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Introduction: Molecules, Machines 
and Men  

 

The research described in this thesis focused on “interactive evolutionary algorithms 

and data mining for drug design”. That may sound impressive, but what does it mean? 

The purpose of this introduction is to ensure that people who do not know much about 

interactive evolutionary algorithms and data mining will have a pretty good idea what 

those are after reading the next few pages, and that people who are already familiar 

with the field will get a more intimate acquaintance with the problems we are trying to 

solve, and the perspective that we have. Interactive evolution and data mining are 

really just formal names and procedures for activities all of us already do in daily life: 

whenever you redecorate your room, you're performing a kind of interactive evolution, 

by asking yourself whether the room would look better if you painted it blue or soft 

yellow or added a large portrait of Barack Obama. Whenever you are browsing the 

newspaper, looking for interesting articles, you are doing a form of data mining. 

Science is often just common sense formalized. This thesis will discuss interactive 

evolutionary algorithms for drug design, as well as data mining, but these are merely 

sophisticated tools to achieve our goal: to find new or better drug molecules. 

 The research I have done was a collaboration between the department of 

Medicinal Chemistry, which focuses on developing biologically active molecules, and 

the Algorithms group of computer science, which investigates the use of computer 

methods to solve real-world problems. The subject of my research was therefore how 

to use computers (machines) to design drugs (molecules), which are discussed in the 

next two sections of this introduction. However, while creating the computer programs, 

we found out that by merely focusing on software and molecular structures we were 

neglecting something crucial: the scientists themselves. Creating a computer program 

that should be used by people required us to pay attention to how people think, and 

how a computer program can be made intuitive and easy to use. We also found that it 

was extremely useful to complement the molecule-generating capabilities of the 

computer with the experience and pattern-recognition ability of people. We therefore 
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also dedicated a section to the third factor in this research, the “interactive” in 

interactive evolution. After these sections on molecules, machines and man, there will 

be an introduction to some of the terms used in this thesis. Finally, we will discuss the 

aims of this thesis and give an outline of the chapters to follow. 

 

 

Molecules, machines and man 
 

Molecules 

The human body viewed at normal scale already seems complex. However, when one 

zooms in to the microscopic level of cells and proteins, it becomes even more 

fascinating, for only on that scale the true complexity of our existence is revealed. The 

human body contains about one hundred trillion cells of over 200 distinct cell types, 

with 20,000 genes, which can produce at least as many proteins. It also contains a large 

variety of hormones, fatty acids, and other small organic compounds which help the 

cells and organs communicate and cooperate with each other in many ways, adjusting 

the activity of the body to whatever is needed in the circumstances in which we live. 

 Next to admiring the beauty and complexity of the workings of life, and satisfying 

our curiosity on how things work, there is also a very practical reason to strive to 

understand the human body: fighting disease. If we know how the human body works 

when it is healthy, and what happens when it falls ill, it should be easier to find a 

proper remedy for a disease. And in the end, it is not the understanding, but the action, 

the resulting medicine, that is important. However, even if one knows what is wrong in 

the body, the problem may still not be easy to correct. 

 Except from some cases in which the “diseased part” of the body can simply be 

removed (surgery), the most effective way to treat diseases is by administering drugs, 

which contain many billions of molecules of a specific compound. These drug 

molecules bind to biological molecules (usually proteins), either activating them or 

inhibiting them. This changes the behaviour of the protein, and thereby the behaviour 

of the cell, ultimately affecting the organ or even the whole body. For example, aspirin 

works by inhibiting cyclooxygenase, an enzyme which produces prostaglandins, 

compounds that cause pain. When someone takes aspirin, aspirin molecules diffuse 

through the gastro-intestinal wall and enter the bloodstream, where they block 

cyclooxygenase. With a reduced number of active cyclooxygenase enzymes which 

create pain-causing prostaglandins, less prostaglandins are produced, and so the pain is 

alleviated. By targeting the right step in biological processes, drugs can “reset” the 
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body to a healthier state, or at least alleviate the symptoms of a disease. 

 There are however still many diseases which cannot be treated well with current 

medicine, for example AIDS, many forms of cancer, and Alzheimer’s disease. Finding 

drugs for these and other diseases is difficult for several reasons. First of all, the 

mechanism of a disease is often not clear, so it is not always known which protein to 

target. The second problem is that even if a good target protein is found, a molecule 

must be developed which binds to it effectively. Also, these molecules must be able to 

get to the right place in the body and not be metabolized or excreted before they can 

reach the diseased area. And finally, the molecules should not interact strongly with 

other biological molecules, which would cause harmful side effects. Finding a 

molecule that both interacts effectively with the target and has favourable “ADME-tox” 

properties (absorption, distribution, metabolism, elimination, toxicity) is a very 

difficult and time-consuming process: it costs on average over 800 million dollars and 

12 years of development time to bring a drug to the market1. 

 Our goal in this project was therefore to investigate how we could help drug 

discovery become faster or better.  

 

Machines 

Finding new drugs for diseases is the 'why' of this project; let us now turn to the 'how': 

how can we improve the drug discovery process? In the past three decades, various 

methods have been developed to improve or speed up the drug design process: so-

called “rational design”, high-throughput screening, combinatorial chemistry, and, 

more recently, systems biology and bioinformatics. These methods, diverse as they are, 

have one striking common denominator: they all use computers. 

 Even while computers often only do “simple things fast”, they can increase 

efficiency in scientific research tremendously. For example, when I was a MSc student, 

if I wanted to find information on a certain compound, I needed to manually search 

multiple annual editions of the chemical abstracts service (thick books), before I could 

jot down the numbers of the abstracts, which had to be looked up in another series of 

heavy books. Of course, if the abstract suggested that the article would be useful, I still 

had to locate the attic section and/or shelf where that specific edition of the journal was 

located, and then go to the copier to make a copy for myself. The process could take 

hours. Nowadays, using internet and search machines, one can find and print articles 

about a particular compound or topic in seconds or minutes. Next to doing fast 

calculations (allowing for example fast elucidation and visualisations of protein 

structure), and controlling complicated machinery (such as in high-throughput 

screening), information storage and distribution is probably the greatest benefit of IT. 
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For example, electronic lab journals allow companies to find out about already 

performed experiments much more easily than the “classical” method of finding a 

synthesis in a stack of paper lab journals.  

 However, what could we add to the already impressive array of computational 

techniques for aiding drug discovery? In this research we have focused on the 

possibilities of two fields of computer science: evolutionary algorithms and data 

mining.  

 Evolutionary algorithms address one of the traditional problems of computers: 

computers can be programmed to do anything that involves any sequence of fixed 

actions – but sometimes it is not known which actions are necessary to achieve the 

desired result. Finding a molecule that binds to a certain protein is a problem of this 

type: the goal is known, but there is no “procedure” that will systematically and 

unambiguously lead to the desired molecule. In practice, intelligent trial and error is 

needed. Evolution works this way too. First, it produces a large number of solutions 

(animals/plants) to certain problems (environments). Then, the best of these solutions 

procreate (are copied, changed/adapted and combined) to produce even better solutions 

in the next generation. Inventions and machines change over the generations just like 

organisms, and computer programs can simulate this by changing and combining the 

best designs of a collection of designs. In our case, those designs are molecules. 

 Data mining is another powerful technique, useful in cases where the programmer 

does not yet know what the “rules” of a system are, for example which factors in one’s 

diet increase or decrease the risk of heart disease. By statistically analysing large 

amounts of data, data mining can unravel patterns in masses of data which may be 

hidden for the human eye. For example, software has been developed that correctly 

picked out the 10 known fraudsters (and about a dozen new suspects) in a database of 

the online auction site eBay – totalling one million transactions and 66000 users, far 

too much data for a human to analyze.2,3 Likewise, data mining could give insights in 

hidden patterns in databases of molecules or drugs. 

 Looking for ways to help drug design, we therefore wondered how we could use 

data mining and evolutionary algorithms to our advantage. 

 

Man 

When one develops software that will also be used by others, a third factor needs to be 

taken into account, next to problem knowledge and computer knowledge: people. In 

my research this is more important than in day-to-day science, where for many 

scientists and programmers the existence of people almost seems an afterthought. 

Scientific papers are usually written in the passive voice, ranging from the standard “10 
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ml NaOH (1M) was added to the mixture” to the slightly deceptive “it was 

hypothesized that…”, as if a hypothesis objectively and unambiguously follows from 

certain facts or experimental results. While perhaps scientists should behave 

objectively and perfectly rational, scientists are people, and people are not completely 

objective or rational, even though they may try. Therefore, if something needs to be 

used by humans, even if those humans are scientists, it is not sufficient that it is 

objectively and scientifically functional. And this is also true for software. Even a 

potentially useful computer program may not be used if people can’t find the time or 

courage to read 500-page manuals to learn how to navigate through cumbersome, 

illogical menus. It was therefore important for us to pay attention to how people think, 

and how we could adapt the software to make it easier to use. 

 On the positive side, it would be wrong to see humans merely as imperfect 

reasoning machines. Humans have evolved in nature, where there is usually lack of 

useful information combined with a huge amount of useless information that obscures 

the useful information there might be, where there are urgent problems with not 

enough time to calculate all odds and all possible ways out, and where an incredible 

amount of knowledge is required to achieve even the most modest results – even 

walking up stairs is something most programmers dread to program robots for. Humans 

are far superior to computers in detecting new patterns, making connections between 

pieces of information, and thinking “out of the box” to solve a problem. Humans can 

easily solve many problems which baffle the most advanced computers, for example, 

recognizing a face even if it is seen from the side, understanding words even if they’re 

spoken in dialect, or walking through a house without bumping against walls or 

furniture. 

 It would therefore be ideal if we could not only use the capabilities of the 

computer, but let the talents of the human/scientist complement these. However, 

combining humans and computers is not easy to do right. The first main problem is that 

to be of any kind of use, software must be user-friendly – software that cannot be 

understood by the user will not be used, even if it has tremendous capacities. Second, 

what things can or should we delegate to the computer, and what things can we ask of a 

human user? And can we close the gap so that there can be useful collaboration? 

 The third issue we had to pay attention to in this research was therefore how to 

effectively make use of human-computer collaboration. Computers can make 

calculations of molecule properties quickly, while chemists have lots of experience and 

intuition on which molecules are drug-like and which molecules can and cannot be 

synthesized. Yet any cooperation between man and computer can only occur if the 

software is sufficiently intuitive and user-friendly. The first word processor I used, 
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Symphony, required the user to remember the key combination of <ALT>-<F1>-

<B><A><B> to put anything in boldface, but such an interface would nowadays only 

discourage use. The last of the three questions is therefore how to design our chemical 

software in such a way as to ensure it will not only be useful, but also that it will be 

used. 

 

 

Introduction to some of the terms and concepts used in our 
research 
 
A number of computer science and cheminformatics terms will occur throughout this 

thesis, and while most of them will be explained in more formal terms in the following 

chapters, it may be useful for reader comprehension to clarify some of the most 

important concepts here. 

 

Interactive Evolutionary Algorithm 

One of the main aspects of evolution is selection, sometimes called “survival of the 

fittest”. In evolutionary algorithms we also want the best solutions to survive and 

procreate, but to do that we have to determine what we mean by “best” or “fittest”. 

Does “fittest” mean the strongest construction? The smallest molecule? The circuit 

board that gets the job done with least components? Or the circuit board that consumes 

least energy? Sometimes the fitness of a design can be calculated easily and objectively 

by a so-called “fitness function” which takes the organism/solution as input and returns 

a number that indicates its quality. Other times, though, the quality of a solution is 

difficult to calculate. For example, the ideal interior design of a room will depend on 

the taste of the human occupant.  

 Cases in which there is no objective way to calculate fitness are however not 

impossible to solve. Evolutionary algorithms can work if there exists any method to 

assign relative quality to solutions, and it is perfectly possible to have a human being as 

the “fitness function”. That means that a human scores solutions or selects the ones he 

or she considers best. An evolutionary algorithm that uses a human to evaluate 

solutions is called an interactive evolutionary algorithm or interactive evolutionary 

computation (IEC). IECs have been used in many applications, varying from face 

image generation to help an eye-witness reconstruct the face of her attacker,4 

geophysics in which experts can distinguish realistic from unrealistic earth layer 

patterns, to helping people find better settings for their hearing aid.5 Since interactive 

evolutionary algorithms can use both explicit and implicit/subconscious knowledge of 
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drug design present in human medicinal chemists, it also seemed a promising approach 

for our research. 

 

Data mining 

Governments, companies, universities and many other organizations nowadays have 

large databases which house enormous amounts of data. Such data is useful in its own 

right (for example, checking how much money your bank account contains), but these 

databases also bring the promise that one can discover patterns and laws in the data, 

much like Kepler discovered the laws of planetary motion from his astronomical data. 

However, most databases are so vast that it would be hard or impossible for a human to 

find laws and patterns. For that reason, many scientists are working on techniques 

collectively called “data mining”, which means that they develop software that can 

automatically find relationships between data or parameters. Usually data mining is 

performed on database tables, for example, whether there is a correlation between the 

education and the income of a person, and if yes, what it is and how strong it is, but it 

can be applied to any collection of data. For example, data mining also can handle a 

“shopping basket” problem in which a supermarket wants to find out whether people 

usually buy product X with product Y (such as bread and peanut butter). In this thesis, 

our main investigation of data mining is described in chapter 3, while chapter 4 and 

especially chapter 5 discuss how we used data mining to improve our main 

evolutionary algorithm. 

 

Docking 

Docking is a term used for computer simulations of the interaction between small 

molecules and proteins. Small molecules such as drugs influence the behaviour of 

proteins by crawling into a “sensitive” place in the interior of the protein, much like a 

key enters a lock or a hand fits into a glove. Similar to the docking of ships in a 

harbour, a “docking program” will attempt to find the best fit of a small molecule into 

an enzyme or receptor. However, docking is a difficult problem, and many different 

docking programs have been developed, such as GOLD, FlexX, DOCK and Glide,6 

each having its own strengths and weaknesses. For drug design, the ideal is to predict 

how well a drug candidate would bind to a receptor, so one could select the most 

promising leads from a large library of compounds without having to perform 

expensive syntheses and biological testing. However, docking programs are yet far 

from reliable for finding such quantitative binding strengths, since the exact strengths 

of electrostatic interactions and hydrogen bonds between ligand atoms and the amino 

acids in a protein are unknown, and most docking programs cannot simulate how a 
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protein can mould itself around a ligand to improve binding. However, docking 

programs can often indicate how a molecule would fit into a protein, and despite their 

flaws they are currently the most reliable methods to theoretically compare binding 

affinities of a wide variety of small molecules. We used docking for the research in 

chapter 6, as despite its imperfections, docking is the best simulation of a `protein 

like`-system currently available. 

 

 

Aims of this thesis 
 

The aim of the research described in this thesis is to use evolutionary algorithms and 

data mining to help find new drugs. 

For this purpose, we have: 

-developed an internal representation of molecules and a set of mutations aimed to 

reach all possible molecules in chemical space. 

-created a user interface that allows chemists to give input and feedback to the 

evolutionary algorithm efficiently and easily. 

-mined large molecule databases to find frequent and infrequent substructures that can 

be used to design new molecules. 

 

We also tested out the resulting interactive evolutionary algorithm in collaboration with 

the medicinal chemists at our laboratory. A set of compounds generated by the 

evolutionary algorithm was examined by the chemists, who selected the molecules they 

deemed most interesting and adjusted them for ease of synthesis. Subsequently, these 

compounds were synthesized to assess whether the methods we developed could 

indeed be used to find new biologically active molecules. 

 

 

Outline of this thesis 
 

This thesis will open with a review on the applications of evolutionary algorithms in 

drug design (chapter 2). Chapter 3 focuses on the question on how well current 

chemistry covers total chemical space –what is the real diversity of compounds? The 

answer is perhaps somewhat sobering (the term “chemical clichés” in the title of this 

chapter was coined for a reason), however we also indicate ways to use the data 

gathered to create more novel molecule scaffolds. Chapter 4 will discuss the Molecule 

Evoluator, a computer program we developed that uses an interactive evolutionary 
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algorithm to create novel chemical compounds by using both computing power and 

chemist's intuition. In chapter 5, we show that the results of the Molecule Evoluator 

can be improved by combining the evolutionary algorithm with the technique of data 

mining, and show how the parameters of the evolutionary algorithm can be set to 

reflect the results of our data mining – which is not as straightforward as it may seem! 

Chapter 6 tackles the question whether atom- or fragment-based approaches are 

preferable for evolutionary algorithms in molecule design, by using docking to 

approximate the fitness of the compounds generated by the Molecule Evoluator. The 

part dedicated to our investigations closes with chapter 7, which looks into some real-

world results: creating novel biologically active compounds which have been 

discovered by collaboration between medicinal chemists and the Molecule Evoluator. 

Finally, chapter 8 closes this thesis with the conclusions and my perspectives on the 

future of computers in drug design. 

 

 

 "We have so much time and so little to do. Strike that, reverse it." 

 - Willy Wonka, Charlie and the Chocolate Factory (Roald Dahl) 

 

I hope you're set for the journey. Let's get started. 

 

 

 

References  

[1] DiMasi, J.A., Hansen, R.W., and Grabowski, H.G. The price of innovation: new 

estimates of drug development costs. Journal of Health Economics 2003, 22, 151-

185. 

[2] Pandit, S., Chau, D.H., Wang, S., and Faloutsos, C. NetProbe: A Fast and 

 Scalable System for Fraud Detection in Online Auction Networks. WWW 2007 

2007.  

[3] Simonite, T. Network analysis spots online-auction fraudsters. New Scientist 

(online edition) 2006, December 6th. 

[4] Marks, P. How to recall the face that fits. New Scientist 2005, March 19th, p24. 

[5] Takagi, H. Interactive Evolutionary Computation: Fusion of the Capabilities of EC 

Optimization and Human Evaluation. Proceedings of the IEEE 2001, 89, 1275 – 

1296. 



10 

[6] Klebe, G. Virtual ligand screening: strategies, perspectives and limitations. Drug 

Discovery Today 2006, 11, 580-594.



11 

 

 

 
 
 

2 
 
 

Evolutionary Algorithms in Drug 
Design 

 

 

Eric-Wubbo Lameijer1, Thomas Bäck2,3, Joost N. Kok2 and Ad P. IJzerman1 

 
1Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, 

Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands 
2Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1, 

2333 CA Leiden, The Netherlands 
3NuTech Solutions GmbH, Martin-Schmeisser-Weg 15, 44227 Dortmund, Germany 

 

This chapter was first published in the Journal of Natural Computing, reference: 

Lameijer, E.W.; Bäck, T.; Kok, J.N.; IJzerman, A.P. Evolutionary algorithms in drug 

design. Natural Computing, 2005, 4, 177-243. 

 

 

Abstract 
 

Designing a drug is the process of finding or creating a molecule which has a specific 

activity on a biological organism. Drug design is difficult since there are only few 

molecules that are both effective against a certain disease and exhibit other necessary 

physiological properties, such as absorption by the body and safety of use. The main 

problem of drug design is therefore how to explore the chemical space of many 

possible molecules to find the few suitable ones. Computational methods are 

increasingly being used for this purpose, among them evolutionary algorithms. This 

review will focus on the applications of evolutionary algorithms in drug design, in 

which evolutionary algorithms are used both to create new molecules and to construct 

methods for predicting the properties of real or yet unexisting molecules. We will also 
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discuss the progress and problems of application of evolutionary algorithms in this 

field, as well as possible developments and future perspectives.  

 

 

1. Introduction 
 

Drug design 

Being healthy is usually taken for granted, but the importance of health becomes very 

clear when it is not present: the various illnesses can greatly diminish the quality and 

quantity of life, and are usually fought with all means available. One of the primary 

means of conserving health or improving quality of life is the administration of small 

molecules called drugs. These molecules can bind to specific critical components 

(generally proteins) of the target cells, and activating or deactivating these components 

leads to a change in behaviour of the entire cell. Cells of disease-causing organisms or 

of the patients themselves can be targeted1, leading to destruction of the cells or 

modification of their behaviour. This can help to cure or at least alleviate the disease. 

Modern medicine has access to a large variety of compounds to fight diseases ranging 

from AIDS to high blood pressure, from cancer to headache, and from bacterial 

infection to depression. 

 Drugs, together with improved nutrition and hygiene, have led to a large increase 

in life expectancy in Western society (in 1900, life expectancy in the USA at birth was 

47.3 years, which had increased to 77.0 years in 2000). However, there still exists a 

great need for new and better therapeutics. Current drugs can in most cases only slow 

cancer, not cure it. The remarkably effective treatment of HIV infection with 

combination therapy prevents the progression of AIDS, but the treatment itself is quite 

harmful to the body. And some illnesses, like Alzheimer’s disease, are still untreatable. 

 Unfortunately, developing a novel drug is not easy. The pharmaceutical industry is 

spending enormous amounts of time and effort to develop drugs that improve on 

existing ones or treat previously untreatable maladies. On average, development of a 

new drug takes 10 to 15 years and costs 400-800 million US dollars (DiMasi et al., 

2003). A large part of this money is spent on investigating compounds that eventually 

turn out to be unsuitable as drugs. Many molecules fail to become drugs because of 

“low bioavailability”, which means that they do not succeed in reaching the site of 

                                                 
1 In the case of viruses, which have no cells themselves, the viral proteins which are 

present in the infected human cells are targeted, preventing or reducing proliferation of 
the virus.  



13 

 

action due to poor solubility in water/blood (Lipinski et al., 1997), bad penetration of 

the gut wall, or being broken down by the body before they can exert their effect.  

 
  

         
 

Figure 2.1: A schematic overview of the different phases of the drug 

development process 
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Additionally, the biological targets of the drug candidates may turn out not to have a 

significant influence on the disease, or the adverse effects outweigh the health benefits.  

 Due to these many independent factors that can make a drug candidate fail, it is 

hardly surprising that only one out of about 5000 screened drug candidates reaches the 

market (Rees, 2003). The drug development process (Figure 2.1) is largely an elaborate 

and expensive filter to eliminate the unsuitable compounds. 

 The largest part of time and effort of drug development is spent on trials to 

determine whether the drug candidate meets these criteria of bioavailability, efficacy 

and safety. Since it is better that a drug candidate should fail early in this process 

instead of late, the pharmaceutical industry generally strives for the “fail fast, fail cheap” 

ideal.  

 To fail fast and cheaply, it is essential to have fast, cheap methods of determining 

whether the drug candidate does or does not have suitable properties to be a drug. 

Computational methods are ideal for this goal, since they could replace expensive 

biological tests and do not even need the synthesis of the drug candidate. Additionally, 

computers are also applied to increase the input of the pipeline by suggesting 

alternative drug candidates.  

 One of the classes of methods used in the pharmaceutical industry for these 

purposes is evolutionary algorithms, which seems especially appropriate since drug 

design is largely survival of the fittest compound. This review will focus on the diverse 

evolutionary algorithms applied to the problems of drug design. We will first introduce 

the concept of evolutionary algorithms. 

 

Evolutionary algorithms 

Evolutionary Computation is the term for a subfield of Natural Computing that has 

emerged already in the 1960s from the idea to use principles of natural evolution as a 

paradigm for solving search and optimization problems in high-dimensional 

combinatorial or continuous search spaces. The algorithms within this field are 

commonly called evolutionary algorithms, the most widely known instances being 

genetic algorithms (Holland 1975, Goldberg 1989, Goldberg 2002) 2 , genetic 

programming (Koza 1992, Koza et al., 2003), evolution strategies (Rechenberg 1973, 

                                                 
2  It should be noted that many evolutionary algorithms described in this review are 

called “genetic algorithms” by their authors, even though they do not follow Holland’s 
original scheme at all. This misleading nomenclature might decrease in the future, 
however meanwhile the reader is advised when searching literature on evolutionary 
algorithms in the area of drug design to supplement his database queries regarding 
“evolutionary algorithms” with searches for “genetic algorithms.”  
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Rechenberg 1994, Schwefel 1977, Schwefel 1995), and evolutionary programming 

(Fogel et al. 1966, Fogel 1995). A detailed introduction to all these algorithms can be 

found e.g. in the Handbook of Evolutionary Computation (Bäck et al., 2000). 

 Evolutionary Computation today is a very active field involving fundamental 

research as well as a variety of applications in areas ranging from data analysis and 

machine learning to business processes, logistics and scheduling, technical engineering, 

and of course drug design, the topic of this article. Across all these fields, evolutionary 

algorithms have convinced practicians by their results on hard optimization problems, 

and thus became quite popular today. This introductory section on evolutionary 

algorithms aims at giving the reader a first impression of their fundamental working 

principles, without going into details of the variety of implementations available today. 

The interested reader is referred to the literature for in-depth information. 

 The general working principle of all instances of evolutionary algorithms is based 

on a program loop that involves implementations of the operators mutation, 

recombination, selection, and fitness evaluation on a set of candidate solutions (often 

called a population P(t) of individuals at generation t) for a given problem. This general 

evolutionary loop is shown in the following algorithm.  

 

 

Algorithm 2.1: Simplified abstract evolutionary algorithm. 

 

  t := 0; 

  initialize P(t);  

  evaluate P(t); 

  while not terminate(P(t)) do 

   P’(t)  := select_I(P(t)); 

   P’’(t) := recombine(P’(t)); 

   P’’’(t) := mutate(P’’(t)); 

   Evaluate(P’’’(t)); 

   P(t+1) := select_II(P’’’(t) ∪ P(t)); 

   t := t+1; 

  od; 

  return(best(P(t)); 
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In this general setting, mutation corresponds to a modification of a single candidate 

solution, typically with a preference for small variations over large variations. 

Recombination (called “crossover” by some investigators) corresponds to an exchange 

of components between two or more candidate solutions. Selection drives the 

evolutionary process towards populations of increasing average fitness by preferring 

better candidate solutions to proliferate with higher probability to the next generation 

than worse candidate solutions (this can be done probabilistically like in genetic 

algorithms, or deterministically like in evolution strategies). Selection can be used 

either before recombination as a kind of sexual selection operator preffering better 

individuals to generate more copies before recombination occurs, or as an 

environmental selection operator after fitness evaluation to reduce population sizes by 

removing worse individuals from the population. This second selection operator can 

also take the original population P(t) into account, thus allowing the algorithm to 

always keep the best individuals in the population (which is called an elitist strategy 

assuring that fitness values do not get worse from one generation to the next). By 

evaluation, often called more specifically fitness evaluation, the calculation of a 

measure of goodness associated with candidate solutions is meant, i.e., the fitness 

function corresponds to the objective function of the optimization problem Y = 

f(x1,…,xn) → min (max) at hand (minimization and maximization are equivalent 

problems), where f: M → R maps candidate solutions defined over a search space M 

into real-valued (usually scalar) measures of goodness.  

 Evolutionary algorithms offer several advantages over conventional optimization 

methods, as they can deal with various sets of structures for the search space M, they 

are direct optimization methods which do not require additional information except the 

objective function value f(x1,…,xn) (i.e., no first or second order derivatives in 

continuous search spaces), they can deal with multimodal optimization problems (i.e., 

problems where many local optima exist where the search can get trapped into a 

suboptimal solution), and they can also deal with additional problems such as 

discontinuities of the search space, noisy objective function values or dynamically 

changing problem characteristics. 

 The candidate solutions (elements of the search space M) to an optimization 

problem can have arbitrary datastructures. However, certain kinds of candidate solution 

structures are popular, such as binary or discrete valued vectors, as often associated 

with the concept of a genetic algorithm, real-valued vectors, as often associated with 

evolution strategies or evolutionary programming, or parse trees in a functional 

language such as LISP, as often associated with genetic programming. The differences 
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between these representational instances of evolutionary algorithms have become 

blurred since 1990, however, such that state-of-the-art evolutionary algorithms often 

use concepts from several of the pure historical instances together in an implementation 

that is tailor-made for a particular application problem. Also, many mixed 

representations are used to solve challenging problems defined in more complex search 

spaces, e.g., mixed-integer nonlinear optimization problems. Expansions to new search 

spaces including graph-based representations naturally imply the potential application 

of evolutionary algorithms to drug design or molecule optimization problems. 

 

Scope and limitations of this review 

This review focuses on the stage of drug design in which the drug molecule is designed. 

Therefore applications of evolutionary algorithms that are also important but 

preliminary to this stage, such as protein folding prediction and elucidation of protein 

structure, are not discussed here. The interested reader is referred to other literature, 

such as the compilation of reviews edited by Clark (2000). 

 The articles discussed in this review were published in the period from 1993 to 

2004. Our primary criterion for selection was diversity in application and method, not 

recency. However, most of the articles (44 of 54) are from the period 1998 to 2004, 

since the application of evolutionary algorithms in drug design only started to bloom in 

the mid-nineties. 

 Due to our focus on design of drug molecules, the distribution of literature 

references is skewed towards chemical literature. The three major journals discussing 

cheminformatics and computational chemistry contributed 38 articles, journals in 

medicinal chemistry and general chemistry 13 articles, and computer science-based 

conference proceedings only 3 articles. This is however not an exhaustive compilation 

of existing literature, and the interested reader will be able to find more relevant 

articles in the (medicinal) chemical and computer science literature.  

 We hope that this review will help the reader gain insight in the problems of drug 

design and the diverse kinds of evolutionary algorithms applied so far, and enable him 

or her to read or perform additional research in this area with a wider perspective and 

more understanding. We hope that in this way the review can contribute to the further 

development of computational methods that help solve the problems of drug design, 

and enable researchers to apply the power and processing capabilities of the computer 

to enhance human health. 
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2. Evolutionary algorithms in the design of molecule 
libraries 
 

To find a lead compound for further drug design a set of compounds (called a library) 

can be tested for the desired biological activity. A good library should have good 

efficiency and good effectiveness: it should be so small that the cost of testing it is as 

low as possible, yet be so large that the chances of finding a suitable lead compound 

are sufficiently high.  

 Choosing the contents of the library rationally instead of randomly can enhance 

the efficiency and effectiveness: since compounds with similar structures usually have 

similar activities, a library consisting of compounds that are very dissimilar to each 

other will require fewer compounds to cover as much of the “biological activity” space. 

 Another criterion is drug-likeness: drug molecules must have certain properties to 

work (for example, have a weight of under 500 atomic mass units to be taken up by the 

body (Lipinski et al., 1997)), so such constraints can also be enforced during the design 

of the library. 

 More advanced criteria can also be applied, if more information is available: if the 

structure of either a ligand (a compound that binds to the receptor) or of the target 

receptor itself is known, one could select those compounds which look like the ligand 

or fit into the receptor, instead of the most diverse ones; this is called targeting.  

 The most popular method of creating the compounds of the molecule libraries is 

combinatorial chemistry: a number of compounds of group A, which all have a certain 

common reactive group, is combined with a number of compounds of group B, which 

have another common reactive group that can react with the reactive group of A 

(Figure 2.2). 

 In this way, N+M reactants are converted into N*M products. Higher dimensions 

of synthesis (N+M+P reagents give N*M*P products) can also be applied. Since there 

are many available reactants and multiple reaction steps can be applied, the number of 

potential compounds is much larger than the number that is practically and 

economically feasible to make and test. For this reason, selection of the reagents to be 

used or of the products to be made is very important. This has turned out to be a 

promising application for evolutionary algorithms. We will now discuss a number of 

these applications. 

 The first application we would like to discuss is the program SELECT (Gillet et 

al., 1999). SELECT has the objective to construct a general library, the compounds of 

which should both be diverse and druglike. Testing this idea on virtual amide 
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(100x100) and thiazoline-2-imide (12x99x54) libraries, the goal is to choose that 

sublibrary which has highest diversity, and whose molecules have a similar property 

distribution as known drugs (so if 15% of drug molecules have 3 rotatable bonds, 15% 

of library molecules should have 3 rotatable bonds too). The desired sizes of the 

libraries were 20x20 and 8x40x20, respectively. 
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Figure 2.2: A simple combinatorial library. 

 

The data structures representing the candidate solutions (these data structures are 

commonly called “chromosomes” in the field of evolutionary algorithms, see also the 

glossary) were vectors with as length the number of reagents for the target library, 

consisting of the identification numbers of the reagents used. Each set of reagents was 

assigned to a separate partition of the chromosome. Single point mutation and single 

point crossover (crossover only occurred in one randomly chosen partition) were 

applied. The population size was 50.  

 The diversity of the library was determined by first calculating a chemical 

fingerprint of each molecule, a vector of bits, and summing the differences between all 

pairs of vectors. 
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In the case of the amide library, with diversity as fitness criterion, convergence was 

reached after about 1000 iterations, with a very reproducible optimum (mean 0.595, 

standard deviation 0.001)- a clear improvement over the diversity of randomly 

constructed libraries (mean 0.508, standard deviation 0.015). However, it turned out 

that taking drug-likeness as additional criterion decreased the diversity, and that 

depending on the relative weights of the criteria, different solutions were found. This 

task of minimizing diversity while maximizing drug-likeness could be viewed as a 

multiple criteria decision making task. 

 Since manually adjusting the weights to create different solutions is inelegant and 

impractical, the authors subsequently developed an extension of SELECT, called 

MoSELECT (Gillet et al., 2002). The goal of this program is to find a set of solutions, 

each solution so that no other solution in the set is equal or superior to it in all respects 

(the solution is nondominated, or “Pareto optimal”; see Figure 2.3).  

Figure 2.3: Pareto optimality. In this example, both fitness criteria are to be 

maximized. A solution is dominated if there exists another solution that has 

equal or better scores on all criteria. for example (0.5 , 0.6) dominates (0.4 , 

0.5) because 0.5>0.4 and 0.6>0.5. However, (0.5 , 0.6) does not dominate 

(0.4 , 0.65) because 0.5>0.4 but 0.6<0.65. 

 

 

This algorithm can perform multi-objective optimization by Pareto-ranking the 

chromosomes: nondominated chromosomes get rank 0, chromosomes which are 

dominated by one other chromosome get rank 1, etcetera, after which roulette wheel 

selection is applied, a common implementation of the “select-I” function in algorithm 1. 
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Information about the mechanism of this selection method can be found in the glossary. 

This Pareto-ranking approach results in many nondominating solutions found; using 2 

fitness criteria resulted in 31 nondominated solutions (in a population of 50), while 

increasing the number of criteria to 5 and the population size to 200 gave 188 

nondominated solutions. However, speciation was observed so niching (forbidding the 

algorithm to create new solutions which are similar to already found solutions) was 

applied to ensure diversity. This reduced the number of solutions to 24, but made them 

more different. (Evolutionary algorithms have also been used for finding sets of Pareto-

optimal solutions in other contexts, in which they turned out to be quite efficient, one 

advantage of the evolutionary algorithms being that they can find a set within a single 

run – see Deb (2001) for an in-depth coverage of the topic). 

 While diversity is a very desirable characteristic in a general purpose library, 

libraries can also be designed to discover a lead to a specific target. Sheridan et al. 

(2000) designed a combinatorial library of molecules built out of three fragments. 

There were 5321 fragments possible for the first part of the molecule, 1030 fragments 

for the middle of the molecule and 2851 available fragments for the third part of the 

molecule. Since synthesizing 15 billion compounds would be prohibitively expensive 

and time consuming, the authors desired to design small libraries (100-125 

compounds) of molecules that looked most promising. They wanted to create libraries 

of compounds that look like angiotensin-II antagonists (a “2D-criterion”, which only 

uses information on which atoms are connected to which other atoms) as well as 

libraries of compounds that fit in the active site of the protein stromelysin-1 (a “3D-

criterion”, which must know and manipulate the three-dimensional structure of the 

molecule).  

 Furthermore, Sheridan tested whether evolving a 5x5x5-library yielded results as 

good as evolving a library of one hundred separate molecules, addressing in this way 

the question whether the benefit of needing fewer different reagents by the 5x5x5 

library is offset by a decrease in library quality. In the experiments the 2D-criteria were 

as well achieved, on average, by the library-based as by the molecule-based runs, be it 

at much more computational cost (molecule based: <20 minutes; library based: about 

120 h). 3D-Fitness evaluation took over 120 times as long as 2D evaluation, so library-

based runs could not be performed using 3D-fitness criteria. However, the library 

created of the 5+5+5 most frequent fragments in the molecule-based optimization had a 

considerably lower score than the original library. While for “2D”-criteria the whole is 

approximately “the sum of its parts”, in the more realistic 3D fitness function this 

approximation no longer holds. The fitness landscape is probably much more rugged, 
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i.e. contains many more local optima in which a solution can become trapped. It is 

interesting to note, however, that despite this ruggedness the number of generations 

needed for convergence was approximately the same for 2D and 3D, namely 10-20 

generations. 

 A method that combines targeting and diversity is to use a known molecule as a 

template structure. Liu et al. (1998) generated two sets of compounds, the first set 

based on a benzodiazepine template (see figure 2.4) and the second on a template 

derived from the (-)-huperzine A molecule. 
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Figure 2.4: Template-based (virtual) library design. 

 

A library of 73 fragments was used to fill the open positions on the template. A 

population of one hundred molecules was generated by attaching randomly chosen 

groups to the template molecule. After this, the diversity of the population was 

determined by converting the 3D-structure of the electronic field around the molecules 

into sets of vectors, and measuring the dissimilarity between the vectors of the different 

molecules. Crossover was implemented by exchanging groups of two molecules at the 

same template position, mutation by having fragments exchange template positions or 

by replacing one of the fragments. After a short run (10 generations) convergence was 

reached. No data were provided on the reproducibility of the run. 

 The (-)-huperzine A library was generated in the same way as that of the 

benzodiazepine analogs. Subsequently some of the proposed structures were 

synthesized. One of them was found to have a higher binding affinity to the target than 

the lead itself, showing that the method is effective. 

 From the foregoing it is clear that evolutionary algorithms can optimize the 

diversity and other properties of combinatorial libraries. However, related experiments 

by Bravi et al. (2000) have given some interesting insights into the structure of the 

search space. Bravi et al. investigated if one could not only determine the optimal 

library composition, but also the optimal library size. Filters were used to select the 

most druglike compounds from a virtual library of 13x41x59 (of which 16% turned out 
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to be good). To synthesize all druglike molecules using a combinatorial library would 

require a library of 12x39x49; using this in combinatorial chemistry would however 

generate about 23000 compounds, of which 78% would be non-druglike. How to find a 

balance between efficiency (how large a part of the combinatorial library consists of 

desirable structures) and effectiveness (how large a part of all good structures are 

contained by the sublibrary)? Bravi’s program PLUMS used an algorithm that evenly 

weighed these two factors and designed a library that still contained 86% of all good 

molecules, with only 37% undesirable products. 

 The method Bravi used was based on iterative removal of the component whose 

removal produced a library with an optimum score. His results were as good as those 

of the GA to which he compared it, as long as PLUMS followed alternative parallel 

paths if there was no preference for removal. This suggests that the fitness landscape is 

not very rugged for this problem, and that an iterative method might replace a GA in 

such cases. However, a simpler method (monomer frequency analysis (MFA), which 

assumes that the best library is built from the fragments that are most frequent in the 

good compounds) failed to find this optimum. Analysis of the results showed that how 

often a fragment occurs in a good library is less important than how often it occurs 

with other good fragments. However, a subsequently designed dynamic version of 

MFA that iteratively chooses the best compounds of each set of reactants until 

convergence is reached, did find the global optimum. 

 Does this mean that evolutionary algorithms are not needed in library design? This 

is not very likely, since using more advanced 3D-fitness functions seems to make the 

fitness landscape more rugged. A simple method like PLUMS will get stuck in a local 

optimum more easily, especially if the building blocks of the library must be selected 

among thousands instead of dozens of reactants. However, iterative methods like 

PLUMS and MFA are good demonstrations of the power of simple solutions 

appropriately applied. 

 

Conclusion 

Several experiments have been performed using evolutionary algorithms in library 

design, to create libraries to satisfy many different objectives such as diversity, 

targeting and drug-likeness. While improvement of the libraries with respect to the 

fitness criteria is clearly seen in these experiments, and reproducibility seems fair 

enough, the major current challenges lie in refining the fitness criteria to accurately 

reflect the demands of drug development.  
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The diversity in the diversity criteria themselves suggests that more systematic 

attention to this problem might be worthwhile, and the great computational cost of 

more advanced (docking) criteria of target selection are still troublesome in more 

refined applications. Also the drug-likeness criterion might need revision. 

 Libraries are designed to find lead molecules, which usually grow in size during 

drug development to satisfy additional criteria. In many cases this may generate 

molecules that are too large to be drug-like. Screening the “drug-like” larger molecules 

for biological activity has a lower chance of success than screening smaller molecules, 

since large molecules have a smaller probability to fit in the space of the active site 

than small molecules (Hann et al., 2001). Therefore, it would be more valuable to 

evolve libraries with the criterion of lead-likeness. However, libraries of leads are 

currently not available, while libraries of drugs are. Unless calculations correct for the 

too high molecular weight and lipophilicity of drug-like compounds, “drug like” 

library design will probably produce suboptimal compounds.  

 A second development is the use of several conflicting criteria simultaneously in 

library design, of which the Pareto optimality by Gillet et al. (2002) and the prefiltering 

by Bravi et al. (2000) are examples. While certainly interesting, the problem of 

choosing the right weights by the user is now shifted to selecting the right nondominant 

set. Weighing must be done sooner or later. It is a good beginning, but further 

measures (probably based on existing knowledge of drug development and probability 

theory) are needed to find a better way of weighing the weights. 

 An application which has not been discussed in these articles is selecting 

compounds from a non-combinatorial library. This will become more important as 

proprietary compound collections of pharmaceutical companies grow and more 

compounds are made available by external suppliers. The disadvantages of 

combinatorial chemistry (generally too large and lipophilic molecules, failing reactions, 

etc.) could prompt using evolutionary algorithms to select a targeted or diverse test set 

out of tens of thousands of compounds that are available. This will be an interesting 

and important challenge. 

 Computationally, the different evolutionary algorithms can doubtlessly be 

improved by incorporating more domain knowledge. However, since the computational 

cost of most applications discussed is acceptable and performance is good, the 

relatively simple current algorithms may be preferred over more advanced versions. 

Comparisons with deterministic methods (Bravi et al., 2000) indicate that evolutionary 

algorithms can be applied quite well to the problem of library design. Although 

competing methods can also satisfy the designer’s needs (Agrafiotis, 2002), 
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evolutionary algorithms, perhaps with some small modifications, are very likely to 

become the standard method in library design. 

 

 

3. Evolutionary algorithms in conformational analysis 
 

A molecule is a three-dimensional entity consisting of atoms connected by bonds. 

Though the movement of the individual atoms is restricted by the bonds, most 

molecules can assume different shapes by bond stretching, by angle bending and, most 

importantly, by rotating parts of the molecule around single bonds (see Figure 2.5). 

The amount by which a bond is rotated (varying between 0 and 360 degrees) is called 

its torsion angle. 
  

 
Figure 2.5: Change in conformation by rotation around a bond. 

 

Conformational analysis, the generation and comparison of different conformations of 

a molecule, is an important part of medicinal chemistry. This is because the properties 

of a molecule are partially determined by the shape or range of shapes it can assume. 

Conformational analysis usually has two goals. The first and most common goal is to 

find the conformation of minimal energy, the “global minimum”. The energies of all 

other conformations (which correspond to their chance of occurring in nature) should 

be taken relative to the energy of this global minimum. This is especially important 

when a molecule is docked as a ligand into the active site of a receptor (see section 6). 

The increase in energy of the docked molecule relative to its minimum gives 

information on the true binding energy and therefore the likeliness that the docking is 

correct. The second goal of conformational analysis is to obtain a group of diverse yet 

energetically feasible conformations for virtual screening to address the issue whether 

the molecule or one of its good conformations fits a certain required pattern, a so-called 

pharmacophore. 

 Since bonds can be rotated over the entire range of 360 degrees the number of 

conformations of the molecule is in theory infinite. However, many conformations are 
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so similar that conformational analysis usually takes a minimal step size of 15-30 

degrees. Unfortunately, allowing n different torsion angles for m rotatable bonds each 

will give n
m possible conformations; for a flexible drug molecule like orphenadrine 

(which has six rotatable bonds), conformational analysis with a resolution of 15 

degrees would produce 1.9 x 108 conformations. Systematic search is infeasible in 

these cases, and heuristic algorithms, among which evolutionary algorithms, are 

applied. 

 An excellent example of a genetic algorithm applied to finding the conformation 

of minimal energy is the work of Nair and Goodman (1998). Nair and Goodman 

applied the genetic algorithm to linear molecules of carbon atoms (alkanes), and took 

the torsion angles as genes. After random generation of the population, crossover was 

performed followed by mutation. Subsequently the new structures were minimized 

with a local optimizer and their optimized conformations written back into their genes 

(so-called Lamarckian evolution), and the new generation was chosen from the pool of 

parents+children by roulette wheel selection on their energies, which were weighted 

with a Bolzmann factor that determined the penalty for higher energy. This process was 

repeated for a fixed number of generations. 

 The genetic algorithm found several minima for the chains of 6, 18 and 39 carbon 

atoms. The next, most interesting challenge was finding the optimal energy of PM-

toxin A, a long, approximately linear molecule (33 carbon atoms). This was tackled by 

first optimizing a 33-atom alkane, listing the several thousands of low-energy 

conformations found. Subsequently the branching groups were added and the resulting 

structures locally optimized. A minimum of less than -100 kJ/mol was found. A Monte 

Carlo search, using the same amount of structure optimizations, found a minimum of 

only –78 kJ/mol. Furthermore, the GA found 168 conformations with an energy below 

–70 kJ/mol, the Monte Carlo approach only two. 

 It is interesting to note that the more complex and flexible the molecule becomes, 

the more minima of approximately equal energy can be found. Since the energy of the 

global optimum is much more important than the conformation of the global optimum 

and dozens of conformations give the approximately good result, knowing the “best” 

answer is relatively unimportant. This makes stochastic algorithms like evolutionary 

algorithms even more useful in this situation. 

 Jin et al. (1999) analysed the pentapeptide [Met]-enkephalin, which has 24 torsion 

angles. Three different versions of their program GAP were used: GAP 1.0, GAP 2.0 

and GAP 3.0. In GAP 1.0 a uniform crossover was used together with a diversity 

operator that mutated a child structure if more than half of its angles differed by less 
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than 5 degrees from its parent structures. GAP 2.0 included a three-parent crossover 

(two parents are crossed, their product is crossed with the third parent), and GAP 3.0 

has a “population splitting scheme”, which only allows crossover of individuals in 

different populations. The offspring was generated by crossover and subsequent 

mutation. After these steps, parents and offspring were taken together, the lowest half 

(50 conformations) was selected as the next generation, and after 1000 generations the 

runs were stopped. In this case, the minimum found was about 3 kcal/mol higher than 

the one found by a Monte Carlo method. 

 Since other experiences with GA/MC comparisons like those of Nair and 

Goodman (1998) and Tufféry et al. (1993) found the genetic algorithm to be superior 

to Monte Carlo, especially when optimizing large systems like proteins, the authors 

analysed their algorithm. By measuring the search space coverage it was found that, 

surprisingly, higher mutation rates led to lower coverage. This suggests that most 

mutations are so harmful that they are rapidly selected out by the strict fitness criterion 

(best half), and the next generation consists mainly of unmodified “parent” 

conformations, which tends to prevent departure from local minima and restricts the 

search space covered. 

 For certain purposes, not a single low-energy conformation is needed, but a set of 

low-energy conformations that differ as much from each other as possible. These 

conformations can be used for e.g. pharmacophore screening or as starting 

conformations for docking. Mekenyan et al. (1999) designed a GA for optimizing the 

diversity in a population of conformations. The fitness criterion was a diversity 

criterion that measured how bad the best possible superposition of two conformations 

was (in root mean square distance between corresponding atoms). The score of the 

individual was the average dissimilarity to the other members in the population.  

 Next to the traditional torsion angles Mekenyan included the flexibility of rings by 

allowing free ring corners (atoms that were part of only one ring) to flip, and storing 

the flipped/unflipped information in the chromosome too. This may be very valuable 

for complex molecules that often contain flexible rings.  

