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Abstract 
 

We developed a software tool to design drug-like molecules, the “Molecule Evoluator”, 

which we introduce and describe here. An atom-based evolutionary approach was used 

allowing both several types of mutation and crossover to occur. The novelty we claim 

is the unprecedented interactive evolution, in which the user acts as a fitness function. 

This brings a human being’s creativity, implicit knowledge and imagination into the 

design process, next to the more standard chemical rules. Proof-of-concept was 

demonstrated in a number of ways, both computational and in-the-lab. Thus, we 

synthesized a number of compounds designed with the aid of the Molecule Evoluator. 

One of these is described here, a new chemical entity with activity on �-adrenergic 

receptors. 
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Introduction 
 
It has been estimated that the combination of the four elements C, N, O and S only may 

lead to the design of 1060 molecules with maximally 30 non-hydrogen atoms1. 

Currently, only over 26 million (in between 107 and 108) organic and inorganic 

compounds have been synthesized since the foundation of organic chemistry in the 19th 

century2. Obviously, designing new molecules (de novo design) is crucial to cover 

more of the “chemical space”. Computational methods have been employed to this end, 

among which so-called evolutionary algorithms (reviewed in ref. 3). These algorithms 

are based on principles from biology, such as natural selection and Darwinian 

evolution through mutation and crossover.  
 There are at least two problems with the application of evolutionary algorithms in 

drug design. The first is that linear ‘genes’ as used in biological evolution are ill-suited 

to represent molecules. Molecules are graphs that have to obey certain chemical rules. 

Converting a molecule into a bit string or fixed-size vector of numbers as used in 

conventional evolutionary algorithms will therefore often result in mutation and 

crossover operations that produce invalid molecules.  

 The second problem relates to natural selection and a useful fitness function. 

While currently the most common methods use a similarity index to a reference 

compound4-7 or calculations of the binding strength to a target8,9, only a few examples 

have been published of successful applications of evolutionary algorithms to find new, 

biologically active structures. Only Schneider et al7 claimed success since their 

algorithm found a ligand with a similar kind of activity as the lead compound, be it 

approximately 1000 times less potent.  

 In this study we propose a new approach for the use of evolutionary algorithms in 

de novo drug design, called the “Molecule Evoluator”, to address these problems. We 

introduce an atom-based method with a set of mutation operators that contains all one-

atom and one-bond mutations. This will enable a fuller search of the chemical space 

and finer optimization of the molecular structure than is possible with most other 

published methods. Secondly, we use another approach to natural selection that is new 

in evolutionary algorithms in drug design: we make the medicinal chemist the “fitness 

function” of the proposed structures. This would largely eliminate structures that are 

difficult to make in the laboratory and enable the program to optimize the molecular 

structure by using the chemist’s knowledge about structure-activity relationships.  

 We will first introduce a new representation of molecules, the so-called 

TreeSMILES notation, and the evolutionary operators we used. Subsequently we will 



111 

 

discuss how the user’s choices affect the fitness of the molecules. We will then shortly 

describe the graphical user interface of the Molecule Evoluator, together with the 

results of some of our experiments in interactive drug design.  

 

 

Methods 
 

Molecule representation 

A molecule can be considered to be a connected graph consisting of one or more atoms 

(nodes) connected by bonds (undirected edges). One of the main constraining rules of 

chemistry is the valence of each type of atom. Moreover, atoms such as sulfur can have 

several valence states, of which bivalent sulfur and hexavalent sulfur are the most 

common. In our genotype, the starting point in each evolutionary algorithm, we handle 

this by creating a separate symbol for each valence state, so that divalent sulfur atoms 

are encoded by “S” and hexavalent sulfur atoms by “Sh”. Thus, whether a graph 

represents a valid molecule does not merely depend on the structure of the graph, but 

also on the identity of each particular node. 

 Molecules are graphs that can be of different sizes; they may also contain branches 

and cycles. Since they too are subject to the laws of chemistry they additionally have to 

obey certain rules that usually prohibit changing one node/edge without changing its 

neighbors. To develop a computer representation of a molecule that can store these 

properties and that is convenient to mutate and cross over, we looked at some common 

molecular data formats.  

