
Interactive evolutionary algorithms and data mining for
drug design
Lameijer, E.M.W.

Citation
Lameijer, E. M. W. (2010, January 28). Interactive evolutionary algorithms
and data mining for drug design. Retrieved from
https://hdl.handle.net/1887/14620

Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/14620

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/14620

11

2

Evolutionary Algorithms in Drug
Design

Eric-Wubbo Lameijer1, Thomas Bäck2,3, Joost N. Kok2 and Ad P. IJzerman1

1Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research,

Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
2Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1,

2333 CA Leiden, The Netherlands
3NuTech Solutions GmbH, Martin-Schmeisser-Weg 15, 44227 Dortmund, Germany

This chapter was first published in the Journal of Natural Computing, reference:

Lameijer, E.W.; Bäck, T.; Kok, J.N.; IJzerman, A.P. Evolutionary algorithms in drug

design. Natural Computing, 2005, 4, 177-243.

Abstract

Designing a drug is the process of finding or creating a molecule which has a specific

activity on a biological organism. Drug design is difficult since there are only few

molecules that are both effective against a certain disease and exhibit other necessary

physiological properties, such as absorption by the body and safety of use. The main

problem of drug design is therefore how to explore the chemical space of many

possible molecules to find the few suitable ones. Computational methods are

increasingly being used for this purpose, among them evolutionary algorithms. This

review will focus on the applications of evolutionary algorithms in drug design, in

which evolutionary algorithms are used both to create new molecules and to construct

methods for predicting the properties of real or yet unexisting molecules. We will also

12

discuss the progress and problems of application of evolutionary algorithms in this

field, as well as possible developments and future perspectives.

1. Introduction

Drug design

Being healthy is usually taken for granted, but the importance of health becomes very

clear when it is not present: the various illnesses can greatly diminish the quality and

quantity of life, and are usually fought with all means available. One of the primary

means of conserving health or improving quality of life is the administration of small

molecules called drugs. These molecules can bind to specific critical components

(generally proteins) of the target cells, and activating or deactivating these components

leads to a change in behaviour of the entire cell. Cells of disease-causing organisms or

of the patients themselves can be targeted1, leading to destruction of the cells or

modification of their behaviour. This can help to cure or at least alleviate the disease.

Modern medicine has access to a large variety of compounds to fight diseases ranging

from AIDS to high blood pressure, from cancer to headache, and from bacterial

infection to depression.

 Drugs, together with improved nutrition and hygiene, have led to a large increase

in life expectancy in Western society (in 1900, life expectancy in the USA at birth was

47.3 years, which had increased to 77.0 years in 2000). However, there still exists a

great need for new and better therapeutics. Current drugs can in most cases only slow

cancer, not cure it. The remarkably effective treatment of HIV infection with

combination therapy prevents the progression of AIDS, but the treatment itself is quite

harmful to the body. And some illnesses, like Alzheimer’s disease, are still untreatable.

 Unfortunately, developing a novel drug is not easy. The pharmaceutical industry is

spending enormous amounts of time and effort to develop drugs that improve on

existing ones or treat previously untreatable maladies. On average, development of a

new drug takes 10 to 15 years and costs 400-800 million US dollars (DiMasi et al.,

2003). A large part of this money is spent on investigating compounds that eventually

turn out to be unsuitable as drugs. Many molecules fail to become drugs because of

“low bioavailability”, which means that they do not succeed in reaching the site of

1 In the case of viruses, which have no cells themselves, the viral proteins which are

present in the infected human cells are targeted, preventing or reducing proliferation of
the virus.

13

action due to poor solubility in water/blood (Lipinski et al., 1997), bad penetration of

the gut wall, or being broken down by the body before they can exert their effect.

Figure 2.1: A schematic overview of the different phases of the drug

development process

identify
target protein

use biological
knowledge from e.g.

 genomics and proteomics
to identify relevant

 drug target

modify compound
to improve binding affinity

and bioavailability and
to reduce toxicity

assess whether
 compound is safe

and effective

optimize
lead compound

perform clinical trials

find lead compound

test collection
of compounds in cell-based or

similar assays
and confirm activity

market drug

14

Additionally, the biological targets of the drug candidates may turn out not to have a

significant influence on the disease, or the adverse effects outweigh the health benefits.

 Due to these many independent factors that can make a drug candidate fail, it is

hardly surprising that only one out of about 5000 screened drug candidates reaches the

market (Rees, 2003). The drug development process (Figure 2.1) is largely an elaborate

and expensive filter to eliminate the unsuitable compounds.

 The largest part of time and effort of drug development is spent on trials to

determine whether the drug candidate meets these criteria of bioavailability, efficacy

and safety. Since it is better that a drug candidate should fail early in this process

instead of late, the pharmaceutical industry generally strives for the “fail fast, fail cheap”

ideal.

 To fail fast and cheaply, it is essential to have fast, cheap methods of determining

whether the drug candidate does or does not have suitable properties to be a drug.

Computational methods are ideal for this goal, since they could replace expensive

biological tests and do not even need the synthesis of the drug candidate. Additionally,

computers are also applied to increase the input of the pipeline by suggesting

alternative drug candidates.

 One of the classes of methods used in the pharmaceutical industry for these

purposes is evolutionary algorithms, which seems especially appropriate since drug

design is largely survival of the fittest compound. This review will focus on the diverse

evolutionary algorithms applied to the problems of drug design. We will first introduce

the concept of evolutionary algorithms.

Evolutionary algorithms

Evolutionary Computation is the term for a subfield of Natural Computing that has

emerged already in the 1960s from the idea to use principles of natural evolution as a

paradigm for solving search and optimization problems in high-dimensional

combinatorial or continuous search spaces. The algorithms within this field are

commonly called evolutionary algorithms, the most widely known instances being

genetic algorithms (Holland 1975, Goldberg 1989, Goldberg 2002) 2 , genetic

programming (Koza 1992, Koza et al., 2003), evolution strategies (Rechenberg 1973,

2 It should be noted that many evolutionary algorithms described in this review are

called “genetic algorithms” by their authors, even though they do not follow Holland’s
original scheme at all. This misleading nomenclature might decrease in the future,
however meanwhile the reader is advised when searching literature on evolutionary
algorithms in the area of drug design to supplement his database queries regarding
“evolutionary algorithms” with searches for “genetic algorithms.”

15

Rechenberg 1994, Schwefel 1977, Schwefel 1995), and evolutionary programming

(Fogel et al. 1966, Fogel 1995). A detailed introduction to all these algorithms can be

found e.g. in the Handbook of Evolutionary Computation (Bäck et al., 2000).

 Evolutionary Computation today is a very active field involving fundamental

research as well as a variety of applications in areas ranging from data analysis and

machine learning to business processes, logistics and scheduling, technical engineering,

and of course drug design, the topic of this article. Across all these fields, evolutionary

algorithms have convinced practicians by their results on hard optimization problems,

and thus became quite popular today. This introductory section on evolutionary

algorithms aims at giving the reader a first impression of their fundamental working

principles, without going into details of the variety of implementations available today.

The interested reader is referred to the literature for in-depth information.

 The general working principle of all instances of evolutionary algorithms is based

on a program loop that involves implementations of the operators mutation,

recombination, selection, and fitness evaluation on a set of candidate solutions (often

called a population P(t) of individuals at generation t) for a given problem. This general

evolutionary loop is shown in the following algorithm.

Algorithm 2.1: Simplified abstract evolutionary algorithm.

 t := 0;

 initialize P(t);

 evaluate P(t);

 while not terminate(P(t)) do

 P’(t) := select_I(P(t));

 P’’(t) := recombine(P’(t));

 P’’’(t) := mutate(P’’(t));

 Evaluate(P’’’(t));

 P(t+1) := select_II(P’’’(t) � P(t));

 t := t+1;

 od;

 return(best(P(t));

16

In this general setting, mutation corresponds to a modification of a single candidate

solution, typically with a preference for small variations over large variations.

Recombination (called “crossover” by some investigators) corresponds to an exchange

of components between two or more candidate solutions. Selection drives the

evolutionary process towards populations of increasing average fitness by preferring

better candidate solutions to proliferate with higher probability to the next generation

than worse candidate solutions (this can be done probabilistically like in genetic

algorithms, or deterministically like in evolution strategies). Selection can be used

either before recombination as a kind of sexual selection operator preffering better

individuals to generate more copies before recombination occurs, or as an

environmental selection operator after fitness evaluation to reduce population sizes by

removing worse individuals from the population. This second selection operator can

also take the original population P(t) into account, thus allowing the algorithm to

always keep the best individuals in the population (which is called an elitist strategy

assuring that fitness values do not get worse from one generation to the next). By

evaluation, often called more specifically fitness evaluation, the calculation of a

measure of goodness associated with candidate solutions is meant, i.e., the fitness

function corresponds to the objective function of the optimization problem Y =

f(x1,…,xn) � min (max) at hand (minimization and maximization are equivalent

problems), where f: M � R maps candidate solutions defined over a search space M

into real-valued (usually scalar) measures of goodness.

 Evolutionary algorithms offer several advantages over conventional optimization

methods, as they can deal with various sets of structures for the search space M, they

are direct optimization methods which do not require additional information except the

objective function value f(x1,…,xn) (i.e., no first or second order derivatives in

continuous search spaces), they can deal with multimodal optimization problems (i.e.,

problems where many local optima exist where the search can get trapped into a

suboptimal solution), and they can also deal with additional problems such as

discontinuities of the search space, noisy objective function values or dynamically

changing problem characteristics.

 The candidate solutions (elements of the search space M) to an optimization

problem can have arbitrary datastructures. However, certain kinds of candidate solution

structures are popular, such as binary or discrete valued vectors, as often associated

with the concept of a genetic algorithm, real-valued vectors, as often associated with

evolution strategies or evolutionary programming, or parse trees in a functional

language such as LISP, as often associated with genetic programming. The differences

17

between these representational instances of evolutionary algorithms have become

blurred since 1990, however, such that state-of-the-art evolutionary algorithms often

use concepts from several of the pure historical instances together in an implementation

that is tailor-made for a particular application problem. Also, many mixed

representations are used to solve challenging problems defined in more complex search

spaces, e.g., mixed-integer nonlinear optimization problems. Expansions to new search

spaces including graph-based representations naturally imply the potential application

of evolutionary algorithms to drug design or molecule optimization problems.

Scope and limitations of this review

This review focuses on the stage of drug design in which the drug molecule is designed.

Therefore applications of evolutionary algorithms that are also important but

preliminary to this stage, such as protein folding prediction and elucidation of protein

structure, are not discussed here. The interested reader is referred to other literature,

such as the compilation of reviews edited by Clark (2000).

 The articles discussed in this review were published in the period from 1993 to

2004. Our primary criterion for selection was diversity in application and method, not

recency. However, most of the articles (44 of 54) are from the period 1998 to 2004,

since the application of evolutionary algorithms in drug design only started to bloom in

the mid-nineties.

 Due to our focus on design of drug molecules, the distribution of literature

references is skewed towards chemical literature. The three major journals discussing

cheminformatics and computational chemistry contributed 38 articles, journals in

medicinal chemistry and general chemistry 13 articles, and computer science-based

conference proceedings only 3 articles. This is however not an exhaustive compilation

of existing literature, and the interested reader will be able to find more relevant

articles in the (medicinal) chemical and computer science literature.

 We hope that this review will help the reader gain insight in the problems of drug

design and the diverse kinds of evolutionary algorithms applied so far, and enable him

or her to read or perform additional research in this area with a wider perspective and

more understanding. We hope that in this way the review can contribute to the further

development of computational methods that help solve the problems of drug design,

and enable researchers to apply the power and processing capabilities of the computer

to enhance human health.

18

2. Evolutionary algorithms in the design of molecule
libraries

To find a lead compound for further drug design a set of compounds (called a library)

can be tested for the desired biological activity. A good library should have good

efficiency and good effectiveness: it should be so small that the cost of testing it is as

low as possible, yet be so large that the chances of finding a suitable lead compound

are sufficiently high.

 Choosing the contents of the library rationally instead of randomly can enhance

the efficiency and effectiveness: since compounds with similar structures usually have

similar activities, a library consisting of compounds that are very dissimilar to each

other will require fewer compounds to cover as much of the “biological activity” space.

 Another criterion is drug-likeness: drug molecules must have certain properties to

work (for example, have a weight of under 500 atomic mass units to be taken up by the

body (Lipinski et al., 1997)), so such constraints can also be enforced during the design

of the library.

 More advanced criteria can also be applied, if more information is available: if the

structure of either a ligand (a compound that binds to the receptor) or of the target

receptor itself is known, one could select those compounds which look like the ligand

or fit into the receptor, instead of the most diverse ones; this is called targeting.

 The most popular method of creating the compounds of the molecule libraries is

combinatorial chemistry: a number of compounds of group A, which all have a certain

common reactive group, is combined with a number of compounds of group B, which

have another common reactive group that can react with the reactive group of A

(Figure 2.2).

 In this way, N+M reactants are converted into N*M products. Higher dimensions

of synthesis (N+M+P reagents give N*M*P products) can also be applied. Since there

are many available reactants and multiple reaction steps can be applied, the number of

potential compounds is much larger than the number that is practically and

economically feasible to make and test. For this reason, selection of the reagents to be

used or of the products to be made is very important. This has turned out to be a

promising application for evolutionary algorithms. We will now discuss a number of

these applications.

 The first application we would like to discuss is the program SELECT (Gillet et

al., 1999). SELECT has the objective to construct a general library, the compounds of

which should both be diverse and druglike. Testing this idea on virtual amide

19

(100x100) and thiazoline-2-imide (12x99x54) libraries, the goal is to choose that

sublibrary which has highest diversity, and whose molecules have a similar property

distribution as known drugs (so if 15% of drug molecules have 3 rotatable bonds, 15%

of library molecules should have 3 rotatable bonds too). The desired sizes of the

libraries were 20x20 and 8x40x20, respectively.

OH

O

OH

O

NH2

O

N
H

NH2

O

N
H

O

N
H

N
H

O

A

B

Figure 2.2: A simple combinatorial library.

The data structures representing the candidate solutions (these data structures are

commonly called “chromosomes” in the field of evolutionary algorithms, see also the

glossary) were vectors with as length the number of reagents for the target library,

consisting of the identification numbers of the reagents used. Each set of reagents was

assigned to a separate partition of the chromosome. Single point mutation and single

point crossover (crossover only occurred in one randomly chosen partition) were

applied. The population size was 50.

 The diversity of the library was determined by first calculating a chemical

fingerprint of each molecule, a vector of bits, and summing the differences between all

pairs of vectors.

20

In the case of the amide library, with diversity as fitness criterion, convergence was

reached after about 1000 iterations, with a very reproducible optimum (mean 0.595,

standard deviation 0.001)- a clear improvement over the diversity of randomly

constructed libraries (mean 0.508, standard deviation 0.015). However, it turned out

that taking drug-likeness as additional criterion decreased the diversity, and that

depending on the relative weights of the criteria, different solutions were found. This

task of minimizing diversity while maximizing drug-likeness could be viewed as a

multiple criteria decision making task.

 Since manually adjusting the weights to create different solutions is inelegant and

impractical, the authors subsequently developed an extension of SELECT, called

MoSELECT (Gillet et al., 2002). The goal of this program is to find a set of solutions,

each solution so that no other solution in the set is equal or superior to it in all respects

(the solution is nondominated, or “Pareto optimal”; see Figure 2.3).

Figure 2.3: Pareto optimality. In this example, both fitness criteria are to be

maximized. A solution is dominated if there exists another solution that has

equal or better scores on all criteria. for example (0.5 , 0.6) dominates (0.4 ,

0.5) because 0.5>0.4 and 0.6>0.5. However, (0.5 , 0.6) does not dominate

(0.4 , 0.65) because 0.5>0.4 but 0.6<0.65.

This algorithm can perform multi-objective optimization by Pareto-ranking the

chromosomes: nondominated chromosomes get rank 0, chromosomes which are

dominated by one other chromosome get rank 1, etcetera, after which roulette wheel

selection is applied, a common implementation of the “select-I” function in algorithm 1.

0,4

0,5

0,6

0,7

0,3 0,4 0,5 0,6

fi
tn

es
s

cr
it

er
io

n
 2

fitness criterion 1

Pareto optimality

nondominated
solutions

dominated
solutions

21

Information about the mechanism of this selection method can be found in the glossary.

This Pareto-ranking approach results in many nondominating solutions found; using 2

fitness criteria resulted in 31 nondominated solutions (in a population of 50), while

increasing the number of criteria to 5 and the population size to 200 gave 188

nondominated solutions. However, speciation was observed so niching (forbidding the

algorithm to create new solutions which are similar to already found solutions) was

applied to ensure diversity. This reduced the number of solutions to 24, but made them

more different. (Evolutionary algorithms have also been used for finding sets of Pareto-

optimal solutions in other contexts, in which they turned out to be quite efficient, one

advantage of the evolutionary algorithms being that they can find a set within a single

run – see Deb (2001) for an in-depth coverage of the topic).

 While diversity is a very desirable characteristic in a general purpose library,

libraries can also be designed to discover a lead to a specific target. Sheridan et al.

(2000) designed a combinatorial library of molecules built out of three fragments.

