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Stratum corneum model membranes: 

molecular organization in relation to skin barrier function 
 
 
1. The barrier function of the skin is fundamental to life on dry land. (D. 

Attenborough, Life on Earth, Little, Brown and Company, Boston, 
1980) 

 
2. Understanding the permeability barrier function of the skin is 

important for rational design of transdermal drug delivery systems as 
well as for our understanding the etiology, and possible treatment, of 
a range of skin diseases in which barrier function is compromised. 
(J.R. Hill and P.W. Wertz, BBA 1616, 2003, p121-126) 

 
3. The stratum corneum substitute, prepared with synthetic lipids only, 

closely mimics the stratum corneum lipid organization and can 
replace human stratum corneum in permeability studies. (This 
thesis) 

 
4. Because of its adjustable lipid composition, the stratum corneum 

substitute is a suitable model to mimic the lipid organization in 
stratum corneum of diseased skin. (This thesis) 

 
5. Whether an orthorhombic or hexagonal lipid packing is present in 

stratum corneum, is of less importance for a proper barrier function 
than the presence of a proper lamellar organization. (This thesis) 

 
6. The presence of water is not required to form a proper lipid 

organization in a lipid model, mimicking that in human stratum 
corneum. 

 
7. Many papers in the scientific literature on percutaneous absorption 

represent a complex blend of physicochemical theory and 
physiological practicalities. (Brian W. Barry, Dermatological 
Formulations: Percutaneous Absorption, Marcel Dekker inc, New 
York, 1983) 

 
8. If you wish to make an apple pie from scratch, you must first invent 

the universe. (Garl Sagan, Cosmos, 1980, p. 218.) 
 
9. The propositions in a thesis are a rudimentary organ that lost its 

function many years ago. 
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Chapter 1 
 
Introduction 
 

1. The skin barrier function 
The natural function of the skin is to act as a barrier against unwanted 

influences from the environment. The skin consists of three layers, from the 

superficial to the innermost layer: the epidermis, the dermis and the 

hypodermis (subcutaneous fat tissue) (1), see figure 1. The epidermis also 

consists of various layers, of which the stratum corneum (SC) is the 

uppermost nonviable layer. This very thin layer is only 15 to 20 μm thick and 

acts as the main barrier against permeation of substances (2, 3). 

 

 

Figure 1:  Schematic overview of the different tissue layers in the skin. This
figure is adapted from Benjamin Cummings, Pearson Education Inc. copyright 
2009.
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The excellent barrier properties of the SC can be ascribed to its unique 

structure and composition. The SC is generated by the underlying viable 

epidermis. As the structure of the SC is very different from that of the viable 

epidermis, many events occur during SC formation within a very short time 

period. The viable epidermis is densely populated with keratinocytes that are 

generated in its basal layer. During the formation of the SC, keratinocytes 

move into the direction of the skin surface. When passing the viable 

epidermis-SC interface, the cells transform into dead flattened cells 

(corneocytes). Simultaneously, the cornified envelope, a densely cross 

linked protein layer surrounding the corneocytes, is formed by sequential 

deposition of various proteins. Subsequently, a monolayer of non-polar lipids 

is esterified to the cornified envelope. Besides the formation of the 

corneocytes, an intercellular lipid matrix is formed, composed of non-polar 

lipids. 

 

1.1 The structure of the SC 
As described above, the SC consists of corneocytes (dead flattened cells) 

surrounded by the highly impermeable cornified envelope. The corneocytes 

are embedded in a lipid matrix as “bricks in mortar”, see figure 2. The lipids 

in the intercellular regions form crystalline lipid lamellae. The corneocytes 

and the lipid lamellae are oriented approximately parallel to the skin surface. 

As the lipid lamellae form a continuous pathway for diffusion of substances 

across the SC, the lipid domains are considered to play a dominant role in 

the skin barrier function (12). Furthermore, the orientation of the lamellae as 

well as the lipid organization is suggested to contribute largely to the 

excellent barrier function of the SC. 

 
1.1.1 Permeation pathway through the SC 
Although hair follicles, sweat glands and sebaceous glands are potential 

routes of compound penetration, the total surface covered by these 

appendages is only around 0.1%. For this reason compounds applied onto 
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the skin are considered to penetrate primarily via the transepidermal route 

into the deeper regions of the skin. During this penetration process, 

compounds may follow the intercellular or transcellular pathway, depicted in 

figure 2. 

 

 
Because of the highly impermeable character of the cornified envelope, the 

tortuous intercellular pathway has been suggested to be the preferred route 

for most drug molecules (13). Although this is still a subject of debate, 

several studies have indeed reported transport mainly along the intercellular 

space in the SC (14-16). Moreover, it has been demonstrated that drug 

permeation across the SC increases many folds after lipid extraction (17), 

again demonstrating an important function of the lipids for a proper skin 

barrier. Hence, knowledge of the structure and biophysical properties of the 

intercellular lipid matrix is crucial for understanding the skin barrier function. 

Figure 2:  Fluorescence image of Nile red-stained human SC, presented in (9). 
Depicted are two possible transepidermal penetration pathways: The
intercellular route (A) only involves transport along the lipid lamellae, whereas
the transcellular route (B) directly crosses the corneocytes and intervening
lipids. This figure is reprinted by permission from the American Association of
Pharmaceutical Scientists, copyright 2001. 
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1.1.2 Intercellular lipid composition and organization in the SC 

The lipid matrix in the intercellular region is mainly composed of ceramides 

(CER), cholesterol (CHOL) and free fatty acids (FFA), in an approximately 

equimolar ratio (18-22). However, there is a high inter-individual variability in 

this lipid composition (23). The CER consist of two long saturated 

hydrocarbon chains and a small polar headgroup. Each of the twelve CER 

subclasses identified in human SC contains a sphingoid base and a fatty 

acid, which are linked by an amide bond between the carboxyl group of the 

fatty acid and the amino group of the base (18, 21, 22, 24). The sphingoid 

moiety can be sphingosine (S), phytosphingosine (P), 6-hydroxysphingosine 

(H) or dihydrosphingosine (dS), whereas the fatty acid moiety is non-

hydroxylated (N) or α-hydroxylated (A) with chain lengths of predominantly 

24 to 26 carbon atoms. The most remarkable CER are the acylceramides. 

These CER consist of an unusual long ω-hydroxy fatty acid of 30 to 34 

carbon atoms to which an unsaturated linoleic acid is ester-linked (EO). In 

figure 3 the molecular structure of the main CER subclasses in human SC 

are presented. The FFA fraction in SC mainly consists of saturated 

hydrocarbon chains with the prevalent chain lengths being C22 and C24 

(25). 

In 1987 the use of ruthenium tetroxide as a post-fixation agent made it 

possible to visualize the unique lamellar arrangement of the intercellular 

lipids in an electron microscope (7, 26). Multiple lamellae, consisting of a 

broad-narrow-broad sequence of electron lucent bands were observed 

demonstrating an unusual arrangement, see figure 4. A few years later 

small-angle X-ray diffraction (SAXD) measurements on human, pig and 

mouse SC revealed the presence of a long periodicity phase (LPP) with an 

approximately 13 nm repeat distance (27-32). Besides the LPP, another 

lamellar phase was observed using X-ray diffraction. The periodicity of this 

phase is approximately 6 nm and it is therefore referred to as the short 

periodicity phase (SPP). In addition to the lamellar phases (LPP and SPP),  
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 Figure 3: Molecular structure of the CER present in human SC.
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the presence of phase separated crystalline CHOL is also observed in SC 

(33, 34). In subsequent studies using model lipid mixtures it was found that 

the presence of CER EOS (see figure 3), is a prerequisite for the formation 

of the LPP (35-37). Although over the years, a lot of information has been 

gathered on the SC lipid organization and the role the various lipid classes 

play in this organization (26, 33, 35, 37), until now the detailed molecular 

structure of the LPP is not known. In previous studies, several attempts have 

been made to determine an electron density profile of the LPP, using SAXD. 

White et al. performed the first calculations using a block shaped electron 

density profile (27). Our group performed electron density calculations in 

which the electron density profiles were simulated by Gaussian curves (28, 

29). However, both studies suffered from the fact that no swelling of the 

Figure 4: A) Electron micrograph of lamellar lipid structures in the intercellular
space of the outer SC of neonatal mouse skin B) Schematic diagram of the
intercellular space in figure A. Both figures are from (7), reprinted by 

permission from MacMillan Publishers Ltd: JID, copyright 1987. 
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lamellae could be induced and therefore no unique electron density profile 

could be determined. More recently, McIntosh used a mixture of isolated pig 

CER, CHOL, and palmitic acid and performed X-ray diffraction studies (38). 

The results indicated a repeating unit consisting of two layers. However, due 

to the low resolution of the electron density profile the lipid organization in 

the unit cell could not be unraveled. 

Concerning the molecular structure of the SPP, in several other studies 

progress has been made on the fundamental interactions between the lipid 

classes using simplified ternary or quaternary lipid mixtures. The mixtures 

included mainly CER AP with a short acyl chain length of 18 carbon atoms, 

CHOL and cholesterol sulfate. In these studies the neutron scattering length 

density profile was determined of CER rich phases with a short periodicity 

(39-41). However, the phases formed in these mixtures all contain repeat 

distances much smaller than observed for the SPP in SC. Because the 

model mixtures described above do not closely resemble the composition in 

SC, the molecular structure of these CER rich phases might be different from 

the structure of the SPP (42, 43). 

Besides the lamellar organization, the packing of the lipids within these 

lamellae is also of importance for the barrier function of human skin. The 

packing density decreases in the order orthorhombic>hexagonal>liquid, see 

figure 5. Wide-angle X-ray diffraction studies revealed that, at a skin 

temperature of around 32°C, the lipids in human SC are predominantly 

forming an orthorhombic packing, although a subpopulation of lipids form a 

coexisting hexagonal packing (44, 45). It is almost impossible using X-ray 

diffraction to determine whether a liquid phase coexists with the crystalline 

phases, as its broad reflection in the diffraction pattern is obscured by the 

reflections attributed to keratin present in the interior of corneocytes. 
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2. Lipid organization in SC of diseased skin 
Diseased skin generally displays defects in the SC structure which may lead 

to a reduced skin barrier function. For example, in lamellar ichthyosis (LI) 

patients the activity of one of the enzymes involved in the formation of the 

densely packed cell envelope is reduced, most probably rendering a more 

permeable cornified envelope (46, 47). Not only enzymes involved in the 

synthesis of protein structures in SC are impaired in diseased skin. In 

several skin diseases the activity of enzymes involved in the synthesis of the 

lipids may be altered as well. For example, in type 2 Gaucher’s disease 

Figure 5: Schematic overview of the types of lateral lipid packing A) Side view
showing the lamellae B) Top view showing the lateral packing of the 
hydrocarbon chains. This figure is from (11), reprinted by permission from 
MacMillan Publishers Ltd: JID, copyright 2001. 
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patients, the level of glucocerebrosidase is strongly reduced, resulting in a 

strong increase in the ratio of glucosylceramides/CER, leading to an altered 

lipid organization and a subsequent reduction in the skin barrier function (48-

50). This demonstrates that the CER are very important for a proper barrier 

function. In LI skin, in addition to small changes in CER composition, the 

level of FFA is strongly reduced compared to that observed in healthy SC 

(51). Furthermore, SAXD studies with SC of LI skin revealed an altered 

lamellar organization, as the diffraction peaks in the scattering profile were 

located at higher scattering angle revealing smaller spacings than in SC of 

healthy skin (51). Freeze fracture electron microscopy and electron 

diffraction techniques have also been used to study the lipid organization in 

LI patients (11). The results showed that the lamellae in LI skin exhibit strong 

undulations compared to normal skin, confirming an altered lamellar 

organization. Another example is atopic eczema (AE), which is frequently 

observed in children especially in the industrialized countries. There is 

increasing evidence that the impaired skin barrier function is causative for 

AE. A defect barrier facilitates the transport of allergens and irritants into the 

skin resulting in skin inflammation.  As this disease is a major problem for the 

western society, many research groups devoted on the skin barrier are now 

focusing their research on AE. However, there is only limited information 

about the lipid composition and organization in SC of AE skin. It has been 

reported that in the SC of AE patients the enzymes sphingomyelin deacylase 

ceramidase and glucosylceramide deacylase are increased in activity, 

resulting in a decreased CER level (52-60). Although the CER composition 

and the ratio between the FFA, CHOL and CER are reported, almost no 

information is available on the changes in the SC lipid organization in AE 

patients. In 2001 the lipid organization in three AE patients was investigated 

with freeze fracture electron microscopy and electron diffraction (ED) in a 

limited number of patients (11). In these patients the frequency of the 

hexagonal lateral packing was significantly increased compared to that in 

normal skin. In the 1980s, the lipid organization in essential fatty acid 
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deficient (EFAD) SC has also been elucidated (26, 61). It appeared that 

elimination of linoleic acid from the diet of pigs resulted in a progressive 

increase in the oleate content in CER EOS at the expense of the linoleate 

content. This increase in CER EOS-oleate content was accompanied by a 

strong reduction in the skin barrier. This change in lipid composition is of 

interest to study, as in normal skin the CER EOS-oleate/CER EOS-linoleate 

ratio increases dramatically during the winter season and is also observed to 

be one of the characteristics of cosmetically dry skin (62, 63).  

Furthermore, in psoriasis skin the keratinization process is deranged and the 

barrier function decreased (64). Analysis of CER from the psoriatic scale, 

compared to those from normal human SC, revealed a reduction in the CER 

EOS levels and in the CER containing the phytosphingosine base (65, 66). 

Recessive X-linked ichthyosis skin is also characterized by an impaired skin 

barrier function (67). As far as the lipid composition is concerned, a strongly 

increased level of cholesterol sulphate has been reported which also 

accounts for the pathological scaling (67-69). In previous studies it was 

shown that an increase in cholesterol sulphate level resulted in a change in 

the lipid organization. However, whether this change in lipid organization is 

responsible for the skin barrier impairment is not yet known. 

As shown above, diseased skin often parallels with an altered SC lipid 

composition, which may lead to a change in the lipid organization. This in 

turn may be an important factor for the impaired skin barrier function. In 

order to understand the effects of an aberrant lipid organization in dry or 

diseased skin, information on the relation between lipid composition, lipid 

organization and barrier function is crucial. However, this is difficult to obtain 

with diseased human skin, as this is almost not available and in addition SC 

has a very complex structure. This makes it difficult to delineate the link 

between lipid organization and lipid composition in diseased human skin. 

Furthermore, as it is impossible to modulate systematically the lipid 

composition in SC, the use of lipid membranes in which the lipid composition 

can be varied on demand, offers an attractive alternative.  
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3. SC lipid models 
 
3.1 Ternary and quaternary lipid mixtures 
These mixtures generally incorporate one or two individual CER, a fatty acid 

and CHOL. As the focus is usually on only one CER class, the advantage of 

these simple systems is that the interpretations of the lipid organization are 

more detailed than in multi-component systems. Therefore, these mixtures 

are well suited to investigate fundamental interactions between different lipid 

classes (70-73). For example, It has been shown that, regardless of the type 

of lateral packing, hydrogen bonds between headgroups play an important 

role in the order-disorder transition temperature (70). 

However, the limited chain length variation in the ternary and quaternary 

systems renders them more crystalline and due to a mismatch between the 

CER and FFA chain lengths the systems often exhibit phase separation (41, 

74, 75). In human SC up to 12 CER classes and multiple FFA are present 

exhibiting a broad variation in chain lengths. This variation in chain length 

and headgroup architecture increases the ability to form solid mixtures and 

reduces the formation of separate phases (76). Another difference between 

single component CER mixtures and the more complex mixtures is the 

inability to form the LPP in the former. Because of the high crystalline 

character, the absence of the LPP and the tendency towards phase 

separation, the ternary and quaternary mixtures are less suited as models to 

mimic the lipid phase behaviour in SC. 

 

3.2 Multi component lipid mixtures 
Before the synthetic CER classes became available, models mimicking the 

SC lipid composition were prepared using CER isolated from native SC. In 

2001 we observed for the first time that mixtures prepared from CHOL and 

isolated human CER form two lamellar phases with periodicities of 5.4 and 

12.8 nm, closely mimicking the lipid phase behavior in human SC (36). In 
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these mixtures, however, the lipids form a hexagonal lateral packing 

independent of the CER:CHOL ratio. With these mixtures, studies were also 

performed focusing on the role of CER EOS. Phase behavior studies with 

equimolar CHOL:CER mixtures lacking CER EOS revealed that the LPP was 

only weakly present, indicating that CER EOS plays a prominent role in the 

formation of the LPP (35, 77). 

Furthermore, studies with lipid mixtures containing CHOL, CER and FFA 

have also been performed. To mimic the FFA composition in SC, a FFA 

mixture containing predominantly long chain FFA (C22 and C24) has been 

used. In the presence of FFA the formation of the SPP was promoted and 

two lamellar phases were formed with periodicities of 13.0 and 5.5 nm, 

mimicking even more closely the lipid organization in intact SC. Furthermore, 

the addition of long chain FFA induced a phase transition from a hexagonal 

to an orthorhombic lattice and therefore increased the lipid density in the 

structure (78). 

In contrast to the above studies in which solely mixtures prepared with CER 

isolated from native tissue were used, in more recent studies the lipid 

organization in mixtures prepared with various synthetic CER with a defined 

acyl chain length was also investigated (79). The lipid organization in 

equimolar mixtures of CHOL, synthetic CER and FFA closely resembled that 

in SC, as both LPP (12.2 nm) and SPP (5.4 nm) were present and the lateral 

packing of the lipids was orthorhombic. Furthermore, CHOL was also 

observed in phase separated crystalline domains, similarly as in SC. No 

additional phases could be detected. Interestingly, only in the presence of 

FFA a dominant formation of the LPP was observed. This observation is 

different from that made with mixtures prepared with natural CER. This 

difference in phase behavior might be related to the limited acyl chain length 

variation in the synthetic CER mixtures. 

The above studies demonstrate that mixtures with CHOL, FFA and synthetic 

CER can offer an attractive tool to unravel the importance of individual CER 

for a proper SC lipid organization. Up to now, only the relation between lipid 
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composition and organization was discussed. However, it is also of 

importance to correlate the lipid composition and organization to the barrier 

function. Therefore, to examine whether mixtures applied on an appropriate 

substrate could be used to replace native SC in permeation studies, a SC 

substitute (SCS) was developed (43). The barrier properties of the SCS were 

evaluated in a series of in vitro passive diffusion studies, using three 

structurally related compounds; p-amino benzoic acid (PABA), ethyl-PABA 

and butyl-PABA (80). Of these 3 model drugs PABA is the most hydrophilic 

compound and the lipophilicity increases with increasing ester chain length. 

The diffusion profiles of all 3 model compounds across 12 μm thick lipid 

membranes closely resembled those of human SC. Furthermore, exclusion 

of CER EOS from the lipid mixture revealed a reduced barrier function of the 

SCS, demonstrating that CER EOS is not only very important for the proper 

skin lipid phase behavior, but also for the skin barrier function. 

Although a lot of information has been gathered on the SC lipid organization 

and the role the various lipid classes play in this organization, a detailed 

molecular structure of the LPP and SPP has not yet been presented. More 

knowledge on these molecular structures can be gained by performing 

additional X-ray and neutron diffraction studies using mixtures with CER, 

CHOL and FFA. 

 

3.3 Molecular models for the SC lipid organization 
In literature, several molecular models for the lipid organization in SC have 

been proposed: The stacked monolayer model (8), the domain mosaic 

model (4), the single gel phase model (6) and the sandwich model (10, 37). 

The stacked monolayer model presented in 1989 describes the molecular 

arrangement in the LPP for the first time. Based on the broad-narrow-broad 

pattern obtained after ruthenium tetroxide fixation of pig skin, a trilayer model 

was proposed. In this model the CER are arranged in a planar arrangement 

and the linoleic moiety of CER EOS is randomly distributed in the two broad 

layers adjacent to the narrow central layer in the repeating unit, see figure 6. 
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Furthermore, in the stacked monolayer model the CHOL interfacial area is 

assumed to be similar to that of CER in a planar alignment. However, this is 

not in agreement with the interfacial areas as reported for CHOL (0.37 nm2) 

and CER in a planar (0.25 nm2) alignment by Dahlén and Pascher (81). 

 

 
More recently, Hill and Wertz presented a follow up of the stacked 

monolayer model again based on the same ruthenium tetroxide data (5), but 

now including more detailed knowledge on the chemical reaction of 

ruthenium tetroxide fixation. In this model the linoleate of CER EOS is 

Figure 6: The stacked monolayer model as proposed in (8). A proposed 
molecular arrangement of one Landmann unit and two corneocyte lipid
envelopes with associated monolayers, explaining the pattern of intercellular
lamellae where the lucent bands are broad-narrow-broad-broad-narrow-broad. 
This figure is reprinted by permission from MacMillan Publishers Ltd: JID,
copyright 1989. 
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located in the central layer, but the CHOL interfacial area is again assumed 

to be similar to that of CER in a planar arrangement, see figure 7. 

 

 
In 1993 Forslind proposed for the first time a model that incorporates the 

presence of a liquid phase in the SC. This model postulated the presence of 

a continuous liquid phase from the superficial layers of the SC down to the 

viable epidermis, the so-called domain mosaic model, see figure 8. Although 

this was the first model including the presence of a liquid phase in SC lipid 

structures, until now no experimental data are available to verify this model. 

 

Figure 7: Proposed molecular model as presented in (5), also based on the 
broad-narrow-broad pattern in ruthenium tetroxide fixed pig SC. Shaded boxes
represent the pattern of reduced ruthenium on a corresponding portion of a
transmission electron micrograph. This figure is reprinted by permission from

Elsevier, copyright 2003. 
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In a more recent paper, another model has been proposed for the SC lipid 

organization, called the single gel phase model, see figure 9. According to 

this model the intercellular lipids within the SC exist as a single and coherent 

lamellar gel phase without domain boundaries. In this gel phase the 

hydrocarbon chains are packed simultaneously in a hexagonal (close to 

hydrocarbon chain ends) and an orthorhombic ordering (close to polar 

headgroups). If this is the case, the orthorhombic and hexagonal phases 

should always coexist. This has not been observed in electron diffraction 

studies, in which diffraction patterns were measured attributed either to only 

a hexagonal or to only an orthorhombic phase (45, 82). Furthermore, in 

proposing the single gel phase model no attention has been paid to the role 

the individual lipids play in the lipid organization. For example, the crucial 

role CER EOS plays in the formation of the 13 nm lamellar phase and the 

presence (or absence) of long-chain FFA that facilitate the formation of the 

orthorhombic packing in vitro as well as in vivo, was not taken into 

consideration. 

 

Figure 8: The domain mosaic model as presented in (4). Reprinted by 

permission from Acta Dermato-Venereologica, copyright 1994. 
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Finally, the sandwich model proposed by our group suggests that the lipids 

within the LPP are organized in a tri-layer structure: two broad layers with a 

crystalline (orthorhombic) structure are separated by a narrow central lipid 

layer with fluid domains, see figure 10. 

 

 

 
This broad-narrow-broad pattern of hydrocarbon chains corresponds to the 

images obtained with electron microscopy of the SC intercellular lamellae 

(figure 4). CHOL and the linoleic acid moieties of the acylceramides CER 

Figure 10: The sandwich model as presented in (10). Reprinted by permission 
from Acta Dermato-Venereologica, copyright 2000.  

Figure 9: The single gel phase model as presented in (6). Reprinted by 
permission from Macmillan Publishers Ltd, JID, copyright 2001. 
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EOS, CER EOH and CER EOP are proposed to be located in the central 

narrow layer, whereas crystalline packed CER are present on both sides of 

this central layer (83). Due to their unusual long structure, the acylceramides 

are able to span a layer and extend into another layer. The acylceramides 

are therefore thought to contribute to the stability of the 13 nm phase. The 

central, non-continuous fluid phase may be of importance for proper 

elasticity of the lamellae and for the enzyme activity in the SC, as enzymes 

are unlikely to be active in crystalline phases. In the sandwich model the 

CHOL is suggested to be located near the linoleate chains in the central 

layer. More recent data, however, revealed that the CHOL molecule prefers 

to arrange with saturated hydrocarbon chains rather than with unsaturated 

chains (84-86). Therefore it is more likely that CHOL is located in the 

crystalline layers adjacent to the narrow central layer than in the central layer 

with unsaturated linoleate chains. Furthermore, as Kessner et al recently 

suggested, the CER molecules in the sandwich model are arranged in the 

hairpin conformation while it can not be excluded that the CER molecules 

are arranged in a fully extended conformation (72). 

Several models for the molecular structure of the intercellular lipids were 

discussed above. In conclusion, there is no consensus on the best model for 

the intercellular lipid arrangement in SC and therefore continuing research is 

necessary to gain more insight into the molecular organization of the SC 

lipids. 

 

4. This thesis 
 

4.1 Aim of this thesis 
As described above, the SC forms the main barrier function of the skin and 

the lipid domains in the SC are considered to play a dominant role in this 

barrier function. 

In previous studies a synthetic SC substitute (SCS) was developed to 

replace native SC in permeability studies. The SCS consists of synthetic SC 
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lipids (CER, CHOL and FFA) casted on a porous substrate. One of the 

advantages of the SCS is that its lipid composition can be modified to mimic 

that in SC of dry or diseased skin. This modified SCS can subsequently be 

assessed on its barrier function in permeation studies. Furthermore, the 

unique SC lipid organization can be investigated using SC lipid models in 

FTIR, SAXD and neutron diffraction studies. 

The objectives of this thesis are: 

1) To improve the preparation method of the SCS to obtain a lower lipid loss 

during preparation, a more uniform lipid layer thickness and a better 

reproducibility in terms of thickness and lipid organization. 

2) To investigate the lateral and lamellar lipid organization in SC in more 

detail, using the SCS in permeation studies and SC lipid models in FTIR and 

X-ray and neutron diffraction studies. Concerning the lamellar organization, 

more knowledge can be gained especially on the molecular structure of the 

LPP in SC and on the role of CER EOS in the formation of this phase.  

3) To evaluate the barrier properties of SCS mimicking the SC lipid 

composition in dry or diseased skin, to assess whether or not the altered SC 

lipid organization in diseased skin results in a decreased barrier function. 

 

4.2 Outline of this thesis 
In the studies described in Part I of this thesis the SCS is used as a tool to 

study the relation between lipid composition, organization and barrier 

function in one model. In chapter 2 we describe two new methods to prepare 

the SCS, in order to improve reproducibility and to increase the efficiency of 

the preparation method. Subsequently the properties of the SCS prepared 

by the different methods are investigated and the most optimal preparation 

method is selected for future studies. In the studies described in chapter 3 

we use the SCS to determine whether a change in the lateral lipid 

organization affects the permeability of the SCS. We examine the effect of 

the orthorhombic to hexagonal phase transition on the barrier function of 

SCS and compared it with human SC. In the studies described in chapter 4 
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we examine SCS that mimic selected changes in lipid composition reported 

for dry or diseased skin. 

In the studies described in Part II the molecular organization in the repeating 

units of the SC lamellar phases is investigated. As CER EOS plays an 

important role in the formation of the LPP, in the studies described in chapter 

5 we investigate whether CER EOS in the absence of the other CER 

subclasses, mixed with CHOL and FFA, forms similar phases as observed in 

SC. In the studies described in chapter 6 the molecular structure in the unit 

cell of the LPP present in SC is investigated into detail. This characteristic 

LPP is suggested to be very important for the barrier function of the skin. To 

gain more insight into the molecular organization of this lamellar phase, we 

perform SAXD studies using various lipid mixtures mimicking the lipid 

composition in SC, with a slight variation in repeat distance of the LPP. 

Finally, in the studies described in chapter 7 the molecular structure of the 

SPP, also present in SC, is investigated into detail. To gain more insight into 

the molecular organization of the SPP we perform neutron diffraction studies 

on a mixture that incorporates a deuterated CER subclass. 
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Abstract 

Stratum corneum lipids play an important role in the barrier function 

of skin. An in vitro permeation model consisting of synthetic lipids has 

previously been developed to replace human stratum corneum (SC) in 

permeation studies. This model is referred to as the stratum corneum 

substitute (SCS). In order to improve its reproducibility and to increase the 

efficiency in preparing the SCS, two new preparation methods are 

developed. Subsequently the properties of the SCS prepared by the various 

methods, i.e. the manual airbrush method, the rotor airbrush method and the 

linomat method, are investigated. The results show that the SCS prepared 

with the various methods share the properties of a uniform lipid composition 

and lipid distribution. Furthermore, irrespective of the preparation method, 

the lipids form crystalline lamellar phases, mimicking the lipid organization 

and orientation in human SC. As a result, permeation profiles of benzoic acid 

through SCS are very similar to human SC. The rotor method increases the 

efficiency and reproducibility of the manual airbrush method, while the 

linomat method reduces the lipid loss during preparation and results in SCS 

with a more uniform membrane thickness. In conclusion, the linomat method 

was chosen as the preferred method for preparing the substitute. 
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1. Introduction 

The uppermost layer of the human skin, the stratum corneum (SC) 

consists of flattened dead skin cells (corneocytes) surrounded by lipid 

lamellae. The lipid domains in the SC form the only continuous pathway 

through the SC and are suggested to act as the main barrier for diffusion of 

substances through the skin (1). The main lipid classes in SC are ceramides 

(CER), cholesterol (CHOL) and free fatty acids (FFA) (2-5). The lipids are 

arranged in two coexisting lamellar phases; a long periodicity phase (LPP) 

with a repeat distance of ~13 nm and a short periodicity phase (SPP) with a 

repeat distance of ~6 nm (6, 7). Furthermore, within the lamellae the lipids 

form mainly a crystalline lateral packing. The lipid organization and its 

orientation approximately parallel to the skin surface play an important role in 

the skin barrier function (8). A more detailed analysis of the lipid composition 

revealed that the FFA has lipid chain lengths of mainly 22 and 24 C atoms 

(9). In addition, there are nine subclasses of CER in human SC (5). The 

CER consist of either a sphingosine (S), phytosphingosine (P) or a 6-

hydroxysphingosine (H) base, whereas the acyl chain is a nonhydroxy (N), 

α-hydroxy (A) or ω-hydroxy chain (10). The corresponding nonhydroxy and 

α-hydroxy CER are therefore denoted as CER NP, CER NS, CER NH, CER 

AP, CER AS and CER AH. The ω-hydroxy CER possess a longer chain 

length (mainly between C30 and C34) and have a linoleic acid chemically 

bound to their ω-hydroxy group (indicated with EO). They are denoted as 

CER EOP, CER EOS and CER EOH. 

As there is a great interest in the administration of drugs via the skin, 

there is a need for predictive in-vitro permeation models. Isolated human 

epidermis or SC can serve as an excellent in-vitro model but human skin is 

scarcely available and the inter-individual variability of human skin is 

substantial. Furthermore, with respect to diseased skin, for which many 

topical drugs are developed, it is virtually impossible to obtain skin for in-vitro 

diffusion studies. Animal skin as an alternative is not an optimal choice as it 
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has different permeation properties than human skin. In addition, after 2009 

there will be an EU ban on the use of animal skin for the testing of cosmetic 

products. 

Because of the crucial role of the lipids in the skin barrier function, in 

previous studies an in-vitro model based on SC lipids was developed, 

referred to as the stratum corneum substitute (SCS) (11, 12). The SCS 

consists of a porous substrate covered with a layer of synthetic SC lipids. 

These lipids mimic very closely the molecular organization and orientation of 

the SC lipid lamellae. An advantage of the SCS is that its composition can 

be easily modified which allows us to study the relationship between lipid 

composition, molecular organization and barrier function in just one model. 

With the SCS we also have the unique possibility to mimic the lipid 

composition and organization of dry or diseased skin. 

In previous studies, the SCS was prepared by spraying a lipid 

solution onto a substrate with a modified airbrush method. This preparation 

method results in a SCS with excellent barrier properties similar to SC. 

However, the spraying process is labor intensive and a substantial part of 

the lipid solution is lost to the air. Therefore the preparation method of the 

SCS requires further optimization. In the present study a method is 

developed to scale up the production of SCS making it less labor intensive. 

In addition, an alternative preparation method is presented to minimize the 

loss of lipids to the air. In order to validate the various preparation methods, 

the qualities of SCS prepared with the various methods are compared. The 

SCS are characterized concerning their 1) lipid composition and distribution, 

2) thickness and profile of the lipid layer, 3) lipid loss during spraying, 4) lipid 

packing, 5) lamellar organization and orientation and 6) variation in 

equilibration temperature and permeation properties. 
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2. Materials and Methods 

2.1 Materials 

Synthetic CER(EOS)C30-linoleate, CER(NS)C24, CER(NP)C24, 

CER(NP)C16, CER(AS)C24 and CER(AP)C24 were generously provided by 

Cosmoferm B.V. (Delft, The Netherlands). Palmitic acid (C16:0), stearic acid 

(C18:0), arachidic acid (C20:0), behenic acid (C22:0), tricosanoic acid 

(C23:0), lignoceric acid (C24:0), cerotic acid (C26:0) and cholesterol were 

purchased from Sigma-Aldrich Chemie GmbH (Schnelldorf, Germany). 

Perdeuterated palmitic and behenic acid were purchased from Larodan 

(Malmö, Sweden), perdeuterated stearic and arachidic acid from Cambridge 

Isotope Laboratories (Andover, Massachusetts) and perdeuterated lignoceric 

acid was purchased from Arc Laboratories B.V. (Apeldoorn, The 

Netherlands). Benzoic acid, trypsin (type III, from bovine pancreas), and 

trypsin inhibitor (type II-S from soybean) were obtained from Sigma-Aldrich 

(Zwijndrecht, The Netherlands). Dialysis membrane disks (cutoff value of 

5000 Da) were obtained from Diachema (Munich, Germany). Nuclepore 

polycarbonate filter disks (pore size 50 nm) were purchased from Whatman 

(Kent, UK). All organic solvents are of analytical grade and manufactured by 

Labscan Ltd. (Dublin, Ireland). All other chemicals are of analytical grade 

and the water is of Millipore quality.  

2.2 Isolation of SC from human skin 

SC was isolated from abdominal or mammary skin, which was 

obtained within 24 h after cosmetic surgery. After removal of the 

subcutaneous fat tissue, the skin was dermatomed to a thickness of 

approximately 250 μm using a Padgett Electro Dermatome Model B (Kansas 

City, KS, USA). The SC was separated from the epidermis by trypsin 

digestion [0.1% in phosphate-buffered saline (PBS), pH 7.4], after overnight 

incubation at 4ºC and subsequently at 37ºC for 1 h. The SC was then placed 

in a 0.1% solution of trypsin inhibitor and rinsed twice with Millipore water. 
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Until use, the SC was stored in a silica-containing box under gaseous 

nitrogen or argon in the dark to prevent oxidation of the intercellular SC 

lipids. 

2.3 Preparation of the SCS 

2.3.1 Preparing the lipid mixture 

For the preparation of the SCS, CHOL, synthetic CER and FFA were 

used. The following synthCER composition was selected: CER(EOS)C30, 

CER(NS)C24, CER(NP)C24, CER(AS)C24, CER(NP)C16 and CER(AP)C24 

in a 15:51:16:4:9:5 molar ratio which closely resembles the CER composition 

in pig SC (13). This synthCER composition is similar to that used in our 

previous studies (12, 14). The acyl chain length is either 30 C atoms (C30), 

24 C atoms (C24) or 16 C atoms (C16). For the free fatty acids mixture 

(FFA), the following composition was selected: C16:0, C18:0, C20:0, C22:0, 

C23:0, C24:0 and C26:0 at molar ratios of 1.8, 4.0, 7.7, 42.6, 5.2, 34.7 and 

4.1 respectively. This chain length distribution is based on a FFA 

composition in SC (9). To achieve lipid mixtures at an equimolar 

CHOL:synthCER:FFA composition appropriate amounts of individual lipids 

were dissolved in chloroform : methanol (2:1). After evaporation of the 

organic solvent under a stream of nitrogen, the lipid mixtures were re-

dissolved in hexane : ethanol (2:1) at a lipid concentration of 4.5 mg/ml. In 

some studies the protonated FFA were replaced by the deuterated FFA 

using a slightly different FFA composition, namely DFFA(5) with C16, C18, 

C20, C22 and C24 at molar ratios of 1.8, 4.0, 7.6, 47.8 and 38.8 

respectively. 

