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Abstract 
 

Designing a drug is the process of finding or creating a molecule which has a specific 

activity on a biological organism. Drug design is difficult since there are only few 

molecules that are both effective against a certain disease and exhibit other necessary 

physiological properties, such as absorption by the body and safety of use. The main 

problem of drug design is therefore how to explore the chemical space of many 

possible molecules to find the few suitable ones. Computational methods are 

increasingly being used for this purpose, among them evolutionary algorithms. This 

review will focus on the applications of evolutionary algorithms in drug design, in 

which evolutionary algorithms are used both to create new molecules and to construct 

methods for predicting the properties of real or yet unexisting molecules. We will also 
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discuss the progress and problems of application of evolutionary algorithms in this 

field, as well as possible developments and future perspectives.  

 

 

1. Introduction 
 
Drug design 

Being healthy is usually taken for granted, but the importance of health becomes very 

clear when it is not present: the various illnesses can greatly diminish the quality and 

quantity of life, and are usually fought with all means available. One of the primary 

means of conserving health or improving quality of life is the administration of small 

molecules called drugs. These molecules can bind to specific critical components 

(generally proteins) of the target cells, and activating or deactivating these components 

leads to a change in behaviour of the entire cell. Cells of disease-causing organisms or 

of the patients themselves can be targeted1, leading to destruction of the cells or 

modification of their behaviour. This can help to cure or at least alleviate the disease. 

Modern medicine has access to a large variety of compounds to fight diseases ranging 

from AIDS to high blood pressure, from cancer to headache, and from bacterial 

infection to depression. 

 Drugs, together with improved nutrition and hygiene, have led to a large increase 

in life expectancy in Western society (in 1900, life expectancy in the USA at birth was 

47.3 years, which had increased to 77.0 years in 2000). However, there still exists a 

great need for new and better therapeutics. Current drugs can in most cases only slow 

cancer, not cure it. The remarkably effective treatment of HIV infection with 

combination therapy prevents the progression of AIDS, but the treatment itself is quite 

harmful to the body. And some illnesses, like Alzheimer’s disease, are still untreatable. 

 Unfortunately, developing a novel drug is not easy. The pharmaceutical industry is 

spending enormous amounts of time and effort to develop drugs that improve on 

existing ones or treat previously untreatable maladies. On average, development of a 

new drug takes 10 to 15 years and costs 400-800 million US dollars (DiMasi et al., 

2003). A large part of this money is spent on investigating compounds that eventually 

turn out to be unsuitable as drugs. Many molecules fail to become drugs because of 

“low bioavailability”, which means that they do not succeed in reaching the site of 

                                                 
1 In the case of viruses, which have no cells themselves, the viral proteins which are 

present in the infected human cells are targeted, preventing or reducing proliferation of 
the virus.  
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action due to poor solubility in water/blood (Lipinski et al., 1997), bad penetration of 

the gut wall, or being broken down by the body before they can exert their effect.  

 
  

         
 

Figure 2.1: A schematic overview of the different phases of the drug 

development process 

 

identify  
target protein 

 

use biological  
knowledge from e.g. 

 genomics and proteomics  
to identify relevant 

 drug target 

 

 
 

modify compound 
to improve binding affinity 

and bioavailability and  
to reduce toxicity 

assess whether 
 compound is safe 

and effective 

optimize  
lead compound 

 

perform clinical trials 
 

find lead compound 
 

 
 

test collection  
of compounds in cell-based or 

similar assays  
and confirm activity 

market drug 
 



14 

 

Additionally, the biological targets of the drug candidates may turn out not to have a 

significant influence on the disease, or the adverse effects outweigh the health benefits.  

 Due to these many independent factors that can make a drug candidate fail, it is 

hardly surprising that only one out of about 5000 screened drug candidates reaches the 

market (Rees, 2003). The drug development process (Figure 2.1) is largely an elaborate 

and expensive filter to eliminate the unsuitable compounds. 

 The largest part of time and effort of drug development is spent on trials to 

determine whether the drug candidate meets these criteria of bioavailability, efficacy 

and safety. Since it is better that a drug candidate should fail early in this process 

instead of late, the pharmaceutical industry generally strives for the “fail fast, fail cheap” 

ideal.  

 To fail fast and cheaply, it is essential to have fast, cheap methods of determining 

whether the drug candidate does or does not have suitable properties to be a drug. 

Computational methods are ideal for this goal, since they could replace expensive 

biological tests and do not even need the synthesis of the drug candidate. Additionally, 

computers are also applied to increase the input of the pipeline by suggesting 

alternative drug candidates.  

 One of the classes of methods used in the pharmaceutical industry for these 

purposes is evolutionary algorithms, which seems especially appropriate since drug 

design is largely survival of the fittest compound. This review will focus on the diverse 

evolutionary algorithms applied to the problems of drug design. We will first introduce 

the concept of evolutionary algorithms. 

 

Evolutionary algorithms 

Evolutionary Computation is the term for a subfield of Natural Computing that has 

emerged already in the 1960s from the idea to use principles of natural evolution as a 

paradigm for solving search and optimization problems in high-dimensional 

combinatorial or continuous search spaces. The algorithms within this field are 

commonly called evolutionary algorithms, the most widely known instances being 

genetic algorithms (Holland 1975, Goldberg 1989, Goldberg 2002) 2 , genetic 

programming (Koza 1992, Koza et al., 2003), evolution strategies (Rechenberg 1973, 

                                                 
2  It should be noted that many evolutionary algorithms described in this review are 

called “genetic algorithms” by their authors, even though they do not follow Holland’s 
original scheme at all. This misleading nomenclature might decrease in the future, 
however meanwhile the reader is advised when searching literature on evolutionary 
algorithms in the area of drug design to supplement his database queries regarding 
“evolutionary algorithms” with searches for “genetic algorithms.”  
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Rechenberg 1994, Schwefel 1977, Schwefel 1995), and evolutionary programming 

(Fogel et al. 1966, Fogel 1995). A detailed introduction to all these algorithms can be 

found e.g. in the Handbook of Evolutionary Computation (Bäck et al., 2000). 

 Evolutionary Computation today is a very active field involving fundamental 

research as well as a variety of applications in areas ranging from data analysis and 

machine learning to business processes, logistics and scheduling, technical engineering, 

and of course drug design, the topic of this article. Across all these fields, evolutionary 

algorithms have convinced practicians by their results on hard optimization problems, 

and thus became quite popular today. This introductory section on evolutionary 

algorithms aims at giving the reader a first impression of their fundamental working 

principles, without going into details of the variety of implementations available today. 

The interested reader is referred to the literature for in-depth information. 

 The general working principle of all instances of evolutionary algorithms is based 

on a program loop that involves implementations of the operators mutation, 

recombination, selection, and fitness evaluation on a set of candidate solutions (often 

called a population P(t) of individuals at generation t) for a given problem. This general 

evolutionary loop is shown in the following algorithm.  

 

 

Algorithm 2.1: Simplified abstract evolutionary algorithm. 

 

  t := 0; 

  initialize P(t);  

  evaluate P(t); 

  while not terminate(P(t)) do 

   P’(t)  := select_I(P(t)); 

   P’’(t) := recombine(P’(t)); 

   P’’’(t) := mutate(P’’(t)); 

   Evaluate(P’’’(t)); 

   P(t+1) := select_II(P’’’(t) � P(t)); 

   t := t+1; 

  od; 

  return(best(P(t)); 
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In this general setting, mutation corresponds to a modification of a single candidate 

solution, typically with a preference for small variations over large variations. 

Recombination (called “crossover” by some investigators) corresponds to an exchange 

of components between two or more candidate solutions. Selection drives the 

evolutionary process towards populations of increasing average fitness by preferring 

better candidate solutions to proliferate with higher probability to the next generation 

than worse candidate solutions (this can be done probabilistically like in genetic 

algorithms, or deterministically like in evolution strategies). Selection can be used 

either before recombination as a kind of sexual selection operator preffering better 

individuals to generate more copies before recombination occurs, or as an 

environmental selection operator after fitness evaluation to reduce population sizes by 

removing worse individuals from the population. This second selection operator can 

also take the original population P(t) into account, thus allowing the algorithm to 

always keep the best individuals in the population (which is called an elitist strategy 

assuring that fitness values do not get worse from one generation to the next). By 

evaluation, often called more specifically fitness evaluation, the calculation of a 

measure of goodness associated with candidate solutions is meant, i.e., the fitness 

function corresponds to the objective function of the optimization problem Y = 

f(x1,…,xn) � min (max) at hand (minimization and maximization are equivalent 

problems), where f: M � R maps candidate solutions defined over a search space M 

into real-valued (usually scalar) measures of goodness.  

 Evolutionary algorithms offer several advantages over conventional optimization 

methods, as they can deal with various sets of structures for the search space M, they 

are direct optimization methods which do not require additional information except the 

objective function value f(x1,…,xn) (i.e., no first or second order derivatives in 

continuous search spaces), they can deal with multimodal optimization problems (i.e., 

problems where many local optima exist where the search can get trapped into a 

suboptimal solution), and they can also deal with additional problems such as 

discontinuities of the search space, noisy objective function values or dynamically 

changing problem characteristics. 

 The candidate solutions (elements of the search space M) to an optimization 

problem can have arbitrary datastructures. However, certain kinds of candidate solution 

structures are popular, such as binary or discrete valued vectors, as often associated 

with the concept of a genetic algorithm, real-valued vectors, as often associated with 

evolution strategies or evolutionary programming, or parse trees in a functional 

language such as LISP, as often associated with genetic programming. The differences 
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between these representational instances of evolutionary algorithms have become 

blurred since 1990, however, such that state-of-the-art evolutionary algorithms often 

use concepts from several of the pure historical instances together in an implementation 

that is tailor-made for a particular application problem. Also, many mixed 

representations are used to solve challenging problems defined in more complex search 

spaces, e.g., mixed-integer nonlinear optimization problems. Expansions to new search 

spaces including graph-based representations naturally imply the potential application 

of evolutionary algorithms to drug design or molecule optimization problems. 

 

Scope and limitations of this review 

This review focuses on the stage of drug design in which the drug molecule is designed. 

Therefore applications of evolutionary algorithms that are also important but 

preliminary to this stage, such as protein folding prediction and elucidation of protein 

structure, are not discussed here. The interested reader is referred to other literature, 

such as the compilation of reviews edited by Clark (2000). 

 The articles discussed in this review were published in the period from 1993 to 

2004. Our primary criterion for selection was diversity in application and method, not 

recency. However, most of the articles (44 of 54) are from the period 1998 to 2004, 

since the application of evolutionary algorithms in drug design only started to bloom in 

the mid-nineties. 

 Due to our focus on design of drug molecules, the distribution of literature 

references is skewed towards chemical literature. The three major journals discussing 

cheminformatics and computational chemistry contributed 38 articles, journals in 

medicinal chemistry and general chemistry 13 articles, and computer science-based 

conference proceedings only 3 articles. This is however not an exhaustive compilation 

of existing literature, and the interested reader will be able to find more relevant 

articles in the (medicinal) chemical and computer science literature.  

 We hope that this review will help the reader gain insight in the problems of drug 

design and the diverse kinds of evolutionary algorithms applied so far, and enable him 

or her to read or perform additional research in this area with a wider perspective and 

more understanding. We hope that in this way the review can contribute to the further 

development of computational methods that help solve the problems of drug design, 

and enable researchers to apply the power and processing capabilities of the computer 

to enhance human health. 
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2. Evolutionary algorithms in the design of molecule 
libraries 
 

To find a lead compound for further drug design a set of compounds (called a library) 

can be tested for the desired biological activity. A good library should have good 

efficiency and good effectiveness: it should be so small that the cost of testing it is as 

low as possible, yet be so large that the chances of finding a suitable lead compound 

are sufficiently high.  

 Choosing the contents of the library rationally instead of randomly can enhance 

the efficiency and effectiveness: since compounds with similar structures usually have 

similar activities, a library consisting of compounds that are very dissimilar to each 

other will require fewer compounds to cover as much of the “biological activity” space. 

 Another criterion is drug-likeness: drug molecules must have certain properties to 

work (for example, have a weight of under 500 atomic mass units to be taken up by the 

body (Lipinski et al., 1997)), so such constraints can also be enforced during the design 

of the library. 

 More advanced criteria can also be applied, if more information is available: if the 

structure of either a ligand (a compound that binds to the receptor) or of the target 

receptor itself is known, one could select those compounds which look like the ligand 

or fit into the receptor, instead of the most diverse ones; this is called targeting.  

 The most popular method of creating the compounds of the molecule libraries is 

combinatorial chemistry: a number of compounds of group A, which all have a certain 

common reactive group, is combined with a number of compounds of group B, which 

have another common reactive group that can react with the reactive group of A 

(Figure 2.2). 

 In this way, N+M reactants are converted into N*M products. Higher dimensions 

of synthesis (N+M+P reagents give N*M*P products) can also be applied. Since there 

are many available reactants and multiple reaction steps can be applied, the number of 

potential compounds is much larger than the number that is practically and 

economically feasible to make and test. For this reason, selection of the reagents to be 

used or of the products to be made is very important. This has turned out to be a 

promising application for evolutionary algorithms. We will now discuss a number of 

these applications. 

 The first application we would like to discuss is the program SELECT (Gillet et 

al., 1999). SELECT has the objective to construct a general library, the compounds of 

which should both be diverse and druglike. Testing this idea on virtual amide 
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(100x100) and thiazoline-2-imide (12x99x54) libraries, the goal is to choose that 

sublibrary which has highest diversity, and whose molecules have a similar property 

distribution as known drugs (so if 15% of drug molecules have 3 rotatable bonds, 15% 

of library molecules should have 3 rotatable bonds too). The desired sizes of the 

libraries were 20x20 and 8x40x20, respectively. 
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Figure 2.2: A simple combinatorial library. 

 

The data structures representing the candidate solutions (these data structures are 

commonly called “chromosomes” in the field of evolutionary algorithms, see also the 

glossary) were vectors with as length the number of reagents for the target library, 

consisting of the identification numbers of the reagents used. Each set of reagents was 

assigned to a separate partition of the chromosome. Single point mutation and single 

point crossover (crossover only occurred in one randomly chosen partition) were 

applied. The population size was 50.  

 The diversity of the library was determined by first calculating a chemical 

fingerprint of each molecule, a vector of bits, and summing the differences between all 

pairs of vectors. 
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In the case of the amide library, with diversity as fitness criterion, convergence was 

reached after about 1000 iterations, with a very reproducible optimum (mean 0.595, 

standard deviation 0.001)- a clear improvement over the diversity of randomly 

constructed libraries (mean 0.508, standard deviation 0.015). However, it turned out 

that taking drug-likeness as additional criterion decreased the diversity, and that 

depending on the relative weights of the criteria, different solutions were found. This 

task of minimizing diversity while maximizing drug-likeness could be viewed as a 

multiple criteria decision making task. 

 Since manually adjusting the weights to create different solutions is inelegant and 

impractical, the authors subsequently developed an extension of SELECT, called 

MoSELECT (Gillet et al., 2002). The goal of this program is to find a set of solutions, 

each solution so that no other solution in the set is equal or superior to it in all respects 

(the solution is nondominated, or “Pareto optimal”; see Figure 2.3).  

Figure 2.3: Pareto optimality. In this example, both fitness criteria are to be 

maximized. A solution is dominated if there exists another solution that has 

equal or better scores on all criteria. for example (0.5 , 0.6) dominates (0.4 , 

0.5) because 0.5>0.4 and 0.6>0.5. However, (0.5 , 0.6) does not dominate 

(0.4 , 0.65) because 0.5>0.4 but 0.6<0.65. 

