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Abstract 

Nowadays millions of different compounds are known, their structures stored in 

electronic databases. Analysis of these data could yield valuable insights into the laws 

of chemistry and the habits of chemists. We have therefore explored the public 

database of the National Cancer Institute (>250,000 compounds) by pattern searching. 

We split the molecules of this database into fragments to find out which fragments 

exist, how frequent they are and whether the occurrence of one fragment in a molecule 

is related to the occurrence of another, non-overlapping fragment. It turns out that some 

fragments and combinations of fragments are so frequent that they can be called 

“chemical clichés”. We believe that the fragment data can give insight into the 

chemical space explored so far by synthesis. The lists of fragments and their (co-) 

occurrences can help create novel chemical compounds by i) systematically listing the 

most popular and therefore most easily used substituents and ring systems for 
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synthesizing new compounds, by ii) being an easily accessible repository for rarer 

fragments suitable for lead compound optimization, and by iii) pointing out some of 

the yet unexplored parts of chemical space. 

 

Introduction 

Over the last two centuries, chemists have synthesized many millions of structures. 

Two of the largest chemical databases, the Beilstein1 and the CAS2, contain over 8 

million and 25 million compounds, respectively. Such large collections of compounds 

could give much insight into chemistry, both into what kinds of compounds can be 

made with current chemical technology, and into which parts of chemical space have 

been extensively investigated or, conversely, barely explored. 

 In most investigations so far, databases have been used for classification of 

compounds: for example, when is a compound drug-like3,4,5? Or which substructures or 

properties correlate with mutagenicity6,7?  

 Relatively unexplored are the possibilities of general databases: collections of 

molecules for which no data other than their structure is available. The only 

investigations known to us which had this purpose8,9 did so to extract a catalogue of 

rings respectively substituents for drug designers. However, it seems desirable to get 

more information out of those general databases than just rings. We could also learn 

much about chemistry and the habits of chemists by studying which substructures and 

substructure combinations occur. 

 In this investigation we want to delve deeper into the knowledge stored in the 

molecular structures. This would not only give us an extensive catalogue of fragments 

to re-use in synthesis of drugs and other compounds, but also insight into “chemical 

habits”. What kinds of compounds are made frequently, and which substructures are 

relatively rarely found together in a molecule? Some of these rare combinations might 

indicate barely explored parts of chemical space, potentially interesting for designing 

new compounds. 

 In this work we will use the name “chemical clichés” for some of the most-

occurring fragments and frequently co-occurring pairs of fragments. The word “cliché” 

originated in the French printing industry where it denoted a stereotype, a kind of 

stamp of for example a picture that was pressed on the paper to produce the same 

image many times. Nowadays the word cliché is mainly used to denote a trite 

expression, such as “missed by a mile” or “top research institute”. However, some 

classes of chemical compounds also seem to be based on the same “stamp” with only 

slight variations, such as benzodiazepines and tricyclic antidepressants. Also, single 
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fragments like the benzene ring can occur extremely often in molecules. We think that 

the word “cliché” is useful to describe this reuse of ideas, while stressing that the 

current templates might not be the only ones that are viable. 

 Then the question remains how to extract knowledge from chemical databases. 

Knowledge is usually found in occurrences and patterns: what occurs in nature, what 

does not occur, and which events occur together? What is correlated with what? 

Looking at the molecular structure as a whole is not very useful, since all chemical 

structures in a database are unique, so on that level they are incomparable. Splitting the 

molecules into the chemically smallest fragments, the atoms, will yield no more 

information than the periodic table. One should therefore look for chemical knowledge 

at a level between these extremes, and that is the level of the molecular fragments. 

 In this paper we first discuss our choice of fragmentation method. Then we will 

describe the method we used to detect whether two different fragments co-occur more 

or less often than expected, and thereafter we will present the results of the fragment 

mining and co-occurrence analysis. We will conclude with a discussion of our findings, 

suggestions for application of the data obtained, and directions for future investigations. 

 

Database 

In this investigation we used the public database of the United States National Cancer 

Institute (NCI). The August 2000 version, which we mined, contains 250251 

structures10. The molecules in this database have been selected to be tested against 

cancer, so were deemed by the database compilers to possibly have biological activity. 

Since many of the compounds are experimental and have not been tested on 

bioavailability and safety in humans, the diversity in structures is quite large, and 

should give a decent cross section of the range and preferences of chemical synthesis. 

 

Fragmentation method 

To find patterns in structures, the first step is to break the molecules into fragments. 

Two categories of fragmentation methods can be distinguished: the “full substructure 

set”, in which all possible 1, 2, 3 …n-atom sized substructures of a molecule are 

detected, and “molecule parts”, in which a molecule is divided into a number of non-

overlapping substructures. 

 While the full substructure set would give all information possible, in practice it 

yields huge numbers of substructures per molecule (several thousands for even a 

medium-sized molecule). This makes such kind of data mining computationally very 

expensive, especially for large collections of compounds. For an exploratory study 



84 

 

such as this, a “molecule parts” method would be more suitable, since there are fewer 

parts, they do not overlap, and they correspond to chemically intuitive units. 

 The next question is at which point to “break” the molecules. The two main 

methods here are graph splitting11,12,13 and virtual retrosynthesis14,15,16. Graph splitting 

breaks molecules at topologically interesting points, such as the bond between a 

substituent and a ring, while virtual retrosynthesis uses specific rules based on 

chemical reactions, and breaks for example ester bonds. Both methods yield 

manageable sets of substructures (10,000-100,000 for a medium sized database). From 

a chemical point of view, the retrosynthesis method seems most logical, however it 

does not reflect actual syntheses very well as for example Vinkers et al. found out14. 