2.3.2 Spraying of SCS with an airbrush 

An evolution solo airbrush (Airbrush Service Almere, The 

Netherlands) connected to gaseous nitrogen was used to spray the lipid 

mixtures onto a polycarbonate filter disk with a pore size of 50 nm. For the 

manual spraying of SCS the same procedure is followed as published 
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previously (11, 12). For spraying multiple SCS simultaneously, the airbrush 

was equipped with an automated rotor developed by the fine mechanical 

and electronics department of our university, see figure 1 for a schematic 

presentation. 

 

 
The rotor can contain up to ten SCS filters and rotates the filters 

under the airbrush nozzle in a continuous stepping movement. The spraying 

is automatically discontinued during each movement of the rotor. The rotor is 

covered by a cap with a circular opening positioned exactly below the nozzle 

at a distance of 7.7 cm. The nozzle and the cap are not rotating but held in 

the same position. In this way only 1 filter positioned below the opening is 

sprayed, while the other filters are protected from dust by the cover. Due to 

the rotating movement all filters are sprayed sequentially. A nitrogen stream 

Figure 1: Schematic representation of the airbrush equipped with a rotor that
contains ten filters. The rotor cap, mechanics and electronics are not shown.

The airbrush is filled with lipid solution and under a stepping rotation the 
filters are sprayed up to a 1000 times in total.  
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is flowing underneath the cap to dry the SCS after each spray. The filters are 

sprayed on average around 70 to 100 times per SCS, depending mainly on 

the volume of lipid solution inserted which varies between 500 to 800 µl per 

SCS. The drying period (between sprays) is 16 s per SCS and the spray-

time is 1.5 s per SCS. The (N2) spray pressure is ~1.09 bar. 

2.3.3 Spraying of SCS with a modified Linomat 

A Linomat IV (Camag, Muttenz, Switzerland) was extended with a y-

axis arm developed by the fine mechanical and electronics department of 

our university. The linomat device makes use of a Hamilton syringe (100 µl) 

and mechanics to spray a confined (programmable) volume of sample 

solution from a distance of ~1 mm to the porous filter substrate. With the y-

axis in use, the linomat is capable of spraying lipids in a rectangular shape, 

by a continuous zigzag movement. The linomat sprays the lipid solution with 

a flow of 5.0 µl/min at a movement speed of 1.01 cm/s in a square of 8 x 8 

mm. The amount of lipid solution used is ~200 µl per SCS. Therefore in 40 

minutes it covers the circular diffusion area (of 6 mm diameter).  

2.3.4 Equilibration of SCS 

After spraying with the manual/rotor airbrush or linomat, the lipid-

loaded filters were equilibrated at 70°C or 80°C for a period of at least 10 

minutes and subsequently cooled down to room temperature in 

approximately 30 min. 

2.4 SCS lipid composition and distribution 

The lipid composition and distribution was determined by two 

methods. One-dimensional high performance thin layer chromatography 

(HPTLC) was used to establish the distribution of the various lipid classes 

over the filter surface. Briefly, the lipid-loaded filters were cut into two circular 

parts: the centre (diameter 4 mm; area 12.6 mm2) and the periphery 

(diameter 9 mm; area 51.0 mm2) as shown in figure 2. The lipids were 
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extracted in 0.5 ml chloroform : methanol (2:1) by extensive vortexing and 

were subsequently dried under a nitrogen flow and re-dissolved in 

chloroform : methanol to obtain an equal lipid concentration for the two 

fractions. Aliquots were applied on a silica plate (Merck, Darmstadt, 

Germany) under a flow of nitrogen using a linomat. After eluting with different 

organic solvent mixtures (15), the silica plate was sprayed with copper 

sulphate. 

A Bio-Rad FTS4000 Fourier transform infrared spectrometer (FTIR) 

(Cambridge MA, USA) equipped with a broad-band mercury cadmium 

telluride detector, cooled with liquid nitrogen, was used to measure the 

infrared absorption of SCS with perdeuterated FFA. The spectra were 

collected in transmission mode as a co addition of 64 scans at 4.0 cm-1 

resolution. All samples were measured at room temperature under 

continuous dry air purge. 

In order to be able to obtain a local absorption spectrum from a well 

defined small region in the membrane a pinhole of 1.4 mm in diameter 

(developed by the fine mechanical department) was designed and used to 

measure a spectrum at five positions on the SCS (see figure 3A). From the 

peak integration of the CH2 and CD2 stretching vibrations at 2849 and 2088 

cm-1 respectively, the absorption spectra intensity ratio between CER and 

perdeuterated FFA could be obtained for each position. A change in intensity 

ratio indicates a change in CER/FFA composition.The contribution of CHOL 

to the νsCH2 vibration is neglected because of its much shorter lipid tail. All 

samples were measured at room temperature. 

2.5 Thickness and lateral organization of the SCS lipid layer 

In order to determine the thickness of the SCS by the absorption in 

the FTIR spectrum, first the relation between the infrared absorption and 

layer thickness was determined. For this purpose the spraying speed of the 

linomat was lowered, so that a complete SCS is sprayed in 17 homogeneous 

layers. The FTIR spectrum in the center of the SCS was measured through 
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the pinhole after each additional sprayed layer with the linomat. After each 

measurement the FTIR absorption was calculated from peak integration of 

the CH2 rocking vibration (ρrCH2 at 720 cm-1). After the relationship between 

the FTIR absorption and the layer thickness was established, the infrared 

absorption of the CH2 rocking vibration was used as a parameter to 

determine the uniformity of the SCS thickness. The pinhole was set at the 

center and at 1 and 2 mm radial distance from the center (see figure 3A). 

Subsequently the FTIR spectrum was measured and absorption was 

determined using the ρrCH2 at 720 cm-1.   

From the same FTIR spectrum also the packing of the lipids can be 

determined. This information is provided by the CH2 scissoring vibrations 

(δCH2) around 1467 cm-1. In addition the SCS was prepared with 

perdeuterated FFA. This allows determining whether FFA and CER 

participate in one lattice. This information can be obtained from the CD2 

scissoring mode (δCD2). The contour of this band is located at approximately 

1088 cm-1. All FTIR measurements were performed at room temperature. 

2.6 Lipid Loss during spraying 

For the airbrush and linomat preparation methods the lipid yield on 

the filter surface was determined. After spraying, the membrane was 

weighed and the empty membrane weight was subtracted. The resulting lipid 

layer weight (after spraying) was divided by the amount of lipids used during 

spraying multiplied by 100%, to obtain the percentage lipid yield on the filter. 

Also, the yield inside the diffusion area was determined. After spraying and 

equilibration, the circular membrane diffusion area of 6 mm diameter was 

punched and weighed, the empty membrane weight was subtracted. The 

remaining lipid weight was again divided by the amount of lipids used during 

spraying and multiplied by 100% to obtain the percentage lipid yield inside 

the diffusion area on the filter. 
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2.7 Lamellar organization and orientation determined by SAXD 

Small-angle X-ray diffraction was used to acquire information about 

the lamellar organization (i.e., the repeat distance of a lamellar phase) and 

the orientation of the lamellae. The scattering intensity I (in arbitrary units) 

was measured as a function of the scattering vector q (in reciprocal nm). The 

latter is defined as q=(4πsinθ)/λ, in which θ is the scattering angle and λ is 

the wavelength. From the positions of a series of equidistant peaks (qn), the 

periodicity, or d-spacing, of a lamellar phase was calculated using the 

equation qn=2nπ/d, n being the order number of the diffraction peak. One 

dimensional intensity profiles were obtained by transformation of the 2D 

SAXD pattern from Cartesian (x,y) to polar (ρ,θ) coordinates and 

subsequently integrating over θ from 60 to 120 degrees. All measurements 

were performed at the European Synchrotron Radiation Facility (ESRF, 

Grenoble) using station BM26B (16). The X-ray wavelength and the sample-

to-detector distance were 0.124 nm and 1.6 m, respectively. Diffraction data 

were collected on a two-dimensional multiwire gas-filled area detector with 

512×512 pixels of 0.25 mm spatial resolution. The spatial calibration of this 

detector was performed using silver behenate (d=5.838 nm). A filter with lipid 

layers was mounted parallel to the primary beam in a temperature controlled 

sample holder with mica windows. Static diffraction patterns were collected 

at room temperature. The temperature-induced phase changes were 

measured by collecting successive diffraction patterns, while the 

temperature of the sample was raised from 20 to 80°C at a rate of 1°C/min, 

subsequently kept at this temperature for 10 min and then reduced in 

temperature to 20°C at a rate of 5°C/min. During the dynamic measurements 

each diffraction curve was collected for a period of 2 min. 

2.8 Diffusion studies on human SC and SCS 

In vitro permeation studies were performed using Permegear in-line 

diffusion cells (Bethlehem PA, USA) with a diffusion area of 0.28 cm2. SC on 

a supporting dialysis membrane (5000 Da, apical side facing the donor 
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chamber) or the SCS was mounted in the diffusion cell and was hydrated for 

1 h in phosphate buffered saline (PBS: NaCl, Na2HPO4, KH2PO4 and KCL in 

MQ water with a concentration of 8.13, 1.14, 0.20 and 0.19 g/l respectively) 

at pH 7.4 prior to the experiment. The donor compartment was filled with 

1400 μl of benzoic acid solution in PBS (pH 7.4) at a 2.0 mg/ml 

concentration. Benzoic acid has a log Poct/water value of 1.9. The acceptor 

phase consisted of PBS (pH 7.4), which was flushed at a flow rate of about 2 

ml/h. The acceptor phase was stirred with a magnetic stirrer. The exact 

volume per collected fraction was determined by weighing. Each experiment 

was performed under occlusive conditions, by closing the opening of the 

donor compartment with adhesive tape. The temperature of the SC or SCS 

was maintained at ~32ºC during the total length of the experiment, using a 

thermo-stated water bath. Fractions were collected for 18 h at a 1 h interval. 

Diffusion studies were performed on SCS from the manual airbrush, rotor 

airbrush and linomat method, as well as SCS equilibrated at 70 and 80ºC. 

Steady state fluxes and lag-times were determined from a plot of the 

cumulative permeated amount. The steady state flux is the slope of the 

linear part of this graph. The lag-time is determined by regression of this 

linear part to the time at y=0. 

 

3. Results 

The SCS was constructed with the three methods; the manual 

airbrush method used in previous studies, the automated rotor airbrush 

method and the linomat method. In order to characterize the SCS, the lipid 

composition and distribution, membrane thickness, lipid yield, lipid 

organization, and the barrier function of the SCS prepared by the different 

methods have been examined. 
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3.1 Lipid composition and distribution 

In order to determine the uniformity of the lipid composition along the 

surface of SCS, HPTLC and FTIR are employed.  Using HPTLC, the mean 

lipid composition of the inner and outer ring of the SCS is examined. The 

results are provided in figure 2. From this figure it is obvious that no 

differences in lipid profile are observed between inner and outer ring of SCS 

prepared by the manual airbrush, rotor airbrush and linomat. This indicates 

that the mean lipid composition and distribution in the central and peripheral 

part of the SCS manufactured by the three methods is similar. 

More detailed information about the fluctuations in FFA/CER ratio at 

various positions along the SCS surface is obtained by using FTIR. 

 

 

 
When using deuterated FFA, in the FTIR spectrum the fluctuations in 

ratio of peak intensities of vsCH2 (located at 2849 cm-1) and vsCD2 (located 

Figure 2: HPTLC pattern of the center part (in) and outer ring (out) of SCS
prepared with the three methods. No differences in lipid composition are visible 

between inner and outer membrane. 
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at 2088 cm-1) is directly related to the fluctuations in molar ratios of the 

protonated CER and deuterated FFA chains, respectively. A change in the 

integrated peak ratio of vsCH2 : vsCD2 is indicative for a change in the molar 

ratio of the protonated and deuterated chains. The integrated vsCH2 : vsCD2 

peak ratios of the five selected locations (see figure 3A) are shown in table 

1, for SCS prepared with the manual-, rotor airbrush and linomat method. 

For each preparation method, the variation in vsCH2 : vsCD2 peak ratio 

(between the different locations at the SCS) is very low, demonstrating a 

uniform CER : FFA ratio within the five selected positions. However, for the 

manual airbrush and linomat method, between SCS (at each position), a 

larger standard deviation for the vsCH2 : vsCD2 peak ratio was observed 

than for the rotor method.  This can be explained by the fact that the SCS 

from the rotor airbrush are all prepared simultaneously in one run, resulting 

in a very reproducible thickness of the SCS. 

 
Table 1: 
vsCH2/vsCD2 ratio measured at 5 positions (see also figure 3A) on SCS 
prepared with the three methods. 

position 1 2 3 4 5 

Rotor SCS (n=3) 3.20 ±0.02 3.18 ±0.02 3.16 ±0.04 3.23 ±0.05 3.26 ±0.07 

Linomat SCS (n=3) 2.5   ±0.2 2.5   ±0.2 2.4   ±0.2 2.5   ±0.2 2.6   ±0.2 

Manual SCS (n=3) 2.5   ±0.2 2.3   ±0.3 2.3   ±0.2 2.3   ±0.3 2.5   ±0.2 

 

3.2 Thickness and cross section of the lipid layer 

A uniform thickness of the lipid layer of the SCS is important when 

performing permeation experiments. In order to determine the SCS 

thickness at a predetermined position in the SCS, first a linear relation 

between the peak intensity of the ρrCH2 rocking vibration at 720 cm-1 in the 

FTIR spectrum and the number of sprayed layers was determined. After 

each layer sprayed with the linomat, the IR absorption was determined by 

FTIR. The results are displayed in figure 3B. The graph clearly shows that 
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there is a linear relationship between the layer thickness of the SCS, 

expressed by the number of layers sprayed with the linomat, and its infrared 

absorbance around 720 cm-1 (the contours of the ρrCH2 rocking vibration). 

Thus, by measuring the intensity of the ρrCH2 mode, the relative thickness of 

a prepared membrane can be determined. 

Using the linear relationship between the intensity of the absorption 

peak of the ρrCH2 rocking vibration and the membrane thickness, the 

homogeneity in thickness of the lipid layer of SCS can be determined by 

measuring this ρrCH2 rocking vibration intensity at various selected locations 

on the stratum corneum substitute. These locations are chosen in a cross 

section at the center and 1 and 2 mm out of the center. Figure 3C shows the 

relative infrared absorbance of the ρrCH2 contour at the various positions on 

SCS, in which the intensity of the ρrCH2 contour in the center of the 

membrane is set to 100%. From this figure it is obvious that for all three 

methods the layer thickness is highest in the center of the SCS and reduces 

towards the edge of the diffusion area. Furthermore, the linomat method 

delivers SCS with a more homogeneous layer thickness than SCS prepared 

with the rotor- or manual airbrush method. 

3.3 Lipid loss during spraying 

The distance between the nozzle and the supporting membrane 

using the airbrush method is 7.7 cm for the rotor and 5 to 10 cm for the 

manual holder, while the distance between the needle tip and the supporting 

membrane using the linomat method is only 1 mm. This may result in 

differences in lipid loss. Therefore the lipid yield in the diffusion area of the 

membrane is determined by weighing. For the manual airbrush, rotor 

airbrush and the linomat method, the recovery of lipids sprayed on the filter 

is respectively 68±19% (n=3), 52±4% (n=5) and 93±4% (n=3) of the total 

amount of lipids used for spraying. However, the recovery of lipids inside the 

diffusion area is 8±1% (n=4) for the manual airbrush, 10±1% (n=4) for the 

rotor airbrush and 31±2% (with n=13) for the linomat method. The recovery 
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in the diffusion area is less than the total recovery because a relatively small 

area of the membrane is used for diffusion. From these results it is clear that 

the airbrush method has a much lower lipid yield than the linomat 

preparation method. 

 

Figure 3: Overview of FTIR results. A) The five positions on SCS that were selected
for the FTIR absorption measurements for determining variations in membrane
thickness and DFFA/CER absorption ratio. B) The peak intensity of the FTIR rocking 
mode (ρrCH2) is plotted as function of the number of lipid layers sprayed with the
linomat application method. A linear relationship is observed. C) Lipid layer cross 
section of SCS prepared with the rotor airbrush (i), manual airbrush (ii) and linomat 
(iii) (n=3 per method). The profile is calculated using the correlation between peak
intensity and membrane thickness shown in B). The positions of the measurements 
are provided in (a). D) (i) Typical CH2 scissoring mode in the FTIR spectrum obtained 
for SCS prepared with the three spraying methods. A doublet is observed with
absorption maxima at 1463 and 1472 cm-1 indicative for the presence of an
orthorhombic lateral packing. (ii) typical CD2 scissoring mode for SCS with 
perdeuterated FFA. A singlet is observed with maximum at 1088 cm-1 indicative for 
participation of FFA and CER in one lattice. 
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3.4 Lipid packing 

Information on the lipid packing can be obtained from the δCH2 

contours in the FTIR spectrum. If the δCH2 band is a singlet at around 1467 

cm-1, the lipids form either a liquid or a hexagonal packing. However, when 

lipids form an orthorhombic packing, chains in scissoring mode interact via a 

short-range coupling resulting in splitting of the δCH2 vibration known as 

factor group splitting. As a consequence the contour is a doublet located 

between 1463 cm-1 and 1473 cm-1. The spectrum of the δCH2 mode 

representative for SCS is provided in figure 3D-i. This spectrum reveals a 

doublet at 1463 and 1472 cm-1 respectively with a weak singlet around 1467 

cm-1. No difference in the scissoring contours was observed between SCS 

prepared using the different methods. Therefore, in SCS membranes the 

lipid packing is mainly orthorhombic with a small population of lipids forming 

a hexagonal packing. 

When the FFA is replaced with deuterated FFA, information on the 

mixing of FFA and CER in one lattice can be obtained. If CER and 

deuterated FFA participate in one lattice, decoupling takes place and the 

doublet in the δCD2 mode (present in a mixture with only deuterated FFA) 

changes into a singlet at 1088 cm-1 in the CER:CHOL:FFA(deuterated) 

mixtures (17). The δCD2 band typical for SCS prepared with any of the three 

methods is shown in figure 3D-ii. A singlet was observed at all five positions 

(see figure 3A) on the SCS indicating that deuterated FFA and CER 

participate in the same crystal lattice. 

3.5 Lamellar organization and orientation 

Besides the lateral organization (lipid packing), the formation of the 

lamellar phases and their orientation are both assumed to be crucial for the 

skin barrier function. The lamellar organization is examined by small angle 

X-ray diffraction using a two-dimensional detection. Figure 4A shows a 

typical two-dimensional X-ray diffraction pattern of the lipids in the SCS 
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prepared with the linomat method. Equal patterns have been acquired for 

SCS prepared with the other two methods. The high intensity at the meridian 

(see arrow in figure 4A) demonstrates that the lipid lamellae have a preferred 

orientation parallel to the surface of the SCS. 

In figure 4B the intensity profile of the integrated SAXD pattern is 

plotted. From the position of the diffraction peaks two lamellar phases can be 

identified with repeat distances of 11.6 and 5.4 nm. The diffraction orders 1 

to 4 of the long periodicity phase (LPP, with d = 11.6 nm) are located at q = 

0.54, 1.10, 1.62 and 2.15 nm-1 respectively. The 1st and 2nd order of the short 

periodicity phase (SPP, with d ~ 5.7 nm) are located at q = 1.10 and 2.15 

nm-1. Besides the two lamellar phases, phase separated CHOL could be 

identified by the peaks located at q = 1.86 and 3.73 nm-1. 

Finally two peaks are observed at q = 1.43 and 2.86 nm-1, which 

should be assigned to another lipid structure.  As these peaks were never 

identified in the diffraction pattern of stratum corneum (7, 18, 19), additional 

studies were performed to observe whether the formation of this phase could 

be avoided. One of the critical parameters is the elevated equilibration 

temperature after spraying. Therefore, for an unequilibrated SCS (prepared 

by the linomat method), the phase behavior was examined as a function of 

temperature during heating and cooling. The result is provided in figure 4C. 

The measurement starts at room temperature, and upon heating, between 

70 and 80ºC all diffraction peaks disappear. After the SCS is kept at 80ºC for 

10 minutes (equilibration), the SCS is cooled down to 20ºC at a rate of 

5°C/min. During this cooling process, first a diffraction peak attributed to the 

SPP (at q = 1.2 nm-1) as well as the CHOL peak appear around 60°C, and at 

slightly lower temperature also the diffraction peaks of the LPP appear. 

Interestingly, this thermal treatment did not result in the reappearance of the 

peaks attributed to the 4.4 nm phase. In a similar dynamic experiment an 

unequilibrated SCS was equilibrated at 75 instead of 80ºC, it was striking 

that the diffraction peak at 4.4 nm and the CHOL peak did not disappear at 

75ºC and were still present after equilibration (data not shown). 
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Figure 4: Overview of SAXD results. A) Typical 2D SAXD pattern of SCS equilibrated
at 70ºC. The arrow denotes the position of the intensity maximum. B) Intensity 
profile of integrated SAXD pattern of SCS equilibrated at 70ºC. The orders attributed 
to the LPP are located at q-values of 0.54 (1st order), 1.10 (2nd order), 1.62 (3rd order) 
and 2.15 nm-1 (4th order). The 1st and 2nd order peak of the SPP (indicated by I and II) 
are located at q-values of 1.10 and 2.15 nm-1. The asterisk (*) indicates the 
reflections of crystalline cholesterol (q values at 1.86 and 3.74 nm-1) and † denotes 
the two reflections attributed to the additional phase with a periodicity of 4.4 nm (q 
values at 1.43 and 2.83 nm-1). C) Intensity profiles as a function of temperature. The
X-ray diffraction profile has been measured from 50 to 80ºC, equilibrated during 10
minutes and subsequently cooled with a cooling rate of 5ºC/min. In heating, between 
75 and 80ºC all ordering disappears. In the cooling process, between 70 and 50ºC
the LPP and SPP are formed. D) X-ray diffraction profile of SCS equilibrated at 80ºC.
The orders 1 to 4 of the LPP are located at q = 0.52, 1.06, 1.57 and 2.11 nm-1, the 
orders I and II of the SPP are located at q = 1.17 and 2.35 nm-1). After equilibration at 
80ºC the additional phase is not formed and the spacing of the LPP is longer as
compared to the LPP in (A). This is clearly visible by the split peaks at the first order 
of the SPP and second order LPP in (D). 
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For this reason, in preparing SCS, it was decided to adapt the equilibration 

temperature from 70 to 80ºC. Figure 4D shows the SAXD pattern of SCS 

(prepared by the linomat method) after equilibration at 80ºC; it is obvious 

that the 4.4 nm phase disappeared and the intensity of the first order 

cholesterol peak reduced, in comparison with SCS equilibrated at 70ºC 

(figure 4A). Furthermore, the repeat distance of the long periodicity phase 

increased to 12.2 nm more closely mimicking the lipid organization in 

stratum corneum. 

As a clear difference in phase behavior was observed when 

equilibrating the SCS at 70 or 80ºC, polarization microscopy was conducted 

to study the presence of crystals at the two equilibration temperatures. In 

figure 5 two typical polarization microscopic images are shown for SCS 

equilibrated at 70ºC and 80ºC. It can be seen that the degree of mosaicity is 

greatly reduced at 80ºC, while at 70ºC needle-shaped crystals are present. 

Because the cholesterol fraction is reduced with a temperature rise from 

70ºC to 80ºC (as concluded from SAXD results), the needle-shaped 

crystalline domains observed at 70ºC may originate from phase separated 

cholesterol. This hypothesis was further investigated with SCS prepared with 

a reduced cholesterol content (molar ratio of CER/CHOL/FFA = 2/1/2). This 

SCS equilibrated at 70ºC indeed showed a lower number of crystals than 

SCS prepared using equimolar CER:CHOL:FFA mixtures (images not 

shown). 

3.6 Variation in equilibration temperature and permeation 
properties 

As a difference in lipid organization was observed when equilibrating 

the SCS at 70ºC or 80ºC, it was decided to perform permeation studies 

using SCS equilibrated either at 70 or 80ºC. In figure 6A the permeation 

profiles of benzoic acid are depicted of SCS prepared at 70 or 80ºC using 

either the linomat or rotor method. 
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When the SCS is equilibrated at 80ºC, the lag-time (τ) is 1.2 ± 0.2 h, 

while equilibration at 70ºC results in a τ of 3.4 ± 0.8 h.Furthermore, the 

steady state flux across SCS equilibrated at 70ºC is 18 ± 1 µg/cm2/h which is 

significantly lower than the steady state flux across SCS equilibrated at 80ºC 

were Jss = 25 ± 2 µg/cm2/h. In an additional series of studies the benzoic 

acid flux across the SCS prepared with the different methods has been 

determined and compared to that across SC.  The SCS were all equilibrated 

at 80ºC, the fluxes are shown in figure 6B. It can be seen that the 

permeation profiles of SCS prepared with the three methods are very similar 

to each other. Furthermore, the steady state flux of the SCS closely 

resembles the steady state flux of human SC; the Jss are on average 24 ± 2 

µg/cm2/h for SCS and 22 ± 3 µg/cm2/h for SC. The lag-time is shorter for SC 

than for the SCS; τ is -0.1 ± 0.3 h for SC and 1.1 ± 0.5 h for SCS. 

 

Figure 5: Transmission polarization images (40x magnification) of SCS 
equilibrated at 70ºC (A) and SCS equilibrated at 80ºC (B). The mosaicity due to 
cholesterol crystals is drastically reduced at 80ºC. 
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4. Discussion 

The main purpose of our studies is to construct a SCS that can be 

used as an in vitro permeation model. This is of interest for at least two 

Figure 6: Permeation studies at 32ºC on SCS with benzoic acid used as model 
drug. (a) SCS previously equilibrated at 70ºC and 80ºC (two preparation
methods) and (b) SCS (pre-eq. at 80ºC) prepared with the three methods,
compared to human SC. SCS equilibrated at 80ºC displays a shorter lag-time 
and higher steady state flux than SCS equilibrated at 70ºC. The three different
methods for preparing SCS result in very similar diffusion profiles, with a
steady state flux comparable to h uman SC, however with a larger lag-time than 
SC. 
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reasons. First, the SCS can serve as a model for human stratum corneum to 

screen compounds on their skin permeability or study the effect of 

formulations on the permeation profile. Second, the SCS offers the unique 

opportunity to study the relationship between lipid composition, lipid 

organization and permeability in one model. This is of particular importance 

for understanding the reduced skin barrier function in diseased skin. For 

screening purposes several reconstructed skin models are already 

commercially available. However, although these models are very useful for 

skin irritation tests (20, 21), they show an impaired barrier compared to 

human skin. This makes these models less attractive as an alternative for 

human skin in permeation studies (22), (23). 

When used for permeation purposes, the SCS should i) be prepared in a 

very reproducible manner, ii) be homogeneous in composition and in 

membrane thickness and iii) mimic lipid organization and orientation of 

human SC. These properties of SCS, and its permeation properties, will be 

discussed below. 

4.1 Optimal preparation with the linomat method 

In our present study, besides the manual airbrush and rotor method, 

the linomat method was used to prepare the SCS. Kuempel et al also used 

the linomat for spraying lipids on a Millipore filter disk (24) and they showed 

for the first time that it is possible to form the broad-narrow-broad pattern 

characteristic for SC lipid organization using RuO4 staining. However, their 

studies were different from ours in at least three aspects. i) Kuempel et al 

used total lipid extracts of pig SC without isolation of the CER, while we use 

mixtures based on synthetic CER. As we noticed in previous studies, the 

preparation method of mixtures prepared with synthetic CER is different from 

that prepared with isolated CER, especially with respect to the choice of the 

optimal equilibration temperature (14). ii) Kuempel et al did not modify the 

linomat by adding an extra arm, which allows spraying of lipids in a 

predefined area of the supporting membrane. This may indicate that their 
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supporting membrane is not homogeneously covered with lipids. This limits 

the use of these membranes in permeation studies. iii) Kuempel et al 

concluded that in the absence of hydration no broad-narrow-broad structure 

(visualized by RuO4 staining) could be obtained. The latter is likely correlated 

with the formation of the LPP. Using our application method it is possible to 

form the LPP in the absence of water. Furthermore, in our previous study we 

showed that hydration at elevated temperature results in phase separation 

between lipid and water domains in the membrane (12) creating a leaky 

SCS, which cannot be used in permeation studies. 

The linomat application method showed some advantages above the 

rotor and manual air-brush spraying methods. First, the loss of lipids for the 

linomat method was much lower than for the airbrush spraying methods, 

which is most probably due to the shorter nozzle to membrane distance. 

Second, the membrane thickness is more uniform using the linomat 

application method instead of the airbrush spraying methods. 

HPTLC and the ratio of the absorption of the CH2/CD2 symmetric 

stretching frequencies in the FTIR spectrum both revealed that in all SCS the 

lipid composition parallel to the SCS surface is quite homogeneous. 

However, in contrast to the rocking frequencies used to determine the SCS 

thickness, the CH2 and CD2 stretching absorptions used to determine the 

uniformity of the SCS composition, are not linearly correlated with the SCS 

thickness. The signal of the MCT detector used to measure the infrared 

spectra is nonlinear with sample absorption in the region around 2800 cm-1, 

which is the region of the CH2 stretching mode used to determine CH2/CD2 

ratio and thus the lateral homogeneity in the lipid membrane. Therefore, a 

variation in membrane thickness (different absorption) in this region, will 

affect to some extent the CH2/CD2 intensity ratio of the stretching mode. The 

membranes prepared by the rotor airbrush method were thinner than those 

prepared by the linomat and manual rotor method, which resulted in higher 

CH2/CD2 stretching peak ratios of the SCS prepared by the rotor airbrush 

method, see table 1. 
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4.2 FTIR as a non-destructive tool to measure thickness and lipid 
distribution 

The average membrane thickness and cross section of the lipid layer 

are assessed by FTIR without destruction of the SCS. This makes it an 

elegant method for quality control of prepared SCS as the measurements 

can be performed prior to a permeation study. Another control is the 

assessment of lipid distribution by FTIR using perdeuterated fatty acids. If 

the distribution of lipid components over the membrane surface is not 

uniform, the LPP that is crucial for the barrier function (11), may  not be 

formed. 

Pidgeon et al demonstrated already in 1989 that FTIR can be used 

to quantify the lipid content in organic lipid solutions and extracted 

membrane preparations (25). Although our method presented in this paper is 

based on the method of Pidgeon, there are some differences. We quantify 

the lipid thickness of the SCS by integration of the peak intensity of the 

rocking vibration, whereas Pidgeon used an internal standard combined with 

the stretching vibrations. We did not choose for an internal standard as this 

might affect the lipid organization and therefore the permeability of the SCS. 

Also, we chose for the rocking vibrations because we observed that only in 

this region of the spectrum the absorption was linear with the lipid quantity.  

Furthermore, it is well known that the steady state flux of a 

substance through a membrane according to Fick’s Law is linear dependent 

on the reciprocal membrane thickness. Therefore a homogeneous 

reproducible thickness is a prerequisite for the SCS when used in screening 

studies. Variation in thickness of the SCS prepared with the two airbrush 

methods is larger than that of the SCS prepared by the linomat method, 

although even when using the linomat method there is still a small variation 

in thickness. This may be due to the equilibration step at elevated 

temperatures. At these temperatures the lipids are in the hexagonal to liquid 

phase transition, which will result in a small additional spreading over a 

larger surface area. 
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4.3 The SCS closely mimics the stratum corneum lipid 
organization 

In human SC the lipids are organized mainly in an orthorhombic 

lateral packing, which is considered to play an important role in the skin 

barrier function (26-28). Therefore, it is a prerequisite that the SCS form an 

orthorhombic (very tight) lateral lipid packing. As demonstrated in figure 3D-i, 

the lipids form the orthorhombic lateral packing. Furthermore, as the inter 

peak distance of the doublet is approximately 9.2 cm-1 approaching the 

maximum splitting of 11 cm-1, this indicates that the crystalline domain sizes 

exceed that of 100 lipids (29). In previous studies, FTIR was used to study 

the mixing properties of perdeuterated palmitic acid and protonated CER in 

one lattice (29, 30). In the study of Moore et al, palmitic acid and bovine 

brain CER type III form their own separate orthorhombic phases. This 

contrasts our finding that FFA and CER participate in one lattice. Their 

model however was less complex than ours, with only 3 lipid components: a 

single CER, CHOL and palmitic acid. The smaller number of components in 

that mixture may facilitate phase separation.  

Not only the orthorhombic packing, but also the LPP has been 

suggested to be important for the barrier function (11). The diffraction pattern 

of the SCS shows the coexistence of the LPP and SPP, similarly as in 

human SC. However, after equilibration of the SCS at 70ºC an additional 

unknown phase was formed not present in SC. This phase disappeared after 

using an equilibration temperature of 80ºC. This is in contrast to the phase 

behavior of lipids casted on mica in previous studies, in which an 

equilibration temperature of 70ºC was sufficient (14). Very recently, we 

observed that the solvent choice for spraying lipids accounts for the 

difference in required equilibration temperature. When sprayed on mica, the 

lipids dissolved in chloroform:methanol (2:1 v/v) form the LPP and SPP, 

while the lipids dissolved in hexane:ethanol (2:1 v/v) result in formation of the 

additional unknown phase (data not shown). Most probably, when using 

hexane:ethanol (2:1 v/v) some lipid components are dissolved less readily, 
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which results in a crystallization of these components forming separate lipid 

domains during the spraying process.  

In the two-dimensional detection plane, the arc-shaped form of the 

reflections in the diffraction pattern in figure 4A indicates that the majority of 

the lamellae are oriented parallel to the surface of the membrane. This arc-

shaped pattern is very similar to that observed for SC (not shown) indicating 

that the SCS has a very similar lamellar orientation.  

4.4 SCS as a permeability model can replace human SC 

For our permeation studies we chose a model compound similar to 

the compounds used previously (11), namely benzoic acid (BA). As we 

observed differences in the phase behavior after equilibration at 70 and 

80°C we have first investigated the effect of equilibration temperature on the 

permeability of SCS. It appeared that for the lower equilibration temperature 

of 70ºC (where a separate phase exists) the SCS permeability for BA is 

slightly lower and the lag-time longer. Equilibration at 80ºC resulted in a 

shorter lag-time, which mimics more closely the diffusion profile across 

human SC. This demonstrates that it is important to mimic the lipid phase 

behaviour in SC as closely as possible. 

Subsequently, the SCS were prepared with all three methods and 

after equilibration at 80ºC their permeability was compared to SC. No 

significant differences in BA permeability were observed regardless of the 

preparation method used. Although the diffusion profiles through the SCS 

revealed a slightly longer lag-time than the diffusion profiles through SC, the 

steady state fluxes through SCS were very similar to those through SC. 

Therefore, the SCS can serve as an excellent permeability model and 

replace stratum corneum in diffusion studies. 

 

In conclusion, in this study it has been shown that the preparation of 

SCS is feasible with any of the tested preparation methods; manual airbrush, 

rotor airbrush or linomat. The SCS prepared with the three methods 
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displayed the desired properties of a uniform lipid composition, the presence 

of an orthorhombic lateral organization, the distinct phases with a lamellar 

orientation approximately parallel to the membrane surface and permeation 

properties similar to human SC. The linomat method was selected as the 

most appropriate method for preparing the SCS, as the spraying was most 

efficient and the membrane thickness was more uniform compared to the 

two airbrush methods. 
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Abstract 
The lipid organization in the stratum corneum (SC), plays an 

important role in the barrier function of the skin. SC lipids form two lamellar 

phases with a predominantly orthorhombic packing. In previous publications 

a lipid model was presented, referred to as the stratum corneum substitute 

(SCS), that closely mimics the SC lipid organization and barrier function. 

