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Chapter 6

Stochastic delayed neural networks

This chapter presents stability properties of a class of stochastic delayed neural networks without

impulses and a class of stochastic delayed neural networks with impulses.

In Section 6.1, we present new conditions for asymptotic stability and exponential stability

of a class of stochastic recurrent neural networks with discrete and distributed time varying

delays. Our approaches are based on the method using �xed point theory and the method using

an appropriate integral inequality, which do not resort to any Liapunov function or Liapunov

functional. Our results neither require the boundedness, monotonicity and di�erentiability of

the activation functions nor di�erentiability of the time varying delays. In particular, a class of

neural networks without stochastic perturbations is also considered by using the two approaches.

In Section 6.2, we consider the impulsive e�ects on the class of stochastic delayed recurren-

t neural networks that is discussed in Section 6.1. New su�cient conditions for asymptotic

stability and exponential stability of the class of impulsive stochastic delayed recurrent neural

networks are presented by using �xed point methods. In particular, as in Section 6.1, a class of

impulsive neural networks without stochastic perturbations is also considered.

6.1 Stability of stochastic delayed neural networks

6.1.1 Introduction and main results

During the past few decades, neural networks such as Hop�eld neural networks [53], Cellular

neural networks [24, 25], Cohen-Grossberg neural networks [136] and bidirectional associative

memory neural networks (BAM Networks) [68, 69, 70] have been well investigated since they

play an important role in many areas such as combinatorial optimization, signal processing and

pattern recognition.

Due to the �nite switching speed of neurons and ampli�ers, time delays which may lead to

instability and bad performance in neural processing and signal transmission are commonly en-

countered in both biological and arti�cial neural networks. In addition, neural networks usually

have a spatial extent due to the presence of a multitude of parallel pathways with a variety of

axon sizes and lengths [128]. Thus there will be a distribution of conduction velocities along

these pathways and a distribution of propagation delays [146]. In these circumstances the sig-

nal propagation is not instantaneous and may not be suitably modeled with discrete delays.

Therefore, a more appropriate way which incorporates continuously distributed delays in neural

network models has been used. Further, due to random �uctuations and probabilistic causes in

the network, noises do exist in a neural network. Thus, it is necessary and rewarding to study

stochastic e�ects to the stability property of neural networks.
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Chapter 6. Stochastic delayed neural networks

Liapunov's direct method has long been viewed the main classical method of studying stability

problems in many areas of stochastic delay di�erential equations. The success of Lyapunov's di-

rect method depends on �nding a suitable Liapunov function or Liapunov functional. However,

it may be di�cult to look for a good Liapunov functional for some classes of stochastic delay

di�erential equations. Therefore, an alternative may be explored to overcome such di�culties.

It was proposed by Burton [13] and his co-workers to use �xed point methods to study the

stability problem for deterministic systems. Luo [90] and Appleby [4] have applied this method

to deal with the stability problems for stochastic delay di�erential equations, and afterwards,

a great number of classes of stochastic delay di�erential equations are discussed by using �xed

point methods, see, for example, [34, 91, 92, 117, 118]. It turns out that the �xed point method

is a powerful technique in dealing with stability problems for deterministic and stochastic dif-

ferential equations with delays. Moreover, it has an advantage that it can yield the existence,

uniqueness and stability criteria of the considered system in one step. Chen [21, 23] has applied

an appropriate integral inequality to study exponential stability of some classes of stochastic

delay di�erential equations, and it turns out that it is a convenient way to discuss exponential

stability of a system.

The aim of this section is to study a general class of stochastic neural networks by using �xed

point methods and the method by employing an appropriate integral inequality. Indeed, we

consider the following class of stochastic neural networks with varying discrete and distributed

delays which is described by

dxi(t) =

[
− cixi(t) +

n∑
j=1

aijfj(xj(t)) +

n∑
j=1

bijgj(xj(t− τ(t))) (6.1)

+
n∑
j=1

lij

∫ t

t−r(t)
hj(xj(s)) ds

]
dt+

n∑
j=1

σij(t, xj(t), xj(t− τ(t))) dwj(t),

or

dx(t) =

[
− Cx(t) +Af(x(t)) +Bg(x(t− τ(t))) +W

∫ t

t−r(t)
h(x(s)) ds

]
dt

+σ(t, x(t), x(t− τ(t))) dw(t)

for i = 1, 2, 3, · · · , n, where x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ Rn is the state vector associated

with the neurons; C = diag(c1, c2, · · · , cn) > 0 where ci > 0 represents the rate with which the

ith unit will reset its potential to the resting state in isolation when disconnected from the net-

work and the external stochastic perturbations; A = (aij)n×n, B = (bij)n×n and W = (lij)n×n
represent the connection weight matrix, delayed connection weight matrix and distributed de-

layed connection weight matrix, respectively; fj , gj , hj are activation functions, f(x(t)) =

(f1(x(t)), f2(x(t)), · · · , fn(x(t)))T ∈ Rn, g(x(t)) = (g1(x(t)), g2(x(t)), · · · , gn(x(t)))T ∈ Rn,
h(x(t)) = (h1(x(t)), h2(x(t)), · · · , hn(x(t)))T ∈ Rn. Moreover, w(t) = (w1(t), w2(t), · · · , wn(t))T

∈ Rn is an n-dimensional Brownion motion de�ned on a complete probability space (Ω,F ,P)

with natural complete �ltration {Ft}t≥0 (i.e. Ft = completion of σ{ω(s) : 0 ≤ s ≤ t}) and
σ : R+×Rn×Rn → Rn×n, σ = (σij)n×n is the di�usion coe�cient matrix. τ(t) and r(t) denote

a discrete time varying delay and the bound of a distributed time varying delay, respectively.

Denote ϑ = inft≥0{t− τ(t), t− r(t)}.
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6.1. Stability of stochastic delayed neural networks

The initial condition for the system (6.1) is given by

x(t) = φ(t), t ∈ [ϑ, 0], (6.2)

where t 7→ φ(t) = (φ1(t), φ2(t), · · · , φn(t))T ∈ C
(

[ϑ, 0], LpF0
(Ω;Rn)

)
with the norm de�ned as

‖φ‖p = sup
ϑ≤t≤0

(
E

n∑
i=1

|φi(t)|p
)
,

where E denotes expectation with respect to the probability measure P and p ≥ 2.

To obtain our main results, we suppose the following conditions are satis�ed:

(A1) the delays τ(t), r(t) are continuous functions such that t− τ(t)→∞ and t− r(t)→∞ as

t→∞;

(A2) fj(x), gj(x), and hj(x) satisfy Lipschitz conditions. That is, for each j = 1, 2, 3, · · · , n,
there exist constants αj , βj , γj such that for every x, y ∈ Rn,

|fj(x)− fj(y)| ≤ αj |x− y|, |gj(x)− gj(y)| ≤ βj |x− y|, |hj(x)− hj(y)| ≤ γj |x− y|;

(A3) Assume that f(0) ≡ 0, g(0) ≡ 0, h(0) ≡ 0, σ(t, 0, 0) ≡ 0;

(A4) σ(t, x, y) satis�es a Lipschitz condition. That is, there are nonnegative constants µi and

νi such that ∀ i, j,

(σij(t, x, y)− σij(t, u, v))2 ≤ µj(xj − uj)2 + νj(yj − vj)2.

It follows from [43, 98] that under the hypotheses (A1), (A2), (A3) and (A4), system (6.1) with

initial condition (6.2) has one unique global solution which is denoted by x(t, φ) or x(t) such that

t 7→ x(t, φ) : [0,∞) → Lp(Ω;Rn) is adapted and continuous and E[sup0≤s≤t ‖x(s, 0, φ)‖p] < ∞
for t > 0. Clearly, system (6.1) admits the trivial solution x(t, 0, 0) ≡ 0.

De�nition 6.1.1. The trivial solution of system (6.1) is said to be stable in pth (p ≥ 2) moment

if for arbitrary given ε > 0, there exists a δ > 0 such that ‖φ‖p < δ yields that

E‖x(t, φ)‖p < ε, t ≥ 0.

where φ ∈ C
(

[ϑ, 0], LpF0
(Ω;Rn)

)
. In particular, when p = 2, the trivial solution is said to be

mean square stable.

De�nition 6.1.2. The trivial solution of system (6.1) is said to be asymptotically stable in pth

(p ≥ 2) moment if it is stable in pth moment and there exists a δ > 0, such that ‖φ‖p < δ

implies

lim
t→∞

E‖x(t, φ)‖p = 0.

where φ ∈ C
(

[ϑ, 0], LpF0
(Ω;Rn)

)
.

161



Chapter 6. Stochastic delayed neural networks

De�nition 6.1.3. The trivial solution of system (6.1) is said to be pth (p ≥ 2) moment expo-

nentially stable if there exists a pair of constants λ,C > 0 such that

E‖x(t, φ)‖p ≤ CE‖φ‖pe−λt, t ≥ 0,

holds for φ ∈ C
(

[ϑ, 0], LpF0
(Ω;Rn)

)
. Especially, when p = 2, we speak of exponentially stable in

mean square.

Di�erent choices of norms can be considered on spaces of stochastic processes. The norms we

choose should be such that the space under consideration is complete and the equation yields

a contraction with respect to the norm. For the system (6.1) with initial condition (6.2), we

consider the following two di�erent complete spaces which are de�ned by using two types of

norms.

De�ne Sφ the space of all Ft-adapted processes ϕ(t, ω) : [ϑ,∞) × Ω → Rn such that ϕ ∈
C
(
[ϑ,∞), LpFt(Ω;Rn)

)
. Moreover, we require ϕ(t, ·) = φ(t) for t ∈ [ϑ, 0] and E

∑n
i=1 |ϕi(t)|p → 0

as t→∞, i = 1, 2, · · · , n. If we de�ne the norm

‖ϕ‖p := sup
t≥ϑ

(
E

n∑
i=1

|ϕi(t)|p
)
, (6.3)

then Sφ is a complete metric space. Using a contraction mapping de�ned on the space Sφ
and applying a contraction mapping principle, we obtain our �rst result. Its proof is given in

Subsection 6.1.2.

Theorem 6.1.4. Suppose that the assumptions (A1)-(A4) hold. If the following conditions are

satis�ed,

(i) the function r(t) is bounded by a constant r (r > 0);

(ii) and such that

α , 5p−1
n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 5p−1
n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

(6.4)

+5p−1
n∑
i=1

(
r

ci

)p( n∑
j=1

|lij |q|γj |q
)p/q

+ 5p−1np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)
< 1,

where µ = max{µ1, µ2, · · · , µn}, ν = max{ν1, ν2, · · · , νn};

then the trivial solution of (6.1) is pth moment asymptotically stable.

Consider a case when both the discrete delay τ(t) and r(t) in the distributed delay are bounded

by a constant τ . Let φ ∈ LpF0
(Ω, C([ϑ, 0],Rn)), de�ne Cφ to be the space of all Ft-adapted

processes ϕ(t, ω) : [−τ,∞) × Ω → Rn such that ϕ ∈ Lp(Ω, C([ϑ,∞),Rn)). Moreover, we set

ϕ(t, ·) = φ(t) for t ∈ [ϑ, 0], ϕ(t, ·) = φ(ϑ) for t ∈ [−τ, ϑ] (in case −τ < ϑ), and for t → ∞,∑n
i=1 E supt−τ≤s≤t |ϕi(s)|p → 0. The norm on Cφ is de�ned as

‖ϕ‖p = sup
t≥0

[
n∑
i=1

E

(
sup

t−τ≤s≤t
|ϕi(s)|p

)]
, (6.5)
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6.1. Stability of stochastic delayed neural networks

then Cφ is a complete metric space. Using a contraction mapping de�ned on the space Cφ
and applying a contraction mapping principle, we obtain our second result, which is proved in

Subsection 6.1.3.

Theorem 6.1.5. Suppose that the assumptions (A1)-(A4) hold. If the following conditions are

satis�ed,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ (τ > 0);

(ii) and such that

α , 5p−1ecτ c−p
n∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 5p−1ecτ c−p
n∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q

+5p−1τpecτ c−p
n∑
i=1

(
n∑
j=1

|lij |q|γj |q
)p/q

+5p−1Kpn
pepcτqpc1−p/2(2c)−1

(
µp/2 + νp/2

)
< 1, (6.6)

where c = min{c1, c2, · · · cn}, µ = max{µ1, µ2, · · ·µn}, ν = max{ν1, ν2, · · · νn};

then the trivial solution of (6.1) is pth moment asymptotically stable. More than that, for every

ε > 0, there exists a δ > 0 such that ‖φ‖ < δ implies
∑n

i=1 E supt−τ≤s≤t |xi(s)|p < ε and

limt→∞

{
E
[

supt−τ≤s≤t ‖x(s, 0, φ)‖p
]}

= 0.

Remark 6.1.6. In some papers, see, for example, [89, 90, 131, 132], the norm for the space of

stochastic process is de�ned as

‖ϕ‖[0,t] =

[
E
(

sup
s∈[0,t]

|ϕ(s)|2
)]1/2

.

As in [90], in order to show P (S) ⊆ S, we need to estimate E sups∈[0,t] |I5(s)|2, where

I5(s) =

∫ s

0
e−
∫ s
z h(u) du [c(z)x(z) + e(z)x(z − δ(z))] dω(z).

However, I5(s) is not a local martingale (see Section 1.4 for its proof). Hence, Burkholder-Davis-

Gundy Inequality can not be applied directly.

Using an appropriate integral inequality, we obtain su�cient conditions for exponential stability

of (6.1) with initial condition (6.2), which is our third result. For its proof, see Subsection 6.1.4.

Theorem 6.1.7. Suppose that the assumptions (A1)-(A4) hold. If the following conditions are

satis�ed,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ ;

163



Chapter 6. Stochastic delayed neural networks

(ii) and such that

5p−1c−p
n∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 5p−1c−p
n∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q

(6.7)

+5p−1
(τ
c

)p n∑
i=1

(
n∑
j=1

|lij |q|γj |q
)p/q

+ 5p−1npc−p/2(µp/2 + νp/2) < 1,

where c = min{c1, c2, · · · , cn}, µ = max{µ1, µ2, · · · , µn}, ν = max{ν1, ν2, · · · , νn};

then the trivial solution of (6.1) is exponentially stable in pth moment,

Remark 6.1.8. The stability criteria we provided in our main results are only in terms of the

system parameters ci, aij, bij, lij, etc. Hence, these criteria can usually be veri�ed easily in

applications.

Remark 6.1.9. Many articles, see, for example, [116, 120] have studied stochastic neural net-

work (6.1) and special cases of (6.1). However, they impose the following condition on the delays

(H) the discrete delay τ(t) is di�erentiable function and r(t) in the distributed delay is non-

negative and bounded, that is, there exist constants τM , ζ, rM such that

0 ≤ τ(t) ≤ τM , τ ′(t) ≤ ζ, r(t) ≤ rM . (6.8)

In our results, condition (H) is replaced by other assumptions, which may be satis�ed when (H)

is not.

Theorem 6.1.7 can, for example, be applied to establish exponential stability in pth moment of a

two dimensional stochastically perturbed Hop�eld neural network with time-varying delay, the

delay is bounded but not di�erentiable, see Example 6.1.31 for details.

Consider a case when there are no stochastic e�ects in the system (6.1), which then comes

down to the neural network described by

dxi(t)

dt
= −cixi(t) +

n∑
j=1

aijfj(xj(t)) +

n∑
j=1

bijgj(xj(t− τ(t))) +

n∑
j=1

dij

∫ t

t−r(t)
hj(xj(s)) ds, (6.9)

i = 1, 2, 3, · · · , n,

or

dx(t)

dt
= −Cx(t) +Af(x(t)) +Bg(x− τ(t)) +D

∫ t

t−r(t)
h(x(s)) ds, (6.10)

where x(·) = (x1(·), x2(·), · · · , xn(·))T is the neuron state vector of the transformed system (6.9).

The initial condition for the system (6.9) is

x(t) = φ(t), t ∈ [ϑ, 0], (6.11)

where φ is a continuous function with the norm de�ned by ‖φ‖ = supϑ≤t≤0

∑n
i=1 |φi(t)|.

Assume that (A1) − (A3) are satis�ed, then (6.9) admits a trivial solution x = 0. Denote

by x(t, φ) = (x1(t, φ1), · · · , xn(t, φn))T ∈ Rn the solution of (6.9) with initial condition (6.11).
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6.1. Stability of stochastic delayed neural networks

De�nition 6.1.10. For the system (6.9) with initial condition (6.11), we have that

(i) the trivial solution of (6.9) is said to be stable if for any ε > 0, there exists δ > 0 such that

for any initial condition φ ∈ C([ϑ, 0],Rn) satisfying ‖φ‖ < δ, we have for the corresponding

solution that ‖x(t, φ)‖ < ε for t ≥ 0;

(ii) the trivial solution of (6.9) is said to be asymptotically stable if it is stable and for any

initial condition φ ∈ C([ϑ, 0],Rn) we have for the corresponding solution that

limt→∞ ‖x(t, φ)‖ = 0;

(iii) the trivial solution of (6.9) is said to be globally exponentially stable if there exist scalars

λ > 0 and C > 0 such that for any initial condition φ ∈ C([ϑ, 0],Rn), we have for the

corresponding solution that ‖x(t, φ)‖ ≤ Ce−λt‖φ‖ for t ≥ 0.

De�ne Hφ = H1φ ×H2φ × · · · × Hnφ, where Hiφ is the space consisting of continuous functions

ϕi(t) : [ϑ,∞)→ R such that ϕi(θ) = φ(θ) for ϑ ≤ θ ≤ 0 and ϕi(t)→ 0 as t→∞, i = 1, 2 · · · , n.
For any ϕ(t) = (ϕ1(t), ϕ2(t), · · · , ϕn(t)) ∈ Hφ and η(t) = (η1(t), η2(t), · · · , ηn(t)) ∈ Hφ, if we de-
�ne the metric as d(ϕ, η) = supt≥ϑ

∑n
i=1 |ϕi(t)−ηi(t)|, thenHφ becomes a complete metric space.

Using a contraction mapping de�ned on the space Hφ and applying a contraction mapping

principle, we obtain our fourth result, which is proved in Subsection 6.1.5.

Theorem 6.1.11. Suppose that the assumptions (A1)-(A3) hold. If the following conditions are

satis�ed,

(i) the function r(t) is bounded by a constant r (r > 0);

(ii) and such that

α ,
n∑
i=1

1

ci
max

j=1,2,··· ,n
|aijαj |+

n∑
i=1

1

ci
max

j=1,2,··· ,n
|bijβj |+

n∑
i=1

r

ci
max

j=1,2,··· ,n
|dijγj | < 1; (6.12)

then the trivial solution of (6.9) is asymptotically stable.

Remark 6.1.12. Theorem 6.1.11 is an extension and improvement of the result in Lai and

Zhang [74].

By establishing an appropriate integral inequality, we obtain su�cient conditions for exponential

stability of (6.9), which is our �fth result. Its proof is given in Subsection 6.1.6.

Theorem 6.1.13. Suppose that the assumptions (A1)-(A3) hold. If the following conditions are

satis�ed,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ (τ > 0);

(ii) and such that

1

c

n∑
i=1

max
j=1,2,··· ,n

|aijαj |+
1

c

n∑
i=1

max
j=1,2,··· ,n

|bijβj |+
1

c

n∑
i=1

τ max
j=1,2,··· ,n

|dijγj | < 1, (6.13)

where c = min{c1, c2, · · · , cn};
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Chapter 6. Stochastic delayed neural networks

then the trivial solution of (6.9) with initial condition (6.11) is exponentially stable.

Remark 6.1.14. Several exponential stability results [77, 126, 127] were provided for the system

(6.9), by constructing an appropriate Liapunov functional and employing linear matrix inequality

(LMI) method, and their results depends on the condition that the delays are satis�ed (H). From

our main results, we provide other assumptions. The delays in our results are required to be

bounded.

Remark 6.1.15. From Theorem 6.1.11 and Theorem 6.1.13, we �nd that the terms with f, g, h

in equation (6.10) can be viewed as perturbations of the stable equation dx(t)/dt = −Cx(t).

Condition (ii) in Theorem 6.1.11 and condition (ii) in Theorem 6.1.13 require the perturbation

to be small relative to the stabilizing force of C.

Theorem 6.1.13 can, for example, be applied to establish exponential stability of a two dimen-

sional cellular neural network with time-varying delay, see Example 6.1.29 for details.

The rest of this section is organized as follows. In Subsection 6.1.2, we present a proof of

Theorem 6.1.4. The proof of Theorem 6.1.5 is presented in Subsection 6.1.3 and the proof of

Theorem 6.1.7 is given in Section 6.1.4. we present the proofs of Theorem 6.1.11 and Theo-

rem 6.1.13 in Subsection 6.1.5 and Subsection 6.1.6, respectively. Some examples are given to

illustrate our main results in Subsection 6.1.7.

6.1.2 Proof of Theorem 6.1.4

In this subsection, we prove Theorem 6.1.4. We start with some preparations.

Lemma 6.1.16. ([96, 129]) If w(t) = (w1(t), w2(t), · · · , wn(t))T (t ≥ 0) is a n-dimensional

Brownian motion de�ned on a complete probability space (Ω,F ,P), then for each t ≥ 0, we have

the following formula

E
(∫ t

0
fi(s) dwi(s)

∫ t

0
fj(s) dwj(s)

)
= E

∫ t

0
fi(s)fj(s) d〈wi, wi〉s,

where 〈wi, wi〉s = δijs are the cross-variations, and δij is the correlation coe�cient, fi is adapted

and fi ∈ L2(Ω× [0, t]), i, j = 1, 2, · · · , n.

If we multiply both sides of (6.1) by ecit and integrate from 0 to t, we obtain

xi(t) = e−citxi(0) +

∫ t

0
e−ci(t−s)

n∑
j=1

aijfj(xj(s)) ds+

∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(xj(s− τ(s))) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s) (6.14)

for t ≥ 0, i = 1, 2, 3, · · · , n.
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6.1. Stability of stochastic delayed neural networks

Lemma 6.1.17. De�ne an operator by (Qϕ)(t) = φ(t) for t ∈ [ϑ, 0], and for t ≥ 0, i =

1, 2, 3, · · · , n,

(Qϕ)i(t) = e−citϕi(0) +

∫ t

0
e−ci(t−s)

n∑
j=1

aijfj(ϕj(s)) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(ϕj(s− τ(s))) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

lij

∫ s

s−r(s)
hj(ϕj(u)) du ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

σij(s, ϕj(s), ϕj(s− τ(s))) dwj(s). (6.15)

Suppose that the assumption (A1)-(A4) holds. If conditions (i) and (ii) in Theorem 6.1.4 are

satis�ed, then Q : Sφ → Sφ and Q is a contraction mapping.

Proof. Denote (Qϕ)i(t) := J1i(t) + J2i(t) + J3i(t) + J4i(t) + J5i(t), where

J1i(t) = e−citϕi(0), J2i(t) =

∫ t

0
e−ci(t−s)

n∑
j=1

aijfj(ϕj(s)) ds,

J3i(t) =

∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(ϕj(s− τ(s))) ds,

J4i(t) =

∫ t

0
e−ci(t−s)

n∑
j=1

lij

∫ s

s−r(s)
hj(ϕj(u)) du ds,

J5i(t) =

∫ t

0
e−ci(t−s)

n∑
j=1

σij(s, ϕj(s), ϕj(s− τ(s))) dwj(s).

Step1. From the de�nition of the metric space Sφ, we have that E
∑n

i=1 |ϕi(t)|p < ∞ for all

t ≥ 0, ϕ ∈ Sφ.

Step2. We prove the continuity in pth moment of Qx on [0,∞) for x ∈ Sφ. Let x ∈ Sφ,
t1 ≥ 0, let r ∈ R with |r| su�ciently small and r > 0 if t1 = 0, we have

E
n∑
i=1

|J2i(t1 + r)− J2i(t1)|p = E
n∑
i=1

∣∣∣∣∣
∫ t1

0

(
e−ci(t1+r−s) − e−ci(t1−s)

) n∑
j=1

aijfj(xj(s)) ds

+

∫ t1+r

t1

e−ci(t1+r−s)
n∑
j=1

aijfj(xj(s)) ds

∣∣∣∣∣
p

→ 0 as r → 0.

Similarly, we have that

E
n∑
i=1

|J3i(t1 + r)− J3i(t1)|p → 0 as r → 0, E
n∑
i=1

|J4i(t1 + r)− J4i(t1)|p → 0 as r → 0.
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In the following, we check the continuity of J5i(t).

E
n∑
i=1

|J5i(t1 + r)− J5i(t1)|p

= E
n∑
i=1

∣∣∣∣∣
∫ t1

0

(
e−ci(t1+r−s) − e−ci(t1−s)

) n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s)

+

∫ t1+r

t1

e−ci(t1+r−s)
n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s)

∣∣∣∣∣
p

≤ np−1
n∑
i=1

n∑
j=1

E

∣∣∣∣∣
∫ t1

0

(
e−ci(t1+r−s) − e−ci(t1−s)

)
σij(s, xj(s), xj(s− τ(s))) dwj(s)

+

∫ t1+r

t1

e−ci(t1+r−s)
n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s)

∣∣∣∣∣
p

≤ (2n)p−1
n∑
i=1

n∑
j=1

E

∣∣∣∣∣
∫ t1

0

(
e−ci(t1+r−s) − e−ci(t1−s)

)
σij(s, xj(s), xj(s− τ(s))) dwj(s)

∣∣∣∣∣
p

+(2n)p−1
n∑
i=1

n∑
j=1

E

∣∣∣∣∣
∫ t1+r

t1

e−ci(t1+r−s)σij(s, xj(s), xj(s− τ(s))) dwj(s)

∣∣∣∣∣
p

= (2n)p−1
n∑
i=1

n∑
j=1

{
E

[∫ t1

0

(
e−ci(t1+r−s) − e−ci(t1−s)

)2
σ2
ij(s, xj(s), xj(s− τ(s))) ds

]p/2

+E
[∫ t1+r

t1

e−2ci(t1+r−s)σ2
ij(s, xj(s), xj(s− τ(s))) ds

]p/2}
→ 0 as r → 0.

Thus, Qx is indeed continuous in pth moment on [0,∞).

Step3. We prove that Q(Sφ) ⊆ Sφ.

E
n∑
i=1

|(Qϕ)i(t)|p = E
n∑
i=1

∣∣∣∣∣
5∑
j=1

Jji(t)

∣∣∣∣∣
p

≤ 5p−1
5∑
j=1

E
n∑
i=1

|Jji(t)|p. (6.16)

Now, we estimate the terms on the right-hand side of the above inequality.

E
n∑
i=1

|J2i(t)|p ≤
n∑
i=1

E

[∫ t

0
e
− ci(t−s)

q e
− ci(t−s)

p

n∑
j=1

|aij ||fj(ϕj(s))| ds

]p

≤
n∑
i=1

E

[(∫ t

0
e−ci(t−s) ds

)p/q ∫ t

0
e−ci(t−s)

(
n∑
j=1

|aij ||fj(ϕj(s))|

)p
ds

]

≤
n∑
i=1

c
−p/q
i E

[∫ t

0
e−ci(t−s)

(
n∑
j=1

|aij ||αj ||ϕj(s)|

)p
ds

]

≤
n∑
i=1

c
−p/q
i

(
n∑
j=1

|aij |q|αj |q
)p/q ∫ t

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s)|p
)
ds. (6.17)
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Since ϕ ∈ Sφ, we have that limt→∞ E
∑n

i=1 |ϕi(t)|p = 0. Thus for any ε > 0, there exists T1 > 0

such that t ≥ T1 implies E
∑n

i=1 |ϕi(t)|p < ε, combining with (6.17), we obtain that

E
n∑
i=1

|J2i(t)|p ≤
n∑
i=1

c
−p/q
i

(
n∑
j=1

|aij |q|αj |q
)p/q ∫ T1

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s)|p
)
ds

+

n∑
i=1

c
−p/q
i

(
n∑
j=1

|aij |q|αj |q
)p/q ∫ t

T1

e−ci(t−s)E

(
n∑
j=1

|ϕj(s)|p
)
ds

<
n∑
i=1

c−pi e−cit(eciT1 − 1)

(
n∑
j=1

|aij |q|αj |q
)p/q

sup
0≤s≤T1

[
E

(
n∑
j=1

|ϕj(s)|p
)]

+ε
n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

.

Hence, from the fact that ci > 0 (i = 1, 2, · · · , n), we obtain that E
∑n

i=1 |J2i(t)|p → 0 as t→∞.

With the similar computation as (6.17), we obtain that

E
n∑
i=1

|J3i(t)|p ≤
n∑
i=1

c
−p/q
i

(
n∑
j=1

|bij |q|βj |q
)p/q ∫ t

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s− τ(s)))|p
)
ds

E
n∑
i=1

|J4i(t)|p ≤
n∑
i=1

c
−p/q
i

(
n∑
j=1

|lij |q|γj |q
)p/q ∫ t

0
e−ci(t−s)E

[
n∑
j=1

∣∣∣∣∣
∫ s

s−r(s)
ϕj(u) du

∣∣∣∣∣
p]
ds

≤
n∑
i=1

(
r

ci

)p/q( n∑
j=1

|lij |q|γj |q
)p/q ∫ t

0
e−ci(t−s)

∫ s

s−r(s)
E

[
n∑
j=1

|ϕj(u)|p
]
du ds.

(6.18)

Using Lemma 6.1.16, we obtain that

E
n∑
i=1

|J5i(t)|p =

n∑
i=1

E

∣∣∣∣∣∣
∫ t

0
e−ci(t−s)

n∑
j=1

σij(s, ϕj(s), ϕj(s− τ(s))) dwj(s)

∣∣∣∣∣∣
p

≤ np−1
n∑
i=1

n∑
j=1

E

{[∫ t

0
e−ci(t−s)|σij(s, ϕj(s), ϕj(s− τ(s)))| dwj(s)

]2
}p/2

= np−1
n∑
i=1

n∑
j=1

E
[∫ t

0
e−2ci(t−s)σ2

ij(s, ϕj(s), ϕj(s− τ(s))) ds

]p/2

≤ np−1
n∑
i=1

n∑
j=1

E
[∫ t

0
e−2ci(t−s)

(
µjϕ

2
j (s) + νjϕ

2
j (s− τ(s))

)
ds

]p/2
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≤ np−12p/2−1
n∑
i=1

n∑
j=1

E

[(∫ t

0
e−2ci(t−s)µjϕ

2
j (s) ds

)p/2

+

(∫ t

0
e−2ci(t−s)νjϕ

2
j (s− τ(s)) ds

)p/2]

≤ np−12p/2−1
n∑
i=1

n∑
j=1

E

[(∫ t

0
e−2ci(t−s) ds

)p/2−1 ∫ t

0
e−2ci(t−s)µ

p/2
j |ϕj(s)|

p ds

]

+np−12p/2−1
n∑
i=1

n∑
j=1

E

{(∫ t

0
e−2ci(t−s) ds

)p/2−1 ∫ t

0
e−2ci(t−s)ν

p/2
j |ϕj(s− τ(s))|p ds

}

≤ np−1
n∑
i=1

c
1−p/2
i

[
µp/2

∫ t

0
e−2ci(t−s)E

(
n∑
j=1

|ϕj(s)|p
)
ds

+νp/2
∫ t

0
e−2ci(t−s)E

(
n∑
j=1

|ϕj(s− τ(s))|p
)
ds

]

≤ np−1
n∑
i=1

c
1−p/2
i

[
µp/2

∫ t

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s)|p
)
ds

+νp/2
∫ t

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s− τ(s))|p
)
ds

]
. (6.19)

Since E
∑n

i=1 |ϕi(t)|p → 0, t − τ(t) → ∞ and t − r(t) → ∞ as t → ∞, for each ε > 0, there

exists T2 > 0 such that t ≥ T2 implies E
∑n

i=1 |ϕi(t− τ(s))|p < ε and E
∑n

i=1 |ϕi(t− r(t))|p < ε.

From (6.18), we obtain that

E
n∑
i=1

|J3i(t)|p ≤
n∑
i=1

c
−p/q
i

(
n∑
j=1

|bij |q|βj |q
)p/q ∫ T2

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s− τ(s)))|p
)
ds

+
n∑
i=1

c
−p/q
i

(
n∑
j=1

|bij |q|βj |q
)p/q ∫ t

T2

e−ci(t−s)E

(
n∑
j=1

|ϕj(s− τ(s)))|p
)
ds

<
n∑
i=1

(
1

ci

)p/q
e−cit

∫ T2

0
ecis ds

(
n∑
j=1

|bij |q|βj |q
)p/q

× sup
ϑ≤s≤T2

{
E

(
n∑
j=1

|ϕj(s− τ(s)))|p
)}

+ ε

n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

E
n∑
i=1

|J4i(t)|p ≤
n∑
i=1

(
r

ci

)p/q( n∑
j=1

|lij |q|γj |q
)p/q ∫ T2

0
e−ci(t−s)

∫ s

s−r(s)
E

(
n∑
j=1

|ϕj(u)|p
)
du ds

+

n∑
i=1

(
r

ci

)p/q( n∑
j=1

|lij |q|γj |q
)p/q ∫ t

T2

e−ci(t−s)
∫ s

s−r(s)
E

(
n∑
j=1

|ϕj(u)|p
)
du ds
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<
n∑
i=1

re−cit

(
r

ci

)p/q( n∑
j=1

|lij |q|γj |q
)p/q

sup
ϑ≤u≤T2

{
E

(
n∑
j=1

|ϕj(u)|p
)}(

eciT2 − 1
)

ci

+
n∑
i=1

εr

ci

(
r

ci

)p/q( n∑
j=1

|lij |q|γj |q
)p/q

.

Further, from (6.19), we obtain

E
n∑
i=1

|J5i(t)|p ≤ np−1
n∑
i=1

c
1−p/2
i

[
µp/2

∫ t

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s)|p
)
ds

+νp/2
∫ t

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s− τ(s))|p
)
ds

]

< np−1
n∑
i=1

c
1−p/2
i

{
µp/2 sup

0≤s≤T2

[
E

(
n∑
j=1

|ϕj(s)|p
)]

+νp/2 sup
ϑ≤s≤T2

[
E

(
n∑
j=1

|ϕj(s)|p
)]}

e−cit
(
eciT2 − 1

)
ci

+np−1
n∑
i=1

c
1−p/2
i

(
ε(µp/2 + νp/2)

ci

)
.

Hence, let t→∞, from the fact that ci > 0 (i = 1, 2, · · · , n), we obtain that

E
n∑
i=1

|J3i(t)|p → 0, E
n∑
i=1

|J4i(t)|p → 0, and E
n∑
i=1

|J5i(t)|p → 0.

Thus, combining with (6.16), we obtain that E
∑n

i=1 |(Qϕ)i(t)|p → 0 as E
∑n

i=1 |ϕi(t)|p → 0.

Therefore, Q : Sφ → Sφ.

Step4. We prove that Q is a contraction mapping. For any ϕ,ψ ∈ Sφ, from (6.17)-(6.19),

we obtain

sup
s≥ϑ

{
E

n∑
i=1

|Qϕi(s)−Qψi(s)|p
}

≤ 4p−1 sup
s≥ϑ

{
E

n∑
i=1

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

aij

(
fj(xj(u))− fj(yj(u))

)
du

∣∣∣∣∣
p}

+4p−1 sup
s≥ϑ

{
E

n∑
i=1

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

bij

(
gj(xj(u− τ(u)))− gj(yj(u− τ(u)))

)
du

∣∣∣∣∣
p}

+4p−1 sup
s≥ϑ

{
E

n∑
i=1

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

lij

∫ s

s−r(s)

(
hj(ϕj(v))− hj(ψj(v))

)
dv du

∣∣∣∣∣
p}
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+4p−1 sup
s≥ϑ

{
E

n∑
i=1

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

(
σij(s, xj(s), xj(u− τ(u)))

−σij(s, yj(s), yj(s− τ(u)))
)
dwj(u)

∣∣∣∣∣
p}

≤ 4p−1

{
n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+

n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

+
n∑
i=1

(
r

ci

)p( n∑
j=1

|lij |q|γj |q
)p/q

+ np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)}

× sup
s≥ϑ

{
E

n∑
j=1

|ϕj(s)− ψj(s)|p
}

= α sup
s≥ϑ

{
E

n∑
j=1

|ϕj(s)− ψj(s)|p
}
.

From (6.4), we obtain that Q : Sφ → Sφ is a contraction mapping.

We are now ready to prove Theorem 6.1.4.

Proof. From Lemma 6.1.17, by a contraction mapping principle, we obtain that Q has a unique

�xed point x(t), which is a solution of (6.1) with x(t) = φ(t) as t ∈ [ϑ, 0] and E
∑n

i=1 |xi(t)|p → 0

as t→∞.

Now, we prove that the trivial solution of (6.1) is pth moment stable. Let ε > 0 be given

and choose δ > 0 (δ < ε) such that 5p−1δ < (1− α)ε.

If x(t) = (x1(t), x2(t), · · · , xn(t))T is a solution of (6.1) with the initial condition satisfying

E
∑n

i=1 |φi(t)|p < δ, then x(t) = (Qx)(t) de�ned in (6.15). We claim that E
∑n

i=1 |xi(t)|p < ε

for all t ≥ 0. Notice that E
∑n

i=1 |xi(t)|p < ε for t ∈ [ϑ, 0], we suppose that there exists t∗ > 0

such that E
∑n

i=1 |xi(t∗)|p = ε and E
∑n

i=1 |xi(t)|p < ε for ϑ ≤ t < t∗, then it follows from (6.4),

we obtain that

E
n∑
i=1

|xi(t∗)|p

≤ 5p−1E
n∑
i=1

e−pcit
∗ |xi(0)|p

+5p−1
n∑
i=1

c
−p/q
i

(
n∑
j=1

|aij |q|αj |q
)p/q ∫ t∗

0
e−ci(t

∗−s)E

(
n∑
j=1

|xj(s)|p
)
ds

+5p−1
n∑
i=1

c
−p/q
i

(
n∑
j=1

|bij |q|βj |q
)p/q ∫ t∗

0
e−ci(t−s)E

(
n∑
j=1

|xj(s− τ(s)))|p
)
ds

+5p−1
n∑
i=1

(
r

ci

)p/q ( n∑
j=1

|lij |q|γj |q
)p/q ∫ t∗

0
e−ci(t

∗−s)
∫ s

s−r(s)
E

(
n∑
j=1

|xj(u)|p
)
du ds
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+5p−1np−1
n∑
i=1

c
1−p/2
i

[
µp/2

∫ t∗

0
e−ci(t

∗−s)E

(
n∑
j=1

|xj(s)|p
)
ds

+νp/2
∫ t∗

0
e−ci(t−s)E

(
n∑
j=1

|xj(s− τ(s))|p
)
ds

]

≤

[
5p−1

n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 5p−1
n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

+5p−1
n∑
i=1

(
r

ci

)p( n∑
j=1

|lij |q|γj |q
)p/q

+ 5p−1np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)]
ε+ 5p−1δ

< (1− α)ε+ αε = ε,

which is a contradiction. Therefore, the trivial solution of (6.1) is asymptotically stable in pth

moment.

Corollary 6.1.18. Suppose that the assumptions (A1)-(A4) hold. If the following conditions

are satis�ed,

(i) the function r(t) is bounded by a constant r (r > 0),

(ii) and such that

5

n∑
i=1

c−2
i

(
n∑
j=1

a2
ijα

2
j

)
+ 5

n∑
i=1

c−2
i

(
n∑
j=1

b2ijβ
2
j

)
+ 5

n∑
i=1

(
r

ci

)2
(

n∑
j=1

|lij |q|γj |q
)

+20n
n∑
i=1

c−1
i (µ+ ν) < 1,

where c, µ, ν are de�ned as in Theorem 6.1.4,

then the trivial solution of (6.1) is asymptotically stable in mean square.

Consider the stochastic neural networks without distributed delays

dxi(t) =

[
− cixi(t) +

n∑
j=1

aijfj(xj(t)) +
n∑
j=1

bijgj(xj(t− τ(t)))

]
dt

+
n∑
j=1

σij(t, xj(t), xj(t− τ(t))) dwj(t) (6.20)

for i = 1, 2, 3, · · · , n.

Corollary 6.1.19. Suppose that the assumptions (A1)-(A4) hold. The trivial solution of (6.20)

is asymptotically stable in pth moment if the following inequality holds,

4p−1
n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 4p−1
n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

+4p−1np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)
< 1, (6.21)

where µ, ν are de�ned as in Theorem 6.1.4. Note that the discrete delay τ(t) can be unbounded.
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Remark 6.1.20. Condition (A4) can be relaxed. In fact, if p = 2, then

(A4′) ∀i,
n∑
j=1

(σij(t, x, y)− σij(t, u, v))2 ≤
n∑
j=1

µj(xj − uj)2 + νj(yj − vj)2 (6.22)

is su�cient, as can be easily observed from the proof of Theorem 6.1.4. If p ≥ 2, then (A4)

can also be replaced by (A4′), but the factor np−1 in front of the last term in (6.4) has to be

repalced by n(3p/2)−2. This can be seen from the proof of Theorem 6.1.4 with the aid of a few

more application of the Hölder inequality.

6.1.3 Proof of Theorem 6.1.5

In this subsection, we prove Theorem 6.1.5. We start with some preparations.

Lemma 6.1.21. De�ne an operator by (Pϕ)(t) = φ(t) for t ∈ [−τ, 0], and for t ≥ 0, (Pϕ)(t)

is de�ned as the right hand side of (6.15). If the conditions (i) and (ii) in Theorem 6.1.5 are

satis�ed, then P : Cφ → Cφ is a contraction mapping.

Proof. Observe that all terms at the right hand side of (6.15) have continuous paths, almost

surely. Now, we prove that P (Cφ) ⊆ Cφ.

n∑
i=1

E
[

sup
t−τ≤s≤t

|(Pϕ)i(s)|p
]

=
n∑
i=1

E

[
sup

t−τ≤s≤t

∣∣∣∣∣
5∑
j=1

Jji(s)

∣∣∣∣∣
p]
≤ 5p−1

5∑
j=1

n∑
i=1

E
[

sup
t−τ≤s≤t

|Jji(s)|p
]
.

Estimating the terms on the right-hand side of the above inequality. Let c = min{c1, c2, c3, · · · , cn},
and let q be such that 1/p+ 1/q = 1,

E

[
n∑
i=1

sup
t−τ≤s≤t

|J2i(s)|p
]

= E

[
n∑
i=1

sup
t−τ≤s≤t

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

aijfj(ϕj(u)) du

∣∣∣∣∣
p]

≤ c−p/qE

{
n∑
i=1

sup
t−τ≤s≤t

[∫ s

0
e−c(s−u)

(
n∑
j=1

|aij |αj |ϕj(u)|

)p
du

]}

≤ c−p/q
n∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q

E

{
sup

t−τ≤s≤t

[∫ s

0
e−c(s−u)

(
n∑
j=1

|ϕj(u)|p
)
du

]}

≤ c−p/q
n∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q n∑

j=1

E

{
sup

t−τ≤s≤t

[∫ s

0
e−c(s−u)|ϕj(u)|p du

]}

≤ c−p/q
n∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q n∑

j=1

E

{
sup

t−τ≤s≤t

[∫ s

0
e−c(s−u)

(
sup

u−τ≤v≤u
|ϕj(v)|p

)
du

]}

≤ ecτ c−p/q
n∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q n∑

j=1

E

[∫ t

0
e−c(t−u)

(
sup

u−τ≤v≤u
|ϕj(v)|p

)
du

]
(6.23)
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Since
∑n

j=1 E supt−τ≤s≤t |ϕj(s)|p → 0 as t → ∞, then for any ε > 0, there exists T1 ≥ 0 such

that t ≥ T1 implies
n∑
j=1

E
(

sup
t−τ≤s≤t

|ϕj(s)|p
)
< ε,

which yields that

E

[∫ t

0
e−c(t−u)

(
sup

u−τ≤v≤u
|ϕj(v)|p

)
du

]

=

∫ T1

0
e−c(t−u)E

(
sup

u−τ≤v≤u
|ϕj(v)|p

)
du+

∫ t

T1

e−c(t−u)E

(
sup

u−τ≤v≤u
|ϕj(v)|p

)
du

≤
∫ T1

0
e−c(t−u)

(
sup

ϑ≤v≤T1
|ϕj(v)|p

)
du+

ε

c
.

Then combining with (6.23), we obatin that E
∑n

i=1 supt−τ≤s≤t |J2i(s)|p → 0 as t → ∞. Simi-

larly, we obtain that

E

[
n∑
i=1

sup
t−τ≤s≤t

|J3i(s)|p
]

≤ c−p/q
n∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q

E

{
sup

t−τ≤s≤t

[∫ s

0
e−c(s−u)

(
n∑
j=1

|ϕj(u− τ(u))|p
)
du

]}

≤ c−p/q
n∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q n∑

j=1

E

{
sup

t−τ≤s≤t

[∫ s

0
e−c(s−u)|ϕj(u− τ(u))|p du

]}

≤ c−p/q
n∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q n∑

j=1

E

{
sup

t−τ≤s≤t

[∫ s

0
e−c(s−u) sup

u−τ≤v≤u
|ϕj(v)|p du

]}

≤ ecτ c−p/q
n∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q n∑

j=1

E

[∫ t

0
e−c(t−u) sup

u−τ≤v≤u
|ϕj(v)|p du

]
(6.24)

and

E

[
n∑
i=1

sup
t−τ≤s≤t

|J4i(s)|p
]

≤ c−p/q
n∑
i=1

(
n∑
j=1

|lij |q|γj |q
)p/q

E

{
sup

t−τ≤s≤t

[∫ s

0
e−c(s−u)

n∑
j=1

∣∣∣∣∣
∫ u

u−r(u)
ϕj(v) dv

∣∣∣∣∣
p

du

]}

≤ c−p/q
n∑
i=1

(
n∑
j=1

|lij |q|γj |q
)p/q n∑

j=1

E

{
sup

t−τ≤s≤t

[∫ s

0
e−c(s−u)

∣∣∣∣∣
∫ u

u−r(u)
ϕj(v) dv

∣∣∣∣∣
p

du

]}

≤ τpc−p/q
n∑
i=1

(
n∑
j=1

|lij |q|γj |q
)p/q n∑

j=1

E

{
sup

t−τ≤s≤t

[∫ s

0
e−c(s−u) sup

u−τ≤v≤u
|ϕj(v)|p du

]}

≤ τpecτ c−p/q
n∑
i=1

(
n∑
j=1

|lij |q|γj |q
)p/q n∑

j=1

E

[∫ t

0
e−c(t−u) sup

u−τ≤v≤u
|ϕj(v)|p du

]
. (6.25)
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Let µ = max{µ1, µ2, · · · , µn}, ν = max{ν1, ν2, · · · , νn}. Due to the fact that

∣∣∣∣∣
∫ s

0
e−ci(s−u)σij(u, ϕj(u), ϕj(u− τ(u))) dwj(u)

∣∣∣∣∣
p

is a submartingale and the supremum of submartingale is also a submartingale, using Doob's

inequality for positive submartingale, we obtain that

E

[
n∑
i=1

sup
t−τ≤s≤t

|J5i(s)|p
]

≤ np−1
n∑
i=1

n∑
j=1

E

[
sup

t−τ≤s≤t

∣∣∣∣∣
∫ s

0
e−ci(s−u)σij(u, ϕj(u), ϕj(u− τ(u))) dwj(u)

∣∣∣∣∣
p]

≤ np−1
n∑
i=1

n∑
j=1

E

{
sup

t−τ≤s≤t

[
sup

t−τ≤r≤t

∣∣∣∣∣
∫ s

0
e−c(r−u)σij(u, ϕj(u), ϕj(u− τ(u))) dwj(u)

∣∣∣∣∣
p]}

≤ np−1
n∑
i=1

n∑
j=1

qp sup
t−τ≤s≤t

{
E

[
sup

t−τ≤r≤t

∣∣∣∣∣
∫ s

0
e−c(r−u)σij(u, ϕj(u), ϕj(u− τ(u))) dwj(u)

∣∣∣∣∣
p]}

≤ np−1epcτ
n∑
i=1

n∑
j=1

qp sup
t−τ≤s≤t

[
E

∣∣∣∣∣
∫ s

0
e−c(t−u)σij(u, ϕj(u), ϕj(u− τ(u))) dwj(u)

∣∣∣∣∣
p]

≤ Kpn
p−1epcτ

n∑
i=1

n∑
j=1

qp sup
t−τ≤s≤t

[
E

(∫ s

0
e−2c(t−u)σ2

ij(u, ϕj(u), ϕj(u− τ(u))) du

)p/2]

≤ Kpn
p−1epcτ

n∑
i=1

n∑
j=1

qp2p/2−1 sup
t−τ≤s≤t

E

[(∫ s

0
e−2c(t−u)

(
µjϕ

2
j (u)

)
du

)p/2]

+Kpn
p−1epcτ

n∑
i=1

n∑
j=1

qp2p/2−1 sup
t−τ≤s≤t

[
E

(∫ s

0
e−2c(t−u)

(
νjϕ

2
j (u− τ(u))

)
du

)p/2]

≤ Kpn
p−1epcτ

n∑
i=1

n∑
j=1

qp2p/2−1 sup
t−τ≤s≤t

E

[(∫ s

0
e−2c(t−u) du

)p/2−1

×

(∫ s

0
e−2c(t−u)µ

p/2
j |ϕj(u)|p du+

∫ s

0
e−2c(t−u)ν

p/2
j |ϕj(u− τ(u))|p du

)]}

≤ Kpn
pepcτqpc1−p/2(µp/2 + νp/2)

∫ t

0
e−2c(t−u)

n∑
j=1

E

[
sup

u−τ≤v≤u
|ϕj(v)|p du

]
. (6.26)

Using the similar arguments as for the term (6.23) and combining with (6.24), (6.25) and (6.26),

we obtain that
∑n

i=1 E
[
supt−τ≤s≤t |(Pϕ)i(s)|p

]
→ 0 as t→∞. Thus, P (Cφ) ⊆ Cφ.

Finally, we prove that P is a contraction mapping. For any ϕ,ψ ∈ Cφ, from (6.23)-(6.26),
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we obtain that

sup
t≥0

{
E

[
n∑
i=1

sup
t−τ≤s≤t

|(Pϕ)i(s)− (Pψ)i(s)|p
]}

≤ 4p−1 sup
t≥0

{
E

[
n∑
i=1

sup
t−τ≤s≤t

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

aij

(
fj(ϕj(u))− fj(ψj(u))

)
du

∣∣∣∣∣
p]}

+4p−1 sup
t≥0

{
E

[
n∑
i=1

sup
t−τ≤s≤t

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

bij

×
(
gj(ϕj(u− τ(u)))− gj(ψj(u− τ(u)))

)
du

∣∣∣∣∣
p]}

+4p−1 sup
t≥0

{
E

[
n∑
i=1

sup
t−τ≤s≤t

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

lij

∫ s

s−r(s)

(
hj(ϕj(v))− hj(ψj(v))

)
dv du

∣∣∣∣∣
p]}

+4p−1 sup
t≥0

{
E

[
n∑
i=1

sup
t−τ≤s≤t

∣∣∣∣∣
∫ s

0
e−ci(s−u)

×
n∑
j=1

[σij(u, ϕj(u), ϕj(u− τ(u)))− σij(u, ψj(u), ψj(u− τ(u)))] dwj(u)

∣∣∣∣∣
p]}

≤ 4p−1

{
ecτ c−p

n∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q

+ ecτ c−p
n∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q

+τpecτ c−p
n∑
i=1

(
n∑
j=1

|lij |q|γj |q
)p/q

+Kpn
pepcτqpc1−p/2(2c)−1

(
µp/2 + νp/2

)}

× sup
t≥0

n∑
j=1

E

[
sup

t−τ≤s≤t
|ϕj(s)− ψj(s)|p

]
= α sup

t≥0

n∑
j=1

E

[
sup

t−τ≤s≤t
|ϕj(s)− ψj(s)|p

]
.

From (6.6), we obtain that P : Cφ → Cφ is a contraction mapping.

We are now ready to prove Theorem 6.1.5

Proof. From Lemma 6.1.21, by a contraction mapping principle, we obtain that P has a unique

�xed point x(t), which is a solution of (6.1) with x(t) = φ(t) as t ∈ [ϑ, 0] and∑n
i=1 E

[
supt−τ≤s≤t |xi(s)|p

]
→ 0 as t→∞.

We prove that the trivial solution of (6.1) is pth moment stable. Let ε > 0 be given, we

suppose that there exists t∗ > 0 such that

n∑
i=1

E
[

sup
t∗−τ≤s≤t∗

|xi(s)|p
]

= ε,

n∑
i=1

E
[

sup
t−τ≤s≤t

|xi(s)|p
]

< ε for ϑ ≤ t < t∗,

choose δ > 0 (δ < ε) satisfying

5p−1e−pct
∗
δ < (1− α)ε. (6.27)
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If x(t) = (x1(t), x2(t), · · ·xn(t))T is a solution of (6.1) with the initial condtion satisfying ‖φ‖p <
δ, then x(t) = (Px)(t) de�ned in (6.15). We claim that ‖x‖p < ε for all t ≥ 0. It follows from

(6.4) and (6.27), we obtain that

n∑
i=1

E
[

sup
t∗−τ≤s≤t∗

|xi(s)|p
]

≤ 5p−1
5∑
j=1

n∑
i=1

E
[

sup
t∗−τ≤s≤t∗

|Jji(s)|p
]

≤ 5p−1e−pct
∗
δ + 5p−1

{
ecτ c−p

n∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q

+ ecτ c−p
n∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q

+τpecτ c−p
n∑
i=1

(
n∑
j=1

|lij |q|γj |q
)p/q

+Kpn
pepcτqpc1−p/2(2c)−1

(
µp/2 + νp/2

)}
ε

< (1− α)ε+ αε = ε,

which is a contradiction. Thus, the proof follows.

6.1.4 Proof of Theorem 6.1.7

In this subsection, we prove Theorem 6.1.7. We start with a lemma presenting an integral

inequality lemma.

Lemma 6.1.22. Consider c, τ > 0, positive constants λ1, λ2, λ3 and a function y : [−τ,∞) →
[0,∞). If λ1 + λ2 + τλ3 < c and the following inequality holds,

y(t) ≤



y0e
−ct + λ1

∫ t
0 e
−c(t−s)y(s) ds+ λ2

∫ t
0 e
−c(t−s)y(s− τ(s)) ds

+λ3

∫ t
0 e
−c(t−s) ∫ s

s−r(s) y(u) du ds t ≥ 0,

y0e
−ct, t ∈ [−τ, 0],

(6.28)

then we have y(t) ≤ y0e
−γt(t ≥ −τ), where γ is a positive root of the transcendental equation

1
c−γ

(
λ1 + eγτλ2 + eγτ−1

γ λ3

)
= 1.

Proof. Let F (γ) = 1
c−γ

(
λ1 + eγτλ2 + eγτ−1

γ λ3

)
− 1. We have F (0)F (c−) < 0, that is, there

exists a positive constant γ ∈ (0, c) such that F (γ) = 0. For any ε > 0, let

Cε = ε+ y0.

To prove the lemma, we claim that (6.28) implies

y(t) ≤ Cεe−γt, t ≥ −τ. (6.29)

It is easily shown that (6.29) holds for t ∈ [−τ, 0]. Assume that there exists t∗1 > 0 such that

y(t) < Cεe
−γt, t ∈ [−τ, t∗1), y(t∗1) = Cεe

−γt∗1 . (6.30)
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Combining with (6.28), we have

y(t∗1) ≤ y0e
−ct∗1 + λ1

∫ t∗1

0
e−c(t

∗
1−s)y(s) ds+ λ2

∫ t∗1

0
e−c(t

∗
1−s)y(s− τ(s)) ds

+λ3

∫ t∗1

0
e−c(t

∗
1−s)

∫ s

s−r(s)
y(u) du ds

< y0e
−ct∗1 + Cελ1

∫ t∗1

0
e−c(t

∗
1−s)e−γs ds+ Cελ2

∫ t∗1

0
e−c(t

∗
1−s)e−γ(s−τ(s)) ds

+Cελ3

∫ t∗1

0
e−c(t

∗
1−s)

∫ s

s−r(s)
e−γu du ds

=

[
y0 −

Cε
c− γ

(
λ1 + eγτλ2 +

eγτ − 1

γ
λ3

)]
e−ct

∗
1

+
Cε
c− γ

(
λ1 + eγτλ2 +

eγτ − 1

γ
λ3

)
e−γt

∗
1 .

From the de�nition of Cε, we have

y0 −
Cε
c− γ

(
λ1 + eγτλ2 +

eγτ − 1

γ
λ3

)
= y0 − Cε < 0.

Then, together with the de�nition of γ, we obtain that y(t∗1) < Cεe
−γt∗1 , which contradicts (6.30),

so (6.29) holds. As ε > 0 is arbitrarily small, in view of (6.29), it follows that y(t) ≤ y0e
−γt for

t ≥ −τ .

Proof. For the representation (6.14), using (6.17)-(6.19), we obtain that

E
n∑
i=1

|xi(t)|p

≤ 5p−1e−ct
n∑
i=1

E|φi(0)|p

+5p−1c−p/q
n∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q ∫ t

0
e−c(t−s)E

(
n∑
j=1

|xj(s)|p
)
ds

+5p−1c−p/q
n∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q ∫ t

0
e−c(t−s)E

[
n∑
j=1

|xj(s− τ(s)))|p
]
ds

+5p−1
(τ
c

)p/q n∑
i=1

(
n∑
j=1

|lij |q|γj |q
)p/q ∫ t

0
e−c(t−s)

∫ s

s−r(s)
E

[
n∑
j=1

|xj(u)|p
]
du ds

+5p−1npc1−p/2

{
µp/2

∫ t

0
e−c(t−s)E

[
n∑
j=1

|xj(s)|p
]
ds

+νp/2
∫ t

0
e−c(t−s)E

[
n∑
j=1

|xj(s− τ(s))|p
]
ds

}
.

Hence, by using Lemma 6.1.22 and (6.7), we obtain that the trivial solution of (6.1) is exponen-

tially stable in pth moment.
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Corollary 6.1.23. Suppose that the assumptions (A1)-(A4) hold. If the following conditions

are satis�ed,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ (τ > 0),

(ii) and such that

5c−2
n∑
i=1

n∑
j=1

a2
ijα

2
j + 5c−2

n∑
i=1

n∑
j=1

b2ijβ
2
j + 5c−2τ2

n∑
i=1

n∑
j=1

l2ijγ
2
j + 20n2c−1(µ+ ν) < 1,

where c, µ, ν are de�ned as in Theorem 6.1.4,

then the trivial solution of (6.1) is exponentially stable in mean square.

Corollary 6.1.24. Let p ≥ 2. Suppose that the assumptions (A1)-(A4) hold. If the following

conditions are satis�ed,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ (τ > 0),

(ii) and such that

4p−1c−p
n∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 4p−1c−p
n∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q

+4p−1npc−p/2(µp/2 + νp/2) < 1,

where c, µ, ν are de�ned as in Theorem 6.1.4,

then the trivial solution of (6.20) is exponentially stable in pth moment.

6.1.5 Proof of Theorem 6.1.11

In this subsection, we prove Theorem 6.1.11. We start with some preparations.

Multiply both sides of (6.9) by ecit and integrate from 0 to t, we obtain that for t ≥ 0,

xi(t) = e−citxi(0) +

∫ t

0
e−ci(t−s)

n∑
j=1

aijgj(xj(s)) ds+

∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(xj(s− τ(s))) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

dij

∫ s

s−r(s)
gj(xj(u)) du ds, i = 1, 2, 3, · · · , n. (6.31)

Lemma 6.1.25. De�ne an operator by (Px)(θ) = φ(θ) for ϑ ≤ θ ≤ 0, and for t ≥ 0,

(Px)i(t) = e−citxi(0) +

∫ t

0
e−ci(t−s)

n∑
j=1

aijgj(xj(s)) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(xj(s− τ(s))) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

dij

∫ s

s−r(s)
gj(xj(u)) du ds :=

4∑
i=1

Ii(t). (6.32)

If the conditions (i) and (i) in Theorem 6.1.11 are satis�ed, then P : Hφ → Hφ and P is a

contraction mapping.
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Proof. First, we prove that PHφ ⊆ Hφ. In view of (6.32), we have that, for �xed time t1 ≥ 0,

it is easy to check that limr→0 [(Px)i(t1 + r)− (Px)i(t1)] = 0. Thus, P is continuous on [0,∞).

Note that (Px)i(θ) = φ(θ) for ϑ ≤ θ ≤ 0, we obtain that P is indeed continuous on [ϑ,∞).

Next, we prove that limt→∞(Px)i(t) = 0 for xi(t) ∈ Hiφ. Since xi(t) ∈ Hiφ, we have that

limt→∞ xi(t) = 0. Then for any ε > 0, there exists Ti > 0 such that s ≥ Ti implies |xi(s)| < ε.

Choose T = maxi=1,2,··· ,n{Ti}, combining with condition (A2),

|I2(t)| =

∣∣∣∣∣
∫ t

0
e−ci(t−s)

n∑
j=1

aijfj(xj(s)) ds

∣∣∣∣∣
≤

∫ T

0
e−ci(t−s)

n∑
j=1

|aijkj ||xj(s)| ds+

∫ t

T
e−ci(t−s)

n∑
j=1

|aijαj ||xj(s)| ds

≤
n∑
j=1

|aijαj | sup
0≤s≤T

|xj(s)|
∫ T

0
e−ci(t−s) ds+ ε

n∑
j=1

|aijαj |
∫ t

T
e−ci(t−s) ds

≤ e−cit
n∑
j=1

|aijαj | sup
0≤s≤T

|xj(s)|
∫ T

0
e−cis ds+

ε

ci

n∑
j=1

|aijαj |. (6.33)

From the fact that ci > 0 (i = 1, 2, · · · , n) and estimate (6.33), we have that I2(t)→ 0 as t→∞.

Since xi(t) → 0 and t − τ(t) → ∞ as t → ∞, for each ε > 0, there exists T ′i > 0 such

that s ≥ T ′i implies |xi(s − τ(s))| < ε for i = 1, 2, · · · , n. Choose T ′ = maxi=1,2,···n{T ′i}, we
obtain

|I3(t)| =

∣∣∣∣∣
∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(xj(s− τ(s))) ds

∣∣∣∣∣
≤

∫ T ′

0
e−ci(t−s)

n∑
j=1

|bijβj ||xj(s− τ(s))| ds+

∫ t

T ′
e−ci(t−s)

n∑
j=1

|bijkj ||xj(s− τ(s))| ds

≤ e−cit
n∑
j=1

|bijβj | sup
ϑ≤s≤T ′

|xj(s)|
∫ T ′

0
ecis ds+

ε

ci

n∑
j=1

|bijβj |. (6.34)

From the fact that ci > 0 (i = 1, 2, · · · , n) and estimate (6.34), we have that I3(t)→ 0 as t→∞.

Since xi(t) → 0 and t − r(t) → ∞ as t → ∞, for each ε > 0, there exists T ∗i > 0 such

that s ≥ T ∗i implies |xi(s − r(s))| < ε for i = 1, 2, · · · , n. Choose T ∗ = maxi=1,2,···n{T ∗i }, we
obtain

|I4(t)| =

∣∣∣∣∣
∫ t

0
e−ci(t−s)

n∑
j=1

dij

∫ s

s−r(s)
hj(xj(u)) du ds

∣∣∣∣∣
≤

∫ T ∗

0
e−ci(t−s)

n∑
j=1

|dijγj |
∫ s

s−r(s)
|xj(u)| du ds+ εr

∫ t

T ∗
e−ci(t−s)

n∑
j=1

|dijγj | ds

≤ r

n∑
j=1

|dijγj | sup
ϑ≤u≤T ∗

|xj(u)|
∫ T ∗

0
e−ci(t−s) ds+

εr

ci

n∑
j=1

|dijγj |. (6.35)
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From the fact that ci > 0(i = 1, 2, · · · , n) and estimate (6.35), we have that I4(t)→ 0 as t→∞.

From the above estimate, we conclude that limt→∞(Px)i)(t) = 0 for xi(t) ∈ Hiφ. Therefore,

P : Hφ → Hφ.

Now, we prove that P is a contraction mapping. For any x, y ∈ Hφ, from (6.33) and (6.35), we

obtain that

n∑
i=1

|(Px)i(t)− (Py)i(t)|

≤
n∑
i=1

max
j=1,2,··· ,n

|aijαj |
∫ t

0
e−ci(t−s)

n∑
j=1

|xj(s)− yj(s)| ds

+
n∑
i=1

max
j=1,2,··· ,n

|bijβj |
∫ t

0
e−ci(t−s)

n∑
j=1

|xj(s− τ(s))− yj(s− τ(s))| ds

+

n∑
i=1

max
j=1,2,··· ,n

|dijγj |
∫ t

0
e−ci(t−s)

n∑
j=1

∫ s

s−r(s)
|xj(u)− yj(u)| du ds

≤
n∑
i=1

{
1

ci
max

j=1,2,··· ,n
|aijαj |+

1

ci
max

j=1,2,··· ,n
|bijβj |+

r

ci
max

j=1,2,··· ,n
|dijγj |

}

× sup
ϑ≤s≤t

n∑
j=1

|xj(s)− yj(s)| = α sup
ϑ≤s≤t

n∑
j=1

|xj(s)− yj(s)|.

Hence, we obtain that P is a contraction mapping.

We are now ready to prove Theorem 6.1.11.

Proof. Let P be de�ned as in Lemma 6.1.25, by a contraction mapping principle, P has a unique

�xed point x ∈ Hφ with x(θ) = φ(θ) on ϑ ≤ θ ≤ 0 and x(t)→ 0 as t→∞.

To obtain asymptotic stability, it remains to prove that the trivial solution x = 0 of (6.9)

is stable. For any ε > 0, choose σ > 0 and σ < ε satisfying the condition σ + εα < ε.

If x(t, s, φ) = (x1(t, s, φ), x2(t, s, φ), · · · , xn(t, s, φ)) is the solution of (6.9) with the initial con-

dition ‖φ‖ < σ, then we claim that ‖x(t, s, φ)‖ < ε for all t ≥ 0. Indeed, we suppose that there

exists t∗ > 0 such that

n∑
i=1

|xi(t∗; s, φ)| = ε, and

n∑
i=1

|xi(t; s, φ)| < ε for 0 ≤ t < t∗. (6.36)

From (6.12) and (6.31), we obtain

n∑
i=1

|xi(t∗; s, φ)| ≤
n∑
i=1

[
|e−cit∗xi(0)|+

∫ t∗

0
e−ci(t

∗−s)
n∑
j=1

|aijfj(xj(s))| ds

+

∫ t∗

0
e−ci(t

∗−s)
n∑
j=1

|bijgj(xj(s− τ(s)))| ds
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+

∫ t∗

0
e−ci(t

∗−s)
n∑
j=1

|dij
∫ s

s−r(s)
hj(xj(u))| du ds

]

< σ + ε
n∑
i=1

(
1

ci
max

j=1,2,··· ,n
|aijαj |+

1

ci
max

j=1,2,··· ,n
|bijβj |+

r

ci
max

j=1,2,··· ,n
|dijγj |

)
≤ σ + εα < ε,

which contradicts (6.36). Therefore, ‖x(t, s, φ)‖ < ε for all t ≥ 0. This completes the proof.

Let dij ≡ 0 for i = 1, 2, · · · , n, j = 1, 2, · · · , n. The system (6.9) is then reduced to

dxi(t)

dt
= −cixi(t) +

n∑
j=1

aijfj(xj(t)) +
n∑
j=1

bijgj(xj(t− τ(t))), (6.37)

which is the description of a cellular neural network with time-varying delays. Following the

result of Theorem 6.1.11, we have the following corollary.

Corollary 6.1.26. Suppose that the assumptions (A1)-(A3) hold. If the following condition is

satis�ed,

n∑
i=1

1

ci
max

j=1,2,··· ,n
|aijαj |+

n∑
i=1

1

ci
max

j=1,2,··· ,n
|bijβj | < 1, (6.38)

then the trivial solution of (6.37) is asymptotically stable.

Remark 6.1.27. Note that the delay in Corollary 6.1.26 can be unbounded. Lai and Zhang [74]

studied the asymptotic stability (6.37) as well. However, the additional condition

max
i=1,2,···n

[
1

ci

n∑
j=1

|aijkj |+
1

ci

n∑
j=1

|bijkj |

]
<

1√
n

(6.39)

is needed in Theorem 4.1 of [74]. It is clear that Corollary 6.1.26 is an improvement of the result

in [74].

6.1.6 Proof of Theorem 6.1.13

Proof. From the represention (6.31), we obtain that

n∑
i=1

|xi(t)| ≤ e−ct
n∑
i=1

|xi(0)|+
n∑
i=1

max
j=1,2,···n

{|aijkj |}
∫ t

0
e−c(t−s)

n∑
j=1

|xj(s)| ds

+

n∑
i=1

max
j=1,2,···n

{|bijkj |}
∫ t

0
e−c(t−s)

n∑
j=1

|xj(s− τ(s))| ds

+
n∑
i=1

max
j=1,2,···n

{|dijkj |}
∫ t

0
e−c(t−s)

n∑
j=1

∫ s

s−r(s)
|xj(u)| du ds.

Combining with Lemma 6.1.22, we obtain that the trivial solution of (6.9) with initial condition

(6.11) is exponentially stable.
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For the cellular neural network (6.37), we have the following result.

Corollary 6.1.28. Suppose that the assumptions (A1)-(A3) hold. If the following conditions

are satis�ed,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ ,

(ii) and such that

n∑
i=1

max
j=1,2,··· ,n

|aijkj |+
n∑
i=1

max
j=1,2,··· ,n

|bijkj | < c, c = min{c1, c2, · · · c1},

then the trivial solution of (6.37) with initial condition (6.11) is exponentially stable.

6.1.7 Examples

Example 6.1.29. Consider the following two-dimensional cellular neural network

dx(t)

dt
= −Cx(t) +Ag(x(t)) +Bg(x− τ(t)),

where

C =

(
c1 0

0 c2

)
=

(
3 0

0 3

)
, A =

(
a11 a12

a21 a22

)
=

(
6/7 3/7

−1/7 −1/7

)

B =

(
b11 b12

b21 b22

)
=

(
6/7 2/7

3/7 1/7

)
.

The activation function is described by gi(x) = |x+1|−|x−1|
2 for i = 1, 2. The time-varying delay

τ(t) is continuous and |τ(t)| ≤ τ , where τ is a constant.

It is clear that αi = βi = 1 for i = 1, 2. We check the condition (6.38) in Corollary 6.1.26,

2∑
i=1

1

ci
max
j=1,2

|aijαj |+
2∑
i=1

1

ci
max
j=1,2

|bijβj | ≤
1

3
×
(

6

7
+

1

7
+

6

7
+

3

7

)
=

16

21
< 1.

Hence, by Corollary 6.1.26, the trivial solution x = 0 of this cellular neural network is asymp-

totically stable.

However, the condition (6.39) becomes

max
i=1,2

{
1

ci

2∑
j=1

|aijαj |+
1

ci

2∑
j=1

|bijβj |

}
=

17

21
>

1√
2
.

Hence, Theorem 4.1 of [74] is not applicable.
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Example 6.1.30. Consider a two-dimensional stochastic recurrent neural network with time-

varying delays

dx(t) = −
(

6 0

0 5

)(
x1(t)

x2(t)

)
dt+

(
2 0.4

0.6 1

)(
0.2 tanh(x1(t))

0.2 tanh(x2(t))

)
dt

+

(
−0.8 2

1 2

)(
0.2 tanh(x1(t− τ1(t)))

0.2 tanh(x2(t− τ2(t)))

)
dt

+

(
1 2

2 1

)( ∫ t
t−r(t) 0.2 tanh(x1(s)) ds∫ t
t−r(t) 0.2 tanh(x2(s)) ds)

)
dt

+σ(t, x(t), x(t− τ(t))) dw(t), (6.40)

where τ1(t), τ2(t), r(t) are continuous functions such that t− τ(t)→∞ as t→∞ and |r(t)| ≤ 1,

σ : R+ × R2 × R2 → R2 × R2 satis�es

trace
[
σT (t, x, y)σ(t, x, y)

]
≤ 0.003(x2

1 + x2
2 + y2

1 + y2
2),

and w(t) is a two dimensional Brownian motion.

We suppose p = 2, and take µi = νi = 0.003 for i = 1, 2, by simple computation, we have

αi = 0.2 for i = 1, 2, c = min{c1, c2} = 5, µ = ν = 0.003. From Corollary 6.1.18, we have that

5

2∑
i=1

c−2
i

(
2∑
j=1

a2
ijα

2
j

)
+ 5

2∑
i=1

c−2
i

(
2∑
j=1

b2ijα
2
j

)
+ 5

2∑
i=1

(
τ

ci

)2
(

2∑
j=1

l2ijα
2
j

)

+20× 2×
2∑
i=1

c−1
i (µ+ ν) < 0.256 < 1.

Then the trivial solution of (6.40) is mean square asymptotically stable.

If τ(t) is bounded, from Corollary 6.1.23, we obtain that

5c−2
2∑
i=1

2∑
j=1

a2
ijα

2
j + 5c−2

2∑
i=1

n∑
j=1

b2ijα
2
j + 5c−2τ2

2∑
i=1

2∑
j=1

l2ijα
2
j + 20× 4c−1(µ+ ν) < 0.298.

Hence, the trivial solution of (6.40) is mean square exponentially stable.

Example 6.1.31. Consider a two-dimensional stochastically perturbed HNN with time-varying

delays,

dx(t) = [−Cx(t) +Af(x(t)) +Bg(xτ (t))] dt+ σ(t, x(t), xτ (t)) dw(t), (6.41)

where fi(x) = 1
5 arctanx, gi(x) = 1

5 tanhx = 1
5(ex−e−x)/(exi +e−x), i = 1, 2, τ(t) = 1

2 sin t+ 1
2 ,

C =

(
5 0

0 4.5

)
, A =

(
2 0.4

0.6 1

)
and B =

(
−0.8 2

1 4

)
.

In this example, let p = 3, take αj = 0.2, βj = 0.2, j = 1, 2, σ : R+ × R2 × R2 → R2×2 satis�es

σi1(t, x, y)2 ≤ 0.01(x2
1 + y2

1) and σi2(t, x, y)2 ≤ 0.01(x2
2 + y2

2), i = 1, 2,

and w(t) is a two dimensional Brownian motion.
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Note that the exponential stability of (6.41) has been studied in Sun and Cao [120] by employing

the method of variation of parameter, inequality technique and stochastic analysis.

Now, we check the condition in Corollary 6.1.24,

4p−1c−(1+p/q)
2∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 4p−1c−(1+p/q)
2∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q

+4p−12pc−p/2(µp/2 + νp/2) < 0.18 < 1.

From Corollary 6.1.24, the trivial solution of (6.41) is exponentially stable.

6.2 Stability of stochastic delayed neural networks with impulses

6.2.1 Introduction and main results

Besides delay and stochastic e�ects, impulsive e�ects are also likely to exist in the neural net-

works systems, which could stabilize or destabilize the systems. Therefore, it is of interest to

take delay e�ects, stochastic e�ects and impulsive e�ects into account in investigations of the

dynamical behavior of neural networks.

In this section, we apply �xed point methods to study asymptotic stability and exponential

stability of a class of stochastic delayed neural networks with impulsive e�ects, which is de-

scribed by 

dxi(t) =
[
−cixi(t) +

∑n
j=1 aijfj(xj(t)) +

∑n
j=1 bijgj(xj(t− τ(t)))

+
∑n

j=1 lij
∫ t
t−r(t) hj(xj(s)) ds

]
dt

+
∑n

j=1 σij(t, xj(t), xj(t− τ(t))) dwj(t), t 6= tk

∆xi(tk) = Iik(xi(tk)), t = tk, k = 1, 2, 3, · · ·

(6.42)

or 
dx(t) =

[
−Cx(t) +Af(x(t)) +Bg(x(t− τ(t))) +W

∫ t
t−r(t) h(x(s)) ds

]
dt

+σ(t, x(t), x(t− τ(t))) dw(t), t 6= tk

∆x(tk) = Ik(x(tk)), t = tk, k = 1, 2, 3, · · ·

i = 1, 2, 3, · · · , n, where x(t) = (x1(t), x2(t), · · ·xn(t))T ∈ Rn is the state vector associat-

ed with the neurons; C = diag(c1, c2, · · · , cn) > 0 where ci > 0 represents the rate with

which the ith unit will reset its ponential to the resting state in isolation when disconnect-

ed from the network and the external stochastic perturbations; A = (aij)n×n, B = (bij)n×n and

W = (lij)n×n represent the connection weight matrix, delayed connection weight matrix and

distributed delayed connection weight matrix, respectively; fj , gj , hj are activation functions,

f(x(t)) = (f1(x(t)), f2(x(t)), · · · fn(x(t)))T ∈ Rn, g(x(t)) = (g1(x(t)), g2(x(t)), · · · , gn(x(t)))T ∈
Rn, h(x(t)) = (h1(x(t)), h2(x(t)), · · · , hn(x(t)))T ∈ Rn, w(t) = (w1(t), w2(t), · · · , wn(t))T ∈ Rn
is an n-dimensional Brownion motion de�ned on a complete probability space (Ω,F ,P) with
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natural complete �ltration {Ft}t≥0 (i.e. Ft = completion of σ{w(s) : 0 ≤ s ≤ t}) and

σ : R+ × Rn × Rn → Rn×n, σ = (σij)n×n is the di�usion coe�cient matrix. ∆xi(tk) =

Iik(xi(tk)) = xi(t
+
k ) − xi(t−k ) is the impulse at moment tk, and t1 < t2 < · · · is a strictly in-

creasing sequence such that limk→∞ tk = +∞, xi(t
+
k ) and xi(t

−
k ) stand for the right-hand and

left-hand limit of xi(t) at t = tk, respectively. Iik(xi(tk)) shows the abrupt change of xi(t) at the

impulsive moment tk and Iik(·) ∈ C
(
LpFt(Ω;Rn), LpFt(Ω;Rn)

)
. τ(t) and r(t) denote a discrete

time varying delay and the bound of a distributed time varying delay, respectively. Denote

ϑ = inft≥0{t− τ(t), t− r(t)}.

The initial condition for the system (6.42) is given by

x(t) = φ(t), t ∈ [ϑ, 0], (6.43)

where t 7→ φ(t) = (φ1(t), φ2(t), · · · , φn(t))T ∈ C
(

[ϑ, 0], LpF0
(Ω;Rn)

)
with the norm is de�ned as

‖φ‖p = sup
ϑ≤s≤0

(
E

n∑
i=1

|φi(s)|p
)
,

where E denotes expectation with respect to the probability measure P and p ≥ 2.

To obtain our main results, we suppose the following conditions are satis�ed:

(A1) the delays τ(t), r(t) are continuous functions such that t− τ(t)→∞ and t− r(t)→∞ as

t→∞;

(A2) fi(x), gi(x), and hi(x) satisfy Lipschitz condition. That is, for each i = 1, 2, 3, · · · , n, there
exist constants αi, βi, γi such that for every x, y ∈ Rn,

|fj(x)− fi(y)| ≤ αi|x− y|, |gi(x)− gi(y)| ≤ βi|x− y|, |hj(x)− hi(y)| ≤ γi|x− y|;

(A3) there exists nonegative constants pik such that for any x, y ∈ Rn,

|Iik(x)− Iik(y)| ≤ pik|x− y|, i = 1, 2, · · · , n, k = 1, 2, 3, · · · ;

(A4) assume that f(0) ≡ 0, g(0) ≡ 0, h(0) ≡ 0, σ(t, 0, 0) ≡ 0, Iik(0) ≡ 0, i = 1, 2, · · · , n,
k = 1, 2, 3, · · · ;

(A5) σ(t, x, y) satis�es a Lipschitz condition. That is, there are nonnegative constants µi and

νi such that ∀ i, j,

(σij(t, x, y)− σij(t, u, v))2 ≤ µj(xj − uj)2 + νj(yj − vj)2.

The solution x(t) := x(t, φ) of the system (6.42) is, for the time t, a piecewise continuous vector-

valued function with the �rst kind discontinuity at the points tk (k = 1, 2, · · · ), where it is left
continuous, i.e.,

xi(t
−
k ) = xi(tk), xi(t

+
k ) = xi(tk) + Iik(xi(tk)), i = 1, 2, · · ·n, k = 1, 2, · · · .

De�ne Sφ the space of all Ft-adapted processes ϕ(t, w) : [ϑ,∞)×Ω→ Rn such that ϕ : [ϑ,∞) 7→
LpFt(Ω;Rn) is continuous on t 6= tk (k = 1, 2, · · · ), limt→t−k

ϕ(t, ·) and limt→t+k
ϕ(t, ·) exist, and
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limt→t−k
ϕ(t, ·) = ϕ(tk, ·) for k = 1, 2, · · · . Moreover, we set ϕ(t, ·) = φ(t) for t ∈ [ϑ, 0] and

E (
∑n

i=1 |ϕi(t)|p)→ 0 as t→∞, i = 1, 2, · · · , n. If we de�ne the metric as the form

‖ϕ‖p := sup
t≥ϑ

(
E

n∑
i=1

|ϕi(t)|p
)
, (6.44)

then Sφ is a complete metric space with respect to the norm (6.44). Using the contraction

mapping de�ned on the space Sφ and applying a contraction mapping principle, we obtain our

�rst result, which is proved in Subsection 6.2.2.

Theorem 6.2.1. Suppose that the assumptions (A1)-(A5) hold. If the following conditions are

satis�ed,

(i) the function r(t) is bounded by a constant r (r > 0);

(ii) there exist constants pi (i = 1, 2, · · · , n) such that pik ≤ pi(tk − tk−1), k = 1, 2, · · · ;

(iii) and such that

α , 6p−1
n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 6p−1
n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

+6p−1
n∑
i=1

(
r

ci

)p( n∑
j=1

|lij |q|γj |q
)p/q

+6p−1np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)
+ 6p−1c−1 max

i=1,2,··· ,n

{
ppi
cp−1
i

}
< 1, (6.45)

where c = min{c1, c2, · · · , cn}, µ = max{µ1, µ2, · · · , µn}, ν = max{ν1, ν2, · · · , νn},

then the trivial solution of (6.42) is pth moment asymptotically stable.

De�ne Cφ the space of all Ft-adapted processes ϕ(t, ω) : [ϑ,∞)×Ω→ Rn such that ϕ : [ϑ,∞) 7→
LpFt(Ω;Rn) is continuous on t 6= tk (k = 1, 2, · · · ), limt→t−k

ϕ(t, ·) and limt→t+k
ϕ(t, ·) exist, and

limt→t−k
ϕ(t, ·) = ϕ(tk, ·) for k = 1, 2, · · · . Moreover, we set ϕ(t, ·) = φ(t) for t ∈ [ϑ, 0] and

eλtE (
∑n

i=1 |ϕi(t)|p) → 0 as t → ∞, λ < min{c1, c2, · · · , cn}, i = 1, 2, · · · , n. Then Cφ is a

complete metric space with respect to the norm (6.44). Using a contraction mapping de�ned on

the space Cφ and applying a contraction mapping principle, we obtain our second result. For its

proof, see Subsection 6.2.3.

Theorem 6.2.2. Suppose that the assumptions (A1)-(A5) hold. If the following conditions are

satis�ed,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ (τ > 0);

(ii) there exist constants pi (i = 1, 2, · · · , n) such that pik ≤ pi(tk − tk−1), k = 1, 2, · · · ;
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(iii) and such that

α , 6p−1
n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 6p−1
n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

+6p−1
n∑
i=1

(
τ

ci

)p( n∑
j=1

|lij |q|γj |q
)p/q

+6p−1np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)
+ 6p−1c−1 max

i=1,2,··· ,n

{
ppi
cp−1
i

}
< 1, (6.46)

where c = min{c1, c2, · · · , cn}, µ = max{µ1, µ2, · · · , µn}, ν = max{ν1, ν2, · · · , νn};

then the trivial solution of (6.42) is pth moment exponentially stable.

Remark 6.2.3. In Theorem 6.2.2, both the discrete delay τ(t) and distributed delay r(t) are

required to be bounded, while the discrete delay τ(t) in Theorem 6.2.1 can be unbounded. It is

clear that the conditions in Theorem 6.2.1 and Theorem 6.2.2 do not require the di�erentiability

of delays. In addition, condition (A2) implies that the activation functions discussed in this

section may be unbounded, non-monotonic and non-di�erentiable.

Remark 6.2.4. The system (6.42) is quite general and it includes several well-known neural net-

work models as its special cases, see, for example, the models in [54, 74, 78, 83, 116, 120, 129, 142].

Sakthivel et al. [116] has considered asymptotic stability in mean square of the system (6.42) with

linear impulsive e�ects, by employing Liapunov functional method and using linear matrix in-

equality optimization approach. However, the time varying delays in [116] should satisfy

(H1) 0 ≤ h1 ≤ τ(t) ≤ h2, τ ′(t) ≤ µ,

where h1, h2 are constants, the distributed delay r(t) is bounded, 0 ≤ r(t) ≤ r, r is a con-

stant. In our results, the condition (H1) is replaced by other assumptions, and the assumptions

in Theorem 6.2.1 and Theorem 6.2.2 may be satis�ed if (H1) is not.

Remark 6.2.5. In this section, our approach is based on �xed point methods, and in one step,

a �xed point argument can yield the existence and stability criteria of the considered system.

However, when using Liapunov's direct method, one must independently verify that a solution

exists. The stability criteria we provided in our main results are only in terms of the system

parameters ci, aij, bij, lij, pi etc. Hence, these criteria can be veri�ed easily in applications.

Consider the a when there are no stochastic perturbations on the system (6.42), the stochastic

neural networks become usual neural network which can be described as
dxi(t)
dt = −cixi(t) +

∑n
j=1 aijfj(xj(t)) +

∑n
j=1 bijgj(xj(t− τ(t)))

+
∑n

j=1 lij
∫ t
t−r(t) hj(xj(s)) ds, t 6= tk

∆xi(tk) = Iik(xi(tk)), t = tk, k = 1, 2, 3, · · ·

(6.47)

or 
dx(t)
dt = −Cx(t) +Af(x(t)) +Bg(x− τ(t)) +D

∫ t
t−r(t) h(x(s)) ds, t 6= tk

∆x(tk) = Ik(x(tk)), t = tk, k = 1, 2, 3, · · ·
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for i = 1, 2, 3, · · · , n, where x(·) = (x1(·), x2(·), · · · , xn(·))T is the neuron state vector of the

transformed system (6.47).

The initial condition for the system (6.47) is

x(t) = φ(t), t ∈ [ϑ, 0], (6.48)

where φ is a continuous function with the norm de�ned by ‖φ‖ =
∑n

i=1 supϑ≤s≤0 |φi(s)|. De�ne
Hφ = H1φ × H2φ × · · ·Hnφ, where Hiφ is the space consisting of continuous functions ϕi(t) :

R+ → R such that ϕi(t) is continuous on t 6= tk (k = 1, 2, · · · ), limt→t−k
ϕi(t) and limt→t+k

ϕi(t)

exist, and limt→t−k
ϕi(t) = ϕi(tk). Moreover, we set ϕi(θ) = φ(θ) for ϑ ≤ θ ≤ 0 and ϕi(t) → 0

as t→∞, i = 1, 2 · · ·n. For any ϕ(t), η(t) ∈ Hφ, if we de�ne the metric as

d(ϕ, η) =
n∑
i=1

sup
t≥ϑ
|ϕi(t)− ηi(t)|, (6.49)

then Hφ is a complete metric space with respect to the norm (6.49). Using a contraction

mapping de�ned on the space Hφ and applying a contraction mapping principle, we obtain our

third result, which is proved in Subsection 6.2.4.

Theorem 6.2.6. Suppose that the assumptions (A1)-(A4) hold. If the following conditions are

satis�ed,

(i) the function r(t) is bounded by a constant r (r > 0);

(ii) there exist constants pi (i = 1, 2, · · · , n) such that pik ≤ pi(tk − tk−1), k = 1, 2, · · · ;

(iii) and such that

α ,
n∑
i=1

1

ci
max

j=1,2,··· ,n
|aijαj |+

n∑
i=1

1

ci
max

j=1,2,··· ,n
|bijβj |

+

n∑
i=1

r

ci
max

j=1,2,··· ,n
|lijγj |+ max

i=1,2,··· ,n

{
pi
ci

}
< 1; (6.50)

then the trivial solution of (6.47) is asymptotically stable.

De�ne Bφ = B1φ × B2φ × · · · Bnφ, where Biφ is the space consisting of continuous functions

ϕi(t) : R+ → R such that ϕi(t) is continuous on t 6= tk (k = 1, 2, · · · ), limt→t−k
ϕi(t) and

limt→t+k
ϕi(t) exist, and limt→t−k

ϕi(t) = ϕi(tk). Moreover, we set ϕi(θ) = φ(θ) for ϑ ≤ θ ≤ 0

and eλtϕi(t)→ 0 as t→∞, where λ < min{c1, c2, · · · , cn}, i = 1, 2 · · ·n. Then Bφ is a complete

metric space with respect to the metric (6.49). Using a contraction mapping de�ned on the

space Bφ and applying a contraction mapping principle, we obtain our fourth result, which is

proved in Subsection 6.2.5.

Theorem 6.2.7. Suppose that the assumptions (A1)-(A4) hold. If the following conditions are

satis�ed,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ (τ > 0);

(ii) there exist constants pi (i = 1, 2, · · ·n) such that pik ≤ pi(tk − tk−1), k = 1, 2, · · · ;
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(iii) and such that

α ,
n∑
i=1

1

ci
max

j=1,2,··· ,n
|aijαj |+

n∑
i=1

1

ci
max

j=1,2,··· ,n
|bijβj |

+

n∑
i=1

τ

ci
max

j=1,2,··· ,n
|lijγj |+ max

i=1,2,··· ,n

{
pi
ci

}
< 1; (6.51)

then the trivial solution of (6.47) is exponentially stable.

Remark 6.2.8. Zhang et al. [142, 143] have investigated exponential stability and asymptotic

stability of a class of impulsive cellular neural networks by using �xed point methods, which is a

special case of the system (6.47). Our results in Theorem 6.2.6 and Theorem 6.2.7 improve and

extend the results in [142, 143] (see Remark 6.2.15 and Remark 6.2.17 for more information).

The rest of this section is organized as follows. The proofs of Theorem 6.2.1 and Theorem 6.2.2

are presented in Subsection 6.2.2 and Subsection 6.2.3, respectively. The proofs of Theorem 6.2.6

and Theorem 6.2.7 are provided in Subsection 6.2.4 and Subsection 6.2.5, respectively. Some

examples are given to illustrate our main results in Subsection 6.2.6.

6.2.2 Proof of Theorem 6.2.1

In this subsection, we prove Theorem 6.2.1. We start with some preparations.

Multiply both sides of (6.42) by ecit, we obtain that for t 6= tk, i = 1, 2, 3, · · · , n,

d(ecitxi(t)) = ecit

[
n∑
j=1

aijfj(xj(t)) +

n∑
j=1

bijgj(xj(t− τ(t))) +

n∑
j=1

lij

∫ t

t−r(t)
hj(xj(u)) du

]
dt

+ecit
n∑
j=1

σij(t, xj(t), xj(t− τ(t))) dwj(t). (6.52)

Integrate (6.52) from tk−1 + ε (ε > 0) to t ∈ (tk−1, tk) (k = 1, 2, · · · ), we obtain that

ecitxi(t) = eci(tk−1+ε)xi(tk−1 + ε) +

∫ t

tk−1+ε
ecis

n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s)

+

∫ t

tk−1+ε
ecis

[
n∑
j=1

aijfj(xj(s))

+

n∑
j=1

bijgj(xj(s− τ(s))) +

n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du

]
ds. (6.53)

191



Chapter 6. Stochastic delayed neural networks

Let ε→ 0 in (6.53), for t ∈ (tk−1, tk) (k = 1, 2, · · · ), we obtain that

ecitxi(t) = ecitk−1xi(t
+
k−1) +

∫ t

tk−1

ecis
n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s)

+

∫ t

tk−1

ecis

[
n∑
j=1

aijfj(xj(s))

+
n∑
j=1

bijgj(xj(s− τ(s))) +
n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du

]
ds. (6.54)

Set t = tk − ε (ε > 0) in (6.54), we obtain that

eci(tk−ε)xi(tk − ε) = ecitk−1xi(t
+
k−1) +

∫ tk−ε

tk−1

ecis
n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s)

+

∫ tk−ε

tk−1

ecis

[
n∑
j=1

aijfj(xj(s)) +

n∑
j=1

bijgj(xj(s− τ(s)))

+

n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du

]
ds. (6.55)

Let ε→ 0 in (6.55), we obtain that

ecitkxi(t
−
k ) = ecitk−1xi(t

+
k−1) +

∫ tk

tk−1

ecis
n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s)

+

∫ tk

tk−1

ecis

[
n∑
j=1

aijfj(xj(s)) +
n∑
j=1

bijgj(xj(s− τ(s)))

+
n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du

]
ds. (6.56)

Note that xi(tk) = xi(t
−
k ), from (6.54) and (6.56), we obtain that for t ∈ (tk−1, tk] (k = 1, 2, · · · ),

ecitxi(t) = ecitk−1xi(t
+
k−1) +

∫ t

tk−1

ecis

[
n∑
j=1

aijfj(xj(s))

+

n∑
j=1

bijgj(xj(s− τ(s))) +

n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du

]
ds

+

∫ t

tk−1

ecis
n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s)

= ecitk−1xi(tk−1) +

∫ t

tk−1

ecis

[
n∑
j=1

aijfj(xj(s)) +

n∑
j=1

bijgj(xj(s− τ(s)))

+

n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du

]
ds

+

∫ t

tk−1

ecis
n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s) + ecitk−1Ii(k−1)(xi(tk−1)).
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Hence, we obtain that

ecitk−1xi(tk−1) = ecitk−2xi(tk−1) +

∫ tk−1

tk−2

ecis

[
n∑
j=1

aijfj(xj(s))

+
n∑
j=1

bijgj(xj(s− τ(s))) +
n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du

]
ds

+

∫ tk−1

tk−2

ecis
n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s) + ecitk−2Ii(k−2)(xi(tk−2))

...

...

ecit2xi(t2) = ecit1xi(t1) +

∫ t2

t1

ecis

[
n∑
j=1

aijfj(xj(s))

+
n∑
j=1

bijgj(xj(s− τ(s))) +
n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du

]
ds

+

∫ t2

t1

ecis
n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s) + ecit1Ii1(xi(t1))

ecit1xi(t1) = φi(0) +

∫ t1

0
ecis

[
n∑
j=1

aijfj(xj(s))

+

n∑
j=1

bijgj(xj(s− τ(s))) +

n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du

]
ds

+

∫ t1

0
ecis

n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s),

which yields that for t > 0,

xi(t) = e−citφi(0) +

∫ t

0
e−ci(t−s)

n∑
j=1

aijfj(xj(s)) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(xj(s− τ(s))) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s) +
∑

0<tk<t

e−ci(t−tk)Iik(xi(tk)).

Lemma 6.2.9. De�ne an operator by (Qϕ)(t) = φ(t) for t ∈ [ϑ, 0], and for t ≥ 0,
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i = 1, 2, 3, · · · , n,

(Qϕ)i(t) (6.57)

= e−citφi(0) +

∫ t

0
e−ci(t−s)

n∑
j=1

aijfj(ϕj(s)) ds+

∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(ϕj(s− τ(s))) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

lij

∫ s

s−r(s)
hj(ϕj(u)) du ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

σij(s, ϕj(s), ϕj(s− τ(s))) dwj(s) +
∑

0<tk<t

e−ci(t−tk)Iik(ϕi(tk)).

Suppose that the assumptions (A1)-(A5) hold. If the conditions (i)-(iii) in Theorem 6.2.1 are

satis�ed, then Q : Sφ → Sφ and Q is a contraction mapping.

Proof. Denote (Qϕ)i(t) := J1i(t) + J2i(t) + J3i(t) + J4i(t) + J5i(t) + J6i(t), where

J1i(t) = e−citϕi(0), J2i(t) =

∫ t

0
e−ci(t−s)

n∑
j=1

aijfj(ϕj(s)) ds,

J3i(t) =

∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(ϕj(s− τ(s))) ds,

J4i(t) =

∫ t

0
e−ci(t−s)

n∑
j=1

lij

∫ s

s−r(s)
hj(ϕj(u)) du ds,

J5i(t) =

∫ t

0
e−ci(t−s)

n∑
j=1

σij(s, ϕj(s), ϕj(s− τ(s))) dwj(s),

J6i(t) =
∑

0<tk<t

e−ci(t−tk)Pik(xi(tk)).

Step1. From the de�nition of the metric space Sφ, we have that E
∑n

i=1 |ϕi(t)|p < ∞ for all

t ≥ 0, ϕ ∈ Sφ.
Step2. We prove the continuity in pth moment of Qx on [0,∞) \ {t1, t2, · · · } for x ∈ Sφ and

left continuity and existence of a right limit at each tk (k = 1, 2, · · · ). It is clear that (Qϕ)i(t)

is continuous on [ϑ, 0]. For a �xed time t > 0, it is easy to check that J1i(t), J2i(t), J3i(t),

J4i(t), J5i(t), J6i(t) are continuous in pth moment on the �xed time t 6= tk (k = 1, 2, · · · ).
Hence, (Qϕi)(t) is continuous in pth moment on the �xed time t 6= tk (k = 1, 2, · · · ). On the

other hand, as t = tk, it is easy to check that J1i(t), J2i(t), J3i(t), J4i(t), J5i(t) are continuous in

pth moment on the �xed time t = tk (k = 1, 2, · · · ). In the following, we check pth moment left

continuity of J6i(t) on t = tk (k = 1, 2, · · · ). Let r < 0 be small enough,

E
n∑
i=1

|J6i(tk + r)− J6i(tk)|p

= E
n∑
i=1

∣∣∣∣∣ ∑
0<tm<tk+r

e−ci(tk+r−tm)Iim(ϕi(tm))−
∑

0<tm<tk

e−ci(tk−tm)Iim(ϕi(tm))

∣∣∣∣∣
p

≤ E
n∑
i=1

∣∣∣∣∣ (e−ci(tk+r) − e−citk
) ∑

0<tm<tk

ecitmIim(ϕi(tm))

∣∣∣∣∣
p

,
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which implies that limr→0− E
∑n

i=1 |J6i(tk + r)− J6i(tk)|p = 0. Let r > 0 be small enough,

E
n∑
i=1

|J6i(tk + r)− J6i(tk)|p

= E
n∑
i=1

∣∣∣∣∣ ∑
0<tm<tk+r

e−ci(tk+r−tm)Iim(ϕi(tm))−
∑

0<tm<tk

e−ci(tk−tm)Iim(ϕi(tm))

∣∣∣∣∣
p

= E
n∑
i=1

∣∣∣∣∣e−ci(tk+r)

[ ∑
0<tm<tk

ecitmIim(ϕi(tm)) + ecitkIik(ϕi(tk))

]

−e−citk
∑

0<tm<tk

ecitmIim(ϕi(tm))

∣∣∣∣∣
p

= E
n∑
i=1

∣∣∣∣∣ (e−ci(tk+r) − e−citk
) ∑

0<tm<tk

ecitmIim(ϕi(tm)) + e−cirIik(ϕi(tk))

∣∣∣∣∣
p

,

which implies that limr→0+ E
∑n

i=1 |J6i(tk + r)− J6i(tk)|p = E
∑n

i=1 |Iik(ϕi(tk))|
p.

Based on the above discussion, we obtain that (Qϕ)i(t) : [ϑ,∞) → LpFt(Ω;Rn) is continu-

ous in pth moment on t 6= tk (k = 1, 2, · · · ), and for t = tk (k = 1, 2, · · · ), limt→t+k
(Qϕ)i(t)

and limt→t−k
(Qϕ)i(t) exist. Furthermore, we also obtain that limt→t−k

(Qϕ)i(t) = (Qϕ)i(tk) 6=
limt→t+k

(Qϕ)i(t).

Step3. We prove that Q(Sφ) ⊆ Sφ. From (6.57),

E
n∑
i=1

|Qϕi(t)|p = E
n∑
i=1

∣∣∣∣∣
6∑
j=1

Jji(t)

∣∣∣∣∣
p

≤ 6p−1
6∑
j=1

E

(
n∑
i=1

|Jji(t)|p
)
. (6.58)

Now, we estimate the right-hand terms of (6.58). From (A3), we know that |Iik(xi(tk))| ≤
pik|xi(tk)|, combining with the condition (ii), we obtain that

E
n∑
i=1

|J6i(t)|p ≤ E
n∑
i=1

[ ∑
0<tk<t

e−ci(t−tk)pik|ϕi(tk)|

]p

≤ E
n∑
i=1

[
pi
∑

0<tk<t

e−ci(t−tk)|ϕi(tk)|(tk − tk−1)

]p

≤ E
n∑
i=1

[
pi

∫ t

0
e−ci(t−s)|ϕi(s)| ds

]p

≤ E
n∑
i=1

ppi

(∫ t

0
e−ci(t−s) ds

)p/q ∫ t

0
e−ci(t−s)|ϕi(s)|p ds

≤ max
i=1,2,··· ,n

{
ppi
cp−1
i

}∫ t

0
e−c(t−s)E

(
n∑
i=1

|ϕi(s)|p
)
ds. (6.59)

Since E
∑n

i=1 |ϕi(t)| → 0, t − τ(t) → ∞ and t − r(t) → ∞ as t → ∞. Thus, from (6.58),

(6.59) and combining with (6.17), (6.18) and (6.19), we obtain that E
∑n

i=1 |Qϕi(t)|p → 0 as
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E
∑n

i=1 |ϕi(t)|p → 0. Therefore, Q : Sφ → Sφ.

Step4. We prove that Q is a contraction mapping. For any ϕ,ψ ∈ Sφ, from (6.17), (6.18),

(6.19), (6.58) and (6.59), we obtain

sup
s≥ϑ

{
E

n∑
i=1

|Qϕi(s)−Qψi(s)|p
}

≤ 5p−1 sup
s≥ϑ

{
E

n∑
i=1

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

aij

(
fj(xj(u))− fj(yj(u))

)
du

∣∣∣∣∣
p}

+5p−1 sup
s≥ϑ

{
E

n∑
i=1

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

bij

(
gj(xj(u− τ(u)))− gj(yj(u− τ(u)))

)
du

∣∣∣∣∣
p}

+5p−1 sup
s≥ϑ

{
E

n∑
i=1

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

lij

∫ s

s−r(s)

(
hj(ϕj(v))− hj(ψj(v))

)
dv du

∣∣∣∣∣
p}

+5p−1 sup
s≥ϑ

{
E

n∑
i=1

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

(
σij(s, xj(s), xj(u− τ(u)))

−σij(s, yj(s), yj(s− τ(u)))
)
dwj(u)

∣∣∣∣∣
p}

+5p−1 sup
s≥ϑ

{
E

n∑
i=1

∣∣∣∣∣ ∑
0<tk<t

e−ci(t−tk) (Iik(ϕi(tk))− Iik(ψi(tk)))

∣∣∣∣∣
p}

≤ 5p−1

{
n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+
n∑
i=1

c−pi

 n∑
j=1

|bij |q|βj |q
)p/q

+
n∑
i=1

(
r

ci

)p( n∑
j=1

|lij |q|γj |q
)p/q

+ np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)

+
1

c
max

i=1,2,··· ,n

{
ppi
cp−1
i

}}
sup
s≥ϑ

{
E

n∑
j=1

|ϕj(s)− ψj(s)|p
}

= α sup
s≥ϑ

{
E

n∑
j=1

|ϕj(s)− ψj(s)|p
}
.

From (6.45), we obtain that Q : Sφ → Sφ is a contraction mapping.

We are now ready to prove Theorem 6.2.1.

Proof. From Lemma 6.2.9, by a contraction mapping principle, we obtain that Q has a unique

�xed point x(t), which is a solution of (6.42) with x(t) = φ(t) as t ∈ [ϑ, 0] and E
∑n

i=1 |xi(t)|p → 0

as t→∞.

Now, we prove that the trivial solution of (6.42) is pth moment stable. From (6.45), For any

ε > 0, we choose δ > 0 (δ < ε) such that 6p−1δ < (1− α)ε.

If x(t) = (x1(t), x2(t), · · · , xn(t))T is a solution of (6.42) with the initial condtion satisfying

E
∑n

i=1 |φi(t)|p < δ, then x(t) = (Qx)(t) de�ned in (6.57). We claim that E
∑n

i=1 |xi(t)|p < ε for

all t ≥ 0. Notice that E
∑n

i=1 |xi(t)|p < ε for t ∈ [ϑ, 0], we suppose that there exists t∗ > 0 such
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that E
∑n

i=1 |xi(t∗)|p = ε and E
∑n

i=1 |xi(t)|p < ε for −τ ≤ t < t∗, then it follows from (6.45),

we obtain that

E
n∑
i=1

|xi(t∗)|p

≤ 6p−1E
n∑
i=1

e−pcit
∗ |xi(0)|p

+6p−1
n∑
i=1

c
−p/q
i

(
n∑
j=1

|aij |q|αj |q
)p/q ∫ t∗

0
e−ci(t

∗−s)E

(
n∑
j=1

|xj(s)|p
)
ds

+6p−1
n∑
i=1

c
−p/q
i

(
n∑
j=1

|bij |q|βj |q
)p/q ∫ t∗

0
e−ci(t−s)E

(
n∑
j=1

|xj(s− τ(s)))|p
)
ds

+6p−1
n∑
i=1

(
r

ci

)p/q ( n∑
j=1

|lij |q|γj |q
)p/q ∫ t∗

0
e−ci(t

∗−s)
∫ s

s−r(s)
E

(
n∑
j=1

|xj(u)|p
)
du ds

+6p−1np−1
n∑
i=1

c
1−p/2
i

[
µp/2

∫ t∗

0
e−ci(t

∗−s)E

(
n∑
j=1

|xj(s)|p
)
ds

+νp/2
∫ t∗

0
e−ci(t−s)E

(
n∑
j=1

|xj(s− τ(s))|p
)
ds

]

+6p−1 max
i=1,2,··· ,n

{
ppi
cp−1
i

}∫ t∗

0
e−c(t

∗−s)E

(
n∑
i=1

|xi(s)|p
)
ds

≤ 6p−1δ +

[
6p−1

n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 6p−1
n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

+6p−1
n∑
i=1

(
r

ci

)p( n∑
j=1

|lij |q|γj |q
)p/q

+ 6p−1np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)

+
1

c
max

i=1,2,··· ,n

{
ppi
cp−1
i

}]
ε < (1− α)ε+ αε = ε,

which is a contradiction. Therefore, the trivial solution of (6.42) is asymptotically stable in pth

moment.

Let lij ≡ 0, the system (6.42) is reduced to
dx(t) = [−Cx(t) +Af(x(t)) +Bg(x(t− τ(t)))] dt

+σ(t, x(t), x(t− τ(t))) dw(t), t 6= tk

∆x(tk) = Ik(x(tk)), t = tk, k = 1, 2, 3, · · · .

(6.60)

which is a description of a stochastically perturbed Hop�eld neural networks with time-varying

delays.

Corollary 6.2.10. Suppose that the assumptions (A1)-(A5) hold. If the following conditions

are satis�ed,
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(i) there exist constants pi (i = 1, 2, · · · , n) such that pik ≤ pi(tk − tk−1), k = 1, 2, · · · ;

(ii) and such that

5p−1
n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 5p−1
n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

+5p−1np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)
+ 5p−1c−1 max

i=1,2,··· ,n

{
ppi
cp−1
i

}
< 1,

where c = min{c1, c2, · · · , cn}, µ = max{µ1, µ2, · · · , µn}, ν = max{ν1, ν2, · · · , νn};

then the trivial solution of (6.60) is pth moment asymptotically stable.

Remark 6.2.11. Note that the delay τ(t) in Corollary 6.2.10 can be unbounded.

6.2.3 Proof of Theorem 6.2.2

De�ne an operator (Qϕ)(t) = φ(t) for t ∈ [ϑ, 0] and for t ≥ 0, (Qϕ)(t) is de�ned as the right

hand side of (6.57). Following the proof of Theorem 6.2.1, we �nd that to show Theorem 6.2.2,

we only need to prove that eλtE
∑n

i=1 |(Qϕ)i(t)|p → 0 as t→∞. It follows from (6.57) that

eλtE
n∑
i=1

|(Qϕ)i(t)|p = eλtE
n∑
i=1

∣∣∣∣∣
6∑
j=1

Jji(t)

∣∣∣∣∣
p

≤ 6p−1eλt
6∑
j=1

E

(
n∑
i=1

|Jji(t)|p
)
. (6.61)

Now, we estimate the right-hand terms of (6.61). First, by using Hölder's inequality,

eλtE
n∑
i=1

|J2i(t)|p = eλt
n∑
i=1

E

∣∣∣∣∣
∫ t

0
e−ci(t−s)

n∑
j=1

aijfj(ϕj(s)) ds

∣∣∣∣∣
p

(6.62)

≤ eλteλt
n∑
i=1

E

[∫ t

0
e
− ci(t−s)

q e
− ci(t−s)

p

n∑
j=1

|aij ||fj(ϕj(s))| ds

]p

≤ eλt
n∑
i=1

E

{[∫ t

0
e−ci(t−s) ds

]p/q ∫ t

0
e−ci(t−s)

[
n∑
j=1

|aij ||fj(ϕj(s))|

]p
ds

}

≤ eλt
n∑
i=1

c
−p/q
i E

{∫ t

0
e−ci(t−s)

[
n∑
j=1

|aij ||αj ||ϕj(s)|

]p
ds

}

≤ eλt
n∑
i=1

c
−p/q
i

(
n∑
j=1

|aij |q|αj |q
)p/q ∫ t

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s)|p
)
ds

=

n∑
i=1

c
−p/q
i

(
n∑
j=1

|aij |q|αj |q
)p/q ∫ t

0
e(λ−ci)(t−s)eλsE

(
n∑
j=1

|ϕj(s)|p
)
ds.
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With a similar computation to (6.62), we obtain that

eλtE
n∑
i=1

|J3i(t)|p (6.63)

≤ eλt
n∑
i=1

c
−p/q
i

(
n∑
j=1

|bij |q|βj |q
)p/q ∫ t

0
e−ci(t−s)E

[
n∑
j=1

|ϕj(s− τ(s)))|p
]
ds

≤ eλτ
n∑
i=1

c
−p/q
i

(
n∑
j=1

|bij |q|βj |q
)p/q ∫ t

0
e−(ci−λ)(t−s)eλ(s−τ(s))E

[
n∑
j=1

|ϕj(s− τ(s)))|p
]
ds.

eλtE
n∑
i=1

|J4i(t)|p (6.64)

≤ eλt
n∑
i=1

c
−p/q
i

(
n∑
j=1

|lij |q|γj |q
)p/q ∫ t

0
e−ci(t−s)E

[
n∑
j=1

∣∣∣∣∣
∫ s

s−r(s)
ϕj(u) du

∣∣∣∣∣
p]
ds

≤ eλt
n∑
i=1

(
τ

ci

)p/q ( n∑
j=1

|lij |q|γj |q
)p/q ∫ t

0
e−ci(t−s)

∫ s

s−r(s)
E

(
n∑
j=1

|ϕj(u)|p
)
du ds

≤ eλτ
n∑
i=1

(
τ

ci

)p/q ( n∑
j=1

|lij |q|γj |q
)p/q ∫ t

0
e−(ci−λ)(t−s)

∫ s

s−r(s)
eλuE

(
n∑
j=1

|ϕj(u)|p
)
du ds.

Using Lemma 6.1.16 and Hölder's inequality, we obtain that

eλtE
n∑
i=1

|J5i(t)|p (6.65)

= eλt
n∑
i=1

E

∣∣∣∣∣
∫ t

0
e−ci(t−s)

n∑
j=1

σij(s, ϕj(s), ϕj(s− τ(s))) dwj(s)

∣∣∣∣∣
p

≤ eλtnp−1
n∑
i=1

n∑
j=1

E

{[∫ t

0
e−ci(t−s)|σij(s, ϕj(s), ϕj(s− τ(s)))| dwj(s)

]2}p/2

= eλtnp−1
n∑
i=1

n∑
j=1

E

[∫ t

0
e−2ci(t−s)σ2

ij(s, ϕj(s), ϕj(s− τ(s))) ds

]p/2

≤ eλtnp−1
n∑
i=1

n∑
j=1

E

[∫ t

0
e−2ci(t−s)

(
µjϕ

2
j (s) + νjϕ

2
j (s− τ(s))

)
ds

]p/2

≤ eλtnp−12p/2−1
n∑
i=1

n∑
j=1

E

[(∫ t

0
e−2ci(t−s)µjϕ

2
j (s) ds

)p/2

+

(∫ t

0
e−2ci(t−s)νjϕ

2
j (s− τ(s)) ds

)p/2]
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≤ eλtnp−12p/2−1
n∑
i=1

n∑
j=1

E

[(∫ t

0
e−2ci(t−s) ds

)p/2−1 ∫ t

0
e−2ci(t−s)µ

p/2
j |ϕj(s)|

p ds

]

+eλtnp−12p/2−1
n∑
i=1

n∑
j=1

E

[(∫ t

0
e−2ci(t−s) ds

)p/2−1 ∫ t

0
e−2ci(t−s)ν

p/2
j |ϕj(s− τ(s))|p ds

]

≤ eλtnp−1
n∑
i=1

c
1−p/2
i

[
µp/2

∫ t

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s)|p
)
ds

]

+eλtnp−1
n∑
i=1

c
1−p/2
i

[
νp/2

∫ t

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s− τ(s))|p
)
ds

]

≤ np−1
n∑
i=1

c
1−p/2
i

[
µp/2

∫ t

0
e−(ci−λ)(t−s)eλsE

(
n∑
j=1

|ϕj(s)|p
)
ds

]

+eλτnp−1
n∑
i=1

c
1−p/2
i

[
νp/2

∫ t

0
e−(ci−λ)(t−s)eλ(s−τ(s))E

(
n∑
j=1

|ϕj(s− τ(s))|p
)
ds

]
.

Further, from (A3), we know that |Iik(xi(tk))| ≤ pik|xi(tk)| for i = 1, 2, · · · , n, k = 1, 2, · · · .
Combining with the condition that pik ≤ pi(tk − tk−1), we obtain that

eλtE
n∑
i=1

|J6i(t)|p ≤ eλtE
n∑
i=1

[ ∑
0<tk<t

e−ci(t−tk)pik|ϕi(tk)|

]p

≤ eλtE
n∑
i=1

[
pi
∑

0<tk<t

e−ci(t−tk)|ϕi(tk)|(tk − tk−1)

]p

≤ eλtE
n∑
i=1

[
pi

∫ t

0
e−ci(t−s)|ϕi(s)| ds

]p

≤ eλtE
n∑
i=1

ppi

(∫ t

0
e−ci(t−s) ds

)p/q ∫ t

0
e−ci(t−s)|ϕi(s)|p ds

≤ max
i=1,2,··· ,n

{
ppi
cp−1
i

}∫ t

0
e−(c−λ)(t−s)eλsE

(
n∑
i=1

|ϕi(s)|p
)
ds. (6.66)

Since E
∑n

i=1 |ϕi(t)| → 0, t − τ(t) → ∞ and t − r(t) → ∞ as t → ∞. Thus, from (6.61) to

(6.66), we obtain that eλtE
∑n

i=1 |(Qϕ)i(t)|p → 0 as eλtE
∑n

i=1 |ϕi(t)|p → 0. Hence, combining

the proof of Theorem 6.2.1, there exists a unique �xed point ϕ(·) of Q in Cφ, which is a solution

of the system (6.42) such that eλtE
∑n

i=1 |ϕi(t)|p → 0 as t→∞. This completes the proof.

Corollary 6.2.12. Suppose that the assumptions (A1)-(A5) hold. Assume that

(i) the discrete delay τ(t) is bounded by a constant τ (τ > 0);

(ii) there exist constants pi (i = 1, 2, · · · , n) such that pik ≤ pi(tk − tk−1), k = 1, 2, · · · ;
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(iii) and such that

5p−1
n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 5p−1
n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

+5p−1np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)
+ 5p−1c−1 max

i=1,2,··· ,n

{
ppi
cp−1
i

}
< 1,

where c = min{c1, c2, · · · , cn}, µ = max{µ1, µ2, · · · , µn}, ν = max{ν1, ν2, · · · , νn},

then the trivial solution of (6.60) is pth moment exponentially stable.

6.2.4 Proof of Theorem 6.2.6

In this subsection, we prove Theorem 6.2.6. We start with some preparations.

Using similar computations as in Subsection 6.2.2, we obtain that for t ≥ 0, the system (6.47)

is equivalent to

xi(t) = e−citxi(0) +

∫ t

0
e−ci(t−s)

n∑
j=1

aijgj(xj(s)) ds+

∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(xj(s− τ(s))) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

lij

∫ s

s−r(s)
gj(xj(u)) du ds+

∑
0<tk<t

e−ci(t−tk)Iik(xi(tk)),

i = 1, 2, 3, · · · , n, k = 1, 2, · · · .

Lemma 6.2.13. De�ne an operator by (Pϕ)(t) = φ(t) for −τ ≤ t ≤ 0, and for t ≥ 0,

(Pϕ)i(t) = e−citϕi(0) +

∫ t

0
e−ci(t−s)

n∑
j=1

aijgj(ϕj(s)) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(ϕj(s− τ(s))) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

lij

∫ s

s−r(s)
gj(ϕj(u)) du ds+

∑
0<tk<t

e−ci(t−tk)Iik(xi(tk))

:= I1(t) + I2(t) + I3(t) + I4(t) + I5(t). (6.67)

If the conditions (i)-(iii) in Theorem 6.2.6 are satis�ed, then P : Sφ → Sφ and P is a contraction

mapping.

Proof. First, we prove that PSφ ⊆ Sφ. In view of (6.67), it is easy to check that (Pxi)(t) is

continuous on �xed time t 6= tk (k = 1, 2, · · · ). On the other hand, as t = tk (k = 1, 2, · · · ), it is
not di�cult to show that I1(t), I2(t), I3(t), I4(t) is continuous on �xed time t = tk (k = 1, 2, · · · ).
Let r < 0 be small enough, we obtain that

|J5i(tk + r)− J5i(tk)| =

∣∣∣∣∣ ∑
0<tm<tk+r

e−ci(tk+r−tm)Iim(ϕi(tm))−
∑

0<tm<tk

e−ci(tk−tm)Iim(ϕi(tm))

∣∣∣∣∣
≤

∣∣∣∣∣ (e−ci(tk+r) − e−citk
) ∑

0<tm<tk

ecitmIim(ϕi(tm))

∣∣∣∣∣,
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which implies that limr→0− |J5i(tk + r)− J5i(tk)| = 0. Let r > 0 be small enough, we obtain

that

|J5i(tk + r)− J5i(tk)| =

∣∣∣∣∣ ∑
0<tm<tk+r

e−ci(tk+r−tm)Iim(ϕi(tm))−
∑

0<tm<tk

e−ci(tk−tm)Iim(ϕi(tm))

∣∣∣∣∣
=

∣∣∣∣∣e−ci(tk+r)

[ ∑
0<tm<tk

ecitmIim(ϕi(tm)) + ecitkIik(ϕi(tk))

]

−e−citk
∑

0<tm<tk

ecitmIim(ϕi(tm))

∣∣∣∣∣
=

∣∣∣∣∣ (e−ci(tk+r) − e−citk
) ∑

0<tm<tk

ecitmIim(ϕi(tm)) + e−cirIik(ϕi(tk))

∣∣∣∣∣,
which implies that limr→0+ |J5i(tk + r)− J5i(tk)| = |Iik(ϕi(tk))|.

Based on the above discussion, we obtain that (Pϕ)i(t) : [ϑ,∞) → Rn is continuous on t 6= tk
(k = 1, 2, · · · ), and for t = tk (k = 1, 2, · · · ), limt→t+k

(Pϕ)i(t) and limt→t−k
(Pϕ)i(t) exist. Fur-

thermore, we also obtain that limt→t−k
(Pϕ)i(t) = (Pϕ)i(tk) 6= limt→t+k

(Pϕ)i(t).

Next, we prove that limt→∞(Pϕ)i(t) = 0 for ϕi(t) ∈ Siφ.

|I5(t)| =

∣∣∣∣∣ ∑
0<tk<t

e−ci(t−tk)Iik(xi(tk))

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑

0<tk<t

e−ci(t−tk)pi(tk − tk−1)xi(tk)

∣∣∣∣∣
≤ pi

∫ t

0
e−ci(t−s)|xi(s)| ds. (6.68)

From the fact that ci > 0 (i = 1, 2, · · · , n) and the estimate (6.33), (6.34), (6.35) and (6.68), we

conclude that limt→∞(Pxi)(t) = 0 for xi(t) ∈ Siφ. Therefore, P : Sφ → Sφ.

Now, we prove that P is a contraction mapping. For any x(t), y(t) ∈ Sφ, we obtain that

n∑
i=1

sup
ϑ≤s≤t

|(Px)i(t)− (Py)i(t)|

≤
n∑
i=1

max
j=1,2,··· ,n

|aijαj |
∫ t

0
e−ci(t−s)

n∑
j=1

|xj(s)− yj(s)| ds

+
n∑
i=1

max
j=1,2,··· ,n

|bijβj |
∫ t

0
e−ci(t−s)

n∑
j=1

|xj(s− τ(s))− yj(s− τ(s))| ds

+
n∑
i=1

max
j=1,2,··· ,n

|lijγj |
∫ t

0
e−ci(t−s)

n∑
j=1

∫ s

s−r(s)
|xj(u)− yj(u)| du ds

+

n∑
i=1

pi

∫ t

0
e−ci(t−s)|xi(s)− yi(s)| ds
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≤

[
n∑
i=1

1

ci
max

j=1,2,··· ,n
|aijαj |+

n∑
i=1

1

ci
max

j=1,2,··· ,n
|bijβj |

+

n∑
i=1

τ

ci
max

j=1,2,··· ,n
|lijγj |+ max

j=1,2,··· ,n

{
pi
ci

}]
n∑
j=1

[
sup
ϑ≤s≤t

|xj(s)− yj(s)|

]

= α

n∑
j=1

[
sup
ϑ≤s≤t

|xj(s)− yj(s)|

]
.

From (6.50), we obtain that P is a contraction mapping.

We are now ready to prove Theorem 6.2.6.

Proof. Let P be de�ned as in Lemma 6.2.13, by a contraction mapping principle, P has a unique

�xed point x ∈ Sφ with x(θ) = φ(θ) on −τ ≤ θ ≤ 0 and x(t)→ 0 as t→∞.

To obtain asymptotically stable, we need to prove that the trivial equilibrium x = 0 of (6.47)

is stable. From (6.50), For any ε > 0, choose σ > 0 and σ < ε satisfying the condition σ+εα < ε.

If x(t, φ) = (x1(t, φ), x2(t, φ), · · · , xn(t, φ)) is the solution of (6.47) with the initial condition

‖φ‖ < σ, the we claim that ‖x(t, φ)‖ < ε for all t ≥ 0. Indeed, we suppose that there exists

t∗ > 0 such that

n∑
i=1

|xi(t∗, φ)| = ε, and
n∑
i=1

|xi(t, φ)| < ε for 0 ≤ t < t∗. (6.69)

From (6.50), we obtain

n∑
i=1

|xi(t∗, φ)|

≤
n∑
i=1

[
|e−cit∗xi(0)|+

∫ t∗

0
e−ci(t

∗−s)
n∑
j=1

|aijfj(xj(s))| ds

+

∫ t∗

0
e−ci(t

∗−s)
n∑
j=1

|bijgj(xj(s− τ(s)))| ds

+

∫ t∗

0
e−ci(t

∗−s)
n∑
j=1

|lij
∫ s

s−r(s)
hj(xj(u))| du ds+ pi

∫ t∗

0
e−ci(t

∗−s)|xi(s)| ds

]

< σ + ε

[
n∑
i=1

1

ci
max

j=1,2,··· ,n
|aijαj |+

n∑
i=1

1

ci
max

j=1,2,··· ,n
|bijβj |

+
n∑
i=1

τ

ci
max

j=1,2,··· ,n
|lijγj |+ max

j=1,2,··· ,n

{
pi
ci

}]
≤ σ + εα < ε.

which contradicts (6.69). Therefore, ‖x(t, φ)‖ < ε for all t ≥ 0. This completes the proof.
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Let lij ≡ 0 for i = 1, 2, · · · , n, j = 1, 2, · · · , n, the system (6.47) is reduced to
dxi(t)
dt = −cixi(t) +

∑n
j=1 aijfj(xj(t)) +

∑n
j=1 bijgj(xj(t− τ(t))), t 6= tk

∆xi(tk) = Iikxi(tk), t = tk, k = 1, 2, 3, · · · ,

(6.70)

which is the description of cellular neural network with time-varying delays. Following the result

of Theorem 6.2.6, we have the following corollary. Note that the delay in Corollary 6.2.14 can

be unbounded.

Corollary 6.2.14. Suppose that the conditions (A1)-(A4) hold. If the following conditions are

satis�ed,

(i) there exist constants pi (i = 1, 2, · · · , n) such that pik ≤ pi(tk − tk−1), k = 1, 2, · · · ;

(ii) and such that

α ,
n∑
i=1

1

ci
max

j=1,2,··· ,n
|aijαj |+

n∑
i=1

1

ci
max

j=1,2,··· ,n
|bijβj |+ max

i=1,2,··· ,n

{
pi
ci

}
< 1, (6.71)

then the trivial solution of (6.70) is asymptotically stable.

Remark 6.2.15. Zhang and Guan [143] has studied asymptotic stability of (6.70) by using �xed

point theory. The conditions in [143] are as follows

(i) there exists a constant µ such that infk=1,2,···{tk − tk−1} ≥ µ;

(ii) there exist constants pi (i = 1, 2, · · · , n) such that pik ≤ piµ, k = 1, 2, · · · ;

(iii) and such that

λ∗ ,
n∑
i=1

1

ci
max

j=1,2,··· ,n
|aijαj |+

n∑
i=1

1

ci
max

j=1,2,··· ,n
|bijβj |+ max

i=1,2,··· ,n

{
pi
ci

+ piµ

}
< 1;

(iv)

max
i=1,2,··· ,n

{λi} <
1√
n
, where λi =

1

ci

n∑
j=1

|aijαj |+
1

ci

n∑
j=1

|bijβj |+
(
pi
ci

+ piµ

)
.

It is clear that Corollary 6.2.16 is an improvement of the result in [143].

6.2.5 Proof of Theorem 6.2.7

De�ne the operator P as in Subsection 6.2.4. Following the proof of Theorem 6.2.6, we only

need to prove that eλt(Pϕ)i(t) → 0 as t → ∞. We estimate the right-hand terms of (6.67), we
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obtain that

eλt|I2(t)| =

∣∣∣∣∣
∫ t

0
e−ci(t−s)

n∑
j=1

aijfj(ϕj(s)) ds

∣∣∣∣∣
≤ eλt

∫ t

0
e−ci(t−s)

n∑
j=1

|aijαj ||ϕj(s)| ds

≤ max
j=1,2,··· ,n

|aijαj |
∫ t

0
e−(ci−λ)(t−s)eλs

n∑
j=1

|ϕj(s)| ds, (6.72)

eλt|I3(t)| = eλt

∣∣∣∣∣
∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(ϕj(s− τ(s))) ds

∣∣∣∣∣
≤ eλt

∫ t

0
e−ci(t−s)

n∑
j=1

|bijβj ||ϕj(s− τ(s))| ds

≤ eλτ max
j=1,2,··· ,n

|bijβj |
∫ t

0
e−(ci−λ)(t−s)eλ(s−τ(s))

n∑
j=1

|ϕj(s− τ(s))| ds, (6.73)

eλt|I4(t)| = eλt

∣∣∣∣∣
∫ t

0
e−ci(t−s)

n∑
j=1

lij

∫ s

s−r(s)
hj(ϕj(u)) du ds

∣∣∣∣∣
≤ eλt

∫ t

0
e−ci(t−s)

n∑
j=1

|lijγj |
∫ s

s−r(s)
|ϕj(u)| du ds

≤ eλτ max
j=1,2,··· ,n

|lijγj |
∫ t

0
e−(ci−λ)(t−s)

∫ s

s−r(s)
eλu

n∑
j=1

|ϕj(u)| du ds, (6.74)

eλt|I5(t)| = eλt

∣∣∣∣∣ ∑
0<tk<t

e−ci(t−tk)Iik(xi(tk))

∣∣∣∣∣ ≤ eλt

∣∣∣∣∣ ∑
0<tk<t

e−ci(t−tk)pi(tk − tk−1)xi(tk)

∣∣∣∣∣
≤ pi

∫ t

0
e−(ci−λ)(t−s)eλs|xi(s)| ds. (6.75)

From the fact that λ < min{c1, c2, · · · , cn}, ci > 0 (i = 1, 2, · · · , n) and the above estimate, we

obtain that eλt(Pϕ)i(t)→ 0 as t→∞.

Corollary 6