There were 5321 fragments possible for the first part of the molecule, 1030 fragments

for the middle of the molecule and 2851 available fragments for the third part of the

molecule. Since synthesizing 15 billion compounds would be prohibitively expensive

and time consuming, the authors desired to design small libraries (100-125

compounds) of molecules that looked most promising. They wanted to create libraries

of compounds that look like angiotensin-II antagonists (a “2D-criterion”, which only

uses information on which atoms are connected to which other atoms) as well as

libraries of compounds that fit in the active site of the protein stromelysin-1 (a “3D-

criterion”, which must know and manipulate the three-dimensional structure of the

molecule).

 Furthermore, Sheridan tested whether evolving a 5x5x5-library yielded results as

good as evolving a library of one hundred separate molecules, addressing in this way

the question whether the benefit of needing fewer different reagents by the 5x5x5

library is offset by a decrease in library quality. In the experiments the 2D-criteria were

as well achieved, on average, by the library-based as by the molecule-based runs, be it

at much more computational cost (molecule based: <20 minutes; library based: about

120 h). 3D-Fitness evaluation took over 120 times as long as 2D evaluation, so library-

based runs could not be performed using 3D-fitness criteria. However, the library

created of the 5+5+5 most frequent fragments in the molecule-based optimization had a

considerably lower score than the original library. While for “2D”-criteria the whole is

approximately “the sum of its parts”, in the more realistic 3D fitness function this

approximation no longer holds. The fitness landscape is probably much more rugged,

22

i.e. contains many more local optima in which a solution can become trapped. It is

interesting to note, however, that despite this ruggedness the number of generations

needed for convergence was approximately the same for 2D and 3D, namely 10-20

generations.

 A method that combines targeting and diversity is to use a known molecule as a

template structure. Liu et al. (1998) generated two sets of compounds, the first set

based on a benzodiazepine template (see figure 2.4) and the second on a template

derived from the (-)-huperzine A molecule.

R1, R2, R3 can be

etc.

N

N

O
R1

R2

R3

Br OH

O

Figure 2.4: Template-based (virtual) library design.

A library of 73 fragments was used to fill the open positions on the template. A

population of one hundred molecules was generated by attaching randomly chosen

groups to the template molecule. After this, the diversity of the population was

determined by converting the 3D-structure of the electronic field around the molecules

into sets of vectors, and measuring the dissimilarity between the vectors of the different

molecules. Crossover was implemented by exchanging groups of two molecules at the

same template position, mutation by having fragments exchange template positions or

by replacing one of the fragments. After a short run (10 generations) convergence was

reached. No data were provided on the reproducibility of the run.

 The (-)-huperzine A library was generated in the same way as that of the

benzodiazepine analogs. Subsequently some of the proposed structures were

synthesized. One of them was found to have a higher binding affinity to the target than

the lead itself, showing that the method is effective.

 From the foregoing it is clear that evolutionary algorithms can optimize the

diversity and other properties of combinatorial libraries. However, related experiments

by Bravi et al. (2000) have given some interesting insights into the structure of the

search space. Bravi et al. investigated if one could not only determine the optimal

library composition, but also the optimal library size. Filters were used to select the

most druglike compounds from a virtual library of 13x41x59 (of which 16% turned out

23

to be good). To synthesize all druglike molecules using a combinatorial library would

require a library of 12x39x49; using this in combinatorial chemistry would however

generate about 23000 compounds, of which 78% would be non-druglike. How to find a

balance between efficiency (how large a part of the combinatorial library consists of

desirable structures) and effectiveness (how large a part of all good structures are

contained by the sublibrary)? Bravi’s program PLUMS used an algorithm that evenly

weighed these two factors and designed a library that still contained 86% of all good

molecules, with only 37% undesirable products.

 The method Bravi used was based on iterative removal of the component whose

removal produced a library with an optimum score. His results were as good as those

of the GA to which he compared it, as long as PLUMS followed alternative parallel

paths if there was no preference for removal. This suggests that the fitness landscape is

not very rugged for this problem, and that an iterative method might replace a GA in

such cases. However, a simpler method (monomer frequency analysis (MFA), which

assumes that the best library is built from the fragments that are most frequent in the

good compounds) failed to find this optimum. Analysis of the results showed that how

often a fragment occurs in a good library is less important than how often it occurs

with other good fragments. However, a subsequently designed dynamic version of

MFA that iteratively chooses the best compounds of each set of reactants until

convergence is reached, did find the global optimum.

 Does this mean that evolutionary algorithms are not needed in library design? This

is not very likely, since using more advanced 3D-fitness functions seems to make the

fitness landscape more rugged. A simple method like PLUMS will get stuck in a local

optimum more easily, especially if the building blocks of the library must be selected

among thousands instead of dozens of reactants. However, iterative methods like

PLUMS and MFA are good demonstrations of the power of simple solutions

appropriately applied.

Conclusion

Several experiments have been performed using evolutionary algorithms in library

design, to create libraries to satisfy many different objectives such as diversity,

targeting and drug-likeness. While improvement of the libraries with respect to the

fitness criteria is clearly seen in these experiments, and reproducibility seems fair

enough, the major current challenges lie in refining the fitness criteria to accurately

reflect the demands of drug development.

24

The diversity in the diversity criteria themselves suggests that more systematic

attention to this problem might be worthwhile, and the great computational cost of

more advanced (docking) criteria of target selection are still troublesome in more

refined applications. Also the drug-likeness criterion might need revision.

 Libraries are designed to find lead molecules, which usually grow in size during

drug development to satisfy additional criteria. In many cases this may generate

molecules that are too large to be drug-like. Screening the “drug-like” larger molecules

for biological activity has a lower chance of success than screening smaller molecules,

since large molecules have a smaller probability to fit in the space of the active site

than small molecules (Hann et al., 2001). Therefore, it would be more valuable to

evolve libraries with the criterion of lead-likeness. However, libraries of leads are

currently not available, while libraries of drugs are. Unless calculations correct for the

too high molecular weight and lipophilicity of drug-like compounds, “drug like”

library design will probably produce suboptimal compounds.

 A second development is the use of several conflicting criteria simultaneously in

library design, of which the Pareto optimality by Gillet et al. (2002) and the prefiltering

by Bravi et al. (2000) are examples. While certainly interesting, the problem of

choosing the right weights by the user is now shifted to selecting the right nondominant

set. Weighing must be done sooner or later. It is a good beginning, but further

measures (probably based on existing knowledge of drug development and probability

theory) are needed to find a better way of weighing the weights.

 An application which has not been discussed in these articles is selecting

compounds from a non-combinatorial library. This will become more important as

proprietary compound collections of pharmaceutical companies grow and more

compounds are made available by external suppliers. The disadvantages of

combinatorial chemistry (generally too large and lipophilic molecules, failing reactions,

etc.) could prompt using evolutionary algorithms to select a targeted or diverse test set

out of tens of thousands of compounds that are available. This will be an interesting

and important challenge.

 Computationally, the different evolutionary algorithms can doubtlessly be

improved by incorporating more domain knowledge. However, since the computational

cost of most applications discussed is acceptable and performance is good, the

relatively simple current algorithms may be preferred over more advanced versions.

Comparisons with deterministic methods (Bravi et al., 2000) indicate that evolutionary

algorithms can be applied quite well to the problem of library design. Although

competing methods can also satisfy the designer’s needs (Agrafiotis, 2002),

25

evolutionary algorithms, perhaps with some small modifications, are very likely to

become the standard method in library design.

3. Evolutionary algorithms in conformational analysis

A molecule is a three-dimensional entity consisting of atoms connected by bonds.

Though the movement of the individual atoms is restricted by the bonds, most

molecules can assume different shapes by bond stretching, by angle bending and, most

importantly, by rotating parts of the molecule around single bonds (see Figure 2.5).

The amount by which a bond is rotated (varying between 0 and 360 degrees) is called

its torsion angle.

Figure 2.5: Change in conformation by rotation around a bond.

Conformational analysis, the generation and comparison of different conformations of

a molecule, is an important part of medicinal chemistry. This is because the properties

of a molecule are partially determined by the shape or range of shapes it can assume.

Conformational analysis usually has two goals. The first and most common goal is to

find the conformation of minimal energy, the “global minimum”. The energies of all

other conformations (which correspond to their chance of occurring in nature) should

be taken relative to the energy of this global minimum. This is especially important

when a molecule is docked as a ligand into the active site of a receptor (see section 6).

The increase in energy of the docked molecule relative to its minimum gives

information on the true binding energy and therefore the likeliness that the docking is

correct. The second goal of conformational analysis is to obtain a group of diverse yet

energetically feasible conformations for virtual screening to address the issue whether

the molecule or one of its good conformations fits a certain required pattern, a so-called

pharmacophore.

 Since bonds can be rotated over the entire range of 360 degrees the number of

conformations of the molecule is in theory infinite. However, many conformations are

26

so similar that conformational analysis usually takes a minimal step size of 15-30

degrees. Unfortunately, allowing n different torsion angles for m rotatable bonds each

will give nm possible conformations; for a flexible drug molecule like orphenadrine

(which has six rotatable bonds), conformational analysis with a resolution of 15

degrees would produce 1.9 x 108 conformations. Systematic search is infeasible in

these cases, and heuristic algorithms, among which evolutionary algorithms, are

applied.

 An excellent example of a genetic algorithm applied to finding the conformation

of minimal energy is the work of Nair and Goodman (1998). Nair and Goodman

applied the genetic algorithm to linear molecules of carbon atoms (alkanes), and took

the torsion angles as genes. After random generation of the population, crossover was

performed followed by mutation. Subsequently the new structures were minimized

with a local optimizer and their optimized conformations written back into their genes

(so-called Lamarckian evolution), and the new generation was chosen from the pool of

parents+children by roulette wheel selection on their energies, which were weighted

with a Bolzmann factor that determined the penalty for higher energy. This process was

repeated for a fixed number of generations.

 The genetic algorithm found several minima for the chains of 6, 18 and 39 carbon

atoms. The next, most interesting challenge was finding the optimal energy of PM-

toxin A, a long, approximately linear molecule (33 carbon atoms). This was tackled by

first optimizing a 33-atom alkane, listing the several thousands of low-energy

conformations found. Subsequently the branching groups were added and the resulting

structures locally optimized. A minimum of less than -100 kJ/mol was found. A Monte

Carlo search, using the same amount of structure optimizations, found a minimum of

only –78 kJ/mol. Furthermore, the GA found 168 conformations with an energy below

–70 kJ/mol, the Monte Carlo approach only two.

 It is interesting to note that the more complex and flexible the molecule becomes,

the more minima of approximately equal energy can be found. Since the energy of the

global optimum is much more important than the conformation of the global optimum

and dozens of conformations give the approximately good result, knowing the “best”

answer is relatively unimportant. This makes stochastic algorithms like evolutionary

algorithms even more useful in this situation.

 Jin et al. (1999) analysed the pentapeptide [Met]-enkephalin, which has 24 torsion

angles. Three different versions of their program GAP were used: GAP 1.0, GAP 2.0

and GAP 3.0. In GAP 1.0 a uniform crossover was used together with a diversity

operator that mutated a child structure if more than half of its angles differed by less

27

than 5 degrees from its parent structures. GAP 2.0 included a three-parent crossover

(two parents are crossed, their product is crossed with the third parent), and GAP 3.0

has a “population splitting scheme”, which only allows crossover of individuals in

different populations. The offspring was generated by crossover and subsequent

mutation. After these steps, parents and offspring were taken together, the lowest half

(50 conformations) was selected as the next generation, and after 1000 generations the

runs were stopped. In this case, the minimum found was about 3 kcal/mol higher than

the one found by a Monte Carlo method.

 Since other experiences with GA/MC comparisons like those of Nair and

Goodman (1998) and Tufféry et al. (1993) found the genetic algorithm to be superior

to Monte Carlo, especially when optimizing large systems like proteins, the authors

analysed their algorithm. By measuring the search space coverage it was found that,

surprisingly, higher mutation rates led to lower coverage. This suggests that most

mutations are so harmful that they are rapidly selected out by the strict fitness criterion

(best half), and the next generation consists mainly of unmodified “parent”

conformations, which tends to prevent departure from local minima and restricts the

search space covered.

 For certain purposes, not a single low-energy conformation is needed, but a set of

low-energy conformations that differ as much from each other as possible. These

conformations can be used for e.g. pharmacophore screening or as starting

conformations for docking. Mekenyan et al. (1999) designed a GA for optimizing the

diversity in a population of conformations. The fitness criterion was a diversity

criterion that measured how bad the best possible superposition of two conformations

was (in root mean square distance between corresponding atoms). The score of the

individual was the average dissimilarity to the other members in the population.

 Next to the traditional torsion angles Mekenyan included the flexibility of rings by

allowing free ring corners (atoms that were part of only one ring) to flip, and storing

the flipped/unflipped information in the chromosome too. This may be very valuable

for complex molecules that often contain flexible rings.

 Mutation was performed and followed by crossover. If the children were

energetically inadmissible or too similar to already present conformations, they were

discarded. If Nc viable children were found within a certain number of tries, the most

diverse subset of size Np was selected from the total pool of Nc+Np conformations. The

evolution was stopped if fewer than Nc viable children had been produced within the

specified number of tries.

28

Mekenyan experimented with different settings of the population size and the number

of children. The runs did not seem very reproducible and in most cases were stuck in

local optima. The general conclusion was that the ratio between the number of parents

and the number of children Np/Nc is very important. If Np/Nc is lower, convergence is

reached faster and more of the search space is covered, but if it is higher, runs are more

reproducible.

 Thinking more theoretically about the quality of evolutionary algorithms, Wehrens

et al. (1998) considered that only taking the value of the best individual to judge an

evolutionary algorithm is somewhat limited, and proposed additional criteria:

reproducibility and coverage of the search space. The authors describe the application

and implementation of these criteria in the case of the conformational analysis of N,N-

dimethyl-N’-4-phenylbutylmalonamide.

 This compound has 7 rotatable bonds, the torsion angles of which form the genes

of the chromosome. A population of size 50 was used for a run of 100 generations.

Tournament selection was performed with tournament sizes varying from 2 to 10.

Crossover rate was 0.8 with uniform crossover applied. In the experiments, several

parameters were varied, mainly to investigate the influence of the “sharing” operator. If

the root mean square difference between the torsion angles of the child and parent

conformations is less than the sharing distance, a randomly selected torsion angle of

the child will get a random twist between 0 and a fixed number of degrees called the

“sharing offset”.

 Coverage was measured by dividing the search space into hypercubes (hypercube

size of 90 degrees, so there are 47 hypercubes which can be visited in the search space).

About 10% of the search space was visited using a GA without sharing, 30% with

sharing, 77% by random search. So while sharing increases coverage, selection

pressure decreases it. A tournament size 10 instead of 2 further decreased the coverage,

be it slightly.

 The second criterion of coverage was how many clusters of low energy were

found using different parameter settings. In this case this was 6 to 14 clusters for the

genetic algorithm, 0 for random search.

 Another criterion, reproducibility, was measured in two ways: the first way was to

count the number of clusters in common between two runs, the second was projecting

all conformations into the 7 dimensional “torsional” space and determine the principal

components. The ratio of the overlap of the principal components of the different runs

of one setting and those of another gave the reproducibility.

29

As the authors note, their criteria may also be used for other applications of genetic

algorithms. Though some of their ideas seem useful, they have, considering the

subsequent literature, not yet been widely applied by other researchers.

Conclusions

Evolutionary algorithms have been applied to conformational analysis with some good

results. While there are some experiments that indicate that the method of “directed

tweak” is slightly superior in conformational searches (Clark et al., 1994) evolutionary

algorithms are more versatile: they can search for sets that are diverse, as well as

pursue multiple objectives. Next to seeking the most suitable mutations and crossover

methods and optimizing the parameters, there are some other interesting points that

could justify further research. The first question is how one could incorporate

molecular mechanics such as the deformations of rings in the evolutionary algorithm.

Secondly, almost all energies are now calculated for molecules in a vacuum, yet the

relevant energies for biological molecules are those in solution. One should carefully

compare the vacuum results with those calculated using modern force fields that

include water to check whether and when this approximation is allowed. A third item,

which is growing in importance, is the application of conformational analysis to larger

molecules, especially proteins.

 As our understanding of biology increases, molecular movement and

conformations will be able to shed light on the dynamic properties of chemical and

biological systems. Conformation analysis will be important to determine the “4D”-

descriptors, which describe the possible changes of the molecule over space and time.

Evolutionary algorithms, with their flexibility and possibilities to optimize systems in

which the elements depend on each other, as is the case in conformations, will

probably continue to play an interesting and important role in the development of this

field.

4. Evolutionary algorithms in molecule superposition and
pharmacophore detection

If two molecules bind to the same receptor, can one deduce from this information

which other molecules will bind? The traditional way of solving this problem is by

comparing the structures of the active molecules: one superimposes the molecules onto

each other to detect the similarities. If they have the same kinds of atoms in the same

30

relative positions, those may be important. Out of this superposition, features which

might be important for activity are postulated, and their relative 3D-orientation

constitutes the active pattern, or pharmacophore.

ibuprofen

tolmetin

superposition

2Å

4Å

3Å

pharmacophore

O

OHNO

O

OH

O

OHNO

O

O
Ar

Figure 2.6: Molecule superposition and pharmacophore detection. “Ar”

stands for aromatic center, 1 Å is 0.1 nm.

This entire process of superposition and assignment of pharmacophoric points is called

pharmacophore detection (see figure 2.6).

There are two fundamental difficulties in molecule superposition and

pharmacophore detection. The first is the definition of a good superposition. There are

at least three possible criteria:

1) In a good superposition both molecules have low energies; their conformations

have energies at or close to the global minimum.

