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CHAPTER 6

Stochastic delayed neural networks

This chapter presents stability properties of a class of stochastic delayed neural networks without
impulses and a class of stochastic delayed neural networks with impulses.

In Section 6.1, we present new conditions for asymptotic stability and exponential stability
of a class of stochastic recurrent neural networks with discrete and distributed time varying
delays. Our approaches are based on the method using fixed point theory and the method using
an appropriate integral inequality, which do not resort to any Liapunov function or Liapunov
functional. Our results neither require the boundedness, monotonicity and differentiability of
the activation functions nor differentiability of the time varying delays. In particular, a class of
neural networks without stochastic perturbations is also considered by using the two approaches.

In Section 6.2, we consider the impulsive effects on the class of stochastic delayed recurren-
t neural networks that is discussed in Section 6.1. New sufficient conditions for asymptotic
stability and exponential stability of the class of impulsive stochastic delayed recurrent neural
networks are presented by using fixed point methods. In particular, as in Section 6.1, a class of
impulsive neural networks without stochastic perturbations is also considered.

6.1 Stability of stochastic delayed neural networks

6.1.1 Introduction and main results

During the past few decades, neural networks such as Hopfield neural networks [53|, Cellular
neural networks [24, 25|, Cohen-Grossberg neural networks [136] and bidirectional associative
memory neural networks (BAM Networks) [68, 69, 70] have been well investigated since they
play an important role in many areas such as combinatorial optimization, signal processing and
pattern recognition.

Due to the finite switching speed of neurons and amplifiers, time delays which may lead to
instability and bad performance in neural processing and signal transmission are commonly en-
countered in both biological and artificial neural networks. In addition, neural networks usually
have a spatial extent due to the presence of a multitude of parallel pathways with a variety of
axon sizes and lengths [128]. Thus there will be a distribution of conduction velocities along
these pathways and a distribution of propagation delays [146]. In these circumstances the sig-
nal propagation is not instantaneous and may not be suitably modeled with discrete delays.
Therefore, a more appropriate way which incorporates continuously distributed delays in neural
network models has been used. Further, due to random fluctuations and probabilistic causes in
the network, noises do exist in a neural network. Thus, it is necessary and rewarding to study
stochastic effects to the stability property of neural networks.
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Chapter 6. Stochastic delayed neural networks

Liapunov’s direct method has long been viewed the main classical method of studying stability
problems in many areas of stochastic delay differential equations. The success of Lyapunov’s di-
rect method depends on finding a suitable Liapunov function or Liapunov functional. However,
it may be difficult to look for a good Liapunov functional for some classes of stochastic delay
differential equations. Therefore, an alternative may be explored to overcome such difficulties.

It was proposed by Burton [13] and his co-workers to use fixed point methods to study the
stability problem for deterministic systems. Luo [90] and Appleby [4] have applied this method
to deal with the stability problems for stochastic delay differential equations, and afterwards,
a great number of classes of stochastic delay differential equations are discussed by using fixed
point methods, see, for example, [34, 91, 92, 117, 118]. It turns out that the fixed point method
is a powerful technique in dealing with stability problems for deterministic and stochastic dif-
ferential equations with delays. Moreover, it has an advantage that it can yield the existence,
uniqueness and stability criteria of the considered system in one step. Chen [21, 23| has applied
an appropriate integral inequality to study exponential stability of some classes of stochastic
delay differential equations, and it turns out that it is a convenient way to discuss exponential
stability of a system.

The aim of this section is to study a general class of stochastic neural networks by using fixed
point methods and the method by employing an appropriate integral inequality. Indeed, we
consider the following class of stochastic neural networks with varying discrete and distributed
delays which is described by

dzi(t) = [ —cmi(t) + Y aifi(() + > bigy(x(t —7(t))) (6.1)
o =1

n

+Zlij/t

t—r(t)

hy(a(s)) ds] dt+ 3 iyt (6), a5t — () duoy (1),

j=1 j=1

or
t
dz(t) = [— Cx(t)+ Af(x(t)) + Bg(z(t — 7(t))) + W h(z(s)) ds} dt
t—r(t)

+o(t,z(t),z(t — 7(t))) dw(t)
for i =1,2,3,--- ,n, where x(t) = (v1(t), x2(t), -+ ,x,(t))T € R" is the state vector associated
with the neurons; C' = diag(cy,c, -+ ,¢,) > 0 where ¢; > 0 represents the rate with which the

ith unit will reset its potential to the resting state in isolation when disconnected from the net-
work and the external stochastic perturbations; A = (aij)nxn, B = (bij)nxn and W = (i) nxn
represent the connection weight matrix, delayed connection weight matrix and distributed de-
layed connection weight matrix, respectively; f;, gj, h; are activation functions, f(z(t)) =
(fi(z(®)), fo(a(t), -, fulz()T € R™, g(z(t)) = (g1(2(t)), g2(x(t)), -, gn(z(t))" € R,
h(z(t)) = (h1(x(t)), ha(z(t)), - , hn(x(t)))T € R™. Moreover, w(t) = (w1 (t), wa(t), -, wy(t))T
€ R" is an n-dimensional Brownion motion defined on a complete probability space (2, F,P)
with natural complete filtration {F;};>0 (i.e. Fr = completion of o{w(s) : 0 < s < t}) and
o :RT XR" X R™ = R™" ¢ = (0;)nxn is the diffusion coefficient matrix. 7(¢) and r(¢) denote
a discrete time varying delay and the bound of a distributed time varying delay, respectively.
Denote ¥ = infy>o{t — 7(¢),t — r(t)}.
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6.1. Stability of stochastic delayed neural networks

The initial condition for the system (6.1) is given by
z(t) = o(t),  te€,0] (6.2)

where t — ¢(t) = (¢1(t), ¢2(t), -, dn(t))T € C ([19, 0], L, (€ R”)) with the norm defined as

n
I¢lP = sup (ED [o:(t)]" ],
¥<t<0 i1
where [E denotes expectation with respect to the probability measure P and p > 2.

To obtain our main results, we suppose the following conditions are satisfied:

(A1) the delays 7(t),r(t) are continuous functions such that ¢t — 7(t) — oo and t — r(t) — oo as
t — o0;

(A2) fj(x), gj(z), and hj(x) satisfy Lipschitz conditions. That is, for each j = 1,2,3,--- ,n,
there exist constants a;, 35, vj such that for every =,y € R",

[fi(x) = i) < ajle —yl,  gi(@) —g(y)] < Bjle —yl,  |hj(z) — hi(y)] < vjlz —yl;

(A3) Assume that f(0) =0, g(0) =0, h(0) =0, o(¢,0,0) = 0;

(Ad) o(t,z,y) satisfies a Lipschitz condition. That is, there are nonnegative constants p; and
v; such that V ¢, 7,

(03 (t, 2, y) = 0ij(t,u,0))? < iy —ug)? + vily; —vp)*.

It follows from [43, 98| that under the hypotheses (A1), (A2), (A3) and (A4), system (6.1) with
initial condition (6.2) has one unique global solution which is denoted by (¢, ¢) or z(¢) such that
t— xz(t,¢) : [0,00) — LP(Q;R™) is adapted and continuous and E[supg<g<; ||z(s,0,9)||P] < 0o
for t > 0. Clearly, system (6.1) admits the trivial solution z(¢,0,0) =0.

Definition 6.1.1. The trivial solution of system (6.1) is said to be stable in pth (p > 2) moment
if for arbitrary given € > 0, there exists a § > 0 such that ||¢[|P < § yields that

Ellz(t, )" <e, t=0.

where ¢ € C ([19, 0],L§_-O(Q;R")>. In particular, when p = 2, the trivial solution is said to be

mean square stable.

Definition 6.1.2. The trivial solution of system (6.1) is said to be asymptotically stable in pth
(p > 2) moment if it is stable in pth moment and there exists a 6 > 0, such that ||¢||P < &
implies

3 2
Jim Ell2(t,6)| = 0.

where ¢ € C ([ﬁ,O],LI}O(Q;Rn)>.
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Chapter 6. Stochastic delayed neural networks

Definition 6.1.3. The trivial solution of system (6.1) is said to be pth (p > 2) moment expo-
nentially stable if there exists a pair of constants \,C > 0 such that

Ela(t, 9)|IP < CE[¢|Pe, ¢ >0,

holds for ¢ € C <[19, 0], L’;_-O (Q;R”)). Especially, when p = 2, we speak of exponentially stable in
mean square.

Different choices of norms can be considered on spaces of stochastic processes. The norms we
choose should be such that the space under consideration is complete and the equation yields
a contraction with respect to the norm. For the system (6.1) with initial condition (6.2), we
consider the following two different complete spaces which are defined by using two types of
norms.

Define Sy the space of all Fy-adapted processes ¢(t,w) : [¥,00) x © — R™ such that ¢ €
C ([9, ), L%(Q;R”)). Moreover, we require ¢(t,-) = ¢(t) for t € [9,0] and E>"" , |@i(¢)[P — 0
ast—o00,1=1,2,--- ,n. If we define the norm

ol? == Sup (EZ \w(ﬂ\”) ; (6.3)
= =1

then Sy is a complete metric space. Using a contraction mapping defined on the space S
and applying a contraction mapping principle, we obtain our first result. Its proof is given in
Subsection 6.1.2.

Theorem 6.1.4. Suppose that the assumptions (A1)-(A4) hold. If the following conditions are
satisfied,

(i) the function r(t) is bounded by a constant r (r > 0);
(ii) and such that

n
aé5p_120ip<

n

p/q n p/q
|aij|Q|aj|Q> + 5071 Zﬁ(Z |bz-jqwj|q> (6.4)
1=1

n

=1 j=1 =
"\ [ p/q n

+5771 Z <C> (Z lij|q”)’j|q> + 5P Ipp—l Z ci—p/2 (Mp/2 + ,/p/2) <1,
i=1 v j=1 P

where ;= max{p1, g2, -, fn}, v = max{vy,vo, -, Un};
then the trivial solution of (6.1) is pth moment asymptotically stable.

Consider a case when both the discrete delay 7(¢) and r(¢) in the distributed delay are bounded
by a constant 7. Let ¢ € L'z (Q,C([9,0],R")), define Cy to be the space of all Fi-adapted
processes p(t,w) : [—T,00) x @ — R” such that p € LP(Q2,C(]9,00),R™)). Moreover, we set
o(t,:) = ¢(t) for t € [9,0], o(t,) = ¢(I) for t € [—7,9] (in case —7 < ¥), and for t — oo,
Yo Esup;_rcocq |@i(s)[P — 0. The norm on Cy is defined as

||<P!p=St1;g[ZE< sup ISOi(S)!p)], (6.5)
= =1

t—7<s<t
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6.1. Stability of stochastic delayed neural networks

then Cy4 is a complete metric space. Using a contraction mapping defined on the space Cg
and applying a contraction mapping principle, we obtain our second result, which is proved in
Subsection 6.1.3.

Theorem 6.1.5. Suppose that the assumptions (A1)-(A4) hold. If the following conditions are
satisfied,

(i) the discrete delay T(t) and r(t) in the distributed delay are bounded by a constant T (7 > 0);
(ii) and such that

/q

n n p/q n n p
a5 lemer Y (Z |aij|Q|aj|Q) L5ty (Z |bij|qmj|q>
i=1 \j=1 i=1 \ j=1
n n p/q
45Ty (Z rzij\qm\q)

i=1 \ j=1
+5P LK nPePeT Pt P2 (2¢) 71 (,up/Q + I/p/2> <1, (6.6)
where ¢ = min{cl, €2, CTL}; n= maX{Mlv”?a T Nn}; V= maX{Vlu Vo, Vn}z'

then the trivial solution of (6.1) is pth moment asymptotically stable. More than that, for every
e > 0, there exists a 6 > 0 such that ||p|| < & implies Y ;" | Esup, <. |zi(s)]P < € and

P X A

Remark 6.1.6. In some papers, see, for example, |89, 90, 131, 132|, the norm for the space of
stochastic process is defined as

Iellos = |B(_ sup !w(s)P)]l/ )

s€[0,¢]

As in [90], in order to show P(S) C S, we need to estimate Esup,cpo g |I5(s)|?, where

I5(s) = /0 e I by du [c(2)z(2) + e(2)2(z — §(2))] dw(z).

However, I5(s) is not a local martingale (see Section 1.4 for its proof). Hence, Burkholder-Davis-
Gundy Inequality can not be applied directly.

Using an appropriate integral inequality, we obtain sufficient conditions for exponential stability
of (6.1) with initial condition (6.2), which is our third result. For its proof, see Subsection 6.1.4.

Theorem 6.1.7. Suppose that the assumptions (Al)-(A4) hold. If the following conditions are
satisfied,

(i) the discrete delay T(t) and r(t) in the distributed delay are bounded by a constant T;
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Chapter 6. Stochastic delayed neural networks

(ii) and such that

n n p/q n
7S (et ) sers
J

=1 7j=1 =1

n

p/q
\bz‘j!q\ﬁjlq> (6.7)
=1

3

n r/q
5 <z>p ( |lijq|’7jq> + 5p_1npc_p/2(:up/2 + yp/2) <1,
c
=1 7 1

where ¢ = min{cla €2y ,Cn}, n = m&X{Ml,,U,Q, to ,/Ln}, V= maX{V17 Vo, - 71/7’&};
then the trivial solution of (6.1) is exponentially stable in pth moment,

Remark 6.1.8. The stability criteria we provided in our main results are only in terms of the
system parameters c;, a;j, bij, ljj, etc. Hence, these criteria can usually be verified easily in
applications.

Remark 6.1.9. Many articles, see, for example, [116, 120] have studied stochastic neural net-
work (6.1) and special cases of (6.1). However, they impose the following condition on the delays

(H) the discrete delay 7(t) is differentiable function and r(t) in the distributed delay is non-
negative and bounded, that is, there exist constants Tar, (, pr such that

0<7(t) <tnm, T()<C 7(t) <7y (6.8)

In our results, condition (H) is replaced by other assumptions, which may be satisfied when (H)
18 not.

Theorem 6.1.7 can, for example, be applied to establish exponential stability in pth moment of a
two dimensional stochastically perturbed Hopfield neural network with time-varying delay, the
delay is bounded but not differentiable, see Example 6.1.31 for details.