The reason is that chemical reactivity depends on steric and electronic factors which 

are for a large part determined outside the three or four atoms of the “breakable bond” 

and its neighbors. Conversely, synthesis can often create bonds (such as alkane C-C 

bonds) which are not considered to be cleavable by most retrosynthesis algorithms, 

because typically only a few dozens of the hundreds of organic reactions are 

incorporated into the software. A last disadvantage is that different retrosynthetic rules 

give different fragment sets. In contrast, graph splitting is quite reproducible, easy to 

implement and divides structures in chemically intuitive units of “ring systems” and 

substituents. This is why we chose the graph splitting method.  

  

 

a. b. c.

N

N

N

O N

N

N

N

N

 
 

Figure 3.1: a. A drug molecule (pyrilamine) b. Framework of pyrilamine 

according to Bemis et al.11, consisting of only the ring systems and the 

atoms that directly connect the ring systems. c. Framework of pyrilamine 

according to our definition so without substituents attached to the rings. This 

framework is later split into ring systems and linkers. 
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Deciding to do graph splitting is however not enough, since graph splitting can be done 

in a number of different ways. Bemis et al.11 iteratively cut off all 1-connected atoms, 

so that only “substituents” and frameworks were left, the frameworks being the ring 

systems with the part of the linkers that directly connect them, see Figure 3.1. 

 We decided to go one step further and also split up the frameworks into ring 

systems and linkers. We therefore ended up with splitting molecules into substituents, 

ring systems, and linkers of different orders (linking two ring systems, three ring 

systems, etc.) See Figure 3.2 for an illustration of our fragment classes and the 

decomposition of an example molecule, folic acid. 

 

ring systems

substituents

linkers

ring systems

substituents

linkers

 
 

Figure 3.2: Our algorithm breaks the bonds between ring systems and the 

rest of the molecule, and thereby splits the molecule (in this example folic 

acid) into several types of fragments: ring systems, substituents, and linkers. 

 

 

 
Figure 3.3: Storage format of ring systems and non-ring systems. While 

ring systems are stored as normal molecules, substituents and linkers 

include one or more “branching atoms” that encode the symbols of the 

atoms to which the substituent or linker is attached. 

 
 



86 

 

The ring structures were stored as normal molecules, only without hydrogen atoms 

(similar to the format of the NCI database itself). For the substituents and linkers we 

considered it useful, like Bemis et al.12, to encode which atoms of the substituent/linker 

bind to the ring systems, as well as to which atom types they bind. We therefore 

encoded the ring attachment atoms as special types, the “BX” atoms, where X was the 

elemental symbol of the ring atom to which the substituent was attached. This 

encoding is illustrated in Figure 3.3. 

 Splitting molecules in this way can already yield useful information, such as 

which ring systems occur, and which do not (like an N6-ring). But we could get even 

more information by also recording the frequencies of the substructures, as this would 

allow us to analyze frequency distributions and to explain why some fragments are 

more prevalent than others. 

 As a practical point, we had to find a method to encode the fragments uniquely, so 

that of each fragment mined we could determine whether it was already in the database 

or of a new fragment type. For this problem (the so-called “canonicalisation problem”) 

various algorithms and notations have been developed, such as Unique SMILES17. In 

this investigation, we implemented a canonical code of which the first part included the 

number of atoms, the number of rings (in the case of ring systems) and the number of 

attachment points (in the case of substituents and linkers). The second part contained 

the atoms, which were sorted first on their number of neighbors and the number of 

bonds of those neighbors, second on atom type and finally on hybridization (sp, sp2, 

sp3). Since the fragments were relatively small, this simple method worked well.  

 

Co-occurrence analysis 

After the entire molecule database was split into fragments we performed a co-

occurrence analysis: which fragments were unexpectedly often found together, and 

which seemed to “avoid” each other? 

 Of course, two fragments that are frequent would occur much more often together 

than two infrequent fragments; however, that would not necessarily mean that there is a 

relationship between the two. Therefore we decided to do a stochastic experiment. 

 First, we selected those fragments which occurred in more than 20 molecules (in 

order to obtain statistically significant and chemically useful results). Then we 

“simulated” an NCI database by randomly dividing the different fragments over as 

many “molecules” (bins) as they were part of in the real database. So if a certain 

fragment occurred in 500 molecules in the original database, it was divided over 500 

randomly chosen bins of the 250,251 available in the simulated database. We counted 
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how often each combination of fragments occurred, and repeated the simulation a 

thousand times. These results were compared with the co-occurrence counts of the NCI 

database. 

 For example, if we had taken a database of 1000 molecules, in which 500 phenyl 

rings occur and 100 methyl groups, there would be on the average 50 co-occurrences of  

these two groups. An experiment would find that they co-occurred together about 50 

times, with a standard deviation (SD) of about 4.7. However, if in the real database 

they occur 75 times together, which is 5.3 SD from the expected value, this indicates a 

correlation, which may have synthetic and/or biological reasons.  

 

Results of fragment finding 

The mined NCI database contained 250251 compounds. These molecules were split 

into ring systems, substituents, and several types of linkers, in total 13509 different 

ring systems and 52103 different non-ring fragments. Of these non-rings 19602 were 

unconnected fragments, mostly anions such as sulfate and molecules without rings. 