 There are various ways to represent molecules on the computer. Nowadays, the 

two most common representations are the MOL-file format10, which is a list of atoms 

and bonds in the molecule, and the SMILES-notation11, a line notation/string that is 

human-readable and that can easily be transformed into a 2D-structure. In the SMILES 

notation the nonlinear parts of a molecule are encoded with brackets to indicate 

branches and numbers to label rings, as is illustrated in Figure 4.1A. By default the 

hydrogen atoms are not incorporated into the SMILES notation, since their presence 

can be deduced from the rules of chemical valence. 

 Neither of these representations is ideal, however, when molecules are mutated 

and crossed over. Since chemical valence rules explicitly state how many bonds any  
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Figure 4.1:  
A) Example of a SMILES representation of a molecule. One bond of each 

ring is chosen at random (in this case, the bond from the top left to the 

bottom left atom) and is designated by a unique number. Both atoms 

participating in a ring bond get the bond number(s) immediately after them 

in the line notation. Branches are indicated by brackets. 

B) SMILES versus TreeSMILES. By making the hydrogen atoms explicit 

going from SMILES to TreeSMILES the notation becomes less compact and 

less human-readable. However, the positions available for substitution are 

now readily interpreted by the computer. 

 

 

atom has, both the most common 2D-MOL-file format and the SMILES notation take 

the hydrogen atoms and the bonds to which they are attached for granted. We should 

therefore calculate for each atom whether it has the right number of hydrogen atoms to 

be mutated in some way. To avoid these recalculations, we decided to explicitly add 

the hydrogen atoms to the representation. Also, we decided to use a SMILES-like 

structure as our main molecule representation, particularly for reasons of computational 

efficiency. Making the hydrogen atoms explicit we obtain a bracket-rich, expanded 

SMILES representation (Figure 1B) to which we can apply mutation by relatively 

simple algorithms. We coin this chemical notation “TreeSMILES”.  

 

Crossover and mutation 

Crossover is implemented like crossover in standard genetic programming12: subtrees 

of two different molecules are selected and swapped. The only complication in the 
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present study is that the trees represent graphs and can contain cycles, while subgraphs 

are not allowed to contain incomplete cycles. So when a subtree at a random “root” 

atom is selected, the subtree is first checked for unmatched ring bonds, and if these are 

present the current root is discarded and another subtree is selected for crossover. 

 Mutation, however, is the most important variance operator in the Molecule 

Evoluator. Theoretically, changing a graph into any other graph can be performed by a 

limited set of operations: adding nodes, adding edges, deleting nodes, deleting edges. 

While this would be sufficient from a graph-theoretical point of view, these operations 

are more complicated in a chemical system since the valence rules must be obeyed, and 

the graph must remain connected: deleting the indicated carbon atom in Figure 4.2 

would also require deleting its three attached hydrogen atoms and attachment of a 

hydrogen that replaces the carbon. In the Molecule Evoluator, deleting an atom 

involves removal of the hydrogen atoms attached to it and renaming the atom itself into 

a hydrogen atom. 

 

 
 

Figure 4.2. Why simple mutations are often wrong mutations. When 

removing the rightmost carbon from the middle molecule, only removing the 

carbon (left picture) results in a wrong molecule: due to the loose hydrogen 

atoms the structure is unconnected (and therefore not a valid molecule), 

also the carbon atom to which it was connected has three bonds instead of 

four, violating chemical valence rules and also making the left molecule 

invalid. The molecule on the right shows the valid version of this mutation: 

the to-be-deleted atom is changed into a hydrogen and its own hydrogen 

atoms are removed. 
 
 
The implemented mutations, graphically shown in Table 4.1, are as follows:  
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1) Add atom/group: this replaces a hydrogen atom in the molecule with a non-

hydrogen atom or a larger chemical group such as a phenyl group. In the case of 

atom addition, the remaining bonds of the added atom are filled with hydrogen 

atoms.  