 

 

This algorithm can perform multi-objective optimization by Pareto-ranking the 

chromosomes: nondominated chromosomes get rank 0, chromosomes which are 

dominated by one other chromosome get rank 1, etcetera, after which roulette wheel 

selection is applied, a common implementation of the “select-I” function in algorithm 1. 
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Information about the mechanism of this selection method can be found in the glossary. 

This Pareto-ranking approach results in many nondominating solutions found; using 2 

fitness criteria resulted in 31 nondominated solutions (in a population of 50), while 

increasing the number of criteria to 5 and the population size to 200 gave 188 

nondominated solutions. However, speciation was observed so niching (forbidding the 

algorithm to create new solutions which are similar to already found solutions) was 

applied to ensure diversity. This reduced the number of solutions to 24, but made them 

more different. (Evolutionary algorithms have also been used for finding sets of Pareto-

optimal solutions in other contexts, in which they turned out to be quite efficient, one 

advantage of the evolutionary algorithms being that they can find a set within a single 

run – see Deb (2001) for an in-depth coverage of the topic). 

 While diversity is a very desirable characteristic in a general purpose library, 

libraries can also be designed to discover a lead to a specific target. Sheridan et al. 

(2000) designed a combinatorial library of molecules built out of three fragments. 

There were 5321 fragments possible for the first part of the molecule, 1030 fragments 

for the middle of the molecule and 2851 available fragments for the third part of the 

molecule. Since synthesizing 15 billion compounds would be prohibitively expensive 

and time consuming, the authors desired to design small libraries (100-125 

compounds) of molecules that looked most promising. They wanted to create libraries 

of compounds that look like angiotensin-II antagonists (a “2D-criterion”, which only 

uses information on which atoms are connected to which other atoms) as well as 

libraries of compounds that fit in the active site of the protein stromelysin-1 (a “3D-

criterion”, which must know and manipulate the three-dimensional structure of the 

molecule).  

 Furthermore, Sheridan tested whether evolving a 5x5x5-library yielded results as 

good as evolving a library of one hundred separate molecules, addressing in this way 

the question whether the benefit of needing fewer different reagents by the 5x5x5 

library is offset by a decrease in library quality. In the experiments the 2D-criteria were 

as well achieved, on average, by the library-based as by the molecule-based runs, be it 

at much more computational cost (molecule based: <20 minutes; library based: about 

120 h). 3D-Fitness evaluation took over 120 times as long as 2D evaluation, so library-

based runs could not be performed using 3D-fitness criteria. However, the library 

created of the 5+5+5 most frequent fragments in the molecule-based optimization had a 

considerably lower score than the original library. While for “2D”-criteria the whole is 

approximately “the sum of its parts”, in the more realistic 3D fitness function this 

approximation no longer holds. The fitness landscape is probably much more rugged, 
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i.e. contains many more local optima in which a solution can become trapped. It is 

interesting to note, however, that despite this ruggedness the number of generations 

needed for convergence was approximately the same for 2D and 3D, namely 10-20 

generations. 

 A method that combines targeting and diversity is to use a known molecule as a 

template structure. Liu et al. (1998) generated two sets of compounds, the first set 

based on a benzodiazepine template (see figure 2.4) and the second on a template 

derived from the (-)-huperzine A molecule. 

 
 

R1, R2, R3 can be

etc.

N

N

O
R1

R2
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Br OH

O

  
Figure 2.4: Template-based (virtual) library design. 

 

A library of 73 fragments was used to fill the open positions on the template. A 

population of one hundred molecules was generated by attaching randomly chosen 

groups to the template molecule. After this, the diversity of the population was 

determined by converting the 3D-structure of the electronic field around the molecules 

into sets of vectors, and measuring the dissimilarity between the vectors of the different 

molecules. Crossover was implemented by exchanging groups of two molecules at the 

same template position, mutation by having fragments exchange template positions or 

by replacing one of the fragments. After a short run (10 generations) convergence was 

reached. No data were provided on the reproducibility of the run. 

 The (-)-huperzine A library was generated in the same way as that of the 

benzodiazepine analogs. Subsequently some of the proposed structures were 

synthesized. One of them was found to have a higher binding affinity to the target than 

the lead itself, showing that the method is effective. 

 From the foregoing it is clear that evolutionary algorithms can optimize the 

diversity and other properties of combinatorial libraries. However, related experiments 

by Bravi et al. (2000) have given some interesting insights into the structure of the 

search space. Bravi et al. investigated if one could not only determine the optimal 

library composition, but also the optimal library size. Filters were used to select the 

most druglike compounds from a virtual library of 13x41x59 (of which 16% turned out 



23 

 

to be good). To synthesize all druglike molecules using a combinatorial library would 

require a library of 12x39x49; using this in combinatorial chemistry would however 

generate about 23000 compounds, of which 78% would be non-druglike. How to find a 

balance between efficiency (how large a part of the combinatorial library consists of 

desirable structures) and effectiveness (how large a part of all good structures are 

contained by the sublibrary)? Bravi’s program PLUMS used an algorithm that evenly 

weighed these two factors and designed a library that still contained 86% of all good 

molecules, with only 37% undesirable products. 

 The method Bravi used was based on iterative removal of the component whose 

removal produced a library with an optimum score. His results were as good as those 

of the GA to which he compared it, as long as PLUMS followed alternative parallel 

paths if there was no preference for removal. This suggests that the fitness landscape is 

not very rugged for this problem, and that an iterative method might replace a GA in 

such cases. However, a simpler method (monomer frequency analysis (MFA), which 

assumes that the best library is built from the fragments that are most frequent in the 

good compounds) failed to find this optimum. Analysis of the results showed that how 

often a fragment occurs in a good library is less important than how often it occurs 

with other good fragments. However, a subsequently designed dynamic version of 

MFA that iteratively chooses the best compounds of each set of reactants until 

convergence is reached, did find the global optimum. 

 Does this mean that evolutionary algorithms are not needed in library design? This 

is not very likely, since using more advanced 3D-fitness functions seems to make the 

fitness landscape more rugged. A simple method like PLUMS will get stuck in a local 

optimum more easily, especially if the building blocks of the library must be selected 

among thousands instead of dozens of reactants. However, iterative methods like 

PLUMS and MFA are good demonstrations of the power of simple solutions 

appropriately applied. 

 

Conclusion 

Several experiments have been performed using evolutionary algorithms in library 

design, to create libraries to satisfy many different objectives such as diversity, 

targeting and drug-likeness. While improvement of the libraries with respect to the 

fitness criteria is clearly seen in these experiments, and reproducibility seems fair 

enough, the major current challenges lie in refining the fitness criteria to accurately 

reflect the demands of drug development.  
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The diversity in the diversity criteria themselves suggests that more systematic 

attention to this problem might be worthwhile, and the great computational cost of 

more advanced (docking) criteria of target selection are still troublesome in more 

refined applications. Also the drug-likeness criterion might need revision. 

 Libraries are designed to find lead molecules, which usually grow in size during 

drug development to satisfy additional criteria. In many cases this may generate 

molecules that are too large to be drug-like. Screening the “drug-like” larger molecules 

for biological activity has a lower chance of success than screening smaller molecules, 

since large molecules have a smaller probability to fit in the space of the active site 

than small molecules (Hann et al., 2001). Therefore, it would be more valuable to 

evolve libraries with the criterion of lead-likeness. However, libraries of leads are 

currently not available, while libraries of drugs are. Unless calculations correct for the 

too high molecular weight and lipophilicity of drug-like compounds, “drug like” 

library design will probably produce suboptimal compounds.  

 A second development is the use of several conflicting criteria simultaneously in 

library design, of which the Pareto optimality by Gillet et al. (2002) and the prefiltering 

by Bravi et al. (2000) are examples. While certainly interesting, the problem of 

choosing the right weights by the user is now shifted to selecting the right nondominant 

set. Weighing must be done sooner or later. It is a good beginning, but further 

measures (probably based on existing knowledge of drug development and probability 

theory) are needed to find a better way of weighing the weights. 

 An application which has not been discussed in these articles is selecting 

compounds from a non-combinatorial library. This will become more important as 

proprietary compound collections of pharmaceutical companies grow and more 

compounds are made available by external suppliers. The disadvantages of 

combinatorial chemistry (generally too large and lipophilic molecules, failing reactions, 

etc.) could prompt using evolutionary algorithms to select a targeted or diverse test set 

out of tens of thousands of compounds that are available. This will be an interesting 

and important challenge. 

 Computationally, the different evolutionary algorithms can doubtlessly be 

improved by incorporating more domain knowledge. However, since the computational 

cost of most applications discussed is acceptable and performance is good, the 

relatively simple current algorithms may be preferred over more advanced versions. 

Comparisons with deterministic methods (Bravi et al., 2000) indicate that evolutionary 

algorithms can be applied quite well to the problem of library design. Although 

competing methods can also satisfy the designer’s needs (Agrafiotis, 2002), 
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evolutionary algorithms, perhaps with some small modifications, are very likely to 

become the standard method in library design. 

 

 

3. Evolutionary algorithms in conformational analysis 
 

A molecule is a three-dimensional entity consisting of atoms connected by bonds. 

Though the movement of the individual atoms is restricted by the bonds, most 

molecules can assume different shapes by bond stretching, by angle bending and, most 

importantly, by rotating parts of the molecule around single bonds (see Figure 2.5). 

The amount by which a bond is rotated (varying between 0 and 360 degrees) is called 

its torsion angle. 
  

 
Figure 2.5: Change in conformation by rotation around a bond. 

 

Conformational analysis, the generation and comparison of different conformations of 

a molecule, is an important part of medicinal chemistry. This is because the properties 

of a molecule are partially determined by the shape or range of shapes it can assume. 

Conformational analysis usually has two goals. The first and most common goal is to 

find the conformation of minimal energy, the “global minimum”. The energies of all 

other conformations (which correspond to their chance of occurring in nature) should 

be taken relative to the energy of this global minimum. This is especially important 

when a molecule is docked as a ligand into the active site of a receptor (see section 6). 

The increase in energy of the docked molecule relative to its minimum gives 

information on the true binding energy and therefore the likeliness that the docking is 

correct. The second goal of conformational analysis is to obtain a group of diverse yet 

energetically feasible conformations for virtual screening to address the issue whether 

the molecule or one of its good conformations fits a certain required pattern, a so-called 

pharmacophore. 

 Since bonds can be rotated over the entire range of 360 degrees the number of 

conformations of the molecule is in theory infinite. However, many conformations are 



26 

 

so similar that conformational analysis usually takes a minimal step size of 15-30 

degrees. Unfortunately, allowing n different torsion angles for m rotatable bonds each 

will give nm possible conformations; for a flexible drug molecule like orphenadrine 

(which has six rotatable bonds), conformational analysis with a resolution of 15 

degrees would produce 1.9 x 108 conformations. Systematic search is infeasible in 

these cases, and heuristic algorithms, among which evolutionary algorithms, are 

applied. 

 An excellent example of a genetic algorithm applied to finding the conformation 

of minimal energy is the work of Nair and Goodman (1998). Nair and Goodman 

applied the genetic algorithm to linear molecules of carbon atoms (alkanes), and took 

the torsion angles as genes. After random generation of the population, crossover was 

performed followed by mutation. Subsequently the new structures were minimized 

with a local optimizer and their optimized conformations written back into their genes 

(so-called Lamarckian evolution), and the new generation was chosen from the pool of 

parents+children by roulette wheel selection on their energies, which were weighted 

with a Bolzmann factor that determined the penalty for higher energy. This process was 

repeated for a fixed number of generations. 

 The genetic algorithm found several minima for the chains of 6, 18 and 39 carbon 

atoms. The next, most interesting challenge was finding the optimal energy of PM-

toxin A, a long, approximately linear molecule (33 carbon atoms). This was tackled by 

first optimizing a 33-atom alkane, listing the several thousands of low-energy 

conformations found. Subsequently the branching groups were added and the resulting 

structures locally optimized. A minimum of less than -100 kJ/mol was found. A Monte 

Carlo search, using the same amount of structure optimizations, found a minimum of 

only –78 kJ/mol. Furthermore, the GA found 168 conformations with an energy below 

–70 kJ/mol, the Monte Carlo approach only two. 

 It is interesting to note that the more complex and flexible the molecule becomes, 

the more minima of approximately equal energy can be found. Since the energy of the 

global optimum is much more important than the conformation of the global optimum 

and dozens of conformations give the approximately good result, knowing the “best” 

answer is relatively unimportant. This makes stochastic algorithms like evolutionary 

algorithms even more useful in this situation. 

 Jin et al. (1999) analysed the pentapeptide [Met]-enkephalin, which has 24 torsion 

angles. Three different versions of their program GAP were used: GAP 1.0, GAP 2.0 

and GAP 3.0. In GAP 1.0 a uniform crossover was used together with a diversity 

operator that mutated a child structure if more than half of its angles differed by less 
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than 5 degrees from its parent structures. GAP 2.0 included a three-parent crossover 

(two parents are crossed, their product is crossed with the third parent), and GAP 3.0 

has a “population splitting scheme”, which only allows crossover of individuals in 

different populations. The offspring was generated by crossover and subsequent 

mutation. After these steps, parents and offspring were taken together, the lowest half 

(50 conformations) was selected as the next generation, and after 1000 generations the 

runs were stopped. In this case, the minimum found was about 3 kcal/mol higher than 

the one found by a Monte Carlo method. 

 Since other experiences with GA/MC comparisons like those of Nair and 

Goodman (1998) and Tufféry et al. (1993) found the genetic algorithm to be superior 

to Monte Carlo, especially when optimizing large systems like proteins, the authors 

analysed their algorithm. By measuring the search space coverage it was found that, 

surprisingly, higher mutation rates led to lower coverage. This suggests that most 

mutations are so harmful that they are rapidly selected out by the strict fitness criterion 

(best half), and the next generation consists mainly of unmodified “parent” 

conformations, which tends to prevent departure from local minima and restricts the 

search space covered. 

 For certain purposes, not a single low-energy conformation is needed, but a set of 

low-energy conformations that differ as much from each other as possible. These 

conformations can be used for e.g. pharmacophore screening or as starting 

conformations for docking. Mekenyan et al. (1999) designed a GA for optimizing the 

diversity in a population of conformations. The fitness criterion was a diversity 

criterion that measured how bad the best possible superposition of two conformations 

was (in root mean square distance between corresponding atoms). The score of the 

individual was the average dissimilarity to the other members in the population.  

 Next to the traditional torsion angles Mekenyan included the flexibility of rings by 

allowing free ring corners (atoms that were part of only one ring) to flip, and storing 

the flipped/unflipped information in the chromosome too. This may be very valuable 

for complex molecules that often contain flexible rings.  

 Mutation was performed and followed by crossover. If the children were 

energetically inadmissible or too similar to already present conformations, they were 

discarded. If Nc viable children were found within a certain number of tries, the most 

diverse subset of size Np was selected from the total pool of Nc+Np conformations. The 

evolution was stopped if fewer than Nc viable children had been produced within the 

specified number of tries.  
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Mekenyan experimented with different settings of the population size and the number 

of children. The runs did not seem very reproducible and in most cases were stuck in 

local optima. The general conclusion was that the ratio between the number of parents 

and the number of children Np/Nc is very important. If Np/Nc is lower, convergence is 

reached faster and more of the search space is covered, but if it is higher, runs are more 

reproducible. 

 Thinking more theoretically about the quality of evolutionary algorithms, Wehrens 

et al. (1998) considered that only taking the value of the best individual to judge an 

evolutionary algorithm is somewhat limited, and proposed additional criteria: 

reproducibility and coverage of the search space. The authors describe the application 

and implementation of these criteria in the case of the conformational analysis of N,N-

dimethyl-N’-4-phenylbutylmalonamide. 

 This compound has 7 rotatable bonds, the torsion angles of which form the genes 

of the chromosome. A population of size 50 was used for a run of 100 generations. 