2) In a good superposition the volumes of the molecules overlap optimally, which

means that they fit in the receptor in about the same space of the active site.

3) In a good superposition, the most important atoms/parts should overlap best, the

other parts of the molecule are relatively unimportant.

In fact, all these factors seem to play a role. Ultimately the criteria a molecule has to

fulfill to be active are determined by the three-dimensional structure of the receptor,

but unfortunately that structure is generally not known. Nevertheless, a method that

finds high similarity of whatever kind between various active molecules and does not

31

match inactive molecules would certainly be promising.

 The second problem in molecule superposition is the combinatorial explosion:

most molecules can assume thousands of conformations, so searching for the best

overlap of two molecules or more by a systematic search method quickly becomes

infeasible. It is no surprise that evolutionary algorithms have been applied in order to

help to solve this problem.

 An early example of a genetic algorithm to superpose molecules and detect

pharmacophores is given by Payne and Glen (1993). The chromosomes representing

the molecules are bit strings, the first elements give the 3D-coordinates for the location

and the orientation of the molecule leading to 6 degrees of freedom. They are followed

by genes for each bond that can be rotated and for each ring corner that can be flipped.

 In some cases the fitness criterion was how well a molecule obeyed certain

distance constraints, i.e. selected groups in the molecule or of different molecules

should be at a certain distance from each other. Overlap constraints, i.e. overlapping

another molecule as much as possible, and spherical constraints were also used. The

latter constraint is defined by a sphere drawn around the molecule, the surface points of

which have values representing the distance from the sphere surface point to the

molecule’s surface point directly beneath it or the charge on that surface point. The

total fitness was a weighed sum of the several fitness functions that were appropriate

for the situation. Chromosomes were represented as bit strings, the mutation was bit-

flip mutation and one-point crossover was used.

 Several problems were tackled with this algorithm: finding the conformation of a

molecule which obeyed certain distance restraints, elucidating a pharmacophore, fitting

a molecule onto itself, and fitting different molecules of a similar biological activity

onto each other.

 It turned out that some of the problems were relatively easy to solve using the

genetic algorithm. If there is a fixed set of constraints or a rigid template molecule like

morphine the evolution reaches convergence (in runs of 300 generations of 1000

molecules). If however flexible molecules have to be fitted onto each other, the

“moving target” makes convergence very awkward. However, when an intermediate

step was added in which the conformers were rigidly fitted onto each other the time

spent by the genetic algorithm was reduced from 10 days to 9 minutes!

 All in all, the program described seemed to do its job fairly well, though greater

degrees of freedom clearly gave it so much trouble that optimization became difficult.

A last problem is that when some regions of a molecule are important to receptor

binding and others are not, a sphere model might not be a very suitable means for

32

finding the part of the molecules that are similar. This is due to the fact that the

differences in the other parts may drown out the similarities unless one has large data

sets. Moreover, superpositions of the many molecules of those large data sets

themselves might lead to poor convergence.

 Superposition of molecules has often the goal of finding a pharmacophore.

Holliday and Willett (1997) wanted to use a genetic algorithm to find a group of

pharmacophore points (in their case: N and O atoms) in a 3D-arrangement present in

all molecules with a certain biological activity.

 Their original genetic algorithm proved to be too slow, but the authors found that

performance could be improved by splitting it into two smaller genetic algorithms: one

to find sets of corresponding atoms in the different molecules, a second to combine

these sets into the smallest possible superset.

 The first genetic algorithm uses chromosomes of length n×m, where n is the

number of molecules and m a user-defined number of atoms that has to be found per

molecule. Crossover is performed on the border between molecules, mutation replaces

an atom by another atom of the same molecule. If the atoms in the chromosome of two

different molecules have the same types and approximately the same distances to each

other, the second set of atoms is “fused” with the first. The evolutionary process thus

results in a chromosome grouped in a few different clusters of molecules, the

molecules of each cluster containing identical atoms in a common geometric pattern.

 The second genetic algorithm uses the collection of patterns found by the first

algorithm and attempts to find a superset which contains all of them. The chromosome

here is a list of the 3D coordinates of the several points. The second algorithm can add,

move or remove points in this 3D-arrangement and continues until every molecule in

the set has at least m points (the value of m specified by the user) in common with the

superset, within a certain tolerance range. The second genetic algorithm uses clique-

finding algorithms to speed up this process.

 The program was tested on five data sets of 10-19 biologically active compounds.

In most cases, 3 or 4 point subsets common to all compounds were found, thus

indicating the effectiveness of the method.

 However, the authors add that their program should be developed further. Next to

the nitrogen and oxygen atoms there may be other important elements in a

pharmacophore such as a phenyl group (see also Figure 2.6). Additionally, most

ligands are flexible and their active conformation is not known; therefore the genetic

algorithm should either work on a good superposition (in which case it would not give

much useful extra information) or take the flexibility of the molecules into account.

33

This issue of flexibility was addressed by Handschuh et al. (1998) who used a genetic

algorithm to superpose flexible molecules. This superposition was again based on atom

superposition, but in this method the superposed atoms did not have to be of the same

type.

 The authors recognized that a good superposition of molecules should satisfy

conflicting demands. Although as many atoms as possible of the two molecules should

be matched, matching too many atoms will result in a worse fit. For this reason Pareto

optimization was used to obtain alternative solutions.

 The computer program fitted only two structures simultaneously; each individual

consisted of a chromosome containing the information of both molecules. The

chromosome consisted of two parts, which contained the “match pairs” (which atoms

of structure one were fitted onto atoms of structure two) and the torsion angles of the

molecules, respectively.

 A population of 100 molecule-pairs was created and subsequently evolved.

Mutation and crossover in the torsional part was straightforward and mutation in the

match part replaced or deleted atom matches. Crossover in the match part was

implemented by choosing two match lists of equal length in the parents and appending

them to the end of the other parent’s match list, removing duplicate atom matches in

the original parent. Interesting was the inclusion of two “knowledge augmented”

operators, “creep” and “crunch”, which added atom pairs to or removed them from the

match list based on their distance in the current superposition. These operators

improved the final results substantially, since much closer fits of 0.05-0.2Å were

obtained instead of root mean square scores of 0.6-1.0Å.

 Another innovation somewhat similar to the speedup described by Payne and Glen

(1993) was the use of the directed tweak method to adapt the torsion angles of the

match after each individual was generated. This was however not Lamarckian since the

genes were not changed and the matching procedure was only used to determine the

fitness value. Instead restricted tournament selection was used. Here one solution

competed against the solution most similar to itself from a random subset of the

population. The winner was copied into the next population. This selection method was

chosen in order to conserve diversity.

 Handschuh et al. applied the genetic algorithm to overlaying several angiotensin II

antagonists, with good results in that overlays of 10-20 atoms were reached with low

root mean square values (<1Å). Additionally, a known angiotensin II pharmacophore

was found. These results indicate that the method is quite promising. However, some

problems of pharmacophore finding remain difficult to solve, even with a method as

34

advanced as this one. A true choice about whether molecules A and B overlap best in

overlap 1 or 2 can only be made if it can be determined whether the identity of the

atoms really matters (Figure 2.7). In some cases it will, in others it won’t, such that

there may be other objectives to add to the Pareto fitness.

A B 1 2

or ?
Cl Cl ClCl Cl Cl

Cl

Cl Cl+

Figure 2.7: Which superposition is best?

Conclusion

There are several different kinds of molecule superposition. Superposing the shape and

charge fields of two dissimilar molecules, superposing the most important atoms, or

superposing all atoms are all options, but which one is “correct” or “better”? Probably

much depends on the protein and the set of ligands. The existence of different criteria

seems to indicate that superposing molecules is a multi-objective problem, with the

different weights reflecting the one true objective of how well the superposed

molecules occupy the “superposed” space when binding to the receptor. Comparison

with experimental data such as crystal structures would greatly help to test, validate

and optimize the different methods. Pending that, extra calculations of for example the

energy of the ligands may help to make a choice between different superpositions.

 Also, it would be worthwhile to extend the pharmacophore models with known

inactive compounds that are similar in structure to the active molecules and study if

these fit or not. This may yield information on criteria for internal energy of the

superimposed conformation or information about the “excluded volume”, the parts of

the molecule that the receptor cannot accommodate.

 Thirdly, there is the problem of superposing larger sets of compounds. The extra

information gained by including more compounds is probably useful, but an optimal

multiple superposition is much more difficult to find. Overlaying two molecules is

quite standard, but what to do if there are more? While Handschuh et al. (1998) found

that the order of superposition of their four compounds did not influence the results, it

seems likely that a naive evolutionary algorithm would fail if it would attempt to

35

overlay more than ten structures simultaneously. Sequential overlap of many

compounds will probably yield local minima, especially since there may be different

“best” superpositions according to the Pareto optimality criteria. Handling large

datasets, especially truly large data sets on which one can apply statistics, seems to

become possible (Chen et al., 1999). It is still unclear yet whether this will be the final

answer due to the necessarily limited number of conformations and pharmacophoric

points used by such methods.

 Lastly, in several cases there may be more than one active site on the receptor, or

the binding site is so large that not all molecules will necessarily share the same

volume. Discovering that there are several different pharmacophores in this case will

be a challenging test for any superposition method.

 All in all, evolutionary algorithms have led to valuable software for molecule

superposition and pharmacophore detection. Still the field of molecule superposition

does not have the answers yet for handling more than two molecules and choosing

between different superpositions. While there are also non-evolutionary methods for

pharmacophore detection (Chen et al., 1999; Ting et al., 2000), it is very likely that

evolutionary algorithms will continue to be applied.

5. Evolutionary algorithms and quantitative structure-
activity relationships

In drug design and development one of the prime views is that the biological activity of

a given compound is determined by its physico-chemical characteristics. Already in the

19th century it was postulated by Crum Brown and Fraser (cited in Parascondola, 1980)

that “there can be no reasonable doubt that a relation exists between the physiological

action of a substance and its chemical composition and constitution”. In more recent

days Hansch and coworkers (Parascondola, 1980) were the first to suggest that such a

relationship can also be expressed in quantitative terms, as in the following equation:

Biological activity=a0+a1.descriptor1+a2.descriptor2+….+an.descriptorn

This is called a quantitative structure-activity relationship, or QSAR. In the above

formula the biological activity is a numerical value such as the logarithm of the

concentration at which a compound exhibits half of its maximal biological activity. The

descriptors are numerical values of the properties of either the entire molecule (like the

36

molecular weight) or of a specific part of the molecule. In the latter case, the equation

needs to be derived from a set of highly similar compounds.

The major use of a QSAR formula is the prediction of the biological activity of a

compound that has not yet been tested or has even not been synthesized yet. This can

be done with models consisting of descriptors that can be calculated theoretically. In

essence, the structure of the molecule, which is a graph, is converted into a vector of

numbers, which can hopefully be related to the biological activity by a (simple)

function. In theory QSAR can thus greatly increase the speed and reduce the cost of

drug design by eliminating the synthesis and testing of compounds with low activity.

 However, the major problem regarding QSAR is that scientists can now choose

among many hundreds of descriptors, such as experiment-based descriptors, graph-

theoretical descriptors, quantum mechanical descriptors and others. Additionally,

researchers are more and more realizing that QSAR does not have to be a weighted

sum of simple descriptors. Cross-products and polynomials (Lu�i� et al., 2003), splines

(Rogers and Hopfinger, 1994) and even more exotic functions can be used to forge new

descriptors out of the old ones, enlarging the set of available descriptors even more.

Since a specific biological activity is commonly only measured in dozens of

compounds, the hundreds to thousands of descriptors available will lead to overfitting

if fitting procedures are used without proper caution. Since there are no ‘golden rules’

to govern the choice, selection of the ‘right’ descriptors is probably the most

problematic step in the whole process.

 Currently, matrix techniques such as principal component analysis (PCA)

(Hemmateenejad et al., 2003) and partial least squares (PLS) (Geladi and Kowalski,

1986) are applied to reduce the number of descriptors used. However, the resulting

convoluted descriptors are often difficult to interpret, and the design of more active

compounds is cumbersome for a medicinal chemist if the QSAR formula cannot be

easily understood.

 The more straightforward descriptors can lead to a model that is more easily

interpreted, and are therefore still used by many researchers. The traditional way to

choose the best descriptors for the model from the wide variety available is called

forward stepping. This is a local search process, in which first one-descriptor models

are built, of which the best is chosen. Subsequently, one by one those descriptors are

added that improve the quality of the model most. Since it is possible however that

there are descriptors that are separately not very informative but extremely valuable

when combined, global optimization techniques are increasingly being used, among

37

which evolutionary algorithms.

 A typical example of an evolutionary algorithm to select the descriptors in QSAR

analysis is the work of Kimura et al. (1998). In their research, CoMFA (comparative

molecular field analysis, a technique that compares molecules by looking at their

shapes and the electrostatic fields created by the charges of the atoms) was applied to a

set of 20 polychlorinated benzofurans. The molecules were superposed and a grid of

17x15x5 was laid over the superposition. For each molecule the strength of the electric

and steric field at each grid point was calculated and used as a descriptor. This resulted

in 2550 descriptors, which, using conventional CoMFA with partial least squares, gave

a r2 value of 0.96 and a leave-one-out cross-validated q2 value of 0.89.

 Subsequently, the authors applied their genetic algorithm, GARGS (GA-based

region selection). First a coarse grid was defined (8x6x5) that divided the molecules

into larger regions. The chromosomes were bit-strings, each bit encoding the

inclusion/exclusion of a specific region in the model; a population of 240-bit

individuals was created. The fitness of each chromosome was calculated by the q2

value and the best 90% of the population was selected as basis for the next generation.

Uniform crossover on 10 pairs of chromosomes and bit-flip mutation on all

chromosomes was applied. Elitism conserved the chromosomes which had the highest

q2 values among the chromosomes which had as many or fewer parameters (Pareto

optimality, see section 2).

 The genetic algorithm resulted in a model with only 8 regions (43 parameters)

which by partial least squares analysis gave a model with r2=0.97 and q2=0.95. Thus

descriptor selection not only reduced overfitting but also slightly improved the fit of

the training set, possibly by removing clutter which prevented the partial least squares

analysis from finding the optimum. External validation on a prediction set showed

indeed improvement over conventional CoMFA, the root mean square error decreasing

from 2.63 to 0.99. GARGS was later used by the same authors in a 3D-QSAR study of

acetylcholinesterase inhibitors (Hasegawa et al., 1999).

 An addition to conventional parameter selection was presented by Cho and

Hermsmeyer (2002). Their algorithm GAS (genetic algorithm guided selection) could

be used for two purposes. Next to the binary vector indicating use/non-use of

descriptors, each individual also contained a vector of numbers which divided the

compounds into several classes. The size of each chromosome was thus equal to the

sum of the number of descriptors and the number of compounds. However, only one

part of the chromosome was optimized per run, so compound classification was

separate from descriptor selection. The fitness decreased with increasing size of the

38

errors in the prediction and increasing number of variables, to prevent overfitting.

Roulette wheel selection was used to select the parents for one-point crossover or

mutation. In the case of crossover, the offspring replaced the worst parent if it was

better.

 The data set of Selwood and coworkers (1990) was used as a test for descriptor

selection. The set consists of 31 compounds with their biological activity against

disease-causing nematodes, measured in vitro. GAS selected the same descriptors in its

best models as other researchers including Selwood et al. (1990) and Rogers and

Hopfinger (1994). Subset selection was tested on the XLOGP data set, which contained

1831 compounds. Here each molecule of the test set was assigned to the set which

contained the molecule most similar to it, where similarity was measured as the

Euclidian distance between the descriptor vectors of different molecules. Subset

selection apparently worked, increasing the r2 for the test set from 0.80 to 0.84.

Remarkable is that in the XLOGP experiments the r2 of the training set was

systematically lower than that of the external validation set (such as 0.76 vs. 0.80).

Perhaps this has something to do with the relatively small size or higher homogeneity

of the external validation set relative to the training set (19 drugs vs 1831 more general

organic compounds).

 In conclusion, the authors demonstrated that their genetic algorithm did work for

both variable and subset selection, though subset selection may be less applicable for

the smaller data sets that characterize QSAR.

 Descriptors often do not correlate linearly to the biological activity. Therefore,

Rogers and Hopfinger (1994) developed an evolutionary algorithm called GFA

(genetic function approximation). Its main feature is that it creates individuals that are

lists of descriptors on which diverse functions are applied, like splines, squaring, or

squared splines. As an example the descriptor HOMO was used to design the novel

descriptor <-9.545-HOMO>2, which was combined linearly with the other (derived)

descriptors. A typical individual thus may look like {C4,<2.301-Ut>,(Ut-2.966)2,<-

9.631-HOMO>2}. One-point crossover is applied, mutations either add a descriptor or

change the number in the spline function. If a duplicate of the new model does not

already exist in the population, it replaces the worst individual. The run is completed if

the score of the models stops improving.

 The Selwood data set was mined with only basic descriptors (no splines or

polynomials). GFA indeed found a better descriptor combination than Selwood had

found (r2=0.72 vs 0.55). In an acetylcholinesterase inhibitor data set of 17 compounds

and 3 descriptors, linear as well as spline, quadratic and spline quadratic terms were

39

used. The best resulting models had r2-values of 0.85. The population of GFA provides

the user with multiple models, which are often very similar in quality although they

contain different descriptors. This allows users to choose the model they intuitively

regard as the best. This is a very interesting point in QSAR analysis, yet choosing the

‘right model’ is even more poorly defined than choosing ‘the best descriptors.’ The

GFA method has been implemented in commercially available software, such as

Cerius2, and has led to a number of publications by users of that software. Shi and

coworkers (1998) selected 112 ellipticine analogues from the compound database

maintained by the National Cancer Institute (NCI). They were able to derive

meaningful QSAR models with the GFA method after the users had subdivided the

ellipticine data set manually into structurally homogeneous classes. GFA using splines

yielded cross-validated r2 values that were consistently about 0.3 units higher than

those derived by stepwise linear regression.