2) Insert atom: also adds an atom, but does this by inserting the new atom (which 

should have a valence of two or higher) into a bond. The remaining bonds of the  

new atom are completed by adding hydrogen atoms to it. 

3) Delete atom: this removes an atom that is attached to only one non-hydrogen atom 

(with a single bond) by first deleting the hydrogen atoms attached to it, and 

renaming the atom to a hydrogen atom. 

4) Uninsert atom: This removes an atom that has exactly two non-hydrogen 

neighbors. It removes the atom and its hydrogen atoms and subsequently creates a 

bond between its two neighboring non-hydrogen atoms. 

5) Increase bond order: if two atoms that are bonded to each other both have at least 

one hydrogen atom, those hydrogen atoms are removed and an extra bond is 

created between the atoms (the bond order is increased from single to double or 

from double to triple). 

6) Create ring: similar to increase bond order, but works between two atoms that are 

not bonded to each other. These atoms are connected using a single bond (the two 

hydrogen atoms are changed into ring indices). 

7) Decrease bond order: if there is a double or triple bond between two atoms, its 

bond order is decreased by one and a hydrogen atom is attached to each of the two 

atoms. 

8) Break ring: this mutation chooses a single bond in a ring, breaks that bond and 

adds hydrogen atoms to correct the valences. The algorithm should be able to 

break any bond in the ring, which is not easy to do with a tree structure13. To solve 

this problem, we converted the TreeSMILES into an adjacency list. In the 

adjacency list, any ring bond can be broken easily and afterwards a new 

TreeSMILES representation is built. This is the only mutation where we found it 

necessary to temporarily convert the TreeSMILES representation of the molecule 

into an adjacency list format for easier modification. Since other operators such as 

crossover are more easily implemented for a TreeSMILES string, we decided not 

to use the adjacency list for the other mutations. Changing representations is 

probably a convenient way to accommodate different mutations. To our knowledge, 

this technique has not been used before in evolutionary algorithms in de novo 

design, and is probably also rare in evolutionary algorithms in general. However, 
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we think that it might also have applications outside the Molecule Evoluator. 

9) Mutate atom: a non-hydrogen atom is changed into another non-hydrogen atom 

which has a valence of at least the number of bonds of the original atom with other 

non-hydrogen atoms. 

 
Table 4.1: Schematic overview of the different mutations in the Molecule Evoluator. Most 

leave the TreeSMILES string fairly intact and can be performed by string editing. The only 

exception is the "break ring" mutation, which can substantially rearrange the TreeSMILES. 
 
Mutation 
name 

Initial 
structure 

Final 
structure 

Initial 
TreeSMILES 

Final TreeSMILES 

Add atom 

 

NH

 

 
...(C(H)(H)(C… 

 
...(C(H)(N(H)(H))(C… 

Insert 
atom 

 
 

NH

 

 
...(C(H)(H)(C...)... 

 
...(C(H)(H)(N(H)(C...))... 

Delete 
atom 

NH

 

 

 
..(C(H)(N(H)(H))(
C... 

 
...(C(H)(H)(C... 

Uninsert 
atom 

NH

  

 
...(C(H)(H)(N(H)(
C...))... 

 
...(C(H)(H)(C...)... 

Increase 
bond 
order   

 
...(C(H)(H)(C(H)(
H)(... 

 
...(C(H)(=C(H)(… 

Create 
ring 

  

 
(C(H)(H)(H)(C(H)
(H)(C(H)(H)(H))) 

 
(C(1)(H)(H)(C(H)(H)( 
C(1)(H)(H))) 

Decrease 
bond 
order   

 
...(C(H)(=C(H)(… 

 
...(C(H)(H)(C(H)(H)(... 

Break ring 

 
 

 
(C(1)(H)(H)(C(H)(
H)(C(1)(H)(H))) 

 
(C(C(H)(H)(H))(H)(H)(C
(H)(H)(H))) 

Mutate 
atom 

 

S

 

 
...(C(H)(H)(C(H)(
H)(C... 