 Mutation was performed and followed by crossover. If the children were 

energetically inadmissible or too similar to already present conformations, they were 

discarded. If Nc viable children were found within a certain number of tries, the most 

diverse subset of size Np was selected from the total pool of Nc+Np conformations. The 

evolution was stopped if fewer than Nc viable children had been produced within the 

specified number of tries.  
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Mekenyan experimented with different settings of the population size and the number 

of children. The runs did not seem very reproducible and in most cases were stuck in 

local optima. The general conclusion was that the ratio between the number of parents 

and the number of children Np/Nc is very important. If Np/Nc is lower, convergence is 

reached faster and more of the search space is covered, but if it is higher, runs are more 

reproducible. 

 Thinking more theoretically about the quality of evolutionary algorithms, Wehrens 

et al. (1998) considered that only taking the value of the best individual to judge an 

evolutionary algorithm is somewhat limited, and proposed additional criteria: 

reproducibility and coverage of the search space. The authors describe the application 

and implementation of these criteria in the case of the conformational analysis of N,N-

dimethyl-N’-4-phenylbutylmalonamide. 

 This compound has 7 rotatable bonds, the torsion angles of which form the genes 

of the chromosome. A population of size 50 was used for a run of 100 generations. 

Tournament selection was performed with tournament sizes varying from 2 to 10. 

Crossover rate was 0.8 with uniform crossover applied. In the experiments, several 

parameters were varied, mainly to investigate the influence of the “sharing” operator. If 

the root mean square difference between the torsion angles of the child and parent 

conformations is less than the sharing distance, a randomly selected torsion angle of 

the child will get a random twist between 0 and a fixed number of degrees called the 

“sharing offset”.  

 Coverage was measured by dividing the search space into hypercubes (hypercube 

size of 90 degrees, so there are 47 hypercubes which can be visited in the search space). 

About 10% of the search space was visited using a GA without sharing, 30% with 

sharing, 77% by random search. So while sharing increases coverage, selection 

pressure decreases it. A tournament size 10 instead of 2 further decreased the coverage, 

be it slightly. 

 The second criterion of coverage was how many clusters of low energy were 

found using different parameter settings. In this case this was 6 to 14 clusters for the 

genetic algorithm, 0 for random search.  

 Another criterion, reproducibility, was measured in two ways: the first way was to 

count the number of clusters in common between two runs, the second was projecting 

all conformations into the 7 dimensional “torsional” space and determine the principal 

components. The ratio of the overlap of the principal components of the different runs 

of one setting and those of another gave the reproducibility.  
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As the authors note, their criteria may also be used for other applications of genetic 

algorithms. Though some of their ideas seem useful, they have, considering the 

subsequent literature, not yet been widely applied by other researchers. 

 

Conclusions 

Evolutionary algorithms have been applied to conformational analysis with some good 

results. While there are some experiments that indicate that the method of “directed 

tweak” is slightly superior in conformational searches (Clark et al., 1994) evolutionary 

algorithms are more versatile: they can search for sets that are diverse, as well as 

pursue multiple objectives. Next to seeking the most suitable mutations and crossover 

methods and optimizing the parameters, there are some other interesting points that 

could justify further research. The first question is how one could incorporate 

molecular mechanics such as the deformations of rings in the evolutionary algorithm. 

Secondly, almost all energies are now calculated for molecules in a vacuum, yet the 

relevant energies for biological molecules are those in solution. One should carefully 

compare the vacuum results with those calculated using modern force fields that 

include water to check whether and when this approximation is allowed. A third item, 

which is growing in importance, is the application of conformational analysis to larger 

molecules, especially proteins. 

 As our understanding of biology increases, molecular movement and 

conformations will be able to shed light on the dynamic properties of chemical and 

biological systems. Conformation analysis will be important to determine the “4D”-

descriptors, which describe the possible changes of the molecule over space and time. 

Evolutionary algorithms, with their flexibility and possibilities to optimize systems in 

which the elements depend on each other, as is the case in conformations, will 

probably continue to play an interesting and important role in the development of this 

field. 

 

 

4. Evolutionary algorithms in molecule superposition and 
pharmacophore detection 
 

If two molecules bind to the same receptor, can one deduce from this information 

which other molecules will bind? The traditional way of solving this problem is by 

comparing the structures of the active molecules: one superimposes the molecules onto 

each other to detect the similarities. If they have the same kinds of atoms in the same 
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relative positions, those may be important. Out of this superposition, features which 

might be important for activity are postulated, and their relative 3D-orientation 

constitutes the active pattern, or pharmacophore.  
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Figure 2.6: Molecule superposition and pharmacophore detection. “Ar” 

stands for aromatic center, 1 Å is 0.1 nm. 

 

This entire process of superposition and assignment of pharmacophoric points is called 

pharmacophore detection (see figure 2.6). 

There are two fundamental difficulties in molecule superposition and 

pharmacophore detection. The first is the definition of a good superposition. There are 

at least three possible criteria: 

1) In a good superposition both molecules have low energies; their conformations 

have energies at or close to the global minimum. 

2) In a good superposition the volumes of the molecules overlap optimally, which 

means that they fit in the receptor in about the same space of the active site. 

3) In a good superposition, the most important atoms/parts should overlap best, the 

other parts of the molecule are relatively unimportant. 

In fact, all these factors seem to play a role. Ultimately the criteria a molecule has to 

fulfill to be active are determined by the three-dimensional structure of the receptor, 

but unfortunately that structure is generally not known. Nevertheless, a method that 

finds high similarity of whatever kind between various active molecules and does not 
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match inactive molecules would certainly be promising. 

 The second problem in molecule superposition is the combinatorial explosion: 

most molecules can assume thousands of conformations, so searching for the best 

overlap of two molecules or more by a systematic search method quickly becomes 

infeasible. It is no surprise that evolutionary algorithms have been applied in order to 

help to solve this problem.  

 An early example of a genetic algorithm to superpose molecules and detect 

pharmacophores is given by Payne and Glen (1993). The chromosomes representing 

the molecules are bit strings, the first elements give the 3D-coordinates for the location 

and the orientation of the molecule leading to 6 degrees of freedom. They are followed 

by genes for each bond that can be rotated and for each ring corner that can be flipped. 

 In some cases the fitness criterion was how well a molecule obeyed certain 

distance constraints, i.e. selected groups in the molecule or of different molecules 

should be at a certain distance from each other. Overlap constraints, i.e. overlapping 

another molecule as much as possible, and spherical constraints were also used. The 

latter constraint is defined by a sphere drawn around the molecule, the surface points of 

which have values representing the distance from the sphere surface point to the 

molecule’s surface point directly beneath it or the charge on that surface point. The 

total fitness was a weighed sum of the several fitness functions that were appropriate 

for the situation. Chromosomes were represented as bit strings, the mutation was bit-

flip mutation and one-point crossover was used. 

 Several problems were tackled with this algorithm: finding the conformation of a 

molecule which obeyed certain distance restraints, elucidating a pharmacophore, fitting 

a molecule onto itself, and fitting different molecules of a similar biological activity 

onto each other.  

 It turned out that some of the problems were relatively easy to solve using the 

genetic algorithm. If there is a fixed set of constraints or a rigid template molecule like 

morphine the evolution reaches convergence (in runs of 300 generations of 1000 

molecules). If however flexible molecules have to be fitted onto each other, the 

“moving target” makes convergence very awkward. However, when an intermediate 

step was added in which the conformers were rigidly fitted onto each other the time 

spent by the genetic algorithm was reduced from 10 days to 9 minutes! 

 All in all, the program described seemed to do its job fairly well, though greater 

degrees of freedom clearly gave it so much trouble that optimization became difficult. 

A last problem is that when some regions of a molecule are important to receptor 

binding and others are not, a sphere model might not be a very suitable means for 
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finding the part of the molecules that are similar. This is due to the fact that the 

differences in the other parts may drown out the similarities unless one has large data 

sets. Moreover, superpositions of the many molecules of those large data sets 

themselves might lead to poor convergence. 

 Superposition of molecules has often the goal of finding a pharmacophore. 

Holliday and Willett (1997) wanted to use a genetic algorithm to find a group of 

pharmacophore points (in their case: N and O atoms) in a 3D-arrangement present in 

all molecules with a certain biological activity. 

 Their original genetic algorithm proved to be too slow, but the authors found that 

performance could be improved by splitting it into two smaller genetic algorithms: one 

to find sets of corresponding atoms in the different molecules, a second to combine 

these sets into the smallest possible superset. 

 The first genetic algorithm uses chromosomes of length n×m, where n is the 

number of molecules and m a user-defined number of atoms that has to be found per 

molecule. Crossover is performed on the border between molecules, mutation replaces 

an atom by another atom of the same molecule. If the atoms in the chromosome of two 

different molecules have the same types and approximately the same distances to each 

other, the second set of atoms is “fused” with the first. The evolutionary process thus 

results in a chromosome grouped in a few different clusters of molecules, the 

molecules of each cluster containing identical atoms in a common geometric pattern. 

 The second genetic algorithm uses the collection of patterns found by the first 

algorithm and attempts to find a superset which contains all of them. The chromosome 

here is a list of the 3D coordinates of the several points. The second algorithm can add, 

move or remove points in this 3D-arrangement and continues until every molecule in 

the set has at least m points (the value of m specified by the user) in common with the 

superset, within a certain tolerance range. The second genetic algorithm uses clique-

finding algorithms to speed up this process. 

 The program was tested on five data sets of 10-19 biologically active compounds. 

In most cases, 3 or 4 point subsets common to all compounds were found, thus 

indicating the effectiveness of the method. 

 However, the authors add that their program should be developed further. Next to 

the nitrogen and oxygen atoms there may be other important elements in a 

pharmacophore such as a phenyl group (see also Figure 2.6). Additionally, most 

ligands are flexible and their active conformation is not known; therefore the genetic 

algorithm should either work on a good superposition (in which case it would not give 

much useful extra information) or take the flexibility of the molecules into account. 



33 

 

This issue of flexibility was addressed by Handschuh et al. (1998) who used a genetic 

algorithm to superpose flexible molecules. This superposition was again based on atom 

superposition, but in this method the superposed atoms did not have to be of the same 

type.  

 The authors recognized that a good superposition of molecules should satisfy 

conflicting demands. Although as many atoms as possible of the two molecules should 

be matched, matching too many atoms will result in a worse fit. For this reason Pareto 

optimization was used to obtain alternative solutions. 

 The computer program fitted only two structures simultaneously; each individual 

consisted of a chromosome containing the information of both molecules. The 

chromosome consisted of two parts, which contained the “match pairs” (which atoms 

of structure one were fitted onto atoms of structure two) and the torsion angles of the 

molecules, respectively.  

 A population of 100 molecule-pairs was created and subsequently evolved. 

Mutation and crossover in the torsional part was straightforward and mutation in the 

match part replaced or deleted atom matches. Crossover in the match part was 

implemented by choosing two match lists of equal length in the parents and appending 

them to the end of the other parent’s match list, removing duplicate atom matches in 

the original parent. Interesting was the inclusion of two “knowledge augmented” 

operators, “creep” and “crunch”, which added atom pairs to or removed them from the 

match list based on their distance in the current superposition. These operators 

improved the final results substantially, since much closer fits of 0.05-0.2Å were 

obtained instead of root mean square scores of 0.6-1.0Å. 

 Another innovation somewhat similar to the speedup described by Payne and Glen 

(1993) was the use of the directed tweak method to adapt the torsion angles of the 

match after each individual was generated. This was however not Lamarckian since the 

genes were not changed and the matching procedure was only used to determine the 

fitness value. Instead restricted tournament selection was used. Here one solution 

competed against the solution most similar to itself from a random subset of the 

population. The winner was copied into the next population. This selection method was 

chosen in order to conserve diversity. 

 Handschuh et al. applied the genetic algorithm to overlaying several angiotensin II 

antagonists, with good results in that overlays of 10-20 atoms were reached with low 

root mean square values (<1Å). Additionally, a known angiotensin II pharmacophore 

was found. These results indicate that the method is quite promising. However, some 

problems of pharmacophore finding remain difficult to solve, even with a method as 
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advanced as this one. A true choice about whether molecules A and B overlap best in 

overlap 1 or 2 can only be made if it can be determined whether the identity of the 

atoms really matters (Figure 2.7). In some cases it will, in others it won’t, such that 

there may be other objectives to add to the Pareto fitness. 
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Figure 2.7: Which superposition is best? 
 
 

Conclusion 

There are several different kinds of molecule superposition. Superposing the shape and 

charge fields of two dissimilar molecules, superposing the most important atoms, or 

superposing all atoms are all options, but which one is “correct” or “better”? Probably 

much depends on the protein and the set of ligands. The existence of different criteria 

seems to indicate that superposing molecules is a multi-objective problem, with the 

different weights reflecting the one true objective of how well the superposed 

molecules occupy the “superposed” space when binding to the receptor. Comparison 

with experimental data such as crystal structures would greatly help to test, validate 

and optimize the different methods. Pending that, extra calculations of for example the 

energy of the ligands may help to make a choice between different superpositions. 

 Also, it would be worthwhile to extend the pharmacophore models with known 

inactive compounds that are similar in structure to the active molecules and study if 

these fit or not. This may yield information on criteria for internal energy of the 

superimposed conformation or information about the “excluded volume”, the parts of 

the molecule that the receptor cannot accommodate. 

 Thirdly, there is the problem of superposing larger sets of compounds. The extra 

information gained by including more compounds is probably useful, but an optimal 

multiple superposition is much more difficult to find. Overlaying two molecules is 

quite standard, but what to do if there are more? While Handschuh et al. (1998) found 

that the order of superposition of their four compounds did not influence the results, it 

seems likely that a naive evolutionary algorithm would fail if it would attempt to 
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overlay more than ten structures simultaneously. Sequential overlap of many 

compounds will probably yield local minima, especially since there may be different 

“best” superpositions according to the Pareto optimality criteria. Handling large 

datasets, especially truly large data sets on which one can apply statistics, seems to 

become possible (Chen et al., 1999). It is still unclear yet whether this will be the final 

answer due to the necessarily limited number of conformations and pharmacophoric 

points used by such methods.  

 Lastly, in several cases there may be more than one active site on the receptor, or 

the binding site is so large that not all molecules will necessarily share the same 

volume. Discovering that there are several different pharmacophores in this case will 

be a challenging test for any superposition method.  

 All in all, evolutionary algorithms have led to valuable software for molecule 

superposition and pharmacophore detection. Still the field of molecule superposition 

does not have the answers yet for handling more than two molecules and choosing 

between different superpositions. While there are also non-evolutionary methods for 

pharmacophore detection (Chen et al., 1999; Ting et al., 2000), it is very likely that 

evolutionary algorithms will continue to be applied. 

 

 

5. Evolutionary algorithms and quantitative structure-
activity relationships 
 

In drug design and development one of the prime views is that the biological activity of 

a given compound is determined by its physico-chemical characteristics. Already in the 

19th century it was postulated by Crum Brown and Fraser (cited in Parascondola, 1980) 

that “there can be no reasonable doubt that a relation exists between the physiological 

action of a substance and its chemical composition and constitution”. In more recent 

days Hansch and coworkers (Parascondola, 1980) were the first to suggest that such a 

relationship can also be expressed in quantitative terms, as in the following equation: 

 

Biological activity=a0+a1.descriptor1+a2.descriptor2+….+an.descriptorn 

 

This is called a quantitative structure-activity relationship, or QSAR. In the above 

formula the biological activity is a numerical value such as the logarithm of the 

concentration at which a compound exhibits half of its maximal biological activity. The 

descriptors are numerical values of the properties of either the entire molecule (like the 
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molecular weight) or of a specific part of the molecule. In the latter case, the equation 

needs to be derived from a set of highly similar compounds.  

 

The major use of a QSAR formula is the prediction of the biological activity of a 

compound that has not yet been tested or has even not been synthesized yet. This can 

be done with models consisting of descriptors that can be calculated theoretically. In 

essence, the structure of the molecule, which is a graph, is converted into a vector of 

numbers, which can hopefully be related to the biological activity by a (simple) 

function. In theory QSAR can thus greatly increase the speed and reduce the cost of 

drug design by eliminating the synthesis and testing of compounds with low activity.  

 However, the major problem regarding QSAR is that scientists can now choose 

among many hundreds of descriptors, such as experiment-based descriptors, graph-

theoretical descriptors, quantum mechanical descriptors and others. Additionally, 

researchers are more and more realizing that QSAR does not have to be a weighted 

sum of simple descriptors. Cross-products and polynomials (Lučić et al., 2003), splines 

(Rogers and Hopfinger, 1994) and even more exotic functions can be used to forge new 

descriptors out of the old ones, enlarging the set of available descriptors even more. 

Since a specific biological activity is commonly only measured in dozens of 

compounds, the hundreds to thousands of descriptors available will lead to overfitting 

if fitting procedures are used without proper caution. Since there are no ‘golden rules’ 

to govern the choice, selection of the ‘right’ descriptors is probably the most 

problematic step in the whole process. 

 Currently, matrix techniques such as principal component analysis (PCA) 

(Hemmateenejad et al., 2003) and partial least squares (PLS) (Geladi and Kowalski, 

1986) are applied to reduce the number of descriptors used. However, the resulting 

convoluted descriptors are often difficult to interpret, and the design of more active 

compounds is cumbersome for a medicinal chemist if the QSAR formula cannot be 

easily understood. 

 The more straightforward descriptors can lead to a model that is more easily 

interpreted, and are therefore still used by many researchers. The traditional way to 

choose the best descriptors for the model from the wide variety available is called 

forward stepping. This is a local search process, in which first one-descriptor models 

are built, of which the best is chosen. Subsequently, one by one those descriptors are 

added that improve the quality of the model most. Since it is possible however that 

there are descriptors that are separately not very informative but extremely valuable 

when combined, global optimization techniques are increasingly being used, among 



37 

 

which evolutionary algorithms.  

 A typical example of an evolutionary algorithm to select the descriptors in QSAR 

analysis is the work of Kimura et al. (1998). In their research, CoMFA (comparative 

molecular field analysis, a technique that compares molecules by looking at their 

shapes and the electrostatic fields created by the charges of the atoms) was applied to a 

set of 20 polychlorinated benzofurans. The molecules were superposed and a grid of 

17x15x5 was laid over the superposition. For each molecule the strength of the electric 

and steric field at each grid point was calculated and used as a descriptor. This resulted 

in 2550 descriptors, which, using conventional CoMFA with partial least squares, gave 

a r2 value of 0.96 and a leave-one-out cross-validated q2 value of 0.89.  

 Subsequently, the authors applied their genetic algorithm, GARGS (GA-based 

region selection). First a coarse grid was defined (8x6x5) that divided the molecules 

into larger regions. The chromosomes were bit-strings, each bit encoding the 

inclusion/exclusion of a specific region in the model; a population of 240-bit 

individuals was created. The fitness of each chromosome was calculated by the q
2 

value and the best 90% of the population was selected as basis for the next generation. 

Uniform crossover on 10 pairs of chromosomes and bit-flip mutation on all 

chromosomes was applied. Elitism conserved the chromosomes which had the highest 

q
2 values among the chromosomes which had as many or fewer parameters (Pareto 

optimality, see section 2).  

 The genetic algorithm resulted in a model with only 8 regions (43 parameters) 

which by partial least squares analysis gave a model with r2=0.97 and q2=0.95. Thus 

descriptor selection not only reduced overfitting but also slightly improved the fit of 

the training set, possibly by removing clutter which prevented the partial least squares 

analysis from finding the optimum. External validation on a prediction set showed 

indeed improvement over conventional CoMFA, the root mean square error decreasing 

from 2.63 to 0.99. GARGS was later used by the same authors in a 3D-QSAR study of 

acetylcholinesterase inhibitors (Hasegawa et al., 1999). 

 An addition to conventional parameter selection was presented by Cho and 

Hermsmeyer (2002). Their algorithm GAS (genetic algorithm guided selection) could 

be used for two purposes. Next to the binary vector indicating use/non-use of 

descriptors, each individual also contained a vector of numbers which divided the 

compounds into several classes. The size of each chromosome was thus equal to the 

sum of the number of descriptors and the number of compounds. However, only one 

part of the chromosome was optimized per run, so compound classification was 

separate from descriptor selection. The fitness decreased with increasing size of the 
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errors in the prediction and increasing number of variables, to prevent overfitting. 

Roulette wheel selection was used to select the parents for one-point crossover or 

mutation. In the case of crossover, the offspring replaced the worst parent if it was 

better. 

 The data set of Selwood and coworkers (1990) was used as a test for descriptor 

selection. The set consists of 31 compounds with their biological activity against 

disease-causing nematodes, measured in vitro. GAS selected the same descriptors in its 

best models as other researchers including Selwood et al. (1990) and Rogers and 

Hopfinger (1994). Subset selection was tested on the XLOGP data set, which contained 

1831 compounds. Here each molecule of the test set was assigned to the set which 

contained the molecule most similar to it, where similarity was measured as the 

Euclidian distance between the descriptor vectors of different molecules. Subset 

selection apparently worked, increasing the r
2 for the test set from 0.80 to 0.84. 

Remarkable is that in the XLOGP experiments the r
2 of the training set was 

systematically lower than that of the external validation set (such as 0.76 vs. 0.80). 

Perhaps this has something to do with the relatively small size or higher homogeneity 

of the external validation set relative to the training set (19 drugs vs 1831 more general 

organic compounds). 

 In conclusion, the authors demonstrated that their genetic algorithm did work for 

both variable and subset selection, though subset selection may be less applicable for 

the smaller data sets that characterize QSAR.  

 Descriptors often do not correlate linearly to the biological activity. Therefore, 

Rogers and Hopfinger (1994) developed an evolutionary algorithm called GFA 

(genetic function approximation). Its main feature is that it creates individuals that are 

lists of descriptors on which diverse functions are applied, like splines, squaring, or 

squared splines. As an example the descriptor HOMO was used to design the novel 

descriptor <-9.545-HOMO>2, which was combined linearly with the other (derived) 

descriptors. A typical individual thus may look like {C4,<2.301-Ut>,(Ut-2.966)2,<-

9.631-HOMO>2}. One-point crossover is applied, mutations either add a descriptor or 

change the number in the spline function. If a duplicate of the new model does not 

already exist in the population, it replaces the worst individual. The run is completed if 

the score of the models stops improving. 

 The Selwood data set was mined with only basic descriptors (no splines or 

polynomials). GFA indeed found a better descriptor combination than Selwood had 

found (r2=0.72 vs 0.55). In an acetylcholinesterase inhibitor data set of 17 compounds 

and 3 descriptors, linear as well as spline, quadratic and spline quadratic terms were 
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used. The best resulting models had r2-values of 0.85. The population of GFA provides 

the user with multiple models, which are often very similar in quality although they 

contain different descriptors. This allows users to choose the model they intuitively 

regard as the best. This is a very interesting point in QSAR analysis, yet choosing the 

‘right model’ is even more poorly defined than choosing ‘the best descriptors.’ The 

GFA method has been implemented in commercially available software, such as 

Cerius2, and has led to a number of publications by users of that software. Shi and 

coworkers (1998) selected 112 ellipticine analogues from the compound database 

maintained by the National Cancer Institute (NCI). They were able to derive 

meaningful QSAR models with the GFA method after the users had subdivided the 

ellipticine data set manually into structurally homogeneous classes. GFA using splines 

yielded cross-validated r
2 values that were consistently about 0.3 units higher than 

those derived by stepwise linear regression.  

 Lučić et al. (2003) used GFA and other approaches for descriptor selection on 4 

different data sets and were somewhat less impressed by the method. This may have to 

do with the fact that they did not allow GFA to use splines, and that they did not use 

stepwise selection but another genetic algorithm to select the descriptors for the 

multiple linear regression, to which they compared GFA. 

 Of course, a QSAR relationship does not have to be the weighed average of a 

number of descriptors. Linear models are commonly preferred due to their simplicity 

and smaller risk of overfitting. However, many investigators are tempted to experiment 

with different types of relationships. After all, many processes in nature are inherently 

nonlinear. Yasri and Hartsough (2001) elaborated on the combination of a genetic 

algorithm and a neural network, which also allows non-linear relationships to be found. 

The authors used a conventional descriptor-selecting genetic algorithm (single point 

crossover, bit flips, offspring replaced the parents if it was better) to select 6 

descriptors out of the 404 available for a data set of 54 benzodiazepine derivatives. 

They found that the q
2 was enhanced by the GA/NN combination with respect to 

multiple linear regression with stepwise descriptor selection (0.90 vs 0.80). It is not 

clear in this case whether the improved q2 is due to the incorporation of non-linearity 

by the neural network or due to the superior descriptor selection by the genetic 

algorithm. 

 Neural networks were also used by So and Karplus (1996) who found that the 

evolutionary programming employed gave a more robust optimization of the descriptor 

set than the GFA-based genetic algorithm. The Selwood data set was analyzed and an 

r
2-value of 0.76 was found. Additionally, the authors performed exhaustive 



40 

 

enumeration over all three-parameter sets and found that the EP-based algorithm found 

all of the best 100 solutions with the exception of the 95th, the GFA-based one found 

only a few. The most likely reason for this is that the EP only replaced parents if the 

children were better, the GFA replaced all parents regardless of the quality of the 

children. 

 Finally, evolutionary algorithms have also inspired researchers to seek beyond the 

standard descriptor used/not used bit strings. One of these methods is FRED (fast 

random elimination of descriptors) by Waller and Bradley (1999). Data sets were 

preprocessed by eliminating zero variance descriptors and descriptors that were 

collinear to other descriptors. Subsequently FRED started with a population of models 

composed of either a fixed or variable number of randomly selected descriptors. To 

prevent overfitting, the rule of thumb was used that there should be at least five 

compounds per descriptor. The maximum chromosome length was thus set to 6 for the 

Selwood data set. A progeny factor was used to ensure that the population did always 

contain enough individuals to include each descriptor on average “progeny factor” 

times. The user specifies a “kill factor”, which divides the population in a part of 

higher and lower fitness. Those descriptors occurring only in the low-fitness part are 

considered deleterious and are eliminated from the descriptor pool using a tabu-like 

process. After every generation, a new population is generated from the remaining 

descriptors.  

 As mentioned, FRED was tested on the Selwood data set. The original 53 

descriptors were reduced to 23 in the preprocessing step, and FRED was applied with a 

kill-factor of 5% and progeny factor of 30. The authors concluded that their algorithm 

performed efficiently and quite similar to alternative algorithms, yielding the same 

‘optimal’ solutions (r2 of 0.83, q2 of 0.69). 

 A good in-depth review of the somewhat older literature on evolutionary 

algorithms in QSAR is given by So (2000). 

 

Conclusion 

Quantitative structure activity relationships form a terrain in which evolutionary 

algorithms have been applied many times. The most likely reasons for this are that the 

presence and/or absence of descriptors is readily encoded using a standard genetic 

algorithm, and that the fitness of individuals can easily be calculated using available 

statistical techniques. 

 Evolutionary algorithms indeed seem to be valuable to the QSAR process since 

they are able to find better combinations of descriptors than the traditional local search 
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processes, as stepwise addition or elimination, can.  

 Nevertheless, there remain some caveats when applying evolutionary algorithms 

to QSAR. 

 The first of these is that the data sets should be picked carefully. It is encouraging 

that a standard data set seems to have been chosen to enable comparison between the 

different methods, yet this Selwood data set is a somewhat unfortunate choice from a 

biological point of view. It is relatively small, only 31 compounds, yet the measured 

biological activity, the killing of the nematodes, is a complex function of the membrane 

penetration of the compound, its cellular metabolism and its interaction with the target 

receptor. This multitude of biological processes makes it unlikely that the activity of 

the Selwood set can be truly explained by using only six descriptors. Direct 

measurements of receptor or enzyme affinities would be more valuable since these 

would include fewer intervening factors. 

 A second point is that biological measurements tend to have quite large margins of 

error (about 0.5 log units). It therefore remains to be seen how much a slightly 

improved r2 value really means since the inaccuracy of biological data does not allow 

us to choose between models which differ only slightly in performance. 

 From a point of view of a medicinal chemist, it seems that researchers in the 

QSAR-field have been introducing more descriptors, and more complicated, nonlinear, 

methods over the last few years. This development may have been prompted by the 

need to improve the predictiveness of the models. Though these developments offer 

opportunities for improved modeling –and even more opportunities for overfitting- 

there are some practical problems in interpreting and using the results.  

 Neural networks in particular are difficult to interpret and do not readily suggest to 

the chemist how a structure can be improved. Another computational method, like a 

evolutionary algorithm, may be necessary to perform “inverse QSAR” to find better 

structures in such a case. The structures can then be optimized using the predicted 

biological activity as a fitness function. However, the problem remains that results 

researchers do not understand are often used reluctantly, if at all. 

 A striking observation is that most QSAR techniques find a wide range of models 

that differ only minimally in their fitness, yet contain entirely different descriptors. 

This makes one wonder about how the “quality” space looks, and whether the 

descriptor sets do not rather describe similarity between compounds of similar activity 

instead of producing formulas that can be truly extrapolated beyond the measured 

activity range of the tested compounds. For instance, logP, a measure for lipophilicity 

and therefore membrane penetration, is almost always significant in a “Selwood”-
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QSAR. This implies that a factor that is really important in such a system does surface 

consistently; the other descriptors however may be more “classifying”, rather than 

“causing” the activity. 

 Such classification would however not help much in achieving the real purpose of 

QSAR, which is to find a formula which predicts biological activity with such accuracy 

that one can use it to design new compounds with higher biological activity than the 

compounds of the training set. Unfortunately, none of the articles reviewed here 

contains this extrapolation step that would be crucial for validating the usefulness of 

the models. 

 In conclusion, evolutionary algorithms seem to improve the parameter selection of 

quantitative structure-activity relationships, especially since they can be applied to 

other than linear models. The main problem for further application of evolutionary 

algorithms is not so much in improving the quality of the models, but in testing 

whether the models can extrapolate reliably. Leaving the most active compounds out of 

the training set and using them as validation set might provide such a check. This has 

not been done in the articles discussed and is generally neglected in other QSAR 

publications. The reason for this may be that QSAR is known not to be very well suited 

for extrapolation; results such as q2 values are likely to be much worse if the omitted 

data points have to be extrapolated. The failure of QSAR in these cases is rather a 

weakness of the current implementations of the QSAR paradigm than of the 

evolutionary algorithms used to optimize the parameter choice. A second opportunity 

for application of evolutionary algorithms would be to increase the availability of 

models. Next to the traditional linear models and neural networks, genetic 

programming might be applicable to find novel ways to combine existing descriptors. 

Also there is still an avenue less explored by evolutionary algorithms, i.e. to use the 

QSAR models for reverse engineering of compounds. Synthesizing and testing these 

compounds will truly test the validity of the QSAR methods employed and the value of 

evolutionary algorithms therein.  

 

 

6. Evolutionary Algorithms in Ligand Docking 
 

Ligand docking, generally simply called “docking” in the medicinal chemistry 

community, places a small molecule, called the ligand, into a protein in the same way 

that nature does. Docking could be compared to a 3D jigsaw puzzle, in which the 

pieces can be turned in more than four ways and can also change shape.  
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Docking is a very important tool in medicinal chemistry. If one can reliably predict 

how a molecule will bind to a protein, visual inspection of the fit may give information 

to the drug designer at which positions the molecule fits well, at which positions there 

is a worse fit, etc. Based on this information a molecule can be designed that binds 

more strongly. Also, if the original molecule would not be suitable as a drug due to its 

toxicity or other undesirable properties, one can dock other molecules and select those 

that seem to bind well for further testing; this can be much cheaper and faster than 

measuring the binding strengths experimentally. 

 In the ideal case, a docking program would give the medicinal chemist a list of 

alternative docking options of the ligand into the receptor, and assign to each docking 

an energy value indicating the binding strength. If the docking procedure is really 

perfect, there will be a sizeable energy difference between the best and second-best 

conformations, which indicates a large chance that the best docking is also the true 

docking. 

 However, so far no program has reached this ideal. There are two main reasons for 

this: 

1) The energy function is often not very accurate. This means that there may be 

docking options of the molecule that are in reality higher in energy than the real 

docking, but are indicated by the energy function as lower in energy (the lower the 

energy is, the better the docking). Some interactions between the molecule and the 

receptor, such as hydrophobic interactions and entropic effects, are notoriously 

difficult to model. 

2) The search space is often very large. The ligand has three translational and three 

rotational degrees of freedom, as well as one degree of freedom for each rotatable 

bond. Additionally, the hydrogen atoms in the receptor, which are usually not 

visible on the X-ray crystallographic structure, also must be in the right orientation 

for good binding between protein and the ligand. All these degrees of freedom 

result in a search space of about 1020 to 1030 possible docking options, which 

cannot be searched fully.  

Although docking is certainly not easy, much effort has been and still is being spent 

improving existing methods and developing new ones. After all, the structure of the 

protein target itself will give much more information for drug design than any QSAR 

model based on just the ligands can. A perfect docking program would be incredibly 

valuable, one of the holy grails of drug design.  

 Many docking techniques have been developed so far. The following part of the 

review will discuss the role of evolutionary algorithms in the more recent applications.  
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A well known and often used example of evolutionary algorithms in docking is GOLD 

(Genetic Optimisation for Ligand Docking) developed by Jones et al. (1997). This is a 

genetic algorithm that uses chromosomes encoding the internal torsion angles of the 

ligand, as well as two integer strings representing hydrogen bonds between the ligand 

and the receptor. The latter replace the more conventional “location and orientation” 

parameters, since the location and orientation of the ligand is determined by least-

squares fitting of the ligand’s hydrogen donors and acceptors onto those of the protein.  

 Each individual is evaluated by first performing the least-squares fit of the 

hydrogen acceptors and donors of the ligand onto the hydrogen donors and acceptors of 

the protein. Subsequently the internal energy of the ligand and the ligand-protein 

interaction energy are calculated, the sum of which determines the fitness of the 

docking. The population is divided into 5 subpopulations with 100 individuals each. 

The operators are crossover, mutation and migration, which are applied as alternatives 

rather than sequentially. Mutation and crossover differ for the binary (torsional) and the 

integer (matching) part: bit flip mutation and one-point crossover are used for the 

binary string, mutation to a random valid value and two-point crossover is applied on 

the integer string. Additionally, a niching technique is used, which makes new 

individuals replace the worst individual of a similar subgroup instead of the worst 

individual of the entire subpopulation.  

 The genetic algorithm was tested on 100 protein-ligand complexes, and run 20 

times on each. The resulting conformation of lowest energy was compared with the 

corresponding crystal structure. In 71 out of 100 cases GOLD found acceptable 

solutions, in which all or most parts of the ligand bound to the right place in the 

receptor. Also the genetic algorithm generally did not need 20 runs, in 49 out of 100 

cases 2 runs were enough. However, errors in the scoring function found a false 

minimum in at least seven of the 100 cases and regarded it as superior to the crystal 

structure, which is biologically spoken not probable. Other problems encountered 

involved ligands that had too few hydrogen donors and acceptors, which made the least 

squares fitting work poorly, and inaccurate protein structures. If the protein structure 

had a resolution more accurate than 2.5Å, GOLD succeeded in 77% of test cases, else 

it succeeded in only 52%. Finally, in some cases the structure of the ligand was 

distorted by the protein, therefore docking using the normal ligand failed. 

 All in all, GOLD seems an interesting computer program that can dock ligands 

over a wide range of test systems. The authors indicate that incorporating protein 

flexibility in the algorithm would be a useful addition, though probably not necessary 

in all systems. 
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Morris et al. (1998) also used a genetic algorithm, but added Lamarckian evolution 

(Autodock). In every generation 6% of the population was optimized using local search, 

and the improved parameters were written back to the genes. The chromosome here is 

a string of real-valued genes. The first three values are the Cartesian coordinates of the 

ligand, the four following values define the orientation. Usually three are sufficient for 

orientation, but then the so-called “gimbal lock” problem may occur, in which an 

unfortunate rotation can make two rotational axes of the object point into the same 

direction. The last values represent the internal torsion angles. Crossover is two-point 

and always takes place between genes. After crossover the mutation is performed, in 

which the values are mutated using a Cauchy distribution. A population of 50 

individuals was used, and a maximum of 27000 generations or 1.5×106 energy 

evaluations.  

 Seven protein-ligand complexes were docked with the Lamarckian genetic 

algorithm, and for comparison purposes also with simulated annealing and a normal 

(non-Lamarckian) genetic algorithm. Ten runs were performed per method per 

complex. It turned out that the Lamarckian genetic algorithm clearly outperformed 

simulated annealing, which had a large root mean square distance of the fitted relative 

to the crystal docking (>3Å) in 2 out of 7 cases. The root mean square distance 

between fitted and real ligand was quite small in both the Lamarckian genetic 

algorithm and the genetic algorithm (under 1.5Å). The energies in the Lamarckian 

algorithm were slightly lower, though at the cost of more energy evaluations. 

Additionally, the Lamarckian genetic algorithm found the minimum conformation in 

78% of the runs, the genetic algorithm and simulated annealing reaching 40% and 24%, 

respectively. As a validation, the binding energies returned by the fitness functions 

were compared to the experimental binding energies. The prediction error ranged from 

–3.89 to +9.93 kcal/mol, which means that predicted binding affinities vary by a factor 

1000, which is the difference between very good and quite bad ligands. The largest 

deviation, 9.93 kcal/mol for the streptavidin/biotin complex suggests that the protein 

flexibility might be too important to neglect in this case. 

 Several attempts have been made to improve upon this Lamarckian algorithm. 

Hart et al. (2000) performed experiments with different settings of the local search and 

found that improvement was possible by taking another local search algorithm, a 

pattern search method, instead of the previously used Solis-Wets algorithm, and 

increase the number of steps in the local search procedure. Other experiments of the 

same author used self-adaptive evolutionary programs and evolutionary pattern search 

algorithms (Hart et al., 1999). The evolutionary programs could adapt the step size of 
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all search parameters, while the evolutionary pattern search algorithms used only one 

step size which was slowly decreased over the course of the evolution. The 

evolutionary pattern search algorithm was configured in such a way that theory 

guaranteed that it would converge to a stationary point. While both methods performed 

decently, they were still outperformed by the optimized local search method. 

According to the authors, this indicates that the local search had a more extensive 

effect on the evolution than just performing localized step length adaptation. 

 Thormann and Pons (2001) parallellized the Autodock algorithm for use on multi-

processor machines, and called the result EGA/LS (Enhanced Genetic Algorithm with 

Local Search). Dividing the population between the processors resulted in a natural 

island model, which proved to be superior to a single-population model. For the more 

difficult test cases the island model was more effective than a pooled population (the 

minimum found in 76% vs 66% of docking options). Migration between the 

populations was taken care of by one individual called the “king”. The king could be 

overwritten by the fittest individual with a certain chance, and the king itself 

occasionally overwrote some individuals in the subpopulations. In each run, the 

subpopulations were randomly initialized three times, but after the first and second 

round the king was kept, seeding the populations slightly so that convergence could be 

reached faster.  

 Three test cases were taken, which took on average about 9 seconds to dock. 

Unfortunately, no root mean square distance data was given by the authors. Hence one 

cannot know whether the crystal structures were reproduced. One hundred runs were 

made with eight subpopulations of size 25. In general, since docking within one run is 

not assured, the authors advise to use at least three test runs for each complex. The 

main problem encountered was that when many degrees of freedom were taken into 

account (all torsion angles of the ligand and some of the protein as well), the 

optimization got stuck in local minima. However, the local minima that EGA/LS found 

were lower in energy than those discovered by GA/LS, indicating that splitting the 

docking populations at least offers enhanced possibilities to escape from local minima. 

 More recent work based on AutoDock has been described by Thomsen (2003). 

The author did experiments to optimize the evolution parameters of the evolutionary 

algorithm used by AutoDock. The optimal settings were found to be a population size 

of 100, and mutation which was a slowly annealed Gaussian. Arithmetic crossover, 

which creates offspring out of a weighted combination of the genes of the parents with 

in this case a random weight for each gene, was found to be superior to the traditional 

single point, two-point and uniform crossover. Strikingly, the new evolutionary 
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algorithm did not profit from adding the Lamarckian local optimization. While the 

improved evolutionary algorithm showed no significant improvement over the 

Lamarckian genetic algorithm in the three simplest test cases (7-11 dimensional search 

space), it improved upon its predecessor in two of the three more complex test cases 

(12-18 dimensional search space). Ironically, though the docking energies found were 

generally lower, the root mean square distances from the crystal structures were 

slightly increased from those found by the Lamarckian genetic algorithm. The 

efficiency was increased however, the “DockEA” needed only 50,000-150,000 fitness 

evaluations, while the Lamarckian genetic algorithm needed over 250,000 evaluations 

to obtain accurate and reliable results. 

 From these experiments the author concluded that the energy function needs some 

improvement to make the lower docking energies also correspond most closely to the 

crystal structure, but the deterioration of docking quality in one of the more 

complicated test cases relative to the Lamarckian algorithm indicated that the balance 

between exploration and exploitation is sensitive to the protein structure, and testing on 

more complexes would be required to refine the docking algorithm. 

 Among the evolutionary algorithms, genetic algorithms have been most prominent 

in docking. Yang and Kao (2000) however created a docking method called FCEA 

(family competition evolutionary algorithm), which is more similar to evolution 

strategies. Next to the vector of real numbers encoding the location and orientation (6 

numbers) and the torsional angles of the ligand, each individual contains three 

additional vectors. They are of the same size as the data vector, encoding the 

parameters for a decreasing-based Gaussian mutation, self-adapting Gaussian mutation 

and self-adaptive Cauchy mutation, respectively. Thus, each gene in each individual 

has three self-adaptive mutation parameters. The mutation step consists of subsequent 

application of the three mutations (decreasing, Gaussian, Cauchy). In each of these 

submutation steps each member of the population generates l children by mutation or 

recombination with another member of the parent population. The fittest of the children 

survives. In most cases, from each pair of father-child the best survives into the next 

generation, sometimes however from the entire population of n parents and n children 

the n best solutions are selected. For further details on the rather intricate procedures 

and many parameters used in this algorithm the reader is referred to the publication 

itself. 

 The resulting program was subsequently tested on one protein, the enzyme 

dihydrofolate reductase, with three different ligands. Population size was 50, the 

maximal number of generations 250. The results were compared to those of DOCK and 
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other docking programs. While DOCK found the best fit to the crystal structure 

(RMSD 0.6Å vs 0.67Å), the average fit (over 20 runs) by FCEA was better (1.37Å vs 

2.4Å). However, using only one protein structure for comparison seems a bit meager 

for a conclusion on the general competitiveness of this method. 

 Since evolutionary algorithms are by far not the only computational methods used 

for docking, Vieth et al. (1998) made a comparison between three common methods: 

molecular dynamics, Monte Carlo and a genetic algorithm. The genetic algorithm was 

kept relatively simple. The population of 90 individuals was split over five 

subpopulations with an elitism of 2 per subpopulation. In each generation, the 

individuals were modified by using single-point crossover, mutation or migration. In 

migration, two individuals were exchanged between subpopulations. The search was 

performed in two stages for each algorithm, in which the parameters in the second 

stage were adapted to fine-tune the solutions found in the first phase. 

 Five ligand-receptor complexes were used as the test set. It turned out that the 

genetic algorithm worked best for small search spaces in which the ligand was located 

within 3Å of its actual binding site and the molecular dynamics performed best for 

larger search spaces, within 11Å of the binding site. While the genetic algorithm gave 

the highest fraction of runs that found a good docking, the molecular dynamics 

algorithm returned the conformations with the lowest energy and closest fit. 

 Combination of the different computational techniques is also possible. An 

example of this is the Mining Minima optimizer (David et al., 2001), which uses a 

combination of the so-called global underestimator method, genetic algorithms and the 

poling method of Smellie et al. (1995). However, it is possible to regard it as an elitist 

genetic algorithm with some twists. First a large population of individuals is created 

within a certain search region. The individual with the lowest energy is used as the 

center around which the next generation of docking options is created. After each 

generation the width of the search region is narrowed down. To prevent the rediscovery 

of energy minima, exclusion zones are placed around previously found minima. There 

is a crossover-like operator, which combines a newly designed individual by partially 

copying information of a previously found minimum into it. The modified new 

individual is then placed in the next generation.  

 The authors tested their method on 27 complexes and compared their method with 

the genetic algorithm, simulated annealing and tabu search of PRO_LEADS, as well 

with AutoDock, FlexX and MCDOCK. Also nine of the “difficult cases” of GOLD 

were tackled with the Mining Minima optimizer.  
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The median docking time of the Mining Minima optimizer turned out to be about 1.2 

minutes. The results of the comparison with the other programs indicate that the 

Mining Minima method is comparable to PRO_LEADS and the other programs; 

occasionally it scores higher, sometimes lower. The authors point out that in some 

cases the fit was good, yet the “objective” root mean square distance criterion indicated 

low quality. In some of these cases the solvent accessible parts of the ligand, which are 

relatively free to move, cause the main part of the error. This contribution is however 

not very relevant since these parts do not influence the quality of the docking, which is 

defined by ligand-protein interactions. Six out of nine of the docking options that were 

difficult for GOLD were solved. Three remained problematical: in one case the crystal 

structure itself was suspect, in the other two cases the global minimum was found at 

another place than the binding site. 

 If the elaborate comparisons in this article make one thing clear, it is that the 

different algorithms are more or less suitable for different complexes, since no method 

is superior over all other methods in all investigated complexes. Moreover, some 

complexes seem much more difficult to solve than other complexes, whichever method 

is used. 

 

For a broad overview of the many different methods (genetic, simulated annealing, 

fragment-based methods, etc.) of docking and the many programs using these, the 

review of Taylor et al. (2002) is recommended. 

 

Conclusions 

Several evolutionary algorithms have been developed for docking ligands into the 

active site of proteins, and all obtain reasonable to good results, quite like the other 

heuristic algorithms. It is so far doubtful whether evolutionary algorithms have 

inherent advantages that make them more efficient for docking than for example 

simulated annealing. Since the coordinates of all atoms depend on the location and 

orientation and many of the torsion angles, this high coupling would make it very 

unlikely that there are small simple building blocks that can be recombined with each 

other into larger, high-quality building blocks. This view seems to be supported by 

findings such as that of Thomsen (2003) that arithmetic crossover outperforms the 

more conventional uniform and one- or two-point crossovers. Several promising 

techniques have been found, such as introduction of subpopulations, employing local 

optimization next to the normal genetic algorithm, and using different crossover and 

mutation methods. Further investigation is necessary, however, to conclude whether 
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combining these will further improve docking efficiency and efficacy.  

 In any case, several authors have displayed great ingenuity in introducing novel 

and complex operators, most notably Yang and Kao (2000). Yet the arguments for this 

complexity are lacking, with the possible exception that the other methods do not work 

perfectly. If the complexity of the evolutionary algorithms is enhanced, it should be 

done either carefully and on the basis of solid experimentation, that is, study of many 

complexes, or it should be based on knowledge of the chemical and biological reality. 

Otherwise such methods might “overfit” their docking options due to an overdose of 

adjustable parameters and a paucity of test cases. 

 However, comparison of the diverse methods employed is extremely difficult 

since the three separate components of the docking procedure (fitness function, search 

method and test data) are generally different per article. A desirable development for 

this field would be the introduction of a library of standard search algorithms, fitness 

evaluators and test data sets. Only then a new algorithm can be truly compared to 

existing ones.  

 Another development would be the incorporation of protein flexibility. Proteins 

can dock different small molecules in their active site. Most method developers, 

understandably, have docked the ligands of known complexes and compared those to 

the crystal structures. But is a crystal structure of the protein in which ligand A is 

docked also suitable for docking ligand B? Or would subtle differences in the protein 

conformations prevent finding the real docking? Such extrapolation is of vital 

importance for predicting the binding of series of molecules, and may necessitate 

extending the algorithms with some protein flexibility. 

 Further advances are also needed in the area of fitness functions. Since some 

discovered docking modes have lower energy (according to the computer) than those of 

the crystal structures, the energy evaluation procedures should be improved. Training 

the force fields that evaluate the fits by finding the right parameters and formulas might 

by itself also be an interesting field for applying evolutionary algorithms (an 

application of an evolutionary algorithm in descriptor selection for such a model is the 

work of Deng et al. (2004), see section 8). 

 The ultimate goal of docking algorithms, taking a protein structure and a ligand 

structure and calculating both the position in which the ligand will be bound and the 

affinity of the ligand for the receptor, will probably need the following extensions of 

existing docking algorithms: 

1) Addition of protein flexibility to accommodate the binding of different ligands and 

correct for errors in the crystal structure. 
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2) Addition of water molecules to the active site; these can influence binding as well. 