Consider a case when there are no stochastic effects in the system (6.1), which then comes
down to the neural network described by

dz; (t) n n n t
o = a(t) + > aiifi(mi )+ bijgi(ai(t— () + > di /t o hj(x;(s)) ds, (6.9)
j=1 j=1 j=1 -
1= ]‘7 27 37 7n7
or
dx(t) t
ke —Cux(t) + Af(x(t)) + Bg(x — 7(t)) + D h(z(s)) ds, (6.10)
t—r(t)

where z(-) = (21(-),72(:), -+, 2,(-))T is the neuron state vector of the transformed system (6.9).

The initial condition for the system (6.9) is
z(t) = o(t),  te,0] (6.11)

where ¢ is a continuous function with the norm defined by ||¢|| = supy<;<q Y iy [#4(t)]-

Assume that (Al) — (A3) are satisfied, then (6.9) admits a trivial solution z = 0. Denote
by z(t,¢) = (x1(t,¢1), -, Tn(t, én))T € R™ the solution of (6.9) with initial condition (6.11).
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6.1. Stability of stochastic delayed neural networks

Definition 6.1.10. For the system (6.9) with initial condition (6.11), we have that

(i) the trivial solution of (6.9) is said to be stable if for any € > 0, there exists 6 > 0 such that
for any initial condition ¢ € C([9,0],R™) satisfying ||p|| < 0, we have for the corresponding
solution that ||x(t, )| < e fort>0;

(ii) the trivial solution of (6.9) is said to be asymptotically stable if it is stable and for any
initial condition ¢ € C([9,0],R™) we have for the corresponding solution that

limy o [|2(2, 9)[| = 0

(iii) the trivial solution of (6.9) is said to be globally exponentially stable if there exist scalars
A > 0 and C > 0 such that for any initial condition ¢ € C([9,0],R"™), we have for the
corresponding solution that ||x(t, ¢)|| < Ce=|¢|| for t > 0.

Define Hy = Higp X Hagp X -+ X Hpg, where H;4 is the space consisting of continuous functions
@i(t) : [9,00) — R such that p;(0) = ¢(0) for ¥ < 0 <0and p;(t) > 0ast —>o0,i=1,2---,n

For any ¢(t) = (01(t), p2(t), -, on(t)) € Hg and 0(t) = (m (1), m2(1), -~ 1 (t)) € Hg, if we de-
fine the metric as d(p, 1) = sup;>g i [i(t) —ni(t)|, then Hy becomes a complete metric space.

Using a contraction mapping defined on the space Hy and applying a contraction mapping
principle, we obtain our fourth result, which is proved in Subsection 6.1.5.

Theorem 6.1.11. Suppose that the assumptions (A1)-(A3) hold. If the following conditions are
satisfied,

(i) the function r(t) is bounded by a constant r (r > 0);

(ii) and such that

A Z = _max laijo] + Z jmmax |bij 3] + Z _max \dij7j| <1; (6.12)

then the trivial solution of (6.9) is asymptotically stable.

Remark 6.1.12. Theorem 6.1.11 is an extension and improvement of the result in Lai and
Zhang [74].

By establishing an appropriate integral inequality, we obtain sufficient conditions for exponential
stability of (6.9), which is our fifth result. Its proof is given in Subsection 6.1.6.

Theorem 6.1.13. Suppose that the assumptions (A1)-(A3) hold. If the following conditions are
satisfied,

(i) the discrete delay T(t) and r(t) in the distributed delay are bounded by a constant T (7 > 0);

(ii) and such that
1 & 1 — 1 &
- ;jzlf;}?g JJaisag]+ < Z;j:rll}g;f bl + Z; 7 omax |diyl <1, (6.13)
1= 1= 1=

where ¢ = min{cy,ca, -+ ,cn};
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Chapter 6. Stochastic delayed neural networks

then the trivial solution of (6.9) with initial condition (6.11) is exponentially stable.

Remark 6.1.14. Several exponential stability results [77, 126, 127] were provided for the system
(6.9), by constructing an appropriate Liapunov functional and employing linear matriz inequality
(LMI) method, and their results depends on the condition that the delays are satisfied (H). From
our main results, we provide other assumptions. The delays in our results are required to be

bounded.

Remark 6.1.15. From Theorem 6.1.11 and Theorem 6.1.13, we find that the terms with f,g,h
in equation (6.10) can be viewed as perturbations of the stable equation dx(t)/dt = —Cux(t).
Condition (i) in Theorem 6.1.11 and condition (ii) in Theorem 6.1.13 require the perturbation
to be small relative to the stabilizing force of C.

Theorem 6.1.13 can, for example, be applied to establish exponential stability of a two dimen-
sional cellular neural network with time-varying delay, see Example 6.1.29 for details.

The rest of this section is organized as follows. In Subsection 6.1.2, we present a proof of
Theorem 6.1.4. The proof of Theorem 6.1.5 is presented in Subsection 6.1.3 and the proof of
Theorem 6.1.7 is given in Section 6.1.4. we present the proofs of Theorem 6.1.11 and Theo-
rem 6.1.13 in Subsection 6.1.5 and Subsection 6.1.6, respectively. Some examples are given to
illustrate our main results in Subsection 6.1.7.

6.1.2 Proof of Theorem 6.1.4

In this subsection, we prove Theorem 6.1.4. We start with some preparations.

Lemma 6.1.16. (|96, 129]) If w(t) = (w1(t),wa(t), -+ ,wa(t))T (¢ > 0) is a n-dimensional
Brownian motion defined on a complete probability space (2, F,P), then for each t > 0, we have
the following formula

oy ) duits) [ 6) tus(s)) - [ ) 5 (5) e, ),

where (w;,w;)s = ;5 are the cross-variations, and 0;; is the correlation coefficient, f; is adapted
and f; € L2(Q x [0,1]), i,5 = 1,2,--- ,n.

If we multiply both sides of (6.1) by e’ and integrate from 0 to ¢, we obtain
t n t n
nlt) = Wm0+ [ DS apfile(s) ds+ [ e DY bigilas - (s) ds
0 , 0 :
7j=1 7j=1
t n s
+/ e—cit=9) Zlij/ hj(xzj(u))duds
0 j=1 s—r(s)

te,cz'(tfs) n gii(s.xi(s). x:(s — 7(s Wl s
- Z (5, 25(s), (s — 7(5)) duwy(s) (6.14)

fort>0,i1=1,2,3,--- ,n.
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6.1. Stability of stochastic delayed neural networks

Lemma 6.1.17. Define an operator by (Qp)(t) = ¢(t) for t € [9,0], and for t > 0, i =
1,2,3,--.n

0

(QeN() = e Tpi(0) + / e S g f(ip5(5) ds
j=1

4 /0 e )Y bijgi(0i(s = 7(s))) ds

7j=1

/ —cilt=s le/ . (pj(u)) duds
+ / emei(t=9) g 7ij (5, 05(), j(s = 7(5))) duw; (s). (6.15)

Suppose that the assumption (Al)-(A4) holds. If conditions (i) and (ii) in Theorem 6.1.4 are
satisfied, then Q : Sy — Sy and Q) is a contraction mapping.

Proof. Denote (Q);(t) := J1i(t) + Joi(t) + J3i(t) + Jui(t) + J5i(t), where
t n
D) = e lpi0),  Tu(t) = /0 =S 0 £5(05(5)) dis
j=1

Jslt) = / e 3 b5 (i05(s — 7(s))) ds,

j=1

t n s
Tul®) = / by / hy (3 (u)) duds,
0 j=1 s—r(s)
t n
Jsi(t) = /0 e—ci(t=s) Z gij(s,0i(s), (s —7(s))) dw;(s).
j=1

Stepl. From the definition of the metric space Sy, we have that EY " | [¢i(t)[P < oo for all
t>0,¢p¢€ S¢.

Step2. We prove the continuity in pth moment of Qz on [0,00) for z € Sy. Let z € Sy,
t1 > 0, let r € R with |r| sufficiently small and r > 0 if ¢t; = 0, we have

( —ci(trr—s) _ i<t1—8)) iaijfj(xj(s))ds
j=1

t1+r n p
" / e S 0y £ () ds
j=1

—0 as r—0.
t1

EY ity +7) — Jau(t) P =
=1

Similarly, we have that

EZ’J&*(M-FT) —Jgi(t1)|p—>0 as r — 0, EZ‘J4¢(t1+T>—J4Z‘(t1)|p—>O as r — 0.
i=1 i=1
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Chapter 6. Stochastic delayed neural networks

In the following, we check the continuity of Js;(%).

EZ |J5i(t1 + 1) — J5i(t1) [P
=1

( it s _e-ci<t1—s>)f:aij(s,xj@),xj(s—T(s)>>dwj(s>
j=1

t14+7r n !
_|_/ e—Ciltitr—s) Z oij(s,25(8),x5(s — 7(s))) dw;(s)
t1 j=1
< nP~ ! Z ZE / (6_01 fr=s) _ 6_Ci(tl_S)) O-ij(svxj(s)’xj(s - T(S))) dwj(s)
=1 j=1
t1+r n !
[ S ). 5 = () )
t1 j=1
p
(2n)P- 1ZZE / (6 i(t+r—s) i(t1*5)> 0ij(s,z(s),zi(s — 7(s))) dw;(s)
=1 j=1
t1+r g
+(2n)P Z ZE / e HT g5 (s, 3(s), (s — 7(s))) duwy (s)
=1 j=1
) p/2
(2~ 122 / (7o) — ) 03 (5,5 (s) g (s — 7(s)) ds
=1 j=1

ti+r p/2
+E [/t g~ 2eiltitr=s) Ej(s,xj(s),xj(s —7(s))) ds] —0 as r—0.
1
Thus, Qx is indeed continuous in pth moment on [0, c0).

Step3. We prove that Q(Sg) C S.

n p

ES QP =ES
=1

5
Z Jji(t)

J=1

5 n
<5 CEY ()P (6.16)
j=1 i=1

Now, we estimate the terms on the right-hand side of the above inequality.

n p

n t cl(t e) (‘l(f s)
EZ\JQi(t)]p < ZE /06 Z‘QZ]HJC] ©;(s |d3]
=1

i=1

n o T ¢ p/q ¢ P

< YE (/ e‘ci(t‘s)ds> /e‘ci(t_s)(Z\aijllfj(sﬂj(s)ﬂ) dé’]
= |\ Jo 0 =
n p

< sl [ ”(Zamu%u% |) ds]
=1
n n /q ¢ n

< Zci_p/q<2|aij|q|aj|q> /Oe_ci(t_s)E<Z\¢j(S)!p> ds.  (6.17)
i=1 j=1 j=1
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6.1. Stability of stochastic delayed neural networks

Since ¢ € Sy, we have that limy oo ED""" 4 [@i(¢)[P = 0. Thus for any € > 0, there exists 77 > 0
such that ¢ > 77 implies EY"7" | |¢;(t)[P < €, combining with (6.17), we obtain that

n /q T n
EZ|J2z‘(t)|p < Z p/Q(Zajmaﬂq) / eCi(tS)E<Z|<pj(S)|p> ds
i—1 0 j=1

=1

n n p/q t n
+ Z Ci—p/q ( Z |(Ijj’q|aj|q> / e Cilt=9)g ( Z |¢j(8)|p> ds
i=1 j=1 n =1
n n p/q n
< ZC;pe*Cit(eciTl _ 1)<Z|aij|q’ajq> 0<Su<pT E(ij(s)‘p)]
8517 jzl

i=1 j=1

n n p/q
+€Zcz-p<2|au|ﬂaj|q) |
i=1 =1

Hence, from the fact that ¢; > 0 (i = 1,2,--- ,n), we obtain that EY " | [Jo; ()| — 0 as t — oo.

With the similar computation as (6.17), we obtain that

n n p/q ¢
EY |[®)F < Z "/q(ZIszqlﬁglq) /Oe‘ci(t g (Z\% s —( !”)
i=1 i=1
n n p/q t p
EY |[Ju®)P < ZC;p/q<Z\lz‘j!q\’7j!q> /e_c” g u) du ]ds
i=1 i=1 j=1 0 = -
n p/a s/ n p/a
S () () e [Zm o
i=1 \ " j=1 s—ris

(6.18)

Using Lemma 6.1.16, we obtain that

p

EN |t = Y E / e )N " 035, 05(s), 0 (s — 7(5))) dw; (s)
i=1 i=1 0 J=1

n n t 2y p/2
nP~! e~ |55, 0i(s), pi(s — (s w;(s
< ZZE{[/O 0135, 05(5), 255 — ()] d <>]}
t p/2
= nP! —2¢i(t=8)52 (5 (s (s —71(s S
ZZE [ 9.4 - (D)
t p/2
nP~1 —2¢i(t=5) (1, 02(8) + vip2(s — 7(s s
< ZZE[/O (3206) 4 1335 = 7(0) s
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<y Y

p/2
([ e meiisras)
i=1 j=1
t p/2
+</0 e—2ci(t—s)yj<p?(5_T(s))d5> ]

p/2_1 t
< pplop/2- 1221{«:[(/ —2ei(t— s)ds> / ~Zeilt=s) p/2|<p (s )Ipds]
0

=1 j=1
p/271 t
P~ lop/2— 1ZZE{</ —2¢;(t—s) ds) / e—2ci(t s) pﬂ"ﬂ( (5))|pd8}
=1 j=1 0
n t n
<Pty e [W / e (IR ( > r¢j<s>|p> ds
i=1 0 =1

—l—l/P/?/O —2c;(t=s) (Z](pj s—1( >ds]

< pp1 Zci_pn [up/2/ €_Ci(t_s)E<Z |‘Pj(3)|p) ds
0 —

=1

+I/p/2/0 e~ci(t=s) <Z|g0] s—1( >ds] (6.19)

Since EY7 | |0i(t)[P — 0, t — 7(t) — oo and ¢t — r(t) — oo as t — oo, for each € > 0, there
exists 7o > 0 such that ¢ > T5 implies EY """ | [pi(t —7(s))[P <eand EY ", [@i(t —7(t))|P < e.
From (6.18), we obtain that

IN

n n n pla g, n
ES ()l &?’“(Z |bijrqmjrq> / eCiME(Z o35 — r<s>>>rp> ds
i=1 i=1 j=1 =1

n n p/q t n
+ Zci_p/q<z Ibijlqlﬂjl‘I) /T e_ci(t_s)E<Z lpj(s — T(S)))|p> ds
i=1 j=1

2 ]:1

n 1 p/a T n p/q
< Z<01> ecit\/o ecisd8<2’bij‘q’,@j‘q>
i=1 j=1
n n n p/q
sup { (ZI%ST |”>}+6Z%”<Z!bmlqlﬁjlq>
19<s<T2 i=1 =1
n , n pla ., e
= bor < Y (5) (Swire]  [Tene [ Zr% duds
i=1 i=1 j=1 5TTS

L. P/4/ n r/a
s (L) (Shlblr) [ et [Cow Zm duds
1 Ci =1 T s—r(s)

IN
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6.1. Stability of stochastic delayed neural networks

n r p/4 / n p/a (eo™ — 1)
< ZTG_Cit <CZ> (Z‘lz]|q7]|q> ﬁsup { (ZW)J ) }Cl
i=1 7=l .

o P/q s n p/4q
(o) ()"
T ’L ]:1

=1

Further, from (6.19), we obtain

n n n n
EN ()P < w1y e P !up/2/0 6_Ci(t_s)E<Z |<Pj(8)|p> ds
=1 =1

j=1

T e

< np_lzcil—P/Q{'up/Q sup [E<Z|¢j(5)|p>]
i=1 =1

0<s<T>

E ( Zn: |03 (5) |p)] } e (ezTQ -1

+nP~ lz 1- p/2< HP/Q Vp/Q)).
Ci

Hence, let t — oo, from the fact that ¢; >0 (i = 1,2,--- ,n), we obtain that

+P? sup
I<s<T>

EY |Js(®)P =0, EY [Ju(t)]’ =0, and EY_|Js(t)[P — 0.
=1 =1 =1

Thus, combining with (6.16), we obtain that EY " | [(Qe)i(t)[P — 0 as EY ", |ei(t)[? — 0.
Therefore, Q : Sy — Sy.