 Lu�i� et al. (2003) used GFA and other approaches for descriptor selection on 4

different data sets and were somewhat less impressed by the method. This may have to

do with the fact that they did not allow GFA to use splines, and that they did not use

stepwise selection but another genetic algorithm to select the descriptors for the

multiple linear regression, to which they compared GFA.

 Of course, a QSAR relationship does not have to be the weighed average of a

number of descriptors. Linear models are commonly preferred due to their simplicity

and smaller risk of overfitting. However, many investigators are tempted to experiment

with different types of relationships. After all, many processes in nature are inherently

nonlinear. Yasri and Hartsough (2001) elaborated on the combination of a genetic

algorithm and a neural network, which also allows non-linear relationships to be found.

The authors used a conventional descriptor-selecting genetic algorithm (single point

crossover, bit flips, offspring replaced the parents if it was better) to select 6

descriptors out of the 404 available for a data set of 54 benzodiazepine derivatives.

They found that the q2 was enhanced by the GA/NN combination with respect to

multiple linear regression with stepwise descriptor selection (0.90 vs 0.80). It is not

clear in this case whether the improved q2 is due to the incorporation of non-linearity

by the neural network or due to the superior descriptor selection by the genetic

algorithm.

 Neural networks were also used by So and Karplus (1996) who found that the

evolutionary programming employed gave a more robust optimization of the descriptor

set than the GFA-based genetic algorithm. The Selwood data set was analyzed and an

r2-value of 0.76 was found. Additionally, the authors performed exhaustive

40

enumeration over all three-parameter sets and found that the EP-based algorithm found

all of the best 100 solutions with the exception of the 95th, the GFA-based one found

only a few. The most likely reason for this is that the EP only replaced parents if the

children were better, the GFA replaced all parents regardless of the quality of the

children.

 Finally, evolutionary algorithms have also inspired researchers to seek beyond the

standard descriptor used/not used bit strings. One of these methods is FRED (fast

random elimination of descriptors) by Waller and Bradley (1999). Data sets were

preprocessed by eliminating zero variance descriptors and descriptors that were

collinear to other descriptors. Subsequently FRED started with a population of models

composed of either a fixed or variable number of randomly selected descriptors. To

prevent overfitting, the rule of thumb was used that there should be at least five

compounds per descriptor. The maximum chromosome length was thus set to 6 for the

Selwood data set. A progeny factor was used to ensure that the population did always

contain enough individuals to include each descriptor on average “progeny factor”

times. The user specifies a “kill factor”, which divides the population in a part of

higher and lower fitness. Those descriptors occurring only in the low-fitness part are

considered deleterious and are eliminated from the descriptor pool using a tabu-like

process. After every generation, a new population is generated from the remaining

descriptors.

 As mentioned, FRED was tested on the Selwood data set. The original 53

descriptors were reduced to 23 in the preprocessing step, and FRED was applied with a

kill-factor of 5% and progeny factor of 30. The authors concluded that their algorithm

performed efficiently and quite similar to alternative algorithms, yielding the same

‘optimal’ solutions (r2 of 0.83, q2 of 0.69).

 A good in-depth review of the somewhat older literature on evolutionary

algorithms in QSAR is given by So (2000).

Conclusion

Quantitative structure activity relationships form a terrain in which evolutionary

algorithms have been applied many times. The most likely reasons for this are that the

presence and/or absence of descriptors is readily encoded using a standard genetic

algorithm, and that the fitness of individuals can easily be calculated using available

statistical techniques.

 Evolutionary algorithms indeed seem to be valuable to the QSAR process since

they are able to find better combinations of descriptors than the traditional local search

41

processes, as stepwise addition or elimination, can.

 Nevertheless, there remain some caveats when applying evolutionary algorithms

to QSAR.

 The first of these is that the data sets should be picked carefully. It is encouraging

that a standard data set seems to have been chosen to enable comparison between the

different methods, yet this Selwood data set is a somewhat unfortunate choice from a

biological point of view. It is relatively small, only 31 compounds, yet the measured

biological activity, the killing of the nematodes, is a complex function of the membrane

penetration of the compound, its cellular metabolism and its interaction with the target

receptor. This multitude of biological processes makes it unlikely that the activity of

the Selwood set can be truly explained by using only six descriptors. Direct

measurements of receptor or enzyme affinities would be more valuable since these

would include fewer intervening factors.

 A second point is that biological measurements tend to have quite large margins of

error (about 0.5 log units). It therefore remains to be seen how much a slightly

improved r2 value really means since the inaccuracy of biological data does not allow

us to choose between models which differ only slightly in performance.

 From a point of view of a medicinal chemist, it seems that researchers in the

QSAR-field have been introducing more descriptors, and more complicated, nonlinear,

methods over the last few years. This development may have been prompted by the

need to improve the predictiveness of the models. Though these developments offer

opportunities for improved modeling –and even more opportunities for overfitting-

there are some practical problems in interpreting and using the results.

 Neural networks in particular are difficult to interpret and do not readily suggest to

the chemist how a structure can be improved. Another computational method, like a

evolutionary algorithm, may be necessary to perform “inverse QSAR” to find better

structures in such a case. The structures can then be optimized using the predicted

biological activity as a fitness function. However, the problem remains that results

researchers do not understand are often used reluctantly, if at all.

 A striking observation is that most QSAR techniques find a wide range of models

that differ only minimally in their fitness, yet contain entirely different descriptors.

This makes one wonder about how the “quality” space looks, and whether the

descriptor sets do not rather describe similarity between compounds of similar activity

instead of producing formulas that can be truly extrapolated beyond the measured

activity range of the tested compounds. For instance, logP, a measure for lipophilicity

and therefore membrane penetration, is almost always significant in a “Selwood”-

42

QSAR. This implies that a factor that is really important in such a system does surface

consistently; the other descriptors however may be more “classifying”, rather than

“causing” the activity.

 Such classification would however not help much in achieving the real purpose of

QSAR, which is to find a formula which predicts biological activity with such accuracy

that one can use it to design new compounds with higher biological activity than the

compounds of the training set. Unfortunately, none of the articles reviewed here

contains this extrapolation step that would be crucial for validating the usefulness of

the models.

 In conclusion, evolutionary algorithms seem to improve the parameter selection of

quantitative structure-activity relationships, especially since they can be applied to

other than linear models. The main problem for further application of evolutionary

algorithms is not so much in improving the quality of the models, but in testing

whether the models can extrapolate reliably. Leaving the most active compounds out of

the training set and using them as validation set might provide such a check. This has

not been done in the articles discussed and is generally neglected in other QSAR

publications. The reason for this may be that QSAR is known not to be very well suited

for extrapolation; results such as q2 values are likely to be much worse if the omitted

data points have to be extrapolated. The failure of QSAR in these cases is rather a

weakness of the current implementations of the QSAR paradigm than of the

evolutionary algorithms used to optimize the parameter choice. A second opportunity

for application of evolutionary algorithms would be to increase the availability of

models. Next to the traditional linear models and neural networks, genetic

programming might be applicable to find novel ways to combine existing descriptors.

Also there is still an avenue less explored by evolutionary algorithms, i.e. to use the

QSAR models for reverse engineering of compounds. Synthesizing and testing these

compounds will truly test the validity of the QSAR methods employed and the value of

evolutionary algorithms therein.

6. Evolutionary Algorithms in Ligand Docking

Ligand docking, generally simply called “docking” in the medicinal chemistry

community, places a small molecule, called the ligand, into a protein in the same way

that nature does. Docking could be compared to a 3D jigsaw puzzle, in which the

pieces can be turned in more than four ways and can also change shape.

43

Docking is a very important tool in medicinal chemistry. If one can reliably predict

how a molecule will bind to a protein, visual inspection of the fit may give information

to the drug designer at which positions the molecule fits well, at which positions there

is a worse fit, etc. Based on this information a molecule can be designed that binds

more strongly. Also, if the original molecule would not be suitable as a drug due to its

toxicity or other undesirable properties, one can dock other molecules and select those

that seem to bind well for further testing; this can be much cheaper and faster than

measuring the binding strengths experimentally.

 In the ideal case, a docking program would give the medicinal chemist a list of

alternative docking options of the ligand into the receptor, and assign to each docking

an energy value indicating the binding strength. If the docking procedure is really

perfect, there will be a sizeable energy difference between the best and second-best

conformations, which indicates a large chance that the best docking is also the true

docking.

 However, so far no program has reached this ideal. There are two main reasons for

this:

1) The energy function is often not very accurate. This means that there may be

docking options of the molecule that are in reality higher in energy than the real

docking, but are indicated by the energy function as lower in energy (the lower the

energy is, the better the docking). Some interactions between the molecule and the

receptor, such as hydrophobic interactions and entropic effects, are notoriously

difficult to model.

2) The search space is often very large. The ligand has three translational and three

rotational degrees of freedom, as well as one degree of freedom for each rotatable

bond. Additionally, the hydrogen atoms in the receptor, which are usually not

visible on the X-ray crystallographic structure, also must be in the right orientation

for good binding between protein and the ligand. All these degrees of freedom

result in a search space of about 1020 to 1030 possible docking options, which

cannot be searched fully.

Although docking is certainly not easy, much effort has been and still is being spent

improving existing methods and developing new ones. After all, the structure of the

protein target itself will give much more information for drug design than any QSAR

model based on just the ligands can. A perfect docking program would be incredibly

valuable, one of the holy grails of drug design.

 Many docking techniques have been developed so far. The following part of the

review will discuss the role of evolutionary algorithms in the more recent applications.

44

A well known and often used example of evolutionary algorithms in docking is GOLD

(Genetic Optimisation for Ligand Docking) developed by Jones et al. (1997). This is a

genetic algorithm that uses chromosomes encoding the internal torsion angles of the

ligand, as well as two integer strings representing hydrogen bonds between the ligand

and the receptor. The latter replace the more conventional “location and orientation”

parameters, since the location and orientation of the ligand is determined by least-

squares fitting of the ligand’s hydrogen donors and acceptors onto those of the protein.

 Each individual is evaluated by first performing the least-squares fit of the

hydrogen acceptors and donors of the ligand onto the hydrogen donors and acceptors of

the protein. Subsequently the internal energy of the ligand and the ligand-protein

interaction energy are calculated, the sum of which determines the fitness of the

docking. The population is divided into 5 subpopulations with 100 individuals each.

The operators are crossover, mutation and migration, which are applied as alternatives

rather than sequentially. Mutation and crossover differ for the binary (torsional) and the

integer (matching) part: bit flip mutation and one-point crossover are used for the

binary string, mutation to a random valid value and two-point crossover is applied on

the integer string. Additionally, a niching technique is used, which makes new

individuals replace the worst individual of a similar subgroup instead of the worst

individual of the entire subpopulation.

 The genetic algorithm was tested on 100 protein-ligand complexes, and run 20

times on each. The resulting conformation of lowest energy was compared with the

corresponding crystal structure. In 71 out of 100 cases GOLD found acceptable

solutions, in which all or most parts of the ligand bound to the right place in the

receptor. Also the genetic algorithm generally did not need 20 runs, in 49 out of 100

cases 2 runs were enough. However, errors in the scoring function found a false

minimum in at least seven of the 100 cases and regarded it as superior to the crystal

structure, which is biologically spoken not probable. Other problems encountered

involved ligands that had too few hydrogen donors and acceptors, which made the least

squares fitting work poorly, and inaccurate protein structures. If the protein structure

had a resolution more accurate than 2.5Å, GOLD succeeded in 77% of test cases, else

it succeeded in only 52%. Finally, in some cases the structure of the ligand was

distorted by the protein, therefore docking using the normal ligand failed.

 All in all, GOLD seems an interesting computer program that can dock ligands

over a wide range of test systems. The authors indicate that incorporating protein

flexibility in the algorithm would be a useful addition, though probably not necessary

in all systems.

45

Morris et al. (1998) also used a genetic algorithm, but added Lamarckian evolution

(Autodock). In every generation 6% of the population was optimized using local search,

and the improved parameters were written back to the genes. The chromosome here is

a string of real-valued genes. The first three values are the Cartesian coordinates of the

ligand, the four following values define the orientation. Usually three are sufficient for

orientation, but then the so-called “gimbal lock” problem may occur, in which an

unfortunate rotation can make two rotational axes of the object point into the same

direction. The last values represent the internal torsion angles. Crossover is two-point

and always takes place between genes. After crossover the mutation is performed, in

which the values are mutated using a Cauchy distribution. A population of 50

individuals was used, and a maximum of 27000 generations or 1.5×106 energy

evaluations.

 Seven protein-ligand complexes were docked with the Lamarckian genetic

algorithm, and for comparison purposes also with simulated annealing and a normal

(non-Lamarckian) genetic algorithm. Ten runs were performed per method per

complex. It turned out that the Lamarckian genetic algorithm clearly outperformed

simulated annealing, which had a large root mean square distance of the fitted relative

to the crystal docking (>3Å) in 2 out of 7 cases. The root mean square distance

between fitted and real ligand was quite small in both the Lamarckian genetic

algorithm and the genetic algorithm (under 1.5Å). The energies in the Lamarckian

algorithm were slightly lower, though at the cost of more energy evaluations.

Additionally, the Lamarckian genetic algorithm found the minimum conformation in

78% of the runs, the genetic algorithm and simulated annealing reaching 40% and 24%,

respectively. As a validation, the binding energies returned by the fitness functions

were compared to the experimental binding energies. The prediction error ranged from

–3.89 to +9.93 kcal/mol, which means that predicted binding affinities vary by a factor

1000, which is the difference between very good and quite bad ligands. The largest

deviation, 9.93 kcal/mol for the streptavidin/biotin complex suggests that the protein

flexibility might be too important to neglect in this case.

 Several attempts have been made to improve upon this Lamarckian algorithm.

Hart et al. (2000) performed experiments with different settings of the local search and

found that improvement was possible by taking another local search algorithm, a

pattern search method, instead of the previously used Solis-Wets algorithm, and

increase the number of steps in the local search procedure. Other experiments of the

same author used self-adaptive evolutionary programs and evolutionary pattern search

algorithms (Hart et al., 1999). The evolutionary programs could adapt the step size of

46

all search parameters, while the evolutionary pattern search algorithms used only one

step size which was slowly decreased over the course of the evolution. The

evolutionary pattern search algorithm was configured in such a way that theory

guaranteed that it would converge to a stationary point. While both methods performed

decently, they were still outperformed by the optimized local search method.

According to the authors, this indicates that the local search had a more extensive

effect on the evolution than just performing localized step length adaptation.

 Thormann and Pons (2001) parallellized the Autodock algorithm for use on multi-

processor machines, and called the result EGA/LS (Enhanced Genetic Algorithm with

Local Search). Dividing the population between the processors resulted in a natural

island model, which proved to be superior to a single-population model. For the more

difficult test cases the island model was more effective than a pooled population (the

minimum found in 76% vs 66% of docking options). Migration between the

populations was taken care of by one individual called the “king”. The king could be

overwritten by the fittest individual with a certain chance, and the king itself

occasionally overwrote some individuals in the subpopulations. In each run, the

subpopulations were randomly initialized three times, but after the first and second

round the king was kept, seeding the populations slightly so that convergence could be

reached faster.

 Three test cases were taken, which took on average about 9 seconds to dock.

Unfortunately, no root mean square distance data was given by the authors. Hence one

cannot know whether the crystal structures were reproduced. One hundred runs were

made with eight subpopulations of size 25. In general, since docking within one run is

not assured, the authors advise to use at least three test runs for each complex. The

main problem encountered was that when many degrees of freedom were taken into

account (all torsion angles of the ligand and some of the protein as well), the

optimization got stuck in local minima. However, the local minima that EGA/LS found

were lower in energy than those discovered by GA/LS, indicating that splitting the

docking populations at least offers enhanced possibilities to escape from local minima.

 More recent work based on AutoDock has been described by Thomsen (2003).

The author did experiments to optimize the evolution parameters of the evolutionary

algorithm used by AutoDock. The optimal settings were found to be a population size

of 100, and mutation which was a slowly annealed Gaussian. Arithmetic crossover,

which creates offspring out of a weighted combination of the genes of the parents with

in this case a random weight for each gene, was found to be superior to the traditional

single point, two-point and uniform crossover. Strikingly, the new evolutionary

47

algorithm did not profit from adding the Lamarckian local optimization. While the

improved evolutionary algorithm showed no significant improvement over the

Lamarckian genetic algorithm in the three simplest test cases (7-11 dimensional search

space), it improved upon its predecessor in two of the three more complex test cases

(12-18 dimensional search space). Ironically, though the docking energies found were

generally lower, the root mean square distances from the crystal structures were

slightly increased from those found by the Lamarckian genetic algorithm. The

efficiency was increased however, the “DockEA” needed only 50,000-150,000 fitness

evaluations, while the Lamarckian genetic algorithm needed over 250,000 evaluations

to obtain accurate and reliable results.

 From these experiments the author concluded that the energy function needs some

improvement to make the lower docking energies also correspond most closely to the

crystal structure, but the deterioration of docking quality in one of the more

complicated test cases relative to the Lamarckian algorithm indicated that the balance

between exploration and exploitation is sensitive to the protein structure, and testing on

more complexes would be required to refine the docking algorithm.