3) Calculation of the changes of entropy on the protein, the ligand and the water 

molecules during the binding process. 

In conclusion, much remains to be done in the field of ligand docking. It is not certain 

yet whether the docking algorithm of the future is a pure evolutionary algorithm, basic 

simulated annealing, or one of the other methods currently applied. Most likely the 

ultimate docking method will incorporate the most suitable properties of existing 

search methods combined with chemical and biological heuristics. There is still a long 

way to go before ligands can be docked automatically, accurately and with good 

binding energy estimations into their receptors, but the end result will undoubtedly be 

extremely worthwhile. 

 

 

7. Evolutionary algorithms in de novo design 
 

To find molecules with a specific biological activity, compound libraries are 

commonly screened. However, “only” about 1010 structures have been synthesized by 

chemists thus far, while the number of all possible drug-like molecules is estimated to 

be at least 1060 (Gillet, 2000). Clearly, designing new molecules may be required to 

cover more of this “chemical space” and to find a molecule that would be a more 

suitable drug against a certain disease than any currently known molecule. This process 

of designing new molecules is called de novo design. 

 Applying computer programs to design molecules seems an obvious choice, 

especially since computers can create virtual molecules much faster than humans can. 

However, the set of all possible molecules is difficult to search systematically. One of 

the reasons for this is that the number of possible mutations rises with the size of the 

molecule. If one defines a mutation as a single step in chemical space (changing/ 

adding/removing an atom or bond), the number of orthogonal steps/dimensions 

increases with the number of atoms in the molecule. So a “normal” drug molecule, 

which may contain e.g. 20 non-hydrogen atoms, can have over one hundred possible 

one-atom mutations. This results in a very high-dimensional search space, and the 

dimensionality will only increase when larger molecules are allowed. This makes a 

systematic search of all possible molecules to find those with the desired properties 

quite difficult. Also, a molecule is a graph and therefore is difficult to represent by the 

traditional vector notation of a genetic algorithm. Additionally, the rules of chemistry 

limit the number of possible molecules by demanding that e.g. every oxygen atom has 
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two bonds, and every carbon atom four. Therefore, mutation from a carbon atom to an 

oxygen atom will always involve some additional modification of the molecule, like 

removing hydrogen atoms. This is sometimes possible, sometimes not, depending on 

the rest of the molecule. Lastly, developing a proper fitness function is probably the 

most challenging problem of all. Since experimental fitness evaluation is slow and 

expensive, the search goes on for computational methods that predict the properties of 

a molecule reliably.  

 To find promising molecules in the vast chemical space, several different 

evolutionary algorithms have been developed and applied to a variety of de novo 

design problems. A good review on some of the older work has been written by Gillet 

(2000). This review will only briefly discuss the earlier work and mainly cover the 

work performed in the last few years. 

 

One of the first and best known applications of evolutionary algorithms in de novo 

design is the work of Glen and Payne (1995). Since a molecule is a graph that can 

contain cycles, a traditional linear chromosome with bit-flip mutations could not be 

used. Therefore a graph representation of the molecule itself was used as genotype, in 

conjunction with linear chromosomes which indicate the position and orientation of the 

molecule and the torsion angles, similar to ligand docking.  

 Mutation of the orientation, position and torsion angles was performed using an 

approximated Gaussian function. The structure of the molecule could be altered by a 

set of eight mutations, which included adding and deleting atoms or groups of atoms, 

forming and breaking rings, and changing atom types. Crossover could be 1-point or 2-

point between single, non-ring bonds that occupied approximately the same 3D-

coordinates. The fitness function consisted of a weighed combination of scalar 

properties of the molecule such as molecular weight, surface properties and the fit of 

the molecule on a predefined grid. Selection was done by the roulette wheel method. 

 The authors performed two experiments. One experiment was aimed to design 

molecules that resemble ribose, the other to design molecules that fit the active site of 

the bacterial enzyme dihydrofolate reductase (DHFR). Population sizes of 50-100 were 

used, since lower sizes such as 10 were found to be too erratic due to premature 

convergence. Evolution indeed improved the fitness scores from 100 to –30 for the 

ribose analogs. Also, the average score of the best four molecules in the initial 

population of the DHFR experiment was 26.3, but converged after 32 generations  

to –32.1.  
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The authors envisioned two extensions to their program. The addition of metal atoms 

and transition states might be useful to mimic enzymes better. Another important 

improvement would be a fitness function that gives a more biologically relevant value, 

such as binding strength. This would also eliminate the need to set the relative weights 

of the many fitness criteria manually, which is far from objective. Nevertheless, the 

diverse mutations and the 3D-representation of the molecule were designed very well, 

and as of yet few de novo design programs have improved on Glen and Payne’s work 

in these respects. 

 Worth mentioning as another pioneering study of evolutionary algorithms in de 

novo design is the work of Westhead et al. (1995). The authors first generated and 

superposed an initial population of molecules, which formed the input for the 

evolutionary algorithm. Similar to Glen’s work, molecules can be crossed only if they 

have single bonds that lie near each other in the superposition. However, mutation is 

limited to rotation of torsion angles, and the fitness function is less sophisticated than 

Glen’s, being the number of functional groups that overlap the functional groups of a 

known molecule in a superposition. Analogs of the molecules distamycin and 

methothrexate were nevertheless found and scored higher than the initial population of 

molecules.  

 However, though the molecule itself is a graph, the genotype of the molecule does 

not have to be a graph. Other representations might have advantages for an 

evolutionary algorithm. 

 Nachbar (1998) developed a evolutionary algorithm that converted the molecule 

graph into a tree, in which cycles are represented by special ring nodes. Mutation 

involves changing the atom types or bond orders, but crossover is responsible for the 

major part of structural change. The crossovers are very much like those of genetic 

programming, though subtrees containing an open ring bond are not exchangeable. The 

fitness function was a graph descriptor-based QSAR which predicted toxicity of the 

compound in tadpoles. After the population of 50 individuals had been evolved for 50 

generations, 30% of the molecules were in the desired activity range. In this case it is 

somewhat difficult to establish the efficiency of evolution since no data were collected 

on the evolution of the population’s fitness during a run (R.B. Nachbar, personal 

communication). 

 The algorithm did have some small problems, such as that many molecules in the 

final generation were identical, which is not very useful for a chemist who wants as 

many alternative solutions as possible. Checking for duplicates will probably be 

important in any de novo design method. A problem caused by the tree-like 



54 

 

representation was that ring manipulation was difficult. The author would have liked to 

be able to expand, contract and break rings at other positions than the ring closure bond, 

but this was not easy to implement. 

 The ring opening problem was solved in subsequent work of the same author 

(Nachbar, 2000) by inverting/re-rooting subtrees. The fitness function changed to 

molecular similarity, and several test molecules were recreated by the evolutionary 

algorithm, with the exception of a large polycyclic molecule, which turned out to be 

difficult to generate due to the surrounding local optima. 

 Douguet et al. (2000) used the chemical SMILES-notation (Weininger, 1988) to 

represent the molecules. SMILES is also tree-like, yet contains fewer brackets since 

hydrogen atoms are not explicitly stated and the superfluous brackets in the linear parts 

of the molecule are omitted. Two crossover operators, one-point and two-point, were 

implemented, as were thirteen mutation operators (though the article, oddly, describes 

only eight). These were quite similar to Glen’s, though ring breaking was absent. This 

may be due to similar problems as Nachbar encountered with tree representations. 

Fitness was calculated as a weighed sum of a few physicochemical criteria, such as the 

solvent accessible surface and the dipole moment of the molecule, which had to be in a 

certain range, and roulette wheel selection was used. As test cases, the target criteria 

were set to the properties of retinal and salicylic acid. The evolutionary algorithm did 

indeed find mimics of these molecules. The structures of some of the molecules were 

adapted by medicinal chemists to make them easier to synthesize. In contrast to the 

work of Nachbar, the authors considered crossover to be very much like a 

macromutation due to the tree-like representation, and it was applied much less 

frequently than mutation.  

 Globus et al. (1999) handled rings more elegantly by using “genetic graphs”. 

These have the advantage that they look very similar to real molecules. A crossover 

operator was implemented which could easily cross over rings, which had not been 

done yet by other authors. However, no mutation operator was used. This had the 

unfortunate result that if a generation happened to contain only rings, no chains could 

be generated, and vice versa. The fitness function was graph similarity to a specific 

molecule. Globus demonstrated that his algorithm can indeed recreate complex 

molecules, even those which have different atom types and a complex structure, like 

the five rings-containing morphine. The authors acknowledge, however, that 

rediscovering known molecules is not very useful, and that a fitness function that gives 

biological activity should be implemented. 

 



55 

 

Simplifying the representation of the molecules can work, but tends to restrict the 

possible mutations. This may make an escape from local minima more difficult. 

Another way to apply the evolutionary algorithms more easily is to adapt the problem 

domain and only consider subsets of molecules which have a relatively simple 

structure. 

 Schneider et al. (1998) used experimental data on the biological activity of 

peptides to train a neural network to predict activity from structure. Subsequently an 

evolutionary algorithm was applied that chose the best individual from the initial 

population. Since peptides are linear chains of amino acids, a linear chromosome can 

be used. Mutation can then be performed by picking a position and substituting the 

amino acid there by another amino acid. The best peptide filled the next generation 

together with its mutants, after which the new best peptide was selected. Unfortunately 

the neural network made quite inaccurate predictions, which was aggravated by the 

errors in the biological data used to train it. Nevertheless a peptide with comparable 

activity to the seed peptide but a very different sequence was found.  

 Related work was performed by Patel et al. (1998) who focused on bactericidal 

peptides. A training set of 29 peptides with measured biological activities was used. 

Using this set, 29 multi-layer perceptron neural networks were created, each based on 

28 peptides. The fitness value was taken to be the average of these 29 models. The 

genetic algorithm used was somewhat more conventional than that of Schneider et al., 

having a population of size 100, elitism that conserved the best 25, probability of 

crossover (two-point) 0.6 and probability of mutation 0.033.  

 The genetic algorithm was shown to be much more efficient than Monte Carlo or 

random search in finding peptides with high predicted activity, since only 0.008% of 

randomly generated peptides were in the desired activity range, 0.5% of those 

generated by Monte Carlo but 7.2% of those made by the genetic algorithm. Of the 

more than 400 candidate peptides that were generated by the genetic algorithm, the 5 

most diverse were synthesized and were shown to have high-ranking bactericidal 

activity. 

 With the traditional fixed-size chromosomes the length of the peptide cannot be 

modified; this may however be important for optimizing activity. Kamphausen et al. 

(2002) solved this problem by implementing n×m crossover. This technique selects a 

group of parent peptides and aligns the sequences. It enables the shorter sequences to 

align with the longer sequences by filling the empty space at the end of the shorter 

sequences by repeating the first part of that sequence until the maximum length is 

reached. The length of the child peptide is then determined by averaging the length of 



56 

 

the best parent peptide and the average of the other parent peptides. Subsequently, the 

child is assembled by taking one value per column in as many aligned columns 

necessary to reach the target length. The implemented version of this mutation also 

allows the sequence to “shift”, which can lengthen and shorten the sequence at both 

ends. 

 The program was used to find a peptide that optimally inhibited the blood clotting 

protein thrombin. The population contained 123 peptides of lengths 6 to 12, whose 

fitness was determined experimentally. Four cycles of design and testing were 

performed. With each generation the average activity increased, and in the fourth 

generation a very active inhibitor was discovered. It was more potent than known 

peptide inhibitors of thrombin, and this experiment can thus be considered to be 

successful. 

 

Peptides, however, are currently only rarely used as drugs since they generally have 

unfavourable physico-chemical properties. Conventional drugs are much smaller 

molecules, which can be absorbed more easily by the body. Schneider acknowledged 

this and also created a evolutionary algorithm for small molecule design, TOPAS 

(Schneider et al., 2000a,b). This program again uses Schneider’s method in which only 

the fittest individual survives and procreates, but uses molecule fragments instead of 

amino acids. A subset of about 3 of approximately 25,000 fragments is converted by 

the algorithm into a real molecule. The fragments also contain data on the connections 

they can form, which should allow the constructed molecule to be easily synthesized in 

the laboratory. Mutation is implemented by replacing a fragment by a similar fragment 

with the same type of attachment point. The fitness function calculates the similarity of 

the constructed molecule to a known ligand.  

 In the test case, TOPAS identified a ligand chemically not very similar to the 

original molecule, but with receptor affinity, be it a 1000-fold less potent. While one 

could not yet argue that this evolutionary algorithm develops structures that improve 

the affinity of a known ligand, it can find compounds with a similar kind of activity in 

a very different class of chemical structures. 

 The fragment-based approach was also used by Pegg et al. (2001). However, in 

their algorithm runs use far fewer different fragments (in the order of dozens). Acyclic 

graphs containing maximally 16 fragments are constructed. Crossover is performed by 

exchanging subtrees between individuals, mutation by changing one of the fragments 

in an individual or by connecting a fragment to another fragment in the same individual 

as long as this does not introduce a cycle. The fitness is determined by docking the 
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resulting molecule into the active site of the target protein. 

 Three test cases were taken: design of cathepsin analogs, inhibitors of 

dihydrofolate reductase and inhibitors of HIV-1 reverse transcriptase. The results of the 

evolutionary algorithm were compared to the experimental data available. Two major 

problems were discovered. First, fitness evaluations took much time: a run of 100 

generations of a population of 20 molecules took 5 hours of processor time. Second 

and worse, not all good inhibitors were judged as good by the fitness function. So 

while the evolutionary algorithm designed many molecules with higher fitness values 

than the compounds that turned out best in the experiments, it remains to be seen if 

those molecules actually bind better. Like Schneider’s program, the fitness function is 

ill-equipped for optimizing the activity, yet the generated libraries do find general 

trends, i.e. substructures that seem to work. It is likely that the libraries generated by 

Pegg’s program are better than randomly designed libraries in binding to the target site. 

However, since no experimental validation was performed, definitive conclusions on 

the effectiveness of this method cannot be drawn. 

 The SYNOPSIS program by Vinkers and coworkers (2003) can be considered a 

synthesis of the good points of both Pegg and Schneider with some additional clever 

ideas. The database constructed by the authors contains about 32000 molecules, which 

can be transformed and combined using 70 different reactions. A chromosome 

represents a sequence of molecules and reactions, which is transformed by the program 

into the actual molecule. Mutations consist of adding reactions or changing reactants. 

The fitness function is the docking score of the molecule binding to the enzyme HIV-

reverse transcriptase.  

 A good point of this program is that it automatically suggests a synthesis route for 

the molecules. For 8 out of 28 molecules the synthesis route was followed and 

succeeded, while for only 3 molecules the suggested route was tried and failed. In the 

other cases a different method was taken or a compound differing from the original 

suggestion was made. Therefore, depending on the definition of success, 29% to 64% 

of syntheses succeeded.  

 Similar to Pegg, finding good inhibitors proved to be more difficult. The docking 

function was extremely slow (1 processor-hour per compound) which probably only 

allowed small populations and a low number of generations, although the article gives 

no numbers on these. Also the docking function was quite inaccurate. For all suggested 

ligands a high binding strength was calculated, but a low binding strength was found in 

experiments. Similar to Schneider’s approach, the evolutionary algorithm acts not so 

much as an optimizer of biological activity, more as an idea generator of molecules that 
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are on average much more active than one would get from a random library screening. 

In that respect SYNOPSIS is a success.  

 

Conclusion 

A wide variety of evolutionary algorithms has been applied to de novo design. Their 

applications and results highlight both their successes and their current shortcomings. 

 The two main challenges, i.e. representation of the molecular structure and the 

fitness function, have been addressed by the authors with varying success. The many 

applications of evolutionary algorithms in “simplified” chemical domains make it clear 

that representing the molecule remains difficult, and that mutation and crossover are 

not straightforward to implement. However, the work of Glen and Payne (1995) has 

clearly shown that evolutionary algorithms can be applied very well by using the 

molecule as its own representation. Implementing mutations and crossover will remain 

amenable to tweaking and discussion, but basically this problem has been solved.  

 There are currently two major elements in automated de novo design to focus on. 

The first is that the molecules suggested are not always easily synthesized. The 

fragment-based approach by Vinkers et al. (2003) to use available molecules and 

known reactions is promising. However, it also calls attention to the fact that due to 

problems in reaction prediction only few of the thousands of available chemical 

reactions can be used by the program. And even those few “robust reactions” fail quite 

often. Additionally, limiting the reactions and the building blocks will undoubtedly 

confine the parts of chemical space that can be explored by a ‘fragment and reaction’-

based algorithm. Also the fragment-reaction like structure of the chromosomes makes 

mutation awkward: fine-tuning a molecular structure that is almost right is extremely 

complicated and therefore not very likely to happen. On the other hand, atom-based 

mutations like those of Glen and Douguet allow more refined exploration of the 

chemical space and relatively easy fine-tuning of the molecular structures. Yet they 

have the disadvantage that synthetic feasibility of the resulting molecules is doubtful. 

Perhaps the ideal algorithm will use a combination of these two approaches. 

 For the second weak point of current de novo drug design algorithms, i.e. the 

fitness function, good solutions seem even harder to find. Docking, which in principle 

yields the best affinities for a broad diversity of molecules, is extremely slow and 

moreover gives results that are too inaccurate for optimization. This suggests, as in 

section 6, that the most important contributions to this area by evolutionary algorithms 

would be in deriving proper binding functions from quantum mechanical and 

experimental data. Additionally, there is the problem that many important proteins are 
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membrane-bound, and that their crystal structures are therefore extremely difficult to 

determine. This means that docking is currently not applicable to a large portion of 

interesting drug targets. Experimental fitness determinations are for now the only 

alternative, yet it may well be that a evolutionary algorithm used interactively by 

medicinal chemists would need fewer syntheses to achieve optimization than the 

traditional methods. 

 In conclusion, while the quality and applicability of the discussed evolutionary 

algorithms for de novo design varies, they do show promise. Even at this moment the 

applied evolutionary algorithms with their crude fitness functions give inspiration for 

unconventional analogs of known ligands, which opens up alleys otherwise closed off 

by patents or unfavourable physiological properties of the original ligands. As fitness 

functions become faster and more accurate, the future of evolutionary algorithms in de 

novo design looks very bright indeed. 

 

 

8. Other applications of evolutionary algorithms in drug 
design 
 

The scope of application of evolutionary algorithms in drug design is wide. Whereas in 

the previous sections the more prominent uses were discussed, this section will focus 

on some less mainstream work. The publications discussed here may give an 

impression of other areas that have been tentatively trodden, a brief glimpse of areas 

that may become more important in the near future, and inspiration for application of 

evolutionary algorithms to other problems related to drug design. 

  

If a large database of molecules has to be screened for biological activity, most drug 

developers would prefer to test only the most promising compounds. If these have the 

much sought after but ill-defined “drug-likeness” property, they will have a larger 

chance of being a good drug. While one could argue about the merits of selecting for 

drug-likeness versus selecting for lead-likeness (see section 2), the search for drug-

likeness criteria has inspired some interesting research, amongst others that of Gillet et 

al. (1998). Gillet et al. attempted to estimate drug-likeness by taking two databases of 

molecules, the World Drug Index, which contains about 30,000 drug molecules, and 

the SPRESI database, which contains 1.7 million molecules, in vast majority nondrugs. 

Of each molecule in the databases, six simple properties were calculated, such as the 

number of rotatable bonds and the number of hydrogen bond donors. The value range 
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for each property was divided into 20 bins. Using statistics on a subset of 1000 WDI-

molecules and about 17,000 SPRESI-molecules, for each bin the chance was 

determined that a molecule having its property within the value range of the bin was a 

drug molecule. The total database was then sorted to see if the drug molecules indeed 

ranked higher.  

 It turned out that this method gave some information on drug-likeness. For 

example, ranking the molecules by only taking into account the number of hydrogen 

donors resulted in finding 4.6-fold times as many drugs in the top 1000 molecules as 

would be expected by chance. However, combining descriptors worsened this 

enhancement, probably because the descriptors were not truly independent.  

 Subsequently, experiments were performed to see if setting the bin weights by 

using a genetic algorithm instead of statistics would improve the score. The genetic 

algorithm used vectors of length 6x20=120 as chromosomes. Mutation changed the 

value of one bin to a new permitted value, crossover could be one-point, two-point or 

uniform. Two fitness measures were compared: the number of drug molecules in the 

top 1000 and the average rank of drug molecules in the drug-likeness list. The average 

rank resulted in much better scoring over the entire population. The enhancement 

factor here was 3.0; so to find 50% of all drug molecules only the top 17% of all 

compounds had to be considered. Subsequently, experiments were performed to 

distinguish specific classes of drugs from inactive molecules, either by using the 

generic binning weights or weights specifically optimized by comparing the particular 

drug class with SPRESI. The discriminative power of the method depended heavily on 

the therapeutic class. For example, retrieval of anticancer compounds was enhanced 

4.9-fold with the generic binning method and 6.8-fold with specific training, while for 

psychiatric drugs enrichment was only 1.3-fold with the generic method and 2.0 after 

training. The authors suggest that these differences may be due to the fact that there are 

relatively few psychotropics and that the class is structurally quite diverse. 

 The results of this investigation can certainly be considered interesting. Drugs can 

be somewhat discriminated from non-drugs, even by a simple method such as this one, 

and the structure of the chromosomes might yield interesting insights on what makes a 

compound drug-like. However, some problems are not addressed by the authors. The 

SPRESI-database is not 17, but 54 times as large as the WDI. This means that even 

with a factor 3 enhancement, only one in twenty of tested molecules in the first third is 

a drug, which is not a very good score. Additionally, the binning weights are trained on 

structures that already occur in drugs, so compounds which work via diverse 

mechanisms like the psychotropics are not readily found. Therefore using this method 
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to prioritize the lead screening for a novel receptor would probably not be very 

advantageous. 

 In addition to the question of whether a compound has biological activity, another 

important question is which kind of biological activity it possesses. Xue and Bajorath 

(2000) used a descriptor based classification method. By placing the compounds into 

descriptor space, one should be able to discover clusters of compounds with the same 

biological activity and discover which part of descriptor space corresponds to a specific 

biological activity. Since the authors could use over 100 different descriptors, they 

aimed at simplifying descriptor space by using principal components. Dividing the 

principal component space into square boxes, compounds were grouped per box. If the 

compounds in one box had the same biological activity, the set of compounds in the 

box was called a pure class. If the box contained compounds of several biological 

activities, it was counted as a mixed class. Finally, if there was only one compound, the 

box was said to represent a singleton class. 

 The genetic algorithm was designed to solve three optimization problems 

simultaneously: 1) which descriptors should be used, 2) how many principal 

components should be used, and 3) into how many bins should every principal 

component be divided. The chromosome was a vector of 141 bits, 111 bits representing 

the use/non-use of particular descriptors, 15 bits to encode the number of principal 

components used, and 15 further bits to encode the number of boxes into which each 

principal component axis is divided. The fitness function increased with the number of 

pure classes and decreased with the number of mixed classes and singletons. This 

particular fitness measure might have been somewhat disadvantageous, since one 

ideally would want to reward a minimum of classes. It seems more desirable to have 7 

pure classes than 700. 

 The best result had 4 principal components with 5 bins each and found 60 pure 

classes, 27 singletons and 2 mixed classes. The classification method therefore worked, 

though comparison with other classification methods and assessing quality via a 

separate validation set would have been valuable additions to this work. 

 

Whereas ‘drug-likeness’ is a somewhat nebulous concept, there are also more sharply 

defined properties that are important for candidate drugs. One of these is water-

solubility: if a compound does not dissolve in water, it cannot be transported by the 

blood to its desired site of action.  

 Wegner and Zell (2003) derived a quantitative structure-property relationship to 

predict water solubility of a molecule from its structure. The authors calculated 230 
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descriptors from these structures. Since there were 1016 molecules in the training set, 

using all descriptors would probably have led to overfitting. Therefore, the authors 

wanted to reduce the number of descriptors. Principal component analysis was 

regarded to yield non-intuitive results, so a genetic algorithm was created. The initial 

population of this genetic algorithm was seeded with maximally diverse individuals as 

selected by Shannon entropy measures and clique detection algorithms. The genetic 

algorithm for descriptor selection was very similar to the ones used in QSAR (see 

section 5): the chromosome was a vector of bits, each bit indicating the presence of a 

descriptor. The chromosomes could undergo one- and two-point crossover and bit-flip 

mutation. A neural network was trained using the descriptors that were indicated by the 

chromosomes, and the fitness of each chromosome was r2 for the test set. The final best 

model had a validation set r
2 value of 0.82, which was comparable to the results of 

other neural networks trained on similar data sets that gave r2 values between 0.79 and 

0.91 for their validation sets. 

 

A third factor to consider when designing drugs is metabolism, the breakdown of drugs 

by the body. Some of these breakdown products are toxic. For example, the drug 

paracetamol itself is harmless, but when taken in huge quantities it is partially 

transformed into a toxic product that causes liver damage. Drug designers therefore 

want to know the possible breakdown products of a compound, preferably before 

synthesis. Rules exist to predict metabolism, and computerized rule bases, like META 

(Klopman et al., 1997) can be applied to automatically predict probable metabolites. 

However, a molecule can often be broken down in many different ways, and it is not 

clear which of those ways are preferred by the body. Assigning priorities to the diverse 

transforms is traditionally done by experts. Klopman et al. however investigated 

whether a genetic algorithm could do this automatically. This would be advantageous 

since it would eliminate the need to manually recalibrate all weights after adding new 

data.  

 The chromosomes contained the priorities of all reactions, coded as a vector of 

binary numbers. Crossover was one-point and only took place between the genes, and 

mutation was performed by flipping bits. Fitness was defined as the number of correct 

predictions minus the number of incorrect predictions, the false positives and false 

negatives. Bolzmann tournament selection outperformed normal tournament selection 

and roulette wheel selection, and was therefore chosen as selection method.  

 For both training and validation sets, the genetic algorithm found a better solution 

than the experts (table 2.1). Clearly, genetic algorithms can combine large amounts of 
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data reliably into a rule-base, an exciting prospect. 

 

 
Table 2.1: Comparison of the results of the genetic algorithm-set priorities 

versus the expert-set priorities. 

 

 Test set Validation set 

True 

Positive 

False 

Negative 

False 

Positive 

True 

Positive 

False 

Negative 

False 

Positive 

Expert 103 45 28 66 9 56 

GA 134 14 18 75 0 21 

 

 

Biological activity of a compound can be predicted by computationally docking the 

molecule into the receptor. Often, however, the receptor structure is unknown. The 

common alternative is churning out high numbers of descriptors and using neural 

networks or multiple linear regression to find quantitative structure-activity 

relationships. However, this method does not use any of the knowledge available on 

receptors and their properties. A different possibility is making a model of the active 

site based on the ligand data. Walters and Hinds (1994) used this approach. Their 

computer program GERM (Genetically Evolved Receptor Models) uses a superposition 

of ligands, around which a collection of atoms, typically 50 to 60, is placed. These 

atoms represent the protein atoms of the active site. The interaction energy between the 

proposed active site and the ligands is calculated with a force field. The chromosome is 

the list of the atom types of the atoms in the reconstructed active site. One-point 

crossover and a mutation that randomly changes an atom type into a random other 

atom type were implemented. Crossover was the most important operator but allowing 

some mutation was found to improve the convergence.  

 When populations of 500-2000 chromosomes were allowed to evolve over up to 

10000 generations, models with r2 values of 0.90-0.99 were found. The average error 

for the compounds of the training set was 0.06, but for those in the validation set it was 

0.40. This clearly points to overfitting. However, scrambling the bioactivity values 

indicates that there is also some real relationship behind the numbers: the mean r
2 

value of the scrambled sets was only 0.34.  

 GERM has some drawbacks, however. First of all, the ligands of a receptor must 

be superimposed, and as has been discussed in section 4, there is no unambiguous 
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method to do that. Overfitting is quite understandable in this system: after all, there are 

50 to 60 different atoms involved for explaining the bioactivity of about 10 compounds. 

Interestingly, the atoms at some positions had identical types in all of the fittest 

individuals, at other positions there was much more variation. This would suggest 

some biological rationale behind the model, and it would certainly be interesting to 

make runs on superpositions of known ligands docked into the binding sites to see 

whether the conserved residues in the proposed active site correspond to the important 

groups in the real active site. 

 Some other programs used a methodology very similar to that of GERM. An 

example is PARM (Pseudo Atomic Receptor Model) by Chen et al. (1998). The main 

difference with GERM is that heuristics were used to initialize the chromosomes. 

When an atom type had to be assigned to a certain grid point, the heuristics increased 

the chance of choosing a negatively charged atom type if the ligand atoms near the grid 

point were positively charged, and vice versa.. Two training sets, 21 and 12 compounds, 

were used with validation sets whose sizes were about half as large. Crossvalidated r2 

values of 0.83-0.93 were reached. The compounds of the validation set were predicted 

with an average absolute error of 0.52; CoMFA analysis (section 5) yielded 0.61. This 

suggests that PARM can be somewhat better than conventional methods. 

 Vedani et al. (1998a,b) created another pseudoreceptor modeling method. The 

main deviations from Walters’ method were the different and smaller set of pseudo-

receptor atoms and incorporation of receptor flexibility. The latter means that the 

position of each pseudoreceptor atom is adapted for optimal interaction with each 

individual ligand. Therefore, if there are n small molecules in the training set, there are 

also n conformations of the pseudoreceptor. The authors considered this to be 

necessary to allow for changes in receptor conformation upon binding, especially 

regarding the direction of hydrogen bonds. However, movement of the pseudoreceptor 

atoms from their average position is penalized by decreasing the calculated binding 

energy.  

 Six different series of ligands were used, varying from compounds binding to the 

cannabinoid receptor to the β2-adrenergic receptor and the sweet-taste receptor. Each 

series of ligands was split into a training set and a test set. The values of r
2 were 

smaller than those of Walters and Hinds (1994), ranging from 0.55 to 0.96. Root mean 

square errors of the training set were approximately 0.4, and for the test set 0.7.  

 The cause of the difference with Walters’ research may be due to the reduced 

number of atom types available, the different force fields, the different test sets, other 

superpositions of the ligand, or receptor flexibility. These multiple changes make direct 
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comparison between the models difficult. It is therefore unclear whether the 

pseudoreceptor models of the future will follow either of the two methods or will make 

use of new methodology, inspired by advances in superposition procedures and 

improvements in the entropy corrections and force fields of docking.  

 

A final interesting application is the use of evolutionary algorithms to help create a 

good energy function for docking. Deng et al. (2004) used two sets of crystal structures 

of sizes 61 and 105 (of which external validation sets of size 10 resp. 6 were taken), 

and correlated the experimental binding energies with the presence of specific atom 

pairs. Since the authors distinguished 17 atom types and 5 relevant distance bins (1 Å 

wide between 1 and 6 Å) there were 5×17×17=1445 potentially relevant descriptors. In 

a first stage non-changing descriptors, highly correlated descriptors and 4-sigma 

outliers were removed deterministically, subsequently a genetic algorithm was used to 

select the best subset of descriptors. By reducing the number of descriptors used in the 

105 compound data set from 456 to 20, the PLS-regression r
2 of the test set was 

increased from 0.43 to 0.60, and the r2
 of the prediction of the external test set even 

reached 0.64. 

 These results of Deng et al. can be compared to those of Morris et al. (1998), who 

developed a more traditional empirical free binding energy function using 

physicochemical knowledge, traditional force fields, and linear regression without 

feature selection. Since Morris et al. reached r
2 values of about 0.95 versus Deng’s 

0.64, it is clear that Deng’s knowledge-based approach could profit from the physical 

and chemical knowledge that has been collected by experimental scientists. 

Incorporation of free energy loss due to loss of flexibility upon binding and the 

influence of direction upon the binding strength of hydrogen bonds would be obvious 

candidates to test for usefulness. Nevertheless, the increasing availability of crystal 

structures will make “knowledge-based” approaches more and more attractive to help 

refine the standard force field approaches.   

 

Conclusion 

The discussed publications make clear that there are probably many alternative areas in 

drug design in which evolutionary algorithms can be applied. Discovery of new, 

promising applications will most likely depend on the steady spread of knowledge and 

usage of evolutionary algorithms in the community of drug designers. Doubtlessly 

there are still many problems in drug design that can be at least partially solved with 

evolutionary algorithms, and many interesting applications may yet follow.  
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9. Conclusion: Evolutionary algorithms in drug design. 
Considering past, present and future. 

 

Evolutionary algorithms have been applied in the field of drug design for over 10 years. 

In this review we have discussed their role in helping solve some of the problems of 

this field. Let us summarize and consider the findings so far. 

 The most important observation is that evolutionary algorithms are useful for drug 

design. This is, of course, necessarily a biased view since few authors would publish 

methods that do not work for their particular problem. However, the wide range of 

applications in which evolutionary algorithms found optimal or satisfactory solutions 

suggest that evolutionary algorithms are quite suitable for application to a wide range 

of problems in drug design, varying from conformational analysis to finding 

quantitative structure-activity relationships and performing de novo design. 

 This success has led to many applications of evolutionary algorithms, several of 

which have been incorporated into commercial packages. Some of the examples 

mentioned in this review are GFA (Genetic Function Approximation) which is now 

part of the molecular modeling package Cerius2, and the commercialized docking 

program GOLD. However, there is also other software that uses evolutionary 

algorithms, like the computer program Spartan that has procedures for evolutionary 

structure optimization. Doubtlessly there are several other software packages for drug 

design on the market in which evolutionary algorithms are a major or minor component. 

One could say that evolutionary algorithms have proven their worth and either already 

possess or at least approach the status of one of the standard optimization methods in 

drug design. 

 While over time evolutionary algorithms have been applied to more and more 

areas of drug design, one could also ask whether their performance in the diverse areas 

has also improved. 

 Looking at the different areas of application it is not clear whether the more recent 

implementations of evolutionary algorithms are more effective or efficient than the 

older versions. If any trends can be discerned, it is towards more complex evolutionary 

algorithms. Unfortunately it cannot be concluded with confidence that this increased 

complexity leads to improved performance due to the dissimilarity in test data sets, 

fitness functions and quality criteria used by the different authors.  

 The progress in the different fields can be summarized as follows: 

-library design: Multiobjective fitness functions have been introduced. Calculations are 

getting more intricate and biologically relevant (2D/3D). Objective weighing of the 
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conflicting objectives, especially diversity and focusing, remains problematical. 

-conformational analysis: The evolutionary algorithms have largely been superseded 

by the directed tweak algorithm, which is more specialized and seems somewhat more 

efficient than the current evolutionary algorithms.  

-quantitative structure-activity relationships: The evolutionary algorithms seem to 

have grown more complex over the years. While some innovations have been 

introduced, notably the use of more complex functions of the descriptors, the novelty 

of most newer publications that involve evolutionary algorithms lies mainly in novel 

types of descriptors or the addition of other descriptor selection methods, not in the 

evolutionary algorithms themselves.  

-docking: The evolutionary algorithms in this field have grown more elaborate and 

complex, however due to the absence of good test sets it is not clear whether this 

increased complexity has led to true progress. Experiments have indicated that 

Lamarckian evolutionary algorithms and island models are useful. 

-de novo design: Evolutionary algorithms for structure manipulation have not seen 

significant advances since the work of Glen and Payne in 1995, however the fitness 

functions have improved from manually weighted parameters to docking. Also, the 

concept of “ease of synthesis” has been introduced, which is very important to ensure 

that the designed molecules can also be created in the laboratory. 

 

Overviewing the past few years of application of evolutionary algorithms in drug 

discovery, one can conclude that a wide variety of chromosome representations, fitness 

functions and mutation operators have been developed for the different problems. The 

basic principles of evolutionary algorithms, however, still remain at the core of all 

these variants, and have proven themselves to be quite a robust and easily applied base 

of design for a range of optimization problems in this field. As the articles reviewed in 

this paper demonstrate, there are obviously a number of cases where evolutionary 

algorithms do not offer clear benefits over other methods such as Monte Carlo search, 

simulated annealing or deterministic optimization methods. There are also some cases 

where evolutionary algorithms achieve clearly satisfactory results and improvements 

over results that have been available so far. Obviously, a clear general conclusion 

cannot be drawn at this point, as there are no elaborate systematic comparisons of the 

different search methods available yet on the subareas of drug design covered in this 

paper. 

 It is interesting to note that almost all of the applications of evolutionary 

algorithms in drug design today use rather basic genetic algorithms, and thus fail to use 
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self-adaptation capabilities. These are usually associated with evolution strategies and 

evolutionary programming (see e.g. (Bäck, 1996) for an in-depth discussion of this 

topic) but can also be used in genetic algorithms. Other developments in the field of 

evolutionary algorithms, such as estimation of distribution algorithms (used in 

bioinformatics by Saeys et al. (2004)) also have so far found no or only extremely 

sparse application in drug design. It would clearly be an interesting issue for future 

research to check whether these algorithmic techniques can deliver more convincing 

improvements over classical methods. While the success of novel techniques for 

optimization would clearly depend on the particular problem studied, the computer 

programs discussed in this review generally use quite basic algorithms, so chances are 

good that adding advanced techniques can improve their performance. 

 While optimization remains important, the current bottleneck in computational 

methods for drug design seems to be the fitness function, since this is often still either 

somewhat arbitrary, like manually weighing different measures of molecular similarity, 

useless, like rediscovering a known molecule, or inaccurate and too slow for extensive 

optimization, like docking. The biggest problem in current drug design seems to be 

calculating/predicting the relevant properties of a molecule, not finding more efficient 

optimization algorithms. 

 Where does that leave evolutionary algorithms? Should computer scientists be 

content by having added evolutionary algorithms to the standard toolbox of medicinal 

chemistry and move on, or is it still possible to do innovative and useful research in 

this area? 

 One reason to continue applying evolutionary algorithms to medicinal chemistry is 

that the collaboration between computer scientists and medicinal chemists itself can be 

fruitful. Medicinal chemists can profit from the knowledge of optimization methods 

and the experience in validation methods that computer scientists possess. Computer 

scientists may learn from the ideas and paradigms of medicinal chemists, which have 

resulted in diverse and ingenious forms of chromosomes and variation methods. These 

inventions could themselves be interesting concepts to be studied, improved, and 

possibly used for other problems by the computer scientists. 

 However, there are also reasons to believe that continued application and 

development of evolutionary algorithms could also be useful for the development of 

new and better computational methods for drug designers. 

 First, prediction methods in drug design are improving each year, therefore better 

fitness functions will become available. When they do, the existing evolutionary 

algorithms can be reapplied with greater success than before. 
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Second, there is the possibility of finding new application domains. Some of these 

might be known problems in medicinal chemistry or drug development that have not 

been tackled yet with evolutionary algorithms. Others would be the newly emerging 

fields, for example the genomic, proteomic and transcriptomic data which are 

becoming available and have to be processed, combined and modeled. Evolutionary 

algorithms may be useful in this process in some capacity. Though the generic nature 

of evolutionary algorithms makes them vulnerable to later replacement by hybrid 

algorithms or specialized optimization algorithms, like directed tweak, the simplicity 

and wide effectiveness of evolutionary algorithms makes them very suitable for 

pioneering new areas. If optimization yields clear benefits yet takes unacceptable 

amounts of computer power, the evolutionary algorithms may be replaced by more 

specialized methods. 

 Finally, the evolutionary algorithms that are currently used for drug design can be 

improved. Though the fitness functions are more important and time-critical, 

evolutionary algorithms that display more efficient convergence while searching as 

much of the search space would be very valuable. If an evolutionary algorithm needs 

fewer fitness evaluations for a good optimization, one can process and suggest more 

molecules in the same amount of computer time. Even with an inaccurate fitness 

function this collection will still give more “hits” than randomly screening, which 

would be very valuable to drug developers. 

 Yet how to achieve such progress? The key to this would lie in closer 

collaboration between medicinal chemists and computer scientists. Procedures that 

have become quite common in computer science, like having standard test sets on 

which an algorithm should work, should be used much more extensively in medicinal 

chemistry to help compare different methods and improvements in a method more 

objectively. The size and diversity of these sets should be sufficient to draw reliable 

and statistically significant conclusions when comparing different methods, the one to 

three test cases which have been used in some articles probably do not adequately 

reflect the diversity of cases in a particular domain. Publicly available reference fitness 

functions would also be necessary to compare different algorithms in a fair way.  

 

The main contribution of medicinal chemists in this process would be the development 

and testing of heuristics. There are no shapeless, featureless problems in drug design; 

each problem has its own inherent, natural constraints. A generic evolutionary 

algorithm that is applicable in all cases and fails to take the information provided by 

the specific problem into account can be improved by including heuristics which make 
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it less generally applicable, but more powerful for that specific application. Developing 

these heuristics and testing them critically would represent an advance in quality, 

which would be more reliable and systematic than the current independent tweaks of 

poorly compared algorithms which rarely take the biochemical nature of the problem 

space into account. As far as we understand the systems, we can develop heuristics. 

And as for the parts of the system we do not understand, we can observe, make 

hypotheses, test methods and learn from their results. This would result in speciation to 

optimally fill the diverse niches in drug design, and represent a true evolution of 

evolutionary algorithms in this field.  

 Looking over the past and current research, the challenges to create computational 

methods to predict reliably the biological properties of molecules are great indeed, and 

will take much time and intellectual effort to resolve. The current problems in 

developing new drugs indicate that the drug design process as well as the drugs 

themselves can only remain affordable if we can find ways to intelligently combine the 

growing available biological information with the possibilities of quickly and 

effectively searching the huge collection of drug-like molecules. This is a major 

challenge, but one in which evolving evolutionary algorithms can play an important 

role. 

 

Glossary 

ACTIVE SITE: the part of a protein which binds the messenger molecules or catalyzes the 

biochemical reactions. 

CHROMOSOME: named after the strings of DNA which contain the genetic information of 

biological organisms, chromosomes in evolutionary algorithms are the data structures which 

contain the genetic information/genotype of one individual candidate solution. Often, 

especially in genetic algorithms, a chromosome is a vector of bits or numbers. 

CROSSOVER: another name for the recombine-function of evolutionary algorithms. 

HYDROGEN ACCEPTOR: oxygen or nitrogen atom in a molecule with a free electron pair 

that can bind to a hydrogen atom of a hydrogen donor. 

HYDROGEN BOND: the attractive force between a hydrogen acceptor and the hydrogen 

atom of a hydrogen donor. Is generally the predominant binding force between a ligand and 

its receptor. 

HYDROGEN DONOR: oxygen or nitrogen atom in a molecule that is bonded to a hydrogen 

atom. This hydrogen atom can bind to a free electron pair of a hydrogen acceptor. 
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LAMARCKIAN EVOLUTION: an individual’s phenotype is optimized by a local search. The 

information of the phenotype is subsequently written back to the genotype, which then 

undergoes normal mutation/crossover. 

LEAD (COMPOUND): a compound that seems to have a desirable biological activity and 

may be developed further into a drug. 

LIGAND: a molecule that binds to a large biological molecule (usually a protein). 

MOLECULE: a collection of atoms which are connected by bonds. On a simple level a 

molecule can thus be considered to be a graph in which the nodes are the atoms and the 

edges are the bonds. The specific physical and chemical restrictions on this graph are that 

each atom type has a maximum number of bonds, generally ranging from 1 to 4, and that 

the length of the bonds, the preferences for certain bond angles and finally the interplay of 

the attraction and repulsion between the atoms cause each molecule to assume a distinctive 

range of three-dimensional structures, called conformations. 

POLING: optimization method developed by Smellie et al. (1995) that ensures diversity of 

the individuals in the population by modifying the fitness function in such a way that similarity 

to other individuals is penalized. 

q
2: a measure of statistical significance. It is determined by leaving a subset of the data 

(often of size one) out of the training set, training a model with the remainder of the training 

set, and predicting the dependent variable of the subset. This is done for all items in the 

training set, the r2 value of the resulting predictions is called the q2. It is considered to be 

less sensitive to overfitting than r2 and therefore a better measurement of the quality of a 

statistical model. 

r
2: a measure of the statistical significance of a model. Its values are between 0 (no linear 

correlation between the independent and dependent variables) and 1 (a perfecty linear 

correlation between the independent and dependent variables). It can be calculated by 

comparing the values that a model gives (��) to the observed values (��) by the following 

formula: �� ≡ 1 − ∑ (�� − ��)�
� / ∑ (�� − ��)�

� , where �� is the means of the observed values. 

REAGENT: a molecule that is used in a process in which it will react with another molecule, 

forming one or more new molecules, is called a reagent (derived from Latin: “something that 

must react”). 
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ROULETTE WHEEL SELECTION: A method to select good individuals with higher 

probability than bad individuals as parents of the next generation. All members of the 

population are assigned a segment on a wheel, usually in proportion to their relative fitness. 

Subsequently random points on the wheel are selected and the corresponding population 

members become the parents of the next generation (Parrill, 2000). 

SPECIATION: A large part of the population of individuals is very homogeneous: although 

there are officially many solutions, it is in reality just one solution with small variations. 

Usually one wants to prevent this and develop several solutions which differ significantly. 

SPLINE FUNCTION: commonly written as f(x)=<a-x>. This function returns 0 if x is greater 

than a, and a-x if x is smaller than or equal to a. 

TARGET (RECEPTOR): the biological macromolecule to which a drug or drug candidate 

should bind.  

TORSION ANGLE: Angle indicating how much one end of a single bond is rotated with 

respect to the other end. For four bonded atoms A-B-C-D, the torsion angle of the bond B-C 

is defined as the angle which the C-D bond makes with the plane in which A, B and C lie.  

TOURNAMENT SELECTION: A method to select the parents for the next generation of the 

evolution in an evolutionary algorithm. Tournament selection works by randomly picking a 

certain number of individuals out of the population and letting the best of them become a 

parent, repeating this process as often as is required (Parrill, 2000).  

TRANSITION STATE: When a molecule is broken down by an enzyme, the enzyme first 

twists it into a strained conformation to make the subsequent reaction(s) easier. This 

strained state is called the transition state, since it is the phase a reacting molecule must go 

through in order to form the product.  

VIRTUAL LIBRARY: A database of molecule structures. 
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Abstract 

Nowadays millions of different compounds are known, their structures stored in 

electronic databases. Analysis of these data could yield valuable insights into the laws 

of chemistry and the habits of chemists. We have therefore explored the public 

database of the National Cancer Institute (>250,000 compounds) by pattern searching. 

We split the molecules of this database into fragments to find out which fragments 

exist, how frequent they are and whether the occurrence of one fragment in a molecule 

is related to the occurrence of another, non-overlapping fragment. It turns out that some 

fragments and combinations of fragments are so frequent that they can be called 

“chemical clichés”. We believe that the fragment data can give insight into the 

chemical space explored so far by synthesis. The lists of fragments and their (co-) 

occurrences can help create novel chemical compounds by i) systematically listing the 

most popular and therefore most easily used substituents and ring systems for 



82 

 

synthesizing new compounds, by ii) being an easily accessible repository for rarer 

fragments suitable for lead compound optimization, and by iii) pointing out some of 

the yet unexplored parts of chemical space. 

 

Introduction 

Over the last two centuries, chemists have synthesized many millions of structures. 

Two of the largest chemical databases, the Beilstein1 and the CAS2, contain over 8 

million and 25 million compounds, respectively. Such large collections of compounds 

could give much insight into chemistry, both into what kinds of compounds can be 

made with current chemical technology, and into which parts of chemical space have 

been extensively investigated or, conversely, barely explored. 

 In most investigations so far, databases have been used for classification of 

compounds: for example, when is a compound drug-like3,4,5? Or which substructures or 

properties correlate with mutagenicity6,7?  

 Relatively unexplored are the possibilities of general databases: collections of 

molecules for which no data other than their structure is available. The only 

investigations known to us which had this purpose8,9 did so to extract a catalogue of 

rings respectively substituents for drug designers. However, it seems desirable to get 

more information out of those general databases than just rings. We could also learn 

much about chemistry and the habits of chemists by studying which substructures and 

substructure combinations occur. 

 In this investigation we want to delve deeper into the knowledge stored in the 

molecular structures. This would not only give us an extensive catalogue of fragments 

to re-use in synthesis of drugs and other compounds, but also insight into “chemical 

habits”. What kinds of compounds are made frequently, and which substructures are 

relatively rarely found together in a molecule? Some of these rare combinations might 

indicate barely explored parts of chemical space, potentially interesting for designing 

new compounds. 