Tournament selection was performed with tournament sizes varying from 2 to 10. 

Crossover rate was 0.8 with uniform crossover applied. In the experiments, several 

parameters were varied, mainly to investigate the influence of the “sharing” operator. If 

the root mean square difference between the torsion angles of the child and parent 

conformations is less than the sharing distance, a randomly selected torsion angle of 

the child will get a random twist between 0 and a fixed number of degrees called the 

“sharing offset”.  

 Coverage was measured by dividing the search space into hypercubes (hypercube 

size of 90 degrees, so there are 47 hypercubes which can be visited in the search space). 

About 10% of the search space was visited using a GA without sharing, 30% with 

sharing, 77% by random search. So while sharing increases coverage, selection 

pressure decreases it. A tournament size 10 instead of 2 further decreased the coverage, 

be it slightly. 

 The second criterion of coverage was how many clusters of low energy were 

found using different parameter settings. In this case this was 6 to 14 clusters for the 

genetic algorithm, 0 for random search.  

 Another criterion, reproducibility, was measured in two ways: the first way was to 

count the number of clusters in common between two runs, the second was projecting 

all conformations into the 7 dimensional “torsional” space and determine the principal 

components. The ratio of the overlap of the principal components of the different runs 

of one setting and those of another gave the reproducibility.  
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As the authors note, their criteria may also be used for other applications of genetic 

algorithms. Though some of their ideas seem useful, they have, considering the 

subsequent literature, not yet been widely applied by other researchers. 

 

Conclusions 

Evolutionary algorithms have been applied to conformational analysis with some good 

results. While there are some experiments that indicate that the method of “directed 

tweak” is slightly superior in conformational searches (Clark et al., 1994) evolutionary 

algorithms are more versatile: they can search for sets that are diverse, as well as 

pursue multiple objectives. Next to seeking the most suitable mutations and crossover 

methods and optimizing the parameters, there are some other interesting points that 

could justify further research. The first question is how one could incorporate 

molecular mechanics such as the deformations of rings in the evolutionary algorithm. 

Secondly, almost all energies are now calculated for molecules in a vacuum, yet the 

relevant energies for biological molecules are those in solution. One should carefully 

compare the vacuum results with those calculated using modern force fields that 

include water to check whether and when this approximation is allowed. A third item, 

which is growing in importance, is the application of conformational analysis to larger 

molecules, especially proteins. 

 As our understanding of biology increases, molecular movement and 

conformations will be able to shed light on the dynamic properties of chemical and 

biological systems. Conformation analysis will be important to determine the “4D”-

descriptors, which describe the possible changes of the molecule over space and time. 

Evolutionary algorithms, with their flexibility and possibilities to optimize systems in 

which the elements depend on each other, as is the case in conformations, will 

probably continue to play an interesting and important role in the development of this 

field. 

 

 

4. Evolutionary algorithms in molecule superposition and 
pharmacophore detection 
 

If two molecules bind to the same receptor, can one deduce from this information 

which other molecules will bind? The traditional way of solving this problem is by 

comparing the structures of the active molecules: one superimposes the molecules onto 

each other to detect the similarities. If they have the same kinds of atoms in the same 
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relative positions, those may be important. Out of this superposition, features which 

might be important for activity are postulated, and their relative 3D-orientation 

constitutes the active pattern, or pharmacophore.  
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Figure 2.6: Molecule superposition and pharmacophore detection. “Ar” 

stands for aromatic center, 1 Å is 0.1 nm. 

 

This entire process of superposition and assignment of pharmacophoric points is called 

pharmacophore detection (see figure 2.6). 

There are two fundamental difficulties in molecule superposition and 

pharmacophore detection. The first is the definition of a good superposition. There are 

at least three possible criteria: 

1) In a good superposition both molecules have low energies; their conformations 

have energies at or close to the global minimum. 

2) In a good superposition the volumes of the molecules overlap optimally, which 

means that they fit in the receptor in about the same space of the active site. 

3) In a good superposition, the most important atoms/parts should overlap best, the 

other parts of the molecule are relatively unimportant. 

In fact, all these factors seem to play a role. Ultimately the criteria a molecule has to 

fulfill to be active are determined by the three-dimensional structure of the receptor, 

but unfortunately that structure is generally not known. Nevertheless, a method that 

finds high similarity of whatever kind between various active molecules and does not 
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match inactive molecules would certainly be promising. 

 The second problem in molecule superposition is the combinatorial explosion: 

most molecules can assume thousands of conformations, so searching for the best 

overlap of two molecules or more by a systematic search method quickly becomes 

infeasible. It is no surprise that evolutionary algorithms have been applied in order to 

help to solve this problem.  

 An early example of a genetic algorithm to superpose molecules and detect 

pharmacophores is given by Payne and Glen (1993). The chromosomes representing 

the molecules are bit strings, the first elements give the 3D-coordinates for the location 

and the orientation of the molecule leading to 6 degrees of freedom. They are followed 

by genes for each bond that can be rotated and for each ring corner that can be flipped. 

 In some cases the fitness criterion was how well a molecule obeyed certain 

distance constraints, i.e. selected groups in the molecule or of different molecules 

should be at a certain distance from each other. Overlap constraints, i.e. overlapping 

another molecule as much as possible, and spherical constraints were also used. The 

latter constraint is defined by a sphere drawn around the molecule, the surface points of 

which have values representing the distance from the sphere surface point to the 

molecule’s surface point directly beneath it or the charge on that surface point. The 

total fitness was a weighed sum of the several fitness functions that were appropriate 

for the situation. Chromosomes were represented as bit strings, the mutation was bit-

flip mutation and one-point crossover was used. 

 Several problems were tackled with this algorithm: finding the conformation of a 

molecule which obeyed certain distance restraints, elucidating a pharmacophore, fitting 

a molecule onto itself, and fitting different molecules of a similar biological activity 

onto each other.  

 It turned out that some of the problems were relatively easy to solve using the 

genetic algorithm. If there is a fixed set of constraints or a rigid template molecule like 

morphine the evolution reaches convergence (in runs of 300 generations of 1000 

molecules). If however flexible molecules have to be fitted onto each other, the 

“moving target” makes convergence very awkward. However, when an intermediate 

step was added in which the conformers were rigidly fitted onto each other the time 

spent by the genetic algorithm was reduced from 10 days to 9 minutes! 

 All in all, the program described seemed to do its job fairly well, though greater 

degrees of freedom clearly gave it so much trouble that optimization became difficult. 

A last problem is that when some regions of a molecule are important to receptor 

binding and others are not, a sphere model might not be a very suitable means for 
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finding the part of the molecules that are similar. This is due to the fact that the 

differences in the other parts may drown out the similarities unless one has large data 

sets. Moreover, superpositions of the many molecules of those large data sets 

themselves might lead to poor convergence. 

 Superposition of molecules has often the goal of finding a pharmacophore. 

Holliday and Willett (1997) wanted to use a genetic algorithm to find a group of 

pharmacophore points (in their case: N and O atoms) in a 3D-arrangement present in 

all molecules with a certain biological activity. 

 Their original genetic algorithm proved to be too slow, but the authors found that 

performance could be improved by splitting it into two smaller genetic algorithms: one 

to find sets of corresponding atoms in the different molecules, a second to combine 

these sets into the smallest possible superset. 

 The first genetic algorithm uses chromosomes of length n×m, where n is the 

number of molecules and m a user-defined number of atoms that has to be found per 

molecule. Crossover is performed on the border between molecules, mutation replaces 

an atom by another atom of the same molecule. If the atoms in the chromosome of two 

different molecules have the same types and approximately the same distances to each 

other, the second set of atoms is “fused” with the first. The evolutionary process thus 

results in a chromosome grouped in a few different clusters of molecules, the 

molecules of each cluster containing identical atoms in a common geometric pattern. 

 The second genetic algorithm uses the collection of patterns found by the first 

algorithm and attempts to find a superset which contains all of them. The chromosome 

here is a list of the 3D coordinates of the several points. The second algorithm can add, 

move or remove points in this 3D-arrangement and continues until every molecule in 

the set has at least m points (the value of m specified by the user) in common with the 

superset, within a certain tolerance range. The second genetic algorithm uses clique-

finding algorithms to speed up this process. 

 The program was tested on five data sets of 10-19 biologically active compounds. 

In most cases, 3 or 4 point subsets common to all compounds were found, thus 

indicating the effectiveness of the method. 

 However, the authors add that their program should be developed further. Next to 

the nitrogen and oxygen atoms there may be other important elements in a 

pharmacophore such as a phenyl group (see also Figure 2.6). Additionally, most 

ligands are flexible and their active conformation is not known; therefore the genetic 

algorithm should either work on a good superposition (in which case it would not give 

much useful extra information) or take the flexibility of the molecules into account. 



33 

 

This issue of flexibility was addressed by Handschuh et al. (1998) who used a genetic 

algorithm to superpose flexible molecules. This superposition was again based on atom 

superposition, but in this method the superposed atoms did not have to be of the same 

type.  

 The authors recognized that a good superposition of molecules should satisfy 

conflicting demands. Although as many atoms as possible of the two molecules should 

be matched, matching too many atoms will result in a worse fit. For this reason Pareto 

optimization was used to obtain alternative solutions. 

 The computer program fitted only two structures simultaneously; each individual 

consisted of a chromosome containing the information of both molecules. The 

chromosome consisted of two parts, which contained the “match pairs” (which atoms 

of structure one were fitted onto atoms of structure two) and the torsion angles of the 

molecules, respectively.  

 A population of 100 molecule-pairs was created and subsequently evolved. 

Mutation and crossover in the torsional part was straightforward and mutation in the 

match part replaced or deleted atom matches. Crossover in the match part was 

implemented by choosing two match lists of equal length in the parents and appending 

them to the end of the other parent’s match list, removing duplicate atom matches in 

the original parent. Interesting was the inclusion of two “knowledge augmented” 

operators, “creep” and “crunch”, which added atom pairs to or removed them from the 

match list based on their distance in the current superposition. These operators 

improved the final results substantially, since much closer fits of 0.05-0.2Å were 

obtained instead of root mean square scores of 0.6-1.0Å. 

 Another innovation somewhat similar to the speedup described by Payne and Glen 

(1993) was the use of the directed tweak method to adapt the torsion angles of the 

match after each individual was generated. This was however not Lamarckian since the 

genes were not changed and the matching procedure was only used to determine the 

fitness value. Instead restricted tournament selection was used. Here one solution 

competed against the solution most similar to itself from a random subset of the 

population. The winner was copied into the next population. This selection method was 

chosen in order to conserve diversity. 

 Handschuh et al. applied the genetic algorithm to overlaying several angiotensin II 

antagonists, with good results in that overlays of 10-20 atoms were reached with low 

root mean square values (<1Å). Additionally, a known angiotensin II pharmacophore 

was found. These results indicate that the method is quite promising. However, some 

problems of pharmacophore finding remain difficult to solve, even with a method as 
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advanced as this one. A true choice about whether molecules A and B overlap best in 

overlap 1 or 2 can only be made if it can be determined whether the identity of the 

atoms really matters (Figure 2.7). In some cases it will, in others it won’t, such that 

there may be other objectives to add to the Pareto fitness. 
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Figure 2.7: Which superposition is best? 
 
 

Conclusion 

There are several different kinds of molecule superposition. Superposing the shape and 

charge fields of two dissimilar molecules, superposing the most important atoms, or 

superposing all atoms are all options, but which one is “correct” or “better”? Probably 

much depends on the protein and the set of ligands. The existence of different criteria 

seems to indicate that superposing molecules is a multi-objective problem, with the 

different weights reflecting the one true objective of how well the superposed 

molecules occupy the “superposed” space when binding to the receptor. Comparison 

with experimental data such as crystal structures would greatly help to test, validate 

and optimize the different methods. Pending that, extra calculations of for example the 

energy of the ligands may help to make a choice between different superpositions. 

 Also, it would be worthwhile to extend the pharmacophore models with known 

inactive compounds that are similar in structure to the active molecules and study if 

these fit or not. This may yield information on criteria for internal energy of the 

superimposed conformation or information about the “excluded volume”, the parts of 

the molecule that the receptor cannot accommodate. 

 Thirdly, there is the problem of superposing larger sets of compounds. The extra 

information gained by including more compounds is probably useful, but an optimal 

multiple superposition is much more difficult to find. Overlaying two molecules is 

quite standard, but what to do if there are more? While Handschuh et al. (1998) found 

that the order of superposition of their four compounds did not influence the results, it 

seems likely that a naive evolutionary algorithm would fail if it would attempt to 
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overlay more than ten structures simultaneously. Sequential overlap of many 

compounds will probably yield local minima, especially since there may be different 

“best” superpositions according to the Pareto optimality criteria. Handling large 

datasets, especially truly large data sets on which one can apply statistics, seems to 

become possible (Chen et al., 1999). It is still unclear yet whether this will be the final 

answer due to the necessarily limited number of conformations and pharmacophoric 

points used by such methods.  

 Lastly, in several cases there may be more than one active site on the receptor, or 

the binding site is so large that not all molecules will necessarily share the same 

volume. Discovering that there are several different pharmacophores in this case will 

be a challenging test for any superposition method.  

 All in all, evolutionary algorithms have led to valuable software for molecule 

superposition and pharmacophore detection. Still the field of molecule superposition 

does not have the answers yet for handling more than two molecules and choosing 

between different superpositions. While there are also non-evolutionary methods for 

pharmacophore detection (Chen et al., 1999; Ting et al., 2000), it is very likely that 

evolutionary algorithms will continue to be applied. 

 

 

5. Evolutionary algorithms and quantitative structure-
activity relationships 
 

In drug design and development one of the prime views is that the biological activity of 

a given compound is determined by its physico-chemical characteristics. Already in the 

19th century it was postulated by Crum Brown and Fraser (cited in Parascondola, 1980) 

that “there can be no reasonable doubt that a relation exists between the physiological 

action of a substance and its chemical composition and constitution”. In more recent 

days Hansch and coworkers (Parascondola, 1980) were the first to suggest that such a 

relationship can also be expressed in quantitative terms, as in the following equation: 

 

Biological activity=a0+a1.descriptor1+a2.descriptor2+….+an.descriptorn 

 

This is called a quantitative structure-activity relationship, or QSAR. In the above 

formula the biological activity is a numerical value such as the logarithm of the 

concentration at which a compound exhibits half of its maximal biological activity. The 

descriptors are numerical values of the properties of either the entire molecule (like the 
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molecular weight) or of a specific part of the molecule. In the latter case, the equation 

needs to be derived from a set of highly similar compounds.  

 

The major use of a QSAR formula is the prediction of the biological activity of a 

compound that has not yet been tested or has even not been synthesized yet. This can 

be done with models consisting of descriptors that can be calculated theoretically. In 

essence, the structure of the molecule, which is a graph, is converted into a vector of 

numbers, which can hopefully be related to the biological activity by a (simple) 

function. In theory QSAR can thus greatly increase the speed and reduce the cost of 

drug design by eliminating the synthesis and testing of compounds with low activity.  

 However, the major problem regarding QSAR is that scientists can now choose 

among many hundreds of descriptors, such as experiment-based descriptors, graph-

theoretical descriptors, quantum mechanical descriptors and others. Additionally, 

researchers are more and more realizing that QSAR does not have to be a weighted 

sum of simple descriptors. Cross-products and polynomials (Lu�i� et al., 2003), splines 

(Rogers and Hopfinger, 1994) and even more exotic functions can be used to forge new 

descriptors out of the old ones, enlarging the set of available descriptors even more. 

Since a specific biological activity is commonly only measured in dozens of 

compounds, the hundreds to thousands of descriptors available will lead to overfitting 

if fitting procedures are used without proper caution. Since there are no ‘golden rules’ 

to govern the choice, selection of the ‘right’ descriptors is probably the most 

problematic step in the whole process. 