 Among the evolutionary algorithms, genetic algorithms have been most prominent

in docking. Yang and Kao (2000) however created a docking method called FCEA

(family competition evolutionary algorithm), which is more similar to evolution

strategies. Next to the vector of real numbers encoding the location and orientation (6

numbers) and the torsional angles of the ligand, each individual contains three

additional vectors. They are of the same size as the data vector, encoding the

parameters for a decreasing-based Gaussian mutation, self-adapting Gaussian mutation

and self-adaptive Cauchy mutation, respectively. Thus, each gene in each individual

has three self-adaptive mutation parameters. The mutation step consists of subsequent

application of the three mutations (decreasing, Gaussian, Cauchy). In each of these

submutation steps each member of the population generates l children by mutation or

recombination with another member of the parent population. The fittest of the children

survives. In most cases, from each pair of father-child the best survives into the next

generation, sometimes however from the entire population of n parents and n children

the n best solutions are selected. For further details on the rather intricate procedures

and many parameters used in this algorithm the reader is referred to the publication

itself.

 The resulting program was subsequently tested on one protein, the enzyme

dihydrofolate reductase, with three different ligands. Population size was 50, the

maximal number of generations 250. The results were compared to those of DOCK and

48

other docking programs. While DOCK found the best fit to the crystal structure

(RMSD 0.6Å vs 0.67Å), the average fit (over 20 runs) by FCEA was better (1.37Å vs

2.4Å). However, using only one protein structure for comparison seems a bit meager

for a conclusion on the general competitiveness of this method.

 Since evolutionary algorithms are by far not the only computational methods used

for docking, Vieth et al. (1998) made a comparison between three common methods:

molecular dynamics, Monte Carlo and a genetic algorithm. The genetic algorithm was

kept relatively simple. The population of 90 individuals was split over five

subpopulations with an elitism of 2 per subpopulation. In each generation, the

individuals were modified by using single-point crossover, mutation or migration. In

migration, two individuals were exchanged between subpopulations. The search was

performed in two stages for each algorithm, in which the parameters in the second

stage were adapted to fine-tune the solutions found in the first phase.

 Five ligand-receptor complexes were used as the test set. It turned out that the

genetic algorithm worked best for small search spaces in which the ligand was located

within 3Å of its actual binding site and the molecular dynamics performed best for

larger search spaces, within 11Å of the binding site. While the genetic algorithm gave

the highest fraction of runs that found a good docking, the molecular dynamics

algorithm returned the conformations with the lowest energy and closest fit.

 Combination of the different computational techniques is also possible. An

example of this is the Mining Minima optimizer (David et al., 2001), which uses a

combination of the so-called global underestimator method, genetic algorithms and the

poling method of Smellie et al. (1995). However, it is possible to regard it as an elitist

genetic algorithm with some twists. First a large population of individuals is created

within a certain search region. The individual with the lowest energy is used as the

center around which the next generation of docking options is created. After each

generation the width of the search region is narrowed down. To prevent the rediscovery

of energy minima, exclusion zones are placed around previously found minima. There

is a crossover-like operator, which combines a newly designed individual by partially

copying information of a previously found minimum into it. The modified new

individual is then placed in the next generation.

 The authors tested their method on 27 complexes and compared their method with

the genetic algorithm, simulated annealing and tabu search of PRO_LEADS, as well

with AutoDock, FlexX and MCDOCK. Also nine of the “difficult cases” of GOLD

were tackled with the Mining Minima optimizer.

49

The median docking time of the Mining Minima optimizer turned out to be about 1.2

minutes. The results of the comparison with the other programs indicate that the

Mining Minima method is comparable to PRO_LEADS and the other programs;

occasionally it scores higher, sometimes lower. The authors point out that in some

cases the fit was good, yet the “objective” root mean square distance criterion indicated

low quality. In some of these cases the solvent accessible parts of the ligand, which are

relatively free to move, cause the main part of the error. This contribution is however

not very relevant since these parts do not influence the quality of the docking, which is

defined by ligand-protein interactions. Six out of nine of the docking options that were

difficult for GOLD were solved. Three remained problematical: in one case the crystal

structure itself was suspect, in the other two cases the global minimum was found at

another place than the binding site.

 If the elaborate comparisons in this article make one thing clear, it is that the

different algorithms are more or less suitable for different complexes, since no method

is superior over all other methods in all investigated complexes. Moreover, some

complexes seem much more difficult to solve than other complexes, whichever method

is used.

For a broad overview of the many different methods (genetic, simulated annealing,

fragment-based methods, etc.) of docking and the many programs using these, the

review of Taylor et al. (2002) is recommended.

Conclusions

Several evolutionary algorithms have been developed for docking ligands into the

active site of proteins, and all obtain reasonable to good results, quite like the other

heuristic algorithms. It is so far doubtful whether evolutionary algorithms have

inherent advantages that make them more efficient for docking than for example

simulated annealing. Since the coordinates of all atoms depend on the location and

orientation and many of the torsion angles, this high coupling would make it very

unlikely that there are small simple building blocks that can be recombined with each

other into larger, high-quality building blocks. This view seems to be supported by

findings such as that of Thomsen (2003) that arithmetic crossover outperforms the

more conventional uniform and one- or two-point crossovers. Several promising

techniques have been found, such as introduction of subpopulations, employing local

optimization next to the normal genetic algorithm, and using different crossover and

mutation methods. Further investigation is necessary, however, to conclude whether

50

combining these will further improve docking efficiency and efficacy.

 In any case, several authors have displayed great ingenuity in introducing novel

and complex operators, most notably Yang and Kao (2000). Yet the arguments for this

complexity are lacking, with the possible exception that the other methods do not work

perfectly. If the complexity of the evolutionary algorithms is enhanced, it should be

done either carefully and on the basis of solid experimentation, that is, study of many

complexes, or it should be based on knowledge of the chemical and biological reality.

Otherwise such methods might “overfit” their docking options due to an overdose of

adjustable parameters and a paucity of test cases.

 However, comparison of the diverse methods employed is extremely difficult

since the three separate components of the docking procedure (fitness function, search

method and test data) are generally different per article. A desirable development for

this field would be the introduction of a library of standard search algorithms, fitness

evaluators and test data sets. Only then a new algorithm can be truly compared to

existing ones.

 Another development would be the incorporation of protein flexibility. Proteins

can dock different small molecules in their active site. Most method developers,

understandably, have docked the ligands of known complexes and compared those to

the crystal structures. But is a crystal structure of the protein in which ligand A is

docked also suitable for docking ligand B? Or would subtle differences in the protein

conformations prevent finding the real docking? Such extrapolation is of vital

importance for predicting the binding of series of molecules, and may necessitate

extending the algorithms with some protein flexibility.

 Further advances are also needed in the area of fitness functions. Since some

discovered docking modes have lower energy (according to the computer) than those of

the crystal structures, the energy evaluation procedures should be improved. Training

the force fields that evaluate the fits by finding the right parameters and formulas might

by itself also be an interesting field for applying evolutionary algorithms (an

application of an evolutionary algorithm in descriptor selection for such a model is the

work of Deng et al. (2004), see section 8).

 The ultimate goal of docking algorithms, taking a protein structure and a ligand

structure and calculating both the position in which the ligand will be bound and the

affinity of the ligand for the receptor, will probably need the following extensions of

existing docking algorithms:

1) Addition of protein flexibility to accommodate the binding of different ligands and

correct for errors in the crystal structure.

51

2) Addition of water molecules to the active site; these can influence binding as well.

3) Calculation of the changes of entropy on the protein, the ligand and the water

molecules during the binding process.

In conclusion, much remains to be done in the field of ligand docking. It is not certain

yet whether the docking algorithm of the future is a pure evolutionary algorithm, basic

simulated annealing, or one of the other methods currently applied. Most likely the

ultimate docking method will incorporate the most suitable properties of existing

search methods combined with chemical and biological heuristics. There is still a long

way to go before ligands can be docked automatically, accurately and with good

binding energy estimations into their receptors, but the end result will undoubtedly be

extremely worthwhile.

7. Evolutionary algorithms in de novo design

To find molecules with a specific biological activity, compound libraries are

commonly screened. However, “only” about 1010 structures have been synthesized by

chemists thus far, while the number of all possible drug-like molecules is estimated to

be at least 1060 (Gillet, 2000). Clearly, designing new molecules may be required to

cover more of this “chemical space” and to find a molecule that would be a more

suitable drug against a certain disease than any currently known molecule. This process

of designing new molecules is called de novo design.

 Applying computer programs to design molecules seems an obvious choice,

especially since computers can create virtual molecules much faster than humans can.

However, the set of all possible molecules is difficult to search systematically. One of

the reasons for this is that the number of possible mutations rises with the size of the

molecule. If one defines a mutation as a single step in chemical space (changing/

adding/removing an atom or bond), the number of orthogonal steps/dimensions

increases with the number of atoms in the molecule. So a “normal” drug molecule,

which may contain e.g. 20 non-hydrogen atoms, can have over one hundred possible

one-atom mutations. This results in a very high-dimensional search space, and the

dimensionality will only increase when larger molecules are allowed. This makes a

systematic search of all possible molecules to find those with the desired properties

quite difficult. Also, a molecule is a graph and therefore is difficult to represent by the

traditional vector notation of a genetic algorithm. Additionally, the rules of chemistry

limit the number of possible molecules by demanding that e.g. every oxygen atom has

52

two bonds, and every carbon atom four. Therefore, mutation from a carbon atom to an

oxygen atom will always involve some additional modification of the molecule, like

removing hydrogen atoms. This is sometimes possible, sometimes not, depending on

the rest of the molecule. Lastly, developing a proper fitness function is probably the

most challenging problem of all. Since experimental fitness evaluation is slow and

expensive, the search goes on for computational methods that predict the properties of

a molecule reliably.

 To find promising molecules in the vast chemical space, several different

evolutionary algorithms have been developed and applied to a variety of de novo

design problems. A good review on some of the older work has been written by Gillet

(2000). This review will only briefly discuss the earlier work and mainly cover the

work performed in the last few years.

One of the first and best known applications of evolutionary algorithms in de novo

design is the work of Glen and Payne (1995). Since a molecule is a graph that can

contain cycles, a traditional linear chromosome with bit-flip mutations could not be

used. Therefore a graph representation of the molecule itself was used as genotype, in

conjunction with linear chromosomes which indicate the position and orientation of the

molecule and the torsion angles, similar to ligand docking.

 Mutation of the orientation, position and torsion angles was performed using an

approximated Gaussian function. The structure of the molecule could be altered by a

set of eight mutations, which included adding and deleting atoms or groups of atoms,

forming and breaking rings, and changing atom types. Crossover could be 1-point or 2-

point between single, non-ring bonds that occupied approximately the same 3D-

coordinates. The fitness function consisted of a weighed combination of scalar

properties of the molecule such as molecular weight, surface properties and the fit of

the molecule on a predefined grid. Selection was done by the roulette wheel method.

 The authors performed two experiments. One experiment was aimed to design

molecules that resemble ribose, the other to design molecules that fit the active site of

the bacterial enzyme dihydrofolate reductase (DHFR). Population sizes of 50-100 were

used, since lower sizes such as 10 were found to be too erratic due to premature

convergence. Evolution indeed improved the fitness scores from 100 to –30 for the

ribose analogs. Also, the average score of the best four molecules in the initial

population of the DHFR experiment was 26.3, but converged after 32 generations

to –32.1.

53

The authors envisioned two extensions to their program. The addition of metal atoms

and transition states might be useful to mimic enzymes better. Another important

improvement would be a fitness function that gives a more biologically relevant value,

such as binding strength. This would also eliminate the need to set the relative weights

of the many fitness criteria manually, which is far from objective. Nevertheless, the

diverse mutations and the 3D-representation of the molecule were designed very well,

and as of yet few de novo design programs have improved on Glen and Payne’s work

in these respects.

 Worth mentioning as another pioneering study of evolutionary algorithms in de

novo design is the work of Westhead et al. (1995). The authors first generated and

superposed an initial population of molecules, which formed the input for the

evolutionary algorithm. Similar to Glen’s work, molecules can be crossed only if they

have single bonds that lie near each other in the superposition. However, mutation is

limited to rotation of torsion angles, and the fitness function is less sophisticated than

Glen’s, being the number of functional groups that overlap the functional groups of a

known molecule in a superposition. Analogs of the molecules distamycin and

methothrexate were nevertheless found and scored higher than the initial population of

molecules.

 However, though the molecule itself is a graph, the genotype of the molecule does

not have to be a graph. Other representations might have advantages for an

evolutionary algorithm.

 Nachbar (1998) developed a evolutionary algorithm that converted the molecule

graph into a tree, in which cycles are represented by special ring nodes. Mutation

involves changing the atom types or bond orders, but crossover is responsible for the

major part of structural change. The crossovers are very much like those of genetic

programming, though subtrees containing an open ring bond are not exchangeable. The

fitness function was a graph descriptor-based QSAR which predicted toxicity of the

compound in tadpoles. After the population of 50 individuals had been evolved for 50

generations, 30% of the molecules were in the desired activity range. In this case it is

somewhat difficult to establish the efficiency of evolution since no data were collected

on the evolution of the population’s fitness during a run (R.B. Nachbar, personal

communication).

 The algorithm did have some small problems, such as that many molecules in the

final generation were identical, which is not very useful for a chemist who wants as

many alternative solutions as possible. Checking for duplicates will probably be

important in any de novo design method. A problem caused by the tree-like

54

representation was that ring manipulation was difficult. The author would have liked to

be able to expand, contract and break rings at other positions than the ring closure bond,

but this was not easy to implement.

 The ring opening problem was solved in subsequent work of the same author

(Nachbar, 2000) by inverting/re-rooting subtrees. The fitness function changed to

molecular similarity, and several test molecules were recreated by the evolutionary

algorithm, with the exception of a large polycyclic molecule, which turned out to be

difficult to generate due to the surrounding local optima.

 Douguet et al. (2000) used the chemical SMILES-notation (Weininger, 1988) to

represent the molecules. SMILES is also tree-like, yet contains fewer brackets since

hydrogen atoms are not explicitly stated and the superfluous brackets in the linear parts

of the molecule are omitted. Two crossover operators, one-point and two-point, were

implemented, as were thirteen mutation operators (though the article, oddly, describes

only eight). These were quite similar to Glen’s, though ring breaking was absent. This

may be due to similar problems as Nachbar encountered with tree representations.

Fitness was calculated as a weighed sum of a few physicochemical criteria, such as the

solvent accessible surface and the dipole moment of the molecule, which had to be in a

certain range, and roulette wheel selection was used. As test cases, the target criteria

were set to the properties of retinal and salicylic acid. The evolutionary algorithm did

indeed find mimics of these molecules. The structures of some of the molecules were

adapted by medicinal chemists to make them easier to synthesize. In contrast to the

work of Nachbar, the authors considered crossover to be very much like a

macromutation due to the tree-like representation, and it was applied much less

frequently than mutation.

 Globus et al. (1999) handled rings more elegantly by using “genetic graphs”.

These have the advantage that they look very similar to real molecules. A crossover

operator was implemented which could easily cross over rings, which had not been

done yet by other authors. However, no mutation operator was used. This had the

unfortunate result that if a generation happened to contain only rings, no chains could

be generated, and vice versa. The fitness function was graph similarity to a specific

molecule. Globus demonstrated that his algorithm can indeed recreate complex

molecules, even those which have different atom types and a complex structure, like

the five rings-containing morphine. The authors acknowledge, however, that

rediscovering known molecules is not very useful, and that a fitness function that gives

biological activity should be implemented.

55

Simplifying the representation of the molecules can work, but tends to restrict the

possible mutations. This may make an escape from local minima more difficult.

Another way to apply the evolutionary algorithms more easily is to adapt the problem

domain and only consider subsets of molecules which have a relatively simple

structure.

 Schneider et al. (1998) used experimental data on the biological activity of

peptides to train a neural network to predict activity from structure. Subsequently an

evolutionary algorithm was applied that chose the best individual from the initial

population. Since peptides are linear chains of amino acids, a linear chromosome can

be used. Mutation can then be performed by picking a position and substituting the

amino acid there by another amino acid. The best peptide filled the next generation

together with its mutants, after which the new best peptide was selected. Unfortunately

the neural network made quite inaccurate predictions, which was aggravated by the

errors in the biological data used to train it. Nevertheless a peptide with comparable

activity to the seed peptide but a very different sequence was found.

 Related work was performed by Patel et al. (1998) who focused on bactericidal

peptides. A training set of 29 peptides with measured biological activities was used.

Using this set, 29 multi-layer perceptron neural networks were created, each based on

28 peptides. The fitness value was taken to be the average of these 29 models. The

genetic algorithm used was somewhat more conventional than that of Schneider et al.,

having a population of size 100, elitism that conserved the best 25, probability of

crossover (two-point) 0.6 and probability of mutation 0.033.

 The genetic algorithm was shown to be much more efficient than Monte Carlo or

random search in finding peptides with high predicted activity, since only 0.008% of

randomly generated peptides were in the desired activity range, 0.5% of those

generated by Monte Carlo but 7.2% of those made by the genetic algorithm. Of the

more than 400 candidate peptides that were generated by the genetic algorithm, the 5

most diverse were synthesized and were shown to have high-ranking bactericidal

activity.