Step4. We prove that @ is a contraction mapping. For any ¢,9 € Sy, from (6.17)-(6.19),
we obtain

sup {EZ Qei(s) Q%(S)Ip}
< 4p-1 sup{ Z / —ci(s— “)Zaw (fj z;(u)) —fj(yj(u))> du }
+@%ﬂsmg{m§[;‘4 et }:bm(gyxﬁu-—f@OD<—gﬂyﬂu-T@OD>du
i=1

s> )
s>
n p
4 Tsup (B cwuz%/
i— s—r(s)

s>

)

c\

(o)) = By 0)) ) dv
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Chapter 6. Stochastic delayed neural networks

n

/0 o—cils—u) Z (gij(37 z;(s), xj(u—7(u)))

j=1
p}

+4P~ 1 sup {Ezn:

520 i—1

— 055, 35(5), (s — 7(w))) ) dw ()

n n p/q n n p/q
< 4p—1{ Zcﬁ’(Z aij\q|04j|q) + ZC#D(Z Isz|q|ﬁj|q>
i=1 j=1 i=1 j=1
n (NP> p/a n
- —p/2
+> <c> (Z\lia‘!qwlq> oty e (M”/2+Vp/2)}
i=1 \ " j=1 i=1
X sup EZ|<pj(s)—¢j(s)|p = asup EZ\%(S)—%(S)P .
s>0 J=1 5>19 =1
From (6.4), we obtain that @ : Sy — S, is a contraction mapping. O

We are now ready to prove Theorem 6.1.4.

Proof. From Lemma 6.1.17, by a contraction mapping principle, we obtain that @ has a unique
fixed point z(t), which is a solution of (6.1) with z(t) = ¢(t) ast € [0,0] and EY " | |2i(¢)[? — 0
as t — oo.

Now, we prove that the trivial solution of (6.1) is pth moment stable. Let € > 0 be given
and choose § > 0 (§ < €) such that 57715 < (1 — a)e.

If 2(t) = (21(t),2(t),--- ,2,(t))T is a solution of (6.1) with the initial condition satisfying
E> " |6i(t)[P < 6, then z(t) = (Qz)(t) defined in (6.15). We claim that E> " | |z;(¢t)P < e
for all ¢ > 0. Notice that EY " | |z;(¢)|P < € for t € [0,0], we suppose that there exists t* > 0

such that EY "7 | |z (t*)P = e and EY ;" | |@i(t)|P < e for ¥ < ¢ < ¢*, then it follows from (6.4),
we obtain that

E)  |zi(t")P
i=1

n
<BPIEDY e P |2 (0) P
i=1

n n r/a t* "
4 5p1 qu/q<2 |aij|qajq> / e—cl-(t*—s)IE<Z |xj(5)!”> ds
i=1 J=1 ‘ =t
n n Pl g "
Y m(Z lbm-\qwj!q) / e_q(H)E<Z e T(s)))@ "
i=1 J=1 ‘ =

/- —
_ " r r/a - : K —c;(t*—s ° -
30 (L) (zjuww) [ e | ()E<§j|zj<u>\p>duds
i=1 N j=1 s—r(s j=1
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6.1. Stability of stochastic delayed neural networks

n t* n
5P 1p-1 Z cil_p/Q [Mp/2 /0 em@*S)@(Z ‘xj(s)|p> ds
=1

i=1

t*
_ij/g/ e~cilt— 8>E(Z|x] s—( )ds]
0

n n p/q p/4q
< 5p1265p<2\aij\ql%lq> + 577 12 _p<2|bijlq|ﬁj\q>
i=1 j=1 Jj=1
n r P n p/q n y
5p—1 7 1:]9]y:]? 5p—1,p—1 —p 2( p/2 p/2) 5p—1ls
S () () et S o) o

<(l—a)e+aec=c¢,

which is a contradiction. Therefore, the trivial solution of (6.1) is asymptotically stable in pth
moment. O

Corollary 6.1.18. Suppose that the assumptions (A1)-(A4) hold. If the following conditions
are satisfied,

(i) the function r(t) is bounded by a constant r (r > 0),

(ii) and such that

n

5252(2@ §>+5Zc—2<2b ﬂ2>+5z< ) (;lliqu’wq>

—1—20an (n+v) <1,

where ¢, u, v are defined as in Theorem 6.1.4,
then the trivial solution of (6.1) is asymptotically stable in mean square.

Consider the stochastic neural networks without distributed delays

du;(t) = | —cwi(t)+ Y ai fi(@i(0) + D bijgi(a;(t — 7(t))) | di
=1 =1
+ > ot w(t), @it — 7(t))) duwj () (6.20)
j=1

fori=1,2,3,---,n

Corollary 6.1.19. Suppose that the assumptions (Al)-(A4) hold. The trivial solution of (6.20)
is asymptotically stable in pth moment if the following inequality holds,

n n p/q n n p/q
pr S (Stet) oS Swaris)
1 = i=1 j=1
n
+4p—1np—1 Zci_p/Q (MP/Q + VP/Q) < 1’ (621)
=1

where p,v are defined as in Theorem 6.1.4. Note that the discrete delay T(t) can be unbounded.
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Chapter 6. Stochastic delayed neural networks

Remark 6.1.20. Condition (A4) can be relazed. In fact, if p = 2, then

n

(AY) Vi, > (oy(t,2,y) — oij(t,u,v) <Zu] )24 vy — vj)? (6.22)

j=1

is sufficient, as can be easily observed from the proof of Theorem 6.1.4. If p > 2, then (A4)
can also be replaced by (A4'), but the factor nP~ in front of the last term in (6.4) has to be
repalced by nGP/D=2 This can be seen from the proof of Theorem 6.1.4 with the aid of a few
more application of the Holder inequality.

6.1.3 Proof of Theorem 6.1.5

In this subsection, we prove Theorem 6.1.5. We start with some preparations.

Lemma 6.1.21. Define an operator by (Pp)(t) = ¢(t) for t € [—7,0], and for t > 0, (Py)(t)
is defined as the right hand side of (6.15). If the conditions (i) and (ii) in Theorem 6.1.5 are
satisfied, then P : Cy — Cy is a contraction mapping.

Proof. Observe that all terms at the right hand side of (6.15) have continuous paths, almost
surely. Now, we prove that P(Cy) C Cg.

ZE[ suwp_[(Po)(s)Y] =§E

sup

t—7<s<t t—1<s<t

p] < 5P IZZE[ sup | Jji(s )|P].

j=1i=1 t—17<s<t

5
E in S
j=1

Estimating the terms on the right-hand side of the above inequality. Let ¢ = min{c;, ¢, ¢35, , ¢},
and let ¢ be such that 1/p+1/q =1,

n

E su Joi(s)|P
> s (o)
n S n p
=E [Z sup / e~cils—w) Z aij f5(¢;(u)) du ]
i—1 t—7<s<t | JO j=1

n s n P
< c_P/qE su / €_C(S_u) aiila (u du
= {;t—rgggt[ ) j;’ il ()
& p/q S n
< Z( a1 J|> {p[ 0 2 leito)
p/4 n o
< C_P/q a;i IPAL E su / e—c(s—u) ()P du
Z( el ﬂ) g {”Sgﬁ_ 0 05w
/0 n o
< Pl il | Ed / —e(s—u) . o)
c Z (; |a;| ]y ) Z {t_;gét . e u_nguM(v)' v

n n p/q n
< TPl a;il?oi]? E / —c(t—u) su ()P | du 6.23
> (Z| il%ey] ) Z unglzgu’%( )| ( )

i=1

- M

J

NgE

1
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6.1. Stability of stochastic delayed neural networks

Since > Esup,_;<,<;|j(s)|P — 0 as ¢t — oo, then for any e > 0, there exists 71 > 0 such

that ¢t > 77 implies

which yields that

E

i E < sup
j=1

t
/ec(tu)
0 u
T
:/ efc(tfu)E
0
T
S/ 1efc(t7u)
0

t—1<s<t

\soj(v)lp> dUI
u—§g€<u ’90]' (U) |p> dut /

sup \mvw’) du+=.

i) <

t
ec(t“)E< sup ]goj(v)\p> du
T u—1T<vu

Then combining with (6.23), we obatin that E) " | sup, ;<< |J2i(s)[P — 0 as t — oo. Simi-

larly, we obtain that

n

E

i—1 t—7<s<t

sup |J3i(5)\p]

n n p/q s n
-p/q 191319 —c(s—u) A — p
<c Z; (;!bul 1551 > E{t_?gﬁ !/0 ¢ (;l i (u—7(u)) )dun

| et =l du] }
L 0

i=1 j=

n n p/q n

<c Py < !bz‘j|q!ﬁj|q> ZE{ sup
=1 =1

<Py <Z |bi5]716;1

i=1 \ j=1

< ecrc—p/qz (Z |bij|q|ﬁj|q>
i=1 \ j=1

and

n

Z sup

i—1 t—7<s<t

E

n n p/q s n u P
< C—p/qz Z|lij|q\7j|q E{ sup / e—c(s—u)z / @j(v)dv| du
i=1 \ j=1 t—7<s<t 0 u—r(u)
n n P/q n
<Py < Uz‘j!q\%’!q> ZE{ sup
j=1 j=1

=1 =

n n p/a n
< Tpcfp/qz (Z |lij’q|’Yj’q> ZE{ sup
i=1 \ j=1 j=1
n n
< 7PecT P/ Z (Z |lij’q|,yj’q>
=1 \ j=1

|J4i(8)|p]

t—17<s<t
p/q n
g E sup
-7 t—7<s<t
7j=1

p/q n

ZE
j=1

t—1<s<t

t—1<s<t

p/q n

S u p T
[/ e~cls—w) / @;(v)dv| du }
0 u—r(u)

t
ZE[/ et sup
j=1 L70

| s |soj<v>|pdu”
i 0 u—71<v<u

t
/e_c(t_“) sup |<,0j(v)|pdu]
0 u—7<v<uy

(6.24)

J=1 J

[ [ s w(v)l”dun
0 u—7<v<u

lp;(v)|P du] . (6.25)

u—7<v<u
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Let p = max{p1, po, - , n}, v = max{vy,va, -+, }. Due to the fact that

p

/Os 6*&(87“)0’@']' (u7 ©; (u)7 ©j (u — T(u))) dwj (U)

is a submartingale and the supremum of submartingale is also a submartingale, using Doob’s
inequality for positive submartingale, we obtain that

E su Jsi ()P
> s o) ]
n n s p
< nP! E|[ su / e =W (w0 (u), 0i(u — 7(u))) dw; (u
= ;; !t—’rﬁligt : i(u, 5(u), o5( (u))) dw;(u)
n n s P
< P! Ed su sup / e e (u, 0 (w), 0 (u— 7(w))) dw; (u
22 {t_nggt 5w | ] (0000, 23(u = 7)) oy |
s p
< nPt su su / e~ g (u, i (), i (u —7(u))) dw;(u
ZZq - p{ s | ] 3105 (), 5 (u = 7(w) dow ()
s p
< nP~ 1PCTZZq sup [ /e_c(t_“)aij(u,goj(u),tpj(u—T(u)))dwj(u) ]
oo tTss<t 0
s p/2
< KpnP~ Leper su / 672‘3(“”)0?4 u, pi(u), pi(u—7(u)))du
ZZq = ( 0 (1,05 (), s (u = 7 ()

p/2
< KpnP™t pCTZZQPZZ’/Q U sup E (/ e (u]cpj( )) du) ]
0

i=1 j=1 t—1<s<t

p/2
+K,nP~ Legper qp2p/2 1 sup |E e~ 2e(t—u) V-g02 u—T1(u du
;; t—r<s<t gat (u))
p/2—1
< K nP~ lepm- p2p/2 1 S —2c(t u) du

</ el p/Qrgo()rpdw/oe ”vf/%j(u—ﬂu))\pdu)]}

t n
< KpnpepCquclfp/Q (/pr/Q + Vp/2) / ef2c(t7u) Z E
0 -

sup |p;(v)[? du] . (6.26)

u—7<v<u

Using the similar arguments as for the term (6.23) and combining with (6.24), (6.25) and (6.26),
we obtain that 37" | E [sup; <. |(Pp)i(s)|P] = 0 as t — co. Thus, P(Cy) C Cy.