More interesting were the other non-ring fragments: 18015 were substituents, 9675 

linked two ring systems, 2531 linked three ring systems and 2280 linked four or more 

ring systems. The most highly connected linker was attached to eighteen ring systems. 

The number of different fragments in the largest categories, as well as the total 

occurrences in the molecules and some example fragments are shown in Table 3.1.  

 

Visual inspection of the fragments and their occurrences led to the following 

observations, some of which were already known qualitatively, but which could now 

be confirmed quantitatively through the data mining: 

1) Many of the ring systems and branches contain metal atoms or metallic atoms 

such as boron. In the case of rings, 2722 out of 13509 (20%) contained atoms 

other than C, N, O, and S, such as As, Fe, B and Si. Of the substituents, 1736 

out of 18015 contained atoms other than C, N, O, S, and the halogens, less 

than 10%. The two and three-connected branches had 11% and 24% 

respectively, while most linkers with six or more attachment points contained 

metals or less common heteroatoms (B, P, Si, and such). 

2) In general, the larger the ring or branch, the smaller its frequency seems to be.  

3) Metals and higher-weight non-metallic elements both occur relatively rarely in 

fragments and make a ring or branch occur less often. Carbon atoms dominate 

rings and other fragments, followed by nitrogen and oxygen, which are in turn 

more prevalent than sulfur, phosphorus, and finally the metals. 
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4) In branches, a higher number of attachment points seems to mean that it is less 

used. Bemis et al.11 did not find any frequent frameworks with 3-linkers or 

higher-order linkers in the Comprehensive Medicinal Chemistry (CMC) 

database18. Tables 3.1 and 3.2 confirm this observation.  

5) The only exception to the rule that the more attachment points a linker has, the 

less frequent it is, is going from 5-attached linkers to 6-attached linkers. 

Inspection of the structures of the 6-linkers shows that most of them are 

symmetrical and therefore possibly easier to synthesize. However, 6 and 

multiples of 6-linkers are uncommonly popular (Table 2; compare 12 to 11 

and 13, 18 to 17) – probably this is due to metal complexes and the high 

symmetry possible (both 2- and 3 fold symmetrical). Perhaps investigations of 

larger databases could confirm whether there really is a “rule of six”.  

6) The ratio of the occurrence of fragments to the number of unique fragments 

decreases as one goes from substituents to rings to linkers. The ring ratio 

(13509 unique rings, together occurring 416867 times in the database) is 31, 

for the 18374 substituents it is 33, for the 2-linkers 10, for the 3-linkers 3.2 

times and for the four-linkers 2.5. It may be that the more unique fragments 

there are in a category, the more lopsided the distribution will be.  

 

As illustration of our results, the top ten fragments of the most common fragment 

families are shown in Table 3.3. 

 

Results of the co-occurrence analysis  

Our investigations found 65612 fragment types in 250251 molecules. Correlating all 

these fragments to each other would have resulted in about 4 billion correlations, but 

most of these would be meaningless since about 70% of fragments occurs only once in 

the database. To reduce computational cost and find only the co-occurrences in a 

decently sized set of molecules (we set the threshold somewhat arbitrarily to at least 20 

molecules), we only calculated co-occurrences for fragments which occurred in 20 or 

more molecules – 1895 fragments, just 2.9% of the total. Among these fragments were 

also some metal-containing and therefore less interesting fragments, which we 

removed. The final set therefore contained 1730 different fragments, 2.6% of the total 

number. 

 We created one thousand simulated databases, as described in the methods section, 

and calculated the expected occurrence of each pair of fragments, as well as the 

standard deviation of these co-occurrences (for among different simulations, the  



89 

 

Table 3.1: Overview of some of the fragment databases we created by fragmenting the NCI 

database. For example, the database of substituents (groups attached to only one ring 

system) contains 18,374 different types of substituents, which together occur 617,722 times 

in the NCI database. Also given is an example of the particular type of fragment, for the 

substituents this is the methyl group attached to a carbon atom in a ring system. 

 
 Number of 

unique 
fragments 

Number in 
database 

Example 

Ring 
systems 

13509 416867  

 
 

Substituents 18374 617722  

CH
3

(C)
 

2-linkers 9990 101402 

S S
(C)

(C)

 
3-linkers 2602 5776 

P(C)

(C)

(C)

 
4-linkers 974 2388 

N

(C)

(C)

(C)

(C)

 
5-linkers 126 177 (C)

Si (C)

(C)

(C)

(C)
 

6-linkers 218 280 

(C) (C)

(C) (C)

N
N

N
N

(C)
(C)
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Table 3.2: Overview of the number of fragments linking seven or more ring 

systems. For example, there are 15 unique fragments which are attached to 

nine ring systems simultaneously. 

 

Number of attachment 

points 

7 8 9 10 11 12 13 14 15 16 17 18 

Number of fragment 

types  

22 15 15 1 1 26 0 0 0 0 0 2 

 

 

 

Table 3.3: The most frequently occurring fragments in the NCI database. 

Listed are the top ten ring systems, substituents, 2-linkers and 3-linkers. 

The numbers in each cell represent the number of occurrences of the 

fragment in the database and how many percent this is of all occurrences of 

fragments of its type. For example, the keto substituent (C=O) occurs 

77,907 times in the database and thereby represents 13% of all substituent 

occurrences; if one would randomly pick a substituent from a molecule, the 

chance is 13% that it is a keto group. The numbers in the bottom row are 

the total percentage of the top ten fragments. 

