter molecules in the SciFinder2 and Beilstein databases22 (in April

2003) we found that six structures represented chemical classes yet unknown in

literature. Based on these six core structures ten molecules were designed, of which

eight compounds were synthesized successfully. One typical compound with a

calculated log P value of 1.65, a calculated polar surface area of 32 Å2 and a molecular

weight of 191D, is shown in Figure 6. It proved active on both �1- and �2-adrenergic

receptors, i.e. at 10 μM it displaced more than 50% of the radioligand used in binding

assays on the two receptor subtypes. The full results of this experimental proof-of-

concept are described in chapter 7.

OH N

H

Figure 6. One of the compounds synthesized on the basis of a random

generation of virtual molecules by the Molecule Evoluator.

Discussion

In this paper we have presented an evolutionary algorithm to help design new

molecules. As reviewed very recently, evolutionary algorithms form one of the

approaches to computer-based de novo design of drug-like molecules23. A large variety

of methods is being used to this end, even when confined to evolutionary concepts only.

The two most important components of all evolutionary algorithms used in

chemistry/drug design are the molecule representation and the fitness function.

The molecule representation

One of the main choices when creating a de novo design algorithm is whether to make

the algorithm atom- or fragment-based. Atom-based algorithms work by mutating

atoms, and can therefore fine-tune each structure optimally4,5,13,24. On the other hand,

125

several investigators construct molecules using larger fragments7,9,24. This has the

advantage that the representation can be simpler, since there is generally no need for

the genome to contain cycles (for these are incorporated into the fragments). Also

fragment-based methods have the potential benefit of easier synthesis. While the

current version of the Molecule Evoluator uses both atoms and fragments to construct

molecules, its mutations are atom-based. We believe that atom-based evolution is

superior to fragment-based evolution for adapting the molecular structure. The main

disadvantage of using fragments instead of atoms is that most mutations in fragment-

based evolution are “macromutations” that change the molecule into something

completely different, with a vastly different fitness value. In most cases, it is not clear

whether fragment-based evolution is an improvement over random search, unless the

fitness function is fragment-based. However, this is certainly not the case in drug

design where biological activity is subtly dependent on the molecular structure. We

have observed that making an atom-based algorithm interactive, as in the Molecule

Evoluator, partially compensates for the disadvantage that molecules generated on the

basis of atoms are generally more difficult to synthesize. This is because the medicinal

chemist has the option to immediately discard or modify structures at will.

Using the user as a fitness function

The most important problem of the de novo design programs which have been

described in literature is the difficulty of creating a fitness function that is relevant to

drug design. In this work, we propose to use an evolutionary algorithm not as a black

box that will give the user the right answer when given the right question, but as a

means of supporting the creativity and imagination of the user by interactive evolution,

thereby automatically incorporating the user's explicit as well as implicit

(subconscious) knowledge of the problem domain.

 Using user feedback as fitness function has several advantages and disadvantages,

and some consequences that require special adaptations and modifications of the

software.

 One disadvantage of user interaction is that the population must be small. It is

unlikely that any chemist would want to see 50 to 100 molecules before pressing “Go”

again. However, small population sizes (12 as a default in the current version of the

program) may lead to premature convergence, i.e. tempt the user to stop (too) early.

Another hurdle relates to programming the software: the more the user can interact

with the program, the more is required from the user interface. In this project, more

time was spent on constructing the user interface than on creating and fine-tuning the

126

evolutionary algorithm. Modifications of the evolutionary algorithm should in many

cases be reflected by changes in the user interface, and this makes programming and

testing new ideas more time-consuming than in a non-interactive system. Software

validation is also more difficult – one cannot well run hundreds of tests automatically

to objectively verify whether the algorithm outperforms other algorithms. A user is not

an objective function that can be easily shared with others. Finally, the user may see

the computer program as a competitor, not as a tool, and might not like to work with it

since “someone else” has thought of the molecule. While the computer has so little

knowledge that one should say that the user has invented the molecule (and recognized

it as something interesting), the user may perceive his or her position differently.

 There are however also many advantages to user interaction. One attractive

advantage is that the feedback from the user can produce molecules which can be

synthesized more easily in the laboratory than is possible with computer-generated,

random molecules. The difficulty of synthesis would also be automatically adapted to

the user’s level of knowledge and experience.

 A second advantage is that the program can use all kinds of rules and problem

domain knowledge that the user has. The alternatives, expert systems and flexible input,

have distinct disadvantages in this case. Creating an expert-system is time-consuming

and must be done anew for each optimization project. Flexible input would require the

domain expert, namely the chemist, to learn a complicated language or user interface

which would definitely diminish accessibility of the software and thereby its use

greatly. The program can even benefit from the user’s subconscious rules, which

cannot be programmed since they are unknown and may be very difficult to derive.