 In this work we will use the name “chemical clichés” for some of the most-

occurring fragments and frequently co-occurring pairs of fragments. The word “cliché” 

originated in the French printing industry where it denoted a stereotype, a kind of 

stamp of for example a picture that was pressed on the paper to produce the same 

image many times. Nowadays the word cliché is mainly used to denote a trite 

expression, such as “missed by a mile” or “top research institute”. However, some 

classes of chemical compounds also seem to be based on the same “stamp” with only 

slight variations, such as benzodiazepines and tricyclic antidepressants. Also, single 
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fragments like the benzene ring can occur extremely often in molecules. We think that 

the word “cliché” is useful to describe this reuse of ideas, while stressing that the 

current templates might not be the only ones that are viable. 

 Then the question remains how to extract knowledge from chemical databases. 

Knowledge is usually found in occurrences and patterns: what occurs in nature, what 

does not occur, and which events occur together? What is correlated with what? 

Looking at the molecular structure as a whole is not very useful, since all chemical 

structures in a database are unique, so on that level they are incomparable. Splitting the 

molecules into the chemically smallest fragments, the atoms, will yield no more 

information than the periodic table. One should therefore look for chemical knowledge 

at a level between these extremes, and that is the level of the molecular fragments. 

 In this paper we first discuss our choice of fragmentation method. Then we will 

describe the method we used to detect whether two different fragments co-occur more 

or less often than expected, and thereafter we will present the results of the fragment 

mining and co-occurrence analysis. We will conclude with a discussion of our findings, 

suggestions for application of the data obtained, and directions for future investigations. 

 

Database 

In this investigation we used the public database of the United States National Cancer 

Institute (NCI). The August 2000 version, which we mined, contains 250251 

structures10. The molecules in this database have been selected to be tested against 

cancer, so were deemed by the database compilers to possibly have biological activity. 

Since many of the compounds are experimental and have not been tested on 

bioavailability and safety in humans, the diversity in structures is quite large, and 

should give a decent cross section of the range and preferences of chemical synthesis. 

 

Fragmentation method 

To find patterns in structures, the first step is to break the molecules into fragments. 

Two categories of fragmentation methods can be distinguished: the “full substructure 

set”, in which all possible 1, 2, 3 …n-atom sized substructures of a molecule are 

detected, and “molecule parts”, in which a molecule is divided into a number of non-

overlapping substructures. 

 While the full substructure set would give all information possible, in practice it 

yields huge numbers of substructures per molecule (several thousands for even a 

medium-sized molecule). This makes such kind of data mining computationally very 

expensive, especially for large collections of compounds. For an exploratory study 
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such as this, a “molecule parts” method would be more suitable, since there are fewer 

parts, they do not overlap, and they correspond to chemically intuitive units. 

 The next question is at which point to “break” the molecules. The two main 

methods here are graph splitting11,12,13 and virtual retrosynthesis14,15,16. Graph splitting 

breaks molecules at topologically interesting points, such as the bond between a 

substituent and a ring, while virtual retrosynthesis uses specific rules based on 

chemical reactions, and breaks for example ester bonds. Both methods yield 

manageable sets of substructures (10,000-100,000 for a medium sized database). From 

a chemical point of view, the retrosynthesis method seems most logical, however it 

does not reflect actual syntheses very well as for example Vinkers et al. found out14. 

The reason is that chemical reactivity depends on steric and electronic factors which 

are for a large part determined outside the three or four atoms of the “breakable bond” 

and its neighbors. Conversely, synthesis can often create bonds (such as alkane C-C 

bonds) which are not considered to be cleavable by most retrosynthesis algorithms, 

because typically only a few dozens of the hundreds of organic reactions are 

incorporated into the software. A last disadvantage is that different retrosynthetic rules 

give different fragment sets. In contrast, graph splitting is quite reproducible, easy to 

implement and divides structures in chemically intuitive units of “ring systems” and 

substituents. This is why we chose the graph splitting method.  

  

 

a. b. c.

N

N

N

O N

N

N

N

N

 
 

Figure 3.1: a. A drug molecule (pyrilamine) b. Framework of pyrilamine 

according to Bemis et al.11, consisting of only the ring systems and the 

atoms that directly connect the ring systems. c. Framework of pyrilamine 

according to our definition so without substituents attached to the rings. This 

framework is later split into ring systems and linkers. 
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Deciding to do graph splitting is however not enough, since graph splitting can be done 

in a number of different ways. Bemis et al.11 iteratively cut off all 1-connected atoms, 

so that only “substituents” and frameworks were left, the frameworks being the ring 

systems with the part of the linkers that directly connect them, see Figure 3.1. 

 We decided to go one step further and also split up the frameworks into ring 

systems and linkers. We therefore ended up with splitting molecules into substituents, 

ring systems, and linkers of different orders (linking two ring systems, three ring 

systems, etc.) See Figure 3.2 for an illustration of our fragment classes and the 

decomposition of an example molecule, folic acid. 

 

ring systems

substituents

linkers

ring systems

substituents

linkers

 
 

Figure 3.2: Our algorithm breaks the bonds between ring systems and the 

rest of the molecule, and thereby splits the molecule (in this example folic 

acid) into several types of fragments: ring systems, substituents, and linkers. 

 

 

 

Figure 3.3: Storage format of ring systems and non-ring systems. While 

ring systems are stored as normal molecules, substituents and linkers 

include one or more “branching atoms” that encode the symbols of the 

atoms to which the substituent or linker is attached. 
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The ring structures were stored as normal molecules, only without hydrogen atoms 

(similar to the format of the NCI database itself). For the substituents and linkers we 

considered it useful, like Bemis et al.12, to encode which atoms of the substituent/linker 

bind to the ring systems, as well as to which atom types they bind. We therefore 

encoded the ring attachment atoms as special types, the “BX” atoms, where X was the 

elemental symbol of the ring atom to which the substituent was attached. This 

encoding is illustrated in Figure 3.3. 

 Splitting molecules in this way can already yield useful information, such as 

which ring systems occur, and which do not (like an N6-ring). But we could get even 

more information by also recording the frequencies of the substructures, as this would 

allow us to analyze frequency distributions and to explain why some fragments are 

more prevalent than others. 

 As a practical point, we had to find a method to encode the fragments uniquely, so 

that of each fragment mined we could determine whether it was already in the database 

or of a new fragment type. For this problem (the so-called “canonicalisation problem”) 

various algorithms and notations have been developed, such as Unique SMILES17. In 

this investigation, we implemented a canonical code of which the first part included the 

number of atoms, the number of rings (in the case of ring systems) and the number of 

attachment points (in the case of substituents and linkers). The second part contained 

the atoms, which were sorted first on their number of neighbors and the number of 

bonds of those neighbors, second on atom type and finally on hybridization (sp, sp2, 

sp3). Since the fragments were relatively small, this simple method worked well.  

 

Co-occurrence analysis 

After the entire molecule database was split into fragments we performed a co-

occurrence analysis: which fragments were unexpectedly often found together, and 

which seemed to “avoid” each other? 

 Of course, two fragments that are frequent would occur much more often together 

than two infrequent fragments; however, that would not necessarily mean that there is a 

relationship between the two. Therefore we decided to do a stochastic experiment. 

 First, we selected those fragments which occurred in more than 20 molecules (in 

order to obtain statistically significant and chemically useful results). Then we 

“simulated” an NCI database by randomly dividing the different fragments over as 

many “molecules” (bins) as they were part of in the real database. So if a certain 

fragment occurred in 500 molecules in the original database, it was divided over 500 

randomly chosen bins of the 250,251 available in the simulated database. We counted 
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how often each combination of fragments occurred, and repeated the simulation a 

thousand times. These results were compared with the co-occurrence counts of the NCI 

database. 

 For example, if we had taken a database of 1000 molecules, in which 500 phenyl 

rings occur and 100 methyl groups, there would be on the average 50 co-occurrences of  

these two groups. An experiment would find that they co-occurred together about 50 

times, with a standard deviation (SD) of about 4.7. However, if in the real database 

they occur 75 times together, which is 5.3 SD from the expected value, this indicates a 

correlation, which may have synthetic and/or biological reasons.  

 

Results of fragment finding 

The mined NCI database contained 250251 compounds. These molecules were split 

into ring systems, substituents, and several types of linkers, in total 13509 different 

ring systems and 52103 different non-ring fragments. Of these non-rings 19602 were 

unconnected fragments, mostly anions such as sulfate and molecules without rings. 

More interesting were the other non-ring fragments: 18015 were substituents, 9675 

linked two ring systems, 2531 linked three ring systems and 2280 linked four or more 

ring systems. The most highly connected linker was attached to eighteen ring systems. 

The number of different fragments in the largest categories, as well as the total 

occurrences in the molecules and some example fragments are shown in Table 3.1.  

 

Visual inspection of the fragments and their occurrences led to the following 

observations, some of which were already known qualitatively, but which could now 

be confirmed quantitatively through the data mining: 

1) Many of the ring systems and branches contain metal atoms or metallic atoms 

such as boron. In the case of rings, 2722 out of 13509 (20%) contained atoms 

other than C, N, O, and S, such as As, Fe, B and Si. Of the substituents, 1736 

out of 18015 contained atoms other than C, N, O, S, and the halogens, less 

than 10%. The two and three-connected branches had 11% and 24% 

respectively, while most linkers with six or more attachment points contained 

metals or less common heteroatoms (B, P, Si, and such). 

2) In general, the larger the ring or branch, the smaller its frequency seems to be.  

3) Metals and higher-weight non-metallic elements both occur relatively rarely in 

fragments and make a ring or branch occur less often. Carbon atoms dominate 

rings and other fragments, followed by nitrogen and oxygen, which are in turn 

more prevalent than sulfur, phosphorus, and finally the metals. 
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4) In branches, a higher number of attachment points seems to mean that it is less 

used. Bemis et al.11 did not find any frequent frameworks with 3-linkers or 

higher-order linkers in the Comprehensive Medicinal Chemistry (CMC) 

database18. Tables 3.1 and 3.2 confirm this observation.  

5) The only exception to the rule that the more attachment points a linker has, the 

less frequent it is, is going from 5-attached linkers to 6-attached linkers. 

Inspection of the structures of the 6-linkers shows that most of them are 

symmetrical and therefore possibly easier to synthesize. However, 6 and 

multiples of 6-linkers are uncommonly popular (Table 2; compare 12 to 11 

and 13, 18 to 17) – probably this is due to metal complexes and the high 

symmetry possible (both 2- and 3 fold symmetrical). Perhaps investigations of 

larger databases could confirm whether there really is a “rule of six”.  

6) The ratio of the occurrence of fragments to the number of unique fragments 

decreases as one goes from substituents to rings to linkers. The ring ratio 

(13509 unique rings, together occurring 416867 times in the database) is 31, 

for the 18374 substituents it is 33, for the 2-linkers 10, for the 3-linkers 3.2 

times and for the four-linkers 2.5. It may be that the more unique fragments 

there are in a category, the more lopsided the distribution will be.  

 

As illustration of our results, the top ten fragments of the most common fragment 

families are shown in Table 3.3. 

 

Results of the co-occurrence analysis  

Our investigations found 65612 fragment types in 250251 molecules. Correlating all 

these fragments to each other would have resulted in about 4 billion correlations, but 

most of these would be meaningless since about 70% of fragments occurs only once in 

the database. To reduce computational cost and find only the co-occurrences in a 

decently sized set of molecules (we set the threshold somewhat arbitrarily to at least 20 

molecules), we only calculated co-occurrences for fragments which occurred in 20 or 

more molecules – 1895 fragments, just 2.9% of the total. Among these fragments were 

also some metal-containing and therefore less interesting fragments, which we 

removed. The final set therefore contained 1730 different fragments, 2.6% of the total 

number. 

 We created one thousand simulated databases, as described in the methods section, 

and calculated the expected occurrence of each pair of fragments, as well as the 

standard deviation of these co-occurrences (for among different simulations, the  
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Table 3.1: Overview of some of the fragment databases we created by fragmenting the NCI 

database. For example, the database of substituents (groups attached to only one ring 

system) contains 18,374 different types of substituents, which together occur 617,722 times 

in the NCI database. Also given is an example of the particular type of fragment, for the 

substituents this is the methyl group attached to a carbon atom in a ring system. 

 
 Number of 

unique 
fragments 

Number in 
database 

Example 

Ring 
systems 

13509 416867  

 
 

Substituents 18374 617722  

CH
3

(C)
 

2-linkers 9990 101402 

S S
(C)

(C)

 
3-linkers 2602 5776 

P(C)

(C)

(C)

 
4-linkers 974 2388 

N

(C)

(C)

(C)

(C)

 
5-linkers 126 177 (C)

Si (C)

(C)

(C)

(C)
 

6-linkers 218 280 

(C) (C)

(C) (C)

N
N

N
N

(C)
(C)
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Table 3.2: Overview of the number of fragments linking seven or more ring 

systems. For example, there are 15 unique fragments which are attached to 

nine ring systems simultaneously. 

 

Number of attachment 

points 

7 8 9 10 11 12 13 14 15 16 17 18 

Number of fragment 

types  

22 15 15 1 1 26 0 0 0 0 0 2 

 

 

 

Table 3.3: The most frequently occurring fragments in the NCI database. 

Listed are the top ten ring systems, substituents, 2-linkers and 3-linkers. 

The numbers in each cell represent the number of occurrences of the 

fragment in the database and how many percent this is of all occurrences of 

fragments of its type. For example, the keto substituent (C=O) occurs 

77,907 times in the database and thereby represents 13% of all substituent 

occurrences; if one would randomly pick a substituent from a molecule, the 

chance is 13% that it is a keto group. The numbers in the bottom row are 

the total percentage of the top ten fragments. 

 
 Ring systems substituents 2-linkers 3-linkers 

1 

 
200644 (48%) 

CH3

(C)
 

102157 
(17% ) 
 

(C) N
(C)

O

 
4484 (4.4%) 

(C) (C)

(C)

 
415 (5.0%) 

2 

 
11442 (2.7%) 

O

(C)
 

77907 
(13%) 

(C)
NH

(C)  
4266 (4.2%) 

(C) (C)

(C)

 
384 (4.6%) 
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3 

 
7731 (1.9%) 

OH

(C)
 

62949 
(10%) 

 
3873, 3.8% 

(C)

OH

(C)

(C)  
240 (2.9%) 

4 

 
6991 (1.7%) 

Cl

(C)
 

46734 
(7.6%) 

(C)
N

N
(C)

 
 
3695 (3.6%) 

(C) (C)

(N)

 
179 (2.1%) 

5 

N

N

 
6185 (1.5%) 

OMe

(C)
 

42080 
(6.8%) 

O
(C) (C)

 
3638 (3.6%) 

N
H

(C)
(C)

(C)

 
107 (1.3%) 

6 O

 
5814 (1.4%) 

NO2

(C)
 

24997 
(4.0%) 

 
2940 (2.9%) 

N
N
H

(C) (C)

(C)

 
88 (1.1%) 

7 N

 
5352 (1.3%) 

NH
2

(C)
 

19421 
(3.1%) 

(C) (C)
 

2699 (2.7%) 
N(C) (C)

(C)

 
87 (1.0%) 

8 O

 
5120 (1.2%) 

CH3

(N)  
14654 
(2.4%) 

(C) O
(C)

O

 
2542 (2.5%) 

(C)

OH

(C)

(C)

 
87 (1.0%) 

9 

N
 
4526 (1.1%) 

Br

(C)
 

3184 
(1.8 %) 

(C) (C)

O

 
2278 (2.2%) 

N
H

(C)

O(C)

(C)
80 (0.95%) 
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10 

N

N

N
H

N

 
3991 (0.96%) 

F

(C)
 

7916 (1.3%) 

(C) S

O

O

N
H

(C)

 
1966 (1.9%) 

(C)

O

N
H

O

(C)

O

(C)  
76 (0.91%) 

Total 62% 66% 32% 21% 

 

number of co-occurrences of a pair of fragments can vary). Then we compared the 

expected co-occurrences and the deviation in SDs (the z-values) to the real co-

occurrences in the NCI database.  

 The distribution of z-values of a sample simulated database yielded a Gaussian 

like distribution, as expected (Figure 3.4). The distribution of fragment co-occurrences 

in the NCI database in the same figure is, however, remarkably different. 

 

         
 

Figure 3.4: Overview of the number of standard deviations that the real co-
occurrence of a fragment pair differs from how the co-occurrence would be 
if the distribution of fragments over the molecules in the database were 
random. The X axis displays the deviation range, the Y-axis the number of 
pairs in a certain range. Only pairs which occur over 20 times are counted 
here. The distribution of the simulated (random) database is Gaussian-like, 
but the real database has lots of fragments co-occurring much more or 
much less frequently than expected. 
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The NCI database turns out to possess both a large number of fragment pairs which 

seem to avoid each other (1110 of z-value<-3), and an even larger number of fragment 

pairs which seem to group together (2897 of z-value>3). 

 
Table 3.4: Some fragment pairs which occur much less frequently together 

in one molecule than expected, and therefore seem to avoid each other. For 

example, the phenyl-group and the tetrahydrofuran group (row 3) are both 

very prevalent fragments, and would be expected to occur together in about 

2653 molecules of a 250,000 molecule database. However, in the NCI 

database they are combined in only 270 molecules, giving an “expectation 

fraction” of 270/2653 or 0.10. This relation is highly significant, being 67 

standard deviations under the expected value. 
 
z-value Fragment 1 Fragment 2 Expected 

occurrence 
Real 
occurrence 

Factor 

-31 

 

 

534 42 0.08 

-36 

N

N

 

O

(C)
 

1209 115 0.10 

-67 

 

O

 

2653 270 0.10 

-19 CH
3

(C)
 

CF3

(C)
 

544 139 0.26 

-37 

 

NH N

 

1186 323 0.27 

-14 O

 

Cl

(C)
 

611 281 0.46 
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We first sorted our results on statistical significance, reaching z-values of up to 490 and 

down to -65. However, after viewing the results we realized that a significant effect 

does not have to be a very large effect. The most statistically significant negative 

correlation is that between the benzene and tetrahydrofuran rings, which occur about 

10 times less together than expected. The second most significant correlation is 

between benzene and pyridine, only a 2.4 fold difference. However, lower significance 

is given to higher co-occurrence factors, such as 6.5 for the benzene – tetrahydropyran 

pair. Therefore we sorted all pairs that had sufficient z-values on their ratio of expected 

occurrence to actual occurrence. To illustrate our results, we have listed six of the most 

“avoiding” combinations with z-values<-5 (Table 3.4). These combinations were 

expected to occur at least five hundred times in the database, but were found much less 

frequently. 

 Even more numerous than the avoiding pairs were fragments which seemed to 

group together. Many of them co-occur so often, that they could be termed “chemical 

clichés”. Often the z-values of the correlations were much bigger for these groups than 

for the avoiders. In Table 3.5 we show some of the fragment pairs with the strongest 

enrichment in occurrence for clichés which occur over a 1000 times, over 200 times, 

and over 50 times in the NCI database. 
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Table 3.5: Some fragment pairs which co-occur much more often than 

expected; shown are four fragment pairs which occur in more than one 

thousand molecules, four pairs which occur in more than two hundred 

molecules, and four pairs which occur in more than fifty molecules. For 

example, the tetrahydrofuran group and the –CH2OH group would be 

expected to occur only 122 times together, but the pair appears in 2292 

molecules (the explanation is of course that these would be ribose-

containing molecules). The “gain factor” here is 2292 divided by 122 is 19, 

and the relation is highly significant, since the found occurrence is over 200 

standard deviations from the expected occurrence in a random database 

(making the chance that their occurrence is independent under 

0.0000001%). 
 
z-value Fragment 1 Fragment 2 Expected 

Occurrence 
Real 
Occurrence 

factor 

206 O

 

O
(C) (C)

 

45 1396 31 

206 

 

OH(C)
 

122 2292 19 

117 O

 

OH(C)
 

97 1171 12 

122 

N

N

 

NH
2

(C)
 

371 2677 7 

117 

 

(C)

 

2.3 206 88 

185 

 

O
(C) (C)

 

6.1 463 76 
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108 O

 

O

O

(C)

 

7.0 286 41 

125 
SNH

 

S

(C)
 

21 591 28 

425 

N NH

 

O NH
2

O

(C)

 

0.024 65 2708 

125 

 

 

 

0.26 62 238 

122 
N

 

NH

 

0.30 66 221 

106 
N

 

(C)

(C)
 

0.39 68 173 

 

Discussion 

In this work we performed fragment mining and co-occurrence analysis on a diverse, 

medium-sized chemical database. In this section we discuss what we can learn from the 

results, compare our work with that of other investigators, consider uses of the 

fragment data acquired, and hypothesize about possibilities for extension and 

improvement of this work. 

 

First, we summarize our conclusions from the results obtained. 

 Our first observation confirms that of Bemis et al.11,12 and Xue et al.13, namely that 

chemical fragment distributions are extremely lopsided, with a few frequent fragments 

and many infrequent fragments. Our investigations of several different categories of 

fragments (rings, substituents, and linkers) however refine this rule; it seems that the 

classes of the most prevalent fragments, substituents and ring systems, have the most 

lopsided distribution. In the less used classes of fragments (such as 3- or 4-connecting 

linkers) the differences in occurrence between the “top-10” and the “bottom-10” 
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fragments are less pronounced (Table 3.3). It may be that in a category of fragments 

which has not yet been used often, strongly preferred substructures cannot arise or have 

not arisen yet. 

 One could speculate on what influences the occurrence of a certain fragment. 

Three factors come into mind. First, synthetic feasibility/availability; how easy is it to 

synthesize the fragment, or is the fragment already incorporated into commercially 

available starting materials? The phenyl group would be a good example of this. 

Second, versatility; how easy is it to attach other groups to it. Third, popularity: a 

popular fragment accumulates more and more knowledge which makes it more 

attractive for use by others, since there is more knowledge available for its 

manipulation. This could lead to a kind of “winner takes it all” effect, in which 

relatively small differences in fragment quality may lead to big differences in use. 

Distinguishing between these possibilities would require further study, for example to 

find out how many combinations with other groups a certain fragment has per 

occurrence. 

 The fragment co-occurrences give other insights into chemical space. From 

looking at the structures of the fragments that seemed to avoid each other we could 

think of different reasons why fragments co-occur less frequently than expected. The 

first reason may be that there are different classes of compounds, such as natural 

compounds and “synthetic” compounds. In natural compounds, sugar and nucleobase 

systems may be more prevalent, while in many industrial chemicals the phenyl group 

plays a dominant role. An example would be the third pair of Table 4, in which the 

tetrahydrofuran ring (as part of ribose) would occur in the natural compounds, while 

the phenyl is more likely to occur in “synthetic” compounds. A second reason may 

have to do with ease of combination: a keto group cannot be attached directly to a 

phenyl ring, and therefore tends to occur less often with it. It can of course be attached 

to another ring system in the same molecule, but since effectively one part of the 

molecule has no positions available for it, the overall chance of the keto group 

occurring in a phenyl-containing molecule will be lower than average. Finally, some 

combinations may be found by the statistics to be less frequent than expected since one 

group is used as a replacement for the other group. Thus, bromine and chlorine 

relatively rarely occur in the same molecule, possibly because they have similar 

electronic and chemical properties. Likewise, napthalene and benzene can take similar 

roles as molecule cores, and “compete” since most molecules have only one or two 

ring systems. 
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Let us now turn to the possible reasons for the clichés. Looking at the clichés we found, 

the first likely reason for their existence is that synthetically the clichés do not 

represent the smallest building block of a molecule. If moieties such as ribose (instead 

of unsubstituted tetrahydrofuran) are the real building blocks used to create larger 

molecules, the co-occurrence of the tetrahydrofuran ring (present in ribose) and -OH 

groups is certainly not surprising.  

 The explanation for a number of other clichés is that they represent specific 

classes of biologically active compounds. As examples, we found dihydrocholesterol 

analogs (Table 3.5, fifth pair), doxorubicin analogs (Table 3.5, sixth pair), mitomycins 

(Table 3.5, ninth pair) and folic acid derivatives (not shown) listed as clichés with 70- 

to 2700-fold occurrence relative to expectation. These clichés do not so much reflect 

the choice of building blocks, but rather show the active structures nature provided and 

chemists explored around. 

 Let us now compare our results with those of others. Fragment mining has been 

done by several researchers, both as main research subject11,12,13 and as a preparation 

for virtual synthesis14,15,16. In the methods section we already touched upon the 

different types of fragmentation, of which the retrosynthetic fragmentation, though not 

chemically perfect, has been applied and used by those researchers who want to 

perform virtual synthesis as a prelude to real synthesis. Studies with graph splitting 

have mainly focused on exploration of the (drug like) molecule space. 

 Co-occurrence analysis as reported here has to our knowledge not been done yet, 

and we therefore will focus our comparison on the diverse types of fragment finding as 

performed by other investigators and ourselves. The differences between our research 

in fragment frequency and that of others are caused by three factors: the database 

mined, the breaking points considered, and the ways in which the fragments are 

represented and distinguished. 

 Let us first compare the databases mined. Bemis et al.11,12 used a rather small 

database, the Comprehensive Medicinal Chemistry (CMC) database18, which was 

filtered to get an even smaller database containing only drugs and drug candidates 

(5120 compounds). On the other hand, Lewell et al.9 used a big database containing 

several millions of compounds, many more than we used. However, the relatively 

small size of the NCI is sufficient for an exploratory study such as ours, and our 

algorithm is fast enough to make mining of databases of 10 million compounds quite 

doable on a personal computer. Fragment mining, though not as “new” anymore as in 

199611, is something that has to be done periodically since the amount of data available 

is also growing and offering new opportunities. Another aspect is the quality of the 
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data; a drug-like database might give more valuable information for the pharmaceutical 

industry, but might give a skewed image of chemical synthesis. A more general 

database, such as the NCI that we mined, seems more appropriate for getting general 

information about chemistry, but will give fragments which would be unsuitable for 

drug development. 

 The investigations also differed in the breaking points considered. Most authors 

have divided drug molecules into substituents and a kind of framework that contains 

ring systems and linkers. Bemis et al.11,12 considered the substituents and the 

frameworks, which were the ring systems together with parts of the linkers. Lewell et 

al.9 concentrated on the rings, Xue et al.13 on a framework-like part of the molecule 

called the scaffold. To our knowledge, there has not been a separate investigation of 

linkers, especially not of the rarer linkers with more than two attachment points. 

However, linking ring systems together is important for drug development, and a 

catalogue of linkers of varying length could have similar usefulness as the ring system 

catalogue compiled by Lewell et al.9 So the use of the linker breaking points by our 

method yields additional useful information. 

 The last point is substructure representation. The aspects relevant here are the 

representations of the atoms and bonds in the substructure itself, and the encoding of 

the attachment points. The atoms and bonds can be given a general type (like a 

wildcard that can represent any atom, or any heteroatom), which results in more 

“general” fragments. These general fragments will necessarily be fewer in number than 

the original (normal) chemical fragments. A more important issue, from a chemist’s 

point of view, is that such a general fragment can encode many substructures of 

possibly vastly differing ease of synthesis. So before one chooses between using more 

general or more specific fragments, one should consider whether one just needs to 

know if frameworks with approximately the right size and shape are available, or 

whether one rather needs a specific substructure with a high chance to be synthesized 

easily. 

 Xue et al.13 treated the substituents as unattached R-groups and did not distinguish 

between a methyl attached to a carbon ring atom and a methyl attached to a nitrogen 

ring atom. We and Bemis et al.12 do distinguish between those options. For the ring 

systems, Lewell et al.9 also considered ring systems with different attachment points 

(for example ortho- and meta-substituted phenyl) as distinct ring systems. Chemically, 

some positions in rings are easier to modify than others, but it is unclear how important 

this difference in reactivity is. Would other substitution positions be impossible? It is 

difficult to estimate the advantage gained by using only known ring substitution 
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patterns against the loss of perfectly viable ring systems which accidentally have not 

been substituted in that particular pattern yet. For initial exploration of chemical space 

around a lead molecule, one would prefer substructures which are easy to incorporate 

in the molecule. For the fine-tuning of structures, however, it would be better to have 

more candidates available, even if not much is known yet on some of them. We could 

therefore say that the level of detail of substructure representation can be chosen 

relatively freely but different levels of details will be preferred for different phases of 

molecule design and by different chemists. Some chemists might choose a maximum 

amount of attachment information, while others might allow more “wildcards” in the 

structure. Ideally, one would therefore want to have a number of fragment databases, 

each with its own specificity, from which the most appropriate level of specificity can 

be chosen. 

 The next point is how we can make use of the fragment libraries and correlations. 

 The first use of the fragment libraries would be to give chemists more ideas for 

lead optimization. While investigators such as Lewell et al.9 mainly considered ring 

systems that are sterically and electronically similar to a lead ring system to be useful 

for chemists, we suggest that using the most common as well as the least common 

fragments could also be effective. The most common fragments could be used as a kind 

of checklist in the first and most exploratory phase of lead optimization; these 

fragments are apparently often easy to incorporate into molecules, and thus can lead to 

fairly diverse exploration at relatively low costs in time and effort.  

 For example, consider benzodiazepines, which are widely used as tranquilizers. A 

typical benzodiazepine is shown in Figure 5. 

 

                   

N

N

O

Cl

 
 
Figure 5: Diazepam, a typical benzodiazepine. 
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Almost all benzodiazepines use the phenyl ring as group. However, is this biologically 

necessary or just usage of the well known phenyl cliché? Using the program 

SciFinder19 to search the CAS-database, we found over 14,000 phenyl-benzodiazepine 

compounds. Going down in our ring system list of Table 3.3, we found that the second 

and third most popular ring systems, pyridine and cyclohexane, have been tried a few 

hundred times as phenyl substitutes. The numbers four to ten of our list have in general 

only been used a few times up till a few dozen times, but numbers 6 (tetrahydrofuran), 

8 (tetrahydropyran) and 10 (purine) never. So while the compounds in Figures 6a and 

6b have been made, 6c and 6d are yet unexplored.  

 While it may be possible that these particular ring systems are difficult to 

incorporate, the search strongly suggests that by just going over the top positions of a 

list of ring systems or substituents one can easily generate a few dozen variations on a 

lead compound. Since all of these fragments are quite frequent, many of the 

suggestions are probably relatively easy to synthesize or incorporate.  
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Figure 3.6: Non-phenyl benzodiazepines. Compounds with the first two 

types of attached ring systems (pyridine (a) and naphthalene (b)) are known. 

However, neither the tetrahydropyran (c) nor the purine ring (d) have so far 

been combined with the benzodiazepine scaffold.  
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Figure 3.7: Finding cinchocaine derivatives: examples of local-anesthetic 

like tails which have been used (a, b) and which have not been used yet (c, 

d) with the quinoline group. 

 
Another example of clichés is the class of local anesthetics, many of which have a 

phenyl ring (procaine, benzocaine, prilocaine), with as one of the few exceptions 

cinchocaine, which has a quinoline ring instead of the phenyl. Searching at the typical 

local anesthetic tail-pattern of C(=O)OCxN in the substituent database yields many 

variants of the standard COOC2H4N(C2H5)2 pattern, all of which have been tried with 

phenyl (which is not surprising, since phenyl is the “golden standard” among rings), 

but some of the less frequent substituents have never been paired yet with the quinoline 

group (Figure 7). Some of these might also be worthy of further investigation. 

 Selecting fragments for rarity, conversely, can also pay off if the current scaffold 

is patent-protected; rare substructures can be especially helpful in this case as it is 

unlikely that many experiments have been done on them. Also, industries could 

deliberately add the more attractive of the rare fragments to their compound libraries 

and collections. In this way the libraries will become more diverse and thereby increase 

the coverage of chemical space and the chance of finding a lead compound in the first 

place. 
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The fragment co-occurrence data can also have some applications. First, co-occurrence 

analysis can help database analysis by automatically finding clusters of biologically 

active or well-investigated structures. This can help “summarize” the database for a 

new user or alert an expert that a certain class of compounds is suddenly becoming 

popular. Secondly, co-occurrence analysis can add information to structure searching in 

databases. Often, when a substructure is entered, a long list of structures, each with its 

specific combination of R-groups, is returned. While currently there is only little 

attention paid to the number of times a certain R-group appears, a co-occurrence 

analysis could direct the chemist’s attention to the fact that a certain combination 

occurs quite often. So there would be something interesting with that combination.  

 A third application would be for chemists to find relatively unpopulated places in 

chemical space. For example, there would not be many good reasons why phenyl and 

tetrahydrofuran could not be combined into one molecule; the relative absence of the 

combination (Table 3.4, pair 3) suggests that a compound combining these groups 

might be worthwhile to synthesize.  

 In chapter 4 of this thesis we describe a procedure for generating new drug-like 

molecules. The molecules we discovered were small and relatively simple, but often 

not yet known in the literature as a compound or as a substructure of other compounds. 

The molecule we show in that article has a phenyl ring attached to a piperidine ring and 

a CH2OH group. While the phenyl ring itself is very much a chemical cliché, it usually 

avoids both the piperidine ring (avoiding pair rank number 75) and the CH2OH group 

(avoiding pair rank number 78) according to our data. This suggests that we might also 

be able to use this process the other way around: by combining fragments that are 

common but seem to avoid each other a person or computer program could find simple 

structures that have not been synthesized before. 

 Would we indeed be able to discover new compounds by considering the negative 

co-occurrences? To check that, we looked at three different pairs of rings, which were a 

strongly avoiding pair (phenyl and tetrahydrofuran, rank 7 of the list), the less strongly 

avoiding pair of phenyl and the somewhat less frequent piperazine ring (rank 75), and 

the cliché of the C4N2 ring depicted in the table together with the tetrahydrofuran 

(Table 3.6). The most strongly avoiding pair appears in about 10,000 molecules in the 

CAS database (so at a ratio of about one in 2,000 compounds in the database). 

Assuming independence, one would expect that the phenyl-piperazine pair occurs less 

often since the piperazine is (at least in the NCI database) rarer than tetrahydrofuran. 

However, since the groups avoid each other less, this combination occurs 

approximately 60,000 times, so six times as many. Finally, the C4N2-tetrahydrofuran 
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cliché, despite both rings being relatively rare on their own, occurs in over 111,000 

compounds, since this combination is the core of uracil and thymidine molecules. 

 
Table 3.6: The avoiding groups can indicate “holes” in chemical space, 

where relatively little research has been done. In the first column of this 

table pairs of fragments are shown. The second column contains the z-

value of correlation. Positive z-values mean that the fragments group 

together, negative z-values mean that they avoid each other. The third 

column contains a specific substructure which contains both fragments. We 

have always taken a substructure which contains the fragments directly 

connected to each other, and when there were multiple coupling 

possibilities, the substructure which was most frequently found by 

SciFinder19. In the final column the estimated number of known molecules 

containing the substructure is shown. So, the phenyl and tetrahydrofuran 

seem to avoid each other rather strongly (z=-57), and the substructure with 

the tetrahydrofuran attached at its 2-position to phenyl indeed occurs in only 

about 11,000 molecules.  

 
Fragment pair z-value Substructure investigated Occurrence in 

SciFinder 
(estimated by 
the program) 

 

-57  

 

10,594 

 

-23 

 

57,723 

 

+87 

 

111,292 

 

It may also be possible to apply fragment analysis and fragment co-occurrence analysis 

to other problems such as measuring chemical diversity. While there are several 

different measures of chemical similarity, the methods most similar to ours are those 

which make fingerprints of molecules based on the presence and absence of fragments 

(for example the MDL/MACCS keys and the BCI fingerprints20). The MDL and BCI 
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fingerprints usually work with only very small fragments, such as “an atom in a 

multiple, nonaromatic bond located two bonds away from an atom with at least two 

heteroatom neighbors”. In contrast, our method uses much larger and more specific 

fragments and generates only a few fragments per molecule, which will lead to a much 

larger emphasis on changes in framework (so naphthalene will be significantly 

different from benzene, though they both have aromatic carbon atoms). Diversity could 

be estimated by for example dividing the number of unique fragments by the size of the 

database. For the NCI this would be (not counting the unconnected fragments) 46010 / 

250251 = 0.18, or as Ertl’s research8 suggested, by dividing the log values, which 

would yield 0.91 in our case. Calculating the entropy of the distribution might also be 

worthwhile (a database with 999 times fragment 1 and 1 time fragment 2 could be 

considered less diverse than when the division is 500 – 500).  

 The result of using larger fragments instead of small fragments would be that 

chemical diversity is enhanced; a problem might be ease of synthesis or cost of 

acquiring such a library. But diversity does perhaps not have to be high, since the 

research of Bemis et al.11 has shown that half of all drug molecules have one out of 

only 32 different frameworks. One apparently does not need very high diversity to get 

active drugs on very different targets. On the other hand, if the NCI is representative of 

chemical space, most alternative frameworks have been rarely synthesized and 

screened, and would therefore have a much smaller chance of leading to a drug. Until it 

is shown that alternative frameworks are really much worse for drug design, the 

chemical diversity stimulated by our “big fragment” method could be a good start. 

 The final benefit of fragment mining and co-occurrence analysis might be 

psychological: thinking of substructures which have or have not been used together 

might make chemists more conscious of their choices, giving them more knowledge to 

decide whether to use clichés for use of synthesis, or avoid them to explore novel 

structural classes. 

 

As final part of this discussion we would like to reflect on what directions our fragment 

mining investigations could take. 

 

First of all, there are some possibilities for algorithm improvement. While doing a 

stochastic simulation of fragment pair expectance is relatively easy and 

computationally cheap (about 15 minutes on a 3 GHz PC), the averages and standard 

deviations can be calculated exactly with a so-called chi-squared distribution with one 

degree of freedom. This will be especially valuable for larger databases. Stochastics, 
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however, may continue to play a role since they make it easy to add certain restraints 

(such as a maximum number of fragments per molecule, or multiple identical 

fragments per molecule) that are more difficult to enforce by mathematics. It would 

also be interesting to mine larger databases, such as ZINC21 or PubChem22. In any case 

this is likely to add fragments to our databases, and perhaps discover new clichés or 

avoiding groups since more data can lead to more strongly pronounced z-values. 

 A second direction for further investigation would be to make the relationships of 

the co-occurrences more detailed. For example, currently we only detect whether two 

fragments are present in the same molecule. However, our method can be extended by 

taking into account whether the fragments are directly attached to each other, or 

whether the attachment point is consistent over many molecules. Additionally, 

detection of co-occurrences of three fragments or more could be a worthwhile 

extension. 

 A third development would be experimenting with different representations of the 

substructures; some chemists would not care whether a methyl group is attached to a 

ring-N or ring-C, others would like to be sure that a certain ring position is suitable for 

substitution. Atoms and bond types could be converted to wildcards to create a smaller 

library of general fragments, or conversely the connection points could be extended 

and classified for more certainty of ease of synthesis. In the end, we would like to have 

a system that provides the right kind of data for each application. 

 

Conclusions 

In this investigation, we mined the NCI database of 250,251 compounds. This resulted 

in over 60,000 fragments of different types: ring systems, substituents, and diverse 

kinds of linkers. Fragment occurrence is very skewed, with 70% of fragments 

occurring only once, and a few fragments (such as phenyl and methyl) being present in 

many molecules.  

 The fragment lists and co-occurrences can be used in different ways. In our 

examples we have shown how the fragment lists can be used to find new ring 

substituents for benzodiazepines and local anesthetics. Also, we found that co-

occurrence analysis can automatically detect groups of biologically active compounds, 

such as the doxirubicin and mitomycin analogs in the NCI. Finally, co-occurrence 

analysis of the avoiding fragments can show “holes” in chemical space where there is 

room for small, novel compounds which may be biologically active.  

 Future directions of this work could be investigating either larger or more focused 

databases, taking information of how fragments are attached to each other into account 
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and experimenting with different levels of substructural detail. Fragment analysis can 

show us many chemical patterns, but the conversion of pattern knowledge into 

chemical understanding has only just begun. 
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Abstract 
 

We developed a software tool to design drug-like molecules, the “Molecule Evoluator”, 

which we introduce and describe here. An atom-based evolutionary approach was used 

allowing both several types of mutation and crossover to occur. The novelty we claim 

is the unprecedented interactive evolution, in which the user acts as a fitness function. 

This brings a human being’s creativity, implicit knowledge and imagination into the 

design process, next to the more standard chemical rules. Proof-of-concept was 

demonstrated in a number of ways, both computational and in-the-lab. Thus, we 

synthesized a number of compounds designed with the aid of the Molecule Evoluator. 

One of these is described here, a new chemical entity with activity on α-adrenergic 

receptors. 
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Introduction 
 
It has been estimated that the combination of the four elements C, N, O and S only may 

lead to the design of 1060 molecules with maximally 30 non-hydrogen atoms1. 

Currently, only over 26 million (in between 107 and 108) organic and inorganic 

compounds have been synthesized since the foundation of organic chemistry in the 19th 

century2. Obviously, designing new molecules (de novo design) is crucial to cover 

more of the “chemical space”. Computational methods have been employed to this end, 

among which so-called evolutionary algorithms (reviewed in ref. 3). These algorithms 

are based on principles from biology, such as natural selection and Darwinian 

evolution through mutation and crossover.  

 There are at least two problems with the application of evolutionary algorithms in 

drug design. The first is that linear ‘genes’ as used in biological evolution are ill-suited 

to represent molecules. Molecules are graphs that have to obey certain chemical rules. 

Converting a molecule into a bit string or fixed-size vector of numbers as used in 

conventional evolutionary algorithms will therefore often result in mutation and 

crossover operations that produce invalid molecules.  

 The second problem relates to natural selection and a useful fitness function. 

While currently the most common methods use a similarity index to a reference 

compound4-7 or calculations of the binding strength to a target8,9, only a few examples 

have been published of successful applications of evolutionary algorithms to find new, 

biologically active structures. Only Schneider et al7 claimed success since their 

algorithm found a ligand with a similar kind of activity as the lead compound, be it 

approximately 1000 times less potent.  

 In this study we propose a new approach for the use of evolutionary algorithms in 

de novo drug design, called the “Molecule Evoluator”, to address these problems. We 

introduce an atom-based method with a set of mutation operators that contains all one-

atom and one-bond mutations. This will enable a fuller search of the chemical space 

and finer optimization of the molecular structure than is possible with most other 

published methods. Secondly, we use another approach to natural selection that is new 

in evolutionary algorithms in drug design: we make the medicinal chemist the “fitness 

function” of the proposed structures. This would largely eliminate structures that are 

difficult to make in the laboratory and enable the program to optimize the molecular 

structure by using the chemist’s knowledge about structure-activity relationships.  

 We will first introduce a new representation of molecules, the so-called 

TreeSMILES notation, and the evolutionary operators we used. Subsequently we will 
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discuss how the user’s choices affect the fitness of the molecules. We will then shortly 

describe the graphical user interface of the Molecule Evoluator, together with the 

results of some of our experiments in interactive drug design.  

 

 

Methods 
 

Molecule representation 

A molecule can be considered to be a connected graph consisting of one or more atoms 

(nodes) connected by bonds (undirected edges). One of the main constraining rules of 

chemistry is the valence of each type of atom. Moreover, atoms such as sulfur can have 

several valence states, of which bivalent sulfur and hexavalent sulfur are the most 

common. In our genotype, the starting point in each evolutionary algorithm, we handle 

this by creating a separate symbol for each valence state, so that divalent sulfur atoms 

are encoded by “S” and hexavalent sulfur atoms by “Sh”. Thus, whether a graph 

represents a valid molecule does not merely depend on the structure of the graph, but 

also on the identity of each particular node. 

 Molecules are graphs that can be of different sizes; they may also contain branches 

and cycles. Since they too are subject to the laws of chemistry they additionally have to 

obey certain rules that usually prohibit changing one node/edge without changing its 

neighbors. To develop a computer representation of a molecule that can store these 

properties and that is convenient to mutate and cross over, we looked at some common 

molecular data formats.  

 There are various ways to represent molecules on the computer. Nowadays, the 

two most common representations are the MOL-file format10, which is a list of atoms 

and bonds in the molecule, and the SMILES-notation11, a line notation/string that is 

human-readable and that can easily be transformed into a 2D-structure. In the SMILES 

notation the nonlinear parts of a molecule are encoded with brackets to indicate 

branches and numbers to label rings, as is illustrated in Figure 4.1A. By default the 

hydrogen atoms are not incorporated into the SMILES notation, since their presence 

can be deduced from the rules of chemical valence. 

 Neither of these representations is ideal, however, when molecules are mutated 

and crossed over. Since chemical valence rules explicitly state how many bonds any  
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Figure 4.1:  

A) Example of a SMILES representation of a molecule. One bond of each 

ring is chosen at random (in this case, the bond from the top left to the 

bottom left atom) and is designated by a unique number. Both atoms 

participating in a ring bond get the bond number(s) immediately after them 

in the line notation. Branches are indicated by brackets. 

B) SMILES versus TreeSMILES. By making the hydrogen atoms explicit 

going from SMILES to TreeSMILES the notation becomes less compact and 

less human-readable. However, the positions available for substitution are 

now readily interpreted by the computer. 

 

 

atom has, both the most common 2D-MOL-file format and the SMILES notation take 

the hydrogen atoms and the bonds to which they are attached for granted. We should 

therefore calculate for each atom whether it has the right number of hydrogen atoms to 

be mutated in some way. To avoid these recalculations, we decided to explicitly add 

the hydrogen atoms to the representation. Also, we decided to use a SMILES-like 

structure as our main molecule representation, particularly for reasons of computational 

efficiency. Making the hydrogen atoms explicit we obtain a bracket-rich, expanded 

SMILES representation (Figure 1B) to which we can apply mutation by relatively 

simple algorithms. We coin this chemical notation “TreeSMILES”.  

 

Crossover and mutation 

Crossover is implemented like crossover in standard genetic programming12: subtrees 

of two different molecules are selected and swapped. The only complication in the 
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present study is that the trees represent graphs and can contain cycles, while subgraphs 

are not allowed to contain incomplete cycles. So when a subtree at a random “root” 

atom is selected, the subtree is first checked for unmatched ring bonds, and if these are 

present the current root is discarded and another subtree is selected for crossover. 

 Mutation, however, is the most important variance operator in the Molecule 

Evoluator. Theoretically, changing a graph into any other graph can be performed by a 

limited set of operations: adding nodes, adding edges, deleting nodes, deleting edges. 

While this would be sufficient from a graph-theoretical point of view, these operations 

are more complicated in a chemical system since the valence rules must be obeyed, and 

the graph must remain connected: deleting the indicated carbon atom in Figure 4.2 

would also require deleting its three attached hydrogen atoms and attachment of a 

hydrogen that replaces the carbon. In the Molecule Evoluator, deleting an atom 

involves removal of the hydrogen atoms attached to it and renaming the atom itself into 

a hydrogen atom. 

 

 
 

Figure 4.2. Why simple mutations are often wrong mutations. When 

removing the rightmost carbon from the middle molecule, only removing the 

carbon (left picture) results in a wrong molecule: due to the loose hydrogen 

atoms the structure is unconnected (and therefore not a valid molecule), 

also the carbon atom to which it was connected has three bonds instead of 

four, violating chemical valence rules and also making the left molecule 

invalid. The molecule on the right shows the valid version of this mutation: 

the to-be-deleted atom is changed into a hydrogen and its own hydrogen 

atoms are removed. 
 
 
The implemented mutations, graphically shown in Table 4.1, are as follows:  
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1) Add atom/group: this replaces a hydrogen atom in the molecule with a non-

hydrogen atom or a larger chemical group such as a phenyl group. In the case of 

atom addition, the remaining bonds of the added atom are filled with hydrogen 

atoms.  

2) Insert atom: also adds an atom, but does this by inserting the new atom (which 

should have a valence of two or higher) into a bond. The remaining bonds of the  

new atom are completed by adding hydrogen atoms to it. 

3) Delete atom: this removes an atom that is attached to only one non-hydrogen atom 

(with a single bond) by first deleting the hydrogen atoms attached to it, and 

renaming the atom to a hydrogen atom. 

4) Uninsert atom: This removes an atom that has exactly two non-hydrogen 

neighbors. It removes the atom and its hydrogen atoms and subsequently creates a 

bond between its two neighboring non-hydrogen atoms. 