 With the traditional fixed-size chromosomes the length of the peptide cannot be

modified; this may however be important for optimizing activity. Kamphausen et al.

(2002) solved this problem by implementing n×m crossover. This technique selects a

group of parent peptides and aligns the sequences. It enables the shorter sequences to

align with the longer sequences by filling the empty space at the end of the shorter

sequences by repeating the first part of that sequence until the maximum length is

reached. The length of the child peptide is then determined by averaging the length of

56

the best parent peptide and the average of the other parent peptides. Subsequently, the

child is assembled by taking one value per column in as many aligned columns

necessary to reach the target length. The implemented version of this mutation also

allows the sequence to “shift”, which can lengthen and shorten the sequence at both

ends.

 The program was used to find a peptide that optimally inhibited the blood clotting

protein thrombin. The population contained 123 peptides of lengths 6 to 12, whose

fitness was determined experimentally. Four cycles of design and testing were

performed. With each generation the average activity increased, and in the fourth

generation a very active inhibitor was discovered. It was more potent than known

peptide inhibitors of thrombin, and this experiment can thus be considered to be

successful.

Peptides, however, are currently only rarely used as drugs since they generally have

unfavourable physico-chemical properties. Conventional drugs are much smaller

molecules, which can be absorbed more easily by the body. Schneider acknowledged

this and also created a evolutionary algorithm for small molecule design, TOPAS

(Schneider et al., 2000a,b). This program again uses Schneider’s method in which only

the fittest individual survives and procreates, but uses molecule fragments instead of

amino acids. A subset of about 3 of approximately 25,000 fragments is converted by

the algorithm into a real molecule. The fragments also contain data on the connections

they can form, which should allow the constructed molecule to be easily synthesized in

the laboratory. Mutation is implemented by replacing a fragment by a similar fragment

with the same type of attachment point. The fitness function calculates the similarity of

the constructed molecule to a known ligand.

 In the test case, TOPAS identified a ligand chemically not very similar to the

original molecule, but with receptor affinity, be it a 1000-fold less potent. While one

could not yet argue that this evolutionary algorithm develops structures that improve

the affinity of a known ligand, it can find compounds with a similar kind of activity in

a very different class of chemical structures.

 The fragment-based approach was also used by Pegg et al. (2001). However, in

their algorithm runs use far fewer different fragments (in the order of dozens). Acyclic

graphs containing maximally 16 fragments are constructed. Crossover is performed by

exchanging subtrees between individuals, mutation by changing one of the fragments

in an individual or by connecting a fragment to another fragment in the same individual

as long as this does not introduce a cycle. The fitness is determined by docking the

57

resulting molecule into the active site of the target protein.

 Three test cases were taken: design of cathepsin analogs, inhibitors of

dihydrofolate reductase and inhibitors of HIV-1 reverse transcriptase. The results of the

evolutionary algorithm were compared to the experimental data available. Two major

problems were discovered. First, fitness evaluations took much time: a run of 100

generations of a population of 20 molecules took 5 hours of processor time. Second

and worse, not all good inhibitors were judged as good by the fitness function. So

while the evolutionary algorithm designed many molecules with higher fitness values

than the compounds that turned out best in the experiments, it remains to be seen if

those molecules actually bind better. Like Schneider’s program, the fitness function is

ill-equipped for optimizing the activity, yet the generated libraries do find general

trends, i.e. substructures that seem to work. It is likely that the libraries generated by

Pegg’s program are better than randomly designed libraries in binding to the target site.

However, since no experimental validation was performed, definitive conclusions on

the effectiveness of this method cannot be drawn.

 The SYNOPSIS program by Vinkers and coworkers (2003) can be considered a

synthesis of the good points of both Pegg and Schneider with some additional clever

ideas. The database constructed by the authors contains about 32000 molecules, which

can be transformed and combined using 70 different reactions. A chromosome

represents a sequence of molecules and reactions, which is transformed by the program

into the actual molecule. Mutations consist of adding reactions or changing reactants.

The fitness function is the docking score of the molecule binding to the enzyme HIV-

reverse transcriptase.

 A good point of this program is that it automatically suggests a synthesis route for

the molecules. For 8 out of 28 molecules the synthesis route was followed and

succeeded, while for only 3 molecules the suggested route was tried and failed. In the

other cases a different method was taken or a compound differing from the original

suggestion was made. Therefore, depending on the definition of success, 29% to 64%

of syntheses succeeded.

 Similar to Pegg, finding good inhibitors proved to be more difficult. The docking

function was extremely slow (1 processor-hour per compound) which probably only

allowed small populations and a low number of generations, although the article gives

no numbers on these. Also the docking function was quite inaccurate. For all suggested

ligands a high binding strength was calculated, but a low binding strength was found in

experiments. Similar to Schneider’s approach, the evolutionary algorithm acts not so

much as an optimizer of biological activity, more as an idea generator of molecules that

58

are on average much more active than one would get from a random library screening.

In that respect SYNOPSIS is a success.

Conclusion

A wide variety of evolutionary algorithms has been applied to de novo design. Their

applications and results highlight both their successes and their current shortcomings.

 The two main challenges, i.e. representation of the molecular structure and the

fitness function, have been addressed by the authors with varying success. The many

applications of evolutionary algorithms in “simplified” chemical domains make it clear

that representing the molecule remains difficult, and that mutation and crossover are

not straightforward to implement. However, the work of Glen and Payne (1995) has

clearly shown that evolutionary algorithms can be applied very well by using the

molecule as its own representation. Implementing mutations and crossover will remain

amenable to tweaking and discussion, but basically this problem has been solved.

 There are currently two major elements in automated de novo design to focus on.

The first is that the molecules suggested are not always easily synthesized. The

fragment-based approach by Vinkers et al. (2003) to use available molecules and

known reactions is promising. However, it also calls attention to the fact that due to

problems in reaction prediction only few of the thousands of available chemical

reactions can be used by the program. And even those few “robust reactions” fail quite

often. Additionally, limiting the reactions and the building blocks will undoubtedly

confine the parts of chemical space that can be explored by a ‘fragment and reaction’-

based algorithm. Also the fragment-reaction like structure of the chromosomes makes

mutation awkward: fine-tuning a molecular structure that is almost right is extremely

complicated and therefore not very likely to happen. On the other hand, atom-based

mutations like those of Glen and Douguet allow more refined exploration of the

chemical space and relatively easy fine-tuning of the molecular structures. Yet they

have the disadvantage that synthetic feasibility of the resulting molecules is doubtful.

Perhaps the ideal algorithm will use a combination of these two approaches.

 For the second weak point of current de novo drug design algorithms, i.e. the

fitness function, good solutions seem even harder to find. Docking, which in principle

yields the best affinities for a broad diversity of molecules, is extremely slow and

moreover gives results that are too inaccurate for optimization. This suggests, as in

section 6, that the most important contributions to this area by evolutionary algorithms

would be in deriving proper binding functions from quantum mechanical and

experimental data. Additionally, there is the problem that many important proteins are

59

membrane-bound, and that their crystal structures are therefore extremely difficult to

determine. This means that docking is currently not applicable to a large portion of

interesting drug targets. Experimental fitness determinations are for now the only

alternative, yet it may well be that a evolutionary algorithm used interactively by

medicinal chemists would need fewer syntheses to achieve optimization than the

traditional methods.

 In conclusion, while the quality and applicability of the discussed evolutionary

algorithms for de novo design varies, they do show promise. Even at this moment the

applied evolutionary algorithms with their crude fitness functions give inspiration for

unconventional analogs of known ligands, which opens up alleys otherwise closed off

by patents or unfavourable physiological properties of the original ligands. As fitness

functions become faster and more accurate, the future of evolutionary algorithms in de

novo design looks very bright indeed.

8. Other applications of evolutionary algorithms in drug
design

The scope of application of evolutionary algorithms in drug design is wide. Whereas in

the previous sections the more prominent uses were discussed, this section will focus

on some less mainstream work. The publications discussed here may give an

impression of other areas that have been tentatively trodden, a brief glimpse of areas

that may become more important in the near future, and inspiration for application of

evolutionary algorithms to other problems related to drug design.

If a large database of molecules has to be screened for biological activity, most drug

developers would prefer to test only the most promising compounds. If these have the

much sought after but ill-defined “drug-likeness” property, they will have a larger

chance of being a good drug. While one could argue about the merits of selecting for

drug-likeness versus selecting for lead-likeness (see section 2), the search for drug-

likeness criteria has inspired some interesting research, amongst others that of Gillet et

al. (1998). Gillet et al. attempted to estimate drug-likeness by taking two databases of

molecules, the World Drug Index, which contains about 30,000 drug molecules, and

the SPRESI database, which contains 1.7 million molecules, in vast majority nondrugs.

Of each molecule in the databases, six simple properties were calculated, such as the

number of rotatable bonds and the number of hydrogen bond donors. The value range

60

for each property was divided into 20 bins. Using statistics on a subset of 1000 WDI-

molecules and about 17,000 SPRESI-molecules, for each bin the chance was

determined that a molecule having its property within the value range of the bin was a

drug molecule. The total database was then sorted to see if the drug molecules indeed

ranked higher.

 It turned out that this method gave some information on drug-likeness. For

example, ranking the molecules by only taking into account the number of hydrogen

donors resulted in finding 4.6-fold times as many drugs in the top 1000 molecules as

would be expected by chance. However, combining descriptors worsened this

enhancement, probably because the descriptors were not truly independent.

 Subsequently, experiments were performed to see if setting the bin weights by

using a genetic algorithm instead of statistics would improve the score. The genetic

algorithm used vectors of length 6x20=120 as chromosomes. Mutation changed the

value of one bin to a new permitted value, crossover could be one-point, two-point or

uniform. Two fitness measures were compared: the number of drug molecules in the

top 1000 and the average rank of drug molecules in the drug-likeness list. The average

rank resulted in much better scoring over the entire population. The enhancement

factor here was 3.0; so to find 50% of all drug molecules only the top 17% of all

compounds had to be considered. Subsequently, experiments were performed to

distinguish specific classes of drugs from inactive molecules, either by using the

generic binning weights or weights specifically optimized by comparing the particular

drug class with SPRESI. The discriminative power of the method depended heavily on

the therapeutic class. For example, retrieval of anticancer compounds was enhanced

4.9-fold with the generic binning method and 6.8-fold with specific training, while for

psychiatric drugs enrichment was only 1.3-fold with the generic method and 2.0 after

training. The authors suggest that these differences may be due to the fact that there are

relatively few psychotropics and that the class is structurally quite diverse.

 The results of this investigation can certainly be considered interesting. Drugs can

be somewhat discriminated from non-drugs, even by a simple method such as this one,

and the structure of the chromosomes might yield interesting insights on what makes a

compound drug-like. However, some problems are not addressed by the authors. The

SPRESI-database is not 17, but 54 times as large as the WDI. This means that even

with a factor 3 enhancement, only one in twenty of tested molecules in the first third is

a drug, which is not a very good score. Additionally, the binning weights are trained on

structures that already occur in drugs, so compounds which work via diverse

mechanisms like the psychotropics are not readily found. Therefore using this method

61

to prioritize the lead screening for a novel receptor would probably not be very

advantageous.

 In addition to the question of whether a compound has biological activity, another

important question is which kind of biological activity it possesses. Xue and Bajorath

(2000) used a descriptor based classification method. By placing the compounds into

descriptor space, one should be able to discover clusters of compounds with the same

biological activity and discover which part of descriptor space corresponds to a specific

biological activity. Since the authors could use over 100 different descriptors, they

aimed at simplifying descriptor space by using principal components. Dividing the

principal component space into square boxes, compounds were grouped per box. If the

compounds in one box had the same biological activity, the set of compounds in the

box was called a pure class. If the box contained compounds of several biological

activities, it was counted as a mixed class. Finally, if there was only one compound, the

box was said to represent a singleton class.

 The genetic algorithm was designed to solve three optimization problems

simultaneously: 1) which descriptors should be used, 2) how many principal

components should be used, and 3) into how many bins should every principal

component be divided. The chromosome was a vector of 141 bits, 111 bits representing

the use/non-use of particular descriptors, 15 bits to encode the number of principal

components used, and 15 further bits to encode the number of boxes into which each

principal component axis is divided. The fitness function increased with the number of

pure classes and decreased with the number of mixed classes and singletons. This

particular fitness measure might have been somewhat disadvantageous, since one

ideally would want to reward a minimum of classes. It seems more desirable to have 7

pure classes than 700.

 The best result had 4 principal components with 5 bins each and found 60 pure

classes, 27 singletons and 2 mixed classes. The classification method therefore worked,

though comparison with other classification methods and assessing quality via a

separate validation set would have been valuable additions to this work.

Whereas ‘drug-likeness’ is a somewhat nebulous concept, there are also more sharply

defined properties that are important for candidate drugs. One of these is water-

solubility: if a compound does not dissolve in water, it cannot be transported by the

blood to its desired site of action.

 Wegner and Zell (2003) derived a quantitative structure-property relationship to

predict water solubility of a molecule from its structure. The authors calculated 230

62

descriptors from these structures. Since there were 1016 molecules in the training set,

using all descriptors would probably have led to overfitting. Therefore, the authors

wanted to reduce the number of descriptors. Principal component analysis was

regarded to yield non-intuitive results, so a genetic algorithm was created. The initial

population of this genetic algorithm was seeded with maximally diverse individuals as

selected by Shannon entropy measures and clique detection algorithms. The genetic

algorithm for descriptor selection was very similar to the ones used in QSAR (see

section 5): the chromosome was a vector of bits, each bit indicating the presence of a

descriptor. The chromosomes could undergo one- and two-point crossover and bit-flip

mutation. A neural network was trained using the descriptors that were indicated by the

chromosomes, and the fitness of each chromosome was r2 for the test set. The final best

model had a validation set r2 value of 0.82, which was comparable to the results of

other neural networks trained on similar data sets that gave r2 values between 0.79 and

0.91 for their validation sets.

A third factor to consider when designing drugs is metabolism, the breakdown of drugs

by the body. Some of these breakdown products are toxic. For example, the drug

paracetamol itself is harmless, but when taken in huge quantities it is partially

transformed into a toxic product that causes liver damage. Drug designers therefore

want to know the possible breakdown products of a compound, preferably before

synthesis. Rules exist to predict metabolism, and computerized rule bases, like META

(Klopman et al., 1997) can be applied to automatically predict probable metabolites.

However, a molecule can often be broken down in many different ways, and it is not

clear which of those ways are preferred by the body. Assigning priorities to the diverse

transforms is traditionally done by experts. Klopman et al. however investigated

whether a genetic algorithm could do this automatically. This would be advantageous

since it would eliminate the need to manually recalibrate all weights after adding new

data.

 The chromosomes contained the priorities of all reactions, coded as a vector of

binary numbers. Crossover was one-point and only took place between the genes, and

mutation was performed by flipping bits. Fitness was defined as the number of correct

predictions minus the number of incorrect predictions, the false positives and false

negatives. Bolzmann tournament selection outperformed normal tournament selection

and roulette wheel selection, and was therefore chosen as selection method.

 For both training and validation sets, the genetic algorithm found a better solution

than the experts (table 2.1). Clearly, genetic algorithms can combine large amounts of

63

data reliably into a rule-base, an exciting prospect.

Table 2.1: Comparison of the results of the genetic algorithm-set priorities

versus the expert-set priorities.

 Test set Validation set

True

Positive

False

Negative

False

Positive

True

Positive

False

Negative

False

Positive

Expert 103 45 28 66 9 56

GA 134 14 18 75 0 21

Biological activity of a compound can be predicted by computationally docking the

molecule into the receptor. Often, however, the receptor structure is unknown. The

common alternative is churning out high numbers of descriptors and using neural

networks or multiple linear regression to find quantitative structure-activity

relationships. However, this method does not use any of the knowledge available on

receptors and their properties. A different possibility is making a model of the active

site based on the ligand data. Walters and Hinds (1994) used this approach. Their

computer program GERM (Genetically Evolved Receptor Models) uses a superposition

of ligands, around which a collection of atoms, typically 50 to 60, is placed. These

atoms represent the protein atoms of the active site. The interaction energy between the

proposed active site and the ligands is calculated with a force field. The chromosome is

the list of the atom types of the atoms in the reconstructed active site. One-point

crossover and a mutation that randomly changes an atom type into a random other

atom type were implemented. Crossover was the most important operator but allowing

some mutation was found to improve the convergence.

 When populations of 500-2000 chromosomes were allowed to evolve over up to

10000 generations, models with r2 values of 0.90-0.99 were found. The average error

for the compounds of the training set was 0.06, but for those in the validation set it was

0.40. This clearly points to overfitting. However, scrambling the bioactivity values

indicates that there is also some real relationship behind the numbers: the mean r2

value of the scrambled sets was only 0.34.

 GERM has some drawbacks, however. First of all, the ligands of a receptor must

be superimposed, and as has been discussed in section 4, there is no unambiguous

64

method to do that. Overfitting is quite understandable in this system: after all, there are

50 to 60 different atoms involved for explaining the bioactivity of about 10 compounds.

Interestingly, the atoms at some positions had identical types in all of the fittest

individuals, at other positions there was much more variation. This would suggest

some biological rationale behind the model, and it would certainly be interesting to

make runs on superpositions of known ligands docked into the binding sites to see

whether the conserved residues in the proposed active site correspond to the important

groups in the real active site.

 Some other programs used a methodology very similar to that of GERM. An

example is PARM (Pseudo Atomic Receptor Model) by Chen et al. (1998). The main

difference with GERM is that heuristics were used to initialize the chromosomes.