 Currently, matrix techniques such as principal component analysis (PCA) 

(Hemmateenejad et al., 2003) and partial least squares (PLS) (Geladi and Kowalski, 

1986) are applied to reduce the number of descriptors used. However, the resulting 

convoluted descriptors are often difficult to interpret, and the design of more active 

compounds is cumbersome for a medicinal chemist if the QSAR formula cannot be 

easily understood. 

 The more straightforward descriptors can lead to a model that is more easily 

interpreted, and are therefore still used by many researchers. The traditional way to 

choose the best descriptors for the model from the wide variety available is called 

forward stepping. This is a local search process, in which first one-descriptor models 

are built, of which the best is chosen. Subsequently, one by one those descriptors are 

added that improve the quality of the model most. Since it is possible however that 

there are descriptors that are separately not very informative but extremely valuable 

when combined, global optimization techniques are increasingly being used, among 
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which evolutionary algorithms.  

 A typical example of an evolutionary algorithm to select the descriptors in QSAR 

analysis is the work of Kimura et al. (1998). In their research, CoMFA (comparative 

molecular field analysis, a technique that compares molecules by looking at their 

shapes and the electrostatic fields created by the charges of the atoms) was applied to a 

set of 20 polychlorinated benzofurans. The molecules were superposed and a grid of 

17x15x5 was laid over the superposition. For each molecule the strength of the electric 

and steric field at each grid point was calculated and used as a descriptor. This resulted 

in 2550 descriptors, which, using conventional CoMFA with partial least squares, gave 

a r2 value of 0.96 and a leave-one-out cross-validated q2 value of 0.89.  

 Subsequently, the authors applied their genetic algorithm, GARGS (GA-based 

region selection). First a coarse grid was defined (8x6x5) that divided the molecules 

into larger regions. The chromosomes were bit-strings, each bit encoding the 

inclusion/exclusion of a specific region in the model; a population of 240-bit 

individuals was created. The fitness of each chromosome was calculated by the q2 

value and the best 90% of the population was selected as basis for the next generation. 

Uniform crossover on 10 pairs of chromosomes and bit-flip mutation on all 

chromosomes was applied. Elitism conserved the chromosomes which had the highest 

q2 values among the chromosomes which had as many or fewer parameters (Pareto 

optimality, see section 2).  

 The genetic algorithm resulted in a model with only 8 regions (43 parameters) 

which by partial least squares analysis gave a model with r2=0.97 and q2=0.95. Thus 

descriptor selection not only reduced overfitting but also slightly improved the fit of 

the training set, possibly by removing clutter which prevented the partial least squares 

analysis from finding the optimum. External validation on a prediction set showed 

indeed improvement over conventional CoMFA, the root mean square error decreasing 

from 2.63 to 0.99. GARGS was later used by the same authors in a 3D-QSAR study of 

acetylcholinesterase inhibitors (Hasegawa et al., 1999). 

 An addition to conventional parameter selection was presented by Cho and 

Hermsmeyer (2002). Their algorithm GAS (genetic algorithm guided selection) could 

be used for two purposes. Next to the binary vector indicating use/non-use of 

descriptors, each individual also contained a vector of numbers which divided the 

compounds into several classes. The size of each chromosome was thus equal to the 

sum of the number of descriptors and the number of compounds. However, only one 

part of the chromosome was optimized per run, so compound classification was 

separate from descriptor selection. The fitness decreased with increasing size of the 
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errors in the prediction and increasing number of variables, to prevent overfitting. 

Roulette wheel selection was used to select the parents for one-point crossover or 

mutation. In the case of crossover, the offspring replaced the worst parent if it was 

better. 

 The data set of Selwood and coworkers (1990) was used as a test for descriptor 

selection. The set consists of 31 compounds with their biological activity against 

disease-causing nematodes, measured in vitro. GAS selected the same descriptors in its 

best models as other researchers including Selwood et al. (1990) and Rogers and 

Hopfinger (1994). Subset selection was tested on the XLOGP data set, which contained 

1831 compounds. Here each molecule of the test set was assigned to the set which 

contained the molecule most similar to it, where similarity was measured as the 

Euclidian distance between the descriptor vectors of different molecules. Subset 

selection apparently worked, increasing the r2 for the test set from 0.80 to 0.84. 

Remarkable is that in the XLOGP experiments the r2 of the training set was 

systematically lower than that of the external validation set (such as 0.76 vs. 0.80). 

Perhaps this has something to do with the relatively small size or higher homogeneity 

of the external validation set relative to the training set (19 drugs vs 1831 more general 

organic compounds). 

 In conclusion, the authors demonstrated that their genetic algorithm did work for 

both variable and subset selection, though subset selection may be less applicable for 

the smaller data sets that characterize QSAR.  

 Descriptors often do not correlate linearly to the biological activity. Therefore, 

Rogers and Hopfinger (1994) developed an evolutionary algorithm called GFA 

(genetic function approximation). Its main feature is that it creates individuals that are 

lists of descriptors on which diverse functions are applied, like splines, squaring, or 

squared splines. As an example the descriptor HOMO was used to design the novel 

descriptor <-9.545-HOMO>2, which was combined linearly with the other (derived) 

descriptors. A typical individual thus may look like {C4,<2.301-Ut>,(Ut-2.966)2,<-

9.631-HOMO>2}. One-point crossover is applied, mutations either add a descriptor or 

change the number in the spline function. If a duplicate of the new model does not 

already exist in the population, it replaces the worst individual. The run is completed if 

the score of the models stops improving. 

 The Selwood data set was mined with only basic descriptors (no splines or 

polynomials). GFA indeed found a better descriptor combination than Selwood had 

found (r2=0.72 vs 0.55). In an acetylcholinesterase inhibitor data set of 17 compounds 

and 3 descriptors, linear as well as spline, quadratic and spline quadratic terms were 
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used. The best resulting models had r2-values of 0.85. The population of GFA provides 

the user with multiple models, which are often very similar in quality although they 

contain different descriptors. This allows users to choose the model they intuitively 

regard as the best. This is a very interesting point in QSAR analysis, yet choosing the 

‘right model’ is even more poorly defined than choosing ‘the best descriptors.’ The 

GFA method has been implemented in commercially available software, such as 

Cerius2, and has led to a number of publications by users of that software. Shi and 

coworkers (1998) selected 112 ellipticine analogues from the compound database 

maintained by the National Cancer Institute (NCI). They were able to derive 

meaningful QSAR models with the GFA method after the users had subdivided the 

ellipticine data set manually into structurally homogeneous classes. GFA using splines 

yielded cross-validated r2 values that were consistently about 0.3 units higher than 

those derived by stepwise linear regression.  

 Lu�i� et al. (2003) used GFA and other approaches for descriptor selection on 4 

different data sets and were somewhat less impressed by the method. This may have to 

do with the fact that they did not allow GFA to use splines, and that they did not use 

stepwise selection but another genetic algorithm to select the descriptors for the 

multiple linear regression, to which they compared GFA. 

 Of course, a QSAR relationship does not have to be the weighed average of a 

number of descriptors. Linear models are commonly preferred due to their simplicity 

and smaller risk of overfitting. However, many investigators are tempted to experiment 

with different types of relationships. After all, many processes in nature are inherently 

nonlinear. Yasri and Hartsough (2001) elaborated on the combination of a genetic 

algorithm and a neural network, which also allows non-linear relationships to be found. 

The authors used a conventional descriptor-selecting genetic algorithm (single point 

crossover, bit flips, offspring replaced the parents if it was better) to select 6 

descriptors out of the 404 available for a data set of 54 benzodiazepine derivatives. 

They found that the q2 was enhanced by the GA/NN combination with respect to 

multiple linear regression with stepwise descriptor selection (0.90 vs 0.80). It is not 

clear in this case whether the improved q2 is due to the incorporation of non-linearity 

by the neural network or due to the superior descriptor selection by the genetic 

algorithm. 

 Neural networks were also used by So and Karplus (1996) who found that the 

evolutionary programming employed gave a more robust optimization of the descriptor 

set than the GFA-based genetic algorithm. The Selwood data set was analyzed and an 

r2-value of 0.76 was found. Additionally, the authors performed exhaustive 
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enumeration over all three-parameter sets and found that the EP-based algorithm found 

all of the best 100 solutions with the exception of the 95th, the GFA-based one found 

only a few. The most likely reason for this is that the EP only replaced parents if the 

children were better, the GFA replaced all parents regardless of the quality of the 

children. 

 Finally, evolutionary algorithms have also inspired researchers to seek beyond the 

standard descriptor used/not used bit strings. One of these methods is FRED (fast 

random elimination of descriptors) by Waller and Bradley (1999). Data sets were 

preprocessed by eliminating zero variance descriptors and descriptors that were 

collinear to other descriptors. Subsequently FRED started with a population of models 

composed of either a fixed or variable number of randomly selected descriptors. To 

prevent overfitting, the rule of thumb was used that there should be at least five 

compounds per descriptor. The maximum chromosome length was thus set to 6 for the 

Selwood data set. A progeny factor was used to ensure that the population did always 

contain enough individuals to include each descriptor on average “progeny factor” 

times. The user specifies a “kill factor”, which divides the population in a part of 

higher and lower fitness. Those descriptors occurring only in the low-fitness part are 

considered deleterious and are eliminated from the descriptor pool using a tabu-like 

process. After every generation, a new population is generated from the remaining 

descriptors.  

 As mentioned, FRED was tested on the Selwood data set. The original 53 

descriptors were reduced to 23 in the preprocessing step, and FRED was applied with a 

kill-factor of 5% and progeny factor of 30. The authors concluded that their algorithm 

performed efficiently and quite similar to alternative algorithms, yielding the same 

‘optimal’ solutions (r2 of 0.83, q2 of 0.69). 

 A good in-depth review of the somewhat older literature on evolutionary 

algorithms in QSAR is given by So (2000). 

 

Conclusion 

Quantitative structure activity relationships form a terrain in which evolutionary 

algorithms have been applied many times. The most likely reasons for this are that the 

presence and/or absence of descriptors is readily encoded using a standard genetic 

algorithm, and that the fitness of individuals can easily be calculated using available 

statistical techniques. 

 Evolutionary algorithms indeed seem to be valuable to the QSAR process since 

they are able to find better combinations of descriptors than the traditional local search 
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processes, as stepwise addition or elimination, can.  

 Nevertheless, there remain some caveats when applying evolutionary algorithms 

to QSAR. 

 The first of these is that the data sets should be picked carefully. It is encouraging 

that a standard data set seems to have been chosen to enable comparison between the 

different methods, yet this Selwood data set is a somewhat unfortunate choice from a 

biological point of view. It is relatively small, only 31 compounds, yet the measured 

biological activity, the killing of the nematodes, is a complex function of the membrane 

penetration of the compound, its cellular metabolism and its interaction with the target 

receptor. This multitude of biological processes makes it unlikely that the activity of 

the Selwood set can be truly explained by using only six descriptors. Direct 

measurements of receptor or enzyme affinities would be more valuable since these 

would include fewer intervening factors. 

 A second point is that biological measurements tend to have quite large margins of 

error (about 0.5 log units). It therefore remains to be seen how much a slightly 

improved r2 value really means since the inaccuracy of biological data does not allow 

us to choose between models which differ only slightly in performance. 

 From a point of view of a medicinal chemist, it seems that researchers in the 

QSAR-field have been introducing more descriptors, and more complicated, nonlinear, 

methods over the last few years. This development may have been prompted by the 

need to improve the predictiveness of the models. Though these developments offer 

opportunities for improved modeling –and even more opportunities for overfitting- 

there are some practical problems in interpreting and using the results.  

 Neural networks in particular are difficult to interpret and do not readily suggest to 

the chemist how a structure can be improved. Another computational method, like a 

evolutionary algorithm, may be necessary to perform “inverse QSAR” to find better 

structures in such a case. The structures can then be optimized using the predicted 

biological activity as a fitness function. However, the problem remains that results 

researchers do not understand are often used reluctantly, if at all. 

 A striking observation is that most QSAR techniques find a wide range of models 

that differ only minimally in their fitness, yet contain entirely different descriptors. 

This makes one wonder about how the “quality” space looks, and whether the 

descriptor sets do not rather describe similarity between compounds of similar activity 

instead of producing formulas that can be truly extrapolated beyond the measured 

activity range of the tested compounds. For instance, logP, a measure for lipophilicity 

and therefore membrane penetration, is almost always significant in a “Selwood”-
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QSAR. This implies that a factor that is really important in such a system does surface 

consistently; the other descriptors however may be more “classifying”, rather than 

“causing” the activity. 

 Such classification would however not help much in achieving the real purpose of 

QSAR, which is to find a formula which predicts biological activity with such accuracy 

that one can use it to design new compounds with higher biological activity than the 

compounds of the training set. Unfortunately, none of the articles reviewed here 

contains this extrapolation step that would be crucial for validating the usefulness of 

the models. 

 In conclusion, evolutionary algorithms seem to improve the parameter selection of 

quantitative structure-activity relationships, especially since they can be applied to 

other than linear models. The main problem for further application of evolutionary 

algorithms is not so much in improving the quality of the models, but in testing 

whether the models can extrapolate reliably. Leaving the most active compounds out of 

the training set and using them as validation set might provide such a check. This has 

not been done in the articles discussed and is generally neglected in other QSAR 

publications. The reason for this may be that QSAR is known not to be very well suited 

for extrapolation; results such as q2 values are likely to be much worse if the omitted 

data points have to be extrapolated. The failure of QSAR in these cases is rather a 

weakness of the current implementations of the QSAR paradigm than of the 

evolutionary algorithms used to optimize the parameter choice. A second opportunity 

for application of evolutionary algorithms would be to increase the availability of 

models. Next to the traditional linear models and neural networks, genetic 

programming might be applicable to find novel ways to combine existing descriptors. 

Also there is still an avenue less explored by evolutionary algorithms, i.e. to use the 

QSAR models for reverse engineering of compounds. Synthesizing and testing these 

compounds will truly test the validity of the QSAR methods employed and the value of 

evolutionary algorithms therein.  

 

 

6. Evolutionary Algorithms in Ligand Docking 
 

Ligand docking, generally simply called “docking” in the medicinal chemistry 

community, places a small molecule, called the ligand, into a protein in the same way 

that nature does. Docking could be compared to a 3D jigsaw puzzle, in which the 

pieces can be turned in more than four ways and can also change shape.  
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Docking is a very important tool in medicinal chemistry. If one can reliably predict 

how a molecule will bind to a protein, visual inspection of the fit may give information 

to the drug designer at which positions the molecule fits well, at which positions there 

is a worse fit, etc. Based on this information a molecule can be designed that binds 

more strongly. Also, if the original molecule would not be suitable as a drug due to its 

toxicity or other undesirable properties, one can dock other molecules and select those 

that seem to bind well for further testing; this can be much cheaper and faster than 

measuring the binding strengths experimentally. 

 In the ideal case, a docking program would give the medicinal chemist a list of 

alternative docking options of the ligand into the receptor, and assign to each docking 

an energy value indicating the binding strength. If the docking procedure is really 

perfect, there will be a sizeable energy difference between the best and second-best 

conformations, which indicates a large chance that the best docking is also the true 

docking. 

 However, so far no program has reached this ideal. There are two main reasons for 

this: 

1) The energy function is often not very accurate. This means that there may be 

docking options of the molecule that are in reality higher in energy than the real 

docking, but are indicated by the energy function as lower in energy (the lower the 

energy is, the better the docking). Some interactions between the molecule and the 

receptor, such as hydrophobic interactions and entropic effects, are notoriously 

difficult to model. 