5) Increase bond order: if two atoms that are bonded to each other both have at least 

one hydrogen atom, those hydrogen atoms are removed and an extra bond is 

created between the atoms (the bond order is increased from single to double or 

from double to triple). 

6) Create ring: similar to increase bond order, but works between two atoms that are 

not bonded to each other. These atoms are connected using a single bond (the two 

hydrogen atoms are changed into ring indices). 

7) Decrease bond order: if there is a double or triple bond between two atoms, its 

bond order is decreased by one and a hydrogen atom is attached to each of the two 

atoms. 

8) Break ring: this mutation chooses a single bond in a ring, breaks that bond and 

adds hydrogen atoms to correct the valences. The algorithm should be able to 

break any bond in the ring, which is not easy to do with a tree structure13. To solve 

this problem, we converted the TreeSMILES into an adjacency list. In the 

adjacency list, any ring bond can be broken easily and afterwards a new 

TreeSMILES representation is built. This is the only mutation where we found it 

necessary to temporarily convert the TreeSMILES representation of the molecule 

into an adjacency list format for easier modification. Since other operators such as 

crossover are more easily implemented for a TreeSMILES string, we decided not 

to use the adjacency list for the other mutations. Changing representations is 

probably a convenient way to accommodate different mutations. To our knowledge, 

this technique has not been used before in evolutionary algorithms in de novo 

design, and is probably also rare in evolutionary algorithms in general. However, 
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we think that it might also have applications outside the Molecule Evoluator. 

9) Mutate atom: a non-hydrogen atom is changed into another non-hydrogen atom 

which has a valence of at least the number of bonds of the original atom with other 

non-hydrogen atoms. 

 
Table 4.1: Schematic overview of the different mutations in the Molecule Evoluator. Most 

leave the TreeSMILES string fairly intact and can be performed by string editing. The only 

exception is the "break ring" mutation, which can substantially rearrange the TreeSMILES. 
 

Mutation 

name 

Initial 

structure 

Final 

structure 

Initial 

TreeSMILES 

Final TreeSMILES 

Add atom 

 

NH

 

 
...(C(H)(H)(C… 

 
...(C(H)(N(H)(H))(C… 

Insert 
atom 

 
 

NH

 

 
...(C(H)(H)(C...)... 

 
...(C(H)(H)(N(H)(C...))... 

Delete 
atom 

NH

 

 

 
..(C(H)(N(H)(H))(
C... 

 
...(C(H)(H)(C... 

Uninsert 
atom 

NH

  

 
...(C(H)(H)(N(H)(
C...))... 

 
...(C(H)(H)(C...)... 

Increase 
bond 
order   

 
...(C(H)(H)(C(H)(
H)(... 

 
...(C(H)(=C(H)(… 

Create 
ring 

  

 
(C(H)(H)(H)(C(H)
(H)(C(H)(H)(H))) 

 
(C(1)(H)(H)(C(H)(H)( 
C(1)(H)(H))) 

Decrease 
bond 
order   

 
...(C(H)(=C(H)(… 

 
...(C(H)(H)(C(H)(H)(... 

Break ring 

 
 

 
(C(1)(H)(H)(C(H)(
H)(C(1)(H)(H))) 

 
(C(C(H)(H)(H))(H)(H)(C
(H)(H)(H))) 

Mutate 
atom 

 

S

 

 
...(C(H)(H)(C(H)(

H)(C... 

 
…(C(H)(H)(S(C... 
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f ixed

f ixed

f ixed

f ixed

We also allow the user to select atoms and bonds that will remain unaltered by 

crossover and mutation (‘fix’ option). Therefore we have further modified the data 

structure of the TreeSMILES by using an array of character pairs instead of a normal 

string/array of characters, in which the first character of the pair is the normal 

TreeSMILES character and the second character is a flag, which indicates whether the 

atom or bond designated by the first character can be modified (Figure 4.3). 

 

 
Figure 4.3. The TreeSMILES notation of n-propane (C3H8) that incorporates 

fixable characters ("charf"s ). In this example, one atom and one bond are 

fixed. 

 

 

 

 

 

 

( C ( H ) ( H ) ( H ) ( C ( H ) ( H ) ( C ( H ) 

ø F ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø ø F ø ø ø ø 

 

( H ) ( H ) ) ) ) 

ø ø ø ø ø ø ø ø ø 

 

 

Fitness 

The final component of the evolutionary algorithm is the fitness function. So far, 

investigations on de novo design with evolutionary algorithms have used several types 

of a fitness function, including:  
• similarity to a target molecule4,5 

• QSAR-functions13 

• ligand-protein docking8,9 

• experiment14 

 

For drug design, each of these methods has its advantages and disadvantages. 

Similarity approaches often result in molecules very similar to the target molecule, in 
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many cases even the target molecule itself, which is not useful for designing truly 

novel molecules. QSAR functions should be able to optimize activity, yet have 

important disadvantages. First they require quite a lot of reprogramming for each new 

class of molecules that is investigated. Secondly, they are generally difficult to use for  

finding very active compounds since they grow less and less reliable as the molecular 

structures deviate more from the average structure (and thereby activity) of the training 

dataset15. Unfortunately, this is exactly what would happen during optimization. The 

last theoretical method (“docking”) is still too inaccurate for optimization, and may 

yield molecules with an activity that is orders of magnitude lower than the calculated 

value9. Experiments as fitness function, finally, are generally slow and expensive, and 

so far have only been performed for a class of molecules that was particularly easy to 

synthesize14. Thus experimental fitness has yet to prove to be practical in a more 

realistic drug design scenario. 

 As an entirely different approach, we decided to use the user as a fitness function. 

This concept has been recently employed in other application areas and is often called 

interactive evolutionary computing16-18. While a user cannot know the binding strength 

of a given molecule, this defect may not be much worse than the inaccuracy of scoring 

functions. A definite advantage in letting the user choose would be that intensive 

feedback from a medicinal chemist would make the compounds easier to synthesize, 

and steer the evolution away from areas which have already been explored. 

Furthermore, the algorithm could still be easily coupled to experimental results or 

advanced computed fitness functions if so desired. In Algorithm 4.1 the general 

workflow within the Molecule Evoluator is detailed, from the creation of the initial 

population to the interactive evolution of new molecules. 

 

 

Algorithm 4.1: General workflow of the Molecule Evoluator 

 

Create initial generation of 1..generation_size molecules  

// ( generation_size set by user, by default 12) 

For each molecule, get molecule structures from one of 

these sources: 

a. MOL or SD-files 

b. Sketches by user in editor of Molecule Evoluator 

c. Random generation of molecules (see algorithm 4.2) 
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Evolve: 

Repeat while the user wants to continue: 

-The user may set or change ratios between 

modification, combination and de novo molecule 

generation. 

-The user selects m most interesting molecules of 

the current generation. 

Copy the m selected molecules to the next 

generation. 

-For each of the ( generation_size – m ) molecule 

slots left in the next generation, do the 

following: 

-generate a new molecule with one of the 

three methods in ratios set by the user: 

-modification: create a new molecule by 

mutating the old molecule  

-combination: create a new molecule by 

crossing over two selected molecules (can 

be the same molecule – this is allowed in 

tree-crossover)  

-de novo generation: create a new molecule 

by de novo generation, see algorithm 2. 

-add the new molecule to the next 

generation. 

-The user may change molecules by fixing (as 

explained in the text) or editing, or replace 

molecules by loading or drawing new molecules. 

-Make the next generation the current generation. 

 

 

As a further example, Algorithm 4.2 performs the random generation of molecules as 

mentioned in Algorithm 4.1. 
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Algorithm 4.2: Random generation of a molecule 

 

 set the current molecule to a methane molecule 

 

pick a random number x from 1 to MaxNumberOfAtoms 

repeat x times: 

replace a hydrogen atom of the current molecule 

by a random atom or fragment from the 

atom/fragment database 

 

pick a random number y from 0 to MaxNumberOfRings 

repeat y times or until no more rings can be made: 

  make a ring in the current molecule 

 

pick a random number z from 0 to 

MaxNumberOfDoubleBonds 

repeat z times or until no more bonds can be oxidized: 

oxidize a random bond in the current molecule, 

so increment the bond order 

 

 

Since a user cannot evaluate as many structures as a computer program and preliminary 

experiments have shown that users only want to see “good” structures, we added  

several descriptor calculations to the Molecule Evoluator. The selected descriptors are 

(physico-)chemical parameters of a compound, such as the number of hydrogen bond 

donors/acceptors, molecular weight, logP (lipophilicity), Polar Surface Area, the 

number of rotatable bonds, and the number of aromatic systems and substituents. 

Physico-chemical parameters of a compound, either calculated or experimentally 

determined, can also constitute a useful fitness function, for instance in a certain 

weighed combination. It is increasingly realized that they determine e.g., aspects of 

absorption and blood-brain barrier passage19, although they usually are of lesser 

importance for the interaction with the target protein. Upper and lower bounds for all 

these descriptors can be set by the user as a filter to create more ‘realistic’ molecules. 

Additionally, we implemented some ‘chemical’ filters. The aim was to eliminate 

molecules with undesirable (sub)structures such as strained paracyclophanes. Similarly, 

molecules not allowed because of Bredt’s rule20 are also automatically discarded. Both 
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the physical and the chemical filters can be switched on and off. 

 

 

Results 
 

The graphical user interface of the Molecule Evoluator 

When the program is started, a ‘seed’ molecule (indole in this case) can be either 

loaded or drawn and used for a first generation of derivatives (Figure 4.4). 

Alternatively, the Molecule Evoluator itself can initialize the population with random 

molecules. The latter is done by taking the computer’s clock time and using it as a seed 

in the rand function in the C programming language. 

 As an example one of the suggested molecules (3-methylindole) was selected for 

yet another round of evolution. Again by pressing the "Go" button a window appears 

that contains the selected molecule (this so-called elitism is on by default) together 

with the newly generated analogs (Figure 4.5). The user can again select the most 

attractive molecules, press “Go”, and this process is repeated until the user has 

gathered enough ideas. 

 Comments from medicinal chemists on previous test versions of the program have 

led us to include three extra features that allow the user more control over the evolution, 

i) editing the molecules directly, ii) fixing parts of the molecule, and iii) using filters to 

prevent that certain unrealistic molecules are shown to the user. We next discuss these 

features in more detail. 

  Editing molecules is useful when the user wants to start the evolution with a 

molecule that has not been stored yet in the computer and must be drawn. Additionally, 

if during the evolution a given molecule suggests a more interesting structure, editing 

the molecule into the desired structure can be done ‘on-the-fly’. This will allow the 

user to evolve molecules immediately from the desired structure, rather than wait until  

it will be generated by the program. Editing the molecules is performed in the 

"Molecule Edit" window (not shown), which pops up when the user clicks on a 

molecule in the main window. Editing is quite similar to that in normal chemical 

drawing programs. After the popup window has been closed, the drawn structure is 

converted into TreeSMILES-format.  
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Figure 4.4: A molecule, in this case indole (#1), is drawn or loaded as a 

‘seed’ for a population of 12 derivatives generated by pushing the “Go” 

button (green arrow in left-hand toolbar). In this simple example with atom 

additions only the methylated analog #6 was selected for further evolution 

(see Figure 5). 
  

 

 

Fixing part(s) of the molecule can be useful in cases where structure-activity 

relationships demand that a particular, necessary part of the molecule is present in all 

its descendants. The Molecule Evoluator allows this conservation with the “fix atoms 

or bonds” option in the “Molecule Edit” window, which enables the user to generate 

new molecules with the conserved part remaining intact, and only variation on the “free” 

atoms.  
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Figure 4.5: Pressing “Go” (green arrow in the left-hand toolbar) generates 

mutants of methylindole (see Figure 4) according to preset filters (PSA, logP 

and MW in right-hand panel). PSA and logP values are displayed in the 

individual boxes, according to buttons pushed in the upper toolbar.  

 

 

The filters are the third extra feature. In the “Physical Filters” panel (see also Figure 

4.5) the ranges are set within which the physicochemical properties of a molecule must 

lie for the molecule to be incorporated into the population (for example: molecular 

weight between 100 and 300). Molecules outside these boundaries imposed by the user 

will be automatically eliminated by the Molecule Evoluator and will therefore not be 

shown to the user. Additionally, some chemical structures which are usually 

undesirable, such as hemiketals, can be forbidden in the “Chemical Filters” panel. The 

Molecule Evoluator creates offspring molecules using mutation and crossover until 

feasible molecules – fulfilling all filter conditions – have been found. 

 

In addition to these three main control features, there is a “Parameters” panel (not 

shown), in which the user can influence the evolutionary process itself. The user is 

allowed to steer evolution by, amongst other things, enabling/disabling certain kinds of 
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mutations. For example, the “decrease bond order” mutation tends to partially reduce 

phenyl rings, which is chemically undesirable. As an alternative to fixing the phenyl 

bonds explicitly, disabling this mutation will protect the bonds from being reduced. 

This will however also prevent useful mutations, such as those which reduce a ketone 

(C=O) to an alcohol (CHOH). Another option would be a special version of the 

"decrease bond order" mutation that does not reduce aromatic rings; this is something 

we are currently considering. Other mutation types (eight in total) can also be toggled 

‘on’ or ‘off’. By default, each of these eight categories of mutations is applied with the 

same frequency (0.125). When mutation types are disabled, the remaining active 

mutation types are still applied with identical frequency, so if for example only three 

mutations are allowed, the probability of each of them is 0.33. Another option is to 

change the ratio of mutation/crossover. Since we learned that most medicinal chemists 

prefer mutation over crossover, the default settings are 90% mutation and 10% 

crossover (and so are applied with probabilities of 0.9 and 0.1, respectively). A third 

option is to allow the Molecule Evoluator to occasionally add random molecules to the 

population. The relative amount of random molecules is approximately 16% (so 1-2 

new random molecules in a new population). This option is off by default. Lastly, the 

user can toggle elitism on and off. Elitism conserves the selected molecules and makes 

them also the first molecules on the screen in the next generation. 

 

Experiments 

We conducted a computational experiment first for a simple proof-of-concept. For this 

we used a dataset of biological activities of neuramidase inhibitors21. Using the 

measured activities as input for the evolutionary algorithm we located the experimental 

minimum (IC50 = 1 nM, a 6300-fold improvement over the original structure) within 

four generations. 

 To test whether we could use the Molecule Evoluator to discover interesting new 

molecules with possible biological activity, we performed an experiment using its 

option for random molecule generation. 

 First we generated a library of 10,000 small molecules (150D < MW <250D) with  

drug-like features: either one or two aromatic rings, 5 or fewer rotatable bonds, 2 or 

fewer hydrogen donors, 4 or fewer hydrogen acceptors, and a polar surface area of at 

most 70Å2. Out of this library, three sublibraries of 100 compounds were chosen 

randomly. Each of these sublibraries was presented to a different chemist, who could 

choose and modify the molecules created by the program. Out of the 300 compounds, 

35 were chosen for further investigation. 
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Checking the latter molecules in the SciFinder2 and Beilstein databases22 (in April 

2003) we found that six structures represented chemical classes yet unknown in 

literature. Based on these six core structures ten molecules were designed, of which 

eight compounds were synthesized successfully. One typical compound with a 

calculated log P value of 1.65, a calculated polar surface area of 32 Å2 and a molecular 

weight of 191D, is shown in Figure 6. It proved active on both α1- and α2-adrenergic 

receptors, i.e. at 10 µM it displaced more than 50% of the radioligand used in binding 

assays on the two receptor subtypes. The full results of this experimental proof-of-

concept are described in chapter 7. 

 

 

                       
OH N

H  
 

Figure 6. One of the compounds synthesized on the basis of a random 

generation of virtual molecules by the Molecule Evoluator. 

 

 

 

Discussion 
 

In this paper we have presented an evolutionary algorithm to help design new 

molecules. As reviewed very recently, evolutionary algorithms form one of the 

approaches to computer-based de novo design of drug-like molecules23. A large variety 

of methods is being used to this end, even when confined to evolutionary concepts only. 

The two most important components of all evolutionary algorithms used in 

chemistry/drug design are the molecule representation and the fitness function. 

 

The molecule representation 

One of the main choices when creating a de novo design algorithm is whether to make 

the algorithm atom- or fragment-based. Atom-based algorithms work by mutating 

atoms, and can therefore fine-tune each structure optimally4,5,13,24. On the other hand, 
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several investigators construct molecules using larger fragments7,9,24. This has the 

advantage that the representation can be simpler, since there is generally no need for 

the genome to contain cycles (for these are incorporated into the fragments). Also 

fragment-based methods have the potential benefit of easier synthesis. While the 

current version of the Molecule Evoluator uses both atoms and fragments to construct 

molecules, its mutations are atom-based. We believe that atom-based evolution is 

superior to fragment-based evolution for adapting the molecular structure. The main 

disadvantage of using fragments instead of atoms is that most mutations in fragment-

based evolution are “macromutations” that change the molecule into something 

completely different, with a vastly different fitness value. In most cases, it is not clear 

whether fragment-based evolution is an improvement over random search, unless the 

fitness function is fragment-based. However, this is certainly not the case in drug 

design where biological activity is subtly dependent on the molecular structure. We 

have observed that making an atom-based algorithm interactive, as in the Molecule 

Evoluator, partially compensates for the disadvantage that molecules generated on the 

basis of atoms are generally more difficult to synthesize. This is because the medicinal 

chemist has the option to immediately discard or modify structures at will. 

 

Using the user as a fitness function 

The most important problem of the de novo design programs which have been 

described in literature is the difficulty of creating a fitness function that is relevant to 

drug design. In this work, we propose to use an evolutionary algorithm not as a black 

box that will give the user the right answer when given the right question, but as a 

means of supporting the creativity and imagination of the user by interactive evolution, 

thereby automatically incorporating the user's explicit as well as implicit 

(subconscious) knowledge of the problem domain. 

 Using user feedback as fitness function has several advantages and disadvantages, 

and some consequences that require special adaptations and modifications of the 

software. 

 One disadvantage of user interaction is that the population must be small. It is 

unlikely that any chemist would want to see 50 to 100 molecules before pressing “Go” 

again. However, small population sizes (12 as a default in the current version of the 

program) may lead to premature convergence, i.e. tempt the user to stop (too) early. 

Another hurdle relates to programming the software: the more the user can interact 

with the program, the more is required from the user interface. In this project, more 

time was spent on constructing the user interface than on creating and fine-tuning the 
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evolutionary algorithm. Modifications of the evolutionary algorithm should in many 

cases be reflected by changes in the user interface, and this makes programming and 

testing new ideas more time-consuming than in a non-interactive system. Software 

validation is also more difficult – one cannot well run hundreds of tests automatically 

to objectively verify whether the algorithm outperforms other algorithms. A user is not 

an objective function that can be easily shared with others. Finally, the user may see 

the computer program as a competitor, not as a tool, and might not like to work with it 

since “someone else” has thought of the molecule. While the computer has so little 

knowledge that one should say that the user has invented the molecule (and recognized 

it as something interesting), the user may perceive his or her position differently. 

 There are however also many advantages to user interaction. One attractive 

advantage is that the feedback from the user can produce molecules which can be 

synthesized more easily in the laboratory than is possible with computer-generated, 

random molecules. The difficulty of synthesis would also be automatically adapted to 

the user’s level of knowledge and experience. 

 A second advantage is that the program can use all kinds of rules and problem 

domain knowledge that the user has. The alternatives, expert systems and flexible input, 

have distinct disadvantages in this case. Creating an expert-system is time-consuming 

and must be done anew for each optimization project. Flexible input would require the 

domain expert, namely the chemist, to learn a complicated language or user interface 

which would definitely diminish accessibility of the software and thereby its use 

greatly. The program can even benefit from the user’s subconscious rules, which 

cannot be programmed since they are unknown and may be very difficult to derive. 

Furthermore, as the user's problem knowledge grows, this knowledge is automatically 

updated and applied to the process without time-consuming intervention by 

programmers. In experimental sciences, seldom all required knowledge is known 

beforehand, and allowing experiments with the computer can also lead to finding new 

rules and discarding obsolete ones. 

 A third advantage is that the software can stimulate computer use by medicinal 

chemists. Far too often, compounds suggested by the "computational department" are  

rejected by medicinal chemists for reasons of synthesis, and collaboration between the 

departments is hampered by busy schedules and the necessity to have meetings for 

feedback. This makes collaboration slow and difficult, and probably results in chemists 

mainly designing their own compounds without the help the computer could give. We 

believe that creating a program for the problem domain experts instead of for computer 

experts can lead to better use of the help that the computer could give in the drug 
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design process, and perhaps even to increased understanding and a more fruitful 

collaboration between medicinal chemists and computer scientists. 

 Finally, a program such as the Molecule Evoluator may make a chemist more 

conscious of his/her own design process, i.e. which rules he or she follows. 

Consciousness of the rules and methods can lead people to experiment with them and 

occasionally break them for enhanced creativity. 

 

Adding extra user control to the evolution 

We found that when we added interactivity to the evolutionary algorithm, it was not 

enough to restrict the user’s influence to selection only. The users were generally quite 

"impatient" and wanted more control to accelerate or even directly manipulate the 

evolution, so we added features to enable this. First, we incorporated edit functions to 

directly modify the molecular structure. Second, we added an option for selecting a 

part of the molecule to remain constant. Third, we allowed the settings (which 

mutations are allowed, what range a property may have) to change interactively. We 

think that these options will make the Molecule Evoluator more attractive for drug 

design since they give the user more control over the evolution. We must however 

beware of the complication that having a feature is not enough if the user does not 

know that the feature is there or how to use it. Good user interface design is necessary 

for users to learn to use the multiple filters without having to read the manual. The 

second danger is perhaps more serious: by discarding “bad molecules” one may at the 

same time eliminate paths to escape from local optima. Secondly, if all molecules 

shown are good according to a specific user’s criteria, it may be exactly what the user 

had designed him/herself anyway, thus eliminating the added value of the program. 

However, lack of control may frustrate and bad structures may irritate the user, so we 

aimed for a middle road between control and creativity. 

 

 

Conclusions and future perspectives 
 

In this report we have described the “Molecule Evoluator”. It is a software program 

based on evolutionary algorithms and has been created to aid chemists in designing 

new drug-like molecules. With this program all relevant chemical mutations are 

possible. The most distinguishing feature of the Molecule Evoluator relative to other de 

novo design programs is that it has the user as fitness function. In this way it can 

combine the domain knowledge of the chemist with the memory and processing speed 
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of the computer. We therefore added a graphical user interface for the evolution and 

extended the program with options for directly editing the molecule, marking part of a 

molecule as conserved, and calculating relevant physicochemical parameters.  

 Considering the algorithms used and the feedback from users so far, there are 

several directions open for future investigation. First, many molecules generated by the 

program seem difficult to synthesize. Perhaps encoding explicit chemical knowledge in 

the program or using chemical databases could help improve this. A second direction 

would be to create a command-line version which links to other software such as 

docking programs, since the “high-resolution” optimization resulting from our atom-

based model might be very useful for optimizing lead compounds. Third, more 

selection criteria could be added such as additional physicochemical properties or an 

input method for QSAR-formulas. 
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Abstract 
 

We have developed an evolutionary algorithm-based program for drug design, the 

Molecule Evoluator. This program transforms known molecules into new molecules 

which may have improved properties relative to the parent molecule. Transforming the 

parent molecule into a derivative by mutation is necessary to find molecules with 

increased fitness. However, mutations that just randomly add and substitute atoms 

often result in molecules that contain undesirable chemical substructures, and can 

therefore not be used as drugs. We therefore want to add knowledge to the program 

about which mutations result in proper chemical structures and which ones do not. In 

this research we have mined a large chemical database, the World Drug Index, to 

obtain the frequencies of small substructures in drug-like molecules. Some of our 

mutation operators were subsequently modified to use these frequencies. Testing the 

new mutation frequencies on another large database of molecules, the NCI database, 
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we found that the knowledge-based mutations more often produced existing molecules 

than the original mutations. This suggests that the modified mutations produce 

molecules that are easier to synthesize and more drug-like compared to the molecules 

generated using the original uninformed mutation operators.  

 

 

Introduction 
 

Pharmaceuticals have a major impact on both public health and the economy. The 

worldwide sales of pharmaceuticals were 491.8 billion dollars in 2003, and were 

expected to grow by several billion dollars in 2004 (Class 2004). Pharmaceuticals have 

also greatly improved human health. Many diseases that used to be dangerous or even 

deadly, such as pneumonia and tetanus, have become much less dangerous, and people 

with chronic ailments, such as diabetics and heart patients, live longer and healthier 

lives thanks to the currently available medication. 

 There are however still a number of diseases which are difficult to treat or where 

current therapy has severe side effects. Dementias such as Alzheimer’s disease are yet 

untreatable, advanced cancer can only be cured in rare cases, and viral diseases remain 

difficult to fight.  

 Given this demand for more and better treatments, pharmaceutical companies are 

continually working to expand their arsenal of drugs. This is however not easy. A 

medication such as a tablet works since it contains a specific chemical compound, the 

molecules of which bind to large biological molecules (such as proteins) that are 

involved in the disease. Drug molecules make these biomolecules more or less active 

by binding to them. A good drug molecule should influence the biological process of 

the disease in a beneficial way, but it should also be able to enter the part of the body 

that needs to be treated, and should not cause side effects which would make the 

treatment more damaging than the disease itself. It turns out to be very difficult to 

create such a compound; it is estimated that only one out of 5000 screened candidate 

compounds reaches the market as a drug (Rees 2003). 

 The difficulty of finding new drug molecules has pushed the pharmaceutical 

industry to try to improve its output using both experimental and computational 

methods. Of these computational methods, the Evolutionary Algorithms (EAs) are 

widely applied. Not only are they used to gain insight in the structures and functions of 

genes and proteins (Fogel 2004), which is important for discovering which proteins to 

target with a drug, they have also been applied to designing the drug molecules 
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themselves, such as designing compound libraries, docking small molecules into 

proteins, and finding structure-activity relationships. Good overviews are given in the 

book edited by Clark (Clark 2000) and in chapter 2 of this thesis. However, one of the 

most interesting applications is the design of new drug molecules themselves, the so-

called de novo design. 

 Several EAs for de novo design have been described in literature (Brown 2004, 

Douguet 2000, Glen 1995, Globus 1999, Kamphausen 2002, Nachbar 1998, Pegg 2001, 

Schneider 2000, Vinkers 2003, and others). The main differences between the various 

methods are the molecule representations and the fitness functions.  

 The molecule representation methods in EAs for de novo design can be divided 

into atom-based and fragment-based methods. Atom-based methods build and modify 

molecules by adding and modifying individual atoms. While atom-based methods can 

create many more molecules than fragment-based methods, they often create molecules 

which are difficult to synthesize (Douguet 2000). Fragment-based methods on the other 

hand create molecules by connecting existing substructures. Fragment-based methods 

therefore tend to create molecules that are easier to synthesize (though this is not 

guaranteed (Vinkers 2003)), yet these methods seem less suitable for optimizing 

molecular structures. Since the mutations replace/add or delete entire fragments (5-20 

atoms), each mutation is a macromutation which results in a very different molecule, 

the fitness of which may be very dissimilar to that of the parent. Also, since fragment-

based methods use bigger building blocks which cover only a small fraction of all 

building blocks theoretically possible, they cannot cover the search space of drug-like 

molecules as fully as atom-based methods. 

 In the EA-based program we are developing, the Molecule Evoluator (chapter 4 of 

this thesis), we want to be able to fine-tune molecular structures and to generate all 

possible drug-like molecules. Therefore we have chosen for the atom-based 

representation. 

 The second important aspect of the EAs for de novo design is the fitness function. 

The fitness functions that are most often used are “docking” (a procedure that fits the 

molecule into a three dimensional model of the target protein and returns the 

approximate binding energy), similarity to an existing drug molecule, and experiments. 

However, these have not yet proven to be very useful since they are either too slow and 

expensive to apply (experiments), or too inaccurate for optimization (docking, 

molecular similarity). The best result published so far seems to be a derivative evolved 

by Schneider (2000), which had a thousand-fold lower activity than the lead compound. 
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We therefore decided to try an alternative approach which could still use the 

optimization power of an EA but would tap a different source of knowledge, the 

medicinal chemist him/herself. Since the chemist performs the role of fitness function, 

the Molecule Evoluator can use the chemist’s knowledge about how the molecular 

structure influences the biological activity and how difficult the synthesis of the 

molecule would be. In a typical session, the user would take a known molecule to seed 

the population and let the program generate derivatives by applying various mutations, 

such as adding or deleting atoms, breaking or making rings, etc. The chemist will then, 

based on his/her estimates of structure-activity relationships and ease of synthesis, 

select the most interesting mutants, which will then be used by the program to generate 

a new population of derivatives. 

 The general mechanism of the Molecule Evoluator and a screenshot of the 

program in action are shown in figures 5.1 and 5.2, respectively. 

 

Now we arrive at the main topic of our paper: improved mutation. 

 One of the consequences of the atom-based mutations in the Molecule Evoluator 

is that changing an atom into another atom can result in a molecule that is unstable or 

difficult to synthesize, decomposing before it can exert any effect on the human body. 

For example, changing a hydrogen atom into a fluorine atom is fine when the hydrogen 

is attached to a carbon atom, but will result in a highly reactive and therefore un-drug-

like compound when the hydrogen is attached to an oxygen atom. Whether a mutation 

leads to a chemically acceptable molecule therefore depends for a large part on the 

atoms surrounding the mutation. We therefore want to modify the different mutation 

functions in such a way that they will result in more reasonable mutants. For this we 

however need knowledge about which mutations are reasonable.  

 Our plan is to derive this knowledge from large chemical databases and adapt our 

mutation operators accordingly.  

 The outline of the rest of the paper is as follows: first we discuss our data mining 

approach, then we introduce some of our mutation operators and discuss how we 

adapted them using the data mining results. Subsequently we will present the results of 

our experiments with the adapted mutation operators, comparing them with the original 

operators and finally we will give our conclusions and indicate some of the remaining 

questions and possibilities to use data mining for an EA such as the Molecule 

Evoluator. 
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Figure 5.1: Overview of the evolutionary algorithm of the Molecule Evoluator. 

 
 
 

            
 

Figure 5.2: The Molecule Evoluator generating variants of acetylsalicylic acid 

(AspirinTM), the top left molecule. 
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Data Mining Approach 
 

The process of discovering knowledge in databases is often called data mining. There 

are many data mining methods (Witten 2000), able to handle widely different kinds of 

data. However, the chemical applications of data mining are currently still quite limited. 

This is probably because the most important data mining one can do in this field is 

finding the relation between molecular structure and particular properties. This is 

however very difficult. One of the reasons for this is that many of the existing data sets 

are relatively small (dozens to hundreds of items). Also, the question remains how to 

represent a chemical structure (a graph) so that it can be related to its properties. This is 

still an open question and may depend on the specific application. 

 One of the problems of the Molecule Evoluator was that many of the molecules 

created by it were estimated by medicinal chemists to be difficult to synthesize. While 

of course the chemist can filter out these molecules manually, in general there were so 

many “bad” molecules per generation that evolution slowed down (many mutants were 

not attractive, had very low fitness), even to the point that the user, who provides the 

necessary fitness function, got annoyed. 

 The most obvious fix, as proposed by the chemists, would be a library of 

“forbidden substructures”. However, this fix has some disadvantages. First, chemical 

rules are seldom absolute. Many substructures which are not particularly stable can and 

do occur in drug molecules, only relatively rarely. Eliminating them entirely would 

make the Molecule Evoluator incapable of finding some real drugs, which would 

strongly limit its usefulness. Second, forbidding substructures does not solve the 

problem of frequent versus infrequent substructures. While C-N-C is a perfectly 

reasonable substructure, it is much rarer than C-C-C, and a program creating equal 

amounts of both would produce molecules which look rather unusual and still may be 

difficult to synthesize. Third, all chemists are necessarily subjective and may have 

studied only about a few thousand structures in their lives, a small fraction of all 

molecules ever made. A computer can easily search the millions of molecules which 

have been created so far and can update its knowledge much more quickly.  

 This gave us the idea to use a large database of drug molecules (the World Drug 

Index) to find the frequencies of all occurring substructures and adapt the mutation 

operators so that the mutants will be more drug-like and easier to synthesize than when 

using “uninformed” mutations. 

 We used the 2002 edition of the World Drug Index (Daylight 2005), containing 

approximately 32000 drugs and other pharmacologically active compounds. An in-
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house program counted the frequencies of all atoms (X), atom pairs (X-Y), atom 

triplets (X-Y-Z) and sets of four atoms (both the linear X-Y-Z-A and the T-shaped X-

Y(-Z)-A). The types of substructures mined are shown in table 5.1. The substructures 

and their occurrences were collected in a file. The counting algorithm counted all 

groups starting at each atom in the molecule. So an N-C substructure yields 1 N-C and 

1 C-N count, while a C-C substructure yields 2 C-C counts. For our mutations we have 

corrected for this factor by dividing the counts of symmetric pairs and triplets of atoms 

by 2, the T-structure-occurrences were divided by 6 if the three atoms surrounding the 

core atom were identical, and divided by 2 if only two of them were the same. 

 For computational efficiency, the frequencies of the substructures are read into 

memory at the start of the program, so for each mutation there are typically only about 

10 numbers which have to be fetched and scaled to determine the type of mutation, 

which is a negligible amount (<0.1%) of the total runtime of the Evoluator. 

 

 
Table 5.1: The substructure patterns mined from the World Drug Index. The 

letters denote any possible atom type, the ‘-‘ characters all possible bond 

types, to wit single, double and triple bonds. 

  

Substructure 
pattern 

X X Y  X Y Z  

X
Y

A

Z  
Example 

 C C  C O C  

C
C

C

Cl

 
 

 
 
 
 
 
 
 
 
 
 

N
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Adaptation of the Mutation Operators  
 

To investigate the effects of adding knowledge to the mutation operators, we chose to 

modify three mutations that the Molecule Evoluator uses to create new molecules. 

These are the “add atom”, “insert atom” and “change atom” mutations, shown in table 

5.2. 

 

Table 5.2: The effects of the three mutation operators in this study. 
 

Mutation name Initial structure  Final structure 

Add atom  

  

Insert atom  
 

  

Change atom 

  
 
 

• The “add atom” mutation adds a non-hydrogen atom to the structure by replacing a 

hydrogen atom by another atom, and adding hydrogens as necessary to fill the 

remaining bonds of the new atom. 

• The “insert atom” mutation takes a single bond between two non-hydrogen atoms 

and inserts an atom between them.  

• The “change atom" mutation changes a non-hydrogen atom into another non-

hydrogen atom (so it can exchange a carbon atom for a nitrogen atom, for 

example).  

 

 

 

 

 

CH2

CH2 CH2

CH2 CH2

CH2 CH2

CH
NH2

CH2

CH2 CH2

CH2

CH2 CH2

CH2

C
H2

CH2

CH2

CH2 CH2

CH2 CH2

CH2 CH2

S
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The three mutations originally used estimated frequencies of the diverse atom types, 

chosen such that the resulting molecules seemed drug-like. These estimates are shown 

in table 5.3. 

 
Table 5.3: The initial probabilities to add a certain type of atom to a 

molecule using the “add” mutation. 

 

Atom type Add-

frequency 

C 0.725 

O 0.109 

N 0.109 

S 0.022 

P 0.000 

F 0.007 

Cl 0.014 

Br 0.007 

I 0.007 

 

However, since the mutations were still context-independent, rare and reactive 

subgroups such as O-O and N-F did occur much more frequently than would be 

expected from looking at the World Drug Index. For example, the reactive O-O bond 

occurs only 1.5 times per 10000 C-C bonds in the World Drug Index, but in the 

original Evoluator it was generated 62 times per 10000 C-C bonds, 40 times more 

frequently. 

 We therefore decided to try and improve the mutations by making them context-

dependent. We introduce new versions of three of our mutation operators, the add atom 

mutation, the insert atom mutation and the change atom mutation. 

 

Add atom mutation: The add atom mutation works by picking a hydrogen from the 

molecule and replacing it by a non-hydrogen atom. This non-hydrogen atom was 

originally picked from the standard frequency table (table 5.3). We however modified 

the algorithm to first look at the atom to which the hydrogen was attached (a hydrogen 

atom has only one bond and is therefore attached to only one atom). 

 If the hydrogen was attached to an atom of type X, the program looked up the 

counts of the various X-Y substructures and converted these into a probability table. 
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This table indicated the probability that the hydrogen atom would be replaced by an 

atom of type Y. So since there were 8246 C-Cl bonds, 2.5·10-3 part of the total number 

of C-X bonds, and 12 O-Cl bonds, 3.5·10-5 of the total of O-X bonds, the probability of 

substituting the hydrogen by Cl would be 2.5·10-3 in the case of a C-H group, and 

3.5·10-5 in the case of an O-H group. 

 Based on these frequencies, the Y-type was selected using a random-number 

generator. 

 In our experiments we found that using the raw WDI data improved upon our 

original frequencies. To our initial surprise, however, the substructure frequencies of 

the resulting molecules were significantly different from the WDI-frequencies. One of 

the causes seemed to be that carbon atoms, having four bonds, have on average 2-3 

hydrogens attached, other atoms less. This skewed the distribution markedly, resulting 

for example in 60% more nitrogen atoms per carbon than expected. We have improved 

on this situation by changing the input frequencies by an adaptive procedure until the 

output frequencies resembled those of the WDI fairly well. This algorithm is depicted 

as algorithm 5.1. Its results are illustrated in figure 5.3. 

 

Insert atom mutation: When the Molecule Evoluator must choose an atom type to 

insert between two atoms of type X and Y, the program searches for all X-A-Y-

patterns in the substructure database and makes a probability table of how likely it is to 

find an atom of type A bonded to type X and Y. For example, if the bond is between C 

and O, the probability of finding a carbon-in-between pattern (CCO) is 0.97, and 

nitrogen in between 0.012, in contrast to the “raw” probabilities of C versus N of 0.37 

versus 0.04 in the entire World Drug Index. 

 

Change atom mutation: The change atom mutation was the most complicated 

mutation to modify as the atom to be changed can have one, two or three non-hydrogen 

atoms surrounding it. Depending on the number of surrounding non-hydrogen atoms, 

the X-A, X-A-Y or X-A-(Z)-Y patterns are looked up and the frequency table is 

created. Table 5.4 is an example of one of these tables generated by the program. 
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Algorithm 5.1: Algorithm for iterative refinement of the input two-atom 
frequencies to produce molecules with similar two-atom substructure 
frequencies as the World Drug Index. 

 

 inputFrequencies = WDIfrequencies; 

 do 

   generate database of molecules using  

    inputFrequencies; 

   newFrequencies = count two-atom frequencies 

    in new database; 

   frequencyCorrectionFactors= 

    newFrequencies/WDIFrequencies 

 mediumCorrectionFactors  

  =(frequencyCorrectionFactors + 1 ) / 2 

   inputFrequencies = inputFrequencies *  

    mediumCorrectionFactors 

while newFrequencies differ significantly from  

 WDIFrequencies 

 

 
 

             
 

Figure 5.3: Iterative refinement results in the substructure counts getting 

closer and closer to those of the World Drug Index (all counts are scaled to 

make the count of CC-bonds 10000). Since the y-scale is logarithmic, some 

of the gains in accuracy seem smaller than they are: the number of C-N 

bonds went from 66% too much to 8% too much, and C-Cl from 23% too 

little to 2% too little. 
 

0

1

2

3

4

5

C-C
:

C-O
:

C-N
:

C-S
:

C-P
:

C-F
:

C-C
l:

C-B
r:

C-I:

Bond type

lo
g

(c
o

u
n

t)

Using Raw WDI
Frequencies

After 3 iterations

WDI Frequencies



142 

 

Table 5.4: Using substructure counts to calculate the probability that an 

atom flanked by a C and a N atom is changed into a specific other atom 

type. Substructures which are chemically impossible, such as “C-H-N” in 

which the hydrogen has two bonds instead of the allowed maximum of one, 

are indeed not found in the database (count is 0). 

 

Substructure Count Probability 

C-C-N 323618 0.964 

C-H-N 0 0.000 

C-O-N 1179 0.004 

C-N-N 9060 0.027 

C-S-N 1693 0.005 

C-P-N 11 0.000 

C-F-N 0 0.000 

C-Cl-N 0 0.000 

C-Br-N 0 0.000 

C-I-N 0 0.000 

 

 

Experiments  
 

After we had modified the three mutation operators to use the data of the World Drug 

Index, we wanted to find out whether making the mutation operators context-sensitive 

increased their likeliness to generate “normal” molecules. As a test, we took the 

database of the National Cancer Institute (National Cancer Institute 2005), 250251 

compounds. The NCI database contains molecules which were tested for biological 

activity, i.e. anti-tumor activity. It has only about 3% overlap with the World Drug 

Index (Voigt 2001), making it suitable for validation in this study. 

The question then remaining is how to validate whether modifying the mutation 

operators improves the drug-likeness and ease of synthesis of the mutants. 

The best proof of this would take an existing compound, apply a mutation to it, and 

find that the derived compound also exists in the database.  

However, as it has been estimated that there are over 1060 molecules possible 

(Bohacek 1996), it seemed unreasonable to demand that our new algorithm would 

transform all existing NCI molecules into other existing NCI molecules. However, we 

can reduce the search space by splitting the molecules into fragments (figure 5.4). The 
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chance that a certain fragment is mutated into another known fragment is likely to be 

much larger than the theoretical molecule to molecule “mutation success ratio” of 

2,5·105/1060, since the smaller size of the fragments will greatly reduce the search 

space. 
      

ring systems

substituents

linkers

ring systems

substituents

linkers

 
 

Figure 5.4: Splitting an example molecule, folic acid, into fragments. 

 

 

The set of fragments we took from the NCI database was the 6765-item ‘one-connected 

branches’ set, that is, all non-ring parts of the molecules that were attached to only one 

ring, such as the =O, -NH2 and –C(=O)NHC(COOH)CCCOOH groups in figure 4. 

First we removed the branches with atom types that the Molecule Evoluator does not 

recognize, such as metal atoms (which are extremely rare in drugs) to get a data set of 

6564 branches. We then performed atom mutations on the 1000 most frequent branches 

of the set and recorded how many were mutated into other existing branches. This 

experiment was repeated 20 times for both the old and new versions of the three 

mutations. Student’s t-test indicated that all three mutations were improved 

significantly (values ranging from 0.01 to 7·10-14). The details of the runs are shown in 

the appendix at page 152. 

 The results of the mutation-experiments are shown in table 5.5. 
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Table 5.5: Average probability that a specific mutation of a NCI branch will 

produce another NCI-branch for the informed and uninformed mutations. 

The t-test column contains the probability that the observed differences in 

performance are due to chance. 

 

 Old average New average t-test 

Add atom 0.3107 0.3205 0.0108 

Insert atom 0.3626 0.4134 6.73E-14 

Change atom 0.0722 0.0768 1.4E-07 

 

 

Discussion 
 

Using knowledge to guide mutation seems to improve upon the old, uninformed 

methods. Could we improve the Evoluator further by using even bigger substructures 

to guide the mutations? To some extent, this may be desirable. For example, a 

C(=O)OC is an ester group, and the second O can be easily exchanged for N, probably 

more easily than when the (=O) is lacking. However, one should be cautious when 

interpreting the extra data gained from using larger groups since: 

 

1) Larger groups have lower frequencies, conclusions drawn from them will be 

statistically less reliable. 

2) High occurrence of very large substructures may just reflect existing chemicals, 

chemical “prejudice” and biological coincidence rather than fundamental rules of 

chemistry. For example, in the NCI database are many sugar groups attached to 

purine rings. This however does not reflect any chemical rule that this is especially 

easy to synthesize but merely the biological coincidence that some nucleosides 

contain a purine attached to a sugar group, and since many nucleoside-like 

compounds are active against cancer or HIV, many researchers have made variants 

of sugar-purine compounds.  

3) The further atoms are removed from the atom that is to be mutated, the smaller is 

their influence; there will be diminishing returns in taking larger and larger 

substructures, in which the new information will slowly become too noisy to be 

useful. 
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So while we could enlarge the substructures used by the mutation operators, the value 

of such an extension should be critically investigated. 

 Another extension would be to modify the other mutation operators so that they 

use the knowledge in the database. This might not be very straightforward for some 

operators: the “delete atom” would have to go over each 3-atom set in the molecule, 

and delete atoms with a probability inversely proportional to the occurrence of the 3-

atom set relative to the two-atom set. On the other hand, to perfect the “make ring” and 

“break ring” mutations we would have to mine the distribution of ring sizes and ring 

frequencies instead of the substructure frequencies. Mining and implementing the 

acquired data would probably be quite straightforward in that case. 

 Data mining to modify the mutation operators seems useful in this investigation. 

While we do not know the extent in which data mining to make mutations context-

dependent is applied in the EA community, it may be quite useful when there are large 

databases available of reasonably fit individuals. However, the question remains 

whether an individual does not exist in the database because it is not fit or just because 

it has not been thought of yet. A “negative” database of very unfit individuals could 

help resolve such cases, though these unfortunately do not seem to be very prevalent, at 

least not in the drug development community. 

 In any case, it seems useful to add data to our EA. Of course, we should apply the 

mining with care, and not impose so many rules on newly generated compounds that 

they cannot have novel or interesting structures anymore. Using our non-informed 

mutations, the Molecule Evoluator was probably a bit too much “original”, making 

large parts of the offspring molecules unsuitable for further evolution. Data mining will 

help to diminish this percentage of molecules and thereby speed up evolution. However, 

the logical limit would be requiring absolute certainty that a compound can be made. 

And that can currently only be reached by knowing that the molecule already exists in 

a molecular database. This would unfortunately preclude finding any novel molecules 

and greatly limit the optimization. We should therefore find a way between unpractical 

novelty and conservative clichés. But such a discussion will only be about how 

important we allow data mining to become in our approach: that data mining is useful, 

is clear. 
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Conclusions  
 

In this research, we have improved the mutations of the molecule design program “The 

Molecule Evoluator” by using data mined from a drug database. Using the counts of 

various small substructures in the database, we found that the amount of unusual 

substructures decreased, and that mutations had a larger chance to transform existing 

molecular fragments into other existing molecular fragments. We think that the 

enhanced generation of existing structures additionally suggests that also the non-

existing mutants generated by our “informed” mutation operators may be closer to 

molecules that are drug-like and can be synthesized than the mutants generated by the 

uninformed mutations are. Mining databases may be a good method to making the de 

novo generated molecules easier to synthesize while keeping the advantages of 

covering the full space of drug-like molecules and the likely faster and more robust 

optimization that atom-based molecule optimization can give. 
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Appendix: Comparing the old with the new mutation operators 
 

To assess whether incorporating mined data into the mutation operators of the 
Molecule Evoluator resulted in producing more realistic molecules, the 1000 most 
frequently occurring one-connected branches of the NCI database were mutated using 
both the knowledge-less and the knowledge-including versions of three mutation 
operators. The old versions did not use any substructure frequency data, the new 
versions used this data to calculate the relative frequencies of each substitution. The 
number of branches in each run that was mutated into one of the other 6564 branches 
was counted for 20 runs (maximum score of each run is 1000). In the table the results 
of the individual runs are shown, as well as the averages over the runs and the t-test 
probabilities that the new mutation versions differ from the old mutations. 
 
 

Run Index Old 
Add 

New 
Add 

 Old  
Insert 

New 
Insert 

 Old 
Change 

New 
Change 

1 299 305  373 416  68 75 
2 309 355  344 406  77 77 
3 317 326  356 418  75 78 
4 303 315  374 401  69 77 
5 316 317  350 423  74 78 
6 305 320  354 413  72 78 
7 320 297  355 408  74 76 
8 317 350  387 410  78 77 
9 302 309  376 419  71 79 
10 313 317  349 421  72 75 
11 300 324  349 400  69 75 
12 311 318  361 419  74 77 
13 312 323  365 415  69 77 
14 325 318  356 412  72 78 
15 314 328  352 429  72 77 
16 300 321  389 419  71 76 
17 316 302  365 404  71 76 
18 305 331  371 409  73 76 
19 324 321  388 404  70 75 
20 306 312  337 422  72 78 
AVERAGE 310.7 320.45  362.55 413.4  72.15 76.75 
TTEST 0.0108   6.73E-14   1.4E-07  
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Abstract  
 

Traditionally, drugs have been discovered by scanning libraries of natural and synthetic 

compounds. Compounds that were identified as having a desirable biological activity 

were subsequently optimized for use as drugs, a process being performed by medicinal 

chemists suggesting and trying out structural modifications. Nowadays, however, there 

are also investigations to whether the design process can be sped up by letting 

computers do part of the molecule design. In theory, computers could generate and 

(virtually) test many more structures than a medicinal chemist could design in a similar 

amount of time, possibly yielding better compounds at a smaller cost. Of these 

computational methods for drug design, a prominent category is that of evolutionary 

algorithms, which attempt to optimize drug molecules similar to how nature optimizes 

animals and plants: by mutation, cross-over and selection. While the general approach 

of using evolutionary algorithms seems promising, current literature lacks comparisons 

on which approaches and parameter settings work better or worse for drug design. 