 
 Ring systems substituents 2-linkers 3-linkers 

1 

 
200644 (48%) 

CH3

(C)
 

102157 
(17% ) 
 

(C) N
(C)

O

 
4484 (4.4%) 

(C) (C)

(C)

 
415 (5.0%) 

2 

 
11442 (2.7%) 

O

(C)
 

77907 
(13%) 

(C)
NH

(C)  
4266 (4.2%) 

(C) (C)

(C)

 
384 (4.6%) 
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3 

 
7731 (1.9%) 

OH

(C)
 

62949 
(10%) 

 
3873, 3.8% 

(C)

OH

(C)

(C)  
240 (2.9%) 

4 

 
6991 (1.7%) 

Cl

(C)
 

46734 
(7.6%) 

(C)
N

N
(C)

 
 
3695 (3.6%) 

(C) (C)

(N)

 
179 (2.1%) 

5 

N

N

 
6185 (1.5%) 

OMe

(C)
 

42080 
(6.8%) 

O
(C) (C)

 
3638 (3.6%) 

N
H

(C)
(C)

(C)

 
107 (1.3%) 

6 O

 
5814 (1.4%) 

NO2

(C)
 

24997 
(4.0%) 

 
2940 (2.9%) 

N
N
H

(C) (C)

(C)

 
88 (1.1%) 

7 N

 
5352 (1.3%) 

NH
2

(C)
 

19421 
(3.1%) 

(C) (C)
 

2699 (2.7%) 
N(C) (C)

(C)

 
87 (1.0%) 

8 O

 
5120 (1.2%) 

CH3

(N)  
14654 
(2.4%) 

(C) O
(C)

O

 
2542 (2.5%) 

(C)

OH

(C)

(C)

 
87 (1.0%) 

9 

N
 
4526 (1.1%) 

Br

(C)
 

3184 
(1.8 %) 

(C) (C)

O

 
2278 (2.2%) 

N
H

(C)

O(C)

(C)
80 (0.95%) 
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10 

N

N

N
H

N

 
3991 (0.96%) 

F

(C)
 

7916 (1.3%) 

(C) S

O

O

N
H

(C)

 
1966 (1.9%) 

(C)

O

N
H

O

(C)

O

(C)  
76 (0.91%) 

Total 62% 66% 32% 21% 

 

number of co-occurrences of a pair of fragments can vary). Then we compared the 

expected co-occurrences and the deviation in SDs (the z-values) to the real co-

occurrences in the NCI database.  

 The distribution of z-values of a sample simulated database yielded a Gaussian 

like distribution, as expected (Figure 3.4). The distribution of fragment co-occurrences 

in the NCI database in the same figure is, however, remarkably different. 

 

         
 
Figure 3.4: Overview of the number of standard deviations that the real co-
occurrence of a fragment pair differs from how the co-occurrence would be 

if the distribution of fragments over the molecules in the database were 
random. The X axis displays the deviation range, the Y-axis the number of 
pairs in a certain range. Only pairs which occur over 20 times are counted 

here. The distribution of the simulated (random) database is Gaussian-like, 
but the real database has lots of fragments co-occurring much more or 
much less frequently than expected. 

<-
3

-3
..-

2
-2

..-
1

-1
..0

0.
.1

1.
.2

2.
.3 >3

0

1000

2000

3000

4000

Real database Simulated database



93 

 

The NCI database turns out to possess both a large number of fragment pairs which 

seem to avoid each other (1110 of z-value<-3), and an even larger number of fragment 

pairs which seem to group together (2897 of z-value>3). 

 
Table 3.4: Some fragment pairs which occur much less frequently together 

in one molecule than expected, and therefore seem to avoid each other. For 

example, the phenyl-group and the tetrahydrofuran group (row 3) are both 

very prevalent fragments, and would be expected to occur together in about 

2653 molecules of a 250,000 molecule database. However, in the NCI 

database they are combined in only 270 molecules, giving an “expectation 

fraction” of 270/2653 or 0.10. This relation is highly significant, being 67 

standard deviations under the expected value. 
 
z-value Fragment 1 Fragment 2 Expected 

occurrence 
Real 
occurrence 

Factor 

-31 

 

 

534 42 0.08 

-36 

N

N

 

O

(C)
 

1209 115 0.10 

-67 

 

O

 

2653 270 0.10 

-19 CH
3

(C)
 

CF3

(C)
 

544 139 0.26 

-37 

 

NH N

 

1186 323 0.27 

-14 O

 

Cl

(C)
 

611 281 0.46 
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We first sorted our results on statistical significance, reaching z-values of up to 490 and 

down to -65. However, after viewing the results we realized that a significant effect 

does not have to be a very large effect. The most statistically significant negative 

correlation is that between the benzene and tetrahydrofuran rings, which occur about 

10 times less together than expected. The second most significant correlation is 

between benzene and pyridine, only a 2.4 fold difference. However, lower significance 

is given to higher co-occurrence factors, such as 6.5 for the benzene – tetrahydropyran 

pair. Therefore we sorted all pairs that had sufficient z-values on their ratio of expected 

occurrence to actual occurrence. To illustrate our results, we have listed six of the most 

“avoiding” combinations with z-values<-5 (Table 3.4). These combinations were 

expected to occur at least five hundred times in the database, but were found much less 

frequently. 