Finally, we prove that P is a contraction mapping. For any ¢,¢ € Cy, from (6.23)-(6.26),
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6.1. Stability of stochastic delayed neural networks

we obtain that

(5|5, o ranc - nicor

=1

n s n p
< 471 sup {E sup / el 7, (f] (05(u fj(wj(u))) du ”
t>0 i—1 t—7<s<t =1
+4P L sup{ E su / e cils—u) b;;

< (9503 (= () = (0 (u = 7(w)) )

4P~ 1 sup {E[ sup /05 e_ci(s_u)jzz:llij /_ 9 (hj(%'(”)) - hj(¢j<v))> dv du

t—7<s<t

t>0 s—r
P=lgy su ) e cils—u)
b [ ]
X Z oij(u, j(u), pj(u—7(uw))) — o4 (u, ¥j(w), ¥ (u — 7(u)))] dw;(u) ] }

P/q

n n P/q n n
< 4p—1{ec7'c—p Z (Z |aij|q|aj|q> + TP Z (Z |bij|q|5jq>
i=1 \j=1 i=1 \ j=1
n n p/q
+TPETET Y <Z \lij!q\Vj!(I) + KpnP el g el P (2¢) 7! (Mp/2 + Vp/2> }
=\
X SupZE

t>0

sup |p;(s) — j(S)I”]ZastggZE[ sup Isﬂj(S)—wj(S)p]-
>0 521

t—7<s<t t—7<s<t
From (6.6), we obtain that P : C4 — Cy4 is a contraction mapping. O
We are now ready to prove Theorem 6.1.5

Proof. From Lemma 6.1.21, by a contraction mapping principle, we obtain that P has a unique
fixed point z(t), which is a solution of (6.1) with z(t) = ¢(t) as t € [¢,0] and
S E [supy_,cocq [2i(s)P] — 0 as t — oo.

We prove that the trivial solution of (6.1) is pth moment stable. Let € > 0 be given, we
suppose that there exists t* > 0 such that

n
SE| s la@r] = -
i=1 =
n
ZE[ sup ]mi(s)]p] < e for 9<t<th,
; t—7<s<t

choose 0 > 0 (§ < ¢) satisfying
5P e Pl < (1 — a)e. (6.27)
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If 2(t) = (21(t), 22(t), - - - 2, (t))T is a solution of (6.1) with the initial condtion satisfying ||¢||P <
J, then x(t) = (Px)(t) defined in (6.15). We claim that ||z||? < e for all ¢ > 0. It follows from
(6.4) and (6.27), we obtain that

ZE L sw lnor]

tr—r<s<t*
5 n
p—1 . P
<5 ;;E L*iggt* | Jji(s)] ]
n n P/q n n p/q
< 5PlemPets 4 5p_1{e”c_p Z (Z |aij|q]aj]q> +eTcP Z (Z |bij|q|ﬁj‘q>
i=1 \j=1 i=1 \ j=1

n n p/q
+7PeTe™P Z ( ]lij\th\q) + Kpnpep”qf"cl_”/2(20)_1 (,up/z + I/p/2> }5
7j=1

=1

<(l1—a)+aec=c¢,

which is a contradiction. Thus, the proof follows. O

6.1.4 Proof of Theorem 6.1.7

In this subsection, we prove Theorem 6.1.7. We start with a lemma presenting an integral
inequality lemma.

Lemma 6.1.22. Consider ¢, > 0, positive constants A1, A2, A3 and a function y : [—T,00) —
[0,00). If A\1 + Ao + TA3 < ¢ and the following inequality holds,

yoe "+ A fy e Umy(s) ds + Xg [y e y(s — 7(s)) ds

y(t) < +A3 fg e—c(t=s) fss_r(s) y(u) duds t >0, (6.28)

yoe <, te[-7,0],

then we have y(t) < yoe "'(t > —7), where 7 is a positive root of the transcendental equation
1 ()\1 + e A + %)\3) = 1.

=y

Proof. Let F(v) = civ ()\1 +e7 Ay + ewv;lAg) — 1. We have F(0)F(c¢™) < 0, that is, there

exists a positive constant v € (0, ¢) such that F(v) = 0. For any £ > 0, let
C. = e+ yo.
To prove the lemma, we claim that (6.28) implies
y(t) < Cee™ M, t> —7. (6.29)
It is easily shown that (6.29) holds for ¢t € [—7,0]. Assume that there exists ¢] > 0 such that

y(t) < Cee™ M, te[-1,t), y(th) = Ce 4, (6.30)
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6.1. Stability of stochastic delayed neural networks

Combining with (6.28), we have

*

t* t
y(t]) < yoe%tT + A\ / ' e cti—s) y(s)ds + )\2/ ' efc(tffs)y(s —7(s))ds

0
—i—)\g/ et S)/ u) duds

t*
< ct1 +C /\1/ e~ c(ty— s)e vs dS—l—C’ )\2/ ! efC(tffs)e*W(sfr(S)) ds
0 0

12 ) s
+CE)\3/ ec(tls)/ e ™duds
0 sfr(s)

T—1 *
= o (e )
c—=7 v

Ce

T i
+ <)\1 +e7 Xy + € 1)\3) e 4,
Y

From the definition of C., we have

C. T—1
yo—i ()\1+€7T/\2+ /\3> =1q9— C: <O.
c—7 Y

Then, together with the definition of 7, we obtain that y(t1) < C.e™'1, which contradicts (6.30),
s0 (6.29) holds. As e > 0 is arbitrarily small, in view of (6.29), it follows that y(t) < yoe " for
t> —T. OJ

Proof. For the representation (6.14), using (6.17)-(6.19), we obtain that
EY |ei(t)P
i=1
<57 ey "Elgi(0))
i=1
/q t n
(Z ww) / e‘“”“E(Z le<s>lp) ds
i 0 j=1
n n p/q t n
- (zybiﬂqmj\q) / ec“S)E[Z\xj(s—T(s)))rp] ds
i=1 \ j=1 0 j=1
n /a t
ot (1) Z(waw) [ Zm |p] duds
0
+5p1npc1p/2{up/2/ e IR Z!%’(S)Ip] ds
0 —

t
+Vp/2/ e Z\J:j s—1( \p] ds}
0

Hence, by using Lemma 6.1.22 and (6.7), we obtain that the trivial solution of (6.1) is exponen-
O

M:

+5P—Lemp/a
1

tially stable in pth moment.
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Chapter 6. Stochastic delayed neural networks

Corollary 6.1.23. Suppose that the assumptions (A1)-(A4) hold. If the following conditions

are satisfied,

(i) the discrete delay T(t) and r(t) in the distributed delay are bounded by a constant T (1 > 0),

(ii) and such that
D ILTTEED 3 ST TER) 3) S R FE NI
i=1 j=1 =1 =1 =1 j=1
where ¢, u, v are defined as in Theorem 6.1.4,
then the trivial solution of (6.1) is exponentially stable in mean square.

Corollary 6.1.24. Let p > 2. Suppose that the assumptions (Al)-(A4) hold. If the following
conditions are satisfied,

(i) the discrete delay 7(t) and r(t) in the distributed delay are bounded by a constant T (7 > 0),

(ii) and such that

n n p/q n n
TR0 DY ISR ol b oY
i=1 \ j=1 i=1 \j=1

+4p71npc*p/2(up/2 + Vp/2) <1,

p/q

where ¢, u, v are defined as in Theorem 6.1.4,

then the trivial solution of (6.20) is exponentially stable in pth moment.

6.1.5 Proof of Theorem 6.1.11

In this subsection, we prove Theorem 6.1.11. We start with some preparations.

Multiply both sides of (6.9) by e and integrate from 0 to ¢, we obtain that for ¢t > 0,

t n
zi(t) = ecit:zi(O)—F/ efci(tfs)Zaijgj(xj(s d8+/ i(t=s wagj (xj(s —7(s)))ds
0 -
7j=1

t n s
+/0 e~ci(t=s) Zdij/ )gj(xj(u)) duds, 1=1,2,3,--- ,n. (6.31)
j=1

s—r(s

Lemma 6.1.25. Define an operator by (Px)(0) = ¢(0) for 9 <0 <0, and fort >0,

(Pa)it) = e “ilay(0) + /0 e~ S 455 (xy(s)) ds
j=1

+ /0 e =S " bisg5(wi(s — 7(s)) ds

J=1

/ et S)Zd” / ) du ds —ZI (6.32)

If the conditions (i) and (i) in Theorem 6.1.11 are satisfied, then P : Hy — Hg and P is a

contraction mapping.
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6.1. Stability of stochastic delayed neural networks

Proof. First, we prove that PHy C Hge. In view of (6.32), we have that, for fixed time ¢; > 0,
it is easy to check that lim,_,o [(Pz)i(t1 +7) — (Pz)i(t1)] = 0. Thus, P is continuous on [0, co).
Note that (Pz);(0) = ¢(0) for ¥ < 6 < 0, we obtain that P is indeed continuous on [¢}, 00).

Next, we prove that lim;_,o(Px);(t) = 0 for x;(t) € H;g. Since x;(t) € Hip, we have that
limy o z;(t) = 0. Then for any £ > 0, there exists T; > 0 such that s > T; implies |z;(s)| < e.
Choose T' = max;=12,... n{T;}, combining with condition (A2),

[L(t)] = e_ci(t_s)iaz’jfj(xj(s))ds
< / e cilt=s Z|awk ||z (s |d3+/ il S)Z‘GUO@”% )| ds
< Zmaﬂ sup_|z;(s r/ i S>ds+sZ!aw%l/
= 0<s<T
< ecitjzn;mijajoitleT]xj(sﬂ/o ecisds—i-;;mijaﬂ. (6.33)

From the fact that ¢; > 0 (i = 1,2,--- ,n) and estimate (6.33), we have that Io(t) — 0 as t — oc.

Since z;(t) — 0 and t — 7(t) — oo as t — oo, for each ¢ > 0, there exists T/ > 0 such

that s > T/ implies |z;(s — 7(s))] < e for i = 1,2,--- ,n. Choose T' = max;—12.n,{1/}, we
obtain
t n
(A = ; e 7)Y bijgi(as(s —7(s))) ds
j=1
T n t n
< / 6‘““‘”2\@;’@“%(3—T(S))|d8+/T e~y " bigkilla (s — m(s))| ds
0 - ' -
Jj=1 j=1
. n T e
< e bi;iBi| sup |xz;(s / e ds + — biiB;. 6.34
> sl s o) | 2t (6.34)

From the fact that ¢; >0 (i = 1,2,--- ,n) and estimate (6.34), we have that I3(t) — 0 as t — oc.

Since z;(t) — 0 and t — r(t) — oo as t — oo, for each ¢ > 0, there exists T;" > 0 such
that s > T7* implies |z;(s — r(s))| < € for i = 1,2,--- ,n. Choose T* = max;—12...,{1;}, we
obtain

L) =

S*?" S

T* t n
/ (o Z |dij; / | ()| duds + Er/* emi(=9) Z |dijy;|ds
j=1

T2|d”% sup |x] |/ —ci(t—s) ds +*Z|dw% (6.35)

7j=1

t n s
i efci(t*S) Zd”/ hj(q;](u))du ds

IN

IN
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Chapter 6. Stochastic delayed neural networks

From the fact that ¢; > 0(¢ =1,2,--- ,n) and estimate (6.35), we have that I4(t) — 0 as t — oc.
From the above estimate, we conclude that lim;_o(Px);)(t) = 0 for x;(t) € His. Therefore,
P Hd’ — H¢.

Now, we prove that P is a contraction mapping. For any x,y € Hg, from (6.33) and (6.35), we
obtain that

n

> 1(Px)i(t) — (Py)i(t)]
i—1
<Z max ‘aUaJ’/ eilt=s Z\m’g s)|ds
+Zj=rlnza?_(_ n‘bijﬁﬂ/o (1= Z’xﬁ s —7(s)) —y;(s — 7(s))| ds
=17
+;j:r1[}26}§,n‘diﬂj|/o e 2/ |2j(u) — y;(u)| duds

n
1 1 r
<> { max ajog|+ - max [byfil+ -~ max \dz‘ﬂjl}
i=1 ) 1 JT ’

C’L J:1=27 ,1 CZ ]:1727
n
X sup E |z (s) —y;(s)] =« sup g |z (s) —y;(s)].
9<s<t S I<s<t
Hence, we obtain that P is a contraction mapping. O

We are now ready to prove Theorem 6.1.11.

Proof. Let P be defined as in Lemma 6.1.25, by a contraction mapping principle, P has a unique
fixed point x € Hy with 2(0) = ¢(f) on ¥ <0 <0 and z(t) — 0 as t — oo.

To obtain asymptotic stability, it remains to prove that the trivial solution x = 0 of (6.9)
is stable. For any € > 0, choose ¢ > 0 and ¢ < ¢ satisfying the condition o + e < €.

If x(t,s,¢) = (z1(t,s,0),x2(t,5,0), - ,xn(t,s,¢)) is the solution of (6.9) with the initial con-
dition ||¢|| < o, then we claim that ||z(¢, s, ¢)|| < e for all £ > 0. Indeed, we suppose that there
exists t* > 0 such that

Y lwits, ¢l =e,  and ) |wilt;s,¢)| <e for 0<t <t (6.36)
] =1

From (6.12) and (6.31), we obtain
n n 1 n
Do lai(tss,0)| < Z[ |+/0 eI i fi(i(s))] ds
i=1 j=1

t* n
+ /0 e N byyg(w(s — 7(s))| ds

j=1
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6.1. Stability of stochastic delayed neural networks

+/t* Zrdm/ RC (u))!duds]

" /1 1 r
< o+ed (o max lajojl+ - max [bufl+ = max |dil

which contradicts (6.36). Therefore, ||z(t,s,¢)|| < e for all ¢ > 0. This completes the proof. [

Let dij=0fori=1,2,---,n,j=1,2,--- ,n. The system (6.9) is then reduced to

d$§ft) = —cii(t) + Y aij fi(x5(1)) + D bijg;(w;(t — (1)), (6.37)
Jj=1 j=1

which is the description of a cellular neural network with time-varying delays. Following the
result of Theorem 6.1.11, we have the following corollary.

Corollary 6.1.26. Suppose that the assumptions (A1)-(A3) hold. If the following condition is
satisfied,

n

1
>~ max \awajuz jmax b < 1, (6.38)
/[: 7 7

C 12 14y
1 i J=

then the trivial solution of (6.37) is asymptotically stable.