Since evaluation of new compounds is expensive, whether it is done computationally 

or experimentally, it is important to develop efficient evolutionary algorithms that 
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require as few evaluations as possible to find molecules with higher drug-likeness or 

enhanced affinity to the target protein. In this study, we investigate the effect of one of 

the major choices in evolutionary algorithms for drug design: what difference it makes 

in practice whether molecules are built up from atoms or from multi-atom building 

blocks. 

 

 

Introduction 
 

It is hard to develop a molecule that can activate or inhibit a particular disease-related 

enzyme or receptor, since there is usually barely any information on what kind of 

structure would be needed, nor on how to adapt a lead molecule to improve affinity or 

selectivity. Therefore, much effort goes into synthesizing and screening large numbers 

of compounds, in the hope that a large amount of trial and error will discover 

compounds with the desired properties (Rees, 2003). 

 However, investigators hope to be able to replace at least part of the expensive 

“wet” trial and error with “virtual” trial and error, on the computer. Nowadays, many 

computer programs exist that can aid in the design of new molecules and molecule 

libraries. Such approaches and programs have been summarized in a number of 

reviews (Westhead, 1996; Gillet, 2000; Hann, 2000), as well as in chapter 2 of this 

thesis. A major class of these computational methods applied in de novo drug design is 

that of the evolutionary algorithms (EAs). EAs are promising for drug design, since 

they mimic the powerful optimization process of natural evolution. Biological 

evolution can be considered to be an adaptation of designs (organisms) to optimally 

solve a specific problem (fill a biological niche). Evolutionary algorithms, following 

that example, also mutate and combine designs, and preferentially procreate designs 

with the highest quality (‘fitness’). EAs have been applied to fields as diverse as stock 

market prediction, optical systems, and car safety (Carter, 2005; Koza, 2005; Tan 

2005). Not surprisingly, there have been quite a few applications in drug design too, 

varying from docking to library design to QSAR (Hopfinger 1996; Jones, 1997; Morris, 

1998; Kimura, 1998; Gillet, 1999; Sheridan, 2000). In this investigation, however, we 

focus on their application in de novo molecule design. 

 Evolutionary algorithms have been applied quite often to de novo molecule design 

(Payne, 1995; Nachbar, 1998; Globus, 1999; Douguet, 2000; Schneider, 2000; Pegg, 

2001; Vinkers, 2003; Brown, 2004; Dey, 2008; Nicolaou, 2009), and most authors 

have claimed some success in optimizing molecular structures. However, the 
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abundance of methods hides the fact that we actually know very little about what 

kind(s) of evolutionary algorithm should be used for drug design.  

 While each published method has been claimed to have some success in designing 

new lead compounds, that unfortunately is not a good guide: all optimization methods, 

even random search, will eventually produce results that improve upon a given starting 

situation. If we assume that all optimization methods can theoretically produce all 

possible drug-like molecules, the main question is not so much whether a particular 

method can optimize molecules, but how efficiently it does so. If a search method is 

more efficient, it is superior. And efficiency in this field is not just a theoretical 

concern. When designing compounds for real world applications, it will always be 

necessary to synthesize and test a number of compounds, with all associated costs. 

Therefore, it matters a great deal whether an optimization process needs one hundred or 

one hundred thousand molecules to improve the activity of a lead compound to a 

certain extent. In this respect, it is unfortunate that the investigations described so far 

use different evolutionary approaches and different test systems, since this makes it 

difficult to compare evolutionary methods and settings, and find out which work best. 

 In our opinion, a good start of the investigation of how to design an evolutionary 

algorithm for drug design is by investigating the impact of which is perhaps the main 

decision for every EA designer in this field: the choice of molecular building blocks. 

From which “units” molecules are constructed determines in which ways a molecule 

can be changed and optimized, and which molecules can and cannot be created by the 

EA. For example, if the basic building set does not include halogen atoms, a large part 

of chemical space, including drugs such as fluoxetine and haloperidol, cannot be found. 

And if the building blocks are large, over 10 atoms, the evolutionary algorithm will not 

produce many small molecules. 

 In general, EA designers choose one of two main options. The first option is to 

consider atoms and bonds as the basic building blocks of molecule construction. This is 

called “atom-based” evolution. Alternatively, a molecule can be considered to be built 

out of several multi-atom fragments, considered to be unchangeable semi-independent 

units, like a carboxylic acid group, a phenyl ring, etc. This is called “fragment-based” 

evolution. The choice between atom-based evolution and fragment-based evolution 

influences which molecules can be designed by the evolutionary algorithm, in which 

ways molecules can be mutated and combined, and how much difference there is 

between a molecule and its offspring. The choice between atom- and fragment-based 

evolution could therefore have a great influence on the molecule optimization process, 

yet we could not find any previous investigations into the effect of building block 
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choice. We therefore chose to investigate this factor. 

 Literature shows that many if not most investigations (Payne, 1995; Nachbar, 

1998; Globus, 1999; Douguet, 2000; Brown, 2004) use the atom-based approach. 

Typical mutations are removing an atom, adding an atom, breaking a bond, or making 

a bond, for example in ring formation. Sometimes a method uses both atoms and 

fragments, such as the investigation by Nicolaou et al. (Nicolaou, 2009), but even then 

the method retains the basic benefits and drawbacks of atom-based approaches: since 

every individual atom can be changed, the entire chemical space can be covered, but 

some of the molecules suggested may be difficult to synthesize or chemically unstable. 

 Fragment-based evolution has also been applied by researchers (Schneider, 2000; 

Pegg, 2001; Vinkers, 2003; Dey, 2008), be it perhaps less frequently than the atom-

based approach. The main difference with the atom-based approach is that molecules 

are considered to consist of several independent multi-atom units, which are 

unchangeable. This means that an isopropyl-fragment could never be mutated into a t-

butyl fragment, though it could be replaced by one. Fragment-based mutations 

commonly add fragments to a molecule, remove them, or combine the fragments of 

two molecules. Fragment-based evolution also requires the designers to make some 

additional choices: what kind of fragments should be used, which and how many 

fragments should be used, in which ways are the fragments allowed to be attached to 

one another, and should one take the similarity of fragments into account when 

mutating a molecule (and if so: how?).  

 It is not clear from existing literature whether atom-based or fragment-based 

evolution should be preferred, as no study has compared them yet on the same problem. 

The main advantage of fragment-based evolution over atom-based evolution is that the 

produced structures seem easier to synthesize. While this apparent ease of synthesis 

can be quite deceptive in practice (Vinkers, 2003), it is certainly preferable over the 

much larger chance that a molecule created by atom-based algorithms needs major 

modifications before synthesis can take place (see for example the work of Douguet 

(Douguet, 2000)). On the other hand, atom-based evolution has advantages too. First of 

all, atom-based evolution does not require one to make the–always somewhat 

haphazard–choice of building blocks and attachment rules. Secondly, atom-based 

evolution can in theory construct all possible molecules, in contrast to the fragment-

based approach which can typically “only” create 1010 to 1020 (Pegg et al. estimate a 

lower bound of 1012 for their HIV-RT library (Pegg, 2001)). Being able to create 1012 

molecules may look impressive, however it represents only a tiny fraction of the total 

number of possible drug-like molecules, estimated to be 1060 or higher (Bohacek, 
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1996). This implies that fragment-based evolution can only construct about 1 of every 

1040 possible molecules, which is far less than one molecule in a database containing 

all compounds currently known to man (which would have about 107-108 entries, as the 

largest compound databases such as CAS (CAS, 2009), Beilstein (Beilstein, 2009) and 

PubChem (Pubchem, 2009) contain about 48 million, 10 million and 19 million entries 

respectively as around June 2009. Thirdly, the big jumps taken by fragment-based 

evolution through changing 5-10 atoms simultaneously may make optimization much 

more difficult than when only one or two atoms are changed at a time. This could be 

compared to carving a statue with a pickaxe instead of with a chisel: it is almost 

impossible to exert the precise and subtle control needed for creating the exact result 

one wants. Also, having fewer choices may result in fewer pathways to get to one's 

destination, and more dead ends.  

 Arguments such as the above can theoretically justify preferring either atom- or 

fragment-based evolution. However, the real relative efficiencies of the approaches are 

yet unknown since investigators have used one method or the other, and a comparison 

of atom-based evolution versus fragment-based evolution has not been reported. We 

therefore decided to undertake a study to find out what the differences in performance 

are, if any, between atom-based and fragment-based evolution. 

 We compared atom-based with fragment-based evolution by creating a population 

of 50 molecules, and evolving it for 10 generations with either method. To simulate the 

drug optimization process (at least the optimization of affinity), we decided to optimize 

molecule binding to HIV-reverse transcriptase (HIV-RT), one of the major targets for 

AIDS therapy. HIV-RT was used in earlier fragment-based evolution studies (Vinkers 

2004, Pegg 2001), and continues to be of interest to drug designers and a test for de 

novo design methodologies (for example Jorgensen, 2006; Barreiro, 2007). Therefore, 

HIV-RT seems more or less a benchmark drug target that can make comparisons 

between different de novo design algorithms easier. 

 The fitness of the molecules during the evolution was defined as their docking 

score in HIV-RT. While docking scores are not very accurate for predicting binding 

affinity of a potential drug to a protein, of all evaluation methods it seems best suited to 

base our investigations on. The highly complex interactions between a flexible ligand 

and a heterogeneous, irregularly shaped cavity, as modeled by docking, resemble the 

biological binding process more than for example 2D similarity to known ligands does. 

We do not expect docking in combination with the evolutionary algorithms described 

in this paper to result in 'true leads' for RT-inhibitors, as docking algorithms are not yet 

accurate enough for that purpose. However, for an investigation into making 
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evolutionary algorithms as efficient as possible in designing drug-like molecules, 

docking is probably a good approximative method to weed out inefficient evolutionary 

algorithms, before performing the final fine-tuning with the more realistic but also 

much more expensive and time-consuming synthesis and biological testing of 

compounds. One could compare this to first testing a probe for exploring the planet 

Mars in a cold desert on earth: while the circumstances of the test are not totally 

accurate, it is a much easier, faster and cheaper method to detect flaws than simply 

sending the design to Mars for the real test.  

 Specifically, the fitness of each molecule was defined as its docking score into the 

crystal structure model of HIV-RT using the docking program GOLD (Jones, 1997). 

The GoldScore is a unitless quantity which should be increased to obtain more 

favorable affinities. We use the same crystal structure as Vinkers (Vinkers, 2003) and 

Pegg (Pegg, 2001), pdb-code 1RTI (Ren, 1995). However, since the scoring functions 

in this investigation differs from that of, for example, Vinkers, we cannot easily 

compare our optimized molecules with those of others. Different scoring functions 

mean that molecules optimized for our scoring function may not do so well in Vinkers’ 

fitness measure, and vice versa. However, if ever more comparative studies such as this 

one are undertaken, 1RTI seems a good place to start. 

 

In this paper we will first discuss the evolution settings, the mutations we used, and the 

docking approach taken. After that we will focus on the structures of the compounds 

and on the improvements in docking scores over the course of the atom- and the 

fragment-based evolution. Finally, we will compare our methods and results with those 

of others and suggest directions for further investigations. 

 
 
Methods 

 

Description of the algorithm 

The evolution experiments required several steps: generating the initial population of 

molecules, selecting and modifying the molecules, and evaluating their fitness by 

docking and scoring them. The general algorithm of the evolution is given in 

Algorithm 6.1. The following paragraphs will discuss the various steps in more detail. 

   

 

 



155 

 

Algorithm 6.1: The basic algorithm used for evolving molecules with a high 

fitness (in our case, a high docking score). 

 

A) Create initial population 

-while the initial population contains fewer than 50 

    molecules: 

  -generate a molecule out of NCI fragments 

  -add this molecule to the population if it satisfies 

    the physicochemical restraints. 

B) Perform evolution 

 -while there are fewer than 10 generations 

  -calculate the fitness of each molecule in the current  

   generation by docking it into HIV-RT  

  -if the current generation is not the initial  

   generation: 

   -select 10 molecules by tournament selection 

    from the previous generation 

   -add these molecules and their fitnesses to the  

    current generation 

-make a new generation next to the current generation. 

-while there are fewer than 45 molecules in the new 

generation 

   1] choose one molecule from the current generation  

      by tournament selection. 

 

 

   2] choose crossover or mutation 

    -if crossover:  

     -select a second molecule from the current  

      generation by tournament selection 

     -cross the two molecules, and pick one of  

      the products at random 

     -if crossover cannot be performed since  

      there are no suitable breaking points, go  

      back to step 1. 

    -if mutation: 
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     -pick a mutation type at random 

     -perform the mutation on the selected  

      molecule 

     -if the mutation cannot be performed due to 

      lack of suitable atoms or bonds, go back  

      to step 1. 

   -if the resulting molecule obeys the 

    physicochemical constraints and was not part of a  

    previous generation: 

    -add the new molecule to the new generation 

  -endwhile 

  -for j=1 to 5 

   -generate a molecule at random 

 -if the molecule obeys the physicochemical 

    constraints: 

    -add the molecule to the new generation 

  -rename the current generation to “previous  

   generation”, and the new generation to “current  

   generation” 

 -endwhile 

 

The molecules of the initial population were built out of fragments from the NCI 

database (NCI, 2000). To obtain these fragments, the molecules in this database were 

divided into parts by an algorithm we described in chapter 3, which splits molecules 

into fragments by breaking the bonds which connect the ring systems with the rest of 

the molecule. This splitting results in ring systems, branches and linkers, as illustrated 

in Figure 6.1. The branches and linkers also store information about the atom type of 

the ring atom(s) they were attached to, to help virtual “reverse synthesis”.  

 Splitting the molecules of the NCI database across ring attachment bonds also 

resulted in data about their fragment composition. For example, 7.5% of all molecules  

consisted of exactly two ring systems, two branches, and one linker connecting two 

fragments, like the acetophenazine molecule in Figure 6.1. This information was also 

used in constructing the random molecules of the initial population. Each molecule was 

created by first picking a fragment composition (for example, a 7.5% chance to have 

the “2-2-1” composition), and then picking the fragments themselves out of the 300 

most occurring ring systems and the 300 most occurring non-ring systems (branches 
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and linkers). The probability of a particular fragment being selected was proportional 

to its occurrence in the NCI. Since our database however also incorporated data to 

which atom type each non-ring fragment was attached, initially selected fragments for 

which there was no suitable atom type in the rings to connect to were replaced by other 

fragments. For example, the keto group created by dissecting the molecule in Figure 1 

would be stored as (bc)-C(=O)C, to indicate that it can only be re-attached to a carbon  

 

 

ring systems
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Figure 6.1. The fragments used in molecule construction and fragment-

based evolution were obtained by splitting the molecules in the NCI 

database into ring systems, linkers and branches. This example shows 

which fragments would be obtained from an acetophenazine molecule. 

 

atom, and not to for example a nitrogen atom in piperidine. In some cases, the atom 

type demanded by a particular fragment was not available in the fragments that should 

be linked to it: for example, a methyl fragment that in the NCI was attached to a 

nitrogen atom ( (bn)-CH3 ) could not be attached to a phenyl ring (other fragments, like 

(bc)-CH3, however, could). 

 Molecules were generated until there was a population of 50 molecules that 

satisfied the following demands that we considered suitable for lead-like molecules: 1) 

polar surface area (calculated according to (Ertl, 2000) smaller than 120 Å2, 2) 

molecular weight between 150 and 300, 3) at most 5 hydrogen bond donors, 4) at most 

10 hydrogen bond acceptors and 5) at least one hydrogen bond acceptor. In addition, a 

maximum of 5 rotatable bonds was allowed per molecule. 
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After the initial population was generated, it was evolved (via atom- and fragment-

based evolution) as follows. First the fitness scores of all molecules were calculated by 

docking them with GOLD in the HIV-RT crystal structure and selecting the best 

ranked pose for every molecule (the preparation of the molecules for docking in GOLD, 

and the settings used in GOLD, are described in more detail on page 167). Then the 

next population was made by first creating 45 molecules through mutating and crossing 

over parent molecules, selected by 4-sized tournament selection, which means that out 

of four random molecules in the parent population the molecule with the highest 

docking score was chosen. The 45 new molecules also had to obey the constraints 

listed in the previous paragraph, be it that after the first population up to 10 rotatable 

bonds were allowed, and the maximum molecular weight was increased to 500. In the 

last step, 5 molecules were added from the 200-molecule database containing random 

molecules similar to those of the initial population (the initial population actually 

consisted of molecules 1-50 of this database, the five molecules added to the first 

generation of the atom-based evolution were molecules 51-55, the five molecules 

added in the second generation of the atom-based evolution were molecules 56-60, etc. 

The fragment-based evolution added other series of five molecules from this same 

database, so a random molecule would never appear more than once in either the atom-

based evolution or fragment-based evolution). The new population therefore also 

consisted of 50 molecules in total. 

 Since we did not want to evaluate molecules more than once, we introduced the 

restraint that molecules created by mutation and crossover would only be added to the 

new population if they had not occurred yet in previous generations. This could, 

however, hamper optimization, since the best molecules would be forgotten after one 

generation. In contrast, most evolutionary algorithms allow a good individual to 

survive indefinitely and to even clone itself, so it can eventually fill the entire 

population. We tried to avoid such loss of diversity yet conserve the memory of the 

best molecules by adding some old molecules to each generation. After the 50 

molecules of a population were generated in the normal way, we added 10 of the best 

molecules of the previous generation (selected by tournament selection), making the 

effective population size 60. The next generation was created by mutating and crossing 

those 60 molecules. So, in principle, a superior molecule from generation 1 could 

contribute its genetic information directly to several generations by first being a parent 

for the molecules in the next generation (generation 2), and subsequently be added to 

the generation of its children by being chosen as one of the ten grandparents (so 

forming the extended generation 2 together with its direct offspring). In this way, it can 
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produce offspring into the generation of its grandchildren (generation 3). As a member 

of the extended generation 2 it could be also added to the generation 3 as one of the 

best of the generation 2, into the extended generation 3, becoming one of the sixty 

parents for the molecules in generation 4. While the randomness of tournament 

selection makes it unlikely that any molecule, no matter how good, will remain 

producing offspring for more than three generations, it will buy the best molecules two 

or three generations extra time to produce high quality offspring.  

 

Manual filtering of molecules 

Occasionally, a molecule generated by atom-based evolution seemed extremely 

difficult to synthesize. This was often the result of the evolutionary algorithm creating 

an extra bond within a benzene ring or another small ring. Examples are given in 

Figure 6.2. To prevent evaluation, evolution and accumulation of these ‘useless’ 

structures, we visually inspected all molecules created and removed the structures 

deemed unsynthesizable (to not fall below our target of 45 structures, we actually 

created initial populations of 50 molecules, of which the last five molecules were 

spares which could be used to replace molecules among the official 45 if any were 

flawed). Filtering did not take much time for these small-scale experiments, and 

molecules were only rarely rejected (typically two or three molecules out of 50). We 

have recently added a ring structure filter (based on existing NCI rings and NCI ring 

templates), which will probably make such manual filtering unnecessary in future 

experiments. 

      

NH

O NH2
N

NH

O

F

 
Figure 6.2: Atom-based evolution occasionally produced structures which 

contained ring systems that seemed far too strained to allow for a feasible 

synthesis. Such structures (a few examples are shown here) were manually 

removed from the population to prevent them from “polluting” the evolution. 
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Molecule modifications 

All evolution experiments were performed with the Molecule Evoluator (chapter 4), 

which was adapted to include fragment-based mutations and crossover. Both the atom-

based mutations (which were already present in the Molecule Evoluator) and the 

fragment-based mutations (which were added during this investigation) will be 

described in the next paragraphs. 

 The atom-based mutations either manipulate atoms (adding atoms, inserting atoms 

in a bond, removing atoms, ‘uninserting’ atoms, changing atom type) or bonds 

(increasing bond order, reducing bond order, making or breaking rings). These nine 

operators were also described in chapter 4. 

 While the mutations create a derivative from one parent molecule, the atom-based 

crossover operator combines two input molecules. The crossover first chooses a 

random non-ring single bond in each molecule, and, by breaking these bonds, splits the 

molecules into two parts. Subsequently, one part of the first molecule is recombined 

with one part of the second molecule, and the other part of the first molecule is 

recombined with the other part of the second molecule. This results in two offspring 

molecules, of which one is chosen randomly as the crossover product. The crossover is 

shown in Figure 6.3. 

 The second approach, fragment-based evolution, considers a molecule to consist 

of a small number of fragments, and its mutations therefore replace and move bigger  

parts of the molecules than the atom-based approach does. The mutations and 

crossover move the fragments which have been defined in the previous paragraphs: 

ring systems, linkers, and branches. In our implementation the fragment-based 

evolution uses two types of mutations: “rotation”, in which a ring substituent is moved 

to another position of the same ring, and “exchange”, in which two fragments that are 

connected to the same ring or linker swap positions. Examples of these mutations are 

given in Table 6.1. It should be noted that branches should always be attached to the 

same atom type to which they were originally attached, since this attachment 

information is part of our branch data (as explained above). 

 The fragment-based crossover, like its atom-based counterpart, takes two 

molecules, but instead of breaking a random bond, only breaks the bonds that connect  

fragments. Therefore, only intact fragments are moved around and recombined with 

each other. The requirements of the fragment-based crossover are that the fragments to 

be exchanged are of the same type (ring or non-ring) and that, if the fragments are 

rings, they are attached to the same number of non-ring fragments. For example, a 

phenyl ring with three substituents and a cyclobutadiene ring with two substituents 
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a. b. c. d.a. b. c. d.

 

 

Figure 6.3: The molecule crossover used in atom-based evolution. a) Two 

parent molecules are selected, b) the molecules are split in two by breaking 

random non-ring bonds, c) the molecule parts are recombined, d) one 

molecule is selected at random as the crossover product.  

 

cannot be interchanged, while a phenyl ring with two substituents could be 

interchanged with the cyclobutadiene. This second requirement was introduced to 

improve ease of synthesis, since it could prevent too big steps in chemical space, like 

for example replacing a phenyl ring with three substituents by a cyclopropane ring 

which usually has only one or two. Lastly, the branches and linkers should be 

reattached to their correct atom types; the crossover will not link a cyclohexane ring to 

a (bn)-isopropyl fragment. The fragment-based crossover is illustrated in Figure 6.4. 

 In both atom-based and fragment-based evolution, the mutation:crossover ratio 

was set to 85:15, based on experience with the interactive version of the Molecule 

Evoluator. All mutation subtypes were applied with equal probability; so the 

probability of applying one of the nine atom-based mutations, such as “insert atom”, 

was 11%, and the fragment mutations ‘exchange’ and ‘rotate’ both had a 50% chance 

of being chosen. While these ratios are almost certainly not optimal, we chose them as 

the starting point for this study, to be adjusted for future investigations depending on 

their apparent relative usefulness we would find here. 
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Table 6.1: The mutations used in fragment-based evolution. Rotation 

moves branches (non-ring structures) around rings, 'exchange' exchanges 

the positions of either two rings or two branches. 

 
Mutation type Initial structure Final structure 

Rotation 

Cl  

Cl

 

Exchange 

O

N

O

N

Cl

 

ON

O

N
Cl

 
 
 
Protein preparation and automated docking simulations 

The crystal structure we used, (pdb-code 1RTI (Ren, 1995)) is a co-crystal of the HIV-

RT with a small-molecule inhibitor, HEPT (1-(2-hydroxymethyloxymethyl)-6-phenyl 

thiothymine). Despite the similarity of this ligand to a nucleoside, HEPT does not bind 

to the site where the new DNA is synthesized. Instead, like nevirapine, it binds at some 

distance from it, at the so-called non-nucleoside binding site (Ren, 1995). Compounds 

binding at the non-nucleoside site force HIV-RT in a non-active conformation. Figure 

6.5 shows the binding mode of HEPT in the 1RTI crystal structure. In some HIV-RT-

ligand crystal structure complexes, H-bond interactions between the ligand and a water 

molecule located in the solvent channel are observed (Esnouf, 1997; Shen, 2003). 

While in many cases it is advisable to keep the water molecules in or near the binding 

site when docking (Klebe, 2006), this water molecule is not observed in the 1RTI 

crystal structure and is not conserved amongst all HIV-RT-ligand crystal structure 

complexes. Furthermore, it was not found to significantly influence automated docking 



163 

 

a. b. c. d.

N

O

OH

Cl

NH
2

OH

NH
2

OH

Cl

OH

O

N

O

OH

Cl

N

OH

NH
2

NH
2

OH

N

+ + +

a. b. c. d.

N

O

OH

Cl

NH
2

OH

NH
2

OH

Cl

OH

O

N

O

OH

Cl

N

OH

NH
2

NH
2

OH

N

+ + +

a. b. c. d.a. b. c. d.  
Figure 6.4: Fragment-based molecule crossover, which can both be 
performed on ring systems (top) and on branches (bottom). a) Two parent 
molecules are selected, b) the molecules are split: in both molecules a 
random fragment of the same type (branch or ring) is selected and the 
bonds between the chosen fragment and the rest of the molecule are 
broken c) the molecule parts are recombined, d) one molecule is selected at 
random as the crossover product. Note that the CH2NH2 group could also 
have been exchanged with the methyl or chlorine, the pyridine-
cyclopropane interchange is however not possible since the ring systems 
have one and three groups attached, respectively. 
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simulations of HIV-RT-ligands (Titmuss, 1999). Therefore, protein mol2 files for 

GOLD docking were generated using the Biopolymer module in Sybyl (TRIPOS) by 

removing the ligand and crystallographic water molecules from the pdb-file, and 

adding all hydrogen atoms. Molecules were generated as 2D structures in MDL MOL-

file format (Dalby, 1992) by the Molecule Evoluator and converted to 3D structures in 

mol2 format by the program MOE (Chemcomp. Corp.) GOLD docking was performed 

using “7-8 times speed up” settings (Jones, 1997). The active site centre as determined 

by the PASS program (Brady, 2000) was taken as the starting position of the GOLD 

flood fill algorithm. To meet aspects of calculation time and data size on one hand, and 

convergence criteria and statistical relevance on the other hand, 15 independent 

docking runs were performed for each docking case. 

 

Estimating ease of synthesis 

As last part of the experiment, we checked ease of synthesis. We asked an experienced 

medicinal chemist, J.B., to check of each structure whether it could be synthesized 

reasonably easily. If not, we asked him to suggest a suitable derivative. All suggested 

replacement structures were docked using the normal docking procedure, and their 

fitness values gathered and compared to the fitness scores of the original compounds. 

 

 

Results and discussion 
 

Docking the molecules into HIV-RT 

Docking the EA-generated compounds in the HIV-RT crystal structure resulted in the 

dockings shown in Figure 5. The binding pocket can be divided into a large 

hydrophobic subpocket 1 (enclosed at the top by residues Y188, W229, F227), and two 

small subpockets 2 (formed by L234, P236, and Y318) and 3 (formed by V178 and 

Y181) (Hopkins, 2004), which is located close to a hydrophilic solvent channel, 

proposed to be the ligand access channel (Shen, 2003). Typical NNRTIs like HEPT 

form H-bonds with the backbone of K101 and/or K103, and in some cases also with a 

water molecule located in the solvent channel (Ren, 1995; Esnouf, 1997). Furthermore 

typical NNRTIs bind to subpocket 1 via hydrophobic and aromatic interactions 

(Titmuss, 1999) and can form additional hydrophobic and aromatic interactions with 

subpockets 2 (e.g., HEPT and efavirenz) and 3. The compound with the highest fitness 

in the first generation only occupied subpocket 1, while the best compounds found by 

atom-based evolution and fragment-based evolution occupied subpockets 2 and 3,  
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Figure 6.5. The dockings of the compounds generated by the evolutionary 

algorithm into the original crystal structure of HEPT bound to HIV-reverse 

transcriptase. HEPT is shown as a transparent brown structure. In addition, 

(a) contains the compound with the highest fitness in the first generation 

(yellow) docked into the crystal structure, (b) the docking pose of the best 

compound found by atom-based evolution (green), and (c) the docking pose 

of the best compound found by fragment-based evolution (cyan). 

 

respectively, in addition to subpocket 1. None of the compounds formed H-bonds with 

the backbone of K101 and/or K103. However, hydrophobicity is another key feature 

driving the potency of inhibitor binding to the NNRTI site (while GoldScore does not 

have a separate term for hydrophobic interactions, it calculates van der Waals 
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interactions and therefore assigns a higher score to a ligand that better fits the three-

dimensional structure of the binding pocket). Optimization of hydrophobic interactions 

in pocket 1 is already observed in the first generation cycle (see the left panel of Figure 

6.5), in which an S-phenyl group attached to a two-ring ring system dips into the 

aromatic cluster of Y188, W229, F227. A two-ring core, consisting of two fused 6-

rings, is maintained throughout both atom-based and fragment-based evolution (see 

Figures 6.6 and 6.7), even though the original 1,2,3,4-tetrahydroisoquinoline ring 

system is changed during atom-based and fragment-based evolution into a 1,2-

dihydronaphthalene ring system and a naphthalene ring system, respectively. 

Furthermore, the initial aromatic ring dipping into pocket 1 is only slightly changed 

into other functional groups of the same hydrophobic character along the different 

evolution pathways. The evolution has led to probing and optimization of hydrophobic 

interactions with different smaller subpockets of the HIV-RT binding site. Re-

positioning of the pocket 1-occupying subsituent from the 5’ to the 6’ position 

accommodates interactions of hydrophobic substituents on other positions at the two-

ring core with subpockets 2 and 3. In the atom-based evolution, the initial hydroxyl 

group sticking out in the direction of subpocket 2 (Figure 6.5a) is replaced by an S-

phenyl group which can interact with subpocket 2 formed by L234, P236, and Y318 

(Figure 6.5b). During fragment-based evolution, an ethenesulfinate group was attached 

meta to the hydrophobic group interacting with subpocket 1. This ethylenesulfinate 

group has just the appropriate size to dip into the small subpocket 3 (Hopkins, 2004). 
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Figure 6.6. The optimization trajectory leading to the best molecule of the atom-

based evolution. The numbers under the structures indicate their fitness score. 



168 

 

61

51

39

46 46 43 53 54

50

50

52

55

49

56

61

71

56

56

55

62

62

64
61

51

39

46 46 43 53 54

50

50

52

55

49

56

61

71

56

56

55

62

62

64

 



169 

 

Figure 6.7: The optimization trajectory leading to the best molecule 

produced by the fragment-based evolution. The numbers under the 

structures indicate their fitness score. Note that the SO3C2H3-group of the 

second parent molecule was modified to a SO2C2H3-group by an error in 

our program. This bug was later fixed. In later fitness comparisons, not 

much influence on fitness was found by the presence or absence of the 

extra oxygen atom, so this glitch will probably not have influenced evolution 

much. 

 

 

The change in fitness over the generations 

To study the differences between the atom-based and fragment-based evolution, we 

first gathered of each generation the maximum fitness value (the fitness of the “best” 

molecule) and the average fitness value. These values are plotted in Figure 6.8.  
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Figure 6.8: The average and the best fitness of molecules in each 

generation for the atom-based and fragment-based evolution. 

 

Figure 6.8 shows that both the average fitness and the maximum fitness of the 

molecules in the population grow as the evolution proceeds. This means that new and 

better molecules are found, which implies that evolution improves upon pure selection 

(since pure selection would cause the average and maximum fitnesses of the later 

generations to approach the maximum of the first generation). However, virtual 

screening of a large library will also increase maximum fitness, as there is always a 
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probability that a new molecule will improve upon the known compounds. We should 

therefore analyze our data further to be able to say whether evolution is truly more 

effective or efficient than random search. 

 Fitting the fitnesses of the randomly generated first generation to a Gaussian 

(Figure 6.9) results in a best fit with mean value 36.7 and a standard deviation of 4.3.  
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Figure 6.9: The distribution of fitness scores of the molecules of three 

populations fitted to Gaussians. The populations are the initial population, 

the atom-based population containing the highest-scoring atom-based 

molecule (8th atom-based generation), and the fragment-based population 

containing the highest-scoring fragment-based molecule (the 10th fragment-

based generation). 

 

 

The best overall result of evolution (score=76) lies about 9 standard deviations from 

this average. Therefore the probability that a random search would produce a molecule 

with this or a higher fitness would be smaller than 10-9%. Scanning 500 molecules and 

getting the improvement shown in Figure 6.9 suggests that this improvement cannot be 

the result of a random search only. Therefore evolution seems truly more efficient than 

random search. We should note hereby that the distribution of the initial population, as 

shown in Figure 9, is Gaussian-like, but not exactly Gaussian. For example, there are 

about 5 molecules with a fitness score of about 50, which is more than would be 

expected from a true Gaussian distribution. Therefore, putting the odds that random 
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search produces a similar improvement as the evolutionary algorithm at 1:1011 may be 

mathematically questionable. However, the distance between the best fitness found by 

the EAs and the average and best fitnesses of randomly produced molecules seems 

large enough to indicate that both of our evolutionary algorithms noticeably improve 

on random search.  

 

Fitness peaks/plateaus 

While evolution improves molecular structures significantly, the improvement (at least 

in atom-based evolution) stops quite quickly, around the 8th generation. It is very 

unlikely that by then the ‘best possible’ molecule has already been found. What then 

causes this stagnation? And how could it be prevented in future experiments? 

 The first explanation is that we simply have evaluated too few generations for full 

optimization. EAs are known to have periods of stasis, and are usually run over many 

more generations than 10: in other applications of evolutionary algorithms to de novo 

design molecules are evolved over 50 to 20,000 generations (Nachbar, 1998; Vinkers, 

2003; Brown, 2004). Often, lack of improvement in fitness only means that the 

population is at some local optimum, and needs to be evolved for a few more 

generations before better molecules are found. Running the EA for more generations 

(something we did not do due to limitations on computational time and our own time – 

a number of steps such as screening for unusual structures had not yet been automated 

and required manual intervention) may result in renewed improvement with better 

molecules found. 

 Our second hypothesis is that the stagnation and deterioration of scores has 

uncovered an inefficiency in the EA that should be addressed instead of compensated 

through evaluating more generations. The most likely explanation of the decrease is 

that our rule that each molecule generated must be “new” forces the evolution away too 

quickly from a local optimum; better variants of the best molecule cannot be built 

anymore since the best molecule has already been “forgotten”. The result is a downhill 

trend in the fitness scores, the molecular structures going away from the last found 

optimum, until a novel structure is found which can be optimized again. In our case, it 

may be that the requirement that each molecule must be new may prevent a true local 

optimum to be reached since eight generations is too short for full optimization; of any 

compound, including the best compound, several hundreds of derivatives can be made 

through atom-based mutation. Therefore, the one or two generations the best molecule 

had to procreate are not enough for a good “full” local optimization. Therefore, it 

would be best to drop the “only new molecules” requirement. Interestingly, the 
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fragment-based evolution does not show a similar deterioration. It is possible that the 

fragment-evolution has not reached a similar plateau yet, since it reached its peak later 

than the atom-based evolution. 

 

Comparing the molecules created by atom-based and fragment-based 

evolution 

Next to the fitness scores, we compared the molecules resulting from atom-based and 

fragment-based evolution. The top 5 molecules found by both approaches are shown in 

Figure 6.10, together with their fitness scores. 

 The most interesting observation to us was that fragment-based evolution seems 

approximately as good as atom-based evolution. This seems to refute our hypothesis 

that atom-based evolution should go more smoothly and therefore be better than 

fragment-based evolution. Why were we wrong? To find an explanation, we studied 

the different optimization trajectories and the molecules produced in more detail. The 

evolution trajectories leading to the best molecules found by the atom-based and the 

fragment-based evolution, respectively, are shown in Figures 6.6 and 6.7. 

 Though there are obviously differences between the optimization trajectories, the 

atom-based evolution and the fragment-based evolution are quite similar in terms of 1) 

the part of the initial population that is used, 2) the presence of local optima, and 3) the 

high occurrence of crossover. Each of these similarities will be discussed shortly below. 

 To produce their best molecules, both atom-based and fragment-based evolution 

apparently use only a small part of the initial population (3 to 5 molecules), and no de 

novo molecules which have been later added appear in the trajectories of Figures 6.6 

and 6.7. This suggests that the 4-size tournament selection is quite strict, and quickly 

fills the population with high-scoring mutants of the best molecules, giving 

“newcomers” little chance to contribute to the gene pool. It may be worthwhile to 

experiment with less strict selection (such as 3-sized tournaments or 2-sized 

tournaments) to see if this allows more of the information in the population to be used 

in developing more diverse and eventually even better molecules.  
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Figure 6.10: The most highly scoring five molecules found by atom-based 
evolution (left) and fragment-based evolution (right). The numbers in the 
brackets indicate the docking score. 

 

 

Another reason for not making the selection pressure too high is the presence of local 

optima. It is quite common for a high-scoring molecule (like the bottom-left molecule 

in the atom-based evolution, score 53) to produce a lower-scoring molecule (score 46 

in this case) which however gives birth to new molecules that have a fitness 

comparable to or even higher than that of its (great)grandparent (52 and 57, 

respectively). One may argue that this could be caused by imprecision in the docking 

procedure, which may assign somewhat different scores to one molecule if the docking 

experiment were to be repeated. In such a case the intermediate molecule may indeed 

have an intermediate score if more calculations would be performed. Alternatively, 

there could really be local maxima in an optimization trajectory, which would trap a 

greedy (“only better offspring”) algorithm too easily. Methods like evolutionary 

algorithms (used here) or simulated annealing, which generally explore around local 

optima, may therefore be inherently more suitable for molecular space than a greedy 

search which discards all variants with a lower score than the highest scorer. Another 

reason not to select too greedily is that both computational fitness functions and 
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experimental affinity measures are bound to have some noise, with some superior 

molecules perhaps scoring slightly worse than their competition due to the random 

nature of the docking process and the random variations in experimental measurements. 

An evolutionary algorithm, to be effective, should therefore tolerate this noise and not 

select too strictly and too greedily. We also stress that the accuracy of the docking 

score is not too relevant for the comparisons made here. Our aim was not to find novel 

HIV-RT inhibitors, but to evaluate the two EAs in a realistic setting. Docking 

procedures possibly assigning different scores over different runs to the same molecule 

can even be considered to incorporate an extra element of realism since biological 

experiments also tend to yield ranges of values, and a good optimization algorithm 

should work despite these irregularities.  

 The third similarity between the different evolution methods is the relatively high 

occurrence of crossover. While our settings should have led to about 15% crossover 

versus 85% mutation for modifying molecules, the optimization tree of highest scoring 

compound in the atom-based evolution had 4 crossovers versus 9 mutations, 31%, 

while that of the highest-scoring compound in fragment-based evolution had 7 

crossovers versus 10 mutations, 41%. The reason the crossover was set at 15% in the 

first place was because medicinal chemists evaluating the Molecule Evoluator did not 

like the large changes in molecules introduced by crossover; the structure of crossover 

products was often so different from that of its parents that the compounds created by 

crossover seemed unlikely to have any related biological activity. Apparently, however, 

crossover does not always make such activity-destroying changes, and is a useful 

operator for finding good molecules. Therefore, we should consider setting its 

prevalence higher in follow-up experiments. Interestingly, molecule crossover has also 

been found useful to create drug molecules in practice (Lazar, 2004).  

 

Surveying our results, we learned that atom-based and fragment-based evolution have 

lots in common and that both seem approximately equally efficient in this experiment. 

However, there are also differences. First of all, the evolution trees show more clearly 

than the fitness plot that atom-based evolution does run more smoothly. It reaches a 

better molecule than the fragment-based evolution, and it does so in fewer generations. 

It truly seems to be more efficient, though not by a large amount. In the fragment-based 

evolution shown in Figure 6.7, big substituents make large jumps around the molecular 

core. An example would be the SO2C2H3 group in the middle column of Figure 6.7, 

which moves to very different positions of the ring system. If a large substituent is 

attached at very different positions in parent and offspring molecules, this would imply 
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that either the substituent of the offspring molecule is docked in another part of the 

binding pocket than it was in the parent molecule or that the offspring’s core is docked 

in another place. Since the dockings of parents and offspring in fragment-based 

evolution are therefore more likely to be dissimilar, the evolution is probably less 

efficient. If, for example, in fragment-based evolution only half of the offspring of a 

good molecule is docked in the way of their parent, it is likely that only this half will 

have a good or even better score than the parent molecule, and the time spent to 

evaluate the other half of the offspring is wasted. The smaller changes in atom-based 

evolution should result in offspring of which a large part will be docked similarly to the 

parent, say 90%, leading to fewer offspring with low fitness scores due to radically 

different docking. Quantitatively, one would have to analyze the correlation between 

the fitness scores of parent and offspring. It would definitely be interesting in future 

investigations to automate such a “docking comparison” process and get the actual 

numbers. 

 The second difference between the atom-based and fragment-based approaches is 

the result of the optimization. While the molecules found by the atom- and the 

fragment-based evolution have similar fitnesses, their structures are definitely 

dissimilar (Figure 6.10). The most striking difference between the best molecules 

found by the atom-based evolution and those found by the fragment-based evolution is 

the lack of diversity in the top-5 fragment-based molecules. These molecules all have a 

sulfur-bound cyclohexadiene group and a ethylenesulfinate group attached to 

naphthalene or a naphthalene-like ring system. In contrast, the top-5 of atom-based 

molecules contains four different structural classes. This diversity is beneficial, since it 

improves the chance that at least one class of molecules is found with suitable 

biological and physicochemical properties. 

 The difference in diversity between the molecules optimized by atom- and 

fragment-based evolution led us to investigate the cause of the similarity of the top-5 

molecules created by fragment-based evolution. Was the fragment-based population 

highly diverse and did it contain several different structural groups, of which one was 

superior, or were all molecules in generation 10 similar, and hence the best molecules 

too? We measured population diversity by counting the number of different ring 

systems in each generation of the atom- and the fragment-based evolution. Figure 6.11 

plots generation number versus ring system diversity. 
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Figure 6.11. The number of different ring systems in the population during 

the atom-based and the fragment-based evolution. In the last generations, 

the fragment-based population only contains cyclohexadiene, naphtalene 

and the 1,2,3,4-tetrahydroisoquinoline system from the best compound n 

the first generation, while the atom-based population has 3-, 4-, 5-, 6- and 

7-rings with a variable number of double bonds, and a number of two-ring 

systems (5:6, 6:6) and three-ring systems. 
 
 
The diversity plot shows that while the diversity of the population undergoing atom-

based evolution fluctuates, the diversity of the population undergoing fragment-based 

evolution dwindles fast. This difference probably arises because the atom-based 

evolution has several options to generate new ring systems: oxidizing/reducing bonds, 

breaking rings and making rings, as well as mutating, inserting and uninserting atoms. 

In contrast, the fragment-based evolution currently implemented in the Molecule 

Evoluator cannot introduce new fragments, only recombine and copy existing 

fragments. Therefore, it entirely depends for its new ring systems on the 5 de novo 

molecules that are inserted at every generation, and we have seen that these molecules 

rarely survive in a population of already optimized molecules due to the high selection 

pressure. Fragments which are less competitive in the current generation can thus go 

quickly extinct, with no chance of reappearing. The resulting lack in diversity bodes ill 

for further optimization. While the atom-based evolution may crawl out of its crisis 

into a new optimum, the fragment-based evolution seems doomed to stagnate in a few 

more generations. 
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It is interesting to compare the change in fitness over the generations to the change in 

diversity over the generations. It turns out that the minimum of the atom-based 

diversity (generation 8) coincides with the occurrence of the best compound found in 

the run. Apparently, before generation 8, the evolution is on the trail of a good 

compound and concentrates the search in that direction, diminishing structural diversity 

to focus on a few good groups. Afterwards, the obligatory removal of the best 

molecules pushes the evolution away from the local optimum, and thus back into the 

high diversity that is necessary for efficient exploration. 

 

Synthetic feasibility 

So far we have seen that atom-based evolution seems slightly better than fragment-

based evolution regarding the speed of evolution and the fitness of the molecules 

obtained. However, this does not address the argument of some investigators that 

fragment-based evolution should be used because the molecules created by it are easier 

to synthesize. In reality, the difference in ease of synthesis may be not as important as 

it seems, since both atom- and fragment-based molecules often need to be adapted by 

experienced medicinal chemists to create molecules which can be synthesized within 

reasonable time (Douguet, 2000; Vinkers, 2003). Fragment-based molecules might 

need fewer adaptations than atom-based molecules, but the importance of this 

difference in ease of synthesis has, to our knowledge, not been investigated yet. 

 To assess the effects of ease-of-synthesis requirements on the molecules reached 

by atom-based and fragment-based evolution, we submitted a selection of the top-10 

atom-based molecules and top-10 fragment-based molecules to a chemist, who 

suggested improvements to enhance ease of synthesis. The resulting modified 

molecules were docked in HIV-transcriptase to determine their fitness values. The 

results of six of the compounds, selected for diversity in structure, are shown in Table 

6.2. 

 From comparing the structures and scores of the molecules in Table 6.2 we 

conclude that fragment-based evolution indeed produces superior results respecting 

ease of synthesis. This is mainly because fragment-based molecules need fewer 

modifications, which leads to a smaller change in structure, which leads to a smaller 

change in activity, and since changing an optimized structure is likely to decrease 

activity, the smaller adaptation needed for the fragment-based molecules is beneficial. 

From our results, it seems that the position of the modifications also plays a role; if 

modifications are in or near the core of the molecule, the change in activity is much 

more dramatic than when a substituent at the “edge” is changed. For example, only 
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modifying the central ring of the 4th best atom-based compound (Figure 6.10) from 

cyclobutadiene to phenyl made the docking score fall from 66 to 9. In contrast, the 

decrease in fitness in the fragment-based molecules is generally much smaller, about 

10 units, probably because only the substituents are changed. 

 

 
Table 6.2: Some of the molecules designed by the evolutionary algorithm, 

their derivatives with improved ease of synthesis suggested by our chemist, 

and the docking scores of the original and derived molecules. 
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Comparison with literature 

As last part of this discussion, we compare our work with literature and investigate 

whether our results are consistent with the findings of others, and whether literature 

together with our own results can suggest directions for further investigations. 

 

Atom-based evolution. To our knowledge, the earliest publication that described 

computational evolution of molecules was by Glen and Payne (Payne, 1995). Their 

mutations and crossover were more or less the same as our atom-based operators, 

though they included a 2-point crossover (which exchanged the central parts of two 

molecules) and limited insertions to methylene (only carbon-atoms could be inserted). 

Douguet et al. (Douguet, 2000) also included the 2-point crossover, but did not use a 

ring breaking operator, and seemed to focus much on changing larger parts of the 
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molecule at once, which resulted in a hybrid fragment-atom evolution. Globus et al. 

(Globus, 1999) used only one-point crossover, and no mutations. According to the 

authors, their algorithm worked quite well, even though it was sometimes impossible to 

reach a certain target structure because the starting population or an intermediate 

population did not contain all necessary structural elements (the same can be said of 

our current fragment-based evolution). The crossover of Nachbar (Nachbar, 1998) also 

was one-point, and his mutations were similar to our own atom-based mutations 

(insertion, deletion, atom type mutation, oxydation and reduction of bonds, etc.) 

However, there were more restrictions on atom change mutations, as insertion and 

uninsertion were apparently only allowed in rings, and rings could only be broken at 

one predefined ring bond (though this latter shortcoming was corrected in his later 

work (Nachbar, 2000)). Brown et al. (Brown, 2004) used mutations similar to ours, 

though the two crossover operators were quite elaborate and differed considerably from 

our simple one-point crossover. Finally, the atom-based mutations of Nicolaou et al. 