Furthermore, as the user's problem knowledge grows, this knowledge is automatically

updated and applied to the process without time-consuming intervention by

programmers. In experimental sciences, seldom all required knowledge is known

beforehand, and allowing experiments with the computer can also lead to finding new

rules and discarding obsolete ones.

 A third advantage is that the software can stimulate computer use by medicinal

chemists. Far too often, compounds suggested by the "computational department" are

rejected by medicinal chemists for reasons of synthesis, and collaboration between the

departments is hampered by busy schedules and the necessity to have meetings for

feedback. This makes collaboration slow and difficult, and probably results in chemists

mainly designing their own compounds without the help the computer could give. We

believe that creating a program for the problem domain experts instead of for computer

experts can lead to better use of the help that the computer could give in the drug

127

design process, and perhaps even to increased understanding and a more fruitful

collaboration between medicinal chemists and computer scientists.

 Finally, a program such as the Molecule Evoluator may make a chemist more

conscious of his/her own design process, i.e. which rules he or she follows.

Consciousness of the rules and methods can lead people to experiment with them and

occasionally break them for enhanced creativity.

Adding extra user control to the evolution

We found that when we added interactivity to the evolutionary algorithm, it was not

enough to restrict the user’s influence to selection only. The users were generally quite

"impatient" and wanted more control to accelerate or even directly manipulate the

evolution, so we added features to enable this. First, we incorporated edit functions to

directly modify the molecular structure. Second, we added an option for selecting a

part of the molecule to remain constant. Third, we allowed the settings (which

mutations are allowed, what range a property may have) to change interactively. We

think that these options will make the Molecule Evoluator more attractive for drug

design since they give the user more control over the evolution. We must however

beware of the complication that having a feature is not enough if the user does not

know that the feature is there or how to use it. Good user interface design is necessary

for users to learn to use the multiple filters without having to read the manual. The

second danger is perhaps more serious: by discarding “bad molecules” one may at the

same time eliminate paths to escape from local optima. Secondly, if all molecules

shown are good according to a specific user’s criteria, it may be exactly what the user

had designed him/herself anyway, thus eliminating the added value of the program.

However, lack of control may frustrate and bad structures may irritate the user, so we

aimed for a middle road between control and creativity.

Conclusions and future perspectives

In this report we have described the “Molecule Evoluator”. It is a software program

based on evolutionary algorithms and has been created to aid chemists in designing

new drug-like molecules. With this program all relevant chemical mutations are

possible. The most distinguishing feature of the Molecule Evoluator relative to other de

novo design programs is that it has the user as fitness function. In this way it can

combine the domain knowledge of the chemist with the memory and processing speed

128

of the computer. We therefore added a graphical user interface for the evolution and

extended the program with options for directly editing the molecule, marking part of a

molecule as conserved, and calculating relevant physicochemical parameters.

 Considering the algorithms used and the feedback from users so far, there are

several directions open for future investigation. First, many molecules generated by the

program seem difficult to synthesize. Perhaps encoding explicit chemical knowledge in

the program or using chemical databases could help improve this. A second direction

would be to create a command-line version which links to other software such as

docking programs, since the “high-resolution” optimization resulting from our atom-

based model might be very useful for optimizing lead compounds. Third, more

selection criteria could be added such as additional physicochemical properties or an

input method for QSAR-formulas.

Acknowledgements

We thank Hans Brussee, Lisa Chang and Reynier Tromp of the division of Medicinal

Chemistry at Leiden University for their feedback during the first stages of

development of the Molecule Evoluator, and Siegfried Nijssen for his helpful

discussions and providing the first "charf" class implementation to conserve

atoms/bonds. Biopartner First Stage Grant and Gruenenthal GmbH are thanked for

financial support.

References

[1] Bohacek, R.S.; McMartin, C; Guida, W.C. The art and practice of structure-based

drug design: a molecular modeling perspective. Med. Res. Rev. 1996, 16, 3-50.

[2] As taken from www.cas.org/scifinder/ataglance.html, as accessed on August 18,

2005.

[3] Gillet, V.J. In Evolutionary algorithms in molecular design; Clark, D.E., Ed.;

Wiley-VCH: Weinheim, Germany, 2000; Chapter 4, pp 49-69.

[4] Douguet, D.; Thoreau, E.; Grassy, G. A genetic algorithm for the automated

generation of small organic molecules: Drug design using an evolutionary

algorithm. J. Comput.-Aided Mol. Des. 2000, 14, 449-466.

[5] Globus, A.; Lawton, J.; Wipke, T. Automated molecular design using evolutionary

techniques. Nanotechnology 1999, 10, 290-299.