2) The search space is often very large. The ligand has three translational and three 

rotational degrees of freedom, as well as one degree of freedom for each rotatable 

bond. Additionally, the hydrogen atoms in the receptor, which are usually not 

visible on the X-ray crystallographic structure, also must be in the right orientation 

for good binding between protein and the ligand. All these degrees of freedom 

result in a search space of about 1020 to 1030 possible docking options, which 

cannot be searched fully.  

Although docking is certainly not easy, much effort has been and still is being spent 

improving existing methods and developing new ones. After all, the structure of the 

protein target itself will give much more information for drug design than any QSAR 

model based on just the ligands can. A perfect docking program would be incredibly 

valuable, one of the holy grails of drug design.  

 Many docking techniques have been developed so far. The following part of the 

review will discuss the role of evolutionary algorithms in the more recent applications.  
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A well known and often used example of evolutionary algorithms in docking is GOLD 

(Genetic Optimisation for Ligand Docking) developed by Jones et al. (1997). This is a 

genetic algorithm that uses chromosomes encoding the internal torsion angles of the 

ligand, as well as two integer strings representing hydrogen bonds between the ligand 

and the receptor. The latter replace the more conventional “location and orientation” 

parameters, since the location and orientation of the ligand is determined by least-

squares fitting of the ligand’s hydrogen donors and acceptors onto those of the protein.  

 Each individual is evaluated by first performing the least-squares fit of the 

hydrogen acceptors and donors of the ligand onto the hydrogen donors and acceptors of 

the protein. Subsequently the internal energy of the ligand and the ligand-protein 

interaction energy are calculated, the sum of which determines the fitness of the 

docking. The population is divided into 5 subpopulations with 100 individuals each. 

The operators are crossover, mutation and migration, which are applied as alternatives 

rather than sequentially. Mutation and crossover differ for the binary (torsional) and the 

integer (matching) part: bit flip mutation and one-point crossover are used for the 

binary string, mutation to a random valid value and two-point crossover is applied on 

the integer string. Additionally, a niching technique is used, which makes new 

individuals replace the worst individual of a similar subgroup instead of the worst 

individual of the entire subpopulation.  

 The genetic algorithm was tested on 100 protein-ligand complexes, and run 20 

times on each. The resulting conformation of lowest energy was compared with the 

corresponding crystal structure. In 71 out of 100 cases GOLD found acceptable 

solutions, in which all or most parts of the ligand bound to the right place in the 

receptor. Also the genetic algorithm generally did not need 20 runs, in 49 out of 100 

cases 2 runs were enough. However, errors in the scoring function found a false 

minimum in at least seven of the 100 cases and regarded it as superior to the crystal 

structure, which is biologically spoken not probable. Other problems encountered 

involved ligands that had too few hydrogen donors and acceptors, which made the least 

squares fitting work poorly, and inaccurate protein structures. If the protein structure 

had a resolution more accurate than 2.5Å, GOLD succeeded in 77% of test cases, else 

it succeeded in only 52%. Finally, in some cases the structure of the ligand was 

distorted by the protein, therefore docking using the normal ligand failed. 

 All in all, GOLD seems an interesting computer program that can dock ligands 

over a wide range of test systems. The authors indicate that incorporating protein 

flexibility in the algorithm would be a useful addition, though probably not necessary 

in all systems. 
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Morris et al. (1998) also used a genetic algorithm, but added Lamarckian evolution 

(Autodock). In every generation 6% of the population was optimized using local search, 

and the improved parameters were written back to the genes. The chromosome here is 

a string of real-valued genes. The first three values are the Cartesian coordinates of the 

ligand, the four following values define the orientation. Usually three are sufficient for 

orientation, but then the so-called “gimbal lock” problem may occur, in which an 

unfortunate rotation can make two rotational axes of the object point into the same 

direction. The last values represent the internal torsion angles. Crossover is two-point 

and always takes place between genes. After crossover the mutation is performed, in 

which the values are mutated using a Cauchy distribution. A population of 50 

individuals was used, and a maximum of 27000 generations or 1.5×106 energy 

evaluations.  

 Seven protein-ligand complexes were docked with the Lamarckian genetic 

algorithm, and for comparison purposes also with simulated annealing and a normal 

(non-Lamarckian) genetic algorithm. Ten runs were performed per method per 

complex. It turned out that the Lamarckian genetic algorithm clearly outperformed 

simulated annealing, which had a large root mean square distance of the fitted relative 

to the crystal docking (>3Å) in 2 out of 7 cases. The root mean square distance 

between fitted and real ligand was quite small in both the Lamarckian genetic 

algorithm and the genetic algorithm (under 1.5Å). The energies in the Lamarckian 

algorithm were slightly lower, though at the cost of more energy evaluations. 

Additionally, the Lamarckian genetic algorithm found the minimum conformation in 

78% of the runs, the genetic algorithm and simulated annealing reaching 40% and 24%, 

respectively. As a validation, the binding energies returned by the fitness functions 

were compared to the experimental binding energies. The prediction error ranged from 

–3.89 to +9.93 kcal/mol, which means that predicted binding affinities vary by a factor 

1000, which is the difference between very good and quite bad ligands. The largest 

deviation, 9.93 kcal/mol for the streptavidin/biotin complex suggests that the protein 

flexibility might be too important to neglect in this case. 

 Several attempts have been made to improve upon this Lamarckian algorithm. 

Hart et al. (2000) performed experiments with different settings of the local search and 

found that improvement was possible by taking another local search algorithm, a 

pattern search method, instead of the previously used Solis-Wets algorithm, and 

increase the number of steps in the local search procedure. Other experiments of the 

same author used self-adaptive evolutionary programs and evolutionary pattern search 

algorithms (Hart et al., 1999). The evolutionary programs could adapt the step size of 
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all search parameters, while the evolutionary pattern search algorithms used only one 

step size which was slowly decreased over the course of the evolution. The 

evolutionary pattern search algorithm was configured in such a way that theory 

guaranteed that it would converge to a stationary point. While both methods performed 

decently, they were still outperformed by the optimized local search method. 

According to the authors, this indicates that the local search had a more extensive 

effect on the evolution than just performing localized step length adaptation. 

 Thormann and Pons (2001) parallellized the Autodock algorithm for use on multi-

processor machines, and called the result EGA/LS (Enhanced Genetic Algorithm with 

Local Search). Dividing the population between the processors resulted in a natural 

island model, which proved to be superior to a single-population model. For the more 

difficult test cases the island model was more effective than a pooled population (the 

minimum found in 76% vs 66% of docking options). Migration between the 

populations was taken care of by one individual called the “king”. The king could be 

overwritten by the fittest individual with a certain chance, and the king itself 

occasionally overwrote some individuals in the subpopulations. In each run, the 

subpopulations were randomly initialized three times, but after the first and second 

round the king was kept, seeding the populations slightly so that convergence could be 

reached faster.  

 Three test cases were taken, which took on average about 9 seconds to dock. 

Unfortunately, no root mean square distance data was given by the authors. Hence one 

cannot know whether the crystal structures were reproduced. One hundred runs were 

made with eight subpopulations of size 25. In general, since docking within one run is 

not assured, the authors advise to use at least three test runs for each complex. The 

main problem encountered was that when many degrees of freedom were taken into 

account (all torsion angles of the ligand and some of the protein as well), the 

optimization got stuck in local minima. However, the local minima that EGA/LS found 

were lower in energy than those discovered by GA/LS, indicating that splitting the 

docking populations at least offers enhanced possibilities to escape from local minima. 

 More recent work based on AutoDock has been described by Thomsen (2003). 

The author did experiments to optimize the evolution parameters of the evolutionary 

algorithm used by AutoDock. The optimal settings were found to be a population size 

of 100, and mutation which was a slowly annealed Gaussian. Arithmetic crossover, 

which creates offspring out of a weighted combination of the genes of the parents with 

in this case a random weight for each gene, was found to be superior to the traditional 

single point, two-point and uniform crossover. Strikingly, the new evolutionary 
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algorithm did not profit from adding the Lamarckian local optimization. While the 

improved evolutionary algorithm showed no significant improvement over the 

Lamarckian genetic algorithm in the three simplest test cases (7-11 dimensional search 

space), it improved upon its predecessor in two of the three more complex test cases 

(12-18 dimensional search space). Ironically, though the docking energies found were 

generally lower, the root mean square distances from the crystal structures were 

slightly increased from those found by the Lamarckian genetic algorithm. The 

efficiency was increased however, the “DockEA” needed only 50,000-150,000 fitness 

evaluations, while the Lamarckian genetic algorithm needed over 250,000 evaluations 

to obtain accurate and reliable results. 

 From these experiments the author concluded that the energy function needs some 

improvement to make the lower docking energies also correspond most closely to the 

crystal structure, but the deterioration of docking quality in one of the more 

complicated test cases relative to the Lamarckian algorithm indicated that the balance 

between exploration and exploitation is sensitive to the protein structure, and testing on 

more complexes would be required to refine the docking algorithm. 

 Among the evolutionary algorithms, genetic algorithms have been most prominent 

in docking. Yang and Kao (2000) however created a docking method called FCEA 

(family competition evolutionary algorithm), which is more similar to evolution 

strategies. Next to the vector of real numbers encoding the location and orientation (6 

numbers) and the torsional angles of the ligand, each individual contains three 

additional vectors. They are of the same size as the data vector, encoding the 

parameters for a decreasing-based Gaussian mutation, self-adapting Gaussian mutation 

and self-adaptive Cauchy mutation, respectively. Thus, each gene in each individual 

has three self-adaptive mutation parameters. The mutation step consists of subsequent 

application of the three mutations (decreasing, Gaussian, Cauchy). In each of these 

submutation steps each member of the population generates l children by mutation or 

recombination with another member of the parent population. The fittest of the children 

survives. In most cases, from each pair of father-child the best survives into the next 

generation, sometimes however from the entire population of n parents and n children 

the n best solutions are selected. For further details on the rather intricate procedures 

and many parameters used in this algorithm the reader is referred to the publication 

itself. 

 The resulting program was subsequently tested on one protein, the enzyme 

dihydrofolate reductase, with three different ligands. Population size was 50, the 

maximal number of generations 250. The results were compared to those of DOCK and 
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other docking programs. While DOCK found the best fit to the crystal structure 

(RMSD 0.6Å vs 0.67Å), the average fit (over 20 runs) by FCEA was better (1.37Å vs 

2.4Å). However, using only one protein structure for comparison seems a bit meager 

for a conclusion on the general competitiveness of this method. 

 Since evolutionary algorithms are by far not the only computational methods used 

for docking, Vieth et al. (1998) made a comparison between three common methods: 

molecular dynamics, Monte Carlo and a genetic algorithm. The genetic algorithm was 

kept relatively simple. The population of 90 individuals was split over five 

subpopulations with an elitism of 2 per subpopulation. In each generation, the 

individuals were modified by using single-point crossover, mutation or migration. In 

migration, two individuals were exchanged between subpopulations. The search was 

performed in two stages for each algorithm, in which the parameters in the second 

stage were adapted to fine-tune the solutions found in the first phase. 

 Five ligand-receptor complexes were used as the test set. It turned out that the 

genetic algorithm worked best for small search spaces in which the ligand was located 

within 3Å of its actual binding site and the molecular dynamics performed best for 

larger search spaces, within 11Å of the binding site. While the genetic algorithm gave 

the highest fraction of runs that found a good docking, the molecular dynamics 

algorithm returned the conformations with the lowest energy and closest fit. 

 Combination of the different computational techniques is also possible. An 

example of this is the Mining Minima optimizer (David et al., 2001), which uses a 

combination of the so-called global underestimator method, genetic algorithms and the 

poling method of Smellie et al. (1995). However, it is possible to regard it as an elitist 

genetic algorithm with some twists. First a large population of individuals is created 

within a certain search region. The individual with the lowest energy is used as the 

center around which the next generation of docking options is created. After each 

generation the width of the search region is narrowed down. To prevent the rediscovery 

of energy minima, exclusion zones are placed around previously found minima. There 

is a crossover-like operator, which combines a newly designed individual by partially 

copying information of a previously found minimum into it. The modified new 

individual is then placed in the next generation.  

 The authors tested their method on 27 complexes and compared their method with 

the genetic algorithm, simulated annealing and tabu search of PRO_LEADS, as well 

with AutoDock, FlexX and MCDOCK. Also nine of the “difficult cases” of GOLD 

were tackled with the Mining Minima optimizer.  
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The median docking time of the Mining Minima optimizer turned out to be about 1.2 

minutes. The results of the comparison with the other programs indicate that the 

Mining Minima method is comparable to PRO_LEADS and the other programs; 

occasionally it scores higher, sometimes lower. The authors point out that in some 

cases the fit was good, yet the “objective” root mean square distance criterion indicated 

low quality. In some of these cases the solvent accessible parts of the ligand, which are 

relatively free to move, cause the main part of the error. This contribution is however 

not very relevant since these parts do not influence the quality of the docking, which is 

defined by ligand-protein interactions. Six out of nine of the docking options that were 

difficult for GOLD were solved. Three remained problematical: in one case the crystal 

structure itself was suspect, in the other two cases the global minimum was found at 

another place than the binding site. 

 If the elaborate comparisons in this article make one thing clear, it is that the 

different algorithms are more or less suitable for different complexes, since no method 

is superior over all other methods in all investigated complexes. Moreover, some 

complexes seem much more difficult to solve than other complexes, whichever method 

is used. 

 

For a broad overview of the many different methods (genetic, simulated annealing, 

fragment-based methods, etc.) of docking and the many programs using these, the 

review of Taylor et al. (2002) is recommended. 

 

Conclusions 

Several evolutionary algorithms have been developed for docking ligands into the 

active site of proteins, and all obtain reasonable to good results, quite like the other 

heuristic algorithms. It is so far doubtful whether evolutionary algorithms have 

inherent advantages that make them more efficient for docking than for example 

simulated annealing. Since the coordinates of all atoms depend on the location and 

orientation and many of the torsion angles, this high coupling would make it very 

unlikely that there are small simple building blocks that can be recombined with each 

other into larger, high-quality building blocks. This view seems to be supported by 

findings such as that of Thomsen (2003) that arithmetic crossover outperforms the 

more conventional uniform and one- or two-point crossovers. Several promising 

techniques have been found, such as introduction of subpopulations, employing local 

optimization next to the normal genetic algorithm, and using different crossover and 

mutation methods. Further investigation is necessary, however, to conclude whether 
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combining these will further improve docking efficiency and efficacy.  

 In any case, several authors have displayed great ingenuity in introducing novel 

and complex operators, most notably Yang and Kao (2000). Yet the arguments for this 

complexity are lacking, with the possible exception that the other methods do not work 

perfectly. If the complexity of the evolutionary algorithms is enhanced, it should be 

done either carefully and on the basis of solid experimentation, that is, study of many 

complexes, or it should be based on knowledge of the chemical and biological reality. 

Otherwise such methods might “overfit” their docking options due to an overdose of 

adjustable parameters and a paucity of test cases. 

 However, comparison of the diverse methods employed is extremely difficult 

since the three separate components of the docking procedure (fitness function, search 

method and test data) are generally different per article. A desirable development for 

this field would be the introduction of a library of standard search algorithms, fitness 

evaluators and test data sets. Only then a new algorithm can be truly compared to 

existing ones.  

 Another development would be the incorporation of protein flexibility. Proteins 

can dock different small molecules in their active site. Most method developers, 

understandably, have docked the ligands of known complexes and compared those to 

the crystal structures. But is a crystal structure of the protein in which ligand A is 

docked also suitable for docking ligand B? Or would subtle differences in the protein 

conformations prevent finding the real docking? Such extrapolation is of vital 

importance for predicting the binding of series of molecules, and may necessitate 

extending the algorithms with some protein flexibility. 