(Nicolaou, 2009) also involved modifying atom and bond types and insertion and 

removal of atoms. However, it seems that cycles were neither formed nor broken in 

this investigation, possibly because the atom-based mutations were supplemented with 

fragment-based mutations which could simply insert entire ring systems. Nicolaou's 

atom-based crossover is similar to that of Globus (and ours), picking one bond to break 

in two molecules and pasting one of the parts of the first molecule to one of the 

fragments of the second molecule. The general impression left by comparing the work 

of others to our atom-based mutation and crossover operators seems to be that our set 

of atom-based mutations is essentially complete, and at least as versatile as in other 

work. However, of crossover many variants seem possible, and it should be 

investigated which types of crossover are most beneficial for de novo design, especially 

considering the large contribution crossover made in our investigation. 

 

Fragment-based evolution. The fragment-based evolutionary approaches we found in 

literature are those of Schneider et al. (Schneider, 2000), Pegg et al. (Pegg, 2001), 

Vinkers et al. (Vinkers, 2003) and Dey et al. (Dey, 2008). The evolutionary algorithm 

of Nicolaou et al. (Nicolaou, 2009) used both atom-based and fragment-based 

evolution, their atom-based operators were discussed in the preceding paragraph, while 

their fragment-based operators will be discussed here. Schneider obtained his 

fragments by using retrosynthetic rules on the WDI database (Daylight, 2005), 

resulting in over 24,000 fragments. From these fragments, molecules were constructed 

by applying the same retrosynthetic rules in the reverse direction. The algorithm did 
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not contain crossover, just mutation which replaced a fragment by another fragment of 

the same type. Dey et al. (Dey, 2008) used a commercially available database of 20,000 

pre-selected fragments. Interestingly, the genotypes in their algorithm did not encode 

for a complete molecule, each gene encoded a docked pose of an unattached fragment; 

every member of their population was therefore not a molecule, but a collection of 

unconnected fragments, which were connected later by another optimization algorithm. 

Mutation and crossover involved changing the value of a gene (making it represent 

another docked fragment) or exchanging the values of the genes at a certain position 

between two members of the population. Nicolaou et al. used a smaller database, 

consisting of 2363 fragments of tested ligands (so somewhat focused on the problem at 

hand, not a truly general search through molecular space). Fragments could be inserted, 

removed or exchanged, according to the retrosynthetic rules as defined by RECAP 

(Lewell, 1998). In stark contrast to Schneider and Dey, Pegg et al. used only a handful 

of fragments (about 15 in one experiment), which could be attached randomly to each 

other. The mutations here were replacing fragments and connecting fragments to other 

points, which is similar to our “rotation”. Finally, Vinkers et al. used 32,000 molecules 

and a collection of 70 reactions which could extend and combine molecules. In the first 

iterations, molecules could only “grow” by reacting with other compounds, in the later 

phase of evolution, reactants in any position of the chain could be replaced by other 

ones from the database.  

 From the diversity in the fragment-based studies one can conclude that many 

different approaches to fragment-based evolution are possible, with a varying role of 

synthesis rules in molecule construction, and fragment databases that vary from under 

20 fragments to over 30,000 fragments. One of the few similarities between the 

fragment-based methods is that they can replace fragments in a molecule with 

fragments from the database, something our fragment-based evolution cannot do yet, 

but may be good to implement. Our fragment-based evolution does have an extra 

feature, however, as it considers each ring atom a potential attachment point; therefore 

exchange and rotation can create many more combinations from the same fragments 

than the more synthetically strict methods can. Not being able to get new fragments 

into the population is a disadvantage for optimization, but is partially compensated in 

our algorithm by this ability to create more combinations out of a fixed number of 

fragments. The flexibility in attachment points might reduce the synthetic feasibility of 

the designs, but could increase the speed and efficiency of the optimization, since the 

structural changes may be smaller than those of fragment replacement. 
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Next to comparing the mutation and crossover operators, it may be useful to compare 

the parameters of evolution of our investigation with those in literature. In the above-

mentioned investigations, population sizes ranged from 30 to 1000, and the number of 

generations allowed ranged from 50 to 1000. Settings were varied to some extent; 

Douguet et al. tested population sizes from 10 to 80, and found 20 to 40 to be an 

optimal size. Glen and Payne investigated sizes from 10 to 100, and considered 50 to 

100 to be the best size. In general, too small sizes are thought to result in premature 

convergence, too large sizes produce slower running optimizations, and may “drown” 

the best compounds by making the probability that they are selected for procreation too 

small. However, premature convergence can also be caused by high selection pressure, 

and this is likely to be the case with our atom-based evolution.  

 Another issue is whether we should or should not use elitism to conserve our best 

molecules. Both approaches are present in literature: occasionally (Pegg, Vinkers, Dey) 

elitism has been used, but in other cases (Glen, Nachbar) not. Douguet tested whether 

elitism was advantageous, and found that it is. Douguet’s findings on elitism support 

our impression that it would be good to allow molecules be copied unmodified into the 

next generation, in a more reliable way and perhaps a larger scale than is used now.  

 A final point is that we have used far fewer generations than the other researchers. 

This was mostly because we wanted to optimize the efficiency of the evolution itself, 

and expose poor methodology which would have been masked by throwing in huge 

computational resources. We can only guess what would have happened if evolution 

had been allowed to go on for more generations. In the current setup, the fragment-

based evolution would have converged in a few more generations, the atom-based 

evolution would have intermittently found new structures with activities comparable to 

or even better than our current maximum. However, in drug discovery it would have 

probably been more efficient to use 50 independent populations of 20 runs than it 

would have been to evaluate one population during 1000 runs. Having many diverse 

ideas is likely to be better than spending many generations refining a local maximum, 

which, despite advanced docking scores, would only have a small chance of being a 

suitable and active lead (Vinkers, 2003). Another argument for having many short runs 

instead of a few long ones is that using atom-based mutations on the fragment-based 

initial population tends to guide the evolution into generating increasingly uncommon 

groups, so ease of synthesis will probably decrease as molecules are “optimized” by 

the evolutionary algorithm. 

 One important point to consider is whether our test system, docking and its score, 

are suitable as fitness function. For example, Verdonk et al. (Verdonk, 2004) have 
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shown that docking scores tend to increase approximately linearly with the number of 

heavy atoms in a compound. Chemically, it is reasonable that the average compound 

with 20 heavy atoms should bind more tightly than the average compound with 10 

heavy atoms for the simple reason that having more atoms allows a compound to have 

more interactions with the target. However, we should be wary if the fitness scores of 

individual compounds correlate linearly with the number of heavy atoms. After all, this 

would mean that the fitness score is biologically unrealistic, since the specific types of 

atoms and the three-dimensional shape of the molecule should influence ligand binding 

much more than the atom count. We therefore took all of the compounds generated by 

the evolution and plotted fitness against heavy atom count. For the atom-based 

evolution, the plot is shown in Figure 6.12. For both atom and fragment-based 

evolution, the r2 values of the correlation were less than 0.35, implying that most of the 

docking score could not be explained by heavy atom count. Our findings imply that the 

GOLD scoring function is in line with biochemical expectations: bigger molecules in 

general bind better, but atom count is not the only contribution to binding. 
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Figure 6.12: The relationship between heavy atom count and docking score 

for the molecules produced by the atom-based evolution; while a higher 

heavy atom count allows a higher score, it does not automatically lead to 

improved fitness. 
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Future perspectives 
 

One of the main practical obstacles during this investigation was that it required quite 

some manual intervention to convert the 2D structures generated by the Molecule 

Evoluator to 3D structures, dock them, and feed the results back into the evolutionary 

algorithm. While the small scale (about 1000 molecules in total) allowed us to 

thoroughly analyse the strengths and weaknesses of the competing algorithms and give 

us some ideas of what we should or could change and improve, it would be impractical 

to scale our current method up for proper statistical analysis on dozens of runs. For 

future investigations, it would be certainly worth the time and effort to either create 

intermediate software or batch-files to automate as many of the intermediate steps as 

possible. 

 Next to automating the evolution-docking cycle, it would also be beneficial to 

'trace' the evolution of compounds automatically, for example creating a sort of 

extended file format identifying the parent(s) of each compound and which mutation 

gave rise to it. This would be similar to the approach Nicolaou et al. (Nicolaou, 2009) 

use for their graph-based chromosomes, even though it is unclear from their paper 

whether they indeed used that data to optimize their evolutionary algorithm. In this 

way, we could automatically collect data detailing the average change in fitness after 

specific mutations, and let the computer quickly create all evolutionary trees, which 

could be helpful in analyzing exactly when and why a particular run stagnates or 

improves. 

 In addition, there are some factors which may hamper the optimization. One of 

those is the conversion of the molecules from 2D to 3D. The encoding of molecules in 

the current version of the Molecule Evoluator does not specify stereochemistry. This 

means that the conversion of the molecule “genome” to 2D will give rather randomly a 

cis or trans stereoisomer for each double bond outside rings, and the subsequent 2D to 

3D conversion with MOE will add undefined R/S stereocenters. The Molecule 

Evoluator and (as far as we could observe) MOE are deterministic in their conversion 

procedures, which would ensure that a molecule genome would always be converted 

into one specific stereoisomer, so this will not affect reproducibility. However, 

offspring, even if modified outside the stereocenters, might have different 

stereochemistry assigned to them. Such “non-genetic” jumps in fitness would add noise 

and hamper the optimization. It would therefore be useful to encode stereochemistry in 

future versions of the Molecule Evoluator. Another concern is that some structures 

might be in a different tautomeric state in a biological environment (an enol might be a 
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keto group in solution). Since bonds are coded into the genes, the tautomer remains 

fixed over generations and does not give rise to offspring in a different configuration, 

in contrast to enantiomerism. Therefore tautomerism will disturb evolution less than 

enantiomerism. However, a chemist should inspect the molecules with the highest 

scores for possible tautomerism, and dock the tautomers to explore the effects of the 

equilibria on the fitness score. 

 

 

Summary and conclusion 
 

In this investigation we compared the relative usefulness of atom based (small step) 

evolution and fragment based (large step) evolution for optimizing potential drug 

molecules. As was expected, atom-based evolution found a better molecule after fewer 

steps (although the difference was not large), while the fragment-based evolution 

produced molecules that seemed easier to synthesize. By comparing the two 

approaches, also a number of other lessons were learned concerning molecule 

evolution and how to improve the Molecule Evoluator. 

 Firstly, there is no need to add entirely novel molecules after the first generation. 

The fitness of the population increases so steeply, that the new molecules do not 

contribute any useful “genes”.  

 Secondly, and somewhat surprisingly, crossover can be a valuable operator in 

molecule optimization; in contrast to “normal” optimization strategies in 

pharmaceutical research, in which variations are made on one molecule, it may be 

worthwhile to combine one molecular core and some of the side groups of other high-

scoring molecules.  

 Future modifications to improve the Molecule Evoluator would be to stop adding 

de novo molecules each generation, experiment whether allowing a molecule to appear 

more than once in a generation would find an even better optimum, and implement 

automatic gathering of statistical data of all evolved molecules to analyze the 

contributions of the various possible mutations or crossovers to molecule fitness. 

Finally, new mutation operators such as “add/delete fragment” will have to be added to 

the fragment-based evolution to prevent excessive loss of diversity and premature 

convergence. 

 Optimizing molecule optimization techniques is still complicated and requires lots 

of experiments and sufficiently sophisticated fitness functions. However, if drug 

designers want to explore a greater part of the huge number of potential drug-like 
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molecules (over 1060) or want to use accurate and therefore slow fitness functions for a 

more reliable in silico screening, efficiency in optimization is needed. We hope that 

studies like this one will not only lead to faster optimization methods, but will also give 

insight into the general craft of molecule optimization. 
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Abstract 
 

We used a new software tool for de novo design, the “Molecule Evoluator”, to generate 

a number of small molecules. Explicit constraints were a relatively low molecular 

weight and otherwise limited functionality, for example low numbers of hydrogen 

bond donors and acceptors, 1 or 2 aromatic rings, and a small number of rotatable 

bonds. In this way we obtained a collection of scaffold- or template-like molecules 

rather than fully “decorated” ones. We asked medicinal chemists to evaluate the 

suggested molecules for ease of synthesis and overall appeal, allowing them to make 

structural changes to the molecules for these reasons. On the basis of their 

recommendations we synthesized 8 molecules with an unprecedented (not patented) yet 

simple structure, which were subsequently tested in a screen of 83 drug targets, mostly 

G protein-coupled receptors. Four compounds showed affinity for biogenic amine 

targets (receptor, ion channel and transport protein), reflecting the training of the 

medicinal chemists involved. Apparently the generation of lead-like solutions helped 
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the medicinal chemists to select good starting points for future lead optimization, away 

from existing compound libraries. 

 

 

Introduction 
 

Chemical space is vast – the number of potential drug-like molecules has been 

estimated to be beyond the number of atoms in the universe.1,2 This is in sharp contrast 

with the total count of molecules in large compound databases such as CAS, with 

approximately 25 million references to chemical compounds.3 Hence, de novo design is 

crucial to cover more of the chemical universe. Computational methods are particularly 

suitable for this goal, as they can quickly generate and store thousands of putative 

structures. Currently, there are dozens of de novo design programs, many of which 

have been covered in a recent review.4 For example, the program CoG (Compound 

Generator) of Brown et al.5 constructs molecules based on atoms and fragments that 

have been given as input to the program, eventually yielding molecules that resemble a 

number of selected ligands. Other programs construct new molecules based on the 

structure of the target protein. For example, DycoBlock6 takes a list of fragments and 

searches for their optimal position in the active site of the protein. Then it searches for 

combinations of building blocks that could be linked together to form a new molecule.  

 We have recently developed a software tool to help medicinal chemists in 

designing new active structures; we called it “The Molecule Evoluator” (see also 

chapter 3 of this thesis). The Molecule Evoluator constructs molecules from atoms and 

a limited number of predefined larger fragments (such as phenyl and carboxylic acid 

groups). The use of atoms and the ability to attach atoms to any other atom and make 

rings at all chemically valid positions of a molecule allows an exhaustive search of 

chemical space and fine–tuning of the molecular structure.  

 An important difference between the Molecule Evoluator and most other de novo 

design programs is the focus on interaction with the user to produce lead compounds. 

Instead of generating a large database which is then screened virtually by docking or 

molecule similarity calculations, it presents a number of molecules to the user, who 

selects and edits the molecules to make them more lead-like. This cycle of computer 

generation and user modification can go on for several rounds, hence the name 

“Molecule Evoluator”. This user involvement was inspired by new approaches in 

computer science that stress the collaboration between computer and user, such as 

interactive evolutionary computing.7 The user is able to use his implicit knowledge, e.g. 
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of synthetic feasibility, to eliminate structures suggested by the program that are 

difficult to make in the laboratory. The user may also bring in other areas of expertise, 

such as domain knowledge for a certain drug target, for example in the form of 

structure-activity relationships. 

 The aim of the present study was to determine whether combining computational 

inspiration with the domain knowledge of a number of medicinal chemists could 

produce novel, biologically active, lead-like structures. We used the Molecule 

Evoluator in a more constrained way than the usual cycle, in which the molecules 

modified by the user are fed back to the computer program to “breed” new molecules. 

Instead, we just created one database of molecules, the structures of which were refined 

by the medicinal chemists alone. For that we asked a panel of medicinal chemists to 

select, comment on and amend a limited number of compounds out of the library, 

which were subsequently checked for novelty. On the basis of their recommendations a 

limited number of the chosen and amended compounds, further simplified for reasons 

of chemical feasibility, was synthesized and tested on an array of drug targets. Half of 

the compounds synthesized possessed significant activity for biological targets, 

indicating that our combination of computer-based generation of molecules and 

chemist-based selection and modification can be useful to develop entirely novel lead 

structures.  

 

 

Results  
 

De novo design of template molecules 

We used the Molecule Evoluator to generate a virtual library of 300 compounds 

according to a number of restrictions meant to produce template-like rather than drug-

like molecules. These limitations, extended on but stricter than Lipinski’s “rule of 

five”,8 were as follows: 

1) At least one and at most two aromatic systems 

2) Polar surface area equal to or below 70 Å2 

3) A maximum number of two hydrogen bond donors and four hydrogen bond 

acceptors 

4) Not more than five rotatable bonds 

Although we also experimented with molecular weight restrictions we learned that the 

above four criteria invariably resulted in compounds with molecular weights lower 

than 400 D, hence lower than “Lipinski’s” cut-off of 500 D. 
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The 300 compounds were presented to a panel of five medicinal chemists with 

different backgrounds (chemistry of peptides, biogenic amines (2x), nucleosides/ 

nucleotides, and chiral synthesis). They were asked to select at least 10 compounds to 

their liking. Specifically, the selected compounds had to look drug-like and 

synthetically feasible, or at least be amenable to be changed into such compounds by 

minor modifications. This led to a total of 34 compounds (Table 7.1).  

 

 
Table 7.1: The 34 compounds selected from the 300-member library 

generated by the Molecule Evoluator. The left-hand column shows the 

structures as generated, while the right-hand column lists the structures 

after initial amendment by the medicinal chemists. Those molecules marked 

with a star were selected for further amendment and synthesis.  
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Our next step was to inspect the 34 molecules for novelty, ease of synthesis and drug-

likeness. Novelty in this case was defined as absence from both the Beilstein and 

SciFinder databases either as a structure or substructure.3,9 This process took place in 

March 2003; we did not check for later occurrence. For ease-of-synthesis we allowed 

the chemists to modify the suggested structures to reduce the anticipated number of 

synthetic steps (maximally 3 from a commercially available starting material). Drug-

likeness was not only based on the filters that we already applied when the virtual 

library was generated, but also on the intuition of the individual medicinal chemist. All 

in all this led to a top-nine of compounds that formed the start for our synthetic 

program (see Figure 7.1). Two chemists (R.T. and R.S.) were allotted a restricted 

period of time to try and synthesize these compounds. It was decided to rapidly 

terminate a project whenever synthetic feasibility in practice was less than anticipated 

‘on paper’. This was particularly true for compounds 1f and 1g. It was also decided to 

allow further variations on the nine molecules presented in Figure 7.1 on the basis of 

experimental findings in the synthetic program. As a consequence the final series of 

compounds, although much inspired by the very first suggestions, deviated from the 

original structures. In general, the computer-generated molecules were simplified by 

eliminating most substituents, while the core structure was retained together with one 

or two of the most important or interesting substituents. Further variation was produced 

by making derivatives of the remaining substituents (such as oxidizing a CH2OH group 

to COOH). Eventually we prepared and characterized eight compounds as represented 

in Figure 7.2. Their synthesis is outlined in the chemistry paragraph below and 

described in full detail in the Experimental Section. 
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Figure 7.1: The final selection of nine compounds (1a-1i), amended by the 

panel of medicinal chemists. 
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Figure 7.2: The eight compounds resulting from the synthetic program (3-10) 
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Chemistry 

Compound 3 was prepared by substitution of 3-(bromomethyl)benzonitrile with 2-

piperidinone which was deprotonated with one equivalent of butyllithium.10 Synthesis 

of compound 4 was performed by alkylation at the 3-position of 2-piperidinone via the 

enolate anion in which the nitrogen atom was temporarily protected with TMS.11 

Hydrogenation of compound 4 with Pd/C as catalyst afforded the benzylamino 

compound 5 (Scheme 7.1).  
 
 

a b

3                                                                                                           4

c

5

NC CN
NH

O

N

O

NH

O

NH

O

NH2

 
Scheme 7.1: a: 1 eq. n-BuLi, 3-(bromomethyl)benzonitrile. b: TMSCl, n-

BuLi, 3-(bromomethyl)benzonitrile. c: Pd/C 10%, H2. 

 

Synthesis of 2-(3-piperidyl)-benzyl alcohol (6) was done by a two step reaction. First 

2-(3-pyridyl)-benzyl alcohol was prepared by a Suzuki reaction of diethyl(3-

pyridyl)borane and 2-bromobenzyl alcohol under microwave conditions.12 The product 

of this reaction was hydrogenated under acid conditions with PtO2 as catalyst and 

provided compound 6. Benzyl alcohol 6 was oxidized with chromic acid and isolated 

as zwitterion. Purification was problematic, however preparative HPLC provided pure 

product 7 (Scheme 7.2).  

 

b ca

                                                   6                                                  7

B(Et)2

OH

Br

N N OH N
H

OH N
H

OHO

+

 
Scheme 7.2: a: Na2CO3, TBAB, (Ph3P)4Pd, H2O, MW. b: HCl, PtO2/H2. c: 

Jones' reagent. 

 

The most straightforward way to prepare compounds 8 and 9 was the Suzuki coupling 

reaction of 3-bromofuran with boron derivatives of 3- and 4-aniline respectively, under 

microwave conditions. Compound 10 was prepared from 9 by reaction with succinic 

acid and crystallization from diethyl ether (Scheme 7.3).  
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Scheme 7.3: a: 3-aminophenyl-boranic acid, Na2CO3, TBAB, (Ph3P)4Pd, 

MW. b: 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline, Na2CO3, 

TBAB, (Ph3P)4Pd, MW. c: succinic anhydride, 4-methyl-morpholine. 

 

 

Biology 

We tested the 8 compounds in a commercially available screening program. 

Radioligand binding and enzyme assays, 68 and 15, respectively, were the read-outs to 

probe the interaction of the individual compounds with this large collection (83) of 

drug targets. These included G protein-coupled receptors (rhodopsin-like, class A; 

metabotropic glutamate-like, class C), ion channels (for Na+, K+, Ca2+), nuclear 

hormone receptors (e.g., estrogen, progesterone), transport proteins (e.g. for dopamine, 

norepinephrine, GABA), and enzymes (several phosphodiesterases, Na+/K+-ATPase, 

etc). All compounds were tested in duplicate at a single concentration of 10 µM. In 

Table 7.2 the percentage inhibition of specific radioligand binding to the indicated 

target (with a minimum of 30%) is shown. Negative values indicate an increase in 

specific binding. This might indicate an allosteric mechanism of enhancement,13 but 

this was not investigated further. Four out of eight compounds displayed activity in a 

number of radioligand binding assays, while none of the compounds appeared active in 

the enzyme assays. Compounds 5 (imidazoline and muscarinic receptors), 6 (α-

adrenergic receptors), and 8 and 9 (norepinephrine transport protein) caused 

approximately 50% radioligand displacement or more. It should be mentioned here that 

compound 7, being inactive at all tested targets, appealed to one of the chemists for a 

different reason, i.e. it being an unnatural and new amino acid, which will be used for 

incorporation in modified peptides. 
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Table 7.2: Percentage inhibition of specific radioligand binding (min. 30%) 

to the indicated target by 10 µM of test compounds 3-10. Negative values 

indicate an increase in specific binding. 

 

 

Target   3 4 5 6 7 8 9 10 

          

CB1    -33      

I2    49 36  41 32  

M1-5    50      

NAch     45  42   

NE transp.       80 77  

DA transp.       -62   

5-HT transp.       -31   

kainate        -37  

α1-adrenerg.     47     

α2-adrenerg.     62     

NK1     -32     

opiate     35     

5-HT     39     

 

CB1: cannibinoid receptor 1; I2: imidazoline receptor 2; M1-5: muscarinic 

receptors 1-5 in rat brain; NAch: nicotinic acetylcholine ion channel; NE 

transp: norepinephrine transport protein; DA transp: dopamine transport 

protein; 5-HT transp: serotonin transport protein; kainate: glutamate/kainate 

receptor; NK1: neurokinin receptor 1; opiate: all opioid receptors in rat brain; 

5-HT: serotonin receptors in rat brain. 

 

 

Discussion 
 

For a medicinal chemist, drug-likeness, synthetic feasibility and overall ‘molecule 

appeal’ are very important criteria in drug design. However, these features are very 

difficult to quantify, such that good ‘scoring functions’ are often lacking. For instance, 

computer-assisted organic synthesis was recently reviewed by Todd,14 who concluded 

that available software invariably required human intervention to be useful. Similarly, 
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computational approaches to predict ligand binding affinity for a given target protein 

(“docking”) are notoriously inaccurate. Aware of such considerations we decided to 

rely on the user as evaluator. A user cannot know the binding strength of a given 

molecule a priori, but we reasoned this defect may not be much worse than the 

inaccuracy of scoring functions. A definite advantage in letting the user choose would 

be that intensive feedback from a medicinal chemist would make the compounds easier 

to synthesize, and steer the idea generation away from areas which have already been 

explored. Furthermore, user feedback could still be combined with experimental results 

or advanced computed fitness functions if so desired. Considering these advantages we 

developed a software tool for de novo molecule design, called the Molecule Evoluator, 

which we recently described. It contains a graphical user interface and has options for 

directly editing the molecule, marking part of a molecule as conserved, and calculating 

relevant physicochemical parameters.7  

 It should be noted that the Molecule Evoluator mainly uses the atom-based 

approach to construct molecules, that is, a molecule is built from individual atoms and 

bonds, though some predefined fragments can be added. A number of other researchers 

have also constructed molecules in an atom-based way, for example Nachbar15, 

Douguet et al.16 and Brown et al.5 Others construct molecules from a number of multi-

atom fragments, such as Pegg et al.17, Vinkers et al.18, and Schneider et al.19 The main 

difference between atom-based and fragment-based methods is not so much the size of 

the fragments used (atom-based methods often also use fragments, and vice versa) but 

the emphasis placed on synthetic feasibility. Atom-based methods such as ours sample 

the entire chemical space but also produce molecules of doubtful synthetic feasibility, 

and fragment-based methods like the one of Vinkers et al.18 stress synthetic 

accessibility and therefore sample a much smaller part of chemical space, excluding 

hard-to-synthesize molecules but also many potential drugs. In the Molecule Evoluator, 

we have chosen for the flexibility of the atom-based approach, although we are aware 

of the sensitive issue of synthetic ease and have developed a number of features which 

allow the user to restrict the variety of molecules produced.7 

 In the present study we generated 300 molecules according to the criteria specified 

in the Results section. These criteria are well below the classic ‘rule-of-five’9 to largely 

yield template or scaffold-like molecules only. For example, the number of hydrogen 

bond donors was confined to a value of two, rather than five. Repeating the experiment 

would yield a largely different library of molecules due to the random-number 

generator in our algorithm. While by setting the criteria identical to our original 

experiment the average physicochemical properties of such molecules would be similar 
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to those in the original library, the enormous number of molecules possible with a 

molecular weight between, say, 150 and 300, would ensure that there would be barely 

any molecules in common between the two libraries. Changing the parameters would 

force the algorithm to sample another part of chemical space, however the 

physicochemical properties of the lead structures might not change as greatly as the 

parameters since the chemists generally adapt the molecules to the complexity of their 

taste. 

 The 300 molecules were shown to a panel of medicinal chemists. They examined 

them for drug-likeness, synthetic feasibility, and overall appeal as mentioned above, 

and identified their preferences. It should be noted that human judgment is not 

unequivocal. In a study by Takaoka and coworkers, five chemists judged a collection 

of almost 4000 molecules in a Japanese corporate database for their drug-likeness and 

ease of synthesis. Their scores showed considerable variation.20 A similar 

inconsistency was noted among 13 medicinal chemists at a US-based company when 

asked to reject compounds with undesirable properties from one or more lists of 2000 

compounds each.21 Apparently unanimity among medicinal chemists is not self-evident. 

On a more positive note, their diversity in opinion may in fact constitute an important 

and discriminative asset for a research group. While our computational generation of 

the library benefited from human intervention, the chemists themselves also found that 

the computational generation of molecules added value. They appreciated the many 

choices possible, which emphasizes that it is easier to recognize a “good” structure 

than to invent one.  

 We did not give the chemists explicit instructions on which molecules should be 

chosen or rejected, other than that the molecules should seem lead-like and not too 

difficult to synthesize. Analyzing their choices in retrospect, it became clear that the 

chemists did use some general “implicit” rules for molecule choice. Molecules without 

heteroatoms (or with only one heteroatom if that was a nitrogen) were almost always 

rejected, as were molecules with more than two ring systems, cyclophanes (having a 

bridged benzene ring), molecules with odd or unwanted groups like halogen atoms or 

nitro groups, and molecules with many alkyl substituents. However, if anything, these 

rules seemed more like a weighing of attractive and inattractive features than a black-

or-white approval or elimination. For example, one molecule with only one heteroatom, 

a nitrogen, was nevertheless selected, probably because the nitrogen was in a two-ring 

system instead of somewhere in a substituent. Occasionally the chemists disagreed 

about the appropriateness of a certain selection. So instead of general rules one could 

say that the chemists used general guidelines, which were weighed according to 
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individual experience and taste. 

 The compounds that were suggested (Figure 7.1) and eventually synthesized 

(Figure 7.2) all had a relatively small number of hydrogen bond donors and/or 

acceptors, next to their low molecular weight, as a logical consequence of the strict 

criteria imposed. They largely adhere to a recently proposed “rule-of-three” for 

fragment-based lead discovery, in which molecular weight is <300, the number of 

hydrogen bond donors is ≤3, the number of hydrogen bond acceptors is ≤3 and the 

calculated logP value is ≤322, and can be considered leads23 or fragments rather than 

potential drugs. In this view fragments should have features that, when combined, still 

adhere to Lipinski’s “rule-of-five”. The differences between “rule-of-three” and “rule-

of-five” allow a further “decoration” of our compounds. At the same time, fragments 

tend to have very low affinity for a given target, in view of the limited options for 

interaction.22 Surprisingly, quite a few of our compounds displayed affinities that 

allowed them to be recognized in conventional radioligand binding assays, as opposed 

to more sophisticated and demanding NMR- or X-ray-based screening that is generally 

applied in fragment-based approaches.  

 It appeared that most of our ligands intervened with targets for biogenic amines 

(e.g., adrenergic, muscarinic and serotonin receptors, norepinephrine transport protein, 

nicotinic acetylcholine ion channel). Interestingly, the background, education and 

training of some of our medicinal chemists involved in the selection of the compounds 

had been focused on this important ligand class, suggesting that medicinal chemists can 

indeed develop a “feel” for a certain target or family of targets. 

 The chemical structures of the suggested molecules as well as those synthesized 

are simple, or, as some medicinal chemists put it, “quite boring”. Apparently, chemical 

space is vast, but also nearby, i.e. entirely novel structures can be far from exotic. It 

suggests that medicinal chemists when asked tend to prefer more uncommon structures. 

Interestingly, it has been shown on a number of occasions that currently available 

drugs in fact have low diversity.24,25 In a recent analysis of the NCI database harboring 

over 250,000 molecules tested for biological activity we learned that in it 80% of all 

ring systems found in molecules belonged to one out of the 66 “top” ring systems – 

which was only 0.5% of the total variety in ring systems in the database. The same 

analysis taught us that a phenyl ring was present in almost half of the compounds, 

whereas the next most prevalent (pyridine) ring occurred in less than 3% of the 

molecules,27 “quite boring” indeed. The reason may be that exotic ring systems and 

substituents have undesirable synthetic or biological properties. It emphasizes that our 

method of template development, which puts “ordinary” parts in novel combinations, 
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may actually be quite suitable for drug design. 

 

 

Conclusion 
 

Computational generation of novel molecules, as implemented in the Molecule 

Evoluator, appeared useful in de novo template and scaffold design. It helped a panel of 

medicinal chemists in generating, amending and selecting a number of ‘simple’ yet 

novel chemical entities. A number of low-molecular weight compounds was eventually 

synthesized and tested on a diverse panel of drug targets. Some of the compounds 

proved to be active, mainly on targets for biogenic amines, in line with the background 

and expertise of some of the medicinal chemists. It seems that nearby chemical space 

still offers substantial room for drug design, and that simple structures can be very 

attractive.  
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Experimental 
 

De novo design algorithm 

The 300 molecules were generated by taking a methane molecule, and growing the 

molecule for a number of iterations by attaching atoms to it at random positions, and 

adding double bonds and rings. The algorithm is shown in Figure 7.3. 

 If a molecule did not obey pre-set criteria (at least one and at most two aromatic 

systems, polar surface area (calculated according to Ertl et al.26) equal to or below 70 

Å2, a maximum number of two hydrogen bond donors and four hydrogen bond 

acceptors, not more than five rotatable bonds) it was discarded and a new molecule was 

generated, until we had 300 molecules with the desired physicochemical properties. 
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Figure 7.3: Flowchart of the de novo design algorithm. A molecule is 

generated by adding a random number of fragments (varying from 1 to 16) 

to a methane molecule, and subsequently adding bonds, thereby creating 

double bonds and rings. The exact number of rings and double bonds is 

determined by a weighted probability table, as is the ring size (so a 5-

membered ring is more frequent than an 8-membered ring, like in normal 

chemical databases).  
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Chemistry 

Microwave reactions were performed in an EmrysTM Optimizer (Biotage AB). Wattage 

was automatically adjusted so as to maintain the desired temperature. Column 

chromatography was performed on Baker Silica Gel (0.063-0.200 mm). For TLC 

analysis, Schleicher and Schuell F1500/LS 254 silica plates were used. Spots were 

visualised with ultraviolet light. 1H NMR and 13C NMR were recorded with a Bruker 

AC 200 spectrometer at room temperature. Tetramethylsilane was used as internal 

standard; δ in ppm, J in Hz. Melting points were determined with a Büchi melting 

point apparatus and are uncorrected. High Resolution Mass spectroscopy was 

performed on a PE-Sciex API Qstar instrument. Elemental analyses were within 0.4% 

of the theoretical values. 

 

1-(3-Cyanobenzyl)-piperidin-2-one (3) 

A solution of 2-piperidinone (5 mmol) in THF (25 mL) was stirred for 1 h at 0 °C 

before 1 eq. of n-BuLi (5 mmol, 3.2 mL of a 1.6 M solution in hexane) were added 

dropwise. After stirring for another hour at 0 °C 1 eq. of 3-(bromomethyl)benzonitrile 

(5 mmol) was added rapidly. The mixture was allowed to warm slowly to room 

temperature and stirred overnight. After quenching by adding 15 mL of brine, the 

solvent layers were separated. To the aqueous layer was added 20 mL of water. After 

extraction of the water layer with CH2Cl2 the combined organic layers were dried 

(Na2SO4), filtered and the solvents evaporated. The product was purified by column 

chromatography (eluent: CH2Cl2/MeOH, 99/1→97.5/2.5 v/v). Yield: 24%. White solid. 

M.p.: 53-55 °C. Anal. (C13H14N2O) C, H, N. 

 

3-(3-Cyanobenzyl)-piperidin-2-one (4) 

To a solution of 2-piperidinone (10 mmol) in THF (15 mL) was added at -78 °C 1 eq. 

of n-BuLi (10 mmol; 6.3 mL of a 1.6 M solution in hexane). After stirring for 15 

minutes at -78 °C 1.1 eq. of TMSCl was added and the solution was allowed to warm 

to room temperature and left to stir for 45 min. The resulting solution was added 

at -78 °C to a solution of 11 mmol of 1,1,1,3,3,3-hexamethyldisilazane and 11 mmol of 

n-BuLi (6.9 mL of a 1.6 M solution in hexane) in 20 mL of THF. After stirring for 15 

min 3-(bromomethyl)benzonitrile (11 mmol) was added and the mixture was allowed 

to warm slowly to -25°C, before the reaction was quenched by adding an aqueous 

NH4Cl (sat.) solution. After extraction with diethyl ether the combined organic layers 

were washed with a saturated NH4Cl (aq.) solution, a saturated NaHCO3 (aq.) solution, 

dried (MgSO4) and the solvents removed by evaporation. The product was purified by 
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column chromatography (eluent: CH2Cl2/MeOH, 99/1→98/2 v/v). Yield: 47%. White 

crystals. M.p.: 95-96 °C. Anal. (C13H14N2O) C, H, N. 

 

3-(3-Benzylamino)-piperidin-2-one (5) 

Compound 4 (2 mmol) was dissolved in methanol, and 2 mmol of concentrated HCl 

and 100 mg of Pd/C 10% were added. The mixture was hydrogenated at 3 atm for 3 h. 

After the catalyst was filtered off and the methanol was evaporated the residue was 

dissolved in water and the pH was adjusted to 4. This solution was washed with ether 

and the water layer was adjusted with 0.1 M NaOH to pH 12. The free amine was 

extracted with CH2Cl2, dried (Na2SO4) and the solvent evaporated. White powder. 

Yield: 31%. M.p.: 114-116 °C. Anal. (C13H18N2O) C, H, N. 

 

2-(3-Pyridyl)-benzyl alcohol 

A suspension of 2-bromobenzyl alcohol (1 mmol), and diethyl(3-pyridyl)borane (1 

mmol), Na2CO3 (3.8 mmol), TBAB (1 mmol), and (Ph3P)4Pd (3%) in 2.5 mL of water 

was heated in a microwave for 12 min at 150 °C. The product was extracted with ethyl 

acetate. The combined organic layers were dried (MgSO4), filtered and the solvent was 

evaporated. The product was purified by flash column chromatography. Eluent 

column: CH2Cl2/MeOH, 99/1→96/4 v/v. Yield: 79%. Oil.  

 

2-(3-Piperidyl)-benzyl alcohol (6) 

A mixture of 5.77 mmol of 2-(3-pyridyl)-benzyl alcohol, HCl (5.77 mmol) and PtO2 

(0.38 mmol) in 46 mL of absolute ethanol was placed in a Parr apparatus under H2 (3 

atm) for 3 days. The catalyst was filtered off and the solvent evaporated. After addition 

of water to the residue the pH was adjusted to 12 and the product was extracted with 

ethyl acetate. The combined organic layers were dried (MgSO4) and the solvent was 

evaporated. Recrystallisation from ethyl acetate provided the pure product. Yield: 27%. 

White needles. M.p.: 135 °C. Anal. (C12H17NO) C, H, N. 

 

2-(3-Piperidyl)-benzylic acid (7) 

Compound 6 (2 mmol) was dissolved in 50 mL of acetone. Jones' reagent (chromic 

acid) was added slowly until the orange colour persisted. The pH of the mixture was 

adjusted to 7 with 1 M NaOH and the product was extracted with ethyl acetate. The 

combined organic layers were dried (MgSO4), filtered and the solvent was evaporated. 

The product was purified by preparative HPLC. Anal. (C12H15NO2) C, H, N. 
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3-(3'-Furyl)-aniline (8)  

A suspension of 3-bromofuran (1 mmol), 3-aminophenyl-boranic acid (1 mmol), 

Na2CO3 (3.8 mmol), tetrabutylammonium bromide (1 mmol), and (Ph3P)4Pd in 2.5 mL 

of water was heated in a microwave for 12 min at 150 °C. The product was extracted 

with ethyl acetate. The combined organic layers were dried (MgSO4), filtered and the 

solvent was evaporated. The product was purified by flash column chromatography. 

Eluent: CH2Cl2. Yield: 74%. Yellowish solid. M.p.: 73-74 °C. Anal. (C10H9NO) C, H, 

N. 

 

4-(3'-Furyl)-aniline (9) 

A suspension of 3-bromofuran (1 mmol), 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)aniline (1 mmol), Na2CO3 (3.8 mmol), tetrabutylammonium bromide (1 mmol), and 

(Ph3P)4Pd in 2.5 mL of water was heated in a microwave for 12 min at 150 °C. The 

product was extracted with ethyl acetate. The combined organic layers were dried 

(MgSO4), filtered and the solvent was evaporated. The product was purified by flash 

column chromatography. Eluent: CH2Cl2. Yield: 78%. Yellow solid. M.p.: 92-93 °C. 

Anal. (C10H9NO) C, H, N. 

 

4-Oxo-4-[4-(3'-furyl)-phenylamino]-butanoic acid (10) 

To a solution of 0.63 mmol 4-(3'-furyl)-aniline (8) in 10.5 mL of CH2Cl2 were added 

succinic anhydride (0.63 mmol) and 4-methylmorpholine (0.63 mmol). After stirring 

for 4.5 h the mixture was filtered, the residue washed with CH2Cl2 and the filtrate 

evaporated to dryness. The product was purified by chromatography (eluent: 

CH2Cl2/MeOH, 9/1 v/v). Yield: 27%. Yellow solid. M.p.: 198 °C (dec.). Anal. 

(C14H13NO4•0.3CH3OH) C, H, N. 

 

 

Biology 

The final compounds (Figure 7.2) were tested at one concentration (10 µM) in 

duplicate in the Diversity Profile program, including 68 receptors and 15 enzymes, at 

Cerep (Paris, France). 

 

 

Software 

For the template design we used the Molecule Evoluator software package (Cidrux 

Pharminformatics, Haarlem, the Netherlands, www.cidrux.com). 
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Conclusions and Future Perspectives 

 

 

Conclusions 
 

In this project, we have developed a computer program for de novo molecule design, 

the Molecule Evoluator. It is unique among programs for de novo molecule design 

since it combines three features: an atom-based approach, an evolutionary algorithm 

that can optimize structures, and its interactivity which allows it to profit from the 

knowledge, intuition and creativity of its user. 

 The first feature, the atom-based approach, helps the Molecule Evoluator to search 

all of chemical space, and fine-tune the structures. When using the much more 

common fragment-based approach, one first faces the problem of whether all 

synthetically possible and drug-like fragments have been included, and second there is 

the question whether the reconnection algorithm uses all realistic possibilities of 

synthesis. Covering chemical space with the atom-based approach is much easier and 

more natural. Secondly, our exhaustive repertoire of atom-based mutations (several of 

which lack in other work) allows the molecules to change gradually and adapt 

themselves to their target, instead of making big jumps in structure which usually result 

in large loss of fitness and may tend to force the population into premature 

convergence. 

 The second defining feature of the Molecule Evoluator is the evolutionary 

algorithm on which it is based. While several optimization methods exist (like random 

search, simulated annealing, or just molecular growth), evolutionary algorithms make 

good use of two features of molecular space. First, that molecules close in structure 

generally have related biological activity; evolution’s concept of heredity, of inheriting 

good genes from the parents, makes methods which base the new molecules on the 

previous ones (instead of searching randomly) a good choice. Secondly, both in 
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literature and in our own experiments we found that perhaps the most defining feature 

of evolutionary algorithms, namely crossing different solutions, is also advantageous 

and viable in drug design. Evolutionary algorithms not only use heredity, but also 

crossover, and therefore automatically use the structure of biological activity space to 

their advantage. 

 The third, and perhaps most distinguishing feature of the Molecule Evoluator is its 

interactiveness. While interactive evolutionary computing (IEC) has been used for 

quite some time in diverse applications, it had not yet been used for molecule evolution. 

However, there are good reasons to use interactive evolution in this field. First, there is 

a lack of good “fitness functions” – methods to calculate “how good” a molecule really 

is. Programs to estimate ligand binding energy and ease of synthesis are still very 

unreliable, so evolution without any human intervention will rarely yield good 

structures. However, human domain knowledge on ease-of-synthesis and pattern-

recognition may help. Second, it can be difficult for people to accept the computer 

“prescribing” molecules out of the blue: most chemists would either like a good reason 

or some input of their own. The limitations of current automatic structure evaluation 

would lead to rejection of flawed structures, instead of correction. Third, evolutionary 

algorithms do not only “exploit” existing knowledge, they also explore new 

possibilities. Since a computer can quickly generate many possibilities and has other 

prejudices than a human chemist, interactive evolution can be a valuable idea-

generating machine to complement human creativity. 

 During the development of the Molecule Evoluator, we discovered that the first 

versions needed to be refined to be acceptable to the chemists using them. In the 

following paragraphs we describe some of the problems encountered and the 

modifications implemented in response. 

 The main problem of the first version of the Molecule Evoluator was that many 

structures just did not seem possible to synthesize at all. In particular, common 

substructures like phenyl were almost completely absent, weird substructures like 

peroxide were common, and many structures had overly complicated rings or 

disobeyed chemical rules of thumb, like Bredt’s law which states that a bridgehead 

carbon atom cannot have a double bond (unless the rings have a certain minimum size). 

 To make the molecules more “appealing” and easier to synthesize, we first 

allowed the ME to not only add atoms to a growing molecule, but also a number of 

predefined fragments (carboxy, phenyl, cyanide, etc.). Secondly, we mined the NCI 

database to find the frequencies of the different atom types and 2/3/4-atom 

substructures. Based on the frequency of, for example, O-O in the NCI database we 
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modified the chance that an oxygen atom would be connected to another oxygen atom. 

This automatically enforced chemical rules that state that peroxides are rare, using 

statistics instead of qualitative human intervention. Third, we implemented a couple of 

rules, such as Bredt’s rule and a prohibition of CH2-imines. These rules act like filters 

that prevent molecules that do not obey the given chemical constraints from being 

shown to the user. Mining the NCI also gave us a catalog of ring structures (see the 

“Chemical Clichés” chapter) which were also implemented to filter unknown and 

probably strained rings out. Note that the filters can be activated and deactivated by the 

user, and that the full idea generation potential remains available if desired. 

 The second main point for improvement was user control. For example, chemists 

often had certain ideas about which part of a molecule was important, and should be 

conserved. Also they preferred that the best molecule from the previous generation was 

to be saved always (which is not guaranteed in a normal evolutionary algorithm). 

Thirdly, occasionally a chemist could see an obvious modification of an existing 

molecule, and wanted to put the adapted molecule in the Molecule Evoluator. And 

finally, the molecules produced should preferably be drug-like and obey a number of 

physicochemical restraints. 

 We made various adaptations to address these points. We added atom and bond 

fixation, which can conserve any atom (even hydrogen atoms) and can therefore focus 

evolution on the variable part of the molecule. Secondly, we added elitism, so the 

chosen molecules of the previous generation appear as the first molecules of the current 

generation, allowing a chemist to easily see if their offspring improves over them. 

Thirdly, we added a molecule editing window, which allows the user to adapt ME-

generated molecules and feed them back into the evolution, or even to sketch new 

molecules as input of the evolution. Lastly, we added physicochemical filters to allow 

the user to determine the allowable physicochemical properties of a molecule, such as 

the range in which the molecular weight should fall, and the maximum permissible 

number of hydrogen bond donors. 

 Finally, we tested the Molecule Evoluator to examine whether the concept was 

sound and useful. 

 First we ran a number of small experiments, in which we evolved certain drug 

molecules from scratch (that is, without editing the molecules, though we fixed certain 

atoms/bonds to accelerate optimization in a certain direction) to show that we can 

indeed convert simple substances into drugs. We also were able to reproduce, using 

experimental fitnesses, an optimization pathway of neuramidase inhibitors, which 

shows that our mutations and selection work well with good (experimental) fitness 
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measures. 

 The value of the idea-generating function was tested by creating 300 random 

molecules that obeyed certain physicochemical restraints. A panel of chemists chose 

the most “drug-like” 34 structures, of which a number did not appear as structure or 

substructure in existing databases, and therefore could be considered potential new 

molecule templates. Synthesis of eight of the compounds yielded four compounds 

which showed biological activity in the used essays. It seems that chemists indeed have 

a valuable intuition, and that the ME can inspire the synthesis of truly new classes of 

molecules, unknown before yet possible to synthesize. 

 The Molecule Evoluator has become more advanced over the years, and is at the 

time of writing (May 2008) commercially available. In the Leiden group of Medicinal 

Chemistry, where it has been developed, it is now used in each synthesis project as an 

interactive, idea-generating but responsive aid to get new ideas for structure 

modifications. Several companies have bought versions, and some are quite happy with 

it, as is evident from the following quote:  

 

"Both computational chemists and medicinal chemists have explored the Molecule 

Evoluator and have been excited about the output in terms [of] novel ideas being 

generated and the potential for further enhancements in the future. The real 

advantage of the current programme is that it can be iteratively influenced by trained 

chemists to propose new structures, some of which may look immediately obvious but 

yet had not been previously suggested. Three of our current GPCR-based projects 

have benefited in this way." 

 

Software that allows humans and computers to combine their particular strengths is 

still rare, for drug design the Molecule Evoluator is the only one to our knowledge 

which is currently commercial. This has two likely causes. First of all, interactive 

evolution is itself a young field, most programs for designers (of molecules or 

buildings) are drawing programs which do not give any creative input of their own, as 

they were designed to be computerized replacements for real drawing boards. Second, 

most complex software for molecule design has been created for computational 

chemists and therefore only runs under Unix/Linux workstations and has powerful but 

complex interfaces. The medicinal chemists, the people who design and modify most 

of the molecules and are experts on molecules rather than computers, have been left out. 