Therefore, the SCS serves as a unique tool to relate lipid organization with 

barrier function. In the present study we examined the effect of the 

orthorhombic to hexagonal phase transition on the barrier function of human 

SC and SCS. In addition, the SCS was modified by changing the free fatty 

acid composition, resulting in a hexagonal packing and perturbed lamellar 

organization. By measuring the permeability to benzoic acid as function of 

temperature, Arrhenius plots were constructed from which activation 

energies were calculated. The results suggest that the change from 

orthorhombic to hexagonal packing in human SC and SCS, does not have 

an effect on the permeability. However, the modified SCS revealed an 

increased permeability to benzoic acid, which we related to its perturbed 

lamellar organization. Thus, a proper lamellar organization is more crucial for 

a competent barrier function than the presence of an orthorhombic lateral 

packing. 
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1. Introduction 
The uppermost layer of the human skin, the stratum corneum (SC), 

consists of flattened protein-rich dead cells (corneocytes) surrounded by 

intercellular lipids. The intercellular lipid domains in the SC form the only 

continuous pathway through the SC and are suggested to act as the main 

barrier for diffusion of substances through the SC (3). The main lipid classes 

in the SC are ceramides (CER), cholesterol (CHOL) and free fatty acids 

(FFA) (4-8). The lipids are arranged in two coexisting lamellar phases; a long 

periodicity phase (LPP) with a repeat distance of around 13 nm and a short 

periodicity phase (SPP) with a repeat distance of around 6 nm (9, 10). 

Furthermore, at the skin temperature of around 30-32°C in human SC the 

orthorhombic lateral packing is dominantly present, although a 

subpopulation of lipids also forms a hexagonal lateral packing. When 

increasing the temperature of SC, a transition is noticed from an 

orthorhombic to a hexagonal lateral packing between 30 and 40ºC. Both the 

lateral and lamellar lipid organization are considered to play an important 

role in the barrier function of the skin (11-13). A detailed analysis of the lipid 

composition revealed that the FFA have a wide chain length distribution, in 

which the chain lengths of 22 and 24 carbon atoms are most abundantly 

present (14). In addition, there are eleven subclasses of CER identified in 

human SC (4, 7, 8). 

As the lipids play a crucial role in the barrier function, a large number 

of studies have been performed to understand the complex lipid phase 

behaviour underlying the skin barrier function. These studies, performed 

using isolated as well as synthetic CER mixtures, have markedly contributed 

to our present knowledge on the SC lipid organization and the role the lipid 

subclasses play in the lipid phase behaviour (12, 15-22). However, in these 

studies no information was obtained about the relation between lipid 

organization and skin barrier function. In order to study this, we developed a 

SC lipid model consisting of a porous substrate covered by a lipid film 

prepared from synthetic CER, CHOL and FFA. This lipid membrane mimics 
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the lipid organization and lipid orientation in SC closely and is referred to as 

the stratum corneum substitute (SCS) (23-25). As the lipid composition can 

easily be modified, this lipid membrane allows us to study the relationship 

between lipid composition, molecular organization and barrier function in just 

one model. In a previous study using the SCS, it was observed that the LPP 

plays an important role in the skin barrier function (23). However, only little 

information is available on the role the orthorhombic lateral packing plays in 

forming a proper skin barrier function. One of the key parameters to monitor 

the skin barrier function is the trans epidermal water loss (TEWL). In a very 

recent study the TEWL has been related to the degree of orthorhombic 

lateral packing present in SC in vivo in humans (26). 

In the present study we examine whether the formation of the very 

dense orthorhombic packing and the formation of the characteristic lamellar 

phases observed in SC are crucial for the lipid barrier function in SC. As 

model compound we use benzoic acid (BA), a medium lipophilic low MW 

molecule. To examine the lipid organization in the SCS models, Fourier 

transform infrared spectrometry (FTIR) and small-angle x-ray diffraction 

(SAXD) are used. To determine the importance of the orthorhombic lateral 

packing for the SC lipid barrier, diffusion studies are performed during a 

step-wise increase in temperature from 15 to 45°C, sampling the 

temperature of the orthorhombic-hexagonal phase transition. To determine 

whether a simultaneous change in lateral packing and in the lamellar phases 

has a profound effect on the SC lipid barrier, a SCS with short free fatty 

acids is prepared, referred to as the short FFA SCS. This composition was 

selected as short chain FFAs are encountered in SC of human skin 

equivalents (27). 
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2. Materials and Methods 
2.1 Materials 

In these studies we used 5 CER subclasses, see figure 1. The CER 

subclasses consist of either a sphingosine (S) or phytosphingosine (P) base, 

whereas the acyl chain is a nonhydroxy (N), α-hydroxy (A) or ω-hydroxy 

chain (1). The acyl chain length is either 16 carbons (C16), 24 carbons (C24) 

or 30 carbons (C30). The corresponding nonhydroxy and α-hydroxy CER are 

denoted as CER NS (C24), CER NS (C16), CER NP (C24) and CER AP 

(C24). In an additional CER subclass a linoleic acid is ester linked to the ω-

hydroxy group (indicated by EO) with a sphingosine base. This CER is 

denoted as CER EOS (C30). These ceramides were generously provided by 

Cosmoferm B.V. (Delft, The Netherlands). Myristic acid (C14:0), palmitic acid 

(C16:0), stearic acid (C18:0), arachidic acid (C20:0), behenic acid (C22:0), 

Figure 1: Molecular structure of the synthetic CER used in the SCS. The
nomenclature is according to Motta et al (1).
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tricosanoic acid (C23:0), lignoceric acid (C24:0), cerotic acid (C26:0) and 

cholesterol were purchased from Sigma-Aldrich Chemie GmbH (Schnelldorf, 

Germany). The deuterated FFA with chain length of C16:0 and C22:0 were 

obtained from Larodan (Malmö, Sweden) and C14:0, C18:0 and C20:0 were 

purchased from Cambridge Isotope laboratories (Andover MA, USA). 

Benzoic acid, trypsin (type III, from bovine pancreas), and trypsin inhibitor 

(type II-S from soybean) were obtained from Sigma-Aldrich (Zwijndrecht, 

The Netherlands). Dialysis membrane disks (cutoff value of 5000 Da) were 

obtained from Diachema (Munich, Germany). Nuclepore polycarbonate filter 

disks (pore size 50 nm) were purchased from Whatman (Kent, UK). All 

organic solvents are of analytical grade and manufactured by Labscan Ltd. 

(Dublin, Ireland). All other chemicals are of analytical grade and the water is 

of Millipore quality. 

 

2.2 Isolation of SC from human skin 
SC was isolated from abdominal or mammary skin, which was 

obtained from the hospital within 24 h after cosmetic surgery. After removal 

of the subcutaneous fat tissue, the skin was dermatomed to a thickness of 

approximately 250 μm using a Padgett Electro Dermatome Model B (Kansas 

City KS, USA). The SC was separated from the epidermis by trypsin 

digestion [0.1% in phosphate-buffered saline (PBS), pH 7.4], after overnight 

incubation at 4°C and subsequently at 37°C for 1 h. The SC was then placed 

in a 0.1% solution of trypsin inhibitor and washed twice with Millipore water. 

Until use, the SC was stored in a silica-containing box under gaseous argon 

in the dark to prevent oxidation of the intercellular SC lipids. Before FTIR 

measurements, the SC was rehydrated for 24h at 100% relative humidity. 

 

2.3 Preparation of the lipid mixtures 
For the preparation of the SCS, synthetic CER, CHOL and FFA were 

used in equimolar ratio. For the SCS, the following synthCER composition 

was selected (see also figure 1): CER EOS (C30), CER NS (C24), CER NP 
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(C24), CER AS (C24), CER NP (C16) and CER AP (C24) in a 15:51:16:4:9:5 

molar ratio, similar as observed in pig SC (16). For the free fatty acid mixture 

(FFA), the following composition was selected: C16:0, C18:0, C20:0, C22:0, 

C23:0, C24:0 and C26:0 at a molar ratio of 1.8:4.0:7.7:42.6:5.2:34.7:4.1 

respectively. This chain length distribution is based on the reported FFA 

composition in SC (14). For the model with shorter FFA chain length, a FFA 

mixture with the following composition was used; C14:0, C16:0, C18:0, 

C20:0 and C22:0 in molar ratios of 8.9:43.5:38.6:4.3:4.7. The same 

composition and molar ratios were used for the deuterated short chain FFA 

mixture used in FTIR studies. For each SCS model the appropriate amount 

of individual lipids was dissolved in hexane:ethanol (2:1 v/v) at a lipid 

concentration of 4.5 mg/ml. 

Preparation of the lipid mixture for FTIR was the same as above, but 

instead 1.5 mg of lipids was dissolved in chloroform:methanol (2:1, v/v). 

 

2.4 Spraying of the lipid mixtures onto a porous substrate for 
use in permeation studies, small angle X-ray diffraction 
measurements and electron microscopic studies 

A Camag Linomat IV (Muttenz, Switzerland) was extended with a y-

axis arm. The linomat device makes use of a Hamilton syringe (100 μl) and 

mechanics to spray a confined (programmable) volume of sample solution 

(lipids in hexane:ethanol at 4.5 mg/ml concentration)  from a distance of 1 

mm onto the porous filter substrate. With the y-axis arm, the linomat is 

capable of spraying lipids in a rectangular shape by a continuous zigzag 

movement. The spraying flow rate is 5.0 μl/min under a stream of nitrogen 

gas at a movement speed of 1 cm/s. The area of spraying is 8×8 mm. The 

amount of lipid solution used is 200 μl per SCS. After spraying, the lipid films 

were equilibrated for 10 minutes at elevated temperature. The SCS and 

short FFA SCS were equilibrated at 80ºC and 60ºC respectively. After 

equilibration, the membranes were cooled down to room temperature in 

approximately 30 minutes. 
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2.5 Spraying of the lipid mixtures onto a AgBr window for use in 
fourier transform infrared studies 

Sample preparation for FTIR was the same as above, but instead 

1.5 mg of lipids was sprayed by the Linomat from chloroform:methanol (2:1, 

v/v) in an area of 1 cm2 on an AgBr window. The sample was equilibrated for 

10 min and slowly cooled down to room temperature. The SCS and short 

FFA SCS were equilibrated at 80ºC and 60ºC respectively. Subsequently, 

the lipid layer was covered with 25 μl of deuterated acetate buffer pH 5 (50 

mM). After buffer application, the sample was kept at 37°C for 24h to obtain 

a full hydration. Finally, to homogenize the sample, five freeze-thawing 

cycles of 3h each were carried out between -20°C and RT (28). 

 

2.6 Permeability studies 
In vitro permeation studies were performed using Permegear inline 

diffusion cells (Bethlehem PA, USA) with a diffusion area of 0.28 cm2. The 

SC was supported by a dialysis membrane (5000 Da, apical side facing the 

donor chamber). The SC and SCS were mounted in the diffusion cells and 

were hydrated for 1 h in phosphate-buffered saline (PBS: NaCl, Na2HPO4, 

KH2PO4 and KCL in MQ water with a concentration of 8.13, 1.14, 0.20 and 

0.19 g/l respectively) at pH 7.4 prior to the experiment. The donor 

compartment was filled with 1.4 ml of BA (MW 122 g/mol) solution in PBS 

(pH 7.4) at a 2.0 mg/ml concentration. BA has a logKo/w value of 1.7. The 

acceptor phase consisted of PBS (pH 7.4), which was perfused at a flow rate 

of about 2 ml/h and was stirred with a magnetic stirrer. The volume per 

collected fraction was determined by weighing. Each experiment was 

performed under occlusive conditions, by closing the opening of the donor 

compartment with adhesive tape. The temperature of the SC or SCS during 

permeation was controlled by a thermo-stated water bath. To determine the 

activation energy for permeation, at predetermined time intervals the 

temperature of the SCS or SC was increased in steps of 3°C within a time 

interval of 10 min. Fractions were collected at a 1 h interval. Steady state 
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fluxes (JSS) were calculated from the horizontal part of the flux profile. For 

the data analysis, the following Arrhenius-type equations were used (29): 

)exp(
0

RTE
DD
D

=      or ( )
RT
E

DD D−= )ln(ln 0  (1) 

Where R is the gas constant, D is the diffusivity of the permeating compound 

and D0 denotes the hypothetical diffusivity at infinite temperature. During 

steady state conditions, the flux equals to: 

L
DKC  JSS
⋅⋅

=  (2) 

In which C, and K are respectively the donor concentration (under sink 

conditions) and partition coefficient of the permeating compound, while L is 

the penetration pathlength through SC or SCS. Since D is strongly related to 

temperature (see equation 1) and K and L are only moderately affected by 

the temperature, we can rewrite equation 1 by using equation 2 to obtain:  

 

( ) ( )TEJRJR PSSSS /1)ln(ln
0
−=  (3) 

 

Following equation 3, the natural logarithm of the obtained steady state 

fluxes (multiplied by the gas constant) was plotted as function of the inverse 

absolute temperature. Subsequently, the activation energy for permeation 

(Ep) was calculated directly from the slope of a linear fit through the data. 

 

2.7 Fourier Transform Infrared spectral measurements 
All spectra were acquired on a BIORAD FTS4000 FTIR 

spectrometer (Cambridge MA, USA) equipped with a broad-band mercury 

cadmium telluride detector, cooled by liquid nitrogen. The sample cell was 

closed by two AgBr windows. The sample was under continuous dry air 

purge starting 1 hour before the data acquisition. The spectra were collected 

in transmission mode, as a co-addition of 256 scans at 1 cm-¹ resolution 

during 4 minutes. In order to detect phase transitions, the sample 
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temperature was increased at a heating rate of 0.25°C/min resulting in a 1°C 

temperature rise per recorded spectrum. The spectra were collected 

between 0°C and 90°C and deconvoluted using a half-width of 5 cm-1 and an 

enhancement factor of 2.0. The software used was Win-IR pro 3.0 from 

Biorad. 

 

2.8 Small-angle x-ray diffraction measurements 
Small-angle x-ray diffraction (SAXD) was used to obtain information 

about the lamellar organization (i.e., the repeat distance of a lamellar phase). 

The scattering intensity I (in arbitrary units) was measured as function of the 

scattering vector q (in reciprocal nm). The latter is defined as q=(4πsinθ)/λ, 

in which θ is the scattering angle and λ is the wavelength. From the positions 

of a series of equidistant peaks (qn), the periodicity, or d-spacing, of a 

lamellar phase was calculated using the equation qn=2nπ/d, with n being the 

order number of the diffraction peak. One-dimensional intensity profiles were 

obtained by transformation of the 2D SAXD detector pattern from Cartesian 

(x,y) to polar (ρ,θ) coordinates and subsequently integrating over θ. All 

measurements were performed at the European Synchrotron Radiation 

Facility (ESRF, Grenoble) using station BM26B. The x-ray wavelength and 

the sample-to-detector distance were 0.113 nm and 0.419 m respectively. 

Diffraction data were collected on a Frelon 2000 CCD detector with 

2048×2048 pixels of 14 μm spatial resolution at 5x magnification. The spatial 

calibration of this detector was performed using silver behenate (d=5.838 

nm) and the two strongest reflections of high density polyethylene (HDPE, 

d=0.4166 and 0.378 nm). The SCS was mounted parallel to the primary 

beam in a temperature controlled sample holder with mica windows. Static 

diffraction patterns were collected in 1 minute at 25°C. 
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2.9 Electron microscopy and ruthenium staining 
The SCS was cut into small parts of 1 mm2 and fixed for one hour 

with 2% paraformaldehyde and 2.5% glutaraldehyde in a 0.1 m sodium 

cacodylate buffer at pH 7.4, at room temperature. After rinsing the samples 3 

times with PBS, the samples were post-fixated for one hour with 1% 

osmiumtetroxide in a cacodylate buffer pH 7.4 at 4°C. After rinsing the 

samples again 3 times with PBS, a second post fixation followed with 0.5% 

ruthenium tetroxide in distilled water for 30 min at 4°C. Finally, the samples 

were rinsed again 3 times with PBS, then dehydrated in a 70% ethanol 

solution and subsequently processed in a series of 70% ethanol:epoxy resin 

LX112 at a 2:1 ratio v/v for 30 min, 1:1 for 30 min, 1:2 for 30 min and finally 

0:1 for 1 h. Then the samples were polymerized for 2 days at 60°C. 

Subsequently, ultrathin sections of 100 nm thickness were cut with a 

Reichert Ultracut E microtome (Depew NY, USA) and after staining with 7% 

uranyl-acetate and a lead citrate solution according to Reynolds (30), the 

sections were observed and recorded using a Fei Tecnai 12 Twin spirit 

electron microscope (Hillsboro OR, USA). Of each filter at least 6 images 

were recorded in order to make an objective observation of the structure 

inside the lipid membrane. 

 

3. Results 
 

3.1 Influence of the lateral packing on the permeability of 
excised human SC and the SCS 

In order to determine whether the lateral packing affects the 

permeability of the SC or the SCS, the BA flux is measured as function of 

temperature between 28 and 46°C. The temperature is increased in steps of 

3°C. In figure 2A the flux of BA through SC and SCS is plotted against the 

temperature. The studies show that the temperature response of the BA 

diffusion through SC and SCS is remarkably similar over a wide temperature 
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range; only at the lowest (28°C) and highest (46°C) temperature a significant 

difference in BA flux is recorded between SCS and SC. 

 

 

 
The FTIR CH2 symmetric stretching frequencies provide information 

about the conformational ordering of the lipid tails (31, 32). The thermotropic 

response of the stretching frequencies of SC and SCS is plotted in figure 2B. 

Figure 2: A) The flux of BA through human SC and SCS, at 7 temperature 
intervals B) FTIR symmetric stretching frequency versus temperature, for SC 
and SCS C) FTIR rocking frequencies versus temperature, for SC and SCS D) 
SAXD pattern of SCS. The reflections of the LPP are indicated by Arabic 
numbers 1-4 and 7, reflections of the SPP are indicated by Roman numbers I 
and II. Diffraction peaks from crystalline CHOL are indicated by asterisks. 
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At 20°C, for SC and SCS, the stretching frequencies are 2849.3 and 2849.0 

cm-1 respectively, which indicates a conformational ordering of the CH2 

chains. Upon increasing the temperature, a gradual shift in the stretching 

frequencies from 2849.4 to 2850.6 is observed between 28°C and 48°C for 

SC and from 2849.4 to 2850.1 cm-1 between 29 and 39°C for SCS, 

indicating a transition from orthorhombic to hexagonal lateral packing. A 

further increase in temperature results in a second much stronger shift in 

frequency from 2850.6 to 2854.2 cm-1 between 60 and 97°C for SC and from 

2850.5 to 2854.1 cm-1 between 55 and 85°C for SCS. This second shift is 

indicative for the formation of a liquid phase, with midpoint transition 

temperatures of 81 and 64°C for SC and SCS respectively. 

The FTIR rocking frequencies provide detailed information on the 

lateral packing. Due to short range coupling, the orthorhombic packing is 

characterized by a doublet at approximately 720 and 730 cm-1, while the 

hexagonal packing is characterized by a singlet at a vibration frequency of 

approximately 720 cm-1 (33, 34). In figure 2C the rocking frequencies of the 

FTIR spectrum of SC and SCS are depicted as function of temperature. At 

20°C the rocking frequencies are 719.8 and 729.1 cm-1 for SC and 719.7 

and 729.7 cm-1 for SCS, indicating the presence of an orthorhombic packing. 

Increasing the temperature results in a gradual shift of the high frequency 

component to 727.8 cm-1 at 34°C for SC and to 728.4 cm-1 at 31°C for the 

SCS. A further increase in temperature turns the high frequency component 

into a shoulder of the low frequency component. This shoulder disappears at 

around 39°C for SC and 36°C for SCS. The disappearance of the high 

frequency component marks the endpoint of the orthorhombic to hexagonal 

transition. A further increase in temperature does not affect the rocking 

frequencies of SC or SCS. 

The SAXD pattern of SCS is shown in figure 2D. It displays two 

diffraction peaks that can be attributed to the SPP with a periodicity of 5.3 

nm and 5 orders of diffraction attributed to the LPP with a periodicity of 12.0 
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nm. Also, two reflections indicating the presence of crystalline cholesterol 

are observed. 

 

3.2 Influence of short chain FFA on the barrier function of SCS 
In our studies we also focus on the effect of FFA chain length 

distribution on the lipid organization. This is of interest as e.g. in SC of 

human reconstructed skin, the fatty acid chain length is reduced compared 

to that in SC of normal native skin (27). In addition, the presence of shorter 

FFA may also play a role in the impaired barrier function in diseased skin 

(35). The SCS prepared with FFA having a shorter chain length is referred to 

as short FFA SCS. 

In figure 3A the flux of BA through SCS and short FFA SCS is plotted. The 

studies were performed at 3 temperatures: 15, 25 and 33°C. This figure 

shows that at all three temperatures a significant difference is observed 

between the steady state flux across SCS and short FFA SCS. 

The thermotropic response of the symmetric CH2 stretching 

frequencies of the short FFA SCS is depicted in figure 3B. At 20°C, the 

stretching frequency is around 2849.4 cm-1, indicating a conformational 

ordering of the lipid tails. Heating results in a gradual increase of the 

stretching frequencies to 2850.3 at 49°C. A further increase in temperature 

results in a shift in frequency from 2850.3 to 2852.2 cm-1 between 49 and 

67°C, indicative for the transition to a liquid phase. The midpoint temperature 

of this transition is 58°C. Raising the temperature further results in a gradual 

increase in CH2 stretching frequency, up to 2853.6 cm-1 at 99°C. 

As shown in figure 3C, the rocking vibrations in the FTIR spectrum 

of short FFA SCS display only a single frequency component at 720.8 cm-1 

between 20 and 50°C, indicating the absence of an orthorhombic lateral 

packing. 
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The SAXD pattern of short FFA SCS displayed in figure 3D shows 

one sharp diffraction peak at a similar peak position as the 1st order of the 

Figure 3: A) The flux of BA through SCS prepared with short chain FFA in
comparison with the conventional SCS, at 3 temperature intervals B) FTIR
symmetric stretching frequency versus temperature, for the SCS with short 
chain FFA C) FTIR rocking frequency versus temperature, for the SCS with
short chain FFA D) SAXD pattern of the SCS with short chain FFA. One
reflection at the position of the first order SPP is indicated by the Roman
number I and diffraction peaks from crystalline CHOL are indicated by

asterisks. 
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SPP in SCS. Besides this reflection, only very broad peaks are visible 

around q= 1.0 and 1.5 nm-1. This demonstrates that the long range ordering 

in the short FFA SCS is very different from that in SCS. Also a relatively 

large amount of phase-separated crystalline CHOL is present in the short 

FFA SCS, as can be deducted from the high intensity diffraction peaks at q= 

1.85 and 3.7 nm-1. 

 

3.3 Mixing of short chain FFA with CER and CHOL 
When using deuterated FFA (denoted as DFFA), due to a shift in the 

absorption frequencies, the CD2 and CH2 scissoring vibrations of the 

protonated and deuterated FFA respectively, can be monitored 

simultaneously in the FTIR spectrum. To determine whether the DFFA and 

CER participate in one lattice or that phase separation occurs, the CD2 

scissoring mode can be monitored. When FFA and CER participate in an 

orthorhombic packing, the CH2 and CD2 scissoring modes will not interact 

and therefore the vibrational coupling that results in a doublet in the 

spectrum will be reduced. 

In figure 4A the CD2 scissoring vibrations of the short chain DFFA 

mixture are depicted. A doublet with positions at 1086 and 1092 cm-1 is 

observed until a temperature of 62°C is reached. This is indicative for the 

presence of an orthorhombic lateral packing in this temperature range. 

However, when the CD2 scissoring mode in the spectrum of the equimolar 

mixture of CER, CHOL and short chain DFFA is monitored in figure 4B, only 

a weak doublet of the CD2 scissoring mode is observed between 20 and 

32°C (see arrows). This demonstrates that only a small portion of all DFFA 

chains has neighboring DFFA chains and that thus the majority of the short 

chain DFFA and CER molecules participate in the same orthorhombic lattice. 
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Figure 4: A) Thermotropic CH2 scissoring spectra of a deuterated short chain
FFA mixture depicted from 20 to 100°C. A doublet is observed which
disappears at around 62°C. B) Scissoring spectra of DFFA-short in an 
equimolar mixture with CER and CHOL. Only a weak doublet is observed
(indicated by the arrows), which disappears at 32°C. 
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3.4 The activation energy for permeation through SC, SCS and 
the short chain FFA SCS 

Figure 5 displays the steady state fluxes obtained at the various 

temperature intervals for SC, SCS and short FFA SCS, plotted in log scale 

as function of the reciprocal temperature. Apart from SC at 28 and 46°C and 

SCS at 15°C (not included because of large flux deviations at these 

temperatures), for all membranes a linear relationship is observed between 

the natural logarithm of the steady state flux and the reciprocal temperature. 

The slope of this linear fit is equal to the activation energy for permeation, 

see equation 1. Using the same temperature interval for SC and SCS, from 

31 to 43°C, the activation energies determined are 73.1 ± 7.1 and 81.9 ± 2.5 

kJ/mole for SC and SCS respectively. The appearance of a straight line in 

figure 5 and thus the existence of only one activation energy in the examined 

temperature range, indicates that the increase in BA flux as function of 

Figure 5: Arrhenius plots for human SC, SCS and short FFA SCS, in which the 
natural logarithm of the steady state flux (multiplied by the gas constant R), is 
plotted against the inverse absolute temperature. The linear fit is shown 
through the flux data of SC and the two models. The error bars in the figure 
display the standard deviation of the flux data. 
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temperature is not affected by the change in packing from an orthorhombic 

to a hexagonal phase. The activation energy for permeation of BA through 

the short FFA model is 66.8 ± 5.9 kJ/mole. 

 

3.5 Lamellar structure of SCS and short chain FFA SCS 
visualised by electron microscopy 

In order to obtain further insight into the lamellar organization of the 

SCS and short FFA SCS, the SCS are visualized in the electron microscope 

(EM) after embedding and RuO4 staining. A typical EM image of the SCS is 

displayed in figure 6A. In this image it is clear that the SCS contains two 

distinct phases: domains with the well known broad-narrow-broad pattern 

(36) and darker domains with a repetitive equidistant spacing. In order to 

establish whether the broad-narrow-broad structure is correlated to the LPP, 

membranes were prepared with a twofold higher level of CER EOS (as EOS 

is responsible for the formation of the LPP (37)) and in the absence of CER 

EOS. When 30% CER EOS was incorporated, the electron microscopic 

images display predominantly the broad-narrow-broad sequence and very 

little regions with an equidistant spacing, see figure 6B. When a membrane 

was prepared in the absence of CER EOS, no broad-narrow-broad structure 

is visible in the images, see figure 6C. Instead, domains with short periodicity 

equidistant lamellae are observed, indicating the formation of the SPP. We 

measured the spacings of the SPP and LPP from figure 6A-C and found that 

they are somewhat smaller than determined by SAXD, probably due to the 

embedding process for EM. The lipid organization of the SCS with short 

chain FFA is displayed in figure 6D. Although lamellae are visible, this image 

reveals the absence of a well defined stacking of the lipid lamellae and the 

absence of a broad-narrow-broad pattern. 
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Figure 6: A) Electron microscopy image of the SCS. Two different domains are 
visible in the micrograph. One domain with the well-known broad-narrow-broad 
appearance, the other domain with a short repetitive structure. B) EM 
micrograph of a SCS prepared with a higher level of CER EOS. In this image 
only lamellae with a broad-narrow-broad pattern are visible. C) Electron 
microscopy micrograph of a SCS prepared in the absence of CER EOS. In this 
image only lamellae with a short repetitive pattern are observed. D) EM image 
of the short FFA SCS. Lamellar structures are visible, but no proper stacking is 
observed. 
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4. Discussion 
Although it has been suggested that the presence of the 

orthorhombic phase is important for the skin barrier function, currently there 

are almost no data available on the effect of the orthorhombic to hexagonal 

phase transition and the presence of the LPP on the permeability of 

compounds. Therefore, in this study we examined the effect of the lateral 

packing on the permeability of SC and SCS by performing diffusion studies 

in the temperature interval between 15 and 46°C. In addition, the effect of 

shorter FFA in the SCS on the lipid organization and permeability was 

examined.  

  

4.1 The permeability of SCS is very similar to human SC 
Around the skin temperature (32°C), the steady state fluxes of BA 

through SC and SCS did not differ significantly. The steady state flux values 

are around 20 μg/cm2/h at 32°C, which is very similar to the steady state flux 

value obtained in a previous study (25). Remarkably, we found that the 

permeability of SCS to BA closely follows that of human SC at all 

temperature steps between 31 and 43°C. When comparing SC and SCS in 

previous studies with PABA, ethyl-PABA and butyl-PABA an excellent 

correlation between steady state fluxes was also observed (23). Very 

recently we also noticed that the steady state flux of hydrocortison through 

SC and SCS is very similar (unpublished results), demonstrating that the 

SCS mimics the permeation properties of human SC very closely for 

moderately hydrophilic to moderately lipophilic compounds. 

 

4.2 The activation energy for permeation in SCS and SC is 
different, but the flux is similar 

The EP values for BA through SC and SCS are consistent with 

values reported in literature for a range of substances used in skin 

permeation studies (38). For example, the EP for acetylsalicylic acid 

(MW=180, logKo/w=1.19) is 85 kJ/mole (39), for caffeine (MW=194, 
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logKo/w=0.02) 53 kJ/mole (40), for corticosterone (MW=346, logKo/w=1.94) 97 

kJ/mole (41), for ibuprofen (MW=206, logKo/w=3.5) 173 kJ/mole (42) and for 

water (MW=18, logKo/w=1.38) 57 kJ/mole (2). Mitragotri reports that the EP 

for hydrophobic solutes (which also includes BA) is strongly dependent on 

the molecular size (38). When comparing the EP calculated for permeation of 

BA through SC and SCS, the EP for SC is slightly lower than that for SCS, 

even though the flux values did not differ significantly between 31 and 43°C. 

This difference in EP may be explained by differences in the structure of the 

SC and SCS: The uniformity in chain length of the synthetic CER in SCS 

may result in a reduced mismatch between the CER hydrocarbon chains in 

the lipid lamellae, resulting in a more crystalline structure. Because the 

environment of the diffusing molecule is affected, this can lead to an 

increase in EP (more difficult for the permeant molecule to move through a 

more crystalline structure). 

 

4.3 Is the orthorhombic lateral packing crucial for a competent 
SC barrier function? 

In previous studies the diffusion of water across pig SC has been 

measured as function of temperature by Potts and Francoeur (2). From the 

permeability values an Arrhenius plot can be constructed, which is presented 

in figure 7. From the linear correlation with the inverse temperature, an EP of 

59.1 ± 2.9 kJ/mole can be calculated. Porcine SC does not exhibit an 

orthorhombic-hexagonal phase transition (43), demonstrating that in the 

absence of a phase transition a linear correlation is observed between the 

log of the steady state flux and the inverse absolute temperature. In human 

SC and the SCS, the rocking frequencies as function of temperature 

demonstrated that an orthorhombic to hexagonal phase transition occurs 

between 30 and 40°C. However, when focusing on the Arrhenius plot of 

human SC and SCS, a linear relationship is observed similar to that in pig 

SC. This demonstrates that the orthorhombic-hexagonal phase transition 
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does not affect Ep and therefore does not affect the diffusivity of BA across 

human SC and the SCS (29). 

 

 

 
 

Although our studies have only been carried out with BA and the 

diffusion of other compounds may be more sensitive to the orthorhombic-

hexagonal phase transition, our results demonstrate that the presence of the 

orthorhombic lateral packing seems to be less crucial than suggested in 

previous studies (21, 26, 44, 45). 

In  SC of human skin equivalents the lipids form the LPP very similar 

to that in native SC, but the lateral packing of the lipids is hexagonal (27), 

very similar to that in porcine SC. Permeation studies have shown that the 

methyl nicotinate flux across human skin equivalents is 2-fold higher than 

observed for native human skin (46). However, the results of our present 

study indicate that the hexagonal lateral packing may not explain this 

increased permeability. 

Figure 7: Arrhenius plot for water permeation through porcine SC. The
permeation data were presented in an earlier study by Potts and Francoeur (2). 
Shown in the plot is the linear fit through the flux data. Error bars in the figure
represent the standard error of the mean.
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The results discussed above are in contrast with those of a recent 

study focusing on the permeation of water through human SC (26). In this 

study it is reported that the water transport is influenced by the relative 

population of lipids forming an orthorhombic packing. However, in the latter 

study the TEWL has been used as a measure for the water transport. 

Perhaps the difference in physical properties of the solute (water versus BA) 

or the difference between inside-out permeation (TEWL) and outside-in 

permeation (BA permeation) can account for the different observations. In a 

study of Chilcott et al (47), it was shown that TEWL and diffusion of 

substances, both measured in vitro, do not correlate. 

 

4.4 The formation of ordered lamellar phases is crucial for the 
SC barrier function 

The BA flux through the SCS prepared with short chain FFA is 

approximately 4-fold higher than that through normal SCS. This was 

observed at all three temperatures selected in the studies. In addition the Ep 

is lower than that of normal SCS. When comparing the short FFA SCS with 

the SCS, differences in lipid organization are noticed. As far as the lateral 

packing is concerned, at skin temperature a hexagonal lateral packing is 

observed. However, as discussed above, for BA no obvious difference in 

diffusivity is expected between a hexagonal and an orthorhombic lateral 

packing. Therefore, the absence of the orthorhombic packing cannot explain 

the high permeability observed in the short FFA SCS, provided that the 

penetration pathlength remains the same in both the hexagonal and 

ortorhombic lateral packing (see equation 2). As in this model the chain 

length difference between the short chain FFA and the CER is substantial, 

phase separation within the crystalline lattice is likely to occur and was 

therefore examined using SCS prepared with DFFA. These studies, 

however, demonstrated that the short chain FFA and the CER both 

participate in the same lattice. Phase separation can therefore not contribute 

to the increase in BA flux. When focusing on the lamellar organization, the 
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lipids in the short chain FFA SCS form different phases than observed in the 

SCS: in the X-ray diffraction pattern no LPP is noticed and only one 

reflection can be attributed to the SPP. Instead, broad reflections are 

observed that are absent in the diffraction pattern of the normal SCS, 

indicating the absence of a proper stacking of the lipid lamellae. This is 

confirmed by the electron microscopic studies of the short FFA SCS. In a 

previous study it was shown that a lack of the LPP results in a 2-fold 

increased flux of ethyl-para amino benzoic acid (23). Because no LPP is 

formed and the stacking of the lamellae is less defined, the pathlength 

through the short FFA membrane may be significantly reduced. The 

diffusivity of the short FFA membrane (calculated from EP with equation 1) is 

only slightly different from the diffusivity of the SCS. Therefore, the absence 

of the proper lamellar phases may account for the increased flux through the 

short FFA SCS by reducing the pathlength for permeation (see equation 2).  

Interestingly, with EM in the SCS two domains with a different 

appearance could be distinguished; the broad-narrow-broad pattern and the 

short repetitive pattern. Although the LPP has been related to the broad-

narrow-broad pattern in previous studies (36), until now, this relation was not 

completely established. For this reason, we prepared a SCS in the absence 

of the CER EOS and a SCS with 30% CER EOS. X-ray diffraction studies 

showed that in the absence of CER EOS only the SPP is formed (37), while 

with 30% CER EOS in our mixture the LPP is predominantly formed 

(unpublished results). These findings correlate excellently with the presence 

of mainly broad-narrow-broad pattern in the EM images of the SCS with 30% 

CER EOS and the presence of only the short repetition pattern in SCS 

prepared without EOS. Therefore these studies demonstrate that the broad-

narrow-broad pattern is indeed directly related to the LPP. 

When extrapolating our findings to SC of diseased skin, our present 

studies suggest that the skin barrier function is more sensitive to a change in 

the lamellar phases than to a change from an orthorhombic to a hexagonal 

lateral packing. In lamellar Ichthyosis (48, 49) as well as in psoriasis SC 
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(unpublished results) the lamellar phases are different from that in SC of 

healthy human subjects. 

 

In conclusion, we observed that the permeability of BA through 

human SC and the SCS is not affected by the orthorhombic-hexagonal 

transition. However, when substituting the long chain FFA for short chain 

FFA an increased permeability was observed due to a drastic change in the 

lamellar organization. Our studies indicate that the absence of a proper 

lamellar organization has a higher impact on the skin barrier function than a 

change from orthorhombic to hexagonal lateral packing. These findings may 

provide new insights into the skin barrier function, especially in diseased 

skin. 
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Abstract 
The lipids in the uppermost layer of the skin, the stratum corneum 

(SC), play an important role in the barrier function. The main lipid classes in 

stratum corneum are ceramides, cholesterol and free fatty acids. In previous 

publications a lipid model was presented, referred to as the stratum corneum 

substitute (SCS), that closely mimics the SC lipid organization and SC 

barrier function. In the present study, we use the SCS to study the effect of 

changes in lipid organization on the lipid barrier function using benzoic acid 

as permeation compound. First, in the SCS we increased the level of one of 

the three major lipid classes keeping the ratio between the other lipid classes 

constant. An increased cholesterol level resulted in an increase in phase 

separated cholesterol and a reduction in the permeability. An increase in 

ceramide or free fatty acid level resulted in the formation of additional 

phases, but had no significant influence on the permeability. We also 

examined models that mimic selected changes in lipid composition reported 

for dry or diseased skin. The SCS that mimics the composition in recessive 

X-linked ichthyosis skin displayed a twofold increase in permeability. This 

increase is possibly related to the formation of an additional, less ordered 

phase in this model. 
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1. Introduction 
The physical barrier of the human skin is located in the uppermost 

layer, the stratum corneum (SC). The SC consists of enucleated dead cells 

(corneocytes) that are surrounded by lipid lamellae. As these lipid lamellae 

form a continuous pathway in the SC, the lipid domains are considered to 

play a dominant role in the skin barrier function (4). The main lipid classes in 

the SC are ceramides (CER), cholesterol (CHOL) and free fatty acids (FFA) 

(5-9). The lipids are arranged in two crystalline coexisting lamellar phases 

with repeat distances of 13 and 6 nm, respectively. These lamellar phases 

are referred to as the long periodicity phase (LPP) and the short periodicity 

phase (SPP) (10, 11). At the skin temperature of 30-32ºC, in human SC the 

lipids in the lipid lamellae are organized mainly in an orthorhombic lateral 

packing, although a subpopulation of lipids also forms a hexagonal or even a 

liquid-like lateral packing (12-14). The lateral and lamellar lipid organization 

are considered to play an important role in the skin barrier function (14-16). 

When focusing in more detail on the lipid composition, a wide distribution of 

FFA chain lengths has been identified. The most abundant chain lengths in 

the FFA mixture are those of 22 and 24 C atoms (17). As far as the CER are 

concerned, currently, there are eleven subclasses of CER identified in 

human SC (5, 6, 9). To understand the change in lipid phase behaviour in 

diseased and dry skin (18-22), we should unravel the complex phase 

behaviour in SC. As it is impossible to perform these studies with intact SC, 

lipid mixtures should be used mimicking the lipid phase behaviour of SC as 

closely as possible. In previous studies lipid mixtures were prepared using 

isolated as well as synthetic CER mixtures. These lipid mixtures mimicked 

the lipid organization of SC very closely and provided useful information on 

the role the lipid classes play in the lipid phase behaviour (23-25). However, 

no information was obtained about the relation between lipid organization 

and the skin barrier function. In order to study this, we developed a skin lipid 

membrane consisting of a porous substrate covered with a mixture of 

synthetic CER, CHOL and FFA. This membrane is referred to as the stratum 
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corneum substitute (SCS). The SCS mimics the lipid organization and lipid 

orientation in SC very closely. As the lipid composition can easily be 

modified, the SCS allows us to study the relationship between lipid 

composition, molecular organization and barrier function in just one model 

(1, 26, 27). In a previous study it was observed that the LPP plays an 

important role in the skin barrier function (26). In a recent paper we 

examined also the effect of the lateral packing on the permeability of the 

SCS using benzoic acid (BA), a medium lipophilic low molecular weight 

compound, as model drug (2). This study revealed that an orthorhombic to 

hexagonal transition does not affect the diffusivity of BA in the SCS. 

In the present study, we will first systematically change the CER, 

CHOL and FFA composition. Subsequently we examine models that mimic 

some aspects of the changes in lipid composition reported for SC of dry skin 

(winter xerosis), recessive X-linked ichthyosis and psoriasis skin. The 

permeability of the in vitro SCS models is assessed by measuring the 

permeation of BA. To examine the lipid organization in the models, Fourier 

transform infrared spectrometry (FTIR) and small-angle X-ray diffraction 

(SAXD) are used. 

 

2. Materials and Methods 
 

2.1 Materials 
Synthetic CER(EOS)C30-linoleate, CER(EOS)C30-oleate, 

CER(NS)C24, CER(NP)C24, CER(NP)C16, CER(AS)C24 and CER(AP)C24 

(see figure 1) were generously provided by Cosmoferm B.V. (Delft, The 

Netherlands). Palmitic acid (C16:0), stearic acid (C18:0), arachidic acid 

(C20:0), behenic acid (C22:0), tricosanoic acid (C23:0), lignoceric acid 

(C24:0), cerotic acid (C26:0) and cholesterol were purchased from Sigma-

Aldrich Chemie GmbH (Schnelldorf, Germany). Benzoic acid was obtained 

from Sigma-Aldrich (Zwijndrecht, The Netherlands). Nuclepore 

polycarbonate filter disks (pore size 50 nm) were purchased from Whatman 
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(Kent, UK). All organic solvents are of analytical grade and manufactured by 

Labscan Ltd. (Dublin, Ireland). All other chemicals are of analytical grade 

and the water is of Millipore quality. 

 
Table 1: 

model type abbreviation composition and molar ratio Jss 
(μg/cm2/h) τ (h) 

SC substitute SCS CER : CHOL : FFA                   1 : 1 : 1 24 ± 2 † 1.1 ± 0.5 † 

high CER level  CER : CHOL : FFA                   2 : 1 : 1 22.5 ± 1.8 -0.3 ± 0.5 

high CHOL level  CER : CHOL : FFA                   1 : 2 : 1 9.0 ± 1.5 0.6 ± 0.6 

high FFA level  CER : CHOL : FFA                   1 : 1 : 2 25.6 ± 1.2 # n.a. 

psoriasis model PS SCS CER : CHOL : FFA                   1 : 1.2 : 0.5 14.5 ± 1.1 0.3 ± 0.2 

winter xerosis model WX SCS CER*: CHOL : FFA                   1 : 1 : 1 15.6 ± 2.6 0.9 ± 0.8 

recessive X-linked 
ichtyosis RXLI SCS CER : CHOL : FFA : ChSO4     1 : 1 : 1 : 0.33 46.2 ± 5.5 0.1 ± 0.3 

 
 

2.2 Preparation of the model lipid mixtures  
For the preparation of the SCS models, CHOL, synthetic CER and 

FFA were used in the appropriate molar ratio according to the different 

models. In Table 1 the ratios of the main lipid classes are displayed for the 

models used in this study. The main CER subclasses we have available 

consist of either a sphingosine (S) or phytosphingosine (P) base, whereas 

the acyl chain is a nonhydroxy (N), α-hydroxy (A) or ω-hydroxy chain (3). 

The corresponding nonhydroxy and α-hydroxy CER that are used in this 

study are denoted as CER NP, CER NS, CER AP and CER AS. The ω-

hydroxy CER possesses a longer acyl chain length (C30) and has a linoleic 

or oleic acid ester-linked to their ω-hydroxy group (indicated with EO). In our 

study we use two such acylCERs, denoted as CER(EOS)-linoleate and 

CER(EOS)-oleate. For the ceramides mixture (CER) the following synthCER 

* In the CER composition of the winter xerosis model 50% of the CER(EOS)-
linoleate is replaced by CER(EOS)-oleate. 
† For the equimolar SCS, Jss and τ were obtained in a previous study (1). 
# For the SCS with a high FFA level, Jss was determined from the last 4 flux 
values, therefore τ could not be calculated. 
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composition was selected (see figure 1): CER(EOS)C30-linoleate, 

CER(NS)C24, CER(NP)C24, CER(AS)C24, CER(NP)C16 and CER(AP)C24 

in a 15:51:16:4:9:5 molar ratio, similar as observed in pig SC (25). The acyl 

chain length of the various CER subclasses is either 30 C atoms (C30), 24 C 

atoms (C24) or 16 C atoms (C16). For the free fatty acids mixture (FFA), the 

following composition was selected: C16:0, C18:0, C20:0, C22:0, C23:0, 

C24:0 and C26:0 at a molar ratio of 1.8:4.0:7.7:42.6:5.2:34.7:4.1 

respectively. This chain length distribution is based on the reported FFA 

composition in SC (17). For each model the appropriate amounts of 

individual lipids were dissolved in chloroform:methanol (2:1 v/v). After 

evaporation of the organic solvent under a stream of nitrogen, the lipid 

mixtures were re-dissolved either in hexane:ethanol 2:1 v/v (for models used 

in permeability and X-ray studies) or in chloroform:methanol 2:1 v/v (for 

models used in FTIR studies) at a total lipid concentration of 4.5 mg/ml. 
 

 

 

Figure 1: Molecular structure of the synthetic CER selected for the lipid 
mixtures (see Table 1). The nomenclature is according to Motta et al (3). 
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2.3 Preparation of SCS models for in vitro permeability studies 
A Linomat IV (Camag, Muttenz, Switzerland) extended with a y-axis 

arm was used to spray lipids in hexane:ethanol solution from a distance of 1 

mm onto a porous filter substrate. The spraying flow rate was 5.0 μl/min at a 

movement speed of 1.0 cm/s. In an area of 8×8 mm2 0.90 mg of lipids was 

applied per SCS model. After spraying, the SCS was equilibrated at around 

80ºC. After an equilibration period of at least 10 minutes, the SCS was 

cooled down to room temperature in approximately 30 minutes. 

 

2.4 Preparation of lipid models for FTIR studies 
Sample preparation for FTIR was the same as above, but instead 

1.5 mg of lipids in a chloroform:methanol solution was sprayed in an area of 

1x1 cm2 on an AgBr window. The sample was equilibrated for 10 min at 

around 80ºC and slowly cooled down to room temperature in about 30 min. 

Subsequently, the lipid layer was covered with 25 μl of deuterated acetate 

buffer pH 5 (50 mM) and stored at 37°C for 24h to fully hydrate the sample. 

Finally, to homogenize the sample, five freeze-thawing cycles of 3h each 

were carried out between -20°C and RT (28). 

 

2.5 Permeability studies 
In vitro permeation studies were performed using Permegear inline 

diffusion cells (Bethlehem PA, USA) with a diffusion area of 0.28 cm2. The 

SCS models were mounted in the diffusion cells and were hydrated for 1 h in 

phosphate-buffered saline (PBS: NaCl, Na2HPO4, KH2PO4 and KCL in MQ 

water with a concentration of 8.13, 1.14, 0.20 and 0.19 g/l respectively) at 

pH 7.4 prior to the experiment. The donor compartment was filled with 1.4 ml 

of BA (MW 122 g/mol) solution in PBS (pH 7.4) at a 2.0 mg/ml concentration. 

BA has a log Poct/water value of about 1.7. The acceptor phase consisted of 

PBS (pH 7.4), which was perfused at a flow rate of about 2 ml/h. The 

acceptor phase was stirred with a magnetic stirrer. The volume per collected 

fraction was determined by weighing. Each experiment was performed under 
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occlusive conditions, by closing the opening of the donor compartment with 

adhesive tape. To mimic the in vivo conditions as close as possible the 

temperature of the SCS was maintained at 32°C during the permeation 

studies, using a thermo-stated water bath. 

Steady state fluxes and lag-times were determined from a plot of the 

cumulative permeated amount. The steady state flux (JSS) is the slope of the 

linear part of this graph and the lag-time (τ) is determined by regression of 

this linear part to the time when the permeated amount is 0. 

 

2.6 FTIR studies 
All spectra were acquired on a BIORAD FTS4000 FTIR 

spectrometer (Cambridge, Massachusetts) equipped with a broad-band 

mercury cadmium telluride detector, cooled with liquid nitrogen. The sample 

cell was closed by two AgBr windows. The sample was under continuous dry 

air purge starting 1 hour before the data acquisition. The spectra were 

collected in transmission mode, as a co-addition of 256 scans at 1 cm-¹ 

resolution during 4 minutes. In order to detect the phase transitions, the 

sample temperature was increased at a heating rate of 0.25˚C/min, resulting 

in a 1°C temperature rise per recorded spectrum. The spectra were collected 

between 0˚C and 90˚C. The software used was Win-IR pro 3.0 from Biorad 

(Cambridge, Massachusetts). The spectra were deconvoluted using a half-

width of 5 cm-1 and an enhancement factor of 2.0. 

 

2.7 Determining the midpoint temperature of the melting 
transition and fitting of the rocking vibrations in FTIR 

In FTIR, the frequency of the symmetric stretching maximum as 

function of temperature depicts the transition of the lipids to a liquid phase 

(29, 30). The midpoint temperature (Tm) of the melting transition was 

determined as the temperature at which the frequency increase is halfway 

between two fitted straight parts of the curve before and after the transition. 

The straight parts before and after the transition are fitted by linear fits and 
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the data point closest to the transition that deviates from the linear fit is 

chosen as the beginning or end point of the melting transition. This method 

for determining Tm is depicted in figure 2B-ii. 

The frequency of the two rocking maxima as function of temperature 

depict the phase transition from an orthorhombic to a hexagonal lateral 

packing (31, 32). During this transition, at those temperatures at which no 

separate peaks could be distinguished but only an asymmetric peak, two 

components were fitted to the rocking vibrations in order to determine the 

position of the high-frequency component. The curve-fitting procedure was 

as follows: First, in the range from 635 to 900 cm-1 in the FTIR spectrum a 

baseline was created with a constant value corresponding to the lowest 

value in that part of the spectrum. Subsequently the two components 

present in the spectrum were fitted with two Lorentzian peak shapes using a 

least squares approximation. The position of the maximum of the high-

frequency component was subsequently used in the plot of the rocking 

frequencies as function of temperature. In this plot, the positions of the high-

frequency component are displayed until a temperature is reached at which 

the high-frequency component could no longer be fitted. 

 

2.8 SAXD studies 
X-ray diffraction was used to obtain information about the lamellar 

organization (i.e., the repeat distance of a lamellar phase) and the 

orientation of the lamellae. The SCS was mounted parallel to the primary 

beam in a temperature controlled sample holder with mica windows. Static 

diffraction patterns were collected for 1 minute at 25°C. The scattering 

intensity I (in arbitrary units) was measured as a function of the scattering 

vector q (in reciprocal nm). The latter is defined as q=(4πsinθ)/λ, in which θ 

is the scattering angle and λ is the wavelength. From the positions of a 

series of equidistant peaks (qn), the periodicity, or d-spacing, of a lamellar 

phase was calculated using the equation qn=2nπ/d, with n being the order 

number of the diffraction peak. One-dimensional intensity profiles were 
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obtained by transformation of the two-dimensional SAXD detector pattern 

from Cartesian (x,y) to polar (ρ,θ) coordinates and subsequently integrating 

over θ. All measurements were performed at the European Synchrotron 

Radiation Facility (ESRF, Grenoble) using station BM26B. The X-ray 

wavelength and the sample-to-detector distance were 0.113 nm and 0.419 

m respectively. Diffraction data were collected on a Frelon 2000 CCD 

detector with 2048×2048 pixels at 14 μm spatial resolution and 5x 

magnification. The spatial calibration of this detector was performed using 

silver behenate (d=5.838 nm) and the two strongest reflections of high 

density polyethylene (HDPE, d=0.4166 and 0.378 nm).  

 

3. Results 
 

To assess the barrier properties of the various SCS models, the 

permeation of the model compound BA has been measured at the skin 

temperature of about 32°C. To correlate permeability with lipid organization, 

the lipid organization has been examined with FTIR and SAXD. The various 

model compositions, steady state flux values and lag-times are presented in 

Table 1. 

 

3.1 Influence of the CER:CHOL:FFA ratio on the barrier function 
To determine the role of each of the lipid classes on the lipid 

composition and permeability, SCS varying systematically in 

CER:CHOL:FFA composition were examined. The fluxes are provided in 

Table 1. In this table the flux across SCS with an equimolar CER:CHOL:FFA 

composition that was reported previously (1), is also provided. In figure 2A-i 

the BA flux profile across the SCS with a CER:CHOL:FFA molar ratio of 

2:1:1 is shown. The steady state flux is 22.5 ± 1.8 μg/cm2/h and the lag-time 

is -0.3 ± 0.5 h. 
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The CH2 symmetric stretching frequencies in the infrared spectrum 

provide information about the conformational ordering of the lipid tails. The 

Figure 2: i) Plots of the BA permeation versus time, ii) CH2 symmetric 
stretching frequency as function of temperature, iii) thermotropic response of
the FTIR CH2 rocking frequencies and iv) the SAXD pattern of A) SCS in 2:1:1
CER:CHOL:FFA molar ratio, B) SCS in a 1:2:1 CER:CHOL:FFA molar ratio C)
SCS in a 1:2:1 CER:CHOL:FFA molar ratio. In the SAXD patterns, the Arabic 
numbers denote diffraction orders of the LPP, the Roman numbers indicate
reflections assigned to the SPP and asterisks mark the reflections of crystalline
CHOL. The reflection that was assigned to an additional lamellar phase is
indicated by a cross. In the figures depicting the CH2 rocking vibrations the 
open squares are calculated with the peak fitting procedure. 
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position of the CH2 symmetric stretching vibration as function of temperature 

is plotted in figure 2A-ii. At 20°C this frequency is 2846.9 cm-1, indicating a 

high conformational ordering. When increasing the temperature, between 30 

and 40°C a weak shift is observed in frequency from 2847.1 to 2847.5 cm-1. 

Although not very pronounced, it indicates an orthorhombic to hexagonal 

transition. Increasing the temperature leads to another shift in frequency 

from 2848.1 to 2852.2 cm-1 between 65 and 89°C, revealing the transition to 

a liquid phase, with a midpoint temperature of Tm = 80°C. 

The FTIR rocking frequencies provide detailed information on the 

lateral packing. Due to short range coupling, the orthorhombic packing is 

characterized by a doublet at approximately 720 and 730 cm-1, while the 

hexagonal packing is characterized by a singlet at a vibration frequency of 

approximately 720 cm-1. The thermotropic response of the rocking 

frequencies in figure 2A-iii shows a shift of the high frequency component 

from 728.0 to 724.6 cm-1 between 21 and 33°C, suggesting the transition 

from an orthorhombic to a hexagonal lateral packing in this temperature 

region. 

The SAXD pattern of the 2:1:1 SCS in figure 2A-iv displays four 

diffraction peaks that can be ascribed to a LPP with a periodicity of 12.0 nm 

and two reflections attributed to a SPP with periodicity of 5.3 nm. 

Furthermore, an additional diffraction peak is observed indicative for an 

additional phase with a periodicity of 4.4 nm, most likely due to phase 

separated CER-rich domains. The peak at q = 1.85 nm-1 indicates the 

presence of a low level of phase separated crystalline CHOL. 

The SCS with elevated CHOL level was also studied. The 

permeability of the SCS with a CER:CHOL:FFA composition of 1:2:1 is 

displayed in figure 2B-i. This figure demonstrates that by increasing the 

CHOL levels the BA flux drastically reduces since the steady state flux is 

only 9.0 ± 1.5 μg/cm2/h. The lag-time of this membrane is 0.6 ± 0.6 h. 

The thermotropic response of the CH2 stretching frequencies is 

provided in figure 2B-ii. There is a gradual increase in the frequencies from 0 
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to 20°C. At 20°C, the symmetric stretching frequency is 2848.3 cm-1, 

denoting the presence of conformational ordered phases. A further increase 

in temperature from 21 to 37°C results in a shift in frequency from 2848.3 to 

2849.1 cm-1, indicative for the orthorhombic-hexagonal phase transition. 

Upon further heating, between 50 and 79°C a second transition is observed 

from 2849.4 to 2852.0 cm-1, demonstrating the formation of a liquid phase. 

The midpoint temperature of this transition is 66°C. 

The rocking frequencies are displayed in figure 2B-iii. The 

orthorhombic to hexagonal transition is shown by a shift of the high 

frequency component from 729.5 to 725.3 cm-1 between 21 and 31°C. 

The SAXD pattern of the 1:2:1 SCS is displayed in figure 2B-iv with 

diffraction peaks attributed to the LPP and SPP. However, the diffraction 

peaks attributed to crystalline CHOL have a high intensity, demonstrating a 

high level of phase separated CHOL. 

The level of the third main class of lipids is also increased in the 

SCS. In figure 2C-i the permeability curve of SCS with a CER:CHOL:FFA 

molar ratio of 1:1:2 is displayed. From this figure it is clear that a steady state 

flux is not reached within the 20 h of permeation. The flux value was 

calculated as a mean of the flux values between 16 and 20 h of permeation 

and is 25.6 ± 1.2 μg/cm2/h. The lag-time could not be determined due to the 

absence of a steady state flux. 

The thermotropic CH2 stretching response is provided in figure 2C-ii. 

At low temperatures the lipid tails are in a conformational ordering as shown 

by the CH2 stretching frequency of 2848.6 cm-1 at 20°C. Upon increasing the 

temperature, a clear shift in frequency from 2848.6 to 2849.5 cm-1 is 

observed between 22 and 38°C, demonstrating the orthorhombic to 

hexagonal phase transition. When further increasing the temperature, 

another shift in wavenumber from 2849.6 to 2852.8 cm-1 is visible between 

50 and 72°C denoting the transition to a liquid phase with a midpoint 

temperature of 60°C. 
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The orthorhombic to hexagonal phase transition is also monitored by 

the thermotropic CH2 rocking response as displayed in figure 2C-iii: A shift of 

the high frequency component from 729.5 to 727.4 cm-1 is observed 

between 24 and 32°C. When increasing the temperature further a weak 

orthorhombic component remained in the rocking curve until a temperature 

of 60°C. This indicates that the majority of the lipids forms a hexagonal 

lateral packing around 34°C, but a small fraction of phase separated FFA 

remains in the orthorhombic packing until a temperature of about 60°C is 

reached (28). At this temperature the crystalline FFA starts to transform into 

a liquid phase. 

The SAXD pattern of the model with high FFA level is displayed in 

figure 2C-iv. It depicts two diffraction peaks attributed to the SPP with a 

periodicity of 5.3 nm. Five diffraction peaks could be identified that are 

attributed to the LPP with a periodicity of 12.0 nm. The two peaks at q = 1.85 

and 3.7 nm-1 indicate the presence of a low level of phase separated 

crystalline CHOL. The elevated FFA level did not result in an additional 

phase with a long range ordering. 

 

3.2 The permeability and phase behaviour of SCS with a lipid 
composition based on that in dry or diseased skin 

The lipid organization and barrier properties of models with 

compositions related to dry skin (winter xerosis), recessive X-linked 

ichthyosis and psoriasis skin were also examined. 
Due to seasonal influences the lipid composition in the SC is 

reported to undergo changes. Focussing on the CER subclasses, in the 

winter season the relative level of CER(EOS)-oleate is increased at the 

expense of CER(EOS)-linoleate (21, 33). To mimic this aspect of the SC 

composition of dry skin (winter xerosis), 50% of the CER(EOS)-linoleate was 

replaced by CER(EOS)-oleate in the SCS. The SCS that mimics the 

composition in SC of dry skin is referred to as WX SCS. The permeation 
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curve of BA through WX SCS is displayed in figure 3A-i. The steady state 

flux is 15.6 ± 2.6 μg/cm2/h and the lag-time 0.9 ± 0.8 h. 

 

 

 
 

Figure 3: i) Plots of the BA permeation versus time, ii) CH2 symmetric 
stretching frequency as function of temperature, iii) thermotropic response of 
the FTIR CH2 rocking frequencies and iv) the SAXD pattern of A) WX SCS, B)
PS SCS and C) RXLI SCS. In the SAXD patterns, the Arabic numbers denote
diffraction orders of the LPP, the Roman numbers indicate reflections assigned 
to the SPP and asterisks mark the reflections of crystalline CHOL. In the figures
depicting the CH2 rocking vibrations the open squares are calculated with the
peak fitting procedure.
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The  thermotropic response of the CH2 symmetric stretching peak is 

plotted in figure 3A-ii. At low temperatures, a gradual increase in frequency 

is observed up to 2848.7 cm-1 at 20°C. Upon increasing the temperature 

from 21 to 41°C a shift in wavenumber from 2848.8 to 2849.9 cm-1 is 

detected, indicating the orthorhombic to hexagonal phase transition. When 

further increasing the temperature, a liquid phase is formed between 51 and 

73°C as denoted by a shift from 2850.1 to 2853.2 cm-1. The midpoint 

temperature of this transition is 60°C. 

The FTIR rocking frequencies displayed in figure 3A-iii show a shift 

of the high frequency component from 729.1 to 724.4 cm-1 between 25 and 

33°C, characteristic for the orthorhombic-hexagonal transition. 

The SAXD pattern of WX SCS is shown in figure 3A-iv. It displays 

two diffraction peaks attributed to a SPP with a periodicity of 5.3 nm and five 

diffraction peaks assigned to the LPP with a periodicity of 12.0 nm. 

Crystalline CHOL is also present, as indicated by two diffraction peaks at q = 

1.85 and 3.7 nm-1. 
Besides a change in CER:CHOL:FFA molar ratio, a difference in the 

CER composition of psoriatic scale, compared to normal human stratum 

corneum, is reported in literature (3, 20). However, in our present studies we 

will only focus on the change in CER:CHOL:FFA molar ratio on the 

permeability, to establish whether this change can account for an increased 

permeability in psoriasis skin. Based on the results of Motta et al, the 

CER:CHOL:FFA molar ratio in the SCS model was adapted to 1.0:1.2:0.5 

(20). This model is referred to as PS SCS. The flux profile of PS SCS is 

displayed in figure 3B-i, displaying a steady state flux of 14.5 ± 1.1 μg/cm2/h 

and a lag-time of 0.3 ± 0.2 h. 

The thermotropic response of the CH2 stretching vibrations is 

displayed in figure 3B-ii. The maximum of the symmetric stretching 

frequencies at 20°C is 2847.5 cm-1. Upon increasing the temperature, a 

small shift in peak position is visible around 30°C, possibly revealing the 

orthorhombic to hexagonal transition. Upon further heating, a shift in 
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wavenumber is visible between 50 and 80°C, indicative for the transition to a 

liquid phase. This transition has a Tm of 72°C. 

The FTIR rocking frequencies in figure 3B-iii show a gradual shift of 

the high frequency component from 728.2 to 724.8 cm-1 between 25 and 

33°C, indicating the transition from orthorhombic to hexagonal lateral 

packing. 

The SAXD pattern of PS SCS is depicted in figure 3B-iv. It displays 

two diffraction orders associated to a SPP, with a periodicity of 5.2 nm. Also, 

four diffraction peaks assigned to a LPP with a periodicity of 12.0 nm are 

observed. A high amount of CHOL is phase separated as reflected by the 

high intensity of the diffraction peaks attributed to crystalline CHOL. 

The pathological scaling in recessive X-linked ichthyosis skin is 

associated with accumulation of abnormally high quantities of ChSO4 in the 

SC (18, 19, 22). On this basis, we prepared a model for the lipid composition 

by addition of ChSO4 at a molar ratio of 0.33. This model is referred to as 

RXLI SCS. The permeation curve of BA through RXLI SCS is displayed in 

figure 3C-i, showing a high steady state flux of 46.2 ± 5.5 μg/cm2/h and a 

short lag-time of 0.1 ± 0.3 h. 

The FTIR stretching maxima in figure 3C-ii display a constant value 

of 2848.6 cm-1 from 0 to 20°C, indicating conformational ordering of the lipid 

tails. Upon increasing the temperature, a first shift from 2848.6 to 2849.6 cm-

1 is observed between 20 and 40°C, representative for an orthorhombic to 

hexagonal transition. Further increasing the temperature leads to a second 

shift in wavenumber from 2849.9 to 2852.4 cm-1 between 59 and 77°C, 

representing the transition to a fluid phase with a midpoint temperature of 

68°C. 

The FTIR rocking frequencies of RXLI SCS in figure 3C-iii reveal a 

change from orthorhombic to hexagonal transition as shown by a change in 

high frequency component from 729.0 to 724.0 cm-1 between 25 and 31°C. 

The SAXD pattern of RXLI SCS is displayed in figure 3C-iv. It 

displays two diffraction peaks attributed to a SPP with a periodicity of 5.3 



Chapter 4 

108 

nm. The first order reflection of the SPP is broad and contains a shoulder at 

approximately q = 1.4 nm-1 which could indicate the formation of an 

additional phase. Furthermore, five diffraction peaks are observed assigned 

to the LPP with a periodicity of 12.0 nm. The two diffraction peaks that are 

associated to crystalline CHOL are low in intensity, indicating a low level of 

phase separated CHOL. 

 

4. Discussion 
 

In the studies described in this paper we focused on a systematic 

change in lipid composition to relate lipid composition and organization with 

permeability. For this purpose we utilized a SC model membrane to unravel 

the role the various lipid classes play in the skin barrier function. In addition 

we focused on the lipid permeability in diseased and dry skin. For this 

purpose we constructed models for the SC lipid composition reported in 

winter xerosis, psoriasis and recessive X-linked ichtyosis skin. To study the 

permeability of the various models we used BA as a model drug. 

 

4.1 The order-disorder transition temperature is related to the 
symmetric CH2 stretching vibrations of the lipid tails at 20°C 

When closely examining the FTIR data of all models it is observed 

that the models with a high conformational order at room temperature (i.e. 

low wavenumber of the CH2 symmetric stretching peak position at 20°C) 

exhibit a relatively high melting transition midpoint temperature. To gain 

more insight into this relationship we plotted the CH2 symmetric stretching 

vibration at 20°C against the midpoint temperature of the melting transition in 

each model, see figure 4. Although the midpoint temperature of the melting 

transition has no physical meaning, as the symmetric stretching peak in 

FTIR is composed of several vibrational components, it enables us to 

determine whether this phase transition is related to the conformational order 

of the lipid chains at 20°C. We also included data of the equimolar SCS and 
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a model with short chain FFA, examined in a previous study (2). As depicted 

in figure 4, a linear correlation is observed: the symmetric stretching 

wavenumber (chain conformation) at 20°C decreases linearly with increasing 

melting transition Tm. 

 

 
From this graph it is clear that when using the same ceramide 

composition, an increase in conformational ordering results in an increase in 

the melting transition Tm. When focusing on those samples in which the FFA 

content varied, the results are quite remarkable. Although the FFA induces 

the formation of an orthorhombic lateral packing, it also induces a reduction 

in the ordering of the chains and a reduction in the Tm. This might be due to 

the change in headgroup interactions, as it has been suggested (based on 

pure ceramides but also on mixtures) that an increase in hydrogen bond 

density in the headgroup region increases the conformational ordering and 

raises the Tm of the order-disorder transition (34, 35). This suggests that the 

Figure 4: The midpoint temperature of the melting transition as function of the 
conformational order at 20°C. Depicted are data of all models used in this study
plus data of equimolar SCS and of a model with short chain FFA, examined in a
previous study (2). 



Chapter 4 

110 

addition of FFA increases the packing density but reduces the number of 

hydrogen bonds. 

 

4.2 Deviation from the equimolar CER:CHOL:FFA ratio observed 
in human SC does not always result in a decreased barrier 
function 

As it has been suggested that the lipid composition and organization 

play an important role in the skin barrier, in this study we examined the effect 

of the lipid composition and organization of the SCS on its permeability. In 

previous studies we reported the permeability and lipid phase behavior of 

the equimolar CER:CHOL:FFA SCS, mimicking the lipid composition and 

skin barrier of healthy subjects (1, 2). The BA steady state flux across this 

SCS was 24 ± 2 μg/cm2/h and the lag-time was 1.1 ± 0.5 h (1). From the 

FTIR data presented in a recent study (2), the midpoint temperature of the 

transition from a hexagonal to a liquid phase was 63°C and the 

orthorhombic-hexagonal transition occured between 20 and 36°C. In the 

same study we observed that the flux of BA was more sensitive for a change 

in the lamellar phases than for a phase change from an orthorhombic to a 

hexagonal packing. In the present study we varied the lipid composition by 

increasing the level of either CER, CHOL or FFA. The formation of a 

hexagonal phase in these studies is not determinative for the changes in 

flux. 

When increasing the level of CER or CHOL by a factor two 

compared to the equimolar ratio, the X-ray diffraction curves clearly revealed 

phase separation. In the SCS with 2:1:1 CER:CHOL:FFA an additional 4.4 

nm phase was detected, while the CER:CHOL:FFA 1:2:1 SCS resulted in an 

enhanced level of phase separated crystalline CHOL. The additional 4.4 nm 

phase did not affect the permeability, while the higher level of phase 

separated CHOL in the SCS led to a twofold reduction in the permeability. 

The CHOL domains consist of densely packed three dimensional crystals 

resulting in many spots and reflections in the WAXD pattern (not shown). If 
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these three dimensional crystals are not very permeable to BA, it will result 

in a reduction of the effective diffusion area of the SCS and in an increase in 

the permeation pathway. This will lead to a reduction in the steady state flux. 

As far as the 4.4 nm phase is concerned, our results indicate that this phase 

has a similar layered structure as the SPP as no features in the diffraction 

pattern are observed indicating the presence of a three dimensional 

crystalline structure (wide angle X-ray data, unpublished results). This may 

explain why no change in permeability is observed in the presence of the 4.4 

nm phase.   

When comparing with the in vivo situation, the 4.4 nm phase was 

never observed in diffraction patterns of isolated human SC. However, the 

presence of crystalline CHOL is frequently observed in human SC (11, 36). 

Therefore, the observation that an increase in phase separated crystalline 

CHOL results in an increase in the skin barrier function is relevant for the in 

vivo situation. 

In the 1:1:2 CER:CHOL:FFA SCS no phase separation of FFA is 

observed when focusing on the long range ordering (lamellar phases). 

However, the presence of a small shoulder was noticed in the high 

frequency component of the FTIR rocking vibrations. This shoulder was 

present up to about 60°C and indicates that a low level of FFA forms 

separate domains within the lipid lamellae. The flux of BA across the 1:1:2 

CER:CHOL:FFA SCS displays a very long lag-time. As we used a PBS 

buffer of pH 7.4 in the donor and acceptor phase and the pKa of FFA in 

ceramide containing mixtures is around 6.3 (37), the increase in lag-time 

may occur by an ionization of the FFA, which may be more pronounced at a 

high level of FFA, or in phase separated FFA domains within the lipid 

lamellae. 

As far as the diseased skin models are concerned, in these studies 

we are limited by the information available in literature. Although changes in 

the composition of the lipid classes have been reported for cosmetically dry 

skin and for psoriasis, no information is available on the FFA and CER chain 
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length distribution compared to that in skin of healthy subjects. A reduction in 

chain length of the CER and FFA may have a profound effect on the lipid 

organization and permeability. For this reason our studies only provide 

information on the changes in permeability caused by the reported changes 

in the composition of the main lipid classes in the various skin diseases. 

For both the WX SCS and PS SCS the steady state flux and lag-

time is similar to that in the equimolar CER:CHOL:FFA SCS. The lamellar 

lipid organization of these models is also similar to that in the equimolar SCS 

and as the lamellar organization is a crucial factor in the skin permeability (2, 

14), it is not surprising that the WX SCS and PS SCS have a barrier function 

that is similar to the equimolar SCS. Although winter xerosis skin is known to 

be susceptible and displays a faulty desquamation (38, 39) and psoriasis 

skin is characterized by a deranged keratinization process and an impaired 

barrier function (40), our results with BA as permeant demonstrate that the 

reported changes in CER(EOS)-oleate/linoleate ratio in dry skin or in 

CER:CHOL:FFA ratio in psoriasis skin may not be responsible for the 

observed impaired barrier function in vivo. 

In contrast to the WX and PS models, the permeability of the RXLI 

model is about twice that of equimolar SCS. Therefore the enhanced 

permeability indicates that the increased ChSO4 is expected to be at least 

partly responsible for the abnormal barrier function observed in RXLI skin 

(22). The reduced barrier function in our lipid model may partly be explained 

by the lower level of phase separated crystalline CHOL: The excess ChSO4 

present in this model reduces the amount of crystalline CHOL, similarly as 

previously observed in a lipid model with isolated CER (41). However, the 

reduced crystalline CHOL cannot explain the twofold increase in flux as the 

level of phase separated crystalline CHOL in the 2:1:1 and 1:1:2 

CER:CHOL:FFA SCS was also lower, while no increase in permeability was 

observed. Therefore, other factors should play a role. Previously it was 

observed that ChSO4 induces a fluid phase in mixtures with isolated CER, 

CHOL and FFA (42). Such a fluid phase is expected to increase the 
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permeability. However, at room temperature (20°C) the frequency of CH2 

symmetric stretching vibrations of the RXLI model was not shifted to a higher 

wavenumber as compared to equimolar SCS, indicating that the formation of 

a substantial level of fluid phase in SCS was not induced by the addition of 

ChSO4. Perhaps the use of synthetic CER instead of isolated CER precludes 

the formation of a fluid phase in the RXLI SCS. In order to explain the 

increased permeability, we investigated the two dimensional SAXD patterns 

in more detail and examined the equimolar and RXLI SCS also under a 

polarization microscope. When examining the two dimensional detector 

image of the RXLI model, we observed that the increased level of ChSO4 

induces a well oriented but broad reflection, close to the position of the first 

order of the SPP, see figure 5. Also higher order broad reflections of this 

phase are observed. This indicates that an additional phase is present in the 

SCS. The less sharp reflections suggest a less ordered phase, which may 

account for the increased permeability. 

 

 

 

Figure 5: Two dimensional SAXD images. The Arabic numbers 1-4 denote 
diffraction orders of the LPP, the reflections indicated by Roman numbers I and 
II are assigned to the SPP and a reflection of crystalline CHOL is indicated with
an asterisk. A) Diffraction pattern of the equimolar SCS B) Diffraction pattern of
the RXLI model. Broader reflections  are located in the centre of the ring at the 
same position as the 1st and 2nd order of the SPP, indicating an oriented but
more disordered additional phase. The intensity of the CHOL reflection is also
strongly reduced. 
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When further examining the RXLI model under a polarization 

microscope, we observed large patches that are absent in the equimolar 

SCS, see figure 6, confirming that an additional phase is formed by 

supplementing ChSO4. 

 

 

 
 

In conclusion, in our studies two SCS models showed a significant 

change in BA steady state flux; an excess of crystalline CHOL lead to a 

decreased steady state flux, while an excess of ChSO4, as observed in X-

linked ichthyosis, led to an increase in the BA steady state flux. While phase 

separated CHOL is crystalline and therefore possibly difficult to penetrate, 

there is some evidence that the additional phase induced by ChSO4 is less 

ordered in nature accounting for the increased permeability. A change in 

CER:CHOL:FFA ratio in psoriasis skin and an increase in the CER EOS-

oleate/CER EOS-linoleate ratio in dry skin may not be responsible for the 

impaired skin barrier function in vivo. 

 

Figure 6: Polarization microscopy images using a 40x magnification. A) 
Equimolar SCS, displaying a uniform pattern of small domains B) The RXLI 
SCS, displaying large irregularly shaped domains. 
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Abstract 
The lipid matrix present in the human stratum corneum (the thin, uppermost 

layer of the skin) is considered to play a crucial role in the skin barrier 

function. The lipid matrix consists of ceramides, cholesterol and free fatty 

acids. The 13 nm lamellar phase present in the lipid matrix of the stratum 

corneum is very characteristic and plays an important role in the skin barrier 

function. One subclass of ceramides with a linoleic acid linked to a very long 

acyl (referred to as EOS) plays a crucial role in the formation of the 13 nm 

lamellar phase. 

In this paper we focus on the lipid phase behaviour of EOS mixed with 

cholesterol or with cholesterol and free fatty acids. Our studies reveal that an 

equimolar ratio of EOS, cholesterol and free fatty acids forms a lamellar 

phase with a very long repeat distance of approximately 14.7 nm. This 

phase has an exceptional behaviour as in the thermotropic response the 

fatty acid chains and the ceramide chains undergo an order-disorder 

transition at different temperature ranges, while a part of the hydrocarbon 

chains of ceramides and fatty acids are mixing in the orthorhombic lattice. 

Based on these observations a molecular model for the 14.7 nm phase has 

been proposed, in which the lipids are organised in a lamellar phase with 

three different lipid layers in a symmetric unit cell. 
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Introduction 
The natural function of the skin is to protect the body from unwanted 

influences of the environment and to prevent the body from desiccation. The 

main barrier for diffusion of substances across the skin is the outermost 

layer of the skin, the stratum corneum (2). The stratum corneum is a 

transparent thin layer of around 15 μm in thickness and consists of 

hydrophilic corneocytes embedded in lipid regions. The structure of the 

stratum corneum is often compared to a brick wall, in which the corneocytes 

form the bricks and the lipids form the mortar. The corneocytes are 

surrounded by a densely crosslinked protein layer, the cornified envelope. A 

monolayer of lipids is chemically linked to the cornified envelope and forms 

the link between the hydrophilic corneocytes and the hydrophobic lipids, 

which are the major constituents in the intercellular regions (3). As the lipid 

located in the intercellular regions form the only continuous structure in the 

stratum corneum, substances always have to cross the intercellular lipid 

regions before entering the viable epidermis underneath the stratum 

corneum (4, 5). For this reason the lipid composition and organisation is 

always considered to play a crucial role in the skin barrier function. The main 

lipid classes in stratum corneum are ceramides (CERs), cholesterol (CHOL) 

and free fatty acids (FFAs) in an approximately equal molar ratio (6-8). The 

lipids form two crystalline lamellar phases with repeat distances of 

approximately 6 and 13 nm (9-14). The 13 nm lamellar phase is very 

characteristic for the structure and is considered to be very important for the 

skin barrier function. When using human stratum corneum, only one group 

did not report the 13 nm lamellar phase (15). In that publication the set-up of 

the X-ray beam precluded the detection of reflections corresponding to long 

spacings and therefore no LPP was reported. The lateral packing of the 

lipids in the lipid lamellae is mainly orthorhombic, although the hexagonal 

lateral packing is also formed (10, 16-19). In human stratum corneum at 

least 11 subclasses of CERs are identified (8). The most important CERs 

are classified according to their base, which is either a sphingoid base (S), 

phytosphingoid base (P), or 6 hydroxy sphingoid base (H). Among these 
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CERs, there are 3 CER subclasses having a very exceptional molecular 

architecture, referred to as acylCERs (8, 20). The acylCERs have a linoleic 

acid ester linked to a ω-hydroxy fatty acyl chain with a length of 

approximately 32 carbon atoms, see Figure 1 (7). Furthermore, the FFAs 

are mainly saturated having a predominant chain length of 24 to 26 carbon 

atoms (21). Previous studies using mixtures based on either isolated CERs 

or synthetic CERs showed that these lipid mixtures resemble very closely 

the lipid organisation in human stratum corneum (22-24). This simplified 

synthetic CER mixture consists of one acylceramide (EOS) and 4 other CER 

subclasses with either a sphingosine or a phytosphingosine base. Using 

these CER subclasses, mixed with CHOL and FFAs, it was demonstrated 

that EOS, see Figure 1, is very important for the formation of the 13 nm 

lamellar phase (24, 25). In additional studies it was observed that the 

linoleate moiety of the acylCER is in a pseudofluid phase, and that the 

presence of this pseudofluid phase is also crucial for the formation of the 13 

nm lamellar phase (23, 26). When we reduced the number of CERs by 

selecting only sphingosine-based, phytosphingosine-based or α-hydroxy-

based ceramides, it was still possible to form the long periodicity phase (26). 

However, the composition of the selected CER mixtures affected the lateral 

packing of the lipids as far as the formation of the orthorhombic phase is 

concerned. 

 

 
In addition several studies were performed on the phase behaviour of single 

CERs mixed with a single FFA and/or CHOL. Although the lateral packing of 

these mixtures is often very similar to that observed in stratum corneum, the 

lamellar phase behaviour and the mixing properties between CERs and FFA 

are different (27-31). 

Figure 1: Molecular structure of the most abundant EOS. The nomenclature is 

according to Motta et al. (1). 
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As EOS plays a crucial role in the formation of the 13 nm lamellar phase, the 

current study is focussed on the phase behaviour of EOS combined with 

either only CHOL or with CHOL and FFA. The central questions we wanted 

to answer in this study are: 1) Is it possible for EOS in a mixture with FFA 

and CHOL to form the LPP in the absence of the other CER subclasses? 

and 2) What is the molecular organisation of the phases formed in the 

equimolar EOS:CHOL:FFA mixture? Our studies reveal that 

EOS:CHOL:FFA mixtures form a very exceptional lamellar phase that is 

different from the 13 nm lamellar phase observed in the stratum corneum. 

 

Material and Methods 
 

Materials 
Synthetic EOS with an ω-hydroxy chain length of 30 or 27 carbon atoms 

(deuterated linoleate, referred to as dEOS) was generously provided by 

Cosmoferm B.V. (Delft, The Netherlands). Palmitic acid (C16:0), stearic acid 

(C18:0), arachidic acid (C20:0), behenic acid (C22:0), tricosanoic acid 

(C23:0), lignoceric acid (C24:0), cerotic acid (C26:0), cholesterol and 

acetate buffer salts were purchased from Sigma-Aldrich Chemie GmbH 

(Schnelldorf, Germany). All organic solvents used are of analytical grade 

and manufactured by Labscan Ltd. (Dublin, Ireland). The water used is of 

Millipore quality. 

Perdeuterated FFAs (referred to as DFFAs) with a chain length of C16:0 and 

C22:0 were obtained from Larodan ( Malmö, Sweden). The DFFA with chain 

length of C18:0 and C20:0 were purchased from Cambridge Isotope 

laboratories (Andover, Massachusetts), while DFFA with a chain length of 

C24:0 was obtained from ARC laboratories (Apeldoorn, The Netherlands). 
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Preparation of the lipid mixtures 
For the free fatty acids mixture FFA7, the following composition was 

selected: C16:0, C18:0, C20:0, C22:0, C23:0, C24:0 and C26:0 at molar 

ratios of 1.8, 4.0, 7.7, 42.6, 5.2, 34.7 and 4.1 respectively. This chain length 

distribution is based on a FFA composition in SC (32). For FTIR studies, the 

protonated FFA7 were replaced by protonated FFA5 or deuterated DFFA5 

using a slightly different FFA composition, namely C16, C18, C20, C22 and 

C24 at molar ratios of 1.8, 4.0, 7.6, 47.8 and 38.8 respectively, as not all the 

FFA were available in the deuterated version. SAXD measurements of 

mixtures with FFA5 or DFFA5 demonstrated that these mixtures form the 

same lamellar phases (data not shown). 

EOS, dEOS, CHOL, FFA7 or FFA5 or DFFA5 were dissolved in 

chloroform:methanol (2:1 v/v). The solvents were mixed in appropriate ratios 

to achieve the required compositions.  About 1.5 mg of lipids in solution was 

sprayed in the centre of a mica strip of 10 x 2 mm (X-ray diffraction studies) 

or on an AgBr window in 10 x 10 mm area (FTIR studies) using a Camag 

Linomat IV sample applicator (Muttenz, Switzerland). Spraying was 

performed at a rate of 5 μl/min, under a gentle stream of nitrogen gas. 

Subsequently, each lipid sample was equilibrated at a temperature around 

the melting point of the lipid mixture, which was either 70 or 80°C dependent 

on the composition of the mixture. After 10 minutes of equilibration close to 

the melting temperature range, the sample was cooled down to room 

temperature. 

 

X-ray diffraction analysis 
All samples were measured at the European Synchrotron Radiation Facility 

(ESRF) in Grenoble (France), at the small-angle X-ray diffraction (SAXD) 

beam line BM26b. The lipid samples were inserted into a temperature 

controlled sample holder with two mica windows. Diffraction data were 

collected on a two-dimensional multi-wire gas-filled area detector with 

512×512 pixels of 0.25 mm spatial resolution. The spatial calibration of this 

detector was performed using silver behenate (d = 5.838 nm). Data 



A unique lamellar phase 

 127 

acquisition was performed for a period of 10 to 15 min. The scattered 

intensities were measured as a function of θ, the scattering angle. From the 

scattering angle the scattering vector (q) was calculated by q = 4πsinθ/λ, in 

which λ is the wavelength at the sample position. One dimensional intensity 

profiles were obtained by transformation of the two dimensional SAXD 

pattern from Cartesian (x,y) to polar (ρ,φ) coordinates and subsequently, 

integration over φ from 60 to 120 degrees. These diffraction curves were 

plotted as a function of q (nm-1), the scattering vector in reciprocal space. 

The positions of the diffraction peaks are identified by their spacing, which is 

2π/qn, in which qn is the position of the diffraction peak of order n. The 

repeat distance of a lamellar phase is calculated from the spacings of the 

various orders of the diffraction peaks attributed to that phase, namely 

d=2nπ/qn. When examined as function of temperature, the acquisition time 

for each sequential measurement was 3 minutes and the heating rate was 

1ºC/min. 

 

FTIR analysis  
All spectra were acquired on a BIORAD FTS4000 FTIR spectrometer 

(Cambridge, Massachusetts) equipped with a broad-band mercury cadmium 

telluride detector, cooled with liquid nitrogen. The sample cell was closed by 

a second AgBr window. The sample was under continuous dry air purge 

starting 1 hour before the data acquisition. The spectra were collected in 

transmission mode, as a co-addition of 256 scans at 1 cm-¹ resolution during 

4 minutes. In order to detect the phase transition the sample temperature 

was increased at a heating rate of 0.25˚C/min resulting in 1°C temperature 

raise during each measurement. The lipid phase behavior was examined 

between 20˚C and 100˚C. The software used was Win-IR pro 3.0 from 

Biorad (Cambridge, Massachusetts). The spectra were deconvoluted using 

a half-width of 4 cm-1 and an enhancement factor of 1.7. 
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Results 
 

     
    2A     2B 

 
Phase behaviour of EOS and EOS:CHOL mixtures 
The diffraction profiles of EOS and the EOS:CHOL mixtures are provided in 

Figure 2A and 2B. The diffraction profile of EOS is characterized by 3 

reflections positioned at q= 0.68, 1.35 and 2.0 nm-1 indicating a lamellar 

phase with a repeat distance of 9.3 nm. The diffraction pattern of the 

EOS:CHOL mixture with a molar ratio of 2:1 reveals the presence of at least 

three reflections (q= 0.65, 1.26 and 1.89 nm-1) representing a lamellar phase 

with a repeat distance of 9.8 nm. The 3rd order peak might also partly be 

due to phase separated CHOL (33) indicated by reflections located at 

q=1.87 and 3.74 nm-1. In addition a reflection is observed at a spacing of 

Figure 2: X-ray diffraction patterns of mixtures with EOS:CHOL in different 

molar ratios. The diffraction peaks indicated by Arabic numbers (1 to 3) are 

associated to a lamellar phase with a periodicity of approximately 9.8 nm. The 

peaks indicated by roman numbers (I to III) arise from a shorter lamellar phase 

with repeat distance of approximately 7.7 nm. The remaining peaks that are 

present in the diffraction patterns, indicated by asterisks, arise from crystalline 

cholesterol (repeat distance is 3.4 nm). 
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3.83 nm (q= 1.63 nm-1), of which the first order is most probably the shoulder 

observed at the right-hand side of the peak at q= 0.64 nm-1 representing a 

phase with a repeat distance of approximately 7.7 nm. Therefore it seems 

that in the EOS:CHOL mixture with a 2:1 molar ratio two phases coexist: a 

lamellar phase with a repeat distance of 9.8 nm and another phase with a 

repeat distance of approximately 7.7 nm. Increasing the CHOL content to an 

equimolar EOS:CHOL ratio promotes the presence of the 7.7 nm phase, as 

is clearly depicted in Figure 2B. The reflections attributed to this phase are 

located at q= 0.81 and 1.62 nm-1. Finally we increased the CHOL content to 

an EOS:CHOL molar ratio of 1:2. Only the 7.7 nm phase is present (q= 0.82 

and 1.63 nm-1 and a very weak reflection at q= 2.37 nm-1) together with 

phase separated CHOL.   

 

Phase behaviour of EOS:CHOL:FFA7 mixtures  
First the phase behaviour of an equimolar EOS:CHOL:FFA7 mixture was 

studied. As depicted in Figure 3A, a series of peaks is present that can be 

attributed to only one lamellar phase with a repeat distance of 14.7 nm 

(reflections at q= 0.42 (1st order), 0.86 (2nd), 1.28 (3rd), 1.72 (4th), 2.13 

(5th), 2.99 (7th) and 3.41 (8th) nm-1). Choosing this lipid composition a 

lamellar phase is formed with a longer periodicity than observed in the LPP. 

In addition two reflections attributed to phase separated crystalline CHOL 

are present. Reduction in CHOL level to an EOS:CHOL:FFA7 molar ratio of 

1:0.8:1 resulted in a diffraction profile with reflections at 0.89 (1st), 1.69 

(2nd) and 3.43 ( 4th) nm-1 strongly indicating the presence of a 7.3 nm 

lamellar phase, see Figure 3B. An additional peak is observed at a spacing 

of 5.5 nm (q=1.13 nm-1), which is attributed to another unknown phase. 

Reducing the CHOL content further results in the formation of a phase with a 

repeat distance of around 9.3 nm, very similar to the phase changes of 

EOS:CHOL mixtures when reducing the CHOL level (not shown). Therefore 

reducing the CHOL level below an equimolar ratio strongly reduces the 

formation of the phase with a very long repeat distance of approximately 

14.7 nm. From the studies presented in Figure 2 it is clear that in the 
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absence of a FFA7 mixture with chain-lengths varying from 16 to 26 carbon 

atoms, no 14.7 nm lamellar phase is formed, while Figure 3A exhibits 

reflections all contributing to the 14.7 nm phase. 

 

    
    3A               3B 

 

     
     3C     3D 
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  3E     3F 

 

 
  3G 

 
 

Figure 3: X-ray diffraction patterns of EOS:CHOL:FFA in different molar ratios 

or with varying FFA composition. In these patterns the Arabic numbers (1 up to 

9) denote the diffraction peaks that are associated to the very long periodicity 

phase (with a repeat distance of around 14.7 nm). If an additional phase is 

present in a diffraction pattern the peaks associated to this phase are indicated 

by a dagger (†). Diffraction peaks of crystalline cholesterol are indicated by 

asterisks. 
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The next question to be answered is, do we need such a wide variation in 

chain length distribution in the FFA7 mixture or can we replace this mixture 

by a less complex one? In order to answer this question we reduced the 

number of FFA components to only three or two, in which the FFA 

composition was gradually changed from long chain FFA to shorter chain 

FFA.  

In Figure 3C the diffraction profile of the equimolar EOS:CHOL:FFA24.26 

mixture is depicted.  (FFA24.26 indicates two fatty acids in equimolar ratio 

with a chain length of 24 carbon and 26 carbon atoms.) Similarly to the 

EOS:CHOL:FFA7 mixture 6 reflections are present, which can all be 

attributed to a lamellar phase with a repeat distance of 14.4 nm (positions of 

the reflections are at q= 0.44, 0.87, 1.29, 1.73, 2.16 and 3.00 nm-1). The 

presence of crystalline CHOL in separate domains can be deduced from the 

peaks at 1.87 and 3.74 nm-1. When adding a fatty acid with a chain length of 

23 carbon atoms (resulting in an equimolar EOS:CHOL:FFA23.24.26 

mixture) a lamellar phase with a repeat distance of 14.5 nm is formed, see 

Figure 3D. With a further reduction in FFA chain length, using a mixture of 

equimolar EOS:CHOL:FFA20.22.23, it was still possible to form a 14.4 nm 

lamellar phase (reflections at q= 0.44, 0.88, 1.28, 1.71 and 2.12 and 3.00 

nm-1), see Figure 3E. However, the formation of this phase was less 

reproducible. A further reduction in the FFA chain lengths to FFA16.18.20 

did not result in the formation of a lamellar phase with a very long repeat 

distance (not shown). This indicates that in order to form this phase, fatty 

acids with a long chain are required. 

If we now reduce the number of FFA to only a single FA and study the phase 

behaviour of EOS:CHOL:FA equimolar ratio by varying the FA chain length 

between 16 and 24 carbon atoms, the lamellar phase with a repeat distance 

of around 14.5 nm is not formed in a reproducible manner. Only occasionally 

this phase is formed when using FA26, FA24 and FA23 (not shown) 

demonstrating that a limited variation in chain length of the FFA is required 

to form this lamellar phase with long repeat distance in a reproducible 

manner. 
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Finally we investigated whether the level of FFA7 could be reduced or 

increased while still forming the lamellar phase with the long repeat 

distance. A reduction of the FFA7 level to an 0.8 molar ratio resulted in the 

formation of a lamellar phase with a long repeat distance of around 15.1 nm, 

see Figure 3F. When increasing the FFA7 level to an EOS:CHOL:FFA7 level 

of 1:1:1.2, the lamellar phase with a long repeat distance (14.4 nm) could 

still be formed, although a small population of lipids also forms another 

phase as indicated by the peak position at 0.64 nm-1 (dagger in Figure 3G). 

The EOS:CHOL:FFA7 1:1:1.2 composition was also measured as function 

of temperature. The data is provided in Figure 4. Increasing the temperature 

at a heating rate of 1.5ºC/min did not change the lamellar phases until a 

temperature of around 66ºC was reached. At this temperature the reflections 

attributed to the 14.4 nm lamellar phase reduced in intensity and 

disappeared at approximately 74ºC, while the reflection at 0.64 nm-1 

disappeared at around 78ºC. 

 

 

 

Figure 4: The x-ray diffraction profile of EOS:CHOL:FFA7 1:1:1.2 as a function 

of temperature. Diffraction peaks associated to the very long lamellar phase 

(with a periodicity of 14.4 nm) are indicated by Arabic numbers, the additional 

phase by a dagger (peak position at 0.64 nm-1) and crystalline cholesterol by an 

asterisk. 
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       5E            5F 

 
 
Conformational ordering and lateral packing of the equimolar 
EOS:CHOL mixture 
The CH2 symmetric stretching vibrations are a measure for the 

conformational ordering of the hydrocarbon chains in the mixture. The 

thermotropic response of the CH2 symmetric stretching vibration of the 

equimolar EOS:CHOL mixture is provided in Figure 5A. At 20ºC the CH2 

symmetric stretching vibration is located at 2849.2 cm-1. Increasing the 

temperature to 75ºC changes the CH2 symmetric stretching vibrations only 

Figure 5: FTIR spectra of EOS:CHOL:FFA5 in different ratios or with DFFA5, as 

a function of temperature. A) The CH2 symmetric stretching peak positions of 

EOS:CHOL 1:1 (triangles) and EOS:CHOL:FFA5 1:1:1 (circles). B) The CH2 

rocking vibrations of EOS:CHOL:FFA5 1:1:1. C) The symmetric stretching peak 

positions of the CH2 chains (circles) and CD2 chains (triangles) in a mixture 

with EOS:CHOL:DFFA5 1:1:1. D) The CH2 rocking and E) CD2 scissoring 

vibrations of the EOS:CHOL:DFFA5 mixture. F) Scissoring vibrations from a 

mixture with DFFA5 only. 
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slightly to 2849.8 cm-1. A further increase in temperature results in large shift 

to a value of 2853.2 cm-1 at 81ºC indicating an order-disorder transition in a 

very narrow temperature region. When focussing on the scissoring 

vibrations, only one peak is observed at 1467 cm-1, demonstrating that the 

mixture forms a hexagonal lateral packing (not shown). Possibly a 

subpopulation of the lipids may also form a liquid phase (see below). 

 

Conformational ordering and lateral packing of the 
EOS:CHOL:FFA5 and EOS:CHOL:DFFA5 mixtures 
To determine the thermotropic conformational ordering of the equimolar 

EOS:CHOL:FFA5 mixture, the CH2 symmetric stretching vibrations are 

measured between 20 and 90ºC, see Figure 5A. At 20ºC the CH2 symmetric 

stretching vibration is located at 2846.4 cm-1. Upon heating no shift in the 

peak position of the vibration is observed until 38ºC, at which a small shift to 

2847.4 cm-1 is observed. A further increase in temperature to 60ºC does not 

change the CH2 symmetric stretching vibrations. Above 60ºC a gradual shift 

to higher wave numbers is observed. The midrange temperature of this 

transition to a disordered phase is at around 78ºC. At 90ºC the CH2 

symmetric stretching vibrations are at around 2853 cm-1, indicating 

conformational disordering. The CH2 rocking and scissoring vibrations of the 

hydrocarbon chains provide information about the lateral packing of the 

lipids in the lamellae. The contours of the rocking vibrations in the spectrum 

reveal a splitting with vibrations at 719.5 cm-1 and 730.3 cm-1 at 20ºC, see 

Figure 5B. This splitting is caused by a short range coupling between the 

neighbouring hydrogen atoms of the hydrocarbon chains in the orthorhombic 

packing. As the magnitude of this splitting approaches 11 cm-1, which is 

close to its maximum value, it may be concluded that large domains of this 

orthorhombic packing are formed. However, as the splitting is not complete, 

a subpopulation of lipids still forms a hexagonal lateral packing. A gradual 

increase in temperature results in a disappearance of the splitting between 

40ºC and 42ºC. At this temperature only one peak is observed, 

demonstrating that the lateral packing is mainly hexagonal. These 
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observations have been confirmed by the scissoring frequencies located in 

the spectrum at 1463.1 and 1473.3 cm-1 (not shown). 

When we replace the protonated FFA5 by DFFA5 in the equimolar lipid 

mixture, information can be obtained on the mixing properties of the FFA 

and EOS on two levels. Firstly as the vibrations of the deuterated fatty acids 

and the protonated EOS occur at a different wavenumber, the vibrations can 

be measured simultaneously. For this reason it is possible to determine 

whether the transition from an ordered to a disordered phase for the FFA 

and EOS occurs in the same temperature range. Secondly, as no short 

range coupling occurs between protonated and deuterated chains in the 

orthorhombic lattice, it is possible to determine whether the protonated and 

deuterated lipids participate in the same orthorhombic lattice.  

When examining the thermotropic response of CH2 symmetric stretching 

vibrations, at 20ºC the maximum of the contour is located at 2844.0 cm-1. 

This peak position does not shift until a temperature of around 50ºC, see 

Figure 5C. At that temperature a gradual increase of the wavenumber of the 

symmetric stretching vibrations is observed until around 68ºC. This suggests 

an increase in conformational disordering in a subpopulation of protonated 

chains. A further increase in temperature results in a steep shift in the 

stretching vibrations to higher wavenumber until 74ºC indicating a 

conformational disordering occurring in a very narrow temperature range. 

Above 74ºC the change in stretching frequency levels off and reaches a 

value of around 2853.4 cm-1 at 90ºC. When examining the CD2 symmetric 

stretching vibrations of the DFFA5 in the same mixture, the maximum of the 

CD2 symmetric stretching contour is at 2088.0 cm-1 at 20ºC. The peak 

position does not shift until a temperature of around 54ºC. A further increase 

in temperature results in a steep shift of the maximum peak position to 

2095.5 cm-1 at 66ºC indicating a conformational disordering of the FFA. A 

further increase in temperature results in a gradual increase in the CD2 

symmetric stretching frequencies to around 2096.7 cm-1 at 90ºC. The 

rocking and scissoring CH2 and CD2 vibrations provide information on the 

lateral packing and mixing properties within the orthorhombic phase. These 
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contours are provided in Figure 5D and 5E, respectively. At 20ºC a slight 

splitting in the CH2 rocking frequencies is observed with peak positions at 

721.4 and 728.0 cm-1. When gradually increasing the temperature, a 

reduction in the high wavenumber peak intensity starts at 34ºC and the 

splitting disappears at 38ºC. The CH2 scissoring vibrations in the spectrum 

confirm the disappearance of the CH2 short range coupling in this 

temperature region. The CD2 scissoring contours of the EOS:CHOL:DFFA5 

also clearly show a splitting of the peak positions at 20ºC. The low frequency 

and high frequency components are located at 1086.3 and 1090.9 cm-1 

respectively. The thermotropic behaviour of the CD2 scissoring vibrations 

reveal a disappearance of the splitting between 36 and 40ºC. This suggests 

the disappearance of the orthorhombic packing. For comparison in Figure 

5F, the thermotropic behaviour of single DFFA5 contours are provided. 

These show a splitting at 1085.6 and 1091.2 cm-1. This splitting remains in 

the temperature range between 20 and 70ºC. The slopes forming the dip in 

between the two scissoring vibrations are much steeper than the slopes 

forming the dip between the low and high wavenumber of the CD2 scissoring 

vibrations in the spectrum of the CER:CHOL:DFFA5 mixture. This shows 

that at least a subpopulation of DFFA is mixing with the protonated CER, but 

that a fraction of the DFFA chains are still able to interact and are thus 

located at neighbouring positions in the orthorhombic lattice. 

 

Conformational ordering of the linoleate moiety in the equimolar 
mixture of dEOS(C27):CHOL:FFA5 
In order to determine whether the linoleate moiety in the equimolar mixture is 

in a disordered state the CD2 symmetric stretching vibrations were 

measured of the equimolar dEOS(C27):CHOL:FFA5 mixture. In this mixture 

only the linoleate moiety is deuterated, which permits a selective 

measurement of the deuterated linoleate vibrations. The CD2 stretching 

vibrations reveal that already at room temperature the maximum peak is 

close to 2099.0 cm-1 and almost does not change in peak position until 70°C, 

then a weak shift occurs to 2101.2 cm-1 which does not change until a 
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temperature of 90ºC is reached (not shown). This obviously shows that the 

unsaturated linoleate chain is already in conformational disorder at room 

temperature, but increases slightly in disorder at around 72ºC, which is a 

similar temperature range at which the lamellar phase with the long 

periodicity disappears.  

 

Discussion 
 
The purpose of the studies described in this paper was to determine whether 

EOS in the absence of additional CERs is able to form the LPP. For this 

reason phase behaviour studies were performed with EOS, EOS:CHOL and 

EOS:CHOL:FFA mixtures. Our studies reveal that only in EOS:CHOL:FFA 

mixtures a lamellar phase with a very long periodicity of 14.7 nm is formed. 

However, the periodicity of this lamellar phase is substantially longer than 

observed for the LPP in stratum corneum and in mixtures prepared from 

CER:CHOL:FFA (9, 10, 22-24). Particularly, in the case of the synthetic 

CERs, the CER:CHOL:FFA mixtures mimicking the lipid composition in 

stratum corneum form a LPP with a repeat distance of approximately 12.2 

nm (24). This shows that the lipid arrangement in the 14.7 nm lamellar 

phase of the EOS:CHOL:FFA mixture is different from that in the LPP of the 

CER:CHOL:FFA mixtures. From this observation we conclude that EOS 

requires the presence of other CERs to form the LPP. Examining more 

closely the molecular organisation of this 14.7 nm lamellar phase might, 

however, provide useful information on the formation of the LPP, as the 

presence of EOS and CHOL is crucial for the formation of both lamellar 

phases. 

As also noticed in previous studies (34, 35), the equilibration of the samples 

is a very important step to obtain lamellar phases with very long repeat 

distances. For example, in order to obtain the lamellar phase in our 

equimolar EOS:CHOL:FFA mixture it was required to equilibrate the sample 

close to the temperature region at which the melting occurs, that is at 80ºC. 

An equilibration temperature of 70ºC, which is below the melting 
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temperature of the sample, does not lead to the formation of the lamellar 

phase with a very long periodicity (not shown), but results in a diffraction 

pattern with an undefined lipid phase behaviour indicating an improper 

mixing of the various compounds. Using a longer equilibration time at 

elevated temperatures, does not affect the formation of the lamellar phases. 

 

Lipid organisation of the EOS:CHOL:FFA mixtures 
Considering the lamellar phase with the long repeat distance varying 

between 14.4 and 15.1 nm, we noticed exceptional phase behaviour in 

several aspects. In the discussion below we will refer to this phase as the 

14.7 nm lamellar phase, despite the small variations in repeat distance. The 

combined information obtained with FTIR spectroscopy and X-ray diffraction 

will be used to provide a molecular arrangement of this lamellar phase. First 

we will discuss point by point the exceptional phase behaviour of this phase. 

a. A slight deviation in CHOL levels from equimolar in the EOS:CHOL:FFA 

mixture reduces strongly the formation of the 14.7 nm lamellar phase. A 

deviation in FFA levels proved to be less critical since a small deviation of 

the FFA molar ratio varying between 1:1:0.8 EOS:CHOL:FFA and 1:1:1.2 

EOS:CHOL:FFA still results in the formation of the 14.7 nm lamellar phase. 

b. A certain degree of FFA chain length distribution is important for the 

formation of the 14.7 nm lamellar phase. When reducing the number of FFA 

components from 7 to 3, it is still possible to form the 14.7 nm lamellar 

phase, but only when using FFA chain lengths of at least 20 C atoms. This 

demonstrates that long chain fatty acids are required for the formation of the 

14.7 nm lamellar phase. 

c. When comparing the thermotropic behaviour in the symmetric stretching 

absorption of EOS:CHOL and EOS:CHOL:FFA samples, we can conclude 

that the addition of FFA to the EOS:CHOL mixture results in a higher 

conformational ordering and a larger temperature range for the melting 

transition, as the melting starts already at lower temperatures. 

d. Substituting FFA by DFFA resulted in several remarkable and apparently 

contrasting observations. Compared to the DFFA spectrum, the contours of 
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the CD2 scissoring frequencies of EOS:CHOL:DFFA are asymmetric and the 

degree of splitting is clearly reduced, demonstrating that the domain sizes of 

the deuterated chains in the equimolar EOS:CHOL:DFFA are smaller than 

the domain sizes in a DFFA mixture only (36). From these observations it is 

obvious that the short range coupling between DFFA in the 

EOS:CHOL:DFFA mixture is reduced as compared to a DFFA mixture. 

Thus, a certain fraction of the hydrocarbon chains of EOS is participating in 

the same lattice as the DFFA. This is very similar to the observations made 

in mixtures of CER:CHOL:FFA forming the LPP, reported recently (26, 37). 

e. However, the thermotropic response of the conformational disordering 

shows a very remarkable behaviour: the conformational disordering of the 

DFFA occurs in a temperature region which is approximately 10ºC lower 

than the temperature region at which the major population of the 

hydrocarbon chains of EOS transforms from an ordered to a disordered 

phase. This clearly shows that although a subpopulation of hydrocarbon 

chains of EOS and DFFA are participating in the same orthorhombic lattice, 

a large fraction of the EOS and DFFA chains is not located in the same 

lattice and forms a separate domain.   

f. The X-ray diffraction studies revealed that besides the presence of low 

levels of crystalline CHOL, only a 14.7 nm lamellar phase is formed in the 

equimolar EOS:CHOL:FFA mixture. 

From this and from the observations made above, we can conclude that the 

14.7 nm unit cell contains two types of domains: one in which FFA and EOS 

participate in an orthorhombic lattice and one in which the hydrocarbon 

chains of EOS and FFA do not mix. 
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Proposed molecular arrangement for the 14.7 nm lamellar phase 
When combining all observations discussed above, a molecular 

arrangement for the 14.7 nm lamellar phase can be proposed. Such a 

molecular arrangement is provided in Figure 6. This arrangement shows 

three different lipid layers unequal in width. The different layers are referred 

to as layer A (central part), layer B (layer with ω-hydroxy fatty acid (C30) of 

EOS) and layer C (FFA containing layer). In the molecular arrangement in 

Figure 6 the length of the unit cell is determined by the two EOS molecules 

in linear arrangement, in which the linoleate moieties in the central part of 

the unit cell are interdigitating. When assuming a 0.127 nm length per C-C 

bonding, the total length of the unit cell calculated from the molecular 

structure of the two EOS molecules is 14.7 nm, which is in excellent 

agreement with the periodicity measured by x-ray diffraction. Furthermore, 

our measurements also revealed that two different domains are present in 

the unit cell of the 14.7 nm phase, most probably located in different lipid 

layers. This conclusion was drawn from the exceptional observation that 

Figure 6: Suggested molecular arrangement for the very long periodicity phase 

in EOS:CHOL:FFA mixtures and for the two lamellar phases present in 

EOS:CHOL mixtures. 
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protonated and deuterated chains undergo an ordered-disordered transition 

in clearly different temperature ranges. Therefore, in our proposed 

arrangement the FFA is located adjacent to the C18 sphingosine chain of 

EOS in layer C forming the orthorhombic lattice. Furthermore, the FFA and 

the C18 sphingosine chain are partly interdigitating. The domain in layer B 

with mainly ω-hydroxy fatty acid (C30) of EOS and CHOL is responsible for 

the high temperature order-disorder transition of around 75ºC. A higher 

transition temperature is expected as the very long ω-hydroxy fatty acid 

chain is involved in this transition. Then the question arises, why is the FFA 

not located adjacent to the EOS C30 chain in layer B? One argument is the 

large chain length difference between FFA and the C30 chain of 

approximately 6 to 10 C-atoms. Therefore, these chains do not fit in one lipid 

layer. In addition, this arrangement cannot explain the difference in 

temperature range at which the order-disorder transition occurs for the 

protonated and deuterated chains, as the C18 sphingosine chains are not 

expected to undergo an ordered-disordered phase transition at a higher 

temperature than the chains of the FFA. Another possible location for FFA is 

adjacent to the linoleate moiety of EOS in layer A. However, the linoleate 

has a high conformational disordering already at 20ºC and therefore no 

short-range coupling between FFA and the linoleate moiety is possible and 

thus no orthorhombic phase can be formed after addition of the FFA. The 

final possibility to discuss is an arrangement of the FFA and CHOL in layer 

C, while the sphingosine chain would be located adjacent to the ω-hydroxy 

fatty acid chain of EOS. In this case a forked arrangement of the EOS is 

obtained. However, in this arrangement the reduction in splitting when 

substituting the FFA by DFFA cannot be explained as the CER and FFA 

chains are located in different layers. 

Then the remaining question is whether the proposed arrangement in Figure 

6 fulfils the requirement of an approximately equimolar ratio in the 

EOS:CHOL:FFA mixture. If indeed EOS is in a linear arrangement, the FFA 

and EOS might have an interfacial area of approximately 0.20 nm2, similarly 

to that of sphingosine monolayers (38). In contrast, the interfacial area per 
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CHOL molecule is approximately 0.38-0.40 nm2 (39), which is almost twice 

that of linearly arranged EOS and FFA. Perhaps the orientation of the bulky 

ring moiety of CHOL is perpendicular to the plane of drawing and a second 

EOS molecule is located on top of the EOS in the drawing, adjacent to the 

same CHOL molecule. In this way an equimolar ratio of EOS:CHOL:FFA is 

indeed achieved. 

 

A suggested molecular arrangement for the lamellar phases in 
EOS:CHOL mixtures 
In the EOS:CHOL mixtures two lamellar phases are observed. At relatively 

low CHOL levels the repeat distance is approximately 9.8 nm, while at high 

CHOL levels the 7.7 nm lamellar phase is predominantly present. In the 

proposed molecular arrangement for the 14.7 nm lamellar phase, the 

hydroxyl group of the CHOL molecule is located close to the ester bond 

linking the C30 acyl with the linoleate moiety of EOS. Possibly, a hydrogen 

bonding between the hydroxyl group of CHOL and the ester group of EOS is 

stabilizing this arrangement. Furthermore, the linoleate moiety is fully 

interdigitating. When assuming a 0.127 nm distance per C-C bonding, this 

arrangement results in a calculated periodicity of 9.9 nm, which is very close 

to the experimental repeat distance. In this case we cannot distinguish 

between a forked or a linear arrangement of the EOS, both arrangements 

are possible. In the figure a forked arrangement is shown. When increasing 

the CHOL levels in the EOS:CHOL mixture a phase with a shorter repeat 

distance is found. An arrangement for this shorter repeat period accounting 

for the higher levels in CHOL content is also proposed in Figure 6. Again, 

the hydrogen bonding between the hydroxyl group of CHOL and the ester 

linkage in the EOS molecule might be the important factor that stabilizes the 

structure. Also, the calculated repeat distance is about 7.7 nm, which again 

matches with the measured repeat distance for this lamellar phase. 
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A comparison between the LPP and the 14.7 nm lamellar phase 
When we compare the phase behaviour of the LPP with that of the 14.7 nm 

lamellar phase, some important differences are observed. Most strikingly the 

14.7 nm lamellar phase can only be formed when the EOS:CHOL molar ratio 

in the EOS:CHOL:FFA mixture is close to equimolar, while the LPP can be 

formed over a wide range of CER:CHOL molar ratios. In case of human 

CER e.g., the LPP is already formed at a CER:CHOL molar ratio of 1:0.2 in 

the absence of FFA (40). This means that FFA is not required to form the 

LPP, while CER and CHOL can replace each other to a certain extent in the 

LPP. For maintaining the barrier function of the skin, this is a very important 

observation, as even when dealing with substantial deviations in CER:CHOL 

molar ratios, the LPP, which is considered to be crucial for the skin barrier 

function, is still formed in the stratum corneum. In other words, the lipid 

phase behaviour is not very sensitive to changes in the lipid composition. As 

far as the role of FFA is concerned, it plays a prominent role in the formation 

of the orthorhombic lateral packing (41). In contrast to the LPP, in case of 

the 14.7 nm lamellar phase our results suggest that the three lipid classes 

including FFA are required to form the 14.7 nm lamellar phase.  

Finally, the question rises whether EOS is arranged in the LPP in a linear or 

in a forked configuration. In the present study we propose a linear 

arrangement for the EOS in the lamellar phase with a periodicity of around 

14.7 nm, as this results in the required mixing of the hydrocarbon chains of 

FFA and EOS. For other CER mixtures, a linear arrangement is also 

suggested for AP with a fatty acid chain of 18 carbon atoms (42, 43). 

However, whether the arrangement of EOS in the LPP is linear or forked 

remains to be elucidated as very small changes in the environment such as 

a distribution in chain length of the FFA and CER molecules or a variation in 

head-group architecture may affect this arrangement. In this paper we 

reported the phase behaviour of mixtures containing EOS, CHOL and FFA. 

Our studies showed that the two complimentary methods of X-ray diffraction 

and FTIR are excellent tools to provide detailed information on the 14.7 nm 

lamellar phase. 
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Abstract 
The characteristic 13 nm lamellar phase that is formed by lipids in the 

outermost layer of the skin, the stratum corneum (SC), is very important for 

the barrier function of the skin. To gain more insight into the molecular 

organization of this lamellar phase, we performed small-angle x-ray 

diffraction (SAXD) using various lipid mixtures mimicking the lipid 

composition in SC. In the SAXD pattern of each mixture at least 7 diffraction 

orders were observed, attributed to the lamellar phase with a repeat distance 

ranging from 12.1 to 13.8 nm. Using the sampling method based on the 

variation in repeat distance, we selected phase angles for the first 6 

diffraction orders. Using these phase angles, for the lamellar phase a high 

resolution electron density distribution could be calculated. Subsequently, 

from SAXD patterns of isolated SC the electron density distribution of the 

lamellar phase was also calculated and appeared to be very similar to that in 

the lipid mixtures. This demonstrates that the lipid mixtures serve as an 

excellent model for the lipid organization in SC, not only with respect to the 

repeat distance, but also in terms of the electron density distribution within 

the unit cell. 
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Introduction 
The skin forms the interface between the human body and the environment. 

It protects our body against various biological and chemical hazards and 

from desiccation in a dry environment. The outermost layer of the skin, the 

stratum corneum (SC), forms the main barrier against diffusion of 

substances across the skin (3). This layer consists of overlapping flattened 

dead skin cells. Each cell is surrounded by lipids, which serve as the mortar 

between the cells. The lipids form multiple sheets of lamellae and are mainly 

composed of ceramides (CER), cholesterol (CHOL) and free fatty acids 

(FFA). These lipid classes are present in an approximately equimolar ratio 

(4). In the SC the lipids form two lamellar phases with repeat distances of 

approximately 6 and 13 nm, also referred to as the short periodicity phase 

(SPP) and long periodicity phase (LPP), respectively. Furthermore, the 

orientation of the lipid lamellae is approximately parallel to the SC surface 

(5). Within the lipid lamellae the lipids are organized predominantly in a 

crystalline lateral packing (6, 7). The presence of oriented lipid lamellae as 

well as the crystalline packing are thought to contribute greatly to the barrier 

function of the SC. 

Previous studies showed that mixtures prepared with either synthetic CER or 

native CER mixed with CHOL and with FFA mimic the SC lipid organization 

very closely (8-10). While CER and CHOL play a prominent role in the 

formation of the two lamellar phases, the addition of FFA is crucial for the 

formation of the densely packed orthorhombic crystalline structure (8, 11). 

Furthermore, the presence of CER1, an acyl CER with a linoleic acid linked 

to a very long ω-hydroxy fatty acid chain (see Fig. 1), is a prerequisite for the 

formation of the LPP (8, 12, 13). 
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Although over the years a lot of information has been gathered on the SC 

lipid organization and the role the various lipid classes play in this 

organization (12-15), until now no high-resolution electron density profile of 

the LPP has been presented. In previous studies, several attempts have 

been made in order to determine an electron density profile of the LPP. 

White et al. performed the first calculations using a block-shaped electron 

density profile (16). Our group performed electron density calculations in 

which the electron density profiles were simulated by Gauss curves (6, 17). 

However, both studies suffered from the fact that no swelling of the lamellae 

was induced and therefore no unique electron density profile could be 

determined. More recently McIntosh used a mixture of isolated pig CER, 

CHOL and palmitic acid and performed x-ray diffraction studies (18). 

Although information was obtained on the distribution of CHOL in the 

Figure 1: Molecular structure of the synthetic CER used in the lipid mixtures of 
Table 1. The nomenclature according to Motta et al. (2) is also provided. 



New insights into SC lipid organization by X-ray diffraction 

 155 

repeating unit, due to the low resolution of the electron density profile the 

lipid organization in the repeating unit could not be unravelled. Therefore, 

the aim of the present study is to obtain more detailed insights into the 

molecular organization of the LPP by analyzing a large number of x-ray 

diffraction curves obtained from SC lipid mixtures. In addition, the diffraction 

curves of SC isolated from pig skin, mouse skin and in vitro cultured skin 

(that is skin cultured from cells) were also analyzed for comparison. By using 

6 reflection orders of the LPP, electron density profiles could be constructed 

with 1.1 nm resolution. By analyzing these high resolution electron density 

profiles novel insights on the location of CER1 in the repeating unit could be 

obtained. 

 

Materials and Methods 
 

Materials 
Synthetic CER1(C30) (CER(EOS)), CER2(C24) (CER(NS)), CER3(C24) 

(CER(NP)), CER4(C24) (CER(AS)), CER3(C16) (CER(NP)), CER6(C24) 

(CER(AP)) and CER9(C30) (CER(EOP)) were generously provided by 

Cosmoferm B.V. (Delft, The Netherlands). The moPalmitic acid (C16:0), 

stearic acid (C18:0), arachidic acid (C20:0), behenic acid (C22:0), 

tricosanoic acid (C23:0), lignoceric acid (C24:0), cerotic acid (C26:0), 

cholesterol, cholesterol sulfate and acetate buffer salts were purchased from 

Sigma-Aldrich Chemie GmbH (Schnelldorf, Germany). All organic solvents 

used are of analytical grade and manufactured by Labscan Ltd. (Dublin, 

Ireland). The water used is of Millipore quality. 

 

Isolation of ceramides 
Pig or human SC lipids were extracted from isolated SC using the method of 

Bligh and Dyer (19) and applied on silicagel as published previously (20). 

The lipid composition of the collected fractions was established by one 

dimensional high performance thin layer chromatography (21). 
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Preparation of the lipid mixtures 
The isolated or synthetic CER, CHOL and FFA were dissolved in 

chloroform:methanol (2:1 v/v). The solvents were mixed in appropriate ratios 

to achieve the required compositions.  About 1.5 mg of lipids in solution was 

sprayed as an unoriented glob of lipids of approximately 1 mm high in the 

center of a mica strip of 10 x 2 mm using a Camag Linomat IV sample 

applicator (Muttenz, Switzerland). Only a very small area of approximately 2 

mm2 is used to ensure a random orientation of the lamellae in the sample. 

Spraying was performed at a rate of 5 μl/min, under a gentle stream of 

nitrogen gas. Subsequently, each lipid sample was equilibrated at a 

temperature around the melting point of the lipid mixture, which was either 

60 or 70°C dependent on the composition. When preparing dry lipid 

mixtures, after 10 minutes of equilibration the sample is cooled down to room 

temperature. In the case of hydration (11 out of the 12 measured lipid 

mixtures, see Table 1), after 10 minutes of equilibration at elevated 

temperatures, acetate buffer (pH 5.0) was added to the sample before 

cooling down to room temperature and the sample is kept under buffer until 

measured. To homogenize the hydrated samples, 5 freeze-thawing cycles 

were carried out between –20°C and room temperature. Composition, 

equilibration temperature and hydration method of all SC lipid models used 

for phase calculations are provided in Table 1. The exact composition and 

preparation method of the mixtures prepared from isolated pig CER were 

described previously (1). CerA designates a mixture of synthetic ceramides 

containing CER1, CER2, CER3, CER4, CER3(C16) and CER6 (see also 

Fig. 1) in a molar ratio of 15:51:16:4:9:5 which closely resembles the CER 

composition in SC (20). For the free fatty acids mixture (FFA), the following 

composition was selected: C16:0, C18:0, C20:0, C22:0, C23:0, C24:0 and 

C26:0 at a molar ratio of 1.8:4.0:7.7:42.6:5.2:34.7:4.1 respectively. This 

chain length distribution is based on the FFA composition in SC (22). 
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Table 1: Mixtures used for the determination of phase angles 

Lipid mixture composition and molar 
ratios 

symbol 
in Figs. 
3 and 4 

hydration 
eq. 

temp. 
(°C) 

repeat 
distance 

(nm) 

CerA : Chol : FFA 1:1:1 o pH 5 70 12.3 

CerA : Chol : FFA 1:1:1 o pH 5 70 12.4 

CerA : Chol : FFA 1:1:1 o pH 5 70 12.1 

CerA : Chol : FFA : ChSO4 1:1:1:0.1 o pH 5 70 12.4 

PigCER : Chol : FFA 1:1:1 ∆ No 60 12.8 

PigCER : Chol : FFA 2:1:1 * ∆ pH 5 60 13.0 

PigCER : Chol : FFA : ISIS 2:1:1:1 * ∆ pH 5 60 13.0 

PigCER : Chol : FFA : IPIS 2:1:1:1 * ∆ pH 5 60 13.4 

PigCER : Chol : FFA : GMIS 2:1:1:1 * ∆ pH 5 60 13.8 

15% synthCER1 + HCER[2..9] : Chol : FFA 1:1:1 ◊ pH 5 70 13.5 

30% synthCER1 + HCER[2..9] : Chol : FFA 1:1:1 ◊ pH 5 70 13.4 

CerA : Chol : FFA 1:1:1 † > pH 5 70 12.3 

 
 
X-ray diffraction analysis 
All samples were measured at the European Synchrotron Radiation Facility 

(ESRF) in Grenoble (France), at the small-angle x-ray diffraction (SAXD) 

beam line BM26b as described previously (10). Data acquisition was 

performed for a period of 10 to 15 min. From the scattering angle the 

scattering vector (q) was calculated by q = 4πsinθ/λ, in which λ is the 

wavelength at the sample position and θ the scattering angle. One 

dimensional intensity profiles were obtained by transformation of the two 

Mixtures indicated with (*) are published previously (1). The three moisturizers 
used in these mixture are isostearyl isostearate (ISIS), isopropyl isostearate
(IPIS) and glycerol monoisostearate (GMIS). Cholesterol sulfate is abbreviated 
to ChSO4, CER isolated from human SC is abbreviated to HCER and CER 
isolated from pig SC is abbreviated to PigCER. CerA designates a mixture
containing the first 6 synthetic CER presented in Fig. 1. The sample indicated
with (†) has an adjusted CerA composition in which a part of the CER1 is
replaced by CER9 (8.5% CER1, 6.5% CER9). 
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dimensional SAXD pattern from Cartesian (x,y) to polar (ρ,φ) coordinates 

and subsequently, integration over φ from 60 to 120 degrees. Although the 

integration was performed over a range of φ, the summed intensity over this 

angle was divided by the number of pixels present in the integration range. 

This method  is similar to a linear scan integration and therefore a correction 

factor proportional to h is required. 

Peak intensities were calculated from the diffraction curve using a 

mathematical curve fitting procedure. This fitting procedure can be described 

as follows: First a baseline is created that follows the decaying curve. 

Secondly, the peaks present in the SAXD pattern are fitted with Gaussian 

peak shapes by a least squares approximation. When the peak in the SAXD 

pattern is composed of two overlapping reflections from different phases (for 

example when a peak exhibits a shoulder), this peak is fitted by two 

Gaussians. The repeat distance (d) of the LPP and additional phases was 

determined from the position (qh) of all non-overlapping reflections attributed 

to the LPP or additional phase by d = 2πh/qh. Vice versa, the position of an 

overlapping Gaussian was calculated from its lamellar repeat distance by qh 

= 2πh/d (maximally 3 out of 7 reflections for the LPP were overlapping in a 

mixture). For clarity, in the figure where a SAXD curve is displayed, the fitted 

Gaussian peaks are plotted together with the measured diffraction curve. 

In order to compare the integrated peak intensities calculated from a SAXD 

curve originating from different samples (encompassing different signal 

strengths), a normalization method is required. Our normalization method is 

adapted from the method presented by Blaurock and Nelander (23). The 

normalization procedure can be described as follows: In a diffraction pattern, 

the intensity for each order, I(h), is divided by the total intensity over all 

orders (the sum of I(h) for h = 1 to n) see Eq. 1. In contrast to Blaurock and 

Nelander, we did not correct for the increase in bilayer repeat distance 

(D/Dmin) due to the limited variation in repeat distance observed in the LPP. 

Subsequently, structure amplitudes were calculated from these normalized 
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intensities after correction for the Lorentz factor (equal to h) and correction 

for the linear integration (also by a factor h), see Eq. 1 (24). 

(1)  2)()( hhIhF norm ⋅=  where  ∑
=

=
n

h
norm hIhIhI

1
)()()(  

In this equation, |F(h)| is the structure amplitude corresponding to the 

normalized intensity I(h)norm at diffraction order h and n is the maximum 

number of orders included in the calculations. 

 

Calculation of an electron density distribution 
Sampling of the continuous Fourier transform is performed by plotting the 

structure amplitudes for all the sets of diffraction data, with each set 

containing a small variation in repeat distance. Up to 6 orders of diffraction 

are included in the calculations. In the procedure of selecting the correct 

phase for each diffraction order, Shannon’s sampling theorem (25) is used to 

construct a continuous curve through one set of diffraction data. Shannon’s 

equation as presented by Franks and Lieb (26) is rewritten as displayed in 

Eq. 2. 
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In this equation φ(h) is the phase angle of diffraction order h. The unit cell of 

the LPP is centrosymmetric as has clearly been shown by the broad-narrow-

broad pattern of RuO4 fixed lipids in SC, visualized in the electron 

microscope (18, 27). Therefore φ(h) is either 0 or 180° and thus the sign of 

the structure factors is either “+” or “-“, respectively. The zero order structure 

factor F(0) is equal to the positive average electron density of the lamellae 

and is arbitrarily set to 1 to fit with the data. However, the value of F(0) does 

not play a role in the calculation of an electron density distribution other than 

creating an offset value. 

With Eq. 2 a continuous function was calculated that fitted with one data set 

of structure factors calculated from the 6 diffraction peaks of a selected 
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sample. As for each of the 6 structure factors of this data set a “+” or “-” sign 

is possible, 64 phase combinations are possible and therefore 64 continuous 

functions can be calculated. All these continuous functions were calculated 

and compared with the experimentally determined structure factors of the 

lipid mixtures presented in Table 1. For each of the 64 curves the fit with 

experimental data is evaluated by the method of least squares, provided in 

Eq. 3. 

(3) ⎥
⎦

⎤
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In this equation datai and fiti represent respectively the i-th experimental 

value and the i-th fit value and data  represents the mean of all experimental 

values. Furthermore, a value of R2 = 1 designates a perfect fit. The phase 

combination of the curve that most closely fitted with all the experimental 

data according to the method of least squares was selected as the correct 

set of phases. 

Finally, with the correct phase set, together with a set of structure amplitudes 

obtained from a selected lipid mixture, an electron density profile ρ(x) for the 

LPP was calculated using Eq. 4 (28). 
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In this equation d is the repeat distance of the unit cell and x is the distance 

from the center of the unit cell. 

 

Results 
 

The small angle x-ray diffraction pattern of a lipid mixture 
An x-ray diffraction pattern of a lipid mixture composed of 

PigCER:CHOL:FFA in a 2:1:1 molar ratio (see Table 1) is provided in Fig. 

2A. The rings display a uniform density demonstrating the random 

orientation of the lipid lamellae. The integrated intensity of these rings over 
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an angle of 60 degrees is displayed in Fig. 2B. In the diffraction pattern of 

this mixture, the 7 diffraction orders of the LPP are well separated from the 

two diffraction peaks assigned to CHOL and to the short periodicity phase. 

The first 6 diffraction peaks of the LPP from this particular lipid mixture will 

be used for the calculation of an electron density profile, described below. 

 

     

 
Determining structure factors and solving the phase problem 
For a series of additional lipid mixtures listed in Table 1, small angle x-ray 

diffraction data are also collected. The data show that all these lipid mixtures 

form a LPP very similar in length to the LPP observed in SC. However, as 

shown in Table 1, the lipid mixtures exhibit a small variation in the repeat 

distance between 12.1 and 13.8 nm. 

For each lipid mixture presented in Table 1, a set of structure amplitudes is 

calculated from the intensities of the various diffraction peaks using Eq. 1. In 

Figure 2: A) The ring-shaped diffraction pattern of a lipid mixture with
PigCER:CHOL:FFA in a 2:1:1 molar ratio. B) Result of the integration of (A) over 
a 60 degree angle. The Gaussian peaks that are fitted to the SAXD pattern are 
used to determine the peak areas. The diffraction peaks associated to the LPP
are indicated by arabic numbers. The other peaks that are present arise from a
short lamellar phase (indicated by roman numbers) and crystalline cholesterol
(indicated by asterisks). 
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Fig. 3 the calculated structure amplitudes are plotted. Each group of 

structure amplitudes that belong to the same diffraction order (indicated by 1 

to 6) is encircled in this figure. 

 

 

 
 

We took 6 orders of diffraction for the calculations as we noticed that by 

including the 7th order, there was overlap in the position of the structure 

amplitudes in reciprocal space. Probably this overlap is the result of the 

different compositions used in our study, because small changes in the unit 

cell structure are caused only by changes in the higher orders of diffraction. 

Therefore it is not clear whether there is a phase change between the fourier 

transform of the 6th and 7th order. From Fig. 3 it is already obvious that the 

data points sample a continuous function. Each group of structure 

amplitudes in Fig. 3 (belonging to the same diffraction order) can have either 

a “+” or a “-“ sign as the unit cell of the LPP is considered to be 

centrosymmetric (27). When including 6 orders of diffraction in the 

calculations (encircled in Fig. 3), the number of possible phase combinations 

Figure 3: Plot of the structure amplitudes obtained from diffraction patterns of 
the lipid mixtures presented in Table 1. Encircled are the structure factors that 
belong to the same order of diffraction, indicated by numbers 1 to 6.
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is 26 = 64. In order to determine the correct phase combination, first a 

continuous line is fitted through the set of structure factors of the lipid mixture 

with PigCER:CHOL:FFA 2:1:1 using Shannon’s theorem, see Eq. 2. 

Subsequently, based on the 6 structure amplitudes of the 

PigCER:CHOL:FFA 2:1:1 mixture, continuous Fourier functions were 

calculated for all 64 phase combinations. The correct phase solution is that 

particular combination of phases for which the continuous Fourier transform 

fits closely with the structure amplitudes, calculated from the diffraction 

patterns of the lipid mixtures listed in Table 1. The phase solution that 

resulted in the best fit of the calculated continuous Fourier transform with the 

experimental structure amplitudes is plotted in Fig. 4. 

 

 

 
This phase solution was selected as the best solution according to the 

method of least squares (R2 = 0.972). For orders 1 to 6, the phase solution 

resulted in the following combination of signs: - + + - - +. The second best 

solution with a slightly lower R2 is the solution with the exact opposite sign 

Figure 4: Plot of the continuous Fourier curve, calculated with one set of
structure factors from the lipid mixture PigCER:CHOL:FFA in 2:1:1 ratio, is
shown fitting through the structure factors of the remaining lipid mixtures in
Table 1. The curve and structure factors are calculated using the phase
solution with respective phase signs for orders 1 to 6 being - + + - - +. 
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combination of + - - + + -. As the sign combination - + + - - + resulted in the 

best fit and is in addition in agreement with the sign combination for the first 

three orders reported by McInstosh using very similar lipid mixtures (16), we 

considered the - + + - - + sign combination as the correct phase 

combination. This phase combination will be used to calculate an electron 

density profile for the LPP. 

 

The electron density profile of the LPP 
From the set of structure amplitudes obtained for the selected lipid mixture 

(PigCER:CHOL:FFA 2:1:1) together with the phase combination - + + - - +, 

the electron density profile is constructed using Eq. 4. This profile is plotted 

in Fig. 5, the maximum resolution of details in the profile (d/2hmax) is 1.1 nm. 

 

 
Within the repeating unit of the LPP (d = 13 nm), four regions with a high 

electron density are present. At the boundary of the unit cell two high 

electron density regions are located around -6.5 and +6.5 nm. In addition, 

closer to the center of the unit cell, two other narrow high electron density 

Figure 5: The calculated electron density profile for the LPP in the lipid mixture 
with PigCER:CHOL:FFA in 2:1:1 molar ratio. Also provided is a model showing 
the possible location of the CER1 molecule inside the unit cell. 
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regions are located at -2.0 and +2.0 nm with in between a very small sub-

maximum at 0 nm. Model calculations of the electron density of the CER1 

and CER2 headgroup relative to the electron density of the CER double alkyl 

chain (using atomic numbers, following the method of Franks (29)) revealed 

that the headgroups are about 1.5 times more dense than the alkyl chains 

(data not shown). Thus, in general the high electron density peaks 

correspond to the polar headgroups, while the lower electron density regions 

correspond to the hydrocarbon chains of the lipids. Therefore the electron 

density profile of Fig. 5 results in a unit cell containing three lipid layers. One 

lipid layer is located in the center with a width of 4.0 nm and on each side of 

this central lipid layer two adjacent layers are located, both being 4.5 nm in 

width. 

The smallest detail in the electron density profile in Fig. 5 is located at the 

center of the unit cell; a small sub-maximum at 0 nm. As 6 orders have been 

used for the electron density calculation and the sub-maximum is not present 

in all calculated electron density profiles of the lipid mixtures used, this small 

sub-maximum is not considered as relevant. 

 

X-ray diffraction profiles of intact SC 
In previous studies, the similarity between the repeat distance of the LPP in 

the lipid model mixtures and in SC has been presented (13, 18, 20, 30). With 

the new phase information for the structure factors and the related electron 

density profiles, the next question is whether the electron density profiles of 

the LPP in the lipid mixtures are also representative for the LPP in SC. This 

would demonstrate that the lamellar organization in lipid mixtures and in SC 

is similar, at a high level of detail. In order to determine this, accurate 

information about the peak intensities of the LPP in SC is required. This 

information is available for the LPP in mouse SC (17), in SC of cultured skin 

(i.e. skin generated from isolated skin cells, unpublished results, V.S. 

Thakoersing, M. Ponec and J.A. Bouwstra) and in pig SC (20). 

Unfortunately, for SC from human skin the diffraction peaks of the LPP are 
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not available at a sufficient resolution. For SC isolated from human skin 

equivalents and from mouse skin, the peak intensities for respectively 6 and 

5 diffraction orders of the LPP could be calculated directly from the 

corresponding diffraction curves using the Gauss fitting procedure. However, 

in the case of pig SC the diffraction peaks are very broad and overlapping 

(31). Therefore recrystallisation of the lipids was required, providing much 

sharper peaks (20). With the peak intensities and the set of phase angles 

provided above, the structure factors were calculated. The structure factors 

for the SC are provided in Fig. 6 together with the previously obtained 

continuous Fourier function of the example lipid mixture PigCER:CHOL:FFA 

2:1:1. 

 

 
It is striking that the 6 structure factors of the LPP detected in SC of cultured 

skin and the 5 structure factors in pig SC fit well with the continuous Fourier 

function. However, with respect to the 5 reflections in the diffraction curve of 

the mouse SC the deviations are larger. The matching of the structure 

factors of the LPP in pig SC and in SC of cultured skin indicates that the 

Figure 6: Cultured skin SC, mouse SC and pig SC structure factors, plotted 
together with the continuous Fourier transform previously displayed in Fig. 4. 
The structure factors of cultured skin SC and pig SC fit nicely with the 
continuous Fourier transform, while the structure factors of mouse SC fit to a 
lesser extent. 
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electron density distribution in the model mixtures is very similar to that in 

SC. The partial correlating mouse SC structure factors, however, imply that 

the mouse SC and the model mixtures contain a somewhat different 

molecular structure for the LPP. 

 

Discussion 
 

The high resolution electron density profile presented in this paper provides 

a more detailed insight into the molecular organization of the LPP. We 

combined the x-ray diffraction data of a large number of SC model mixtures 

in which the lipids form the LPP with a slight variation in repeat distance. 

With the intensities of 6 reflections we were able to select a set of phase 

angle combinations, namely - + + - - +. By combining the phase angles with 

the structure amplitudes of the 6 reflections attributed to the LPP we 

calculated an electron density profile for the unit cell of the LPP. From the 

trend that the structure factors of all model mixtures sample the same 

function (see Fig. 3 and 4), it follows that a very similar electron density 

profile for the LPP is present in all mixtures, with slight variations due to the 

variation in the composition of the mixtures. This similarity in electron density 

profile for the model mixtures prepared with either synthetic CER or isolated 

CER, demonstrates a very similar molecular organization for the LPP in 

these mixtures. The similarity at this high level of detail is quite remarkable 

as the fatty acid chain-length variation and the headgroup variation in the 

synthetic CER mixture is less abundant than in isolated CER mixtures. In the 

former only acyl chains with a chain-length of 16, 24 and 30 carbon atoms 

are present, while in the latter there is a wide variation in acyl chain-length, 

ranging from approximately 14 to 34 carbon atoms. Furthermore, as we 

included both dry and hydrated samples, this also suggests that the addition 

of a buffer at pH 5 does not dramatically change the electron density profile 

of the unit cell and therefore confirms that almost no swelling of the lamellae 

is induced, as observed previously (9, 13, 17). 
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We calculated the structure factors from reflections attributed to the LPP in 

SC isolated from pig, mouse or cultured skin. The structure factors of the 

LPP in SC of pig and of cultured skin fitted well with the continuous Fourier 

transform obtained for the lipid mixtures, demonstrating that the electron 

density profile in the unit cell of the LPP in the mixtures is very similar to the 

profile of the LPP in SC of pig and cultured skin. Although the mouse SC 

exhibits a slightly different organization, the lipid mixtures serve as an 

excellent model for the lipid organization in SC of pig and cultured skin, not 

only with respect to the similarity in repeat distance of the LPP (13, 18, 20, 

30), but also in mimicking the molecular organization in the unit cell of the 

LPP. This is a big step forward towards unravelling the molecular 

organization of the LPP in SC. 

 

Average electron density profiles for the LPP in the mixtures 
Our method for determining the phase angles of the structure factors is 

slightly different from the swelling method that is commonly used. The 

swelling method is based on increasing a lamellar repeat distance by varying 

the hydration level of the lipid mixture (29, 32, 33). However, in previous 

studies it has been observed that at physiological conditions the repeat 

distance of the LPP in SC or in SC lipid models is almost insensitive to the 

level of hydration (9, 13, 17). Only when using a high pH value and/or a high 

cholesterol sulphate content, it is possible to induce swelling in the LPP (18). 

As we preferred to use lipid mixtures mimicking the physiological conditions 

as closely as possible, we utilized a variation in repeat distance for the LPP, 

observed in the SAXD patterns of mixtures with different lipid compositions 

(see Table 1). The small variation in repeat distance we observed (from 12.1 

to 13.8 nm) is probably induced by either a variation in the average lipid 

chain-length in the different mixtures, or a variation in headgroup 

architecture. This implies that the structure factors in Fig. 4 sample an 

average continuous Fourier function, representative for the average electron 

density in the unit cell of the LPP in the lipid mixtures. 
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From electron density profile to molecular organization 
The electron density profile in Fig. 5 exhibits four high electron density 

regions inside the unit cell; two electron density peaks are located at the 

border of the unit cell around -6.5 and +6.5 nm, while two smaller high 

electron density peaks are located at -2.0 and +2.0 nm from the center of the 

unit cell. This suggests a unit cell with three lipid bilayers of 4.5, 4.0 and 4.5 

nm in width. 

The electron density profile in Fig. 5 is supported by several observations: 

The trilayer arrangement is in agreement with the broad-narrow-broad 

pattern observed in RuO4 stained SC as explained by Hill and Wertz (34). 

Also, in a previous study McIntosh used the swelling method to select a set 

of phase angles for the first three reflections of a mixture with 

pigCER:CHOL:palmitic acid 2:1:1 (18). His set of 3 phase angles 

corresponds to the first 3 we also selected (- + +).  

When using the 3 signs and only the first 3 reflections obtained for our 

mixture, the calculated electron density profile is very similar to the electron 

density profile obtained by McIntosh. He concluded that only two asymmetric 

bilayer regions are present in the unit cell of the LPP with a water layer 

between the outer headgroups in the unit cell. The resolution of the electron 

density profile was 2 nm, while in our studies the resolution of the electron 

density profile increased to 1.1 nm. This higher resolution allowed us to 

determine the electron density peaks at a higher precision. The electron 

density region between -2.0 and +2.0 nm in our profile corresponds to the 

water region in the electron density profile of McIntosh. Although this region 

shows a medium electron density similarly as observed by McIntosh, this 

medium density level cannot be explained by a water layer for two reasons: 

1) This electron density profile is also present in lipid mixtures prepared in 

the absence of a buffer (see Table 1, the equimolar pigCER:CHOL:FFA 

mixture). 2) Due to the similarities in the Fourier transform the lipid 

organization in SC is very similar to that in the lipid mixtures. However, in SC 
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almost no swelling was observed after hydration at physiological conditions 

(13, 17). 

Constructing a molecular model for the LPP based on the density profile may 

provide more insight into the molecular organization of the LPP. Because 

CER1 is crucial for the formation of the LPP and forms the backbone of the 

molecular structure of the LPP (12, 35), we will only focus on the location of 

CER1 in the unit cell of the LPP. Furthermore, in previous studies it has 

been reported that a fluid phase is present in the lipid model mixtures (8, 36) 

which is correlated to the presence of the CER1 linoleate chain. Therefore, 

this fluid phase must also be accounted for in the molecular model for the 

LPP. 

 

Possible location of CER1 in the unit cell 
Firstly, due to the large width of the high electron density peaks located at 

the border of the unit cell, it is likely that two polar headgroups are located in 

these regions at approximately ±6 and ±7 nm. The smaller width of the high 

electron density peaks around -2.0 and +2.0 nm indicates that either a single 

headgroup or the ω-hydroxy ester bond of CER1 is present in this region. 

Secondly, the length of the acyl chain of CER1 in mixtures with isolated CER 

can range from 26 to 34 carbon atoms. Assuming a 0.127 nm increase in 

chain-length per C-C bond (37), the fully extended CER1 acyl chain-length is 

approximately 3.8 ± 0.5 nm. This length fits into the 4.0 nm distance between 

the high density peaks at -6 nm and -2.0 nm. As the unit cell is 

centrosymmetric, two CER1 molecules are present in an opposed 

configuration in the unit cell. In this configuration, the CER1 headgroup is 

located at the peak positions of -6 or +6 nm and the linoleate tail is located in 

the central trough of the electron density profile between -2.0 and +2.0 nm. 

In this configuration, the CER1 linoleate tails are almost not interdigitating. In 

Fig. 5 a schematic representation is provided of the proposed location of 

CER1 in the unit cell. CER1 plays a prominent role in this molecular 

arrangement for the LPP as it forms the backbone of the molecular structure 
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in this unit cell: in the absence of acyl CER the LPP cannot be not formed 

(6,10,11). Furthermore, in phospholipid bilayer systems, CHOL is known to 

have an affinity towards saturated hydrocarbon chains as compared to 

unsaturated chains (38-40). If this can be extrapolated to CER systems, in 

our model CHOL is expected to be located in the outer lipid layer regions 

and not in the central trough where the linoleate chains are present. 

Concerning the location of CER1 and the trilayer electron density profile, this 

model exhibits important aspects of the sandwich model published 

previously (35). 

 

Conclusions 
In this paper we determined a solution for the electron density distribution of 

the LPP with high resolution, showing the structure of the LPP in more detail. 

Furthermore, the electron density distribution in the LPP of the mixtures was 

found to resemble closely to the density distribution in the LPP of isolated 

SC samples. This demonstrates that the molecular organization in the 

mixtures mimics the organization of the LPP in SC. Thus, the lipid mixtures 

serve as an excellent model for the lipid organization in SC. Finally, 

additional information must be obtained in order to select the phase angles 

for higher diffraction orders and to solve the molecular organization of the 

LPP in more detail. This will be the subject of future studies in our group. 
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Abstract 
The lipid matrix present in the uppermost layer of the skin, the stratum 

corneum, plays a crucial role in the skin barrier function. The lipids are 

organized into two lamellar phases. To gain more insight into the molecular 

organization of one of these lamellar phases, we performed neutron 

diffraction studies. In the diffraction pattern, five diffraction orders were 

observed attributed to a lamellar phase with a repeat distance of 5.4 nm. 

Using contrast variation, the scattering length density profile could be 

calculated showing a typical bilayer arrangement. To obtain information on 

the arrangement of ceramides in the unit cell a mixture that included a partly 

deuterated ceramide was also examined. The scattering length density 

profile of the 5.4 nm phase containing this deuterated ceramide 

demonstrated a symmetric arrangement of the ceramides with interdigitating 

acyl chains in the center of the unit cell. 
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Introduction 
The skin forms the interface between the human body and the environment. 

It protects our body against various biological and chemical hazards and 

from desiccation in a dry environment. The outermost layer of the skin, the 

stratum corneum (SC), forms the main barrier against diffusion of 

substances across the skin (1). This layer consists of overlapping flattened 

dead skin cells. Each cell is surrounded by lipids, which serve as the mortar 

between the cells. The lipids form multiple sheets of lamellae and are mainly 

composed of ceramides (CER), cholesterol (CHOL) and free fatty acids 

(FFA). These lipid classes are present in an approximately equimolar ratio 

(2). The lipids are organized in two lamellar phases with repeat distances of 

approximately 6 and 13 nm, also referred to as the short periodicity phase 

(SPP) and long periodicity phase (LPP), respectively (3-7). Despite the high 

level of CHOL, the lipids form predominantly a crystalline lateral packing (4, 

8). This is different from phospholipid membranes, in which high levels of 

CHOL induce the formation of a liquid ordered phase (9-11). In the SC, the 

CER are a crucial component in the formation of the lamellar phases that 

constitute the main barrier function. In previous studies we mainly focussed 

on the formation and molecular organization of the LPP (3, 4, 12-14). In the 

present study we focus on the molecular organization of the SPP. Not only in 

SC, but also in membranes of living cells the CER play an important role, 

especially in the formation of lipid rafts (15, 16). 

Previous studies showed that mixtures prepared with either synthetic CER or 

native CER mixed with CHOL and with FFA mimic the SC lipid organization 

very closely (17-19). While CER and CHOL play a prominent role in the 

formation of the two lamellar phases, the addition of FFA is crucial for the 

formation of the densely packed orthorhombic crystalline structure (17, 20). 

A more detailed analysis of the lipid composition revealed that the FFA are 

predominantly saturated and have a wide distribution of chain lengths, in 

which the chain lengths of 22 and 24 C atoms are most abundantly present 

(21). In addition, there are eleven subclasses of CER identified in human SC 
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(22-24). However, in the synthetic CER mixture that we used in our previous 

studies five subclasses of CER are present mimicking closely the 

composition of pig SC. These subclasses consist of either a sphingosine (S) 

or phytosphingosine (P) base, whereas the acyl chain is a nonhydroxy (N), 

α-hydroxy (A) or ω-hydroxy chain (25). The corresponding nonhydroxy and 

α-hydroxy CER that are present in this synthetic CER mixture are denoted 

as CER NP, CER NS, CER AS and CER AP. The molecular structure of 

these CER is displayed in Fig. 1. In the synthetic CER mixture used in 

previous studies an ω-hydroxy CER is present (26). This CER possesses a 

longer acyl chain length (C30) and has a linoleic acid chemically bound to its 

ω-hydroxy group (indicated with EO). It is denoted as CER EOS. Using 

these CER subclasses, mixed with CHOL and FFA, it was demonstrated that 

EOS is very important for the formation of the LPP and that the mixtures 

closely mimicked the lamellar phase behaviour of mixtures prepared from 

either isolated human or pig CER (13, 26). 

 

 

 
Figure 1: Molecular structure of the synthetic CER used in the mixtures. 



Position of ceramide in lipid membrane determined by neutron diffraction 

 

 179 

Although the above studies were very relevant for providing information on 

the role the various lipid classes play in the lipid organization, no detailed 

information was obtained about the localization and molecular arrangement 

of the molecules within the unit cell. In this respect in several other studies 

progress has been made using simplified ternary or quaternary lipid 

mixtures. The mixtures included mainly CER AP with a short acyl chain 

length of 18 C atoms, CHOL and cholesterol sulfate. In these studies the 

neutron scattering length density profile was determined of CER rich phases 

with a short periodicity (27-29). In some studies CER EOS and a single 

(deuterated) fatty acid were also included, which allowed the localization of 

the deuterated fatty acid in the unit cell of the phases formed by these 

simplified mixtures (29). 

In the present study we investigate the SPP of SC in more detail, using a 

complex lipid mixture of synthetic CER, CHOL and FFA that closely mimics 

the SPP observed in stratum corneum (30). The aim is to obtain information 

on the localization and conformation of CER NS in the SPP. We chose CER 

NS, as it is the most abundant CER subclass in the model mixture. As CER 

EOS is crucial for the formation of the LPP (31), it is excluded from these 

mixtures. In the studies focussed on the conformation and localization of 

CER NS in the SPP, part of the CER NS is replaced by CER NS with a 

perdeuterated acyl chain (dCER NS). First the neutron scattering length 

density profile of the SPP is determined by using contrast variation. In the 

second part of our studies information on the arrangement of CER NS in the 

unit cell of the SPP is obtained by using its partially deuterated counterpart.  

 

Materials and Methods 
 

Materials 
Synthetic CER NS (C24), dCER NS (C24), Cer NP (C24), CER AS (C24), 

CER NP (C16) and CER AP (C24) were generously provided by Cosmoferm 

B.V. (Delft, The Netherlands). The number given in parentheses denotes the 
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number of carbon (C) atoms in the acyl chain of the ceramides, all the lipids 

studied were acyl chain saturated. The palmitic acid (C16:0), stearic acid 

(C18:0), arachidic acid (C20:0), behenic acid (C22:0), tricosanoic acid 

(C23:0), lignoceric acid (C24:0), cerotic acid (C26:0), cholesterol and acetate 

buffer salts were purchased from Sigma-Aldrich Chemie GmbH (Schnelldorf, 

Germany). The silicon substrates were cut from a wafer (P/Boron (110), 

thickness 380 ±10 μm) obtained from Okmetic (Vantaa, Finland). All organic 

solvents used were of analytical grade and manufactured by Labscan Ltd. 

(Dublin, Ireland). The water used was of Millipore quality. 

 

Preparation of the lipid models 
For preparation of the model with protonated lipids, synthetic CER, CHOL 

and FFA were used. The following synthetic CER composition was selected 

(see also Fig. 1): CER NS C24, CER NP C24, CER AS C24, CER NP C16 

and CER AP C24 in a 60:19:5:11:6 molar ratio which, apart from the 

absence of CER EOS, closely resembles the CER composition in pig SC 

(32). For the free fatty acids mixture (FFA), the following composition was 

selected: C16:0, C18:0, C20:0, C22:0, C23:0, C24:0 and C26:0 at molar 

ratios of 1.8, 4.0, 7.7, 42.6, 5.2, 34.7 and 4.1 respectively. This chain length 

distribution is based on the FFA composition in human SC (21). To achieve 

the desired 1:1:1 ratio of CER:CHOL:FFA, for each model the appropriate 

amounts of individual lipids were dissolved in chloroform:methanol (2:1) and 

combined into one solution with a final lipid concentration of approximately 

10 mg/ml. This solution was sprayed over an area of 1 x 3.8 cm2 on a silicon 

substrate using a Camag Linomat IV sample applicator (Muttenz, 

Switzerland). The spraying rate was 5 μL/min and the solvent was 

evaporated by a stream of nitrogen gas. The silicon substrate with applied 

lipid film was then equilibrated twice for 10 minutes at a temperature of 

approximately 80°C. After each heating step the sample was cooled to RT 

over approximately 30 min. After equilibration, the lipid layer was immersed 

in acetate buffer (50 mM, pH 5) and kept at 37°C for 24h to achieve 
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maximum hydration. After the hydration step the sample was kept at 100% 

RH until measured in neutron diffraction. This sample preparation leads to 

oriented multilayers with a low mosaicity, as is demonstrated in Fig. 2. 

The same preparation method was used for the model in which 30 mol% of 

the CER NS was replaced by dCER NS. This “deuterated” sample contains 

in total 2.5 mol% of deuterated lipids. For the determination of the signs of 

the structure factors, acetate buffers containing 0, 33, 67 and 100% D2O 

were used. When a neutron diffraction measurement of a sample at a 

selected H2O:D2O ratio was completed, the sample was exposed to a buffer 

with another H2O:D2O ratio for a period of 24h at 37°C and subsequently 

mounted in the chamber for the next neutron diffraction measurement. This 

procedure was repeated until the sample was measured with all 4 H2O:D2O 

buffer concentrations. 

 

Weighing of the samples to determine the hydration level 
To determine the degree of hydration of the mixtures, all samples were 

weighed in a dry state (24h dehydration over P2O5) and fully hydrated state 

(see procedure above) using a Sartorius SE 2 microbalance (Nieuwegein, 

The Netherlands). This was performed for both the protonated (in duplicate) 

and deuterated samples (in triplicate) and the weighing procedure of each 

sample was repeated 3 times. 

 

X-ray diffraction experiments 
Before the neutron diffraction measurements were performed, the 

equilibration temperature and equilibration period of the lipid mixtures during 

sample preparation were optimized to form only one lamellar phase with 

maximum orientation parallel to the silicon support. The samples were 

measured by X-ray diffraction. An X’pert Pro-alpha diffractometer from 

PANalytical (Almelo, The Netherlands) was used equipped with a sealed Cu 

X-ray tube, 0.01 rad primary and secondary Soller slits and an elliptical 

mirror that produces a convergent beam of Cu Kα1 and Kα2 radiation with 
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wavelengths of respectively 1.5406 and 1.5444 Å. The analysis of the 1D 

diffraction patterns was the same as described previously (19). 

 

Neutron diffraction experiments 
Experiments were performed on the D16 diffractometer at the Institute Laue-

Langevin (ILL, Grenoble, France) operating at λ = 4.75 Å in the reflection 

mode. Samples were mounted on a goniometer placed in a sealed 

temperature-controlled aluminum humidity chamber in the presence of an 

acetate buffer bath to maintain constant maximum humidity. The 

temperature in the chamber was kept at 25°C during the measurements. 

The sample to detector distance was 1.0 m. The intensity of the diffracted 

beam was recorded by a position sensitive two-dimensional 3He detector 

with 128 x 128 channels and 2 mm resolution between channels. The 2D 

detector readout was integrated in the vertical direction which results in a 

one-dimensional intensity projection as a function of the detector channel 

position (2θ). Intensities on the detector surface were corrected by 

normalization to a water calibration and by subtraction of the empty chamber 

background. The measurement time per sample varied between 7 and 12 h, 

depending on the signal to noise ratio during the measurements. A longer 

measurement time was used for the higher diffraction orders (3 to 5). The 

lamellar spacing (d) was obtained by fitting the peak positions (in 2θ) of all 

diffraction orders (h) according to Bragg’s law; 2dsinθ = hλ. Data analysis 

was performed using the ILL in-house software LAMP (33). Since it was not 

possible to integrate over the complete range in omega (due to cut off by the 

substrate and due to the omega range used in the measurements), we 

chose to integrate only the peak intensities originating from the lamellae 

oriented parallel to the silicon support. This was achieved by selecting only 

the small angle high intensity part of the diffraction peaks at sample rotations 

of Ω = -0.1, 0.0 and +0.1 degrees around the Bragg angle (see also Fig. 2). 

A summing of these pixel intensities resulted in the total peak intensity value 

(Ih). Using this integration method we obtain an excellent signal to noise 
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ratio. Then, the structure factor amplitudes |Fh| were calculated from the total 

peak intensity (Ih) by: 

hhh IhAF ⋅= )(θ   (1) 

Where Ah is the correction factor for sample absorption, which can be 

calculated via (34): 
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In this equation θ is the Bragg angle, μ the linear attenuation coefficient and 

L the thickness of the lipid film. With a lipid density of approximately 0.87 

g/cm3 and weight of 10 mg in an area of 3.8 cm2, the thickness of the lipid 

film (L) was calculated to be about 30 μm. The linear attenuation coefficient 

was calculated from the wavelength used in combination with the density 

and the chemical composition of the lipid film (35). For the protonated 

sample μ ranges from 5.48 to 5.09 cm-1 for 0% to 100% D2O respectively 

and for the deuterated sample μ = 5.03 to 4.65 cm-1. The error in |Fh| was 

determined from the standard deviation of the summed pixel intensities (σI) 

by: 

 
h

Ih
h Ih

A
F h

⋅

⋅
=Δ

2
σ

  (3) 

If the unit cell of the SPP bilayer is centrosymmetric, the phases of the 

structure factors are either 0 or π. For this situation, the structure factors 

display a linear correlation as function of H2O:D2O ratio (34). For a hydrated 

bilayer we may assume that water is distributed near the hydrophilic 

headgroups, at the boundaries of the unit cell. Mathematically, a Gaussian 

water distribution at the boundaries of the unit cell (± d/2) results in structure 

factor signs for the water layer being - + - + -. Because the water structure 

factors are defined as the structure factors at 100% D2O minus that at 100% 

H2O, the signs of the structure factors can be determined from the plot of the 

H2O:D2O contrast versus the obtained structure factor amplitudes |Fh|. The 
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procedure is as follows: The sign of Fh must be chosen such that Fh at 100% 

D2O minus Fh at 0% D2O results in the correct sign for the hth order of the 

water layer structure factor. 

When the structure factor phase signs are determined, the neutron 

scattering length density profile for the SPP bilayer, ρ(x), can be calculated 

via a Fourier transform of the structure factors (36): 

∑=
h

h dhxF
d

x )/2cos(2)( πρ  (4) 

Where x is the direction normal to the bilayer surface. The significance of 

features in the density profile can be visualized by the error in the scattering 

length density, depicted in the following equation (37): 
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Where t is Student’s t-statistic. The error in the structure factors (∆Fh) was 

determined with Eq. 3. A 99.7% confidence limit for the scattering length 

density was obtained by using a Student’s t-statistic of t = 2.97. 

Furthermore, after a normalization of the patterns by setting the sum of the 

structure factor amplitudes (F1 to F5) equal for the protonated and deuterated 

sample, the difference density profile (resulting from the deuterated CER NS 

tails) can be calculated by subtracting the density of the protonated sample 

from that of the deuterated sample. To obtain an absolute scaling for the 

density patterns the total scattering length density (F0) must be determined 

and additional information on the features in the difference density pattern is 

needed. F0 was calculated using the chemical composition and the mass 

density of the sample (38, 39). 
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Results 
 

Optimal sample preparation 
Before neutron measurements were performed, the samples were assessed 

by X-ray diffraction measurements to ensure a proper lamellar organization 

and orientation. Our original procedure of equilibrating the samples twice for 

1 hour at a temperature slightly above the onset of melting, followed by 

cooling to room temperature, resulted not only in reflections attributed to the 

SPP, but also in reflections attributed to an additional phase with a repeat 

distance of 4.4 nm, see Fig. S1A. To examine the formation of this additional 

phase in more detail, the sample was heated during which diffraction curves 

were recorded. At 80°C the diffraction peaks attributed to this additional 

phase disappeared. A subsequent cooling to room temperature resulted in a 

diffraction pattern with reflections attributed to the SPP with a repeat 

distance of 5.4 nm and crystalline CHOL only, see Fig. S1B. Based on these 

results, the lipid mixtures for the neutron diffraction studies were equilibrated 

for 10 minutes at a temperature of approximately 80°C. 

 

 

Figure S1: A) X-ray diffraction pattern of the deuterated sample after
equilibration at 70°C. B) X-ray diffraction pattern of the deuterated sample after
re-equilibration at 90°C. The reflections of the SPP are indicated by Roman
numbers I to IV. Reflections of an additional 4.4 nm phase are indicated by a 
cross and reflections from crystalline CHOL are indicated by asterisks. 
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Number of water molecules per lipid molecule 
Increasing the D2O concentration in the hydration buffer resulted in a 

moderate increase in neutron scattering signal, indicating that a relatively 

low number of water molecules is present in the sample. To determine the 

amount of water in the samples, the samples are weighed with a 

microbalance in dry and hydrated state. As expected, between the 

protonated and deuterated samples no difference in the hydration level was 

observed. The resulting water:lipid molar ratio determined by weighing is 

1.91 ± 0.42, which indicates that in the lipid mixtures approximately 2 water 

molecules are present per lipid molecule. 
 

Neutron diffraction pattern 
In Fig. 2 a typical example of a diffraction pattern is shown of the mixture 

containing dCER NS hydrated at 100% D2O. Three reflections that can be 

attributed to the SPP are visible at scattering angles of 2θ = 5.13, 10.16 and 

15.29 degrees, corresponding to a repeat distance of d = 5.36 ± 0.04 nm. In 

addition, one reflection attributed to crystalline CHOL is visible at 2θ = 8.0 

degrees. The maximum intensity of the SPP third diffraction order is not 

visible in Fig. 2, as it is located at the sample rotation of Ω = 7.65 degrees, 

which is recorded at the second detector position (not shown). The 

diffraction pattern of the SPP reveals very sharp peaks indicating that a 

higher number of lipid lamellae is oriented parallel to the substrate surface 

as compared to other orientations. The mosaicity of the parallely ordered 

lamellae was calculated (taking the FWHM of a Gaussian fit to the sharp 

peak in Ω for orders 1 to 5) to be 0.275 ± 0.014 degrees. A very similar 

pattern is observed for the protonated sample. The second reflection of 

CHOL is too low in intensity to be visible in Fig. 2 and its maximum intensity 

is located at a higher sample rotation of Ω = 8.0 degrees, also recorded at 

the second detector position. After integration of the peak at this second 

detector position, the second order of CHOL was determined at 2θ = 16.0 
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degrees. This reflection did not overlap with the third order reflection of the 

SPP. 

 

 

 
 
Table 1: 
Structure factor amplitudes with errors and absorption correction factors. 

 
 

Figure 2: Neutron diffraction profile of the deuterated sample at 100% RH with a
buffer of 100% D2O. The reflections of the SPP are indicated by Roman 
numbers I to III and a reflection of crystalline CHOL is indicated by an asterisk. 
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Determination of the phase signs 
The absolute structure factor amplitudes with corresponding errors and 

absorption correction factors are calculated from the diffraction patterns 

using Eq. 1 to 3. They are provided in Table 1. As shown in the table, the 

errors in the structure factor amplitudes are small. The linear fits of the 

structure factor amplitudes with the H2O:D2O ratio are displayed in Fig. 3, A 

and B for the protonated and deuterated sample respectively. From these fits 

it is clear that the structure factors correlate linearly with the H2O:D2O ratio, 

demonstrating that the lipids in the SPP form a centrosymmetric structure - 

and this is also true when CER NS is partially substituted by dCER NS. 

Furthermore, clear differences are observed between the structure factors of 

the protonated sample and those of the deuterated sample, which indicates 

a difference between their scattering length density profiles. 

 

 

 

Figure 3: A) Linear fits of the structure factor amplitudes of the protonated sample with 
the ratio of H2O:D2O in the hydration buffer. B) Linear correlation of the structure factor 
amplitudes of the deuterated sample with the H2O:D2O ratio. The error bars represent the 
standard deviations. 
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The phase signs are obtained from the H2O:D2O plots as follows: A 

Gaussian water distribution is assumed near the lipid headgroups at the unit 

cell boundaries (± d/2). The phase signs for the structure factors of this water 

layer are, according to its distribution, - + - + -. Subsequently, because the 

water layer structure factors are defined as the total structure factors at 

100% D2O minus those at 0% D2O, the structure factor phase signs for the 

protonated and deuterated sample can be deduced (see Fig. 3, A and B). 

Since the structure factor amplitudes at 100% D2O in Fig. 3, A and B are all 

higher than those at 0% D2O, the structure factor signs of both the 

protonated and deuterated sample are also - + - + -, for diffraction orders 1 

to 5, respectively. 

 

Scattering length density profiles 
The neutron scattering length density profiles of the SPP at 0% D2O 

concentration in the protonated and deuterated sample were calculated 

using Eq. 4. The profiles are displayed in Fig. 4, A and B for the protonated 

and deuterated sample respectively, with a 99.7% confidence interval 

calculated with Eq. 5. The profile of the protonated sample displays a high 

density at the boundaries of the unit cell, a low density in the center and a 

submaximum at -1.5 and +1.5 nm from the center. Minima in the profile are 

located at -0.75 and +0.75 nm from the center. The profile of the deuterated 

sample is very similar to that of the protonated sample, except for an 

elevated density in the center of the unit cell.  

Subsequently, both density patterns are normalized and a difference density 

pattern is calculated by subtracting the protonated from the deuterated 

pattern. This difference profile represents the density of the deuterated acyl 

chains. The resulting difference pattern displays an elevated density in the 

center of the unit cell. To put the density patterns on an absolute scale as 

described in the materials and methods, we use information on the 

molecular structure given by the shape of the difference density pattern as 

follows: The dCER NS is deuterated along the total length of the acyl chain 
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(D47). Because the acyl chain is also located in the headgroup region (see 

Fig. 1) and the intermembrane space is very small (~0.1 nm), the neutron 

scattering length density is expected to increase throughout the entire length 

of the unit cell. 

 

 
Since the shape of the difference density pattern only displays an elevation 

in the center of the unit cell, this indicates an interdigitation of deuterated 

acyl chains in the center of the unit cell. We use this information to scale the 

difference pattern so that the density (D-H) in the center of the unit cell 

(resulting from 2 overlapping acyl chains) is exactly twice the density in the 

remaining part of the unit cell (resulting from a single acyl chain). In Fig. 5 

the protonated, deuterated and difference density patterns are displayed on 

Figure 4: A) Scattering length density profile of the SPP in the protonated 
sample (solid line). B) Scattering length density profile of the SPP in the 
deuterated sample (solid line). The dotted lines indicate the 99.7% confidence 
interval.  
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an absolute density scale. It must be emphasized that the scaling procedure 

has no influence on the shape of the difference density pattern, only on the 

range of the scattering length density on the y-axis. 

 

 

 
 

Discussion 
 

In human SC the lipids form two lamellar phases referred to as the LPP and 

SPP (3-7, 40). Very recently, the electron density profile of the unit cell in the 

LPP was calculated by means of X-ray diffraction studies (14). These studies 

indicated that in the unit cell of the LPP the lipids are organized in three 

layers that are almost equally in width. This lipid arrangement, which is very 

characteristic for the lipid organization in SC, is dictated by the molecular 

architecture of CER EOS. These studies also demonstrated that the lipid 

Figure 5: Scattering length density profiles of the SPP in the protonated sample 
(solid line) and deuterated sample (dashed line) and their difference profile 
(dotted line) plotted on an absolute density scale. A possible arrangement of
the dCER NS molecules in the SPP bilayer is also presented. 
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organization of mixtures prepared from either synthetic CER mixtures or 

isolated CER mixtures is very similar to that in SC, not only with respect to 

the repeat distances of the lipid phases, but also with respect to the electron 

density profile of the unit cell of the LPP. The aim of the present study was to 

gain more insight into the molecular structure of the SPP. It is well known 

that the repeat distances of the lamellar phases in mixtures prepared from 

CER, CHOL and FFA are very insensitive to hydration and that especially for 

the SPP only a limited number of diffraction orders are obtained with X-ray 

diffraction. Therefore it is difficult to obtain an electron density profile by X-

ray diffraction analysis. In addition, by using a deuterated lipid in neutron 

experiments information can be obtained about the arrangement of this lipid 

in the unit cell. For this reason it was decided to perform neutron diffraction 

studies, as this permits contrast variation by changing the H2O:D2O ratio to 

obtain the phase signs of the structure factors of the various diffraction 

orders. Using this method we were able to calculate the scattering length 

density profile of the SPP. However, our final goal is to obtain information on 

the arrangement of the CER in the unit cell. Therefore we partly replaced the 

(most abundant) CER NS in the lipid mixture by dCER NS to determine the 

position of the acyl chain in the unit cell. To the authors’ knowledge, these 

are the first neutron diffraction measurements reported for a lipid mixture that 

closely mimics the SPP in SC. 

In our previous studies, using X-ray diffraction on mixtures with CER, CHOL 

and FFA prepared in the absence of CER EOS, we were able to form the 

SPP and partly phase separated crystalline CHOL without the presence of 

additional phases. However, during the sample preparation for the neutron 

diffraction experiments, in which we used silicon as the supporting substrate, 

the equilibration method had to be adjusted to obtain only the SPP and 

phase separated crystalline CHOL. Our current studies demonstrate that the 

formation of an additional 4.4 nm phase can be avoided by equilibration of 

the sample at about 10°C above the melting region of the lipid mixture. The 

presence of the CHOL is not avoided, as phase separated crystalline CHOL 
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is also present in SC (3, 4, 41) and the diffraction peaks of CHOL do not 

interfere with those of the SPP. In previous studies it was shown that at a 

ratio of CER:CHOL:FFA of 1:0.4:1, CHOL is incorporated in the lamellar 

phases (unpublished data). From this we may conclude that CHOL is partly 

dissolved in the lamellar phases. In studies using mixtures with only a few 

CERs, CHOL and a single fatty acid, phase separation of the fatty acid 

fraction has been reported (29, 42, 43). However, the mixtures in the latter 

studies contained a lower number of CER subclasses and only a single fatty 

acid. Either a mismatch between the CER and fatty acid chain lengths or a 

different equilibration procedure most probably causes the phase separation 

in these mixtures. We not only measured the lamellar phases of our 

mixtures, but we also examined the lateral packing with IR spectroscopy 

(unpublished results). There was no indication of phase separation between 

FFA and CER within the lateral packing of the SPP. This suggests that 

rather homogenous mixtures are formed - not only with respect to the 

lamellar phase behavior, but also with respect to the lateral packing. 

 

Hydration level of the lipid mixtures 
In previous studies on SC or SC lipid models it has been observed that even 

at 100% humidity the repeat distance of the lipid lamellae is almost 

insensitive to the level of hydration, suggesting that very little water is 

present in the headgroup region (12, 30, 44). Our present studies show that 

on the basis of weight measurements, approximately 2 water molecules are 

present per lipid molecule. This is a very low hydration level as compared to 

phospholipid bilayers, that can contain up to 12 (in the gel phase) or even 35 

(in the fluid phase) water molecules per lipid molecule (36). In a related 

study on a SC model mixture with CER EOS, CER AP, CHOL and palmitic 

acid, the number of water molecules per lipid molecule was estimated to be 

only 1, based on the available intermembrane space and the molecular 

volume of H2O (29). Because of the limited amount of water in the 

headgroup region, ceramide containing mixtures are less sensitive to the 
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H2O:D2O contrast variation. However, in the present study the change in the 

structure factor values was significant when increasing the D2O level from 0 

to 100%. This allowed us to determine the phase signs and to calculate a 

neutron scattering length density profile for the SPP with a high precision. 

Due to the low water levels in the lipid mixtures, it was decided to hydrate 

the samples at 100% humidity. 

The low hydration level of CER containing mixtures implies that the hydration 

level of the SC lipid matrix is also very low, as compared to phospholipid 

layers in a cell membrane. Regarding the barrier function of the lipid matrix 

in SC, as the amount of water molecules in the heagroup region is very low, 

the penetration for hydrophilic molecules is expected to be significantly 

reduced as compared to crystalline phospholipid membranes. Thus, the very 

low hydration level of the SC lipid matrix may play an important role in the 

barrier function of the skin. 

 

Bilayer structure of SPP and arrangement of CER NS in unit cell 
When considering the scattering length density profiles for the unit cell of the 

SPP, a high density is located at the boundaries of the unit cell and a low 

density in the center. This suggests that the headgroups of the lipids are 

located at the boundaries of the unit cell, while the hydrocarbon chains are 

located in the center. This is similar to the formation of a typical lipid bilayer 

driven by hydrophobic-hydrophilic interactions, as often observed for 

phospholipid membranes (45-47). Furthermore, the experimentally obtained 

repeat distance of 5.36 nm is in excellent agreement with the bilayer 

arrangement of two CER molecules: the total length of the extended 

sphingosine C18 base and C24 acyl chain, when assuming a 0.127 nm 

length per C-C bond, is 5.33 nm (48). Therefore it is likely that the CER 

subclasses with an acyl chain length of C24 (90% of the CER) dictates the 

repeat distance of the SPP unit cell in our systems. This corresponds with 

our previous findings that the CER dictate the formation of the lamellar 

phases in SC (14, 31, 49). In a study by McIntosh et al on a mixture with 
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isolated CER from pig SC, consisting of CER:CHOL:palmitic acid in a 2:1:1 

molar ratio, a SPP with a repeat distance of 5.4 nm was also observed (44). 

In a study by our group using similar mixtures with isolated pig CER, CHOL 

and FFA a SPP was observed with a repeat distance of 5.2-5.4 nm 

depending on the CER:CHOL ratio and the presence of FFAs (31). As the 

mixtures in both studies were prepared in the absence of pig CER EOS, but 

with the remaining CER isolated from pig SC, the observation of a 5.4 nm 

repeat distance equals that in our synthetic mixtures suggesting that the 

SPP in our mixtures is very similar to the SPP present in mixtures prepared 

with isolated CER. 

In a related neutron diffraction study on a mixture with CER AP, CHOL, 

cholesterol sulphate and palmitic acid, a density profile for a bilayer structure 

with a smaller periodicity phase of 4.56 nm was presented (27). In that 

profile the lowest density is located exactly in the center of the unit cell, 

whereas in our profile the lowest density is located outside the center at a 

distance of ±0.75 nm. This difference may be explained by the different CER 

used: The acyl and sphingosine chains in the CER AP mixture are equal in 

length (both C18) and thus no interdigitation is expected to occur. Therefore 

in the CER AP mixture the terminal methyl groups are located in the center 

of the bilayer, resulting in a low density region at this location. In contrast, in 

our mixtures the acyl and sphingosine chains are not equal in length, being 

C24 and C18 respectively. This difference in chain length is likely to result in 

an interdigitation of the acyl chains which could explain the slightly elevated 

density observed in the center of the unit cell. This is demonstrated in Fig. 5, 

in which an arrangement of dCER NS molecules is displayed (discussed into 

more detail below). The interdigitation is in agreement with the lower density 

regions on both sides of the elevated density in the center of the unit cell (at 

±0.75 nm), as these minima correlate with the positions of the terminal CH3 

groups of the acyl and sphingosine chains. 

The submaxima in the scattering length density profile located at -1.5 and 

+1.5 nm from the center of the unit cell may be correlated to a 
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superimposition of CHOL and the methylene chains of CER and FFA. This is 

similar to the submaxima observed in the profile of the CER AP mixture at 

±1.3 nm from the center of the unit cell, which were also correlated to a 

superimposition of methylene chains and CHOL (32). Previously, for 

phosphatidylcholine molecules with unequal chain lengths of C10 and C18, 

a bilayer arrangement with interdigitating chains was also suggested (45), 

supporting our present arrangement for the CER. 

As far as the arrangement of the CER in the bilayer is concerned, in previous 

studies an asymmetric fully extended arrangement is suggested for CER NP 

(50, 51). Whether an asymmetric arrangement also occurs in mixtures 

prepared with CER, CHOL and FFA can be deduced from our data. First of 

all, the magnitude of the structure factors correlates linearly with the D2O 

concentration, which is only observed in systems with a centrosymmetric unit 

cell. When dealing with only protonated mixtures this observation does not 

provide conclusive information, as also in the asymmetric fully extended 

configuration of the CER a symmetric unit cell is expected. However, when 

the mixture is prepared with dCER NS, an asymmetric fully extended 

configuration of the CER will result in an asymmetric density distribution for 

the deuterated tails, see Fig. 6 A. But since a linear relationship between 

structure factors and D2O concentration is observed using this mixture, a 

symmetric unit cell must be present. Secondly, the elevated density 

observed in the center of the dCER NS profile can only result from an 

interdigitation of dCER NS tails in the center of the unit cell, which is only 

possible when assuming a symmetric arrangement of the CER NS. 

Therefore, the CER must be arranged symmetrically, either in the hairpin or 

in the fully extended configuration. These two arrangements are 

schematically depicted in Fig. 6, B and C. However, with the current data it is 

not possible to determine whether the CER NS is in the fully extended 

configuration or in the hairpin configuration, for the following reasons: In the 

CER containing mixtures, the water level between the headgroups is 

approximately 2 water molecules per lipid, resulting in a very small 
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intermembrane space. In addition, the expected width of a single unfolded 

headgroup (fully extended conformation) is almost equal to the expected 

width of two headgroups in the hairpin conformation. Therefore, considering 

that the maximum resolution in the scattering length density profile is 0.54 

nm (d/2hmax) and the full width at half maximum of the high density region in 

the unit cell is 1 nm, it is impossible to distinguish between the two 

configurations. Thus, the CER molecules in the SPP bilayer structure may 

be either in the hairpin, or in the fully extended configuration. 

 

 

 
 

Figure 6: A) Schematic of asymmetrically arranged fully extended dCER NS in 
the unit cell of the SPP. B) Symmetric arrangement of fully extended dCER NS 
molecules in the unit cell of the SPP. C) Symmetric arrangement in the unit cell 
with dCER NS in the hairpin configuration. Only in the arrangements presented
in B and C the deuterated acyl chains are interdigitating, resulting in the
difference profile that is also displayed in the figure. 
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Our studies show that a 5.4 nm lamellar phase is formed that consists of 

homogeneously mixed CER, CHOL and FFA. This is important for the skin 

barrier function as different lipid domains may lead to an increase in the 

diffusivity in these lipid membranes. In addition, the low hydration level of the 

lamellar phase suggests a poor hydrophilic pathway, which minimizes the 

permeation of hydrophilic compounds across these lamellar phases. 

Furthermore, the symmetric arrangement observed for the bilayer 

arrangement of the SPP, excluding the fully extended asymmetric 

arrangement, may also exist in the LPP as this phase is prepared using the 

same CER subclasses, with the exception of CER EOS being only present in 

the LPP.  

We may compare our results obtained for the CER in SC lipid models to the 

role of CER in cell membranes: Previously, monolayers of CER:CHOL in 

varying ratios were examined to gain insight into the formation of lipid rafts 

(52). In that study it was concluded that the CER:CHOL mixtures form a 

crystalline phase with the CER configured in a hairpin structure. This is in 

agreement with our findings for the CER:CHOL:FFA mixture and it may 

suggest that a configuration in the hairpin structure is preferred over a fully 

extended configuration of the CER. 

 

Conclusions 
A mixture that, apart from the absence of CER EOS, closely mimics the lipid 

composition in SC was examined by neutron diffraction. The high resolution 

density distribution for the 5.36 nm lamellar phase in this mixture 

demonstrated a bilayer arrangement. The symmetry in the unit cell and the 

shape of the density profile of deuterated CER NS excluded an asymmetric 

fully extended arrangement of CER NS in the bilayer. It is for the first time 

that neutron diffraction studies were performed using deuterated CER 

providing insights in the arrangement of the SPP. 
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Chapter 8 
 
Summary 
The stratum corneum (SC), the thin uppermost layer of the skin, consists of 

dead flattened skin cells (corneocytes) embedded in a lipid matrix. The lipid 

matrix is considered to play a crucial role in the skin barrier function. It 

consists of ceramides (CER), cholesterol (CHOL) and free fatty acids (FFA) 

forming crystalline lipid lamellae. From studies with native SC and SC lipid 

models much information has been gained on the phase behavior of the SC 

lipid matrix. However, little is known about the correlation between SC lipid 

organization and the permeability of the SC. This is difficult to investigate 

using native SC, due to its complex structure. Therefore SC lipids were 

casted on a porous membrane, resulting in a lipid organization and lamellar 

orientation similar to that in SC. This lipid membrane is referred to as the 

stratum corneum substitute (SCS) (1, 2). The SCS can be used to perform 

diffusion studies. Therefore, when modifying the lipid composition and thus 

the lipid organization in the SCS, it is possible to study the relationship 

between lipid organization and permeability. 

The main objectives of this thesis are 1) to investigate the influence of lipid 

organization on the barrier function in the SCS and 2) to obtain insights in 

the molecular organization within the unit cell of the lamellar phases in SC. 

 

Part I: SCS as a tool to study the relation between lipid 
composition, organization and barrier function in one model 
In previous studies the SCS was developed. However, the preparation 

method of the SCS was suboptimal. For this reason in chapter 2 two new 

methods were introduced to prepare the SCS, to improve the reproducibility 

and to increase the efficiency of the preparation method. Subsequently, the 

properties of the SCS prepared by the three methods, i.e. the manual 

airbrush method, the rotor airbrush method and the linomat method, were 



Chapter 8 

206 

investigated. The results show that the SCS prepared with the various 

methods share the properties of a uniform lipid composition and a 

homogeneous distribution of these lipid components over the substrate. 

Furthermore, irrespective of the preparation method, the lipids form two 

crystalline lamellar phases, mimicking the lipid organization and orientation 

in human SC very closely. In subsequent studies permeation profiles of 

benzoic acid through SCS were measured. These permeation profiles were 

very similar to that across human SC. The rotor method increases the 

efficiency and reproducibility compared to the manual airbrush method, while 

the linomat method reduces the lipid loss during preparation and results in 

SCS with a more uniform membrane thickness. Based on these results, the 

linomat method was selected as the preferred method for preparing the 

SCS. 

After having optimized the quality and the preparation method of the SCS, in 

subsequent studies the SCS was used to determine the effect of lipid 

organization on the permeability of the SCS. These studies are described in 

chapter 3. We examined the effect of the orthorhombic to hexagonal phase 

transition on the barrier function of SCS and compared that with human SC. 

This was performed by monitoring the permeability to benzoic acid as 

function of temperature. Arrhenius plots were constructed. As the slope of 

the Arrhenius plots below and above the transition temperature was very 

similar, it was concluded that the orthorhombic to hexagonal phase transition 

does not affect the diffusivity of benzoic acid across the SCS. The benzoic 

acid flux as function of temperature across human SC and the SCS was very 

similar over a temperature region between 31 and 43°C. From the slopes the 

activation energies were calculated. The activation energy for the diffusivity 

of benzoic acid appeared to be very similar in SC and SCS. This confirms 

that the lipids form the main barrier for diffusion in human SC. In subsequent 

studies the SCS composition was modified by reducing the FFA chain length 

distribution from around 24 carbon atoms to around 18 carbon atoms in the 

fatty acid chain. This resulted in a hexagonal packing and a perturbed 
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lamellar organization. These changes in lipid organization resulted in a 

significant increased permeability to benzoic acid, which was related mainly 

to its perturbed lamellar organization. Thus, a proper lamellar organization is 

more crucial for a competent barrier function than the presence of an 

orthorhombic lateral packing. 

In the studies described in chapter 4 we used the SCS to investigate the 

effect of changes in lipid organization on the barrier function, again using 

benzoic acid as model compound. First, in preparing the SCS we increased 

the level of one of the three major lipid classes (CER, CHOL or FFA) 

keeping the ratio between the other lipid classes constant. An increased 

CHOL level induced a higher amount of phase separated CHOL and a 

reduction in the permeability. An increase in CER or FFA level to twice the 

original level resulted in the formation of additional phases, but had no 

significant influence on the permeability. We also examined models that 

mimic selected changes in lipid compositions reported for dry or diseased 

skin. In seasonally dry skin (winter xerosis) elevated levels of CER EOS-

oleate have been reported. This change in composition was induced in the 

SCS by replacing 50% of the CER EOS-linoleate by CER EOS-oleate. This 

change in lipid composition did not induce changes in the lipid organization. 

Permeation studies revealed a very similar barrier as in the normal SCS. A 

SCS was also prepared based on an altered CER profile observed in SC of 

involved psoriasis skin. Its lipid organization and barrier properties were 

again similar to normal SCS. However, a SCS that mimics an important 

aspect of the composition in recessive X-linked ichthyosis skin, namely an 

excess of cholesterol sulfate, displayed a twofold higher permeability as 

compared to normal SCS. This increase in permeability is possibly related to 

the formation of an additional, less ordered lipid phase in this model. 

It is for the first time that a SC model is used to investigate not only the effect 

of the lipid composition on the lipid organization, but also to study the 

relationship between lipid organization and barrier function, which is a very 

relevant and unique feature of the SCS. 
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Part II: The molecular organization in the repeating units of the 
SC lamellar phases 
From X-ray diffraction studies using isolated SC it is well known that two 

lamellar phases are present in the lipid matrix of the SC. One with a unique 

long periodicity of about 13 nm (the long periodicity phase or LPP) and 

another with a shorter periodicity of around 6 nm (the short periodicity phase 

or SPP). However, although a lot of information has been obtained on the 

lipid phase behaviour of the lipid classes in SC, the molecular arrangement 

of the CER, CHOL or FFA classes in the unit cell of the lamellar phases is 

largely unknown. Several studies revealed that CER EOS plays an important 

role in the formation of the LPP. Therefore, in the studies described in part II 

of this thesis, we investigated the different lamellar phases in mixtures with 

CER EOS as the only CER component, in mixtures with all major CER 

classes present (including CER EOS) and in mixtures with the major CER 

classes present except for CER EOS. 

Firstly, we investigated whether CER EOS in the absence of the other CER 

subclasses mixed with CHOL and FFA forms similar phases as observed in 

SC. These studies are described in chapter 5. The phase behaviour was 

examined using small angle X-ray diffraction (SAXD) and Fourier 

transformed infrared spectroscopy (FTIR). Our SAXD studies reveal that an 

equimolar ratio of EOS, CHOL and FFA forms a lamellar phase with an 

unusual long repeat distance of approximately 14.7 nm, different from that 

observed in SC. When focusing on the CH2 stretching frequencies that 

provide information on the conformational disordering of the lipid chains, an 

exceptional thermotropic response was measured. The FFA and the CER 

chains undergo an order-disorder transition in different temperature ranges, 

indicating that at least a fraction of the FFA and CER do not mix. However, 

we also noticed by measuring the scissoring vibrations in the FTIR spectrum 

that a part of the hydrocarbon chains of CER and FFA are mixing in the 

orthorhombic lattice. Based on these observations, the molecular structure of 

the CER and the length of the unit cell, a molecular model for the 14.7 nm 
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lamellar phase has been proposed. This model is composed of three 

different lipid layers forming a symmetric arrangement in the unit cell. Based 

on this model and on the periodicity of 14.7 nm of the lamellar phase, it was 

concluded that the arrangement in the repeating unit is different from that 

proposed in chapter 6 for the LPP, suggesting that indeed additional CER 

subclasses are required to form the LPP. 

In chapter 6 the molecular structure of the unit cell of the LPP in SC is 

investigated in detail. This characteristic LPP is suggested to be very 

important for the barrier function of the skin. To gain more insight into the 

molecular organization of this unique lamellar phase, we performed SAXD 

using various lipid mixtures containing all CER subclasses, mimicking the 

lipid composition in SC. These lipid mixtures formed the LPP with a slight 

variation in repeat distance. In the SAXD pattern of each mixture at least 6 

diffraction orders were observed, attributed to the LPP with a repeat distance 

ranging from 12.1 to 13.8 nm. Using Shannon’s sampling theorem we 

determined phase angles for the 6 structure factors associated to the first 6 

diffraction orders of the LPP. By Fourier synthesis, using the 6 structure 

factors and phase angles, for the LPP a high resolution electron density 

distribution could be constructed. The density distribution suggests a unit cell 

with three lipid bilayers of 4.5, 4.0 and 4.5 nm in width. Subsequently, from 

SAXD patterns of isolated SC the electron density distribution of the lamellar 

phase was also constructed and appeared to be very similar to that in the 

lipid mixtures. This demonstrates that the lipid mixtures serve as an excellent 

model for the lipid organization in SC, not only with respect to the repeat 

distance of the LPP, but also in terms of the molecular arrangement within 

the unit cell. 

In chapter 7 the molecular structure of the SPP is investigated into detail. To 

gain more insight into the molecular organization of the short periodicity 

lamellar phase we performed neutron diffraction studies on a mixture with all 

CER subclasses except EOS. In the diffraction pattern, five diffraction orders 

were observed attributed to the SPP with a repeat distance of 5.4 nm. Using 
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contrast variation by changing the H2O/D2O ratio, the scattering length 

density profile could be calculated. This density profile suggests a typical 

bilayer arrangement. To obtain information on the arrangement of the CER 

in the unit cell, a mixture that included a partly deuterated CER was also 

examined. The scattering length density profile of the 5.4 nm phase 

containing this deuterated CER demonstrated a symmetric arrangement of 

the CER with interdigitating acyl chains in the center of the unit cell. 

The lamellar phases play a crucial role in the barrier function of the SC and 

the studies described above reveal new insights into their molecular 

structures. It is for the first time that the molecular structure in the lamellar 

phases is described with this level of detail. 

 

Conclusions 
In our first studies, the preparation procedure of the SCS was optimized 

while a proper lipid organization was maintained. In previous studies it was 

shown that the SCS closely mimics the human SC concerning lipid 

organization and barrier function. In the subsequent studies described in this 

thesis we have shown that the SCS is also a very suitable model for studying 

the relation between lipid organization and barrier function. Interestingly, 

based on the results obtained in these studies it appears that the crystalline 

lateral packing in the SC lipids is of less importance for the barrier function 

than the presence of the correct lamellar phases. Furthermore, as the 

formation of the proper lamellar phases is of crucial importance for the skin 

barrier function, the molecular organization within their repeating units was 

investigated into more detail. We studied the different lamellar phases 

present in mixtures with EOS as the only CER, in mixtures with all CER 

subclasses present and in mixtures with all CER subclasses except EOS. 

These studies showed a unique very long periodicity phase in the mixture 

with only CER EOS, of which the molecular arrangement in the unit cell 

appears to be different from that in the unit cell of the LPP. Studies on 

mixtures with all CER subclasses revealed the LPP with a trilayer unit cell 
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and studies on mixtures in absence of EOS demonstrated a SPP with a 

symmetric ceramide arrangement in the unit cell. Furthermore, based on X-

ray studies with native SC, the molecular arrangement in the unit cell of the 

LPP in the models appears to be very similar to that in native SC. As the 

LPP is a unique lamellar phase in the SC and is considered to play an 

important role in the skin barrier function, the latter observation confirms that 

the mixtures form very relevant models for studying the SC lipid 

organization. 

 

Perspectives 
Although the studies presented in this thesis demonstrate that the SCS is an 

excellent model for studying the SC lipid organization and barrier function, 

the permeation studies have been performed with only one model drug 

(benzoic acid). Benzoic acid was chosen for its medium lipophilicity (logP = 

1.9), low molecular weight (mw = 122 Da) and medium water solubility (3.4 

g/l), making it a suitable molecule for skin permeation studies. In previous 

permeability studies similar compounds with a variation in logP value 

between 0.6 and 2.6 were also used to compare the flux profile across SCS 

and human SC, exhibiting an excellent correlation (2). However, very 

hydrophilic and very lipophilic drugs have not yet been assessed in 

permeability studies to compare the barrier function of SCS with human SC. 

This is of interest to perform in future studies. From our studies we may 

conclude that the SCS is an attractive tool to study the effect of changes in 

lipid organization on the barrier function. In the studies presented in this 

thesis models mimicking the composition in SC of winter xerosis, psoriasis 

and x-linked ichtyosis were evaluated. However, other skin diseases in 

which the SC lipid composition is affected (and quantified by 

chromatography methods) can be mimicked as well, by adapting the lipid 

composition in the SCS. For example, an altered SC lipid composition was 

also reported for type 2 Gaucher’s disease (3-5), lamellar ichthyosis (6) and 

atopic eczema (7-15). The consequences of such changes in lipid 
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organization to the contribution of an impaired skin barrier function can in 

principle be studied using the SCS. Of course one should keep in mind that 

this is only one aspect of a reduction in skin barrier function. Also changes in 

the barrier proteins have been reported that affect for example the structure 

of the cornified envelope or shedding of the corneocytes. These changes are 

likely to influence the skin barrier function as well. Besides mimicking the 

composition in diseased skin it is also of interest to use the SCS to 

investigate the effect of penetration enhancers and moisturizers on the lipid 

organization and permeability of the SC lipid lamellae. 

 

Concerning the permeation pathway of a permeant molecule through the 

SC, although the tortuous intercellular pathway has been suggested to be 

the preferred route for most drug molecules (16), detailed information on the 

penetration route within a stack of SC lipid lamellae is not available. The 

permeation through stacks of lamellae within the intercellular spaces in SC 

itself may also follow a tortuous pathway, effectively lengthening the total 

permeation pathway through SC or the SCS. By fitting the permeation data 

of a passive diffusion experiment to the diffusion formula (17), see figure 1A, 

in theory both the length of the permeation pathway (L) as well as the 

diffusion constant (D) of the permeant molecule can be calculated. These 

parameters could lead to new insights on the permeation pathway. However, 

to successfully determine L and D, it is necessary to accurately determine 

the partition coefficient (K) by assessing the solubility of the model 

compound in the donor solution and in the lipids of SC or SCS. Since the SC 

is a heterogeneous membrane with lipid domains and corneocytes, it is a 

challenge to obtain a partition coefficient between donor solution and SC 

lipids. To determine the partition coefficient, the SCS can also replace the 

SC. For example, with the SCS using benzoic acid as permeant, preliminary 

measurements revealed a partition coefficient between the SCS lipid film 

and the donor solution (2 mg/ml benzoic acid in PBS 7.4) of K = 5.3 

(unpublished data). 
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Figure 1: A) Plot of the benzoic acid flux trough a SCS model membrane
composed of CER, CHOL and FFA in molar ratios of 1:2:1. The dots denote the
measured flux values while the solid line denotes the fit of the diffusion
formula (also shown in figure A) with the measured flux values. B) Solutions for
D and L from the fit of the diffusion formula with the flux data in (A). The blue
line depicts all possible values for D/L resulting from a fit with the steady state 
part of the flux data and the red line depicts all values for D/L2 resulting from a 
fit with the up-going part of the flux data. A unique solution for both D and L is 
found when the two lines (denoting both fits) coincide. These values are also 
depicted in figure B. 
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In a first attempt, fitting the diffusion equation to permeation data of benzoic 

acid through a SCS (with CER:CHOL:FFA composition of 1:2:1) resulted in 

approximate values for L of 51 μm and D of 0.1 μm2/s (see figure 1B, 

unpublished data). When combining these values with the thickness of the 

lipid membranes, being around 13 μm, we may conclude that the diffusion 

occurs partly parallel to the basal plane of the lipid lamellae. 

 

Regarding the molecular structure in the lamellar phases of SC, neutron and 

x-ray diffraction experiments using SC lipid models can be used for 

unraveling the lipid arrangement in the LPP and in the SPP. By specifically 

deuterating one of the major components (CER, CHOL or FFA) more 

insights can be gained on the location of each of these components, or even 

on the location of their headgroups or tails in the unit cell. When focusing on 

the molecular arrangement of the LPP, according to the x-ray results 

presented in this thesis, the electron density profile of the repeating unit is 

symmetric and therefore in principle it is possible to perform neutron 

diffraction studies using H2O/D2O contrast to resolve the density pattern and 

to locate the position of deuterated (parts of) molecules in the LPP unit cell. 

However, recent preliminary results suggest that the water in the LPP unit 

cell is not (or not only) located at the borders of the unit cell (in the 

headgroup regions, as is normally the case in lipid bilayers), but (also) at 

specific positions inside the unit cell. Therefore, as the method for resolving 

the density profile using H2O/D2O contrast is based on the location of the 

water molecules being only at the borders of the unit cell, it will be a 

challenge to resolve the molecular structure of the LPP in more detail and to 

localize several subclasses of ceramides within this repeating unit. 
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Samenvatting 
 
Introductie 
De hoornlaag, ofwel het stratum corneum (SC), is de dunne bovenste laag 

van de huid. Het SC bestaat uit platte verhoornde huidcellen (corneocyten) 

ingebed in een lipidenmatrix. Deze lipiden spelen een zeer belangrijke rol 

om de doorlaatbaarheid van de huid te minimaliseren en dus ongewenste 

stoffen buiten het lichaam te houden. Het buiten het lichaam houden van 

ongewenste stoffen wordt de barrièrefunctie van de huid genoemd. De 

lipidenmatrix in het SC bestaat voornamelijk uit ceramiden (CER), 

cholesterol (CHOL) en vrije vetzuren (FFA), die gezamenlijk kristallijne 

gestapelde lipidenlagen (de zogenaamde lamellen) vormen. Door studies 

met SC en met lipidenmodellen van SC, is men al veel te weten gekomen 

over het fasegedrag van de lipiden in het SC. Echter, er is nog weinig 

bekend over het verband tussen de lipidenorganisatie in het SC en de 

doorlaatbaarheid van het SC. Door de complexe structuur van het SC 

bestaande uit eiwitten en lipiden is dit moeilijk te achterhalen. Daarom is er 

een lipidenmodel ontworpen die de lipidenstructuur in het SC van de huid 

nabootst. Dit model bestaat uit lipiden aangebracht op een ondersteunend 

en doorlaatbaar filter. De lipidenorganisatie en de oriëntatie van de lamellen 

in dit model bootsen die in het SC na. We noemen dit lipidenmodel van het 

SC het “stratum corneum substituut”, ofwel SCS. Het SCS kan gebruikt 

worden om de permeatie van stoffen te onderzoeken. Door de 

lipidensamenstelling en daardoor de lipidenorganisatie te veranderen, 

kunnen we direct een verband leggen tussen de lipidensamenstelling, de 

lipidenorganisatie en de doorlaatbaarheid van het SCS. 

De hoofddoelen van het onderzoek beschreven in dit proefschrift zijn om: 1) 

de invloed van lipidenorganisatie op de barrièrefunctie van het SCS te 

onderzoeken en 2) meer inzicht te genereren in de molekuulopbouw van de 

lamellen in het SC. 
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Deel I: Het SCS als instrument om de relatie tussen lipiden-
samenstelling, organisatie en barrièrefunctie te bestuderen 
In eerdere studies is het SCS ontwikkeld, echter, de spraymethode om 

lipiden op het poreuze membraan aan te brengen was suboptimaal. Daarom 

worden in het onderzoek beschreven in hoofdstuk 2 twee nieuwe methoden 

beschreven om het SCS te maken, om zowel de reproduceerbaarheid van 

het sprayen te verhogen als ook het verlies aan lipiden tijdens het sprayen te 

beperken. Vervolgens werden de eigenschappen van het SCS onderzocht. 

De drie methoden om de lipiden te sprayen waren de handmatige 

airbrushmethode, de rotor-airbrushmethode en de linomatmethode. Uit de 

resultaten blijkt dat SCS gemaakt met de drie verschillende methoden 

dezelfde lipidensamenstelling heeft en dat de lipiden homogeen verdeeld 

zijn over het substraat. Bovendien vormen de lipiden, ongeacht de gebruikte 

methode, twee kristallijne lamellaire fasen, waarmee de lipidenorganisatie en 

oriëntatie in menselijk SC nauwkeurig wordt nagebootst. In de 

daaropvolgende studies werd de permeatie van benzoëzuur door het SCS 

gemeten. Hieruit bleek dat de doorlaatbaarheid van het SCS zeer goed 

overeenkomt met de doorlaatbaarheid van menselijk SC. Wat de drie 

verschillende methoden betreft: de rotormethode verhoogt de efficiëntie en 

reproduceerbaarheid in vergelijking met de handmatige airbrushmethode, 

terwijl de linomatmethode het lipidenverlies tijdens het sprayen sterk 

vermindert en resulteert in SCS met een meer gelijkmatige dikte van de 

lipidenfilm over het hele oppervlak. Gebaseerd op deze resultaten werd 

besloten de linomatmethode in de hieropvolgende studies te gebruiken. 

In vervolgstudies werd met behulp van het geoptimaliseerde SCS het effect 

van de lipidenorganisatie op de doorlaatbaarheid van het SCS bepaald. 

Deze studies zijn beschreven in hoofdstuk 3. We hebben het effect van de 

overgang van een zeer dichte orthorombische pakking naar een minder 

dichte hexagonale lipidenpakking op de barrièrefunctie van het SCS 

onderzocht en vergeleken met dat in menselijk SC. Dit werd gedaan door de 

doorlaatbaarheid voor benzoëzuur als functie van de temperatuur in kaart te 
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brengen. Uit deze metingen werden Arrheniusdiagrammen geconstrueerd. 

Aangezien de helling van de curves in de Arrheniusdiagrammen boven en 

onder het overgangstraject nagenoeg hetzelfde is, kunnen we concluderen 

dat de orthorombisch-hexagonale fase-overgang geen invloed heeft op de 

diffusie van benzoëzuur door het SCS. Verder was de permeatie van 

benzoëzuur als functie van temperatuur door het SCS en menselijk SC in 

het overgangstraject van orthorombisch naar hexagonaal, d.w.z. in het 

temperatuursgebied tussen de 31 en 43 °C, ook nagenoeg hetzelfde. Van 

de hellingen in de diagrammen werden activeringsenergieën voor permeatie 

van benzoëzuur berekend. Het bleek dat de activeringsenergie voor diffusie 

van benzoëzuur door menselijk SC en SCS erg vergelijkbaar was. Dit 

bevestigt nogmaals dat de lipiden de voornaamste barrière vormen voor 

diffusie door het menselijk SC. In de daaropvolgende studies werd de SCS-

samenstelling veranderd door de gemiddelde FFA-ketenlengte te verlagen 

van ongeveer 24 koolstofatomen naar circa 18 koolstofatomen. Dit 

resulteerde in een hexagonale pakking en een verstoorde lamellaire 

organisatie. Deze veranderingen in lipidenorganisatie resulteerden in een 

significant verhoogde doorlaatbaarheid van het SCS voor benzoëzuur. 

Omdat een orthorombische naar hexagonale overgang nauwelijks invloed 

heeft op de doorlaatbaarheid, werd de verhoogde doorlaatbaarheid 

voornamelijk toegeschreven aan de verstoorde lamellaire organisatie. Uit de 

studies beschreven in hoofdstuk 3 kan geconcludeerd worden dat voor 

benzoëzuur de juiste lamellaire organisatie in SC belangrijker is voor de 

barrièrefunctie dan de aanwezigheid van een orthorombische 

lipidenpakking. 

Voor de studies beschreven in hoofdstuk 4 gebruikten we nogmaals het 

SCS om een systematische verandering in lipidensamenstelling op de 

lipidenorganisatie en op de barrièrefunctie te onderzoeken, met wederom 

benzoëzuur als modelstof. In de eerste serie experimenten hebben we de 

relatieve hoeveelheid van één van de drie hoofdbestanddelen (CER, CHOL 

en FFA) verhoogd, terwijl de verhouding tussen de andere twee 
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componenten gelijk bleef. Een dubbele hoeveelheid CHOL resulteerde in 

een toename van aparte kristallijne gebieden bestaand uit CHOL. Dit leidde 

tot een verlaging van de doorlaatbaarheid. Een dubbele hoeveelheid CER- 

of FFA resulteerde in beide gevallen in de vorming van een extra fase, maar 

dit had geen significante invloed op de doorlaatbaarheid. Daarnaast hebben 

we ook modellen onderzocht die een verandering in lipidensamenstelling 

nabootsen die karakteristiek is voor droge of zieke huid. Zo is er in 

seizoensgebonden droge huid (winter xerosis) een verhoogde hoeveelheid 

CER EOS-oleaat gemeten ten opzichte van CER EOS-linoleaat. Deze 

verandering in samenstelling is nagebootst door in het SCS de helft van de 

CER EOS-linoleaat te vervangen door CER EOS-oleaat. Uit onze 

röntgenmetingen bleek echter dat dit niet resulteert in een verandering van 

de lipidenorganisatie. Diffusiestudies met dit aangepaste SCS lieten ook 

geen veranderding in barrièrefunctie zien in vergelijking met onze standaard 

SCS. Er werd ook een SCS onderzocht waarvan het lipidenprofiel de 

samenstelling in het SC van psoriasispatiënten benadert. De 

lipidenorganisatie en barrièrefunctie van dit model waren wederom gelijk aan 

dat van standaard SCS. Echter, een SCS dat een belangrijk aspect van de 

specifieke samenstelling in SC van recessief X-linked ichtyosis-patiënten 

nabootst, namelijk een overmaat aan cholesterolsulfaat, liet een tweemaal 

hogere doorlaatbaarheid zien ten opzichte van standaard SCS. Deze 

verhoogde doorlaatbaarheid is mogelijk gerelateerd aan de vorming van een 

extra, minder goed geordende lamellaire fase in dit model. 

Het is voor het eerst dat een lipidenmodel gebruikt is om niet alleen het 

effect van de lipidensamenstelling op de lipidenorganisatie te onderzoeken, 

maar ook het effect van de lipidenorganisatie op de barrièrefunctie. Hieruit 

kunnen zeer relevante conclusies getrokken worden voor met name zieke 

huid met een afwijkende SC-lipidensamenstelling en barrièrefunctie. 
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Deel II: De molekuulopbouw van de lamellaire fasen in het SC  
Uit röntgendiffractiemetingen met geïsoleerd SC is bekend dat er twee 

lamellaire fasen aanwezig zijn in de lipidenfractie van het SC. Eén fase met 

een unieke lange herhalingsafstand van 13 nm (de lange-periodiciteitsfase, 

ofwel LPP) en één met een kortere herhalingsafstand van ongeveer 6 nm 

(de korte-periodiciteitsfase, ofwel SPP). Echter, hoewel er al veel bekend is 

over het fasegedrag van de lipiden in het SC, is de positie van CER-, CHOL- 

en FFA-molekulen binnen de herhalingsafstand (in de zogenaamde 

eenheidscel) van de lamellaire fasen grotendeels onbekend. Uit een aantal 

studies blijkt dat CER EOS, door de bijzondere structuur, een belangrijke rol 

speelt bij de vorming van de LPP. Vandaar dat we in de studies beschreven 

in deel II van dit proefschrift de verschillende lamellaire fasen onderzochten 

in mengsels met CER EOS als enige component, in mengsels met alle CER-

klassen (inclusief CER EOS) en in mengsels met alle CER-klassen behalve 

CER EOS. 

Ten eerste onderzochten we of CER EOS in afwezigheid van de andere 

CER-klassen gemengd met CHOL en FFA dezelfde soort fasen vormt zoals 

die in SC waargenomen zijn. Deze studies zijn beschreven in hoofdstuk 5. 

Het fasegedrag werd onderzocht met kleine-hoek röntgendiffractie (SAXD) 

en Fourier-transformatie-infraroodspectroscopie (FTIR). Uit de SAXD-

metingen blijkt dat een equimolair mengsel met CER EOS, CHOL en FFA 

een lamellaire fase vormt met een bijzonder lange herhalingsafstand van 

ongeveer 14.7 nm. Deze fase is anders dan de fasen gevormd in menselijk 

SC. Uit de FTIR metingen bleek dat de FFA- en CER-ketens niet in hetzelfde 

temperatuursgebied vloeibaar worden. Dit betekent dat tenminste een deel 

van de FFA- en CER-ketens niet met elkaar mengen. Echter, uit een ander 

gedeelte van het FTIR spectrum bleek ook dat een deel van de 

koolstofketens van CER EOS en FFA weldegelijk samen een 

orthorombische pakking vormen. Gebaseerd op deze waarnemingen, de 

molekuulstructuur van CER EOS en de lengte van de eenheidscel, is een 

rangschikking van de FFA-, CER EOS- en CHOL-molekulen in de 
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eenheidscel van de 14.7 nm lamellaire fase voorgesteld. Dit model bestaat 

uit drie verschillende lipidenlagen die samen een symmetrische 

rangschikking binnen de eenheidscel vormen. Gebaseerd op deze 

rangschikking en op de herhalingsafstand van 14.7 nm werd geconcludeerd 

dat de molekuulopbouw van deze eenheidscel anders is dan de 

molekuulopbouw voor de LPP beschreven in hoofdstuk 6. Hieruit blijkt dat er 

naast CER EOS inderdaad nog meer CER-klassen nodig zijn om de LPP te 

vormen. 

In hoofdstuk 6 wordt de molekuulopbouw binnen de eenheidscel van de LPP 

in SC in detail onderzocht. Het wordt gesuggereerd dat deze karakteristieke 

fase erg belangrijk is voor de barrièrefunctie van de huid. Om meer inzicht te 

krijgen in de molekulaire organisatie van deze unieke fase zijn er SAXD-

metingen uitgevoerd met verschillende mengsels die een zodanige 

samenstelling hadden, dat de lipidenorganisatie in SC werd nagebootst. 

Echter, deze lipidenmengsels vormden de LPP met kleine verschillen in 

herhalingsafstand. In het SAXD-patroon van elk van deze mengsels werden 

tenminste 6 diffractie-ordes waargenomen die aan de LPP toegeschreven 

konden worden, met een herhalingsafstand die varieerde van 12.1 tot 13.8 

nm. Met behulp van Shannon’s samplingtheorie werden de fasehoeken van 

de structuurfactoren bepaald die bij de eerste 6 diffractie-ordes van de LPP 

hoorden. Gebruikmakend van de 6 structuurfactoren en fasehoeken werd 

door middel van Fouriersynthese een hogeresolutie 

elektronendichtheidsprofiel voor de LPP bepaald. Dit dichtheidsprofiel 

suggereert een eenheidscel bestaande uit drie opeenvolgende lipidenlagen, 

met een dikte van 4.5, 4.0 en 4.5 nm. Vervolgens werd met behulp van 

SAXD-patronen van geïsoleerd SC ook een elektronendichtheidsprofiel van 

de LPP in SC geconstrueerd. Dit dichtheidsprofiel vertoonde een grote 

gelijkenis met die van de LPP in de lipidenmengsels. Dit toont aan dat de 

lipidenmengsels een uitstekend model vormen voor de lipidenorganisatie in 

SC, niet alleen met betrekking tot de herhalingsafstand van de LPP, maar 

ook wat betreft de molekuulopbouw in de eenheidscel. 
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In hoofdstuk 7 wordt de molekuulopbouw van de SPP in detail onderzocht. 

Om meer inzicht te krijgen in de molekulaire organisatie werden 

neutronendiffractiestudies uitgevoerd op een mengsel met alle CER-klassen 

behalve CER EOS. Dit voorkomt de vorming van de LPP. In het 

diffractiepatroon werden vijf diffractiepieken waargenomen die bij de SPP 

horen, met een herhalingsafstand van 5.4 nm. Met contrastvariatie (door de 

verhouding tussen H2O en D2O te veranderen) kon het dichtheidsprofiel van 

de SPP berekend worden. Dit dichtheidsprofiel laat de vorming van een 

typische bilaag zien. Een mengsel dat een CER bevatte met gedeutereerde 

vetzuurstaart werd ook onderzocht, om informatie te krijgen over de positie 

van deze CER-vetzuurstaart in de eenheidscel. Het dichtheidsprofiel van de 

5.4 nm fase waarin de CER met gedeutereerde vetzuurstaart aanwezig is 

correspondeert met 2 ceramiden die tegenover elkaar gesitueerd zijn in de 

bilaag. De CER hebben een symmetrische verdeling met gedeeltelijk 

overlappende vetzuurstaarten in het midden van de eenheidscel. 

De lamellaire fasen spelen een cruciale rol in de barrièrefunctie van het SC 

en de studies die hierboven beschreven staan geven nieuw inzicht in de 

molekulaire rangschikking van lipiden in de lamellen. Het is voor de eerste 

keer dat de structuur van de lamellaire fasen met zoveel detail beschreven 

wordt. 

 

Conclusies 
In de studies beschreven in het eerste gedeelte van het proefschrift hebben 

we de spraymethode van het SCS ge-optimaliseerd terwijl de juiste 

lipidenorganisatie behouden bleef. In eerdere studies was al aangetoond dat 

het SCS de lipidenorganisatie en barrièrefunctie van menselijk SC 

nauwkeurig nabootst. Uit de daaropvolgende studies bleek dat het SCS ook 

een zeer geschikt model is om de relatie tussen lipidenorganisatie en 

barrièrefunctie te onderzoeken. Interessant genoeg blijkt uit onze resultaten 

dat het type laterale pakking van de SC-lipiden minder effect heeft op het 

transport van benzoëzuur dan een verandering van de lamellaire fasen. 
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Aangezien de vorming van de juiste lipidenfasen cruciaal is voor de 

barrièrefunctie van de huid, hebben we de molekulaire organisatie in de 

eenheidscel van deze fasen tot in meer detail bestudeerd. We hebben de 

verschillende lamellaire fasen bestudeerd in mengsels met alleen CER EOS, 

in mengsels met 5 CER-klassen aanwezig en in mengsels met dezelfde 

CER-klassen behalve CER EOS. Uit metingen van het mengsel met CER 

EOS als enige CER bleek dat in dit mengsel een unieke fase aanwezig is 

met een zeer lange herhalingsafstand, waarvan de molekuulopbouw in de 

eenheidscel anders lijkt te zijn dan de molekuulopbouw in de eenheidscel 

van de LPP. Uit de studies met mengsels waarin alle 5 CER-klassen 

aanwezig waren bleek dat de eenheidscel van de LPP opgebouwd is uit drie 

lagen. Studies met mengsels zonder CER EOS lieten een SPP-eenheidscel 

zien met een symmetrische verdeling van het gedeutereerde CER. 

Bovendien bleek uit röntgendiffractiestudies met natuurlijk SC dat de 

molekuulopbouw van de LPP-eenheidscel in onze modellen zeer dicht de de 

eenheidscel van de LPP in natuurlijk SC benadert. Aangezien de LPP een 

unieke lamellaire fase is in het SC en geacht wordt een belangrijke rol te 

spelen in de barrièrefunctie van de huid, bevestigt die laatste observering 

dat de lipidenmengsels zeer relevante modellen zijn voor onderzoek naar  

de lamellaire lipidenfasen in het SC. 
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