When an atom type had to be assigned to a certain grid point, the heuristics increased

the chance of choosing a negatively charged atom type if the ligand atoms near the grid

point were positively charged, and vice versa.. Two training sets, 21 and 12 compounds,

were used with validation sets whose sizes were about half as large. Crossvalidated r2

values of 0.83-0.93 were reached. The compounds of the validation set were predicted

with an average absolute error of 0.52; CoMFA analysis (section 5) yielded 0.61. This

suggests that PARM can be somewhat better than conventional methods.

 Vedani et al. (1998a,b) created another pseudoreceptor modeling method. The

main deviations from Walters’ method were the different and smaller set of pseudo-

receptor atoms and incorporation of receptor flexibility. The latter means that the

position of each pseudoreceptor atom is adapted for optimal interaction with each

individual ligand. Therefore, if there are n small molecules in the training set, there are

also n conformations of the pseudoreceptor. The authors considered this to be

necessary to allow for changes in receptor conformation upon binding, especially

regarding the direction of hydrogen bonds. However, movement of the pseudoreceptor

atoms from their average position is penalized by decreasing the calculated binding

energy.

 Six different series of ligands were used, varying from compounds binding to the

cannabinoid receptor to the �2-adrenergic receptor and the sweet-taste receptor. Each

series of ligands was split into a training set and a test set. The values of r2 were

smaller than those of Walters and Hinds (1994), ranging from 0.55 to 0.96. Root mean

square errors of the training set were approximately 0.4, and for the test set 0.7.

 The cause of the difference with Walters’ research may be due to the reduced

number of atom types available, the different force fields, the different test sets, other

superpositions of the ligand, or receptor flexibility. These multiple changes make direct

65

comparison between the models difficult. It is therefore unclear whether the

pseudoreceptor models of the future will follow either of the two methods or will make

use of new methodology, inspired by advances in superposition procedures and

improvements in the entropy corrections and force fields of docking.

A final interesting application is the use of evolutionary algorithms to help create a

good energy function for docking. Deng et al. (2004) used two sets of crystal structures

of sizes 61 and 105 (of which external validation sets of size 10 resp. 6 were taken),

and correlated the experimental binding energies with the presence of specific atom

pairs. Since the authors distinguished 17 atom types and 5 relevant distance bins (1 Å

wide between 1 and 6 Å) there were 5×17×17=1445 potentially relevant descriptors. In

a first stage non-changing descriptors, highly correlated descriptors and 4-sigma

outliers were removed deterministically, subsequently a genetic algorithm was used to

select the best subset of descriptors. By reducing the number of descriptors used in the

105 compound data set from 456 to 20, the PLS-regression r2 of the test set was

increased from 0.43 to 0.60, and the r2 of the prediction of the external test set even

reached 0.64.

 These results of Deng et al. can be compared to those of Morris et al. (1998), who

developed a more traditional empirical free binding energy function using

physicochemical knowledge, traditional force fields, and linear regression without

feature selection. Since Morris et al. reached r2 values of about 0.95 versus Deng’s

0.64, it is clear that Deng’s knowledge-based approach could profit from the physical

and chemical knowledge that has been collected by experimental scientists.

Incorporation of free energy loss due to loss of flexibility upon binding and the

influence of direction upon the binding strength of hydrogen bonds would be obvious

candidates to test for usefulness. Nevertheless, the increasing availability of crystal

structures will make “knowledge-based” approaches more and more attractive to help

refine the standard force field approaches.

Conclusion

The discussed publications make clear that there are probably many alternative areas in

drug design in which evolutionary algorithms can be applied. Discovery of new,

promising applications will most likely depend on the steady spread of knowledge and

usage of evolutionary algorithms in the community of drug designers. Doubtlessly

there are still many problems in drug design that can be at least partially solved with

evolutionary algorithms, and many interesting applications may yet follow.

66

9. Conclusion: Evolutionary algorithms in drug design.
Considering past, present and future.

Evolutionary algorithms have been applied in the field of drug design for over 10 years.

In this review we have discussed their role in helping solve some of the problems of

this field. Let us summarize and consider the findings so far.

 The most important observation is that evolutionary algorithms are useful for drug

design. This is, of course, necessarily a biased view since few authors would publish

methods that do not work for their particular problem. However, the wide range of

applications in which evolutionary algorithms found optimal or satisfactory solutions

suggest that evolutionary algorithms are quite suitable for application to a wide range

of problems in drug design, varying from conformational analysis to finding

quantitative structure-activity relationships and performing de novo design.

 This success has led to many applications of evolutionary algorithms, several of

which have been incorporated into commercial packages. Some of the examples

mentioned in this review are GFA (Genetic Function Approximation) which is now

part of the molecular modeling package Cerius2, and the commercialized docking

program GOLD. However, there is also other software that uses evolutionary

algorithms, like the computer program Spartan that has procedures for evolutionary

structure optimization. Doubtlessly there are several other software packages for drug

design on the market in which evolutionary algorithms are a major or minor component.

One could say that evolutionary algorithms have proven their worth and either already

possess or at least approach the status of one of the standard optimization methods in

drug design.

 While over time evolutionary algorithms have been applied to more and more

areas of drug design, one could also ask whether their performance in the diverse areas

has also improved.

 Looking at the different areas of application it is not clear whether the more recent

implementations of evolutionary algorithms are more effective or efficient than the

older versions. If any trends can be discerned, it is towards more complex evolutionary

algorithms. Unfortunately it cannot be concluded with confidence that this increased

complexity leads to improved performance due to the dissimilarity in test data sets,

fitness functions and quality criteria used by the different authors.

 The progress in the different fields can be summarized as follows:

-library design: Multiobjective fitness functions have been introduced. Calculations are

getting more intricate and biologically relevant (2D/3D). Objective weighing of the

67

conflicting objectives, especially diversity and focusing, remains problematical.

-conformational analysis: The evolutionary algorithms have largely been superseded

by the directed tweak algorithm, which is more specialized and seems somewhat more

efficient than the current evolutionary algorithms.

-quantitative structure-activity relationships: The evolutionary algorithms seem to

have grown more complex over the years. While some innovations have been

introduced, notably the use of more complex functions of the descriptors, the novelty

of most newer publications that involve evolutionary algorithms lies mainly in novel

types of descriptors or the addition of other descriptor selection methods, not in the

evolutionary algorithms themselves.

-docking: The evolutionary algorithms in this field have grown more elaborate and

complex, however due to the absence of good test sets it is not clear whether this

increased complexity has led to true progress. Experiments have indicated that

Lamarckian evolutionary algorithms and island models are useful.

-de novo design: Evolutionary algorithms for structure manipulation have not seen

significant advances since the work of Glen and Payne in 1995, however the fitness

functions have improved from manually weighted parameters to docking. Also, the

concept of “ease of synthesis” has been introduced, which is very important to ensure

that the designed molecules can also be created in the laboratory.

Overviewing the past few years of application of evolutionary algorithms in drug

discovery, one can conclude that a wide variety of chromosome representations, fitness

functions and mutation operators have been developed for the different problems. The

basic principles of evolutionary algorithms, however, still remain at the core of all

these variants, and have proven themselves to be quite a robust and easily applied base

of design for a range of optimization problems in this field. As the articles reviewed in

this paper demonstrate, there are obviously a number of cases where evolutionary

algorithms do not offer clear benefits over other methods such as Monte Carlo search,

simulated annealing or deterministic optimization methods. There are also some cases

where evolutionary algorithms achieve clearly satisfactory results and improvements

over results that have been available so far. Obviously, a clear general conclusion

cannot be drawn at this point, as there are no elaborate systematic comparisons of the

different search methods available yet on the subareas of drug design covered in this

paper.

 It is interesting to note that almost all of the applications of evolutionary

algorithms in drug design today use rather basic genetic algorithms, and thus fail to use

68

self-adaptation capabilities. These are usually associated with evolution strategies and

evolutionary programming (see e.g. (Bäck, 1996) for an in-depth discussion of this

topic) but can also be used in genetic algorithms. Other developments in the field of

evolutionary algorithms, such as estimation of distribution algorithms (used in

bioinformatics by Saeys et al. (2004)) also have so far found no or only extremely

sparse application in drug design. It would clearly be an interesting issue for future

research to check whether these algorithmic techniques can deliver more convincing

improvements over classical methods. While the success of novel techniques for

optimization would clearly depend on the particular problem studied, the computer

programs discussed in this review generally use quite basic algorithms, so chances are

good that adding advanced techniques can improve their performance.

 While optimization remains important, the current bottleneck in computational

methods for drug design seems to be the fitness function, since this is often still either

somewhat arbitrary, like manually weighing different measures of molecular similarity,

useless, like rediscovering a known molecule, or inaccurate and too slow for extensive

optimization, like docking. The biggest problem in current drug design seems to be

calculating/predicting the relevant properties of a molecule, not finding more efficient

optimization algorithms.

 Where does that leave evolutionary algorithms? Should computer scientists be

content by having added evolutionary algorithms to the standard toolbox of medicinal

chemistry and move on, or is it still possible to do innovative and useful research in

this area?

 One reason to continue applying evolutionary algorithms to medicinal chemistry is

that the collaboration between computer scientists and medicinal chemists itself can be

fruitful. Medicinal chemists can profit from the knowledge of optimization methods

and the experience in validation methods that computer scientists possess. Computer

scientists may learn from the ideas and paradigms of medicinal chemists, which have

resulted in diverse and ingenious forms of chromosomes and variation methods. These

inventions could themselves be interesting concepts to be studied, improved, and

possibly used for other problems by the computer scientists.

 However, there are also reasons to believe that continued application and

development of evolutionary algorithms could also be useful for the development of

new and better computational methods for drug designers.

 First, prediction methods in drug design are improving each year, therefore better

fitness functions will become available. When they do, the existing evolutionary

algorithms can be reapplied with greater success than before.

69

Second, there is the possibility of finding new application domains. Some of these

might be known problems in medicinal chemistry or drug development that have not

been tackled yet with evolutionary algorithms. Others would be the newly emerging

fields, for example the genomic, proteomic and transcriptomic data which are

becoming available and have to be processed, combined and modeled. Evolutionary

algorithms may be useful in this process in some capacity. Though the generic nature

of evolutionary algorithms makes them vulnerable to later replacement by hybrid

algorithms or specialized optimization algorithms, like directed tweak, the simplicity

and wide effectiveness of evolutionary algorithms makes them very suitable for

pioneering new areas. If optimization yields clear benefits yet takes unacceptable

amounts of computer power, the evolutionary algorithms may be replaced by more

specialized methods.

 Finally, the evolutionary algorithms that are currently used for drug design can be

improved. Though the fitness functions are more important and time-critical,

evolutionary algorithms that display more efficient convergence while searching as

much of the search space would be very valuable. If an evolutionary algorithm needs

fewer fitness evaluations for a good optimization, one can process and suggest more

molecules in the same amount of computer time. Even with an inaccurate fitness

function this collection will still give more “hits” than randomly screening, which

would be very valuable to drug developers.

 Yet how to achieve such progress? The key to this would lie in closer

collaboration between medicinal chemists and computer scientists. Procedures that

have become quite common in computer science, like having standard test sets on

which an algorithm should work, should be used much more extensively in medicinal

chemistry to help compare different methods and improvements in a method more

objectively. The size and diversity of these sets should be sufficient to draw reliable

and statistically significant conclusions when comparing different methods, the one to

three test cases which have been used in some articles probably do not adequately

reflect the diversity of cases in a particular domain. Publicly available reference fitness

functions would also be necessary to compare different algorithms in a fair way.

The main contribution of medicinal chemists in this process would be the development

and testing of heuristics. There are no shapeless, featureless problems in drug design;

each problem has its own inherent, natural constraints. A generic evolutionary

algorithm that is applicable in all cases and fails to take the information provided by

the specific problem into account can be improved by including heuristics which make

70

it less generally applicable, but more powerful for that specific application. Developing

these heuristics and testing them critically would represent an advance in quality,

which would be more reliable and systematic than the current independent tweaks of

poorly compared algorithms which rarely take the biochemical nature of the problem

space into account. As far as we understand the systems, we can develop heuristics.

And as for the parts of the system we do not understand, we can observe, make

hypotheses, test methods and learn from their results. This would result in speciation to

optimally fill the diverse niches in drug design, and represent a true evolution of

evolutionary algorithms in this field.

 Looking over the past and current research, the challenges to create computational

methods to predict reliably the biological properties of molecules are great indeed, and

will take much time and intellectual effort to resolve. The current problems in

developing new drugs indicate that the drug design process as well as the drugs

themselves can only remain affordable if we can find ways to intelligently combine the

growing available biological information with the possibilities of quickly and

effectively searching the huge collection of drug-like molecules. This is a major

challenge, but one in which evolving evolutionary algorithms can play an important

role.

Glossary

ACTIVE SITE: the part of a protein which binds the messenger molecules or catalyzes the

biochemical reactions.

CHROMOSOME: named after the strings of DNA which contain the genetic information of

biological organisms, chromosomes in evolutionary algorithms are the data structures which

contain the genetic information/genotype of one individual candidate solution. Often,

especially in genetic algorithms, a chromosome is a vector of bits or numbers.

CROSSOVER: another name for the recombine-function of evolutionary algorithms.

HYDROGEN ACCEPTOR: oxygen or nitrogen atom in a molecule with a free electron pair

that can bind to a hydrogen atom of a hydrogen donor.

HYDROGEN BOND: the attractive force between a hydrogen acceptor and the hydrogen

atom of a hydrogen donor. Is generally the predominant binding force between a ligand and

its receptor.

HYDROGEN DONOR: oxygen or nitrogen atom in a molecule that is bonded to a hydrogen

atom. This hydrogen atom can bind to a free electron pair of a hydrogen acceptor.

71

LAMARCKIAN EVOLUTION: an individual’s phenotype is optimized by a local search. The

information of the phenotype is subsequently written back to the genotype, which then

undergoes normal mutation/crossover.

LEAD (COMPOUND): a compound that seems to have a desirable biological activity and

may be developed further into a drug.

LIGAND: a molecule that binds to a large biological molecule (usually a protein).

MOLECULE: a collection of atoms which are connected by bonds. On a simple level a

molecule can thus be considered to be a graph in which the nodes are the atoms and the

edges are the bonds. The specific physical and chemical restrictions on this graph are that

each atom type has a maximum number of bonds, generally ranging from 1 to 4, and that

the length of the bonds, the preferences for certain bond angles and finally the interplay of

the attraction and repulsion between the atoms cause each molecule to assume a distinctive

range of three-dimensional structures, called conformations.

POLING: optimization method developed by Smellie et al. (1995) that ensures diversity of

the individuals in the population by modifying the fitness function in such a way that similarity

to other individuals is penalized.

q2: a measure of statistical significance. It is determined by leaving a subset of the data

(often of size one) out of the training set, training a model with the remainder of the training

set, and predicting the dependent variable of the subset. This is done for all items in the

training set, the r2 value of the resulting predictions is called the q2. It is considered to be

less sensitive to overfitting than r2 and therefore a better measurement of the quality of a

statistical model.

r2: a measure of the statistical significance of a model. Its values are between 0 (no linear

correlation between the independent and dependent variables) and 1 (a perfecty linear

correlation between the independent and dependent variables). It can be calculated by

comparing the values that a model gives (��) to the observed values (��) by the following

formula: ��� 	
 � �
�� � ���
�

� � �
�� � ���
�

� , where �� is the means of the observed values.

REAGENT: a molecule that is used in a process in which it will react with another molecule,

forming one or more new molecules, is called a reagent (derived from Latin: “something that

must react”).

72

ROULETTE WHEEL SELECTION: A method to select good individuals with higher

probability than bad individuals as parents of the next generation. All members of the

population are assigned a segment on a wheel, usually in proportion to their relative fitness.

Subsequently random points on the wheel are selected and the corresponding population

members become the parents of the next generation (Parrill, 2000).

SPECIATION: A large part of the population of individuals is very homogeneous: although

there are officially many solutions, it is in reality just one solution with small variations.

Usually one wants to prevent this and develop several solutions which differ significantly.

SPLINE FUNCTION: commonly written as f(x)=<a-x>. This function returns 0 if x is greater

than a, and a-x if x is smaller than or equal to a.

TARGET (RECEPTOR): the biological macromolecule to which a drug or drug candidate

should bind.

TORSION ANGLE: Angle indicating how much one end of a single bond is rotated with

respect to the other end. For four bonded atoms A-B-C-D, the torsion angle of the bond B-C

is defined as the angle which the C-D bond makes with the plane in which A, B and C lie.

TOURNAMENT SELECTION: A method to select the parents for the next generation of the

evolution in an evolutionary algorithm. Tournament selection works by randomly picking a

certain number of individuals out of the population and letting the best of them become a

parent, repeating this process as often as is required (Parrill, 2000).

TRANSITION STATE: When a molecule is broken down by an enzyme, the enzyme first

twists it into a strained conformation to make the subsequent reaction(s) easier. This

strained state is called the transition state, since it is the phase a reacting molecule must go

through in order to form the product.

VIRTUAL LIBRARY: A database of molecule structures.

References

Agrafiotis DK (2002) Multiobjective optimization of combinatorial libraries. Journal of

Computer-Aided Molecular Design 16: 335-356.

Bäck T (1996) Evolutionary Algorithms in Theory and Practice, Oxford University Press,

NY.

73

Bäck T, Fogel DB and Michalewicz Z (2000) Handbook of Evolutionary Computation, Vol.