Only in the last two or three years software companies are also starting to develop 

versions for Windows and thus for the “normal” chemists. (See for example the 
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Software section in the biweekly ‘Chemical and Engineering News’ of the American 

Chemical Society). But even when a Windows version is available, it will be a long 

road for most programs to also become user-friendly for people who are not experts in 

computational chemistry. As of yet, the Molecule Evoluator is quite lonely in the 

software landscape, but we hope that in the coming years it will be joined by followers 

and colleagues which bring both the computational and creative potential of computers 

to the medicinal chemists directly. Software has a vast potential for changing drug 

design, if we invest effort and creativity in it. 
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Future Perspectives 
 

 Prediction is very difficult, especially about the future. 

 Niels Bohr (1885 – 1962) 

 

Science is never finished. The research described in this thesis may have produced a 

useful computational tool for the medicinal chemist, and it may have given more 

insight into chemical databases. However, we nor others have as of yet produced the 

perfect medicinal chemistry tool, and many problems in drug design remain. The 

previous chapters of this thesis have covered what we have done in our research. This 

last part will contain reflections on where to go from here. I hope this chapter will 

provide ideas and inspiration to researchers and non-researchers alike on what subjects 

in computational drug design would be worthwhile to investigate, and in which 

directions we could go. 

 I will begin with some thoughts on future directions for the Molecule Evoluator, 

then discuss the possible evolution of evolutionary algorithms in drug design, and will 

end by zooming out to look at the general role of software in drug development, and 

talk about some of the ways in which we can increase the ability of software to help us 

design new drugs. 

 

 

The future of the Molecule Evoluator 

 

At the time of this writing, we have performed experiments which have shown that the 

Molecule Evoluator can at the very least help find novel biologically active molecules. 

We may never know if chemists without the Molecule Evoluator would have been as 

creative as chemists using the Molecule Evoluator, but it is very likely that computer-

generated structures can complement the brainstorming by chemists, which may 

mainly design variations on the molecules they already know. For that reason, the 

Molecule Evoluator as it is now may remain useful for a long time to come. 

 To enhance the usefulness of the Molecule Evoluator further, there are numerous 

possibilities: improving the speed at which molecules are generated, comparing the 

effects of different crossover functions, making the user interface even more intuitive, 

improving the display so that the user can see very quickly which mutations have been 

generated, offering calculations of more physicochemical properties (for example pKa) 

or linking the Molecule Evoluator to third-party software that can calculate those 
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properties, and numerous other tweaks and enhancements. At the moment there are 

however three points which I think most promising for future updates: changing the 

structure generation to yield even better structures, linking the Molecule Evoluator to 

other software and databases, and experimenting with computational fitness 

evaluations. 

  

Ease of synthesis: less boring, less impossible, more novel? 

From conversations with users, we found that the main factor determining how much 

they liked the Molecule Evoluator was the ratio of “good” molecules to “bad” 

molecules. Good molecules are those molecules that are novel and seem relevant or at 

least can be easily changed into a molecule with a good structure. “Bad” molecules are 

those molecules which are boring (not very novel), irrelevant, or plainly impossible to 

synthesize. 

 The most significant way to enhance the use that chemists get out of the Molecule 

Evoluator would therefore be increasing the number of good molecules while 

preferably decreasing the number of bad molecules. With previous adaptations we have 

already succeeded partially in this, and it is certainly possible to further improve our 

results with some additional adaptations of the code. 

 At the moment the best method to improve the ratio of good to bad molecules 

seems to be to diminish the occurrence of the main types of bad molecules: the 

'impossible' molecules, the 'irrelevant' molecules, and the 'boring' molecules. 

 The 'impossible' molecules are those molecules which cannot be synthesized. We 

have already reduced their number with chemical filters and giving the user the option 

to only allow known ring structures; further feedback will undoubtedly allow us to 

increase the number of filters that can be applied to a molecule. The 'irrelevant' 

molecules are only created when the Molecule Evoluator cannot find a mutation that 

works, which mostly occurs in molecules where many atoms or bonds have been 'fixed' 

by the user. The solution to this is to rewrite the mutation algorithm: at the moment it 

picks a random atom from the molecule to mutate, which fails if that atom has been 

fixed by the user – forcing the Evoluator to create a random/irrelevant molecule instead. 

Rewriting the mutation algorithm so it picks only from the atoms which are not fixed 

will give a much greater mutation success rate and therefore a much lower production 

of irrelevant molecules. 

 The final way to decrease the amount of “bad” molecules is to tackle the boring 

molecules (this is for interactive evolution. An automatic fitness function cannot be 

bored). A chemist may find certain mutations boring or “not novel”. The aim therefore 
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is to find out which mutations are generally found interesting, and which are not. 

Finding out these preferred or unpopular mutations can be done by either directly 

observing a user or by creating special statistical subroutines to observe which 

mutations (atom addition, deletion, insertion) produce molecules that are most often 

selected or not selected, and what kind of additions/deletions/insertions are most 

interesting. Such an investigation might for example find that adding a methyl group to 

a benzene ring is “boring”, while adding a hydroxy group to the same ring is 

“interesting”. The probabilities of those specific mutations can then be adjusted 

appropriately. 

 In conclusion, adapting the Molecule Evoluator to change the ratio of good to bad 

molecules in a beneficial way is certainly possible with user observation and feedback 

and some reprogramming. Of all the possible options to improve the Evoluator, this 

optimization may have the strongest impact on user-friendliness and frequency of use, 

and would therefore be a prime target for implementation. 

 

Linking the Molecule Evoluator to databases 

A second area for improving the Molecule Evoluator turned up during our own tests. 

While trying to find novel biologically active molecules, every compound the chemists 

found interesting had to be manually looked up in the CAS database. While this 

database search was by far not as much work as eventually went into synthesizing the 

truly novel compounds, it taught us that it would be incredibly handy if one could look 

up the Molecule Evoluator-generated structure or similar structures in the user's 

favourite chemical databases by just pressing a button. A useful improvement would 

therefore be a link to databases that would allow chemists to find whether the molecule 

suggested by the Molecule Evoluator exists in its entirety or as a substructure, and if it 

exists, how it can be synthesized (or ordered). For large and wealthy institutions, links 

to commercial databases like Beilstein and CAS may be possible, but more exciting is 

the opportunity brought by the advent of large public databases like PubMed, 

PubChem, eMolecules and ChemSpider to give all users of the Molecule Evoluator the 

chance to have structures automatically checked with literature.  

 Databases could not only be used for checking structures, but can also help to 

create structures. If, for example, a chemist is looking for alternatives for a certain ring 

in a molecule, it would be very useful if he could view a list of the most common ring 

systems from our 'chemical cliché' database next to the molecule editing window, as 

that could give many ideas for changes. A similar approach could be taken for 

substituents, where the chemical clichés fragment database or a specialized database 
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like a bioisosters database could be used to find replacements that the chemist might 

not have thought of yet. 

 

The Molecule Evoluator and automated evolution 

Interactive evolution has some major advantages over automated evolution, mainly that 

it can use expert knowledge much more easily than any fitness function designed by 

computer programmers. However, this requirement for expensive expert time is also a 

disadvantage, and given the successes of the interactive mode of the Molecule 

Evoluator, one could consider adding options for computational chemists who want to 

use automated evolution. 

 While adding a feature for automated evolution is possible (in fact, it has already 

been done in one or two individual cases), to make the automated evolution perform 

optimally one needs to change more than the code for the fitness function. Automatic 

evolution and interactive evolution, despite their apparent similarity in approach, are as 

dissimilar (if not more dissimilar) as tennis and table tennis.  

 The first dissimilarity of automated versus interactive evolution is the absence of 

user fatigue. This opens up the desirable possibility to create larger generations than 

the 12-20 which are practicable for user feedback (50-100 molecules seems to be about 

the optimum size if we consider investigations such as that of Douguet et al.1, since it 

may avoid the premature dead ends which endanger small populations and the 

'drowning out' of the good genes in very large populations. Larger populations seem to 

work better when split into 'islands'). Also, automated evolution doesn't need settings 

that prevent molecules that differ only slighly from their ancestor being created, as a 

small increase in fitness is useful, whereas such a molecule would strike a human as 

uncreative and increase user fatigue.  

 The absence of user selection, however, also has some disadvantages. First of all, 

automatic evolution makes it necessary to implement a selection function: for if the 

user isn't selecting the “good” molecules, the programmer has to decide how to select 

the best molecules for further evolution. Take the best five molecules? Or ten 

molecules? Use tournament selection? Roulette wheel selection? A second 

disadvantage, which we discovered during the docking experiment (Chapter 6), is that 

atom-based evolution when not supervised by humans tends to produce molecules 

which over time become more and more difficult to synthesize. Therefore, automated 

evolution needs stricter filters to sufficiently dispose of unwanted structures. 

 In summary, unlocking the full potential of automated evolution requires changing 

more parts of the Evoluator than the fitness function – the automatic evolution would 
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need to be at least partially split from the code for interactive evolution. On the positive 

side, automated evolution also offers opportunities. Performing automated evolution 

with a good fitness function may give us a better idea what parameter settings and what 

mutations or crossover operations are optimal for drug design, and allow us to adjust 

the Molecule Evoluator accordingly. If we keep studying drug design and evolutionary 

strategies for drug design, the Molecule Evoluator may one day not only be the best 

interactive evolutionary algorithm for drug design, but also the best evolution-based 

program for automatic drug design available. 

 

 

General perspectives on evolutionary algorithms in drug design 

 

Useful as they are, evolutionary algorithms aren't the “cute new kid” in computational 

drug design anymore. They were immensely popular in the late 1990's, but interest 

waned as it grew more and more difficult to think of yet-unpublished applications and 

it turned out that evolutionary algorithms, like all methods before them, were not the 

“cure-all, one-size-fits-all”-solution that drug designers have been seeking for so long. 

I have discussed my view of the future of Evolutionary algorithms in 2005 in my 

review on evolutionary algorithms in drug design (Chapter 2), in which I discussed 

various possible developments such as creating standardized test databases for 

chemical problems and evaluating newer types of evolutionary algorithms. Currently, 

evolutionary algorithms are already unobtrusively integrated as standard tools for 

experiments, for example for descriptor selection in a virtual screening experiment2. 

For new problems too, evolutionary algorithms are becoming easier to try out as 

flexible optimization methods, due to the development of EA toolkits such as the GA 

Playground, OAT, Lil-gp, and ECJ3. However, in my mind two ideas seem most 

important: adding further domain knowledge to evolutionary algorithms, and the use of 

evolutionary algorithms in novel or at least uncommon ways in drug design, such as 

modelling and data mining. 

 

Adding knowledge to evolutionary algorithms 

The main bottleneck in successful application of evolutionary algorithms in drug 

design is that finding the best solution (or even a very good solution) often takes more 

computer time than is available. This is both because of the “high dimensionality” of 

many drug design problems (many parameters need be optimized simultaneously) and 

because fitness functions often take much time to be calculated. While the increasing 
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computer speeds may help here, it may even be more important to perform the 

optimization itself in more intelligent ways. 

 Evolutionary algorithms can be improved by testing and comparing different 

models (differing in population size, selection pressure, etcetera), but more important 

will be the collaboration between computer scientists and experts in the problem 

domain, such as drug design. Currently, relatively simple evolutionary algorithms are 

often used since they shorten programming time – unfortunately, these same 

algorithms are afterwards too easily carried over into the commercial version where the 

'saving' of programming time is paid back with interest as the inefficient algorithm is 

run thousands of times. Only with knowledge of the problem itself can one develop 

rough fitness functions which can eliminate patently bad candidates before they are 

subjected to a more accurate fitness calculation, create meaningful mutations that turn 

good solutions into other good solutions instead of impossible ones (for example, 

producing a carbon atom with five bonds), split the solutions as much as possible in 

semi-independent sub-systems for faster optimization, and make optimal use of the 

knowledge obtained by the evolution so far (for example, learning that a certain type of 

atom at a particular position produces very good scores). It may be difficult for 

computer scientists and drug designers to understand each other and communicate 

one's knowledge and aims clearly to the other party, but in the end the algorithms that 

will survive and turn out to be most useful in a given problem domain will not be the 

newest generic computer science methods, but well-chosen basic methods, carefully 

optimized to suit the problem at hand. 

 

Future applications of evolutionary algorithms  

Evolutionary algorithms are currently experimentally or routinely used in most phases 

of drug discovery. The most important of their current applications are their 

contributions to the “core” business of finding new leads by computer, namely by 

library design, de novo design, and virtual screening. Of these, “virtual screening” 

(evaluation by computer) of a potential lead is hardest by far, since proper 

computational evaluation needs to answer six questions: 1) is the target important in 

the disease, 2) does the candidate molecule interact strongly enough with the target, 3) 

can the molecule get to the place of action, 4) how and how fast is the molecule 

metabolized, 5) are the molecule and/or its metabolites toxic, and if so, how much, and 

6) is the molecule excreted slowly enough.  

 While docking tries to answer question 2, and Lipinski's rules and calculating the 

polar surface area of the molecule help us somewhat with 3 (barring active transport), 



230 

 

reliably predicting any of these relevant properties requires good-enough predictive 

models, and even a much-researched subject such as docking can definitely be 

improved greatly yet. The main challenge of computational drug design is therefore to 

develop better models for the interaction of a molecule with the human body.  

 Creating models generally starts with collecting large amounts of raw data (for 

example, molecules and their intestinal absorption), calculating descriptors (properties 

of the input molecules, such as the weight or the polar surface area of each molecule) 

and picking a computational model (linear regression, neural network, support vector 

machine) that links those descriptors to the measured property. With the unavoidable 

measurement errors in experimental data, perfect mathemathical relationships are 

generally not possible, but evolutionary algorithms could help in parameter selection 

(as they have done for QSAR), and even with computational model selection. In some 

relatively simple cases this is already possible, such as evolutionary algorithms 

producing mathematical equations out of pictures of moving systems4. In the end, 

evolutionary algorithms could become more independent and work on more complex 

problems, becoming untiring generators and testers of hypotheses. Even more than 

today, future evolutionary algorithms may supplement human brain power in making 

better models to predict how a particular molecule will fare as a drug. 

 

 

The future of computational medicinal chemistry 

 

While medicinal chemistry changes, its basic challenges stay the same. People will 

continue to have diseases and want to get rid of them, and unless genetic modification 

of living humans becomes easy, reliable and safe (which seems very unlikely to happen 

this century) we will in most cases need to fight the diseases with drug molecules. 

These will remain difficult to find since we do not always know the mechanism of the 

disease or the best protein to target, and even if we know those we may struggle to find 

the molecule that interacts effectively with that target, can get to the place of action, 

and does not have unacceptable side effects or toxicity. 

 

Most current sub-fields of computational medicinal chemistry, such as docking and 

prediction of ease of synthesis will probably grow and improve over time, though that 

is likely to be a slow and laborious process. The algorithms may never be perfect, but 

they may become so good as to be too useful to ignore. The three areas which interest 

me most, however, are still much earlier in their development: automated data analysis, 
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simulations and interactive software. 

 

Automated data analysis 

In theory, knowing the DNA encoding for a protein should be enough to calculate the 

three-dimensional structure of the protein and find molecules which bind to it, by 

applying quantum mechanics and molecular dynamics. Similarly, an optimum-yield 

synthetic route for a new molecule could be found by using retrosynthesis and quantum 

mechanical calculations on a library of available reagents. In practice, however, we 

need lots of data both as primary input (you can't understand an organism without 

knowing at least its entire DNA), and as a substitute for calculations which would be 

theoretically possible but far too computationally intensive to be practical. If you 

would need either 50 years of computer time to correctly calculate the affinity of a lead 

compound to a protein using quantum mechanics and thermodynamics, or one hour of 

biochemical testing, the latter is far preferable. Therefore drug design still needs lots of 

experimental data to be efficient. 

 These experimental data are increasingly becoming available through scientific 

journals creating online versions, electronic lab journals collecting the primary data 

generated by researchers, and the growth of public databases such as PubChem and 

Wikipedia. This increase of data is promising, but current search methods have 

difficulties exploiting it: it can be incredibly hard to find the particular piece of data 

one is looking for. For example, in my stints as a science journalist I have spent much 

time being frustrated and giving up searches when Google couldn't locate a proper 

answer to even elementary scientific questions such as which hormones affect the 

release of GnRH from the hypothalamus. This information undoubtedly exists in 

reviews and/or books, and a more elaborate searching through reviews could probably 

uncover it, but still the (time) cost of finding particular information is much higher than 

would be technologically necessary. Making information easier to find can reduce both 

the time and the cost of any research project. 

 A large part of making better use of existing data will be economical and 

organizational: somebody has to pay for the servers to house the data and the 

transformation of (scientific) texts and tables into a computer-readable format; in many 

cases the 'owner' of the data (such as a scientific journal) will also want financial 

compensation. But what are the technological aspects? 

 The first part of technology will be disambiguation and transforming text into 

something the computer can more easily relate to search queries; for example a text 

like “the melting point of benzene is +5.5 oC” would fit better in a computer database 
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as “object=”benzene”::==reference=”www.merckindex.com/benzene”=>property =  

“melting point”=>value=”278.5”=>unit=”K”. Ontologies/synonym lists and lists of 

standard terminology will remain necessary to transform raw data into something that 

is as standardized and unambiguous as programming language statements (for example, 

instead of “melting point” my version of the Merck index occasionally uses the less 

standard “solidif”). 

 The second and probably greater challenge will be to make search methods less 

“fussy” and more “fuzzy”. For example, when designing a synthesis route for a 

compound, it may be that the compound has never been synthesized before, or that it 

has been synthesized, but via a rather inefficient route. Finding the synthesis route for 

similar compounds can help in both kinds of cases. However, despite Tanimoto 

coeffients and fingerprint calculations, it is unlikely that there is an universal measure 

of molecular similarity (similar molecular weight? Similar size? Similar melting point? 

Similar biological effects?). Domain experts and ideally data mining should be able to 

discover what the similarities are in compounds synthesized via the same route, for 

example, re-discovering that alcohols can be made out of available halo-alkanes using 

a Grignard-reaction, but also in which cases Grignard fails or is not used at all. This 

will be a complex piece of data mining where programmers and domain experts will 

have to work together, but having a system that can learn from existing data and adapt 

its knowledge when encountering new information would be extremely useful to build. 

 There are already several individuals and groups striving to improve data 

management in science from the 'let's do the same as always, only electronically' stage 

to transforming global scientific knowledge into a truly useful search engine, for 

example the Scientific Publishing Taskforce which is developing methods to make 

scientific publications computer-readable (http://esw.w3.org/topic/HCLS/Scientific 

PublishingTaskForce), attempts to unify data from many scientific sources into a single 

encyclopedia/wiki (http://www.wikipathways.org/index.php/WikiPathways) and a 

more fuzzy version of PubMed, eTBlast (http://invention.swmed.edu/etblast/ 

index.shtml). While the diversity of initiatives indicates that this field is far from ripe 

yet and standards need to be developed to unify the different projects, going into the 

direction of converting data into standardized formats and making search engines more 

intelligent will in my opinion greatly improve data availability and increase literature-

search efficiency, and drug design can only profit from that.  
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Simulation 

The paragraph on future applications of evolutionary algorithms focused on model 

development. Models, however, are not limited to linear regression models or neural 

network models or decision trees only. One of the most interesting directions that 

modeling is going is the simulation of cells, tissues and even of entire human bodies. 

Models for the heart are already available, as are models for blood flow and some 

cancers5. Evolutionary algorithms already help find good parameters for conventional 

models (such as neural networks), likewise they may help fine-tune simulations by 

supplying good values for missing parameters. All in all, though, evolutionary 

algorithms would only be a small part of the total work on simulations – many 

computational methods and algorithms are likely to be necessary, from logic 

programming and cellular automata for rough qualitative models to differential 

equations working on small simulated 'boxes' of cellular cytoplasm and cell membrane 

for the most advanced models. 

 While it may be difficult to create good simulations, it would be amazingly useful 

if we would have more reliable models for what happens in the various tissues in case 

of disease, and what the effects of various interventions would likely be. In contrast to 

biological experiments, it is very easy to knock a gene out in the computer or let a 

protein be deactivated fully without the need to discover a strong and selective protein 

antagonist first. Even better, good computer models could act as “living encyclopedias” 

of current biological knowledge, linking the many findings of biological research into 

one easily accessible and correctly interconnected whole, growing more and more 

accurate the more we learn about biology. Creating excellent simulations of biological 

systems may be one of the most difficult projects that could support drug design, but its 

huge advantages in both allowing us to test compounds reliably without endangering 

human volunteers and understanding the true mechanisms and complexities of disease 

will also probably make it the most useful of all possible software if we succeed. 

 

Interactivity 

On the surface, interactive evolution may look like nothing more than a speeding up of 

the usual process of the medicinal chemist stating the target and the constraints to the 

computational chemist, who programs these into the computer, which produces new 

molecules. It is indeed an advantage that interactive evolution can shorten and speed up 

this cycle, but the truly qualitative difference is that interactive evolution can use one 

resource which automated evolution can not take advantage of: the subconscious 

knowledge and expertise of the medicinal chemists. 
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As I stated in the introduction of this thesis, major progress could be made by letting 

people and computers work together more productively, complementing each other's 

strengths. While delegating simple tasks to computers has of course been done since 

the dawn of computing, for example by humans creating the formulas for the 

spreadsheet and the computer doing the calculations, only more recently computer 

programmers have deliberately started to try use human brain power. Interactive 

evolutionary algorithms are one example of this, another is the program C3vision 

which makes an EEG of the user's brain activity while (s)he is quickly browsing 

images, and can detect when the user sees something interesting much faster than the 

user him/herself realizes it, thereby speeding up scanning of images tenfold6. The 

human processing capabilities can also be tapped via games, for example 'fold-it' 

(http://fold.it) which lets humans predict protein folding quite successfully, as 

predictions by fold-it players won seven prizes at the protein structure prediction 

contest CASP8, outperforming purely computational methods, and in one case even 

outperforming professional scientists.  

 What will the future be of such interactivity between man and computer? For now, 

humans seem to excel in combinatorial problems (such as finding the right folding for 

a protein, where calculating the energy score is probably rather fast) and problems 

which require knowledge which is hard to make explicit ('hunches'). Docking could 

undoubtedly be performed similarly to fold-it, at least when the docking scoring 

functions have become more accurate. And perhaps humans could be trained to get 

toxicity “intuition” by showing different structures and making them guess whether a 

compound is mutagenic or not, perhaps recognizing patterns which may be difficult to 

find by computer.  

 It may be that human-computer interactivity will one day be surpassed by 

computers which either can process data in a human-like way or are so fast that they 

won't need the speedup provided by human knowledge anymore. But such advances 

are only likely to happen in the very far future, if at all. For now, the more we learn 

about computers and problems, the more we find that computers are not yet the answer 

to all our problems and that human experts are unexpectedly potent problem solvers. 

Making human-computer interaction work well is a field of research in itself, but the 

better we become at it, the more powerful our capabilities in science and drug research 

will become, leaving 'computer-only' or 'human-only' techniques far behind. 
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In closing 

 

Computational drug design has come far since the first QSAR programs and molecule 

databases, and the Molecule Evoluator is certainly not the end point of its ongoing 

evolution. There have been quite some successes already (for example with virtual 

screening), but we can still do better. In my opinion, software developers should strive 

to make drug design software grow in three directions: deeper, wider, and closer. 

 Deeper software will be software that more elaborately uses core scientific 

knowledge such as quantum mechanics, molecular dynamics and thermodynamics to 

improve the accuracy of predicting ligand affinity, compound metabolism and other 

phenomena. The main challenges here are integrating the diverse formulas and 

principles of chemistry and physics (for example, ligand affinity prediction also needs 

accurate prediction of the energy of (de)solvation of the ligand), and speeding up the 

calculations so that accurate enough results are obtained in the computer time available. 

Wider software, which focuses on combining and comparing data, may be able to help 

us where calculations are yet too slow – by recognizing patterns in experiments we 

may in some cases be able to predict important properties from 'data-based' models 

where 'computation-based' models are as of yet too time-consuming. Software casting a 

wider net over our current scientific knowledge may also help us find connections 

between different subjects, by integrating the data on chemistry, biology and genetics 

into one organized whole. Finally, developing closer software means that we should 

strive to make software more accessible to 'lay' users, so it can be used more easily by 

scientists who are not experts in computer programming. For some software products, 

this would involve creating Windows versions, for almost all programmers it would 

mean focusing much more on user-friendliness and the user's goals. Consciously 

seeking to develop the most intelligent task division between computer and user will 

also greatly increase the user's power to tackle scientific and drug design problems.  

 Developing deeper, wider and closer software may never bring 'perfect' 

computational drug design as was perhaps once envisioned. It is quite likely that it will 

create computer programs which will be totally unexpected, and tackle problems we 

may not even know about yet. Only one thing is certain: by working steadfastly on 

finding new ideas and evolving our software, we will be able to increase our 

understanding of biology and drug design to a depth we would now deem incredible. 

May that understanding be used effectively for the progress of science, and for the 

health of humanity. 
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Summary 
 

Designing drugs is hard. For many illnesses there are no effective drugs available (for 

example, for multiple sclerosis), in other cases existing drugs are not always effective 

enough (cancer). And even when effective treatment is available (for example for HIV), 

the drugs may have side effects that investigators and patients alike want to diminish. 

Chapter 1 introduces this thesis, and explains why it is so hard to design drugs. It also 

discusses how computers could help in the drug design process, as well as the 

advantages of effective collaboration between human drug designers and computers. 

Chapter 1 also explains some of the terms that are used throughout this thesis, such as 

data mining and docking, and it closes with an overview of the rest of the chapters. 
 Chapter 2 discusses one of the core methods used in our investigations: 

evolutionary algorithms. It describes the basic theory of evolutionary algorithms, and 

gives an overview of the different uses of evolutionary algorithms in drug design, 

varying from library design to QSAR and docking. It then compares these applications 

of evolutionary algorithms, and concludes with suggestions for future applications and 

further research. 
 The other main computational method we used, data mining, is discussed in 

Chapter 3. In data mining, one attempts to find patterns or rules in databases. In this 

chapter, we investigated a database of molecules, the NCI database, which, at the time 

of our investigation, contained 250,251 molecules. We were especially interested in 

how diverse this database was, since having a collection of diverse molecular structures 

leads to a greater chance of finding potential new drug molecules. We split all 

molecules in the NCI database into ring fragments and non-ring fragments, and 

determined the frequency of these fragments, as well as the frequency with which 

fragments occurred together in molecules. The molecules in the NCI database turned 

out to be remarkably undiverse: while there were over 10,000 different ring structures, 

the ten most frequent ring systems (<0,1% of the total ring diversity) accounted for 

62% of all the ring systems found in the molecules. On the other hand, thousands of 

ring systems occurred in only one or two molecules. We also found that many 

substructures occurred much more often with each other than would be expected by 

chance, forming 'superfragments', and, conversely, that there were also substructures 

which seemed to avoid each other. The data mining thus yielded lists of rare fragments 

and fragment combinations, which could be used to design new molecules. Such new 

molecules, when added to existing libraries, would increase its molecular diversity and 

thereby increase the chance of finding new drugs. 
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In Chapter 4 we return to evolutionary algorithms, in particular to the challenge of 

designing new drug molecules. When we started our study, there had been many 

investigations using evolutionary algorithms to design candidate drug molecules. 

However, all these approaches suffered from the problem that it is not yet possible to 

calculate a suitable fitness function, namely how good a certain molecule would be as a 

drug. This lack of quality fitness functions made optimization unreliable at best and 

meaningless at worst. Therefore, we decided to use a different approach, that of an 

interactive evolutionary algorithm. Interactive evolutionary algorithms use feedback 

from the user as fitness criterion; so in our case, chemists had to select the molecules 

they liked (which means, the molecules that seemed novel, drug-like and possible to 

synthesize without too many problems). In this way we could use the chemists' 

experience and chemical intuition, which would have been very difficult to 'extract' 

from their brains and program a computer with. We called the resulting interactive 

evolutionary algorithm the 'Molecule Evoluator'. Chapter 4 describes the design of the 

Molecule Evoluator, as well as the coding of the molecules, the different mutations, 

and the extra features that were needed to make the program usable for chemists and 

allow optimal use of their creativity. 
 One of the problems in the first versions of the Molecule Evoluator was that it 

created many molecules which either were unstable or would be difficult to synthesize. 

This annoyed chemists, leading them to abandon the optimization process prematurely. 

To increase the chance that molecules created by the Molecule Evoluator would be 

chemically sensible, we applied the technique discussed in Chapter 3, data mining. We 

mined the World Drug Index, a database that, at the time of our investigation, 

contained the structures of 32,000 drug molecules. In this collection of drug molecules, 

we determined the relative frequencies of small substructures containing one to four 

atoms, and used these data to adapt some of the Molecule Evoluator's mutations. We 

found that this indeed increased the chance that the Molecule Evoluator produced 

realistic molecules, while at the same time not forbidding substructures which actually 

occur in drugs. The exact procedures of the data mining, the adaptation of the mutation 

functions and the methods used to test whether the new mutations improved over the 

old ones are described in Chapter 5. 
 Our literature study for Chapter 2 encountered many evolutionary algorithms for 

designing drug molecules. However, it was difficult to compare the quality and 

effectiveness of these methods because they had not been compared to each other. This 

is unfortunate, since proper validation of molecules, either experimentally or by 

advanced computational methods, costs significant amounts of time and money. 
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Therefore it is important to make one's evolutionary algorithm as efficient as possible: 

an evolutionary algorithm which needs to evaluate only 1000 molecules to reach a 

certain improvement in biological activity would be much preferable over an 

evolutionary algorithm that needs 100,000 to reach a similar result. But what kind of 

evolutionary algorithm would be most efficient? Chapter 6 describes our investigation 

into the importance of one of the main factors in evolutionary algorithms for molecule 

design, namely whether evolution is atom-based (molecules are changed by adding, 

changing or removing single atoms), or fragment-based (where mutations add, change 

or remove multi-atom fragments). We evaluated the molecules by docking them into 

the reverse transcriptase enzyme of HIV. Docking was chosen as a fitness function here 

since it approximated the binding of molecules to a real protein with its irregular, three-

dimensional cavity. While the experiment did not show clear superiority of either 

atom-based evolution or fragment-based evolution, a closer study of the optimization 

processes yielded several insights on how we could improve our evolutionary 

algorithms. The details of the experiment, as well as the suggestions for future 

improvement of evolutionary algorithms for drug design, can be found in Chapter 6. 
 In theory, the Molecule Evoluator we described in Chapter 4 should be able to 

help chemists design new, biologically active molecules. However, does this also 

happen in practice? Chapter 7 describes an experiment in which we let the Molecule 

Evoluator generate 300 structures, of which chemists chose 34 for further investigation. 

By consulting chemical databases, we determined which of those molecules were novel. 

Subsequently, the chemists chose a number of the novel molecules and synthesized 

eight of them. These eight compounds were tested on 83 proteins, and four turned out 

to be biologically active in some way, amongst others on the α-adrenergic receptor. 

This result indicated that the collaboration between chemist and computer using the 

Molecule Evoluator can indeed create novel and biologically active compounds, which 

may be good leads for new drugs. Chapter 7 gives the detailed experimental protocol, 

the structures of the molecules synthesized, and the biological test results. 
 This thesis concludes with Chapter 8. The first part of this chapter contains the 

general conclusions of the investigations described in this thesis. The second part of 

Chapter 8 is dedicated to future perspectives: thoughts on the further development of 

the Molecule Evoluator and on the future role of evolutionary algorithms in drug 

design. It concludes with my vision on the directions that software for drug design 

could or should take in the future. 
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Samenvatting 
 

Het ontwerpen van geneesmiddelen is moeilijk. Voor vele ziektes (zoals multiple 

sclerose) bestaan er nog geen geneesmiddelen, zijn de huidige geneesmiddelen 

onvoldoende om alle gevallen te genezen (kanker), of hebben bestaande 

geneesmiddelen bijwerkingen die we zouden willen verminderen (bijvoorbeeld bij de 

behandeling van HIV). Hoofdstuk 1 leidt dit proefschrift in en bespreekt waarom het 

moeilijk is geneesmiddelen te ontwerpen, hoe computers ons zouden kunnen helpen bij 

het ontwerp van geneesmiddelen, en het belang van goede samenwerking tussen 

computer en geneesmiddelonderzoeker. Ook bespreekt hoofstuk 1 enkele kern-

begrippen die in de rest van dit proefschrift terugkomen, zoals datamining en docking. 

Tenslotte bevat het een overzicht van de andere hoofdstukken. 

 De computermethode die we het meest gebruikt hebben, die van de evolutionaire 

algoritmen, wordt besproken in hoofdstuk 2. Hoofdstuk 2 geeft naast een inleiding van 

de theorie achter evolutionaire algoritmen een overzicht van de verschillende 

toepassingen van evolutionaire algoritmen in geneesmiddelontwerp. Deze toepassingen 

zijn onder te verdelen in het voorspellen van de eigenschappen van moleculen (zoals 

het afleiden van relaties tussen de structuur van een molecuul en zijn activiteit) en het 

ontwerpen van geheel nieuwe moleculen. De verschillende toepassingen die in de 

literatuur bekend zijn worden besproken en met elkaar vergeleken, alvorens mogelijke 

ontwikkelingen worden geschetst en suggesties worden gegeven voor verder onderzoek 

en mogelijke toekomstige toepassingen. 

 Hoofdstuk 3 beschrijft het onderzoek dat ik gedaan heb met een tweede 

computermethode, datamining ('data delven'). Bij datamining probeert men met behulp 

van een computer patronen te ontdekken in een grote database. Hoofdstuk 3 beschrijft 

het vinden en analyseren van patronen in de NCI database, een database van chemische 

verbindingen die ten tijde van ons onderzoek iets meer dan 250,000 moleculen bevatte. 

Van deze database wilden we de diversiteit bestuderen, omdat hoe diverser een set 

moleculen is, hoe groter de kans is dat het uittesten ervan een goed kandidaat-

geneesmiddel oplevert. We splitsten alle moleculen op in ringen en niet-ring-structuren, 

en ontdekten dat de database enigszins 'saai' was. Hoewel er duizenden verschillende 

ringstructuren en niet-ringstructuren in voorkwamen, vormden de tien meest 

voorkomende ringstructuren, die nog geen 0,1% van de totale ringdiversiteit 

vertegenwoordigden, 62% van alle ringen, terwijl er duizenden ringstructuren waren 

die maar in één of twee moleculen werden gebruikt. Ook bleek dat bepaalde structuren 

veel vaker dan statistisch verwacht samen voorkwamen en 'superfragmenten' vormden. 
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Aan de andere kant leken andere structuren elkaar te 'vermijden'. Dit dataminen leverde 

lijsten op met zeldzame fragmenten en ongebruikelijke fragmentcombinaties, die door 

chemici gebruikt zouden kunnen worden om nieuwe moleculen te ontwerpen. Zulke 

nieuwe moleculen, toegevoegd aan de bestaande molecuulbibliotheken, zouden de kans 

op het vinden van nieuwe geneesmiddelen een stuk groter kunnen maken. 

 In hoofdstuk 4 kom ik terug op de andere methode die we gebruikt hebben: 

evolutionaire algoritmen. Hoewel er al vele evolutionaire algoritmen bestonden om 

nieuwe moleculen te ontwerpen (hoofdstuk 2 geeft daarvan een overzicht), hadden al 

die methoden het probleem dat wetenschappers (nog) niet goed kunnen berekenen hoe 

'goed' een molecuul zou zijn als mogelijk geneesmiddel. Daarom besloten we de 

kwaliteit van de moleculen op een andere manier te bepalen, namelijk met een 

interactief evolutionair algoritme. Dat betekent dat de gemaakte moleculen niet door de 

computer worden beoordeeld, maar door chemici. Zo konden we de ervaring en 

chemische intuïtie van de chemici gebruiken, die anders moeilijk te achterhalen zijn. 

Het resulterende programma noemden we de “Molecule Evoluator”. Hoofdstuk 4 

bespreekt de details van hoe we de moleculen codeerden, de mutaties waarmee de 

moleculen veranderd werden, en de aanpassingen die we moesten doen om het 

interactieve evolutionaire algoritme bruikbaar te maken voor chemici, en de chemici in 

staat te stellen hun creativiteit optimaal te gebruiken.  

 Een van de problemen in de beginfase van de Molecule Evoluator was dat het 

programma nog te vaak moleculen produceerde die moeilijk te synthetiseren waren, of 

zo instabiel waren dat ze uit elkaar zouden vallen. Om dat op te lossen hebben we de 

hoofdmethode uit hoofdstuk 3, datamining, toegepast. We gebruikten allereerst 

datamining om te achterhalen hoe vaak bepaalde groepen van 1, 2, 3 en 4 atomen 

voorkwamen in de World Drug Index (een geneesmiddelendatabase die ten tijde van 

ons dataminen ongeveer 32000 verbindingen bevatte), en gebruikten die gegevens om 

de mutaties zó aan te passen dat bepaalde zeldzame substructuren (zoals O-F) veel 

minder vaak gemaakt werden. We testten de methode vervolgens uit op de fragmenten 

die we in de NCI hadden gevonden (hoofdstuk 3), en het bleek dat de door datamining 

aangepaste mutaties inderdaad vaker een ander bestaand fragment produceerden dan de 

oorspronkelijke mutaties. Hoofdstuk 5 geeft de gedetailleerde informatie over het 

dataminen, beschrijft hoe de mutaties precies werden aangepast, en bespreekt de 

precieze resultaten. 

 Een van de lacunes die naar voren kwam uit het literatuuronderzoek voor 

hoofdstuk 2 was dat evolutionaire algoritmen in geneesmiddelontwerp doorgaans niet 

met elkaar vergeleken werden. Zeker in ons veld, het ontwerp van nieuwe 
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geneesmiddelmoleculen, zijn er vele methodes, maar het was niet duidelijk welke 

methode de beste is, ofwel welke methode het effectiefst geneesmiddelmoleculen kan 

optimaliseren. Maar dat is wel een belangrijke vraag, omdat een goede evaluatie van 

een kandidaat-geneesmiddel veel tijd en geld kost, of dat nou gebeurt met een 

geavanceerd computermodel of met experimenten. Een evolutionair algoritme dat maar 

1000 moleculen hoeft te produceren voor een bepaalde verbetering, is daardoor veel 

nuttiger/economischer dan een algoritme dat voor dezelfde prestatie 10,000 moleculen 

nodig heeft. In hoofdstuk 6 onderzoeken we één van de belangrijkste kwesties bij 

evolutionaire algoritmen voor geneesmiddelontwerp: is evolutie die gedaan wordt met 

kleine stapjes (atoom voor atoom veranderen) effectiever dan evolutie die grote 

sprongen maakt (dus hele stukken molecuul ineens verplaatst of verandert)? De 

kwaliteit van elk molecuul evalueerden we met een docking-programma, dat het 

molecuul in het HIV-enzym reverse transcriptase paste en de interactie-energie 

berekende, om een benadering te krijgen van hoe de evolutie zich zou gedragen als we 

de moleculen echt zouden synthetiseren en testen. Atoom-gebaseerde en fragment-

gebaseerde evolutie leken het ongeveer even goed te doen, wel leerden we een aantal 

lessen waarmee we onze oorspronkelijke algoritmen kunnen verbeteren. Het verloop 

van het experiment staat samen met onze discussie en aanbevelingen in hoofdstuk 6. 

 Het door ons ontwikkelde evolutionaire algoritme zou samen met de resultaten 

van het dataminen in staat moeten zijn chemici te helpen bij het ontwerpen van nieuwe 

moleculen. Maar werkt het ook in de praktijk? Om dat uit te testen lieten we de 

Molecule Evoluator 300 moleculen genereren, die door chemici werden beoordeeld en 

aangepast. Uit dit proces kwamen 34 'interessante' moleculen, die we opzochten in de 

databases van Beilstein en de ACS om te kijken of deze moleculen of varianten erop al 

gemaakt waren. Van de moleculen die zowel nieuw waren als er 'geneesmiddelachtig' 

uitzagen, kozen de chemici een aantal uit om te synthetiseren. Uiteindelijk leverde dit 

acht kleine, geheel nieuwe moleculen op. Deze werden op 83 eiwitten uitgetest. Vier 

verbindingen bleken biologisch actief te zijn, onder andere op de α-adrenerge 

receptoren. Hoofdstuk 7 bespreekt dit experiment, inclusief de structuren en de 

syntheses. Het vinden van nieuwe, biologisch actieve verbindingen toonde aan dat onze 

methodes nuttig kunnen zijn voor het ontwerpen van nieuwe kandidaat-

geneesmiddelen: de Molecule Evoluator kan samen met de expertise van chemici 

geheel nieuwe en toch werkzame stoffen ontwerpen. 

 Dit proefschrift sluit af met hoofdstuk 8. Het eerste deel hiervan beschrijft de 

conclusies die ik uit het in dit proefschrift beschreven onderzoek getrokken heb. Het 

tweede deel van hoofdstuk 8 bevat mijn gedachten over de verdere uitbreidingen en 
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toepassingen voor de Molecule Evoluator en evolutionaire algoritmen in 

geneesmiddelontwerp, en een aantal mogelijkheden voor toekomstige software voor 

het helpen ontwerpen van geneesmiddelen. 
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Epilogue 
 

There exists a stereotype of a lone scientist toiling in a laboratory, making great 

discoveries that will amaze the world because of his or her great mind seeing the Truth. 

However, pursuing a PhD makes one aware how wrong that image is, especially on the 

'lone' part. While it may be possible to make great discoveries with nothing but your 

own observations and the knowledge of your predecessors to aid you, my research at 

least would never have been possible without ample intellectual, material and 

emotional support by many different people. 

 First of all, this thesis would never have come into being without the 

encouragement and support of my three supervisors, Ad IJzerman, Joost Kok, and 

Thomas Bäck. Next to obtaining the funds that made it possible for me to pursue my 

PhD without needing a second job to cover my expenses, they guided me in exploring 

their fields of interest, from medicinal chemistry (Ad IJzerman) to data mining (Joost 

Kok) and evolutionary algorithms (Thomas Bäck). Furthermore, they were always 

willing to listen to me whenever I was stuck at something, and mentored me through 

the process of getting my first papers in publishable form. 

 Further support and stimulation during my Leiden period was provided by the 

contacts and discussions with my colleagues both inside and outside the division of 

Medicinal Chemistry. Most of all I enjoyed the discussions within the 'computer group' 

with Jeroen Kazius, whose ominous clothes have never concealed his big heart, Kai Ye, 

who combines a serene spirit with a quick and innovative mind, and last but not least 

algorithm whizz, architecture buff and good friend Siegfried Nijssen. I fondly 

remember the talks with these three on subjects ranging from computer science to 

natural science, from surviving professors to supervising students, and from life as a 

PhD-student to Life as a whole.  

 But not only 'computer people' were important for my research. Crucial for 

developing the Molecule Evoluator were the discussions with and critiques by the 

medicinal chemists, Johannes (Hans) Brussee, Reynier Tromp, Aniko Göblyös, Jaco 

van Veldhoven, Lisa Chang and Ron Spanjersberg, who were willing to help me 

transform the idea of an interactive evolutionary algorithm to something that chemists 

could use. Neither will I forget the great atmosphere in the medicinal chemistry group 

contributed by the biology league/band/posse, Margot, Miriam, Ann, Elisabeth, Rianne, 

Henk, and their students innumerable. My special thanks in the social category go to 

Thea Mulder and Laura Heitman for co-organizing laboratory events, and to the 

memory of Jacobien von Frijtag Drabbe Künzel, organizer, cook and person par 
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excellence, who, despite our very different interests and personalities, always made me 

feel a welcome and worthwhile person. 

 Outside our group, I was honored to work with the “Chris team” from Amsterdam, 

comprising of the constantly busy but ever supportive young scientists Chris 

Oostenbrink and Chris de Graaf. Chapter 6 is the result of this collaboration. I also 

thank the companies Grünenthal and Organon/Schering Plough and their medicinal and 

computational chemists for their willingness to take the time and effort to give 

feedback on the first versions of the Molecule Evoluator. Within Leiden University I 

am grateful for the help of Jelle Goeman, a young mathematician with the rare and 

precious gift of being able to explain statistics clearly to non-statisticians. Jelle was a 

great aid in getting chapter 3 of this thesis published. Also within Leiden University I 

am grateful for the coaching by and conversations with ‘P&O’-man Kick Moors, who 

encouraged me to continue even when the going was rough, and helped me with 

perhaps the most tricky part of science for an “exact” scientist: managing the emotional 

aspects of research. Finally, as my 'farthest collaborator' I thank Wanjin Tang, my 

listening ear in distant Sweden and later in the even more distant Texas, who 

sometimes made me see a situation differently with her Chinese wisdoms, or made me 

smile with her photographs of humorously prepared food. I am grateful for our LDF 

(long distance friendship) during these last six years.  

 I also thank six special persons for helping in the construction of the Molecule 

Evoluator, for teaching me to teach, and for providing me with perhaps the most 

stimulating and inspiring part of my work in Leiden: my students. Computer scientists 

Tijmen and Kim challenged me to extend my communication style to non-chemists, 

which was valuable training. But especially I thank my chemical and 

biopharmaceutical students, whom I had the pleasure and privilege of supervising for a 

longer time: Eelke van der Horst, who would never let so-called 'midnight' stop his 

efforts to solving a programming problem (and has later single-handedly dragged the 

Molecule Evoluator into the age of Windows), Jurre Kamphorst, who tackled (and still 

tackles) research with the same discipline and professionalism as he applied to his 

rowing, Daan Acohen, who sometimes seemed to prefer molecule revolution to 

molecule evolution yet nevertheless made an essential contribution to the Molecule 

Evoluator and chapter 6 by designing and implementing fragment-based evolution, and 

finally Guoxiang Liu, my student from farthest away, for whom computer science in 

Leiden may have been a very strange and stressful environment, but whose 

perseverance and willingness to tackle research problems far out of his comfort zone I 
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greatly admire. I enjoyed my contacts with them, and I hope that they will become 

successful and happy in whatever field they choose. 

 One can however not give to others what one has not been given first. While the 

faults in this thesis are of course wholly my responsibility, for its qualities it is greatly 

indebted to the people who guided my growth as a scientist. Next to my three Leiden 

supervisors, these are the teachers and mentors I had before, who edged me towards 

formulating more sharply and thinking more critically. Most prominent among these 

were Jennifer Venhorst, Rosa Bulo, Andreas Ehlers and Jan Commandeur. I am 

grateful for their guidance. Yet one person among my educators stands out: my high 

school teacher, Olaf Budde. Whereas my other mentors taught me how to do science, 

“Mr Budde” (also informally known as the 'jazz man') did something even deeper and 

more important: teaching me why to do science. He was the living embodiment that 

chemistry is not merely 'interesting', but that it can be creative, fun and wonderful. He 

was a true teacher of the joy of chemistry, and has always inspired me on my path. 

 Lastly, I thank my family for their unwavering support. I thank my sister Nanette 

and her partner Ron for their frequent hospitality, excellent cooking and being there for 

me when I walked through my personal valleys of PhD-doubt. I also thank them for the 

initial designs for the cover of this thesis. I thank my mother for always giving me a 

home in Hilversum whenever I was ill or needed relaxation from work, and for the 

almost unlimited amounts of postcards she has sent me to cheer me up and encourage 

me with my projects, next to taking care that I would exercise properly by walking in 

healthy woods, and would not lack the essential nutrients provided by chocolate and 

Limburg flans. Finally, I thank my father, who from my earliest youth helped ignite a 

love for science and learning in me. When I was little, he read the biographies of 

famous chemists to me at bedtime. He pointed me towards my first chemistry book, 

and has provided me with many volumes of old but fascinating chemistry literature 

even before my official first chemistry lesson in high school. Throughout the years, he 

shared his love of knowledge, science, and pharmacology with me, and he was my 

mentor for my first presentations. But above all he was to me an example of integrity 

and compassion, living the principle that knowledge can be interesting and useful, but 

that a person cannot be complete without compassion and willingness to help others, 

and the courage to do what he or she knows is right. It is the greatest regret of my PhD-

period that I could not finish my thesis in time for him to witness it, but I know that he 

would be proud of me. 

 