 
…(C(H)(H)(S(C... 
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f ixed

f ixed

f ixed

f ixed

We also allow the user to select atoms and bonds that will remain unaltered by 

crossover and mutation (‘fix’ option). Therefore we have further modified the data 

structure of the TreeSMILES by using an array of character pairs instead of a normal 

string/array of characters, in which the first character of the pair is the normal 

TreeSMILES character and the second character is a flag, which indicates whether the 

atom or bond designated by the first character can be modified (Figure 4.3). 

 

 
Figure 4.3. The TreeSMILES notation of n-propane (C3H8) that incorporates 

fixable characters ("charf"s ). In this example, one atom and one bond are 

fixed. 

 

 
 

 

 

 

( C ( H ) ( H ) ( H ) ( C ( H ) ( H ) ( C ( H ) 

ø F ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø F ø ø ø ø 

 

( H ) ( H ) ) ) ) 

ø ø ø ø ø ø ø ø ø 

 

 

Fitness 

The final component of the evolutionary algorithm is the fitness function. So far, 

investigations on de novo design with evolutionary algorithms have used several types 

of a fitness function, including:  
• similarity to a target molecule4,5 

• QSAR-functions13 

• ligand-protein docking8,9 

• experiment14 

 

For drug design, each of these methods has its advantages and disadvantages. 

Similarity approaches often result in molecules very similar to the target molecule, in 
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many cases even the target molecule itself, which is not useful for designing truly 

novel molecules. QSAR functions should be able to optimize activity, yet have 

important disadvantages. First they require quite a lot of reprogramming for each new 

class of molecules that is investigated. Secondly, they are generally difficult to use for  

finding very active compounds since they grow less and less reliable as the molecular 

structures deviate more from the average structure (and thereby activity) of the training 

dataset15. Unfortunately, this is exactly what would happen during optimization. The 

last theoretical method (“docking”) is still too inaccurate for optimization, and may 

yield molecules with an activity that is orders of magnitude lower than the calculated 

value9. Experiments as fitness function, finally, are generally slow and expensive, and 

so far have only been performed for a class of molecules that was particularly easy to 

synthesize14. Thus experimental fitness has yet to prove to be practical in a more 

realistic drug design scenario. 

 As an entirely different approach, we decided to use the user as a fitness function. 

This concept has been recently employed in other application areas and is often called 

interactive evolutionary computing16-18. While a user cannot know the binding strength 

of a given molecule, this defect may not be much worse than the inaccuracy of scoring 

functions. A definite advantage in letting the user choose would be that intensive 

feedback from a medicinal chemist would make the compounds easier to synthesize, 

and steer the evolution away from areas which have already been explored. 

Furthermore, the algorithm could still be easily coupled to experimental results or 

advanced computed fitness functions if so desired. In Algorithm 4.1 the general 

workflow within the Molecule Evoluator is detailed, from the creation of the initial 

population to the interactive evolution of new molecules. 

 

 

Algorithm 4.1: General workflow of the Molecule Evoluator 

 

Create initial generation of 1..generation_size molecules  

// ( generation_size set by user, by default 12) 

For each molecule, get molecule structures from one of 

these sources: 

a. MOL or SD-files 

b. Sketches by user in editor of Molecule Evoluator 

c. Random generation of molecules (see algorithm 4.2) 

 



118 

 

Evolve: 

Repeat while the user wants to continue: 

-The user may set or change ratios between 

modification, combination and de novo molecule 

generation. 

-The user selects m most interesting molecules of 

the current generation. 

Copy the m selected molecules to the next 

generation. 

-For each of the ( generation_size – m ) molecule 

slots left in the next generation, do the 

following: 

-generate a new molecule with one of the 

three methods in ratios set by the user: 

-modification: create a new molecule by 

mutating the old molecule  

-combination: create a new molecule by 

crossing over two selected molecules (can 

be the same molecule – this is allowed in 

tree-crossover)  

-de novo generation: create a new molecule 

by de novo generation, see algorithm 2. 

-add the new molecule to the next 

generation. 

-The user may change molecules by fixing (as 

explained in the text) or editing, or replace 

molecules by loading or drawing new molecules. 

-Make the next generation the current generation. 