1 and 2. Institute of Physics Publishing, Bristol, UK.

Bravi G, Green DVS, Hann MM and Leach AR (2000) PLUMS: a Program for the Rapid

Optimization of Focused Libraries. Journal of Chemical Information and Computer

Sciences 40: 1441-1448.

Chen H, Zhou J and Xie G (1998) PARM: A Genetic Evolved Algorithm To Predict

Bioactivity. Journal of Chemical Information and Computer Sciences 38: 243-250.

Chen X, Rusinko A, Tropsha A and Young SS (1999) Automated Pharmacophore

Identification for Large Chemical Data Sets. Journal of Chemical Informatics and

Computer Sciences 39: 887-896.

Cho SJ and Hermsmeier MA (2002) Genetic Algorithm Guided Selection: Variable

Selection and Subset Selection. Journal of Chemical Information and Computer

Sciences 42: 927-936.

Clark DE, Jones G and Willett P (1994) Pharmacophoric Pattern Matching in Files of

Three-Dimensional Chemical Structures: Comparison of Comformational-Searching

Algorithms for Flexible Searching. Journal of Chemical Information and Computer

Sciences 34: 197-206.

Clarck DE (ed) (2000) Evolutionary Algorithms in Molecular Design. Wiley-VCH,

Weinheim.

David L, Luo R and Gilson MK (2001) Ligand-receptor docking with the Mining Minima

optimizer. Journal of Computer-Aided Molecular Design 15: 157-171.

Deb K (2001) Multi-objective optimization using evolutionary algorithms, Wiley, New

York.

Deng W, Breneman C and Embrechts MJ (2004) Predicting Protein-Ligand Binding

Affinities Using Novel Geometrical Descriptors and Machine-Learning Methods,

Journal of Chemical Information and Computer Sciences 44: 699-703.

DiMasi JA, Hansen RW and Grabowski HG (2003) The price of innovation: new estimates

of drug development costs. Journal of Health Economics 22: 151-185.

Douguet D, Thoreau E and Grassy G (2000) A genetic algorithm for the automated

generation of small organic molecules: Drug design using an evolutionary algorithm.

Journal of Computer-Aided Molecular Design 14: 449-466.

74

Fogel LJ, Owens A, and Walsh M (1966) Artificial Intelligence through Simulated

Evolution. Wiley, New York.

Fogel DB (1995): Evolutionary Computation – Toward a New Philosophy of Machine

Intelligence. Addison-Wesley, Reading, MA.

Geladi P and Kowalski BR (1986) Partial least squares regression: a tutorial. Analytica

Chimica Acta 185: 1-17.

Gillet VJ, Willett P and Bradshaw J (1998) Identification of Biological Activity Profiles

Using Substructural Analysis and Genetic Algorithms. Journal of Chemical

Information and Computer Sciences 38: 165-179.

Gillet VJ, Willett P, Bradshaw J and Green DVS (1999) Selecting Combinatorial Libraries

to Optimize Diversity and Physical Properties. Journal of Chemical Information and

Computer Sciences 39: 169-177.

Gillet VJ (2000) De Novo Molecular Design. In: Clark DE (ed) Evolutionary Algorithms in

Molecular Design, pp. 49-69. Wiley-VCH, Weinheim.

Gillet VJ, Khatib W, Willett P, Fleming PJ and Green DVS (2002) Combinatorial Library

Design Using a Multiobjective Genetic Algorithm. Journal of Chemical Information

and Computer Sciences 42: 375-385.

Glen RC and Payne AWR (1995) A genetic algorithm for the automated generation of

molecules within constraints. Journal of Computer-Aided Molecular Design 9: 181-

202.

Globus A, Lawton J and Wipke T (1999) Automated molecular design using evolutionary

techniques. Nanotechnology 10: 290-299.

Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison Wesley.

Goldberg DE (2002) The Design of Innovation: Lessons from and for Competent Genetic

Algorithms. Kluwer, Boston.

Handschuh S, Wagener M and Gasteiger J (1998) Superposition of Three-Dimensional

Chemical Structures Allowing for Conformational Flexibility by a Hybrid Method.

Journal of Chemical Informatics and Computer Sciences 38: 220-232.

Hann MM, Leach AR and Harper G (2001) Molecular Complexity and Its Impact on the

Probability of Finding Leads for Drug Discovery. Journal of Chemical Information

and Computer Sciences 41: 856-864.

75

Hart WE (1999) Comparing Evolutionary Programs and Evolutionary Pattern Search

Algorithms: A Drug Docking Application. In: Banzhaf W, Daida J, Eiben AE, Garzon

MH, Honavar V, Jakiela M and Smith RE (eds) Proceedings of the Genetic and

Evolutionary Computation Conference, Orlando, Florida, USA, July 13-17 1999.

Morgan Kaufmann, pp. 855-862.

Hart WE, Rosin C, Belew RK and Morris GM (2000) Improved Evolutionary Hybrids for

Flexible Ligand Docking in Autodock. In: Floudas CA and Pardalos PM (eds)

Optimization in Computational Chemistry and Molecular Biology, Pinceton, USA

May 7-9 1999. In: Nonconvex Optimization and its Applications (vol 40) Kluwer

Academic Publishers, Dordrecht, the Netherlands, pp 209-230.

Hasegawa K, Kimura T and Funatsu K (1999) GA Strategy for Variable Selection in QSAR

Studies: GA-Based Region Selection to a 3D-QSAR Study of Acetylcholinesterase

Inhibitors. Journal of Chemical Information and Computer Sciences 39: 112-120.

Hemmateenejad B, Akhond M, Miri R and Shamsipur M (2003) Genetic Algorithm

Applied to the Selection of Factors in Principal Component-Artificial Neural

Networks: Application to SAR Study of Calcium Channel Antagonist Activity of 1,4-

Dihydropyridines (Nifedipine Analogous). Journal of Chemical Information and

Computer Sciences 43: 1328-1334.

Holland JH (1975) Adaptation in Natural and Artificial Systems. The University of

Michigan Press, Ann Arbor.

Holliday JD and Willett P (1997) Using a genetic algorithm to identify common structural

features in sets of ligands. Journal of Molecule Graphics and Modelling 15: 221-232.

Jin AY, Leung FY and Weaver DF (1999) Three Variations of Genetic Algorithm for

Searching Biomolecular Conformation Space: Comparison of GAP 1.0, 2.0 and 3.0.

Journal of Computational Chemistry 20: 1329-1342.

Jones G, Willett P, Glen RC, Leach AR and Taylor R (1997) Development and Validation

of a Genetic Algorithm for Flexible Docking. Journal of Molecular Biology 267: 727-

748.

Kamphausen S, Höltge N, Wirsching F, Morys-Wortmann C, Riester D, Goetz R, Thürk M

and Schwienhorst A (2002) Genetic algorithm for the design of molecules with

desired properties. Journal of Computer-Aided Molecular Design 16: 551-567.

76

Kimura T, Hasegawa K and Funatsu K (1998) GA Strategy for Variable Selection in QSAR

Studies: GA-Based Region Selection for CoMFA Modeling. Journal of Chemical

Information and Computer Sciences 38: 276-282.

Klopman G, Tu M and Talafous J (1997) META. 3. A Genetic Algorithm for Metabolic

Transform Priorities Optimization. Journal of Chemical Information and Computer

Sciences 37: 329-334.

Koza JR (1992) Genetic Programming: On the Programming of Computers by Natural

Selection. MIT Press, Cambridge, MA.

Koza JR, Keane MA, Streeter MJ, Mydlowac W, Yu J and Lanza G (2003) Genetic

Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer, Boston.

Lipinski CA, Lombardo F, Dominy BW and Feeney PJ (1997) Experimental and

computational approaches to estimate solubility and permeability in drug discovery

and development settings. Advanced Drug Delivery Reviews 23: 3-25.

Liu DX, Jiang HL, Chen KX and Ji RY (1998) A New Approach to Design Virtual

Combinatorial Library with Genetic Algorithm Based on 3D Grid Property. Journal of

Chemical Information and Computer Sciences 38: 233-242.

Lu�i� B, Nadramija D, Bašic I and Trinajsti� N (2003) Toward Generating Simpler QSAR

Models: Nonlinear Multivariate Regression versus Several Neural Network

Ensembles and Some Related Methods. Journal of Chemical Information and

Computer Sciences 43: 1094-1102.

Mekenyan O, Dimitrov D, Nikolova N and Karabunarliev S (1999) Conformational

Coverage by a Genetic Algorithm. Journal of Chemical Information and Computer

Sciences 39: 997-1016.

Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK and Olson AJ (1998)

Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical

Binding Free Energy Function. Journal of Computational Chemistry 19: 1639-1662.

Nachbar RB (1998) Molecular Evolution: A Hierarchical Representation for Chemical

Topology and Its Automated Manipulation. In: Koza JR, Banzhaf W, Chellapilla K,

Deb K, Dorigo M, Fogel DB, Garzon MH, Goldberg DE., Iba H, and Riolo RL (eds)

Genetic Programming 1998: Proceedings of the Third Annual Conference, University

of Wisconsin, Madison, Wisconsin. 22-25 July 1998, San Francisco, CA: Morgan

Kaufmann, pp. 246-253.

77

Nachbar RB (2000) Molecular Evolution: Automated Manipulation of Hierarchical

Chemical Topology and Its Application to Average Molecular Structures. Genetic

Programming and Evolvable Machines 1: 57-94.

Nair N and Goodman JM (1998) Genetic Algorithms in Conformational Analysis. Journal

of Chemical Information and Computer Sciences 38: 317-320.

Parascondola J (1980) Early efforts to relate structure and activity. Trends in

Pharmacological Sciences 1: 417-419.

Parrill AL (2000) Introduction to Evolutionary Algorithms. In: Clark DE (ed) Evolutionary

Algorithms in Molecular Design, pp. 49-69. Wiley-VCH, Weinheim.

Patel S, Stott IP, Bhakoo M and Elliott P (1998) Patenting computer-designed peptides.

Journal of Computer-Aided Molecular Design 12: 543-556.

Payne AWR and Glen RC (1993) Molecule recognition using a binary genetic search

algorithm. Journal of Molecule Graphics 11: 74-91.

Pegg SC-H, Haresco JJ and Kuntz ID (2001) A genetic algorithm for structure-based de

novo design. Journal of Computer-Aided Molecular Design 15: 911-933.

Pritchard JF, Jurima-Romet M, Reimer MLJ, Mortimer E, Rolfe B and Cayen MN (2003)

Making better drugs: decision gates in non-clinical drug development. Nature

Reviews Drug Discovery 2: 542-553.

Rechenberg I (1973) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien

der biologischen Evolution. Frommann-Holzboog, Stuttgart.

Rechenberg I (1994) Evolutionsstrategie ´94. Frommann-Holzboog, Stuttgart.

Rees P (2003) Big pharma learns how to love IT. Scientific Computing World : 16-18.

Rogers D and Hopfinger AJ (1994) Application of Genetic Function Approximation to

Quantitative Structure-Activity Relationships and Quantitative Structure-Property

Relationships. Journal of Chemical Information and Computer Sciences 34: 854-866.

Saeys Y, Degroeve S, Aeyels D, Rouzé P and Van de Peer Y (2004) Feature selection for

splice site prediction: A new method using EDA-based feature ranking. BMC

Bioinformatics 5: 64.

78

Schneider G, Schrödl W, Wallukat G, Müller J, Nissen E, Rönspeck W, Wrede P and

Kunze R (1998) Peptide design by artificial neural networks and computer-based

evolutionary search. Proceedings of the National Academy of Sciences of the United

States of America 95: 12179-12184.

Schneider G, Lee M-L, Stahl M and Schneider P (2000a) De novo design of molecular

architectures by evolutionary assemly of drug-derived building blocks. Journal of

Computer-Aided Molecular Design 14: 487-494.

Schneider G, Clément-Chomienne O, Hilfiger L, Schneider P, Kirsch S, Böhm H-J and

Neidhart W (2000b) Virtual Screening for Bioactive Molecules by Evolutionary De

Novo Design. Angewandte Chemie International Edition 39: 4130-4133.

Schwefel H-P (1977) Numerische Optimierung von Computer-Modellen mittels der

Evolutionsstrategie, volume 26 of Interdisciplinary Systems Research. Birkhäuser,

Basel.

Schwefel H-P (1995) Evolution and Optimum Seeking. Wiley, New York.

Selwood DL, Livingstone DJ, Comley JCW, O’Dowd AB, Hudson AT, Jackson P, Jandu

KS, Rose VS and Stables JN (1990) Structure-Activity relationships of Antifilarial

Antimycin Analogues: A Multivariate Pattern Recognition Study. Journal of

Medicinal Chemistry 33: 136-142.

Sheridan RP, SanFeliciano SG and Kearsley SK (2000) Designing targeted libraries with

genetic algorithms. Journal of Molecular Graphics and Modelling 18: 320-334.

Shi LM, Fan Y, Myers TG, O’Connor PM, Paull KD, Friend SH and Weinstein JN (1998)

Mining the NCI Anticancer Drug Discovery Databases: Genetic Function

Approximation for the QSAR Study of Anticancer Ellipticine Analogues. Journal of

Chemical Information and Computer Sciences 38: 189-199.

Smellie A, Teig SL and Towbin P (1995) Poling: Promoting Conformational Variation.

Journal of Computational Chemistry 16: 171-187.

So S-S and Karplus M (1996) Evolutionary Optimization in Quantitative Structure-Activity

Relationship: an Application of Genetic Neural Networks. Journal of Medicinal

Chemistry 39: 1521-1530.

So S-S (2000) Quantitative Structure-Activity Relationships. In: Clark DE (ed)

Evolutionary Algorithms in Molecular Design, pp. 71-97, John Wiley and Sons, New

York.

79

Taylor RD, Jewsbury PJ and Essex JW (2002) A review of protein-small molecule docking

methods. Journal of Computer-Aided Molecular Design 16: 151-166.

Thomsen R (2003) Flexible ligand docking using evolutionary algorithms: investigating the

effects of variation operators and local search hybrids. Biosystems 71: 57-73.

Thormann M and Pons M (2001) Massive Docking of Flexible Ligands Using

Environmental Niches in Parallelized Genetic Algorithms. Journal of Computational

Chemistry 22: 1971-1982.

Ting A, McGuire R, Johnson AP and Green S (2000) Expert System Assisted

Pharmacophore Identification. Journal of Chemical Informatics and Computer

Sciences 40: 347-353.

Tufféry P, Etchebest C, Hazout S and Lavery R (1993) A Critical Comparison of Search

Algorithms Applied to the Optimization of Protein Side-Chain Conformations. Journal

of Computational Chemistry 14: 790-798.

Vedani A, Dobler M and Zbinden P (1998a) Quasi-Atomistic Receptor Surface Models: A

Bridge between 3-D QSAR and Receptor Modeling. Journal of the American

Chemical Society 120: 4471-4477.

Vedani A and Zbinden P (1998b) Quasi-atomistic receptor modeling A bridge between 3D

QSAR and receptor fitting. Pharmaceutica Acta Helvetiae 73: 11-18.

Vieth M, Hirst JD, Dominy BN, Daigler H and Brooks CL (1998) Assessing Search

Strategies for Flexible Docking. Journal of Computational Chemistry 19: 1623-1631.

Vinkers MH, De Jonge MR, Daeyaert FFD, Heeres J, Koymans LMH, Van Lenthe JH,

Lewi PJ, Timmerman H, Van Aken K, and Janssen PAJ (2003) SYNOPSIS:

SYNthesize and Optimize System in Silico. Journal of Medicinal Chemistry 46: 2765-

2773.

Waller CL and Bradley MP (1999) Development and Validation of a Novel Variable

Selection Technique with Application to Multidimensional Quantitative Structure-

Activity Relationship Studies. Journal of Chemical Information and Computer

Sciences 39: 345-355.

Walters DE and Hinds RM (1994) Genetically Evolved Receptor Models: A Computational

Approach to Construction of Receptor Models. Journal of Medicinal Chemistry 37:

2527-2536.

80

Wegner JK and Zell A (2003) Prediction of Aqueous Solubility and Partition Coefficient

Optimized by a Genetic Algorithm Based Descriptor Selection Method. Journal of

Chemical Information and Computer Sciences 43: 1077-1084.

Wehrens R, Pretsch E and Buydens LMC (1998) Quality Criteria of Genetic Algorithms for

Structure Optimization. Journal of Chemical Information and Computer Sciences 38:

151-157.

Weininger D (1988) SMILES, a Chemical Language and Information System. 1.

Introduction to Methodology and Encoding Rules. Journal of Chemical Information

and Computer Sciences 28: 31-36.

Westhead DR, Clark DE, Frenkel D, Li J, Murray CW, Robson B and Waszkowycz B

(1995) PRO_LIGAND: An approach to de novo molecular design. 3. A genetic

algorithm for structure refinement. Journal of Computer-Aided Molecular Design 9:

139-148.

Xue L and Bajorath J (2000) Molecular Descriptors for Effective Classification of

Biologically Active Compounds Based on Principal Component Analysis Identified

by a Genetic Algorithm. Journal of Chemical Information and Computer Sciences 40:

801-809.

Yang J-M and Kao C-Y (2000) Flexible Ligand Docking Using a Robust Evolutionary

Algorithm. Journal of Computational Chemistry 21: 988-998.

Yasri A and Hartsough D (2001) Toward an Optimal Procedure for Variable Selection and

QSAR Model Building. Journal of Chemical Information and Computer Sciences 41:

1218-1227.