 Further advances are also needed in the area of fitness functions. Since some 

discovered docking modes have lower energy (according to the computer) than those of 

the crystal structures, the energy evaluation procedures should be improved. Training 

the force fields that evaluate the fits by finding the right parameters and formulas might 

by itself also be an interesting field for applying evolutionary algorithms (an 

application of an evolutionary algorithm in descriptor selection for such a model is the 

work of Deng et al. (2004), see section 8). 

 The ultimate goal of docking algorithms, taking a protein structure and a ligand 

structure and calculating both the position in which the ligand will be bound and the 

affinity of the ligand for the receptor, will probably need the following extensions of 

existing docking algorithms: 

1) Addition of protein flexibility to accommodate the binding of different ligands and 

correct for errors in the crystal structure. 
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2) Addition of water molecules to the active site; these can influence binding as well. 

3) Calculation of the changes of entropy on the protein, the ligand and the water 

molecules during the binding process. 

In conclusion, much remains to be done in the field of ligand docking. It is not certain 

yet whether the docking algorithm of the future is a pure evolutionary algorithm, basic 

simulated annealing, or one of the other methods currently applied. Most likely the 

ultimate docking method will incorporate the most suitable properties of existing 

search methods combined with chemical and biological heuristics. There is still a long 

way to go before ligands can be docked automatically, accurately and with good 

binding energy estimations into their receptors, but the end result will undoubtedly be 

extremely worthwhile. 

 

 

7. Evolutionary algorithms in de novo design 
 

To find molecules with a specific biological activity, compound libraries are 

commonly screened. However, “only” about 1010 structures have been synthesized by 

chemists thus far, while the number of all possible drug-like molecules is estimated to 

be at least 1060 (Gillet, 2000). Clearly, designing new molecules may be required to 

cover more of this “chemical space” and to find a molecule that would be a more 

suitable drug against a certain disease than any currently known molecule. This process 

of designing new molecules is called de novo design. 

 Applying computer programs to design molecules seems an obvious choice, 

especially since computers can create virtual molecules much faster than humans can. 

However, the set of all possible molecules is difficult to search systematically. One of 

the reasons for this is that the number of possible mutations rises with the size of the 

molecule. If one defines a mutation as a single step in chemical space (changing/ 

adding/removing an atom or bond), the number of orthogonal steps/dimensions 

increases with the number of atoms in the molecule. So a “normal” drug molecule, 

which may contain e.g. 20 non-hydrogen atoms, can have over one hundred possible 

one-atom mutations. This results in a very high-dimensional search space, and the 

dimensionality will only increase when larger molecules are allowed. This makes a 

systematic search of all possible molecules to find those with the desired properties 

quite difficult. Also, a molecule is a graph and therefore is difficult to represent by the 

traditional vector notation of a genetic algorithm. Additionally, the rules of chemistry 

limit the number of possible molecules by demanding that e.g. every oxygen atom has 
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two bonds, and every carbon atom four. Therefore, mutation from a carbon atom to an 

oxygen atom will always involve some additional modification of the molecule, like 

removing hydrogen atoms. This is sometimes possible, sometimes not, depending on 

the rest of the molecule. Lastly, developing a proper fitness function is probably the 

most challenging problem of all. Since experimental fitness evaluation is slow and 

expensive, the search goes on for computational methods that predict the properties of 

a molecule reliably.  

 To find promising molecules in the vast chemical space, several different 

evolutionary algorithms have been developed and applied to a variety of de novo 

design problems. A good review on some of the older work has been written by Gillet 

(2000). This review will only briefly discuss the earlier work and mainly cover the 

work performed in the last few years. 

 

One of the first and best known applications of evolutionary algorithms in de novo 

design is the work of Glen and Payne (1995). Since a molecule is a graph that can 

contain cycles, a traditional linear chromosome with bit-flip mutations could not be 

used. Therefore a graph representation of the molecule itself was used as genotype, in 

conjunction with linear chromosomes which indicate the position and orientation of the 

molecule and the torsion angles, similar to ligand docking.  

 Mutation of the orientation, position and torsion angles was performed using an 

approximated Gaussian function. The structure of the molecule could be altered by a 

set of eight mutations, which included adding and deleting atoms or groups of atoms, 

forming and breaking rings, and changing atom types. Crossover could be 1-point or 2-

point between single, non-ring bonds that occupied approximately the same 3D-

coordinates. The fitness function consisted of a weighed combination of scalar 

properties of the molecule such as molecular weight, surface properties and the fit of 

the molecule on a predefined grid. Selection was done by the roulette wheel method. 

 The authors performed two experiments. One experiment was aimed to design 

molecules that resemble ribose, the other to design molecules that fit the active site of 

the bacterial enzyme dihydrofolate reductase (DHFR). Population sizes of 50-100 were 

used, since lower sizes such as 10 were found to be too erratic due to premature 

convergence. Evolution indeed improved the fitness scores from 100 to –30 for the 

ribose analogs. Also, the average score of the best four molecules in the initial 

population of the DHFR experiment was 26.3, but converged after 32 generations  

to –32.1.  
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The authors envisioned two extensions to their program. The addition of metal atoms 

and transition states might be useful to mimic enzymes better. Another important 

improvement would be a fitness function that gives a more biologically relevant value, 

such as binding strength. This would also eliminate the need to set the relative weights 

of the many fitness criteria manually, which is far from objective. Nevertheless, the 

diverse mutations and the 3D-representation of the molecule were designed very well, 

and as of yet few de novo design programs have improved on Glen and Payne’s work 

in these respects. 

 Worth mentioning as another pioneering study of evolutionary algorithms in de 

novo design is the work of Westhead et al. (1995). The authors first generated and 

superposed an initial population of molecules, which formed the input for the 

evolutionary algorithm. Similar to Glen’s work, molecules can be crossed only if they 

have single bonds that lie near each other in the superposition. However, mutation is 

limited to rotation of torsion angles, and the fitness function is less sophisticated than 

Glen’s, being the number of functional groups that overlap the functional groups of a 

known molecule in a superposition. Analogs of the molecules distamycin and 

methothrexate were nevertheless found and scored higher than the initial population of 

molecules.  

 However, though the molecule itself is a graph, the genotype of the molecule does 

not have to be a graph. Other representations might have advantages for an 

evolutionary algorithm. 

 Nachbar (1998) developed a evolutionary algorithm that converted the molecule 

graph into a tree, in which cycles are represented by special ring nodes. Mutation 

involves changing the atom types or bond orders, but crossover is responsible for the 

major part of structural change. The crossovers are very much like those of genetic 

programming, though subtrees containing an open ring bond are not exchangeable. The 

fitness function was a graph descriptor-based QSAR which predicted toxicity of the 

compound in tadpoles. After the population of 50 individuals had been evolved for 50 

generations, 30% of the molecules were in the desired activity range. In this case it is 

somewhat difficult to establish the efficiency of evolution since no data were collected 

on the evolution of the population’s fitness during a run (R.B. Nachbar, personal 

communication). 

 The algorithm did have some small problems, such as that many molecules in the 

final generation were identical, which is not very useful for a chemist who wants as 

many alternative solutions as possible. Checking for duplicates will probably be 

important in any de novo design method. A problem caused by the tree-like 
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representation was that ring manipulation was difficult. The author would have liked to 

be able to expand, contract and break rings at other positions than the ring closure bond, 

but this was not easy to implement. 

 The ring opening problem was solved in subsequent work of the same author 

(Nachbar, 2000) by inverting/re-rooting subtrees. The fitness function changed to 

molecular similarity, and several test molecules were recreated by the evolutionary 

algorithm, with the exception of a large polycyclic molecule, which turned out to be 

difficult to generate due to the surrounding local optima. 

 Douguet et al. (2000) used the chemical SMILES-notation (Weininger, 1988) to 

represent the molecules. SMILES is also tree-like, yet contains fewer brackets since 

hydrogen atoms are not explicitly stated and the superfluous brackets in the linear parts 

of the molecule are omitted. Two crossover operators, one-point and two-point, were 

implemented, as were thirteen mutation operators (though the article, oddly, describes 

only eight). These were quite similar to Glen’s, though ring breaking was absent. This 

may be due to similar problems as Nachbar encountered with tree representations. 

Fitness was calculated as a weighed sum of a few physicochemical criteria, such as the 

solvent accessible surface and the dipole moment of the molecule, which had to be in a 

certain range, and roulette wheel selection was used. As test cases, the target criteria 

were set to the properties of retinal and salicylic acid. The evolutionary algorithm did 

indeed find mimics of these molecules. The structures of some of the molecules were 

adapted by medicinal chemists to make them easier to synthesize. In contrast to the 

work of Nachbar, the authors considered crossover to be very much like a 

macromutation due to the tree-like representation, and it was applied much less 

frequently than mutation.  

 Globus et al. (1999) handled rings more elegantly by using “genetic graphs”. 

These have the advantage that they look very similar to real molecules. A crossover 

operator was implemented which could easily cross over rings, which had not been 

done yet by other authors. However, no mutation operator was used. This had the 

unfortunate result that if a generation happened to contain only rings, no chains could 

be generated, and vice versa. The fitness function was graph similarity to a specific 

molecule. Globus demonstrated that his algorithm can indeed recreate complex 

molecules, even those which have different atom types and a complex structure, like 

the five rings-containing morphine. The authors acknowledge, however, that 

rediscovering known molecules is not very useful, and that a fitness function that gives 

biological activity should be implemented. 

 



55 

 

Simplifying the representation of the molecules can work, but tends to restrict the 

possible mutations. This may make an escape from local minima more difficult. 

Another way to apply the evolutionary algorithms more easily is to adapt the problem 

domain and only consider subsets of molecules which have a relatively simple 

structure. 

 Schneider et al. (1998) used experimental data on the biological activity of 

peptides to train a neural network to predict activity from structure. Subsequently an 

evolutionary algorithm was applied that chose the best individual from the initial 

population. Since peptides are linear chains of amino acids, a linear chromosome can 

be used. Mutation can then be performed by picking a position and substituting the 

amino acid there by another amino acid. The best peptide filled the next generation 

together with its mutants, after which the new best peptide was selected. Unfortunately 

the neural network made quite inaccurate predictions, which was aggravated by the 

errors in the biological data used to train it. Nevertheless a peptide with comparable 

activity to the seed peptide but a very different sequence was found.  

 Related work was performed by Patel et al. (1998) who focused on bactericidal 

peptides. A training set of 29 peptides with measured biological activities was used. 

Using this set, 29 multi-layer perceptron neural networks were created, each based on 

28 peptides. The fitness value was taken to be the average of these 29 models. The 

genetic algorithm used was somewhat more conventional than that of Schneider et al., 

having a population of size 100, elitism that conserved the best 25, probability of 

crossover (two-point) 0.6 and probability of mutation 0.033.  

 The genetic algorithm was shown to be much more efficient than Monte Carlo or 

random search in finding peptides with high predicted activity, since only 0.008% of 

randomly generated peptides were in the desired activity range, 0.5% of those 

generated by Monte Carlo but 7.2% of those made by the genetic algorithm. Of the 

more than 400 candidate peptides that were generated by the genetic algorithm, the 5 

most diverse were synthesized and were shown to have high-ranking bactericidal 

activity. 

 With the traditional fixed-size chromosomes the length of the peptide cannot be 

modified; this may however be important for optimizing activity. Kamphausen et al. 

(2002) solved this problem by implementing n×m crossover. This technique selects a 

group of parent peptides and aligns the sequences. It enables the shorter sequences to 

align with the longer sequences by filling the empty space at the end of the shorter 

sequences by repeating the first part of that sequence until the maximum length is 

reached. The length of the child peptide is then determined by averaging the length of 
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the best parent peptide and the average of the other parent peptides. Subsequently, the 

child is assembled by taking one value per column in as many aligned columns 

necessary to reach the target length. The implemented version of this mutation also 

allows the sequence to “shift”, which can lengthen and shorten the sequence at both 

ends. 

 The program was used to find a peptide that optimally inhibited the blood clotting 

protein thrombin. The population contained 123 peptides of lengths 6 to 12, whose 

fitness was determined experimentally. Four cycles of design and testing were 

performed. With each generation the average activity increased, and in the fourth 

generation a very active inhibitor was discovered. It was more potent than known 

peptide inhibitors of thrombin, and this experiment can thus be considered to be 

successful. 

 

Peptides, however, are currently only rarely used as drugs since they generally have 

unfavourable physico-chemical properties. Conventional drugs are much smaller 

molecules, which can be absorbed more easily by the body. Schneider acknowledged 

this and also created a evolutionary algorithm for small molecule design, TOPAS 

(Schneider et al., 2000a,b). This program again uses Schneider’s method in which only 

the fittest individual survives and procreates, but uses molecule fragments instead of 

amino acids. A subset of about 3 of approximately 25,000 fragments is converted by 

the algorithm into a real molecule. The fragments also contain data on the connections 

they can form, which should allow the constructed molecule to be easily synthesized in 

the laboratory. Mutation is implemented by replacing a fragment by a similar fragment 

with the same type of attachment point. The fitness function calculates the similarity of 

the constructed molecule to a known ligand.  

 In the test case, TOPAS identified a ligand chemically not very similar to the 

original molecule, but with receptor affinity, be it a 1000-fold less potent. While one 

could not yet argue that this evolutionary algorithm develops structures that improve 

the affinity of a known ligand, it can find compounds with a similar kind of activity in 

a very different class of chemical structures. 

 The fragment-based approach was also used by Pegg et al. (2001). However, in 

their algorithm runs use far fewer different fragments (in the order of dozens). Acyclic 

graphs containing maximally 16 fragments are constructed. Crossover is performed by 

exchanging subtrees between individuals, mutation by changing one of the fragments 

in an individual or by connecting a fragment to another fragment in the same individual 

as long as this does not introduce a cycle. The fitness is determined by docking the 
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resulting molecule into the active site of the target protein. 

 Three test cases were taken: design of cathepsin analogs, inhibitors of 

dihydrofolate reductase and inhibitors of HIV-1 reverse transcriptase. The results of the 

evolutionary algorithm were compared to the experimental data available. Two major 

problems were discovered. First, fitness evaluations took much time: a run of 100 

generations of a population of 20 molecules took 5 hours of processor time. Second 

and worse, not all good inhibitors were judged as good by the fitness function. So 

while the evolutionary algorithm designed many molecules with higher fitness values 

than the compounds that turned out best in the experiments, it remains to be seen if 

those molecules actually bind better. Like Schneider’s program, the fitness function is 

ill-equipped for optimizing the activity, yet the generated libraries do find general 

trends, i.e. substructures that seem to work. It is likely that the libraries generated by 

Pegg’s program are better than randomly designed libraries in binding to the target site. 

However, since no experimental validation was performed, definitive conclusions on 

the effectiveness of this method cannot be drawn. 

 The SYNOPSIS program by Vinkers and coworkers (2003) can be considered a 

synthesis of the good points of both Pegg and Schneider with some additional clever 

ideas. The database constructed by the authors contains about 32000 molecules, which 

can be transformed and combined using 70 different reactions. A chromosome 

represents a sequence of molecules and reactions, which is transformed by the program 

into the actual molecule. Mutations consist of adding reactions or changing reactants. 

The fitness function is the docking score of the molecule binding to the enzyme HIV-

reverse transcriptase.  

 A good point of this program is that it automatically suggests a synthesis route for 

the molecules. For 8 out of 28 molecules the synthesis route was followed and 

succeeded, while for only 3 molecules the suggested route was tried and failed. In the 

other cases a different method was taken or a compound differing from the original 

suggestion was made. Therefore, depending on the definition of success, 29% to 64% 

of syntheses succeeded.  