Remark 6.1.27. Note that the delay in Corollary 6.1.26 can be unbounded. Lai and Zhang [74]
studied the asymptotic stability (6.37) as well. However, the additional condition

- 1
max | Z\aukw ,;Ibijkﬂ < (6.39)

is needed in Theorem 4.1 of [74]. It is clear that Corollary 6.1.26 is an improvement of the result
in [74].

6.1.6 Proof of Theorem 6.1.13

Proof. From the represention (6.31), we obtain that
Sl < e S Jai0) +Zj:r{1§;;.n{\aijkj|}/o clt—s Zm )| ds
i=1 i=1 i=1 -
n t n
#3 max (utyl) [ D lsto = vl d

+Z max{|dk, |}/ —cft—s Z/ 25 ()| du ds.

Combining with Lemma 6.1.22, we obtain that the trivial solution of (6.9) with initial condition
(6.11) is exponentially stable. O

183



Chapter 6. Stochastic delayed neural networks

For the cellular neural network (6.37), we have the following result.

Corollary 6.1.28. Suppose that the assumptions (A1)-(A3) hold. If the following conditions
are satisfied,

(i) the discrete delay 7(t) and r(t) in the distributed delay are bounded by a constant T,

(ii) and such that

n n
Z ~max |agik;| + Z ~max |bjkj| <e¢, c=min{ci,c, -1},
i=1 j:1727'"7n i=1 j:1727"'7n

then the trivial solution of (6.37) with initial condition (6.11) is exponentially stable.

6.1.7 Examples

Example 6.1.29. Consider the following two-dimensional cellular neural network

dz(t)
dt

= —Cz(t) + Ag(xz(t)) + Bg(z — 7(t)),
(65) a=(m i)
o= (i) =G i)

The activation function is described by g;(x) = % for i =1,2. The time-varying delay
T(t) is continuous and |T(t)| < T, where T is a constant.

where

)

o C1 0
C(O CQ)

It is clear that a; = ; = 1 for i = 1,2. We check the condition (6.38) in Corollary 6.1.26,

6163)16

2 2
1 1 1
i=1 Ci jrg?§|aljaj|+i:1 Ci JII:IE%?§| il < 3 <7jL 77Ty 21

Hence, by Corollary 6.1.26, the trivial solution = 0 of this cellular neural network is asymp-
totically stable.

However, the condition (6.39) becomes

1< 1< 17 1
g%’;{ci;‘aw%"i‘ci;‘ z]ﬁ]’} 21~ 32

Hence, Theorem 4.1 of [74] is not applicable.
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6.1. Stability of stochastic delayed neural networks

Example 6.1.30. Consider a two-dimensional stochastic recurrent neural network with time-
varying delays

wt) = (0 5) (50 )@+ (as 0 ) (Oarmnonen )

_08 2 0.2 tanh(z1(t — 71(t)))
+< 1 2 ) < 0.2 tanh(z2(t — 12(1))) )dt

+< 1 2 > ( It (o) 02 tanh (w1 (s)) ds )dt

ft r(t) 0- 2 tanh(zo(s)) ds)
+o(t,x(t), z(t — 7(t )))dw( ), (6.40)

where T1(t), T2(t), 7(t) are continuous functions such that t —7(t) — 0o ast — 0o and |r(t)] < 1,
o :RT x R? x R? = R? x R? satisfies

trace [O‘T(t, x,y)o(t,x, y)} < 0.003(&0? + x% + y% + y%),

and w(t) is a two dimensional Brownian motion.

We suppose p = 2, and take p; = v; = 0.003 for ¢ = 1,2, by simple computation, we have
a; = 0.2 for i = 1,2, ¢ = min{ey, o} = 5, p = v = 0.003. From Corollary 6.1.18, we have that

2

52(;1 (Z% J>+5Z (wa ])+5Z< ) (Zlm J>
+2()><2><Z (n+v) <0.256 < 1.

Then the trivial solution of (6.40) is mean square asymptotically stable.

If 7(t) is bounded, from Corollary 6.1.23, we obtain that
2 2
¢ Z Zazjaj +5¢77 Z Z bfaf +5c 22y Y 12ad +20 x dc (4 v) < 0.298.
i=1 j=1 i=1 j=1 i=1 j=1
Hence, the trivial solution of (6.40) is mean square exponentially stable.

Example 6.1.31. Consider a two-dimensional stochastically perturbed HNN with time-varying
delays,

dz(t) = [~Cz(t) + Af(x(t) + Bg(xr(£)] dt + o(t, z(t), 2, (t)) dw(t), (6.41)

where f;(x) = %arctanx, gi(x) = %tanh:c = %(ex—eﬂ)/(e”” +e®),i=1,2,7(t) = sint+3,

5 0 2 04 —-0.8 2
O‘(o 4.5)’ A‘(o.a 1) and B‘( 1 4>'
In this ezample, let p = 3, take aj = 0.2, 5; = 0.2, j = 1,2, 0 : RT x R? x R? — R%X2 satisfies

Uil(t,x,y)2 < 0.0l(a:% + y%) and 02-2(75,a:,y)2 < 0.01(1:% + y%), 1=1,2,

and w(t) is a two dimensional Brownian motion.
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Chapter 6. Stochastic delayed neural networks

Note that the exponential stability of (6.41) has been studied in Sun and Cao [120]| by employing
the method of variation of parameter, inequality technique and stochastic analysis.

Now, we check the condition in Corollary 6.1.24,

2 n p/q 2 n p/q
4p—1,.~(1+p/q) Z <Z ]aijq\aﬂq) 4+ gp—1—(+4p/a) Z ( |bij‘q|,8j’q>
7j=1

=1 7=1 =1

+4P~opeTP/2(P/2 4 yP/2) < 018 < 1.

From Corollary 6.1.24, the trivial solution of (6.41) is exponentially stable.

6.2 Stability of stochastic delayed neural networks with impulses

6.2.1 Introduction and main results

Besides delay and stochastic effects, impulsive effects are also likely to exist in the neural net-
works systems, which could stabilize or destabilize the systems. Therefore, it is of interest to
take delay effects, stochastic effects and impulsive effects into account in investigations of the
dynamical behavior of neural networks.

In this section, we apply fixed point methods to study asymptotic stability and exponential
stability of a class of stochastic delayed neural networks with impulsive effects, which is de-
scribed by

dzi(t) = [_Ciwi(t) + 20y @i fi(@(t) + D220 bijgi(x(t — 7(t)))
+2 5=l ftt—r(t) hj(z;(s)) ds} dt

Y ot (), (t — T(0)) dwj(E), £ (6.42)

Awi(tk) = ’Lk‘($l(tk))a t= tk, ]{7 = 1, 2,3, e

or

da(t) = [~Ca(t) + Af(2(t)) + B(w(t = (1)) + W [[_, ha(s)) ds| dt
tot,a(t),z(t — 7(t) dw(t), t# 1,

Ax(ty) = Ix(z(ty)), t=ty, k=1,2,3,---

i = 1,2,3,---,n, where 2(t) = (z1(t),22(t), - 2,(t))T € R" is the state vector associat-
ed with the neurons; C' = diag(ci,ca, -+ ,¢,) > 0 where ¢; > 0 represents the rate with
which the ¢th unit will reset its ponential to the resting state in isolation when disconnect-
ed from the network and the external stochastic perturbations; A = (aij)nxn, B = (bij)nxn and
W = (l;j)nxn represent the connection weight matrix, delayed connection weight matrix and
distributed delayed connection weight matrix, respectively; f;, g;, h; are activation functions,
F@(t) = (i (@(8), fa@(®), - fulw(®)T € R, gla(t)) = (g1(2(t)), g2((8)), - - » ga(@(®)T €
R, A () = (h1(2(t)), ha(2(t)), -« , ha(@(t))T € R, w(t) = (wn (£), wat), - s wa())? € R
is an n-dimensional Brownion motion defined on a complete probability space (2, F,P) with
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6.2. Stability of stochastic delayed neural networks with impulses

natural complete filtration {F;}i>0 (i.e. F¢ = completion of o{w(s) : 0 < s < t}) and
o : Rt x R" x R" — R™" ¢ = (0ij)nxn is the diffusion coefficient matrix. Az;(ty) =
Lip(zi(ty)) = xi(t)) — ai(t;) is the impulse at moment ¢, and ¢; < to < -+ is a strictly in-
creasing sequence such that limy_, .t = +00, xz(tkﬂ and a:z(t,;) stand for the right-hand and
left-hand limit of x;(t) at t = tg, respectively. Ljx(x;(tx)) shows the abrupt change of x;(¢) at the
impulsive moment ¢ and I (-) € C (L% (9 R™), L% (€ R™)). 7(t) and r(t) denote a discrete
time varying delay and the bound of a distributed time varying delay, respectively. Denote
Y= inftzo{t — T(t),t — T(t)}.

The initial condition for the system (6.42) is given by
z(t) = ¢(t), ted,0] (6.43)

where ¢ — ¢(t) = (61(t), d2(t), -+, on(t))T € C ([19, 0], LI;O(Q;R”)> with the norm is defined as

n
¢l = sup (E> |gi(s)” |,
9<s<0 =1
where [E denotes expectation with respect to the probability measure P and p > 2.

To obtain our main results, we suppose the following conditions are satisfied:

(A1) the delays 7(t),r(t) are continuous functions such that ¢t — 7(¢) — oo and ¢ — r(t) — oo as
t — o0;

(A2) fi(x), gi(x), and h;(x) satisfy Lipschitz condition. That is, for each i = 1,2,3,--- | n, there
exist constants «y, B;, v; such that for every z,y € R",

[fi(x) = fiy)l < aile —yl,  lgi(x) —gi(W)| < Bilz —yl,  [h(x) — hi(y)] < vile —yl;
(A3) there exists nonegative constants p;; such that for any z,y € R,

(A4) assume that f(0) = 0, g(0) = 0, h(0) = 0, 0(¢,0,0) = 0, I;x(0) =0, i = 1,2,--- ,n,
k:172737"';

(A5) o(t,z,y) satisfies a Lipschitz condition. That is, there are nonnegative constants u; and
v; such that V ¢, j,

(035 (1,2, y) — 03 (8 u,0))? < ey —ug)? + vi(y; —v))*.

The solution z(t) := x(t, ¢) of the system (6.42) is, for the time ¢, a piecewise continuous vector-
valued function with the first kind discontinuity at the points t; (k = 1,2,---), where it is left
continuous, i.e.,

Define S, the space of all F;-adapted processes ¢(t, w) : [, 00) x Q@ — R™ such that ¢ : [¢), 00) —
L% (Q;R") is continuous on ¢ # t (k = 1,2,---), limtﬁt’; ©(t,-) and limtﬁt: ©(t,-) exist, and
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limtﬁt; o(t,-) = ¢(ty,-) for k = 1,2,---. Moreover, we set ¢(t,-) = ¢(t) for t € [¢,0] and
ECr lei®)P) > 0ast—o00,i=1,2,--- ,n. If we define the metric as the form

lell” := Sup (EZ |<Pz'(t)\p>, (6.44)
= i=1

then Sy is a complete metric space with respect to the norm (6.44). Using the contraction
mapping defined on the space Sy and applying a contraction mapping principle, we obtain our
first result, which is proved in Subsection 6.2.2.

Theorem 6.2.1. Suppose that the assumptions (A1)-(Ab) hold. If the following conditions are
satisfied,

(i) the function r(t) is bounded by a constant r (r > 0);
(ii) there exist constants p; (1 =1,2,--- ,n) such that py < p;i(tk — tik—1), k=1,2,---;

(iii) and such that

/q

n n p/q n n p
a = Gp_lzci_p<2|aij|q|aj|q> +6p_1zci_p<2\bij|qﬁjlq)
1=1 Jj=1 i=1 j=1
n P n p/q
DY () (Z zz-j|qm|q>
i=1

j=1

n
-1, p—1 —p/2 /2 /2 —1,-1 A
+6P P Elci (MP + P )—1—61’ c i:{%z?f;’n{cfil <1, (6.45)
1=

where ¢ = min{cy, ca, -+ ,¢n}, p = max{p, po, -, ln}, v = max{vi,va, - , v},
then the trivial solution of (6.42) is pth moment asymptotically stable.

Define Cy4 the space of all Fi-adapted processes ¢(t,w) : [}, 00) x @ — R™ such that ¢ : [, 00) —
L5 (;R™) is continuous on t # t; (k = 1,2,---), lim, _,, - o(t,-) and lim, _,,+ o(t,-) exist, and
limt_n; o(t,") = p(tg,-) for k = 1,2,---. Moreover, we set (t,-) = ¢(t) for t € [,0] and
ME (X0 |pi()P) — 0 as t — oo, A < min{ecr, 2, , ¢}, @ = 1,2,--- ,n. Then Cy4 is a
complete metric space with respect to the norm (6.44). Using a contraction mapping defined on

the space Cy4 and applying a contraction mapping principle, we obtain our second result. For its
proof, see Subsection 6.2.3.

Theorem 6.2.2. Suppose that the assumptions (A1)-(Ab) hold. If the following conditions are
satisfied,

(i) the discrete delay T(t) and r(t) in the distributed delay are bounded by a constant T (7 > 0);

(ii) there exist constants p; (1 =1,2,--- ,n) such that py < p;i(tx —ti—1), k=1,2,--+;

)
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6.2. Stability of stochastic delayed neural networks with impulses

(iii) and such that
n n p/q n n P
a 26y (Z |az‘j|q!%’!q> +60 Zcip<z \bij|‘1,8j|‘1>
i=1 Jj=1 i=1 j=1
n p [/ n p/q
oy (1) (Z zz-j|w>
i=1

Jj=1

/q

n

-1, p—1 —p/2 /2 /2 -1 —1 v

+6P1nP E 1 ¢ (,up + P ) + 6P ¢ izg?;,mf{-,n{c’?il} <1, (6.46)
1=

(2
where ¢ = min{cy, co, -+ ,cn}t, p=max{pi, uo, -, n}, v = max{vy,ve, - ,Un};
then the trivial solution of (6.42) is pth moment exponentially stable.

Remark 6.2.3. In Theorem 6.2.2, both the discrete delay T(t) and distributed delay r(t) are
required to be bounded, while the discrete delay T(t) in Theorem 6.2.1 can be unbounded. It is
clear that the conditions in Theorem 6.2.1 and Theorem 6.2.2 do not require the differentiability
of delays. In addition, condition (A2) implies that the activation functions discussed in this
section may be unbounded, non-monotonic and non-differentiable.