 Even more numerous than the avoiding pairs were fragments which seemed to 

group together. Many of them co-occur so often, that they could be termed “chemical 

clichés”. Often the z-values of the correlations were much bigger for these groups than 

for the avoiders. In Table 3.5 we show some of the fragment pairs with the strongest 

enrichment in occurrence for clichés which occur over a 1000 times, over 200 times, 

and over 50 times in the NCI database. 
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Table 3.5: Some fragment pairs which co-occur much more often than 

expected; shown are four fragment pairs which occur in more than one 

thousand molecules, four pairs which occur in more than two hundred 

molecules, and four pairs which occur in more than fifty molecules. For 

example, the tetrahydrofuran group and the –CH2OH group would be 

expected to occur only 122 times together, but the pair appears in 2292 

molecules (the explanation is of course that these would be ribose-

containing molecules). The “gain factor” here is 2292 divided by 122 is 19, 

and the relation is highly significant, since the found occurrence is over 200 

standard deviations from the expected occurrence in a random database 

(making the chance that their occurrence is independent under 

0.0000001%). 
 
z-value Fragment 1 Fragment 2 Expected 

Occurrence 
Real 
Occurrence 

factor 

206 O

 

O
(C) (C)

 

45 1396 31 

206 

 

OH(C)
 

122 2292 19 

117 O

 

OH(C)
 

97 1171 12 

122 

N

N

 

NH
2

(C)
 

371 2677 7 

117 

 

(C)

 

2.3 206 88 

185 

 

O
(C) (C)

 

6.1 463 76 
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108 O

 

O

O

(C)

 

7.0 286 41 

125 
SNH

 

S

(C)
 

21 591 28 

425 

N NH

 

O NH
2

O

(C)

 

0.024 65 2708 

125 

 

 

 

0.26 62 238 

122 
N

 

NH

 

0.30 66 221 

106 
N

 

(C)

(C)
 

0.39 68 173 

 

Discussion 

In this work we performed fragment mining and co-occurrence analysis on a diverse, 

medium-sized chemical database. In this section we discuss what we can learn from the 

results, compare our work with that of other investigators, consider uses of the 

fragment data acquired, and hypothesize about possibilities for extension and 

improvement of this work. 

 

First, we summarize our conclusions from the results obtained. 

 Our first observation confirms that of Bemis et al.11,12 and Xue et al.13, namely that 

chemical fragment distributions are extremely lopsided, with a few frequent fragments 

and many infrequent fragments. Our investigations of several different categories of 

fragments (rings, substituents, and linkers) however refine this rule; it seems that the 

classes of the most prevalent fragments, substituents and ring systems, have the most 

lopsided distribution. In the less used classes of fragments (such as 3- or 4-connecting 

linkers) the differences in occurrence between the “top-10” and the “bottom-10” 
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fragments are less pronounced (Table 3.3). It may be that in a category of fragments 

which has not yet been used often, strongly preferred substructures cannot arise or have 

not arisen yet. 

 One could speculate on what influences the occurrence of a certain fragment. 

Three factors come into mind. First, synthetic feasibility/availability; how easy is it to 

synthesize the fragment, or is the fragment already incorporated into commercially 

available starting materials? The phenyl group would be a good example of this. 

Second, versatility; how easy is it to attach other groups to it. Third, popularity: a 

popular fragment accumulates more and more knowledge which makes it more 

attractive for use by others, since there is more knowledge available for its 

manipulation. This could lead to a kind of “winner takes it all” effect, in which 

relatively small differences in fragment quality may lead to big differences in use. 

Distinguishing between these possibilities would require further study, for example to 

find out how many combinations with other groups a certain fragment has per 

occurrence. 

 The fragment co-occurrences give other insights into chemical space. From 

looking at the structures of the fragments that seemed to avoid each other we could 

think of different reasons why fragments co-occur less frequently than expected. The 

first reason may be that there are different classes of compounds, such as natural 

compounds and “synthetic” compounds. In natural compounds, sugar and nucleobase 

systems may be more prevalent, while in many industrial chemicals the phenyl group 

plays a dominant role. An example would be the third pair of Table 4, in which the 

tetrahydrofuran ring (as part of ribose) would occur in the natural compounds, while 

the phenyl is more likely to occur in “synthetic” compounds. A second reason may 

have to do with ease of combination: a keto group cannot be attached directly to a 

phenyl ring, and therefore tends to occur less often with it. It can of course be attached 

to another ring system in the same molecule, but since effectively one part of the 

molecule has no positions available for it, the overall chance of the keto group 

occurring in a phenyl-containing molecule will be lower than average. Finally, some 

combinations may be found by the statistics to be less frequent than expected since one 

group is used as a replacement for the other group. Thus, bromine and chlorine 

relatively rarely occur in the same molecule, possibly because they have similar 

electronic and chemical properties. Likewise, napthalene and benzene can take similar 

roles as molecule cores, and “compete” since most molecules have only one or two 

ring systems. 
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Let us now turn to the possible reasons for the clichés. Looking at the clichés we found, 

the first likely reason for their existence is that synthetically the clichés do not 

represent the smallest building block of a molecule. If moieties such as ribose (instead 

of unsubstituted tetrahydrofuran) are the real building blocks used to create larger 

molecules, the co-occurrence of the tetrahydrofuran ring (present in ribose) and -OH 

groups is certainly not surprising.  

 The explanation for a number of other clichés is that they represent specific 

classes of biologically active compounds. As examples, we found dihydrocholesterol 

analogs (Table 3.5, fifth pair), doxorubicin analogs (Table 3.5, sixth pair), mitomycins 

(Table 3.5, ninth pair) and folic acid derivatives (not shown) listed as clichés with 70- 

to 2700-fold occurrence relative to expectation. These clichés do not so much reflect 

the choice of building blocks, but rather show the active structures nature provided and 

chemists explored around. 