 

 

As a further example, Algorithm 4.2 performs the random generation of molecules as 

mentioned in Algorithm 4.1. 
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Algorithm 4.2: Random generation of a molecule 

 

 set the current molecule to a methane molecule 

 

pick a random number x from 1 to MaxNumberOfAtoms 

repeat x times: 

replace a hydrogen atom of the current molecule 

by a random atom or fragment from the 

atom/fragment database 

 

pick a random number y from 0 to MaxNumberOfRings 

repeat y times or until no more rings can be made: 

  make a ring in the current molecule 

 

pick a random number z from 0 to 

MaxNumberOfDoubleBonds 

repeat z times or until no more bonds can be oxidized: 

oxidize a random bond in the current molecule, 

so increment the bond order 

 

 

Since a user cannot evaluate as many structures as a computer program and preliminary 

experiments have shown that users only want to see “good” structures, we added  

several descriptor calculations to the Molecule Evoluator. The selected descriptors are 

(physico-)chemical parameters of a compound, such as the number of hydrogen bond 

donors/acceptors, molecular weight, logP (lipophilicity), Polar Surface Area, the 

number of rotatable bonds, and the number of aromatic systems and substituents. 

Physico-chemical parameters of a compound, either calculated or experimentally 

determined, can also constitute a useful fitness function, for instance in a certain 

weighed combination. It is increasingly realized that they determine e.g., aspects of 

absorption and blood-brain barrier passage19, although they usually are of lesser 

importance for the interaction with the target protein. Upper and lower bounds for all 

these descriptors can be set by the user as a filter to create more ‘realistic’ molecules. 

Additionally, we implemented some ‘chemical’ filters. The aim was to eliminate 

molecules with undesirable (sub)structures such as strained paracyclophanes. Similarly, 

molecules not allowed because of Bredt’s rule20 are also automatically discarded. Both 
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the physical and the chemical filters can be switched on and off. 

 

 

Results 
 

The graphical user interface of the Molecule Evoluator 

When the program is started, a ‘seed’ molecule (indole in this case) can be either 

loaded or drawn and used for a first generation of derivatives (Figure 4.4). 

Alternatively, the Molecule Evoluator itself can initialize the population with random 

molecules. The latter is done by taking the computer’s clock time and using it as a seed 

in the rand function in the C programming language. 

 As an example one of the suggested molecules (3-methylindole) was selected for 

yet another round of evolution. Again by pressing the "Go" button a window appears 

that contains the selected molecule (this so-called elitism is on by default) together 

with the newly generated analogs (Figure 4.5). The user can again select the most 

attractive molecules, press “Go”, and this process is repeated until the user has 

gathered enough ideas. 

 Comments from medicinal chemists on previous test versions of the program have 

led us to include three extra features that allow the user more control over the evolution, 

i) editing the molecules directly, ii) fixing parts of the molecule, and iii) using filters to 

prevent that certain unrealistic molecules are shown to the user. We next discuss these 

features in more detail. 

  Editing molecules is useful when the user wants to start the evolution with a 

molecule that has not been stored yet in the computer and must be drawn. Additionally, 

if during the evolution a given molecule suggests a more interesting structure, editing 

the molecule into the desired structure can be done ‘on-the-fly’. This will allow the 

user to evolve molecules immediately from the desired structure, rather than wait until  

it will be generated by the program. Editing the molecules is performed in the 

"Molecule Edit" window (not shown), which pops up when the user clicks on a 

molecule in the main window. Editing is quite similar to that in normal chemical 

drawing programs. After the popup window has been closed, the drawn structure is 

converted into TreeSMILES-format.  
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Figure 4.4: A molecule, in this case indole (#1), is drawn or loaded as a 

‘seed’ for a population of 12 derivatives generated by pushing the “Go” 

button (green arrow in left-hand toolbar). In this simple example with atom 

additions only the methylated analog #6 was selected for further evolution 

(see Figure 5). 

  

 

 

Fixing part(s) of the molecule can be useful in cases where structure-activity 

relationships demand that a particular, necessary part of the molecule is present in all 

its descendants. The Molecule Evoluator allows this conservation with the “fix atoms 

or bonds” option in the “Molecule Edit” window, which enables the user to generate 

new molecules with the conserved part remaining intact, and only variation on the “free” 

atoms.  
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Figure 4.5: Pressing “Go” (green arrow in the left-hand toolbar) generates 

mutants of methylindole (see Figure 4) according to preset filters (PSA, logP 

and MW in right-hand panel). PSA and logP values are displayed in the 

individual boxes, according to buttons pushed in the upper toolbar.  

 

 

The filters are the third extra feature. In the “Physical Filters” panel (see also Figure 

4.5) the ranges are set within which the physicochemical properties of a molecule must 

lie for the molecule to be incorporated into the population (for example: molecular 

weight between 100 and 300). Molecules outside these boundaries imposed by the user 

will be automatically eliminated by the Molecule Evoluator and will therefore not be 

shown to the user. Additionally, some chemical structures which are usually 

undesirable, such as hemiketals, can be forbidden in the “Chemical Filters” panel. The 

Molecule Evoluator creates offspring molecules using mutation and crossover until 

feasible molecules – fulfilling all filter conditions – have been found. 

 

In addition to these three main control features, there is a “Parameters” panel (not 

shown), in which the user can influence the evolutionary process itself. The user is 

allowed to steer evolution by, amongst other things, enabling/disabling certain kinds of 
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mutations. For example, the “decrease bond order” mutation tends to partially reduce 

phenyl rings, which is chemically undesirable. As an alternative to fixing the phenyl 

bonds explicitly, disabling this mutation will protect the bonds from being reduced. 

This will however also prevent useful mutations, such as those which reduce a ketone 

(C=O) to an alcohol (CHOH). Another option would be a special version of the 

"decrease bond order" mutation that does not reduce aromatic rings; this is something 

we are currently considering. Other mutation types (eight in total) can also be toggled 

‘on’ or ‘off’. By default, each of these eight categories of mutations is applied with the 

same frequency (0.125). When mutation types are disabled, the remaining active 

mutation types are still applied with identical frequency, so if for example only three 

mutations are allowed, the probability of each of them is 0.33. Another option is to 

change the ratio of mutation/crossover. Since we learned that most medicinal chemists 

prefer mutation over crossover, the default settings are 90% mutation and 10% 

crossover (and so are applied with probabilities of 0.9 and 0.1, respectively). A third 

option is to allow the Molecule Evoluator to occasionally add random molecules to the 

population. The relative amount of random molecules is approximately 16% (so 1-2 

new random molecules in a new population). This option is off by default. Lastly, the 

user can toggle elitism on and off. Elitism conserves the selected molecules and makes 

them also the first molecules on the screen in the next generation. 

 

Experiments 

We conducted a computational experiment first for a simple proof-of-concept. For this 

we used a dataset of biological activities of neuramidase inhibitors21. Using the 

measured activities as input for the evolutionary algorithm we located the experimental 

minimum (IC50 = 1 nM, a 6300-fold improvement over the original structure) within 

four generations. 

 To test whether we could use the Molecule Evoluator to discover interesting new 

molecules with possible biological activity, we performed an experiment using its 

option for random molecule generation. 

 First we generated a library of 10,000 small molecules (150D < MW <250D) with  

drug-like features: either one or two aromatic rings, 5 or fewer rotatable bonds, 2 or 

fewer hydrogen donors, 4 or fewer hydrogen acceptors, and a polar surface area of at 

most 70Å2. Out of this library, three sublibraries of 100 compounds were chosen 

randomly. Each of these sublibraries was presented to a different chemist, who could 

choose and modify the molecules created by the program. Out of the 300 compounds, 

35 were chosen for further investigation. 
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Checking the latter molecules in the SciFinder2 and Beilstein databases22 (in April 

2003) we found that six structures represented chemical classes yet unknown in 

literature. Based on these six core structures ten molecules were designed, of which 

eight compounds were synthesized successfully. One typical compound with a 

calculated log P value of 1.65, a calculated polar surface area of 32 Å2 and a molecular 

weight of 191D, is shown in Figure 6. It proved active on both �1- and �2-adrenergic 

receptors, i.e. at 10 μM it displaced more than 50% of the radioligand used in binding 

assays on the two receptor subtypes. The full results of this experimental proof-of-

concept are described in chapter 7. 

 

 

                       
OH N

H  
 

Figure 6. One of the compounds synthesized on the basis of a random 

generation of virtual molecules by the Molecule Evoluator. 

 

 

 

Discussion 
 

In this paper we have presented an evolutionary algorithm to help design new 

molecules. As reviewed very recently, evolutionary algorithms form one of the 

approaches to computer-based de novo design of drug-like molecules23. A large variety 

of methods is being used to this end, even when confined to evolutionary concepts only. 

The two most important components of all evolutionary algorithms used in 

chemistry/drug design are the molecule representation and the fitness function. 

 

The molecule representation 

One of the main choices when creating a de novo design algorithm is whether to make 

the algorithm atom- or fragment-based. Atom-based algorithms work by mutating 

atoms, and can therefore fine-tune each structure optimally4,5,13,24. On the other hand, 
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several investigators construct molecules using larger fragments7,9,24. This has the 

advantage that the representation can be simpler, since there is generally no need for 

the genome to contain cycles (for these are incorporated into the fragments). Also 

fragment-based methods have the potential benefit of easier synthesis. While the 

current version of the Molecule Evoluator uses both atoms and fragments to construct 

molecules, its mutations are atom-based. We believe that atom-based evolution is 

superior to fragment-based evolution for adapting the molecular structure. The main 

disadvantage of using fragments instead of atoms is that most mutations in fragment-

based evolution are “macromutations” that change the molecule into something 

completely different, with a vastly different fitness value. In most cases, it is not clear 

whether fragment-based evolution is an improvement over random search, unless the 

fitness function is fragment-based. However, this is certainly not the case in drug 

design where biological activity is subtly dependent on the molecular structure. We 

have observed that making an atom-based algorithm interactive, as in the Molecule 

Evoluator, partially compensates for the disadvantage that molecules generated on the 

basis of atoms are generally more difficult to synthesize. This is because the medicinal 

chemist has the option to immediately discard or modify structures at will. 

 

Using the user as a fitness function 

The most important problem of the de novo design programs which have been 

described in literature is the difficulty of creating a fitness function that is relevant to 

drug design. In this work, we propose to use an evolutionary algorithm not as a black 

box that will give the user the right answer when given the right question, but as a 

means of supporting the creativity and imagination of the user by interactive evolution, 

thereby automatically incorporating the user's explicit as well as implicit 

(subconscious) knowledge of the problem domain. 

 Using user feedback as fitness function has several advantages and disadvantages, 

and some consequences that require special adaptations and modifications of the 

software. 

 One disadvantage of user interaction is that the population must be small. It is 

unlikely that any chemist would want to see 50 to 100 molecules before pressing “Go” 

again. However, small population sizes (12 as a default in the current version of the 

program) may lead to premature convergence, i.e. tempt the user to stop (too) early. 

Another hurdle relates to programming the software: the more the user can interact 

with the program, the more is required from the user interface. In this project, more 

time was spent on constructing the user interface than on creating and fine-tuning the 
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evolutionary algorithm. Modifications of the evolutionary algorithm should in many 

cases be reflected by changes in the user interface, and this makes programming and 

testing new ideas more time-consuming than in a non-interactive system. Software 

validation is also more difficult – one cannot well run hundreds of tests automatically 

to objectively verify whether the algorithm outperforms other algorithms. A user is not 

an objective function that can be easily shared with others. Finally, the user may see 

the computer program as a competitor, not as a tool, and might not like to work with it 

since “someone else” has thought of the molecule. While the computer has so little 

knowledge that one should say that the user has invented the molecule (and recognized 

it as something interesting), the user may perceive his or her position differently. 

 There are however also many advantages to user interaction. One attractive 

advantage is that the feedback from the user can produce molecules which can be 

synthesized more easily in the laboratory than is possible with computer-generated, 

random molecules. The difficulty of synthesis would also be automatically adapted to 

the user’s level of knowledge and experience. 

 A second advantage is that the program can use all kinds of rules and problem 

domain knowledge that the user has. The alternatives, expert systems and flexible input, 

have distinct disadvantages in this case. Creating an expert-system is time-consuming 

and must be done anew for each optimization project. Flexible input would require the 

domain expert, namely the chemist, to learn a complicated language or user interface 

which would definitely diminish accessibility of the software and thereby its use 

greatly. The program can even benefit from the user’s subconscious rules, which 

cannot be programmed since they are unknown and may be very difficult to derive. 

Furthermore, as the user's problem knowledge grows, this knowledge is automatically 

updated and applied to the process without time-consuming intervention by 

programmers. In experimental sciences, seldom all required knowledge is known 

beforehand, and allowing experiments with the computer can also lead to finding new 

rules and discarding obsolete ones. 

 A third advantage is that the software can stimulate computer use by medicinal 

chemists. Far too often, compounds suggested by the "computational department" are  

rejected by medicinal chemists for reasons of synthesis, and collaboration between the 

departments is hampered by busy schedules and the necessity to have meetings for 

feedback. This makes collaboration slow and difficult, and probably results in chemists 

mainly designing their own compounds without the help the computer could give. We 

believe that creating a program for the problem domain experts instead of for computer 

experts can lead to better use of the help that the computer could give in the drug 
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design process, and perhaps even to increased understanding and a more fruitful 

collaboration between medicinal chemists and computer scientists. 

 Finally, a program such as the Molecule Evoluator may make a chemist more 

conscious of his/her own design process, i.e. which rules he or she follows. 

Consciousness of the rules and methods can lead people to experiment with them and 

occasionally break them for enhanced creativity. 

 

Adding extra user control to the evolution 

We found that when we added interactivity to the evolutionary algorithm, it was not 

enough to restrict the user’s influence to selection only. The users were generally quite 

"impatient" and wanted more control to accelerate or even directly manipulate the 

evolution, so we added features to enable this. First, we incorporated edit functions to 

directly modify the molecular structure. Second, we added an option for selecting a 

part of the molecule to remain constant. Third, we allowed the settings (which 

mutations are allowed, what range a property may have) to change interactively. We 

think that these options will make the Molecule Evoluator more attractive for drug 

design since they give the user more control over the evolution. We must however 

beware of the complication that having a feature is not enough if the user does not 

know that the feature is there or how to use it. Good user interface design is necessary 

for users to learn to use the multiple filters without having to read the manual. The 

second danger is perhaps more serious: by discarding “bad molecules” one may at the 

same time eliminate paths to escape from local optima. Secondly, if all molecules 

shown are good according to a specific user’s criteria, it may be exactly what the user 

had designed him/herself anyway, thus eliminating the added value of the program. 

However, lack of control may frustrate and bad structures may irritate the user, so we 

aimed for a middle road between control and creativity. 

 

 

Conclusions and future perspectives 
 

In this report we have described the “Molecule Evoluator”. It is a software program 

based on evolutionary algorithms and has been created to aid chemists in designing 

new drug-like molecules. With this program all relevant chemical mutations are 

possible. The most distinguishing feature of the Molecule Evoluator relative to other de 

novo design programs is that it has the user as fitness function. In this way it can 

combine the domain knowledge of the chemist with the memory and processing speed 
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of the computer. We therefore added a graphical user interface for the evolution and 

extended the program with options for directly editing the molecule, marking part of a 

molecule as conserved, and calculating relevant physicochemical parameters.  

 Considering the algorithms used and the feedback from users so far, there are 

several directions open for future investigation. First, many molecules generated by the 

program seem difficult to synthesize. Perhaps encoding explicit chemical knowledge in 

the program or using chemical databases could help improve this. A second direction 

would be to create a command-line version which links to other software such as 

docking programs, since the “high-resolution” optimization resulting from our atom-

based model might be very useful for optimizing lead compounds. Third, more 

selection criteria could be added such as additional physicochemical properties or an 

input method for QSAR-formulas. 
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