 Similar to Pegg, finding good inhibitors proved to be more difficult. The docking 

function was extremely slow (1 processor-hour per compound) which probably only 

allowed small populations and a low number of generations, although the article gives 

no numbers on these. Also the docking function was quite inaccurate. For all suggested 

ligands a high binding strength was calculated, but a low binding strength was found in 

experiments. Similar to Schneider’s approach, the evolutionary algorithm acts not so 

much as an optimizer of biological activity, more as an idea generator of molecules that 
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are on average much more active than one would get from a random library screening. 

In that respect SYNOPSIS is a success.  

 

Conclusion 

A wide variety of evolutionary algorithms has been applied to de novo design. Their 

applications and results highlight both their successes and their current shortcomings. 

 The two main challenges, i.e. representation of the molecular structure and the 

fitness function, have been addressed by the authors with varying success. The many 

applications of evolutionary algorithms in “simplified” chemical domains make it clear 

that representing the molecule remains difficult, and that mutation and crossover are 

not straightforward to implement. However, the work of Glen and Payne (1995) has 

clearly shown that evolutionary algorithms can be applied very well by using the 

molecule as its own representation. Implementing mutations and crossover will remain 

amenable to tweaking and discussion, but basically this problem has been solved.  

 There are currently two major elements in automated de novo design to focus on. 

The first is that the molecules suggested are not always easily synthesized. The 

fragment-based approach by Vinkers et al. (2003) to use available molecules and 

known reactions is promising. However, it also calls attention to the fact that due to 

problems in reaction prediction only few of the thousands of available chemical 

reactions can be used by the program. And even those few “robust reactions” fail quite 

often. Additionally, limiting the reactions and the building blocks will undoubtedly 

confine the parts of chemical space that can be explored by a ‘fragment and reaction’-

based algorithm. Also the fragment-reaction like structure of the chromosomes makes 

mutation awkward: fine-tuning a molecular structure that is almost right is extremely 

complicated and therefore not very likely to happen. On the other hand, atom-based 

mutations like those of Glen and Douguet allow more refined exploration of the 

chemical space and relatively easy fine-tuning of the molecular structures. Yet they 

have the disadvantage that synthetic feasibility of the resulting molecules is doubtful. 

Perhaps the ideal algorithm will use a combination of these two approaches. 

 For the second weak point of current de novo drug design algorithms, i.e. the 

fitness function, good solutions seem even harder to find. Docking, which in principle 

yields the best affinities for a broad diversity of molecules, is extremely slow and 

moreover gives results that are too inaccurate for optimization. This suggests, as in 

section 6, that the most important contributions to this area by evolutionary algorithms 

would be in deriving proper binding functions from quantum mechanical and 

experimental data. Additionally, there is the problem that many important proteins are 
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membrane-bound, and that their crystal structures are therefore extremely difficult to 

determine. This means that docking is currently not applicable to a large portion of 

interesting drug targets. Experimental fitness determinations are for now the only 

alternative, yet it may well be that a evolutionary algorithm used interactively by 

medicinal chemists would need fewer syntheses to achieve optimization than the 

traditional methods. 

 In conclusion, while the quality and applicability of the discussed evolutionary 

algorithms for de novo design varies, they do show promise. Even at this moment the 

applied evolutionary algorithms with their crude fitness functions give inspiration for 

unconventional analogs of known ligands, which opens up alleys otherwise closed off 

by patents or unfavourable physiological properties of the original ligands. As fitness 

functions become faster and more accurate, the future of evolutionary algorithms in de 

novo design looks very bright indeed. 

 

 

8. Other applications of evolutionary algorithms in drug 
design 
 

The scope of application of evolutionary algorithms in drug design is wide. Whereas in 

the previous sections the more prominent uses were discussed, this section will focus 

on some less mainstream work. The publications discussed here may give an 

impression of other areas that have been tentatively trodden, a brief glimpse of areas 

that may become more important in the near future, and inspiration for application of 

evolutionary algorithms to other problems related to drug design. 

  

If a large database of molecules has to be screened for biological activity, most drug 

developers would prefer to test only the most promising compounds. If these have the 

much sought after but ill-defined “drug-likeness” property, they will have a larger 

chance of being a good drug. While one could argue about the merits of selecting for 

drug-likeness versus selecting for lead-likeness (see section 2), the search for drug-

likeness criteria has inspired some interesting research, amongst others that of Gillet et 

al. (1998). Gillet et al. attempted to estimate drug-likeness by taking two databases of 

molecules, the World Drug Index, which contains about 30,000 drug molecules, and 

the SPRESI database, which contains 1.7 million molecules, in vast majority nondrugs. 

Of each molecule in the databases, six simple properties were calculated, such as the 

number of rotatable bonds and the number of hydrogen bond donors. The value range 
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for each property was divided into 20 bins. Using statistics on a subset of 1000 WDI-

molecules and about 17,000 SPRESI-molecules, for each bin the chance was 

determined that a molecule having its property within the value range of the bin was a 

drug molecule. The total database was then sorted to see if the drug molecules indeed 

ranked higher.  

 It turned out that this method gave some information on drug-likeness. For 

example, ranking the molecules by only taking into account the number of hydrogen 

donors resulted in finding 4.6-fold times as many drugs in the top 1000 molecules as 

would be expected by chance. However, combining descriptors worsened this 

enhancement, probably because the descriptors were not truly independent.  

 Subsequently, experiments were performed to see if setting the bin weights by 

using a genetic algorithm instead of statistics would improve the score. The genetic 

algorithm used vectors of length 6x20=120 as chromosomes. Mutation changed the 

value of one bin to a new permitted value, crossover could be one-point, two-point or 

uniform. Two fitness measures were compared: the number of drug molecules in the 

top 1000 and the average rank of drug molecules in the drug-likeness list. The average 

rank resulted in much better scoring over the entire population. The enhancement 

factor here was 3.0; so to find 50% of all drug molecules only the top 17% of all 

compounds had to be considered. Subsequently, experiments were performed to 

distinguish specific classes of drugs from inactive molecules, either by using the 

generic binning weights or weights specifically optimized by comparing the particular 

drug class with SPRESI. The discriminative power of the method depended heavily on 

the therapeutic class. For example, retrieval of anticancer compounds was enhanced 

4.9-fold with the generic binning method and 6.8-fold with specific training, while for 

psychiatric drugs enrichment was only 1.3-fold with the generic method and 2.0 after 

training. The authors suggest that these differences may be due to the fact that there are 

relatively few psychotropics and that the class is structurally quite diverse. 

 The results of this investigation can certainly be considered interesting. Drugs can 

be somewhat discriminated from non-drugs, even by a simple method such as this one, 

and the structure of the chromosomes might yield interesting insights on what makes a 

compound drug-like. However, some problems are not addressed by the authors. The 

SPRESI-database is not 17, but 54 times as large as the WDI. This means that even 

with a factor 3 enhancement, only one in twenty of tested molecules in the first third is 

a drug, which is not a very good score. Additionally, the binning weights are trained on 

structures that already occur in drugs, so compounds which work via diverse 

mechanisms like the psychotropics are not readily found. Therefore using this method 
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to prioritize the lead screening for a novel receptor would probably not be very 

advantageous. 

 In addition to the question of whether a compound has biological activity, another 

important question is which kind of biological activity it possesses. Xue and Bajorath 

(2000) used a descriptor based classification method. By placing the compounds into 

descriptor space, one should be able to discover clusters of compounds with the same 

biological activity and discover which part of descriptor space corresponds to a specific 

biological activity. Since the authors could use over 100 different descriptors, they 

aimed at simplifying descriptor space by using principal components. Dividing the 

principal component space into square boxes, compounds were grouped per box. If the 

compounds in one box had the same biological activity, the set of compounds in the 

box was called a pure class. If the box contained compounds of several biological 

activities, it was counted as a mixed class. Finally, if there was only one compound, the 

box was said to represent a singleton class. 

 The genetic algorithm was designed to solve three optimization problems 

simultaneously: 1) which descriptors should be used, 2) how many principal 

components should be used, and 3) into how many bins should every principal 

component be divided. The chromosome was a vector of 141 bits, 111 bits representing 

the use/non-use of particular descriptors, 15 bits to encode the number of principal 

components used, and 15 further bits to encode the number of boxes into which each 

principal component axis is divided. The fitness function increased with the number of 

pure classes and decreased with the number of mixed classes and singletons. This 

particular fitness measure might have been somewhat disadvantageous, since one 

ideally would want to reward a minimum of classes. It seems more desirable to have 7 

pure classes than 700. 

 The best result had 4 principal components with 5 bins each and found 60 pure 

classes, 27 singletons and 2 mixed classes. The classification method therefore worked, 

though comparison with other classification methods and assessing quality via a 

separate validation set would have been valuable additions to this work. 

 

Whereas ‘drug-likeness’ is a somewhat nebulous concept, there are also more sharply 

defined properties that are important for candidate drugs. One of these is water-

solubility: if a compound does not dissolve in water, it cannot be transported by the 

blood to its desired site of action.  

 Wegner and Zell (2003) derived a quantitative structure-property relationship to 

predict water solubility of a molecule from its structure. The authors calculated 230 
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descriptors from these structures. Since there were 1016 molecules in the training set, 

using all descriptors would probably have led to overfitting. Therefore, the authors 

wanted to reduce the number of descriptors. Principal component analysis was 

regarded to yield non-intuitive results, so a genetic algorithm was created. The initial 

population of this genetic algorithm was seeded with maximally diverse individuals as 

selected by Shannon entropy measures and clique detection algorithms. The genetic 

algorithm for descriptor selection was very similar to the ones used in QSAR (see 

section 5): the chromosome was a vector of bits, each bit indicating the presence of a 

descriptor. The chromosomes could undergo one- and two-point crossover and bit-flip 

mutation. A neural network was trained using the descriptors that were indicated by the 

chromosomes, and the fitness of each chromosome was r2 for the test set. The final best 

model had a validation set r2 value of 0.82, which was comparable to the results of 

other neural networks trained on similar data sets that gave r2 values between 0.79 and 

0.91 for their validation sets. 

 

A third factor to consider when designing drugs is metabolism, the breakdown of drugs 

by the body. Some of these breakdown products are toxic. For example, the drug 

paracetamol itself is harmless, but when taken in huge quantities it is partially 

transformed into a toxic product that causes liver damage. Drug designers therefore 

want to know the possible breakdown products of a compound, preferably before 

synthesis. Rules exist to predict metabolism, and computerized rule bases, like META 

(Klopman et al., 1997) can be applied to automatically predict probable metabolites. 

However, a molecule can often be broken down in many different ways, and it is not 

clear which of those ways are preferred by the body. Assigning priorities to the diverse 

transforms is traditionally done by experts. Klopman et al. however investigated 

whether a genetic algorithm could do this automatically. This would be advantageous 

since it would eliminate the need to manually recalibrate all weights after adding new 

data.  

 The chromosomes contained the priorities of all reactions, coded as a vector of 

binary numbers. Crossover was one-point and only took place between the genes, and 

mutation was performed by flipping bits. Fitness was defined as the number of correct 

predictions minus the number of incorrect predictions, the false positives and false 

negatives. Bolzmann tournament selection outperformed normal tournament selection 

and roulette wheel selection, and was therefore chosen as selection method.  

 For both training and validation sets, the genetic algorithm found a better solution 

than the experts (table 2.1). Clearly, genetic algorithms can combine large amounts of 
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data reliably into a rule-base, an exciting prospect. 

 

 
Table 2.1: Comparison of the results of the genetic algorithm-set priorities 

versus the expert-set priorities. 

 

 Test set Validation set 

True 

Positive 

False 

Negative 

False 

Positive 

True 

Positive 

False 

Negative 

False 

Positive 

Expert 103 45 28 66 9 56 

GA 134 14 18 75 0 21 

 

 

Biological activity of a compound can be predicted by computationally docking the 

molecule into the receptor. Often, however, the receptor structure is unknown. The 

common alternative is churning out high numbers of descriptors and using neural 

networks or multiple linear regression to find quantitative structure-activity 

relationships. However, this method does not use any of the knowledge available on 

receptors and their properties. A different possibility is making a model of the active 

site based on the ligand data. Walters and Hinds (1994) used this approach. Their 

computer program GERM (Genetically Evolved Receptor Models) uses a superposition 

of ligands, around which a collection of atoms, typically 50 to 60, is placed. These 

atoms represent the protein atoms of the active site. The interaction energy between the 

proposed active site and the ligands is calculated with a force field. The chromosome is 

the list of the atom types of the atoms in the reconstructed active site. One-point 

crossover and a mutation that randomly changes an atom type into a random other 

atom type were implemented. Crossover was the most important operator but allowing 

some mutation was found to improve the convergence.  

 When populations of 500-2000 chromosomes were allowed to evolve over up to 

10000 generations, models with r2 values of 0.90-0.99 were found. The average error 

for the compounds of the training set was 0.06, but for those in the validation set it was 

0.40. This clearly points to overfitting. However, scrambling the bioactivity values 

indicates that there is also some real relationship behind the numbers: the mean r2 

value of the scrambled sets was only 0.34.  

 GERM has some drawbacks, however. First of all, the ligands of a receptor must 

be superimposed, and as has been discussed in section 4, there is no unambiguous 
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method to do that. Overfitting is quite understandable in this system: after all, there are 

50 to 60 different atoms involved for explaining the bioactivity of about 10 compounds. 

Interestingly, the atoms at some positions had identical types in all of the fittest 

individuals, at other positions there was much more variation. This would suggest 

some biological rationale behind the model, and it would certainly be interesting to 

make runs on superpositions of known ligands docked into the binding sites to see 

whether the conserved residues in the proposed active site correspond to the important 

groups in the real active site. 

 Some other programs used a methodology very similar to that of GERM. An 

example is PARM (Pseudo Atomic Receptor Model) by Chen et al. (1998). The main 

difference with GERM is that heuristics were used to initialize the chromosomes. 

When an atom type had to be assigned to a certain grid point, the heuristics increased 

the chance of choosing a negatively charged atom type if the ligand atoms near the grid 

point were positively charged, and vice versa.. Two training sets, 21 and 12 compounds, 

were used with validation sets whose sizes were about half as large. Crossvalidated r2 

values of 0.83-0.93 were reached. The compounds of the validation set were predicted 

with an average absolute error of 0.52; CoMFA analysis (section 5) yielded 0.61. This 

suggests that PARM can be somewhat better than conventional methods. 

 Vedani et al. (1998a,b) created another pseudoreceptor modeling method. The 

main deviations from Walters’ method were the different and smaller set of pseudo-

receptor atoms and incorporation of receptor flexibility. The latter means that the 

position of each pseudoreceptor atom is adapted for optimal interaction with each 

individual ligand. Therefore, if there are n small molecules in the training set, there are 

also n conformations of the pseudoreceptor. The authors considered this to be 

necessary to allow for changes in receptor conformation upon binding, especially 

regarding the direction of hydrogen bonds. However, movement of the pseudoreceptor 

atoms from their average position is penalized by decreasing the calculated binding 

energy.  

 Six different series of ligands were used, varying from compounds binding to the 

cannabinoid receptor to the �2-adrenergic receptor and the sweet-taste receptor. Each 

series of ligands was split into a training set and a test set. The values of r2 were 

smaller than those of Walters and Hinds (1994), ranging from 0.55 to 0.96. Root mean 

square errors of the training set were approximately 0.4, and for the test set 0.7.  

 The cause of the difference with Walters’ research may be due to the reduced 

number of atom types available, the different force fields, the different test sets, other 

superpositions of the ligand, or receptor flexibility. These multiple changes make direct 
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comparison between the models difficult. It is therefore unclear whether the 

pseudoreceptor models of the future will follow either of the two methods or will make 

use of new methodology, inspired by advances in superposition procedures and 

improvements in the entropy corrections and force fields of docking.  