 Let us now compare our results with those of others. Fragment mining has been 

done by several researchers, both as main research subject11,12,13 and as a preparation 

for virtual synthesis14,15,16. In the methods section we already touched upon the 

different types of fragmentation, of which the retrosynthetic fragmentation, though not 

chemically perfect, has been applied and used by those researchers who want to 

perform virtual synthesis as a prelude to real synthesis. Studies with graph splitting 

have mainly focused on exploration of the (drug like) molecule space. 

 Co-occurrence analysis as reported here has to our knowledge not been done yet, 

and we therefore will focus our comparison on the diverse types of fragment finding as 

performed by other investigators and ourselves. The differences between our research 

in fragment frequency and that of others are caused by three factors: the database 

mined, the breaking points considered, and the ways in which the fragments are 

represented and distinguished. 

 Let us first compare the databases mined. Bemis et al.11,12 used a rather small 

database, the Comprehensive Medicinal Chemistry (CMC) database18, which was 

filtered to get an even smaller database containing only drugs and drug candidates 

(5120 compounds). On the other hand, Lewell et al.9 used a big database containing 

several millions of compounds, many more than we used. However, the relatively 

small size of the NCI is sufficient for an exploratory study such as ours, and our 

algorithm is fast enough to make mining of databases of 10 million compounds quite 

doable on a personal computer. Fragment mining, though not as “new” anymore as in 

199611, is something that has to be done periodically since the amount of data available 

is also growing and offering new opportunities. Another aspect is the quality of the 
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data; a drug-like database might give more valuable information for the pharmaceutical 

industry, but might give a skewed image of chemical synthesis. A more general 

database, such as the NCI that we mined, seems more appropriate for getting general 

information about chemistry, but will give fragments which would be unsuitable for 

drug development. 

 The investigations also differed in the breaking points considered. Most authors 

have divided drug molecules into substituents and a kind of framework that contains 

ring systems and linkers. Bemis et al.11,12 considered the substituents and the 

frameworks, which were the ring systems together with parts of the linkers. Lewell et 

al.9 concentrated on the rings, Xue et al.13 on a framework-like part of the molecule 

called the scaffold. To our knowledge, there has not been a separate investigation of 

linkers, especially not of the rarer linkers with more than two attachment points. 

However, linking ring systems together is important for drug development, and a 

catalogue of linkers of varying length could have similar usefulness as the ring system 

catalogue compiled by Lewell et al.9 So the use of the linker breaking points by our 

method yields additional useful information. 

 The last point is substructure representation. The aspects relevant here are the 

representations of the atoms and bonds in the substructure itself, and the encoding of 

the attachment points. The atoms and bonds can be given a general type (like a 

wildcard that can represent any atom, or any heteroatom), which results in more 

“general” fragments. These general fragments will necessarily be fewer in number than 

the original (normal) chemical fragments. A more important issue, from a chemist’s 

point of view, is that such a general fragment can encode many substructures of 

possibly vastly differing ease of synthesis. So before one chooses between using more 

general or more specific fragments, one should consider whether one just needs to 

know if frameworks with approximately the right size and shape are available, or 

whether one rather needs a specific substructure with a high chance to be synthesized 

easily. 

 Xue et al.13 treated the substituents as unattached R-groups and did not distinguish 

between a methyl attached to a carbon ring atom and a methyl attached to a nitrogen 

ring atom. We and Bemis et al.12 do distinguish between those options. For the ring 

systems, Lewell et al.9 also considered ring systems with different attachment points 

(for example ortho- and meta-substituted phenyl) as distinct ring systems. Chemically, 

some positions in rings are easier to modify than others, but it is unclear how important 

this difference in reactivity is. Would other substitution positions be impossible? It is 

difficult to estimate the advantage gained by using only known ring substitution 
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patterns against the loss of perfectly viable ring systems which accidentally have not 

been substituted in that particular pattern yet. For initial exploration of chemical space 

around a lead molecule, one would prefer substructures which are easy to incorporate 

in the molecule. For the fine-tuning of structures, however, it would be better to have 

more candidates available, even if not much is known yet on some of them. We could 

therefore say that the level of detail of substructure representation can be chosen 

relatively freely but different levels of details will be preferred for different phases of 

molecule design and by different chemists. Some chemists might choose a maximum 

amount of attachment information, while others might allow more “wildcards” in the 

structure. Ideally, one would therefore want to have a number of fragment databases, 

each with its own specificity, from which the most appropriate level of specificity can 

be chosen. 

 The next point is how we can make use of the fragment libraries and correlations. 

 The first use of the fragment libraries would be to give chemists more ideas for 

lead optimization. While investigators such as Lewell et al.9 mainly considered ring 

systems that are sterically and electronically similar to a lead ring system to be useful 

for chemists, we suggest that using the most common as well as the least common 

fragments could also be effective. The most common fragments could be used as a kind 

of checklist in the first and most exploratory phase of lead optimization; these 

fragments are apparently often easy to incorporate into molecules, and thus can lead to 

fairly diverse exploration at relatively low costs in time and effort.  