129

[6] Glen, R.C., and Payne, A.W.R. A genetic algorithm for the automated generation

of molecules within constraints. J. Comput.-Aided Mol. Des. 1995, 9, 181-202.

[7] Schneider, G.; Lee, M-L.; Stahl, M.; Schneider, P. De novo design of molecular

architectures by evolutionary assembly of drug-derived building blocks. J.

Comput.-Aided Mol. Des. 2000, 14, 487-494.

[8] Pegg, S.C.-H.; Haresco, J.J.; Kuntz, I.D. A genetic algorithm for structure-based de

novo design. J. Comput.-Aided Mol. Des. 2001, 15, 911-933.

[9] Vinkers, M.H.; De Jonge, M.R.; Daeyaert, F.F.D.; Heeres, J.; Koymans, L.M.H.;

Van Lenthe, J.H.; Lewi, P.J.; Timmerman, H.; Van Aken, K.; Janssen, P.A.J.

SYNOPSIS: SYNthesize and Optimize System in Silico. J. Med. Chem. 2003, 46,

2765-2773.

[10] MDL-file format http://www.mdli.com/downloads/public/ctfile/ctfile.jsp as

accessed on August 18, 2005. See also: Dalby, A.; Nourse, J.G.; Hounshell, W.D.;

Gushurst, A.K.I.; Grier, D.L.; Leland, B.A.; Laufer, J. Description of several

chemical structure file formats used by computer programs developed at Molecular

Design Limited. J. Chem. Inf. Comput. Sci. 1992, 32, 244-255.

[11] Weininger D. SMILES: a chemical language and information system. 1.

Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 1988,

28, 31-36.

[12] Banzhaf, W.; Nordin P.; Keller, R.E.; and Francone, F.D. Genetic Programming -

An Introduction. Morgan-Kaufmann, San Francisco CA, 1998.

[13] Nachbar, R.B. Molecular Evolution: A Hierarchical Representation for Chemical

Topology and Its Automated Manipulation. In Genetic Programming 1998:

Proceedings of the Third Annual Conference, (University of Wisconsin, Madison,

Wisconsin, July 22-25, 1998). Morgan Kaufmann, San Francisco, CA, 1998, 246-

253.

[14] Kamphausen, S.; Höltge, N.; Wirsching, F.; Morys-Wortmann, C.; Riester, D.;

Goetz, R.; Thürk, M; Schwienhorst, A. Genetic algorithm for the design of

molecules with desired properties. J. Comput.-Aided Mol. Des. 2002, 16, 551-567.

[15] Sheridan, R.P.; Feuston, B.P.; Maiorov, V.N.; Kearsley, S.K. Similarity to

molecules in the training set is a good discriminator for prediction accuracy in

QSAR. J. Chem. Inf. Comput. Sci. 2004, 44, 1912-1928.

130

[16] Banzhaf, W. In Handbook of Evolutionary Computation; Bäck, T.; Fogel D.B.;

Michalewicz, Z., Eds.; Oxford University Press, New York, and Institute of Physics

Publishing, Bristol, 1997.

[17] Bentley, P.J. Evolutionary Design by Computers; Morgan Kaufmann Publishers,

San Francisco, 1999.

[18] Takagi, H. Interactive Evolutionary Computing: Fusion of the capacities of EC

optimization and human evaluation. Proceedings of the IEEE 2001, 89, 1275-1296.

[19] Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J. Experimental and

computational approaches to estimate solubility and permeability in drug discovery

and development settings. Adv. Drug Delivery Rev. 1997, 23, 3-25.

[20] See: www.iupac.org/goldbook/B00732.pdf, as accessed on November 21, 2005.

[21] Kim, C.U.; Lew, W.; Williams, M.A.; Liu, H.; Zhang, L.; Swaminathan, S.;

Bischofberger, N.; Chen, M.S.; Mendel, D.B.; Tai, C.Y.; Laver, W.G.; Stevens,

R.C.; Influenza neuraminidase inhibitors possessing a novel hydrophobic

interaction in the enzyme active site: design, synthesis, and structural analysis of

carbocyclic sialic acid analogues with potent anti-influenza activity. J. Am. Chem.

Soc. 1997,119, 681-690.

[22] http://www.beilstein-institut.de/englisch/1024/chemie/index.php3 , as accessed on

August 18, 2005.

[23] Schneider, G.; Fechner, U. Computer-based de novo design of drug-like molecules.

Nature Rev. Drug Disc. 2005, 4, 649-663.

[24] Brown, N.; McKay, B.; Gilardoni, F.; Gasteiger, J. A graph-based genetic

algorithm and its application to the multiobjective evolution of median molecules. J.

Chem. Inf. Comput. Sci. 2004, 44, 1079-1087.