 

A final interesting application is the use of evolutionary algorithms to help create a 

good energy function for docking. Deng et al. (2004) used two sets of crystal structures 

of sizes 61 and 105 (of which external validation sets of size 10 resp. 6 were taken), 

and correlated the experimental binding energies with the presence of specific atom 

pairs. Since the authors distinguished 17 atom types and 5 relevant distance bins (1 Å 

wide between 1 and 6 Å) there were 5×17×17=1445 potentially relevant descriptors. In 

a first stage non-changing descriptors, highly correlated descriptors and 4-sigma 

outliers were removed deterministically, subsequently a genetic algorithm was used to 

select the best subset of descriptors. By reducing the number of descriptors used in the 

105 compound data set from 456 to 20, the PLS-regression r2 of the test set was 

increased from 0.43 to 0.60, and the r2 of the prediction of the external test set even 

reached 0.64. 

 These results of Deng et al. can be compared to those of Morris et al. (1998), who 

developed a more traditional empirical free binding energy function using 

physicochemical knowledge, traditional force fields, and linear regression without 

feature selection. Since Morris et al. reached r2 values of about 0.95 versus Deng’s 

0.64, it is clear that Deng’s knowledge-based approach could profit from the physical 

and chemical knowledge that has been collected by experimental scientists. 

Incorporation of free energy loss due to loss of flexibility upon binding and the 

influence of direction upon the binding strength of hydrogen bonds would be obvious 

candidates to test for usefulness. Nevertheless, the increasing availability of crystal 

structures will make “knowledge-based” approaches more and more attractive to help 

refine the standard force field approaches.   

 

Conclusion 

The discussed publications make clear that there are probably many alternative areas in 

drug design in which evolutionary algorithms can be applied. Discovery of new, 

promising applications will most likely depend on the steady spread of knowledge and 

usage of evolutionary algorithms in the community of drug designers. Doubtlessly 

there are still many problems in drug design that can be at least partially solved with 

evolutionary algorithms, and many interesting applications may yet follow.  
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9. Conclusion: Evolutionary algorithms in drug design. 
Considering past, present and future. 

 

Evolutionary algorithms have been applied in the field of drug design for over 10 years. 

In this review we have discussed their role in helping solve some of the problems of 

this field. Let us summarize and consider the findings so far. 

 The most important observation is that evolutionary algorithms are useful for drug 

design. This is, of course, necessarily a biased view since few authors would publish 

methods that do not work for their particular problem. However, the wide range of 

applications in which evolutionary algorithms found optimal or satisfactory solutions 

suggest that evolutionary algorithms are quite suitable for application to a wide range 

of problems in drug design, varying from conformational analysis to finding 

quantitative structure-activity relationships and performing de novo design. 

 This success has led to many applications of evolutionary algorithms, several of 

which have been incorporated into commercial packages. Some of the examples 

mentioned in this review are GFA (Genetic Function Approximation) which is now 

part of the molecular modeling package Cerius2, and the commercialized docking 

program GOLD. However, there is also other software that uses evolutionary 

algorithms, like the computer program Spartan that has procedures for evolutionary 

structure optimization. Doubtlessly there are several other software packages for drug 

design on the market in which evolutionary algorithms are a major or minor component. 

One could say that evolutionary algorithms have proven their worth and either already 

possess or at least approach the status of one of the standard optimization methods in 

drug design. 

 While over time evolutionary algorithms have been applied to more and more 

areas of drug design, one could also ask whether their performance in the diverse areas 

has also improved. 

 Looking at the different areas of application it is not clear whether the more recent 

implementations of evolutionary algorithms are more effective or efficient than the 

older versions. If any trends can be discerned, it is towards more complex evolutionary 

algorithms. Unfortunately it cannot be concluded with confidence that this increased 

complexity leads to improved performance due to the dissimilarity in test data sets, 

fitness functions and quality criteria used by the different authors.  

 The progress in the different fields can be summarized as follows: 

-library design: Multiobjective fitness functions have been introduced. Calculations are 

getting more intricate and biologically relevant (2D/3D). Objective weighing of the 
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conflicting objectives, especially diversity and focusing, remains problematical. 

-conformational analysis: The evolutionary algorithms have largely been superseded 

by the directed tweak algorithm, which is more specialized and seems somewhat more 

efficient than the current evolutionary algorithms.  

-quantitative structure-activity relationships: The evolutionary algorithms seem to 

have grown more complex over the years. While some innovations have been 

introduced, notably the use of more complex functions of the descriptors, the novelty 

of most newer publications that involve evolutionary algorithms lies mainly in novel 

types of descriptors or the addition of other descriptor selection methods, not in the 

evolutionary algorithms themselves.  

-docking: The evolutionary algorithms in this field have grown more elaborate and 

complex, however due to the absence of good test sets it is not clear whether this 

increased complexity has led to true progress. Experiments have indicated that 

Lamarckian evolutionary algorithms and island models are useful. 

-de novo design: Evolutionary algorithms for structure manipulation have not seen 

significant advances since the work of Glen and Payne in 1995, however the fitness 

functions have improved from manually weighted parameters to docking. Also, the 

concept of “ease of synthesis” has been introduced, which is very important to ensure 

that the designed molecules can also be created in the laboratory. 

 

Overviewing the past few years of application of evolutionary algorithms in drug 

discovery, one can conclude that a wide variety of chromosome representations, fitness 

functions and mutation operators have been developed for the different problems. The 

basic principles of evolutionary algorithms, however, still remain at the core of all 

these variants, and have proven themselves to be quite a robust and easily applied base 

of design for a range of optimization problems in this field. As the articles reviewed in 

this paper demonstrate, there are obviously a number of cases where evolutionary 

algorithms do not offer clear benefits over other methods such as Monte Carlo search, 

simulated annealing or deterministic optimization methods. There are also some cases 

where evolutionary algorithms achieve clearly satisfactory results and improvements 

over results that have been available so far. Obviously, a clear general conclusion 

cannot be drawn at this point, as there are no elaborate systematic comparisons of the 

different search methods available yet on the subareas of drug design covered in this 

paper. 

 It is interesting to note that almost all of the applications of evolutionary 

algorithms in drug design today use rather basic genetic algorithms, and thus fail to use 
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self-adaptation capabilities. These are usually associated with evolution strategies and 

evolutionary programming (see e.g. (Bäck, 1996) for an in-depth discussion of this 

topic) but can also be used in genetic algorithms. Other developments in the field of 

evolutionary algorithms, such as estimation of distribution algorithms (used in 

bioinformatics by Saeys et al. (2004)) also have so far found no or only extremely 

sparse application in drug design. It would clearly be an interesting issue for future 

research to check whether these algorithmic techniques can deliver more convincing 

improvements over classical methods. While the success of novel techniques for 

optimization would clearly depend on the particular problem studied, the computer 

programs discussed in this review generally use quite basic algorithms, so chances are 

good that adding advanced techniques can improve their performance. 

 While optimization remains important, the current bottleneck in computational 

methods for drug design seems to be the fitness function, since this is often still either 

somewhat arbitrary, like manually weighing different measures of molecular similarity, 

useless, like rediscovering a known molecule, or inaccurate and too slow for extensive 

optimization, like docking. The biggest problem in current drug design seems to be 

calculating/predicting the relevant properties of a molecule, not finding more efficient 

optimization algorithms. 

 Where does that leave evolutionary algorithms? Should computer scientists be 

content by having added evolutionary algorithms to the standard toolbox of medicinal 

chemistry and move on, or is it still possible to do innovative and useful research in 

this area? 

 One reason to continue applying evolutionary algorithms to medicinal chemistry is 

that the collaboration between computer scientists and medicinal chemists itself can be 

fruitful. Medicinal chemists can profit from the knowledge of optimization methods 

and the experience in validation methods that computer scientists possess. Computer 

scientists may learn from the ideas and paradigms of medicinal chemists, which have 

resulted in diverse and ingenious forms of chromosomes and variation methods. These 

inventions could themselves be interesting concepts to be studied, improved, and 

possibly used for other problems by the computer scientists. 

 However, there are also reasons to believe that continued application and 

development of evolutionary algorithms could also be useful for the development of 

new and better computational methods for drug designers. 

 First, prediction methods in drug design are improving each year, therefore better 

fitness functions will become available. When they do, the existing evolutionary 

algorithms can be reapplied with greater success than before. 
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Second, there is the possibility of finding new application domains. Some of these 

might be known problems in medicinal chemistry or drug development that have not 

been tackled yet with evolutionary algorithms. Others would be the newly emerging 

fields, for example the genomic, proteomic and transcriptomic data which are 

becoming available and have to be processed, combined and modeled. Evolutionary 

algorithms may be useful in this process in some capacity. Though the generic nature 

of evolutionary algorithms makes them vulnerable to later replacement by hybrid 

algorithms or specialized optimization algorithms, like directed tweak, the simplicity 

and wide effectiveness of evolutionary algorithms makes them very suitable for 

pioneering new areas. If optimization yields clear benefits yet takes unacceptable 

amounts of computer power, the evolutionary algorithms may be replaced by more 

specialized methods. 

 Finally, the evolutionary algorithms that are currently used for drug design can be 

improved. Though the fitness functions are more important and time-critical, 

evolutionary algorithms that display more efficient convergence while searching as 

much of the search space would be very valuable. If an evolutionary algorithm needs 

fewer fitness evaluations for a good optimization, one can process and suggest more 

molecules in the same amount of computer time. Even with an inaccurate fitness 

function this collection will still give more “hits” than randomly screening, which 

would be very valuable to drug developers. 

 Yet how to achieve such progress? The key to this would lie in closer 

collaboration between medicinal chemists and computer scientists. Procedures that 

have become quite common in computer science, like having standard test sets on 

which an algorithm should work, should be used much more extensively in medicinal 

chemistry to help compare different methods and improvements in a method more 

objectively. The size and diversity of these sets should be sufficient to draw reliable 

and statistically significant conclusions when comparing different methods, the one to 

three test cases which have been used in some articles probably do not adequately 

reflect the diversity of cases in a particular domain. Publicly available reference fitness 

functions would also be necessary to compare different algorithms in a fair way.  

 

The main contribution of medicinal chemists in this process would be the development 

and testing of heuristics. There are no shapeless, featureless problems in drug design; 

each problem has its own inherent, natural constraints. A generic evolutionary 

algorithm that is applicable in all cases and fails to take the information provided by 

the specific problem into account can be improved by including heuristics which make 
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it less generally applicable, but more powerful for that specific application. Developing 

these heuristics and testing them critically would represent an advance in quality, 

which would be more reliable and systematic than the current independent tweaks of 

poorly compared algorithms which rarely take the biochemical nature of the problem 

space into account. As far as we understand the systems, we can develop heuristics. 

And as for the parts of the system we do not understand, we can observe, make 

hypotheses, test methods and learn from their results. This would result in speciation to 

optimally fill the diverse niches in drug design, and represent a true evolution of 

evolutionary algorithms in this field.  

 Looking over the past and current research, the challenges to create computational 

methods to predict reliably the biological properties of molecules are great indeed, and 

will take much time and intellectual effort to resolve. The current problems in 

developing new drugs indicate that the drug design process as well as the drugs 

themselves can only remain affordable if we can find ways to intelligently combine the 

growing available biological information with the possibilities of quickly and 

effectively searching the huge collection of drug-like molecules. This is a major 

challenge, but one in which evolving evolutionary algorithms can play an important 

role. 

 
Glossary 

ACTIVE SITE: the part of a protein which binds the messenger molecules or catalyzes the 

biochemical reactions. 

CHROMOSOME: named after the strings of DNA which contain the genetic information of 

biological organisms, chromosomes in evolutionary algorithms are the data structures which 

contain the genetic information/genotype of one individual candidate solution. Often, 

especially in genetic algorithms, a chromosome is a vector of bits or numbers. 

CROSSOVER: another name for the recombine-function of evolutionary algorithms. 

HYDROGEN ACCEPTOR: oxygen or nitrogen atom in a molecule with a free electron pair 

that can bind to a hydrogen atom of a hydrogen donor. 

HYDROGEN BOND: the attractive force between a hydrogen acceptor and the hydrogen 

atom of a hydrogen donor. Is generally the predominant binding force between a ligand and 

its receptor. 

HYDROGEN DONOR: oxygen or nitrogen atom in a molecule that is bonded to a hydrogen 

atom. This hydrogen atom can bind to a free electron pair of a hydrogen acceptor. 
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LAMARCKIAN EVOLUTION: an individual’s phenotype is optimized by a local search. The 

information of the phenotype is subsequently written back to the genotype, which then 

undergoes normal mutation/crossover. 

LEAD (COMPOUND): a compound that seems to have a desirable biological activity and 

may be developed further into a drug. 

LIGAND: a molecule that binds to a large biological molecule (usually a protein). 

MOLECULE: a collection of atoms which are connected by bonds. On a simple level a 

molecule can thus be considered to be a graph in which the nodes are the atoms and the 

edges are the bonds. The specific physical and chemical restrictions on this graph are that 

each atom type has a maximum number of bonds, generally ranging from 1 to 4, and that 

the length of the bonds, the preferences for certain bond angles and finally the interplay of 

the attraction and repulsion between the atoms cause each molecule to assume a distinctive 

range of three-dimensional structures, called conformations. 

POLING: optimization method developed by Smellie et al. (1995) that ensures diversity of 

the individuals in the population by modifying the fitness function in such a way that similarity 

to other individuals is penalized. 

q2: a measure of statistical significance. It is determined by leaving a subset of the data 

(often of size one) out of the training set, training a model with the remainder of the training 

set, and predicting the dependent variable of the subset. This is done for all items in the 

training set, the r2 value of the resulting predictions is called the q2. It is considered to be 

less sensitive to overfitting than r2 and therefore a better measurement of the quality of a 

statistical model. 

r2: a measure of the statistical significance of a model. Its values are between 0 (no linear 

correlation between the independent and dependent variables) and 1 (a perfecty linear 

correlation between the independent and dependent variables). It can be calculated by 

comparing the values that a model gives (��) to the observed values (��) by the following 

formula: ��� 	 
 � � 
�� � ���
�

� � � 
�� � ���
�

� , where �� is the means of the observed values. 

REAGENT: a molecule that is used in a process in which it will react with another molecule, 

forming one or more new molecules, is called a reagent (derived from Latin: “something that 

must react”). 
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ROULETTE WHEEL SELECTION: A method to select good individuals with higher 

probability than bad individuals as parents of the next generation. All members of the 

population are assigned a segment on a wheel, usually in proportion to their relative fitness. 

Subsequently random points on the wheel are selected and the corresponding population 

members become the parents of the next generation (Parrill, 2000). 

SPECIATION: A large part of the population of individuals is very homogeneous: although 

there are officially many solutions, it is in reality just one solution with small variations. 

Usually one wants to prevent this and develop several solutions which differ significantly. 

SPLINE FUNCTION: commonly written as f(x)=<a-x>. This function returns 0 if x is greater 

than a, and a-x if x is smaller than or equal to a. 

TARGET (RECEPTOR): the biological macromolecule to which a drug or drug candidate 

should bind.  

TORSION ANGLE: Angle indicating how much one end of a single bond is rotated with 

respect to the other end. For four bonded atoms A-B-C-D, the torsion angle of the bond B-C 

is defined as the angle which the C-D bond makes with the plane in which A, B and C lie.  

TOURNAMENT SELECTION: A method to select the parents for the next generation of the 

evolution in an evolutionary algorithm. Tournament selection works by randomly picking a 

certain number of individuals out of the population and letting the best of them become a 

parent, repeating this process as often as is required (Parrill, 2000).  

TRANSITION STATE: When a molecule is broken down by an enzyme, the enzyme first 

twists it into a strained conformation to make the subsequent reaction(s) easier. This 

strained state is called the transition state, since it is the phase a reacting molecule must go 

through in order to form the product.  

VIRTUAL LIBRARY: A database of molecule structures. 
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