 For example, consider benzodiazepines, which are widely used as tranquilizers. A 

typical benzodiazepine is shown in Figure 5. 
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Figure 5: Diazepam, a typical benzodiazepine. 
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Almost all benzodiazepines use the phenyl ring as group. However, is this biologically 

necessary or just usage of the well known phenyl cliché? Using the program 

SciFinder19 to search the CAS-database, we found over 14,000 phenyl-benzodiazepine 

compounds. Going down in our ring system list of Table 3.3, we found that the second 

and third most popular ring systems, pyridine and cyclohexane, have been tried a few 

hundred times as phenyl substitutes. The numbers four to ten of our list have in general 

only been used a few times up till a few dozen times, but numbers 6 (tetrahydrofuran), 

8 (tetrahydropyran) and 10 (purine) never. So while the compounds in Figures 6a and 

6b have been made, 6c and 6d are yet unexplored.  

 While it may be possible that these particular ring systems are difficult to 

incorporate, the search strongly suggests that by just going over the top positions of a 

list of ring systems or substituents one can easily generate a few dozen variations on a 

lead compound. Since all of these fragments are quite frequent, many of the 

suggestions are probably relatively easy to synthesize or incorporate.  
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Figure 3.6: Non-phenyl benzodiazepines. Compounds with the first two 

types of attached ring systems (pyridine (a) and naphthalene (b)) are known. 

However, neither the tetrahydropyran (c) nor the purine ring (d) have so far 

been combined with the benzodiazepine scaffold.  
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Figure 3.7: Finding cinchocaine derivatives: examples of local-anesthetic 

like tails which have been used (a, b) and which have not been used yet (c, 

d) with the quinoline group. 

 
Another example of clichés is the class of local anesthetics, many of which have a 

phenyl ring (procaine, benzocaine, prilocaine), with as one of the few exceptions 

cinchocaine, which has a quinoline ring instead of the phenyl. Searching at the typical 

local anesthetic tail-pattern of C(=O)OCxN in the substituent database yields many 

variants of the standard COOC2H4N(C2H5)2 pattern, all of which have been tried with 

phenyl (which is not surprising, since phenyl is the “golden standard” among rings), 

but some of the less frequent substituents have never been paired yet with the quinoline 

group (Figure 7). Some of these might also be worthy of further investigation. 

 Selecting fragments for rarity, conversely, can also pay off if the current scaffold 

is patent-protected; rare substructures can be especially helpful in this case as it is 

unlikely that many experiments have been done on them. Also, industries could 

deliberately add the more attractive of the rare fragments to their compound libraries 

and collections. In this way the libraries will become more diverse and thereby increase 

the coverage of chemical space and the chance of finding a lead compound in the first 

place. 
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The fragment co-occurrence data can also have some applications. First, co-occurrence 

analysis can help database analysis by automatically finding clusters of biologically 

active or well-investigated structures. This can help “summarize” the database for a 

new user or alert an expert that a certain class of compounds is suddenly becoming 

popular. Secondly, co-occurrence analysis can add information to structure searching in 

databases. Often, when a substructure is entered, a long list of structures, each with its 

specific combination of R-groups, is returned. While currently there is only little 

attention paid to the number of times a certain R-group appears, a co-occurrence 

analysis could direct the chemist’s attention to the fact that a certain combination 

occurs quite often. So there would be something interesting with that combination.  

 A third application would be for chemists to find relatively unpopulated places in 

chemical space. For example, there would not be many good reasons why phenyl and 

tetrahydrofuran could not be combined into one molecule; the relative absence of the 

combination (Table 3.4, pair 3) suggests that a compound combining these groups 

might be worthwhile to synthesize.  

 In chapter 4 of this thesis we describe a procedure for generating new drug-like 

molecules. The molecules we discovered were small and relatively simple, but often 

not yet known in the literature as a compound or as a substructure of other compounds. 

The molecule we show in that article has a phenyl ring attached to a piperidine ring and 

a CH2OH group. While the phenyl ring itself is very much a chemical cliché, it usually 

avoids both the piperidine ring (avoiding pair rank number 75) and the CH2OH group 

(avoiding pair rank number 78) according to our data. This suggests that we might also 

be able to use this process the other way around: by combining fragments that are 

common but seem to avoid each other a person or computer program could find simple 

structures that have not been synthesized before. 

 Would we indeed be able to discover new compounds by considering the negative 

co-occurrences? To check that, we looked at three different pairs of rings, which were a 

strongly avoiding pair (phenyl and tetrahydrofuran, rank 7 of the list), the less strongly 

avoiding pair of phenyl and the somewhat less frequent piperazine ring (rank 75), and 

the cliché of the C4N2 ring depicted in the table together with the tetrahydrofuran 

(Table 3.6). The most strongly avoiding pair appears in about 10,000 molecules in the 

CAS database (so at a ratio of about one in 2,000 compounds in the database). 

Assuming independence, one would expect that the phenyl-piperazine pair occurs less 

often since the piperazine is (at least in the NCI database) rarer than tetrahydrofuran. 

However, since the groups avoid each other less, this combination occurs 

approximately 60,000 times, so six times as many. Finally, the C4N2-tetrahydrofuran 
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cliché, despite both rings being relatively rare on their own, occurs in over 111,000 

compounds, since this combination is the core of uracil and thymidine molecules. 

 
Table 3.6: The avoiding groups can indicate “holes” in chemical space, 

where relatively little research has been done. In the first column of this 

table pairs of fragments are shown. The second column contains the z-

value of correlation. Positive z-values mean that the fragments group 

together, negative z-values mean that they avoid each other. The third 

column contains a specific substructure which contains both fragments. We 

have always taken a substructure which contains the fragments directly 

connected to each other, and when there were multiple coupling 

possibilities, the substructure which was most frequently found by 

SciFinder19. In the final column the estimated number of known molecules 

containing the substructure is shown. So, the phenyl and tetrahydrofuran 

seem to avoid each other rather strongly (z=-57), and the substructure with 

the tetrahydrofuran attached at its 2-position to phenyl indeed occurs in only 

about 11,000 molecules.  

 
Fragment pair z-value Substructure investigated Occurrence in 

SciFinder 
(estimated by 
the program) 

 

-57  

 

10,594 

 

-23 

 

57,723 

 

+87 

 

111,292 

 

It may also be possible to apply fragment analysis and fragment co-occurrence analysis 

to other problems such as measuring chemical diversity. While there are several 

different measures of chemical similarity, the methods most similar to ours are those 

which make fingerprints of molecules based on the presence and absence of fragments 

(for example the MDL/MACCS keys and the BCI fingerprints20). The MDL and BCI 
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fingerprints usually work with only very small fragments, such as “an atom in a 

multiple, nonaromatic bond located two bonds away from an atom with at least two 

heteroatom neighbors”. In contrast, our method uses much larger and more specific 

fragments and generates only a few fragments per molecule, which will lead to a much 

larger emphasis on changes in framework (so naphthalene will be significantly 

different from benzene, though they both have aromatic carbon atoms). Diversity could 

be estimated by for example dividing the number of unique fragments by the size of the 

database. For the NCI this would be (not counting the unconnected fragments) 46010 / 

250251 = 0.18, or as Ertl’s research8 suggested, by dividing the log values, which 

would yield 0.91 in our case. Calculating the entropy of the distribution might also be 

worthwhile (a database with 999 times fragment 1 and 1 time fragment 2 could be 

considered less diverse than when the division is 500 – 500).  

 The result of using larger fragments instead of small fragments would be that 

chemical diversity is enhanced; a problem might be ease of synthesis or cost of 

acquiring such a library. But diversity does perhaps not have to be high, since the 

research of Bemis et al.11 has shown that half of all drug molecules have one out of 

only 32 different frameworks. One apparently does not need very high diversity to get 

active drugs on very different targets. On the other hand, if the NCI is representative of 

chemical space, most alternative frameworks have been rarely synthesized and 

screened, and would therefore have a much smaller chance of leading to a drug. Until it 

is shown that alternative frameworks are really much worse for drug design, the 

chemical diversity stimulated by our “big fragment” method could be a good start. 

 The final benefit of fragment mining and co-occurrence analysis might be 

psychological: thinking of substructures which have or have not been used together 

might make chemists more conscious of their choices, giving them more knowledge to 

decide whether to use clichés for use of synthesis, or avoid them to explore novel 

structural classes. 

 

As final part of this discussion we would like to reflect on what directions our fragment 

mining investigations could take. 

 

First of all, there are some possibilities for algorithm improvement. While doing a 

stochastic simulation of fragment pair expectance is relatively easy and 

computationally cheap (about 15 minutes on a 3 GHz PC), the averages and standard 

deviations can be calculated exactly with a so-called chi-squared distribution with one 

degree of freedom. This will be especially valuable for larger databases. Stochastics, 
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however, may continue to play a role since they make it easy to add certain restraints 

(such as a maximum number of fragments per molecule, or multiple identical 

fragments per molecule) that are more difficult to enforce by mathematics. It would 

also be interesting to mine larger databases, such as ZINC21 or PubChem22. In any case 

this is likely to add fragments to our databases, and perhaps discover new clichés or 

avoiding groups since more data can lead to more strongly pronounced z-values. 

 A second direction for further investigation would be to make the relationships of 

the co-occurrences more detailed. For example, currently we only detect whether two 

fragments are present in the same molecule. However, our method can be extended by 

taking into account whether the fragments are directly attached to each other, or 

whether the attachment point is consistent over many molecules. Additionally, 

detection of co-occurrences of three fragments or more could be a worthwhile 

extension. 

 A third development would be experimenting with different representations of the 

substructures; some chemists would not care whether a methyl group is attached to a 

ring-N or ring-C, others would like to be sure that a certain ring position is suitable for 

substitution. Atoms and bond types could be converted to wildcards to create a smaller 

library of general fragments, or conversely the connection points could be extended 

and classified for more certainty of ease of synthesis. In the end, we would like to have 

a system that provides the right kind of data for each application. 

 

Conclusions 

In this investigation, we mined the NCI database of 250,251 compounds. This resulted 

in over 60,000 fragments of different types: ring systems, substituents, and diverse 

kinds of linkers. Fragment occurrence is very skewed, with 70% of fragments 

occurring only once, and a few fragments (such as phenyl and methyl) being present in 

many molecules.  

 The fragment lists and co-occurrences can be used in different ways. In our 

examples we have shown how the fragment lists can be used to find new ring 

substituents for benzodiazepines and local anesthetics. Also, we found that co-

occurrence analysis can automatically detect groups of biologically active compounds, 

such as the doxirubicin and mitomycin analogs in the NCI. Finally, co-occurrence 

analysis of the avoiding fragments can show “holes” in chemical space where there is 

room for small, novel compounds which may be biologically active.  

 Future directions of this work could be investigating either larger or more focused 

databases, taking information of how fragments are attached to each other into account 
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and experimenting with different levels of substructural detail. Fragment analysis can 

show us many chemical patterns, but the conversion of pattern knowledge into 

chemical understanding has only just begun. 
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