Remark 6.2.4. The system (6.42) is quite general and it includes several well-known neural net-
work models as its special cases, see, for example, the models in [54, 74, 78, 83, 116, 120, 129, 142|.
Sakthivel et al. [116] has considered asymptotic stability in mean square of the system (6.42) with
linear tmpulsive effects, by employing Liapunov functional method and using linear matrixz in-
equality optimization approach. However, the time varying delays in [116] should satisfy

(Hi) 0<hy <7(t) < ho, T'(t) <,

where hi, he are constants, the distributed delay r(t) is bounded, 0 < r(t) < 7, T is a con-
stant. In our results, the condition (Hy) is replaced by other assumptions, and the assumptions
in Theorem 6.2.1 and Theorem 6.2.2 may be satisfied if (Hy) is not.

Remark 6.2.5. In this section, our approach is based on fized point methods, and in one step,
a fized point argument can yield the existence and stability criteria of the considered system.
However, when using Liapunov’s direct method, one must independently verify that a solution
exists. The stability criteria we provided in our main results are only in terms of the system
parameters c;, a;j, bij, l;j, p; etc. Hence, these criteria can be verified easily in applications.

Consider the a when there are no stochastic perturbations on the system (6.42), the stochastic
neural networks become usual neural network which can be described as

Pl — () + Y7y @i fi (2 () + 0y bijgy (x(t — 7(1))
+ E?:l lij ft—'r(t) hj (l'](s)) dS, t 7& tk (647)

A:BZ(tk) = ik(mi(tk))y t:tk, k= 1,2,3,'--

or

W0 = —Ca(t) + Af (x(1)) + Bg(x — 7()) + D [ hlx(s)) ds, t# ty

A:z:(tk) :Ik(az(tk)), t:tk, k= 1,2,3,'”
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Chapter 6. Stochastic delayed neural networks

for i = 1,2,3,---,n, where x(-) = (21(-),22(-), -+ ,2,(-))T is the neuron state vector of the
transformed system (6.47).

The initial condition for the system (6.47) is
l‘(t) = ¢(t)a te [197 0]7 (648)

where ¢ is a continuous function with the norm defined by [|¢[| = Y77 supy<,< [¢i(s)|. Define
He = Hip X Hap X -+ Hng, where H;y is the space consisting of continuous functions ¢;(t) :
RT — R such that o;(t) is continuous on t # t; (k =1,2,---), limtﬁt wi(t) and limt%tz wi(t)
— ©i(t) = @i(ty). Moreover, we set p;(8) = ¢(0) for J <6 <0and ¢;i(t) =0
ast — 00,1 =1,2---n. For any ¢(t),n(t) € Hg, if we define the metric as

exist, and lim

D=3 supli(t) — (o) (6.49)
i=1 t2

then #H, is a complete metric space with respect to the norm (6.49). Using a contraction
mapping defined on the space Hy and applying a contraction mapping principle, we obtain our
third result, which is proved in Subsection 6.2.4.

Theorem 6.2.6. Suppose that the assumptions (A1l)-(A4) hold. If the following conditions are
satisfied,

(i) the function r(t) is bounded by a constant r (r > 0);

(ii) there exist constants p; (i =1,2,--- ,n) such that pix, < p;i(ty —tg—1), k=1,2,---;

7

(iii) and such that

n

1
a = Z _max ‘CLZJ%H'Z _max |bijﬁj|

Z bi
— a).(. ””PYJ’ i:1,28:.}-(- n { C; } <5 (6 50)

C; j=

then the trivial solution of (6.47) is asymptotically stable.

Define By = Big X Bag X ---Bpg, where B;g is the space consisting of continuous functions
@i(t) : R™ — R such that ¢;(t) is continuous on t # t (k = 1,2,---), limt_ﬁg @i(t) and
limtﬁtz wi(t) exist, and limtﬁt; vi(t) = @i(tr). Moreover, we set ¢;(0) = ¢(f) for ¥ <6 <0
and eMy;(t) — 0 as t — oo, where A < min{cy,c2, -+, ¢}, i = 1,2---n. Then By is a complete
metric space with respect to the metric (6.49). Using a contraction mapping defined on the
space By and applying a contraction mapping principle, we obtain our fourth result, which is
proved in Subsection 6.2.5.

Theorem 6.2.7. Suppose that the assumptions (A1)-(A4) hold. If the following conditions are
satisfied,

(i) the discrete delay T(t) and r(t) in the distributed delay are bounded by a constant T (7 > 0);

(ii) there exist constants p; (1 = 1,2,---n) such that pir, < pi(tgy —tg—1), k=1,2,---;

190



6.2. Stability of stochastic delayed neural networks with impulses

(iii) and such that

|
a & 3~ max \%%HZ _max  [by; ]
i=1 7,] N _’7'7
Di
a Liiy; a — < 1; 6.51
+Zcmfn,1,}-{-, '”’“’ﬂ??aﬁin{c@-} (651

then the trivial solution of (6.47) is exponentially stable.

Remark 6.2.8. Zhang et al. [142, 143] have investigated exponential stability and asymptotic
stability of a class of impulsive cellular neural networks by using fized point methods, which is a
special case of the system (6.47). Our results in Theorem 6.2.6 and Theorem 6.2.7 improve and
extend the results in [142, 143] (see Remark 6.2.15 and Remark 6.2.17 for more information).

The rest of this section is organized as follows. The proofs of Theorem 6.2.1 and Theorem 6.2.2
are presented in Subsection 6.2.2 and Subsection 6.2.3, respectively. The proofs of Theorem 6.2.6
and Theorem 6.2.7 are provided in Subsection 6.2.4 and Subsection 6.2.5, respectively. Some
examples are given to illustrate our main results in Subsection 6.2.6.

6.2.2 Proof of Theorem 6.2.1

In this subsection, we prove Theorem 6.2.1. We start with some preparations.

Multiply both sides of (6.42) by e’ we obtain that for t # t;, i =1,2,3,--- ,n,

deai(t) = | S aufilei®) + D biglast - ) + >ty [ o ") dUI &
= j= j=1 t—r(t
+eit Z 0ij(t, 2;(t), z;(t — 7(1))) dw; (¢). (6.52)

Integrate (6.52) from tx_1 +¢ (¢ >0) to t € (tg—1,tx) (k=1,2,---), we obtain that

t

e“itai(t) = ettt 4e)+ / ec® Z oij(s,xj(s),zi(s —7(s))) dw;(s)
j=1

tp—1+e

+/t e* [;@ijfg‘(%@))

k—1t€

+ Z bijgi(zi(s —7(s))) + Z Lij /S
j=1 5

hj(xj(u)) du] ds. (6.53)
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Let ¢ — 0 in (6.53), for ¢t € (tx—1,tx) (k=1,2,---), we obtain that

e“ila(t) = ety (tf /t e“i® ZO’Z] (s,xj(s),zj(s —71(s))) dw;(s)
—i—/t C”[Zawf] z;(s

+ Z bijgi(zi(s —7(s))) + Z lis /5

j=1 s

hj(xj(w)) du] ds. (6.54)
j=1 —7"(5)

Set t =t —e (¢ > 0) in (6.54), we obtain that

n

tk 15
i) gty — ) — et () / i Z 0ij(s,2(s),z;(s — 7(5))) dwj(s)
lg—1

t—e
/ eCis
lg—1

+le’j/
=1 s

Let € — 0 in (6.55), we obtain that

Zawfg (w(s)) +Zbijgj<mj<s—r<s>>>

J=1

(xj(u)) du] ds. (6.55)

—r(s

e“lhai(ty) = e“thim(th ) / e ZUU s, xj(s),zj(s — 7(s))) dw;(s)

te—1

/t e !Za,]f] xj(s —l—ZbZ]g] zj(s —71(s)))
+Zl”/s

Note that x;(t;) = z;(t, ), from (6.54) and (6.56), we obtain that for t € (ty_1,tx] (k =1,2,---),

CS
' [E :awfj (z(s

T’S

hj(xj(u)) du] ds. (6.56)

ecitxi(t) — 6Citklxi(t2—_1)+/

+ bigjlai(s — () + >l / ) hj(j(u)) du] ds
j=1 j=1 s—r(s)
o e Z% 258,55 — (5)) ey 9

_ 6citk,1xi(tk_1) +/ eCis [Zal]f] ﬂj‘] + sz]g] l‘] — T S)))
te—1
+ZZU/

s—r(s)

(j( >>du] ds

+/ CZSZU” s,2j(s), 2(s — 7(s))) dw;(s) + €1 L1y (2i(tr—1))-

te—1
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6.2. Stability of stochastic delayed neural networks with impulses

Hence, we obtain that

te—1
6Citk—1$i(tk_1) — ecitk_zl‘i(tk—l) / eCis

Zawfj zj(s
tp—2
—i—Zb”g] (xj(s—7(s —l—Zl”/

hj(x;(u)) du] ds

] 1 T’ S

tre—1
/ e Zaw (5,25(s), (s = 7(s))) dw;(s) + €2 Lo (it —2))
ti—2

to n
e2ai(ty) = ecitlxi(t1)+/ 6Cis[§ aij f(x;(s))
i1 i=1
J

+wag] zj(s —7(s —|—le]/

7=1

xj(u)) du] ds

7‘ 8

n

[ ooy e) st - () duny(5) ¢ D (1)

7j=1
n

Cilig(ty) = ¢i(0)+/01ecislzaijfj($j(’5))

j=1

+Zb”g] (@i(s = () + > L / ( )hj(aj-(u))du] ds

/1 Y o= 7))

which yields that for ¢ > 0,

t n
xi(t) = ecitqﬁi(O)—i-/O efCi(t*S)Zaijfj(xj(s))ds
j=1
t n
+ [ S by s = () s
j=1
t n s
+/ e_ci(t_s)Zlij/ hj(xzj(u))duds
0 j=1 s—r(s)

t n
+ /0 e 3 (s, (s), g (s — 7(8))) dog () + 3 eI L (i (1),
j=1

O<tr<t

Lemma 6.2.9. Define an operator by (Qp)(t) = ¢(t) for t € [9,0], and fort >0,
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Qo)1) (6.57)
= ¢ 0g;(0) + / e N "y fi(05(s)) ds + / DY bisgs(ps(s = 7(s))) ds
=1 j=1

€
0 0
t n s
+ / 6ici(tis) Z lij / hj((pj (U)) duds
0 =1 s—r(s)

t n
+ / e 0ij(s,05(5), @i (s = T(5)) duwy(s) + D e I(ilt)).
0 j=1 0<t<t
Suppose that the assumptions (A1)-(A5) hold. If the conditions (i)-(iii) in Theorem 6.2.1 are
satisfied, then Q : Sy — Sy and Q) s a contraction mapping.

Proof. Denote (Q)i(t) := J1i(t) + J2i(t) + J3i(t) + Jai(t) + J5i(t) + Jei(t), where

t
Jui(t) = e “p;(0), Jzi(t):/o fci(t_s)Zaijfj(%(s))dsa
=1

t n
Jslt) = / =) 3 byig:(05(s — 7(5))) ds,

t n s
=1 s—r(s

Jsi(t) = tfci(t*s) n 0ij(s,95(s), pi(s — 7(s))) dw;(s),
5 /0 ; IOR®
Toit) = D e T Py (ai(t).

0<tp<t

Stepl. From the definition of the metric space Sy, we have that EY " | [¢i(t)[? < oo for all
t>0, pe€ Sy

Step2. We prove the continuity in pth moment of Qx on [0,00) \ {t1,t2, -} for x € Sy and
left continuity and existence of a right limit at each t; (k= 1,2,---). It is clear that (Qyp);(t)
is continuous on [¢,0]. For a fixed time ¢ > 0, it is easy to check that Jy;(¢), Ja;i(t), J3:(t),
Jui(t), J5i(t), Jei(t) are continuous in pth moment on the fixed time t # ¢ (kK = 1,2,---).
Hence, (Qwp;)(t) is continuous in pth moment on the fixed time t # ¢t (k = 1,2,---). On the
other hand, as t = ty, it is easy to check that Ji;(t), Jo;i(t), Jsi(t), Jai(t), J5i(t) are continuous in
pth moment on the fixed time t = t; (k = 1,2,---). In the following, we check pth moment left
continuity of Jg;(t) on t =ty (k=1,2,---). Let r < 0 be small enough,

E Z ’Jﬁi(tk -+ T’) — Jﬁi(tk)‘p

=1
n p
=EY | Y e it mIL(itm) = Y e T L (p(tm)
1=1 | 0<tm<tr+r 0<tm <ty
n p
<E Z <€—ci(tk+r) _ e—Citk) Z €Citmlim<@i(tm>) ’
=1 0<tm<tp
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which implies that lim, ,o- EY " [Jei(tk +7) — Jei(tx)|” = 0. Let r > 0 be small enough,

B | Jei(ts + 1) — Joilte)|”
i=1

n p
) Z Z eici(thrr*tm)Iim(SOi(tm)) _ Z efci(tk*tm)[im(gpz.(tm))
i=1 | 0<tm <tp+r 0<tm <tg
=E) | [ S T (iltm) + e%twm«oi(tk»]
=1 0<tm<tp

P

e S L (t)

0<tm <ty

(7ot — oot} N7 e L (i) + € Ln(pi(1))

0<tm<tg

which implies that lim,,_>0+ EZ?:l ’JGi(tk + 7") - J6i(tk)‘p = EZ?:l ’Ilk(ﬁpz(tk)ﬂp

p

Y

Based on the above discussion, we obtain that (Qg)i(t) : [0,00) — L% (@;R") is continu-
ous in pth moment on t # t (k = 1,2,---), and for t = t; (k = 1,2, ), hmtﬁq(Qcp)i(t)
and limt%t;(Qcp)i(t) exist. Furthermore, we also obtain that limt%t; (Qe)i(t) = (Qu)i(ty) #
limtﬁ)tz (Qep)i(t).

Step3. We prove that Q(Ss) C Sp. From (6.57),

6 6 n
EZ Qui(t) P = EZ > Tt S (. ZE<Z \in(t)\p). (6.58)
Jj=1 j=1 i=1

=1
Now, we estimate the right-hand terms of (6.58). From (A3), we know that |[[(x;(tx))| <
pik|xi(tg)|, combining with the condition (ii), we obtain that

n r p
EY e < EY | > e_ci(t_t’“)mk!%(tk)\]
=1 i=1 LO<tp<t

p
pi Yy e T i) (t —tk—l)]

i=1 L O0<tp<t

t p
pi/ —al=9lg; (S)\dSI

rle
( =) ds> | eI as
0
= i= 1{112ax {cgpl} (Zwl ) (6.59)
o

Since EY % pi(t)| — 0, t — 7(t) and ¢t — r(t) — oo as t — oo. Thus, from (6.58),
(6.59) and combining with (6.17), (6 18) and (6.19), we obtain that EY""" | |Qe;(t)|? — 0 as

™

”%
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EY"  l@i(t)|P — 0. Therefore, Q : Sy — Sg.

Step4. We prove that @ is a contraction mapping. For any ¢,9 € Sy, from (6.17), (6.18),
(6.19), (6.58) and (6.59), we obtain

sup {E > 1Qwi(s) Q?/)i(S)I”}

s>

<5 ug{EZ I -c*s-wjg:jlaij(fj(mj(u))—fj<yj<u>>) du } p
<5 sup {EZ e Ezib (975 — 7)) — g5 — () ) }
5 ug{EZ e Zl/( (s ) = hy (w0 >>)dvdup}
450! sup {EZ} /0 e—ci(s—w jzn; (aij(s, z(s), z;(u — 7(u)))

~05(5,45(5), i (s = 7(w))) ) dow; ()

+57 L sup {EZ

s> i—1

}
Z e cit=tr) (Lik(@i(tr)) — Lin(¥i(tr)))

0<tp <t

)

p/q

p/q n n
§5p_1{2 p(Z!auql%lq) +Zc;p Zbij|q’8j|q>
=1 =1

=1

n r\P n p/q n
+Z<c,> (;ﬂw\ql’wq) +np_1zci_p/2<up/2+vp/2)

=1 =1
pi}}sug{]}izwj(s)—wj( )|P }—abug{EkaJ V(s )|P}.
s> j=1 s>

1 -
+— max
c i=1,2,---,n Cf

From (6.45), we obtain that @ : Sy — Sy is a contraction mapping. O

We are now ready to prove Theorem 6.2.1.

Proof. From Lemma 6.2.9, by a contraction mapping principle, we obtain that @ has a unique
fixed point x(t), which is a solution of (6.42) with z(t) = ¢(t) ast € [J,0land EY ;" | 2;i(t)[? — 0
as t — oo.

Now, we prove that the trivial solution of (6.42) is pth moment stable. From (6.45), For any
e > 0, we choose 6 > 0 (6 < ¢) such that 6771 < (1 — a)e.

If 2(t) = (z1(t), 22(t), -+ , 2, (t))T is a solution of (6.42) with the initial condtion satisfying
E> " |6i(t)[P < d, then () = (Qz)(t) defined in (6.57). We claim that EY " | |x;(¢)[P < ¢ for
all ¢ > 0. Notice that EY ;" | |z;(¢)|P < e for ¢ € [0,0], we suppose that there exists t* > 0 such
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6.2. Stability of stochastic delayed neural networks with impulses

that EY 7" |2;(t*)[P = e and EY " |2(¢)|P < € for —7 < t < t*, then it follows from (6.45),
we obtain that

EY |zt
i=1

n
SETEY e w0

i=1
n n r/a t* "~

L1 Zci—p/q<z |aij|qan> / e_Ci(t*—S)E<Z |wj(s)|p> ds
i=1 J=1 ‘ =

n n P/q 4 n
4P 1 Zci—p/q<2|bij‘q|5ﬂq> / eCi(tS)E<Z\xj(s—T(s)))]p> ds
i=1 j=1 0 7=1
n p/e [ P s &
74 *
o> (L) (z uz-jw) [ e | E(Z mwl?) s
i1 Ci =1 0 s—7(s) J=1
n t* n
6P Ipp—1 Z c}fp/Q ,up/Q / e G 9R < Z ‘xj(3)|p> ds
i=1 0 i=1
t* n
sl [ e—cﬂt—s)E(Z (s — T<s>>|P> ds]
0

j=1
+6P~! max p§1 /t* et =) i |z (s)P | ds
=120 | @ 0 P
n n p/q n n r/q
e U Z‘%p<z \aijlqlaﬂq) +6r ZC¢p<Z |bij|qlﬁj\q>
i=1 j=1 i=1 j=1

"o reN\P [ p/q n
+6771 ) (C> (Z uz-jrqw) o ) WAl (LR
i=1 " j=1 —

+} max {pf He<(l—a)s+as:€,

ci=12,n | P!
K3

which is a contradiction. Therefore, the trivial solution of (6.42) is asymptotically stable in pth
moment. ]

Let I;; = 0, the system (6.42) is reduced to

dz(t) = [-Cz(t) + Af(x(t)) + Bg(z(t — 7(t)))] dt
+o(t,x(t),z(t —7(t))) dw(t), t#tx (6.60)
Ax(ty) = Ig(x(ty)), t=tr, k=1,2,3,---.

which is a description of a stochastically perturbed Hopfield neural networks with time-varying
delays.

Corollary 6.2.10. Suppose that the assumptions (A1)-(A5) hold. If the following conditions
are satisfied,
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(i) there exist constants p; (i =1,2,--- ,n) such that pjr, < pi(tgy —tg—1), k=1,2,---;
(ii) and such that

p/q

n n p/q n n
S S oL IR Pl DR
i=1 j=1 1=1 Jj=1

n
1 p1 —p/2 2 2 1 -1 A
IS e () e m{cp}<1

=1

where ¢ = min{cy, co, -+ ,ent, p=max{ui, u, -, n}, v = max{vy,ve, - ,Upn};

then the trivial solution of (6.60) is pth moment asymptotically stable.

Remark 6.2.11. Note that the delay 7(t) in Corollary 6.2.10 can be unbounded.

6.2.3 Proof of Theorem 6.2.2

Define an operator (Qp)(t) = ¢(t) for t € [,0] and for ¢t > 0, (Q¢)(t) is defined as the right
hand side of (6.57). Following the proof of Theorem 6.2.1, we find that to show Theorem 6.2.2,
we only need to prove that eME > " [(Qp):(t)[P — 0 as t — oo. It follows from (6.57) that

n p

6
“ED Qp)i(t)|P = e”EZ > Ti()

7j=1

6 n
< 6P—1eMZE<Z|Jﬁ(t)|P>. (6.61)
j=1 i=1

Now, we estimate the right-hand terms of (6.61). First, by using Holder’s inequality,

(6.62)

n n
MEY | Tu(t))P = MY E
=1 i=1

t n
/0 e—ci(t—s) Z aij fi(pi(s)) ds

p
Z<t s) z(t s)
Y /\tZ]E[/ Z|aw|\f] 0;i(s |d5]
n t p/q t n p
< e)\tZE{ / efci(tfs) ds] / efci(tfs) [Z‘awuf]((p](s)ﬂ] dS}
i=1 0 0 =
n t n p
< eAthi_P/qE{/ e—Ci(t—s) [Z\am!%!s@j(S)!] ds}
=1 0 j=1
<

n n p/q t n
Ny (Z \aij|q|aj|q) / eC*“)E(Z !¢j(8)|”> ds
i=1 j=1 0 j=1
n n p/q t n
_ Z ci—p/q < Z |aij|q|aj|q> / e(A—ci)(t=s) Asp ( Z ’¢j(8)|p> ds.
i=1 j=1 0 ;

Jj=1
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With a similar computation to (6.62), we obtain that

MEY | T (0)P (6.63)
i=1
n n t
’\th_p/q<Z|bij\q|Bj!q> /U efczt s) Z’% 3—7' |p]
=1

7j=1
n n t
<e Z (Z|bm|q|ﬁj‘q> / —(ei—=A)(t—s) )\(s T(S [Z|90J 5_7_ P]

J=1 0

ED | Jui(t)P (6.64)
i=1
n n p/a t n s p
< eAtZCip/q<Z |lijq|’yj!q> / Z / u) du ] ds
i1 = 0 _ s r(s
= (7Y (5 T et [°
<e I Lii|9)yi |2 /e_ci =8 / E wi(w)P | duds
g() i) [ o gl (W)

/a
) no/ NP p b e [ y n
< Z(c) (ZI%W%\") /Oe (et >/ ()eA E(}:ymmyp) duds.
‘ = s—r(s j=1

=1

Using Lemma 6.1.16 and Hoélder’s inequality, we obtain that
n
NE |5t (6.65)
i=1

n
— e)\t Z E
i=1

p

t n
/0 6—Cz‘(t_3) Z Uij(37 (pJ(S), QD](S - T(S))) dw](s)
j=1
t 2y p/2
/0 e_ci(t_s)‘Uij(Sy goj(s), SOj(S - T<3)))’ dwj(s)] }

n o n [t p/2
= eMppt Z ZIE /0 e_ZCi(t_S)U%(s, wj(s),pi(s —7(s))) ds]

i=1 j=1

n n
< e/\tnp—l Z Z E{

i=1 j=1

n on [ .t p/2
< Mypp-1 Z ZE /O o~ 2ci(t—s) (luj(p?(s) + ngo§(3 — T(S))) ds]

i=1 j=1
p/2
< / 201(15) 1,3 (5) ds>

< e)\tnp 12p/2 IZZE
. p/2
+ (/0 e_zci(t_s)ujgoi(s —7(9)) ds) ]

i=1 j=1
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<oy S

p/271 t
</ —2¢;(t—s) ds) / G_QCi(t s) P/2‘S0]( )’pds]
=1 j=1 0

p/2_1 t
teMpp—lop/2-1 Z ZE [(/ —2¢i(t=s) ds) /0 efzci(tfs)vfﬂh&j(s —7(s))P ds]

i=1 j=1
n t n
< eMpp1 ch}—p/Q [MP/Q/ e‘ci(t_s)E<Z \goj(s)]p> ds]
— 0 —
+eMpP! Zci_pm [VP/Q/ ecilt= S)E<Z lpj(s —7( ) ds]
i=1 0

n t
< pp1 Z c;*i’/? !Mp/2 / e—(ci—A)(t—S)6A8E<Z \goj(s)]p> ds]
i=1 0 j=1
n t n
+e P Z cl.l_p/2 [vp/2 / e(CiA)(tS)e)‘(ST(S))E<Z loj(s — T(s))]p> ds] .
0 ,
J=1

i=1

Further, from (A3), we know that |Ijx(zi(tx))| < pirlxi(ty)| for i = 1,2,--- n, k = 1,2,---
Combining with the condition that p;r < p;(tx — tx—1), we obtain that

n n [ p
eMEZ [Jei ()P < eAtEZ Z e_ci(t_t"‘)pid%(tk)’]
i=1 i=1 Lo<tp<t

n p
< NE) |p ), e_ci(t_t’“)|<ﬂi(tk)\(tk—tk—1)]
=1

O<tr<t

n [ t p
NED | |pi / @Ci(ts)’%(s)’ds]
i=1 L 70

n ¢ r/le .,
eME pr / e ei(t=9) g / e~ =) ()|P ds
i=1 0 0
A A S Y
i —(c— —5) s ) P
max cf_l /0 e e’E z; lpi(s)|P | ds.  (6.66)

Since EY " pi(t)] = 0, t — 7(t) — oo and t — r(t) — oo as t — oo. Thus, from (6.61) to
(6.66), we obtain that eME > 1| [(Qp)i(1)|P — 0 as MEY" | |¢i(t)[P — 0. Hence, combining
the proof of Theorem 6.2.1, there exists a unique fixed point ¢(-) of @ in Cy, which is a solution
of the system (6.42) such that eME > " | |¢;(#)|P — 0 as t — oo. This completes the proof.

IN

IN

IN

Corollary 6.2.12. Suppose that the assumptions (A1)-(Ab) hold. Assume that
(i) the discrete delay 7(t) is bounded by a constant T (7 > 0);

(ii) there exist constants p; (1 =1,2,--- ,n) such that py < p;i(tx —ti—1), k=1,2,--+;

200



6.2. Stability of stochastic delayed neural networks with impulses

(iii) and such that
n n p/q n n
3 (St +5p—1zc;p(2|wwjiq)
i=1 j=1 i=1 Jj=1

n
1 g - _ A
+5P Pl cAp/Z( p/2+1/p/2)+5p Lt max <1,
giz z 4

p/q

where ¢ = min{cy, ca, -+ ,cnt, p=max{ui, ua, -, fn}, v = max{vy,vo, - ,Un},

then the trivial solution of (6.60) is pth moment exponentially stable.

6.2.4 Proof of Theorem 6.2.6

In this subsection, we prove Theorem 6.2.6. We start with some preparations.

Using similar computations as in Subsection 6.2.2, we obtain that for ¢ > 0, the system (6.47)
is equivalent to

t n t n
zi(t) = e %'ui(0) + / e ci(t=9) Z aijgj(z;(s)) ds + / e cilt=s) Z bijg;(z;(s —7(s))) ds
0 = 0

=1

/ (t—s Zl”/ ) duds+ Y e i) Ly (24 (1)),

r(s) 0<t<t
i=1,2,3,- n, k=1,2,.-
Lemma 6.2.13. Define an operator by (Py)(t) = ¢(t) for —7 <t <0, and for t > 0,
t n
(Poklt) = e a0+ [ e 03 ayg(ey(s) ds
0

j=1

t n
+ /0 e~ S byigi (55 — 7(5))) ds
j=1

t n s
+/ eici(tis) ZZU/ du ds -+ Z t tk zk xz(tk))
0 =1 S*T(S) 0<ty <t
= Il(t) + Ig(t) + Ig(t) + I4(7f) + I5(7f). (667)

If the conditions (i)-(iii) in Theorem 6.2.6 are satisfied, then P : Sy — Sy and P is a contraction
mapping.

Proof. First, we prove that PS; C S4. In view of (6.67), it is easy to check that (Px;)(t) is
continuous on fixed time ¢ # ¢t (k =1,2,---). On the other hand, as t =t (k=1,2,---), it is

not difficult to show that Iy (¢), Ia(t), I3(t), 14(t) is continuous on fixed time t = t; (k= 1,2,---).
Let » < 0 be small enough, we obtain that

Yoo e T L (oi(tn)) = Y e T L (0 (tm))

0<tm<tp+r 0<tm <ty

‘ (e_ci(tk‘f"”) — G_Citk) Z €Citmlim(90i(tm)) )

0<tm <t

|J5i(tk + T) — J5i(tk)| =

IN
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which implies that lim, _,o- [J5;(tx +7) — J5i(tx)| = 0. Let r > 0 be small enough, we obtain
that

‘J5i(tk + T‘) — J5i(tk)| =

S e L (o)) — Y eC"““mUim(so@-(tm))‘

0<tm<tp+r 0<tm <ty
et [ > Ln(iltn)) + e%th-k@oi(tk))]
0<tm <t
_efcitk Z ecitmjim(@i (tm))
0<tm <tp
_ ‘ (e—ci(tk'f‘r) _ e—Citk) Z €citm[im(<,0i(tm)) + €_Cirlik(4,0i(tk)) ,
0<tm <t

which implies that lim, o+ [J5i(tx +7) — Ji(te)| = [Lix(i(tk))]-

(k=1,2,---), and for t =t} (k=1,2,---), limtﬁt:( ©)i(t) and limtﬁt;(Pap)i(t) exist. Fur-

Based on the above discussion, we obtain that (Py);(t) : [J,00) — R™ is continuous on ¢ # ¢,
thermore, we also obtain that limt_ﬁ; (Pp)i(t) = (Py)i(ty) # limtét;:(Pap)l-(t).

Next, we prove that lim; o (Pp)i(t) = 0 for ¢;(t) € Sip.

[I5(t)] = Z e_ci(t_tk)Iik(wi(tk))‘ <

0<tp<t

S e Wty — ty)ai(t)

0<trp<t

t
< b [ eI ()]s (6.69)
0

From the fact that ¢; >0 (i = 1,2,--- ,n) and the estimate (6.33), (6.34), (6.35) and (6.68), we
conclude that limy_,o (Pz;)(t) = 0 for x;(t) € Siy. Therefore, P : Sy — Sg.

Now, we prove that P is a contraction mapping. For any x(t),y(t) € S4, we obtain that

n

S sup |(Pa)i(t) — (Py)i(t)]
=1 U<s<t
n t n
< 2 j:g{l%;s 7n|aijaj’/0 e—ci(t—s)zng(s) —y,(s)|ds
1= =
n t n
R —ci(t—s) ) . o B
+Z;j:1512§;§’n\bzgﬁgl/o e Z;]azj(s 7(s)) — yi(s — 7(s))| ds
1= j=

n t n s
A —ci(t—s) ‘ o
_,_;Fr{lz%}x n ‘lz]’YJ’ /0 € ;/;_T(S) ]x](u) y](u)’ du ds

+3 0 [ e ) = i) s
=1

t
0
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6.2. Stability of stochastic delayed neural networks with impulses

n

1
Z — _max |a,]a]\ + Z . m2a>§ bij 55l
i ’

—y Cc; =12, =
pi || v
+ _max lijvj| +  max = sup |z;(s) —y,(s
> e o+ g (2] 32 o~
=« sup |x; .
Z [79<s<t’ ! (s )|]
From (6.50), we obtain that P is a contraction mapping. O

We are now ready to prove Theorem 6.2.6.

Proof. Let P be defined as in Lemma 6.2.13, by a contraction mapping principle, P has a unique
fixed point z € Sy with 2(0) = ¢(f) on —7 <0 <0 and x(t) — 0 as t — oo.

To obtain asymptotically stable, we need to prove that the trivial equilibrium z = 0 of (6.47)
is stable. From (6.50), For any € > 0, choose ¢ > 0 and ¢ < ¢ satisfying the condition oc+ca < e.

If 2(t,¢) = (x1(t, d), x2(t, @), -, xn(t, @) is the solution of (6.47) with the initial condition
o]l < o, the we claim that ||z(t,¢)|| < € for all ¢ > 0. Indeed, we suppose that there exists
t* > 0 such that

> it @) =e, and ) |ni(t,¢)<e for 0<t<t (6.69)
; =1

From (6.50), we obtain

n t*
+ / emelt'- Dbmgg (s — 7(s)))| ds
+* . t *
+/ e—cilt S)Z“ij/ hj(xj(u))’dUdS‘f‘Pi/ emeilt 7S)|‘Ti(s)‘d8
0 1 s—r(s) 0
=1

n
1
<o+e g — max ]awa]]—i— g _max \bijﬁj\
i=1
7
+ E — max ||+ max {—
— Cj j=1,2,n J=12,-n | ¢
=1
<o+4+ea<e.

which contradicts (6.69). Therefore, ||z(t,¢)|| < e for all ¢ > 0. This completes the proof. O
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Let l;; =0fori=1,2,---,n, j =1,2,--- ,n, the system (6.47) is reduced to

W) — ii(t) + S0 ay (i) + S0y biggi (et — (1), t# t
(6.70)

Azi(ty) = Lpws(ty), t=ty, k=1,2,3,--,

which is the description of cellular neural network with time-varying delays. Following the result
of Theorem 6.2.6, we have the following corollary. Note that the delay in Corollary 6.2.14 can
be unbounded.

Corollary 6.2.14. Suppose that the conditions (A1)-(A4) hold. If the following conditions are
satisfied,

(i) there exist constants p; (i =1,2,--- ,n) such that pir, < pi(ty —tg—1), k=1,2,--;

(ii) and such that

1 "1 bi
A oy - ey o
SR RS D g LT rf SR

then the trivial solution of (6.70) is asymptotically stable.

Remark 6.2.15. Zhang and Guan [143| has studied asymptotic stability of (6.70) by using fized
point theory. The conditions in [143] are as follows

(i) there exists a constant p such that infy—y o . {ty —tp_1} > p;
(ii) there exist constants p; (1 =1,2,--- ,n) such that py, < pjp, k=1,2,---;

(i) and such that

n

n
1 1 i
\F 2 g — max |a;jo ]+ E — max |b;f;| +  max L < 1
i—1 CZ .7:1727 s =1 CZ j:172, N 7,:172,--- ,n C’L
1= =

n

1 1 1 — Di
maX n{)\l} < 7\/5, where \; = Z E |a¢jaj| + Z E |bmﬁj| + (CZ +pi,u> .
" i i 7

i=1,2 ,
7j=1
It is clear that Corollary 6.2.16 is an improvement of the result in [143].

6.2.5 Proof of Theorem 6.2.7

Define the operator P as in Subsection 6.2.4. Following the proof of Theorem 6.2.6, we only
need to prove that e*(Py);(t) — 0 as t — co. We estimate the right-hand terms of (6.67), we
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6.2. Stability of stochastic delayed neural networks with impulses

obtain that

t n
M) = /O e 3 gy i (i05(s)) ds
j=1
t n
< o / i) 3" Jagja s (s)] ds
0 j=1
t n
< e agay] [ eeree >l s
p=
A A ! -
M) = M /0 eIy Thijgi(is(s — 7(5))) ds
j=1

IN

t n
oM / eI N by Byl (s — 7(s))] ds

Jj=1

.7:1’27"' TV

(6.72)

t n
< O max [by| [ e NI Y oo (s ds, (673)
0

j=1

e/\t]L;(t)] _ eAt

t n s
/ e—ci(t—s) Z lij / hj(pj(u)) duds
0 j=1 s—r(s)

t n s
N [ IS gl [ eyt duds
0 j=1 s—r(s)

IA

IN

1<y

t s n
e max 1| / e~ (= A)(=s) / > lpj(u)| duds,  (6.74)
=harn 0 s—7(s) =1

MIs (1) =M > e WL ()| < M| Y e Uity — th1)a(t)
0<tp<t O<tp<t
t
< / @ N=) M|y (N s, (6.75)
0
From the fact that A < min{cy,co, -+ ,¢,}, ¢; >0 (i =1,2,--- ,n) and the above estimate, we

obtain that e*(P);(t) — 0 as t — oo.

Corollary 6.2.16. Suppose that the conditions (A1)-(A4) hold. If the following conditions are

satisfied,
(i) the delay 7(t) is bounded by a constant T (7 > 0);

(ii) there exist constants p; (1 =1,2,--- ,n) such that py < p;i(tx — ti—1), k=1,2,---;

(iii) and such that

n

n
1 1 i
A )
a= E — max |a;jo; + E — max |bj;f;|+ max {— <1,
1 C; j:1727"' s1 i—1 C; j71727"' 1 j:1727"' ;T &
1=

(6.76)
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then the trivial solution of (6.70) is exponentially stable.

Remark 6.2.17. Zhang and Luo [142] has studied exponential stability of (6.70) by using fized
point theory. The conditions in [142] are as follows

(i) the delay 7(t) is bounded by a constant T (7 > 0);

(ii) there exists a constant p such that infr—; o . {ty, —tp_1} > p;

(iii) there exist constants p; (i =1,2,--- ,n) such that pjr. < pip, k=1,2,--+;
)

(iv) and such that

n n
N 1 1 Di
a= g — max |a;jo ]+ g — max |b;f;|+ max = +ppp <l
i—1 C’L j:172’ )T i—1 CZ ]:1727 )1 121727"' )1 C’L
1= 1=

It is clear that Corollary 6.2.16 is an improvement of the result in [142].

6.2.6 Examples
Example 6.2.18. Consider the following two-dimensional cellular neural network

Poll) = —eig(t) + 32 aggi(x(0) + X2 by (st —T(t) i=1,2, t#t
(6.77)

Azi(ty) = Lpwi(ty), t=tp, k=1,2,3,---,

with the initial conditions x1(s) = cos(s), xa(s) = sin(s) on —% < 5 <0, where ¢1 = co = 3,
all = 6/7, alg = 3/7, agl = —1/7, agsy = —1/7, b11 = 6/7, 612 = 2/7, 521 = 3/7, b22 =
1/7, the activation function is described by g;(x) = %, T(t) = 0.4t + 1. Lip(xi(ty)) =
arctan(0.4x;(tx)), ty = tx—1 + 0.5k, i =1,2 and k =1,2,---.

It is clear that a; = 8; =1, pjp =04 for i =1,2, k=1,2,---, we select p; = 0.8, then

2 2
1 1 i 1 (6 1 6 3 4
E _ Ny E _ 3. < Z 4 4 = —
'1Cz'jn=1%,}§|a”aj‘+4 1Cijnialmé‘bljﬁj|+j=?}2&?~}~{-,n{cl‘} N 3X<7+7+7+7)+35
1= 1=
16 4
= —+ =<0 1.
21+35<088<

Hence, by Corollary 6.2.14, the trivial solution of (6.77) is asymptotically stable. However,

2 2
! 1 Di
— max [a;j; — max |b;;5; max { = 4+ pus>1
Zz:; R ’ ? ]| ! ; ¢; j=1,2 | wﬁj‘ + i=1,2,-,n { C; T Pin )

which implies that the result in [143] is not applicable.

Example 6.2.19. Consider a two-dimensional stochastically perturbed Hopfield neural network
with time-varying delays,

dz(t) = [-Cx(t) + Af (x(1)) + Bg(x-(t))] dt + o(t,x(t), z- (1)) dw(t), ¢F#tk
(6.78)
Ax(tk) :Ik($(tk)), t=tr, k=1,2,3,---,
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where f(z) = arctanz, g(z) = L tanha = 1(e” —e™®)/(e® + ™), 7(t) = Lsint + &,

5 0 2 04 —0.8 2
C‘(o 4.5)’ _<O.6 1) and B_< 1 4)'

In this example, let p = 3, take a;j = 0.2, B; = 0.2, j = 1,2, 0 : RT X R? x R? — R? x R?
satisfies

o (t,z,y) <0.01(2z? +y3) and o3 (t,z,y) <0.01(z3+43), i=1,2.

Ilk(x,(tk)) = O.lxi(tk), tr =1t,_1+05,i=1,2andk=1,2,---.

It is clear that p;, = 0.1, we choose p; = 0.2, let p = 2, we check the condition in Corollary
6.2.10,

p/q

n n p/q n n
7St (Shaatia) 5 e ( S
i=1 j=1 i=1 J=1

n V4

—1, p—1 —p/2 2 2 -1 —1 p;

L5plyp } 1207; (u”/ .y ) 1opple g?é{cfll} <0.53 < 1.
1=

From Corollary 6 2.10, the trivial solution of (6.78) is asymptotically stable. On the other
hand, since |7(t) ‘2 sint + 3| < 1, from Corollary 6.2.12, the trivial solution of (6.78) is
exponentially stable

6.3 Notes and remarks

Neural networks have received an increasing interest in various areas [34, 119]|. The stability of
neural networks |38, 82, 139, 140] is critical for signal processing, especially in image processing
and solving some classes of optimization problems. For the stochastic effects to the dynamical
behaviors of neural networks, Liao and Mao [79, 80| initiated the study of stability and insta-
bility of stochastic neural networks.

Many articles [54, 55, 56, 120, 129] have considered a special case of the stochastic equation
(6.1). Hu et al.[54] and Wan and Sun [129] studied a special case of (6.1) with the delays
constant and discrete. The activation functions appearing in [54| are required to be bounded.
Liao and Mao [81] investigated exponential stability of stochastic delay interval systems via
Razumikihin-type theorems developed in [95], several exponential stability results were provid-
ed. However, the results are not only difficult to verify but also restrict to a case of the interval
matrices A = B = C' = 0. Sun and Cao [120] investigated the pth moment exponential stability
of stochastic differential equations with discrete bounded delays by using the method of variation
parameter, inequality technique and stochastic analysis. This method was firstly used in [129],
which does not require the boundedness, monotonicity and differentiability of the activation
functions. However, the stability criteria in [120] requires that the delay functions are bounded,
differentiable and their derivatives are simultaneously required to be not greater than 1, this
may impose a very strict constraint on model (see [138]). Huang et al. [55, 56| investigated the
exponential stability of stochastic differential equations with discrete time-varying delays with
the help of the Liapunov function and Dini derivative. However, the use of their criteria depends
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very much on the choice of positive numbers k;; etc. and a positive diagonal matrix M (see
Theorem 3.3 in [55] and Theorem 3.3 in [56]).

Based on the contents of this chapter, two papers [19, 20] have been submitted for possible
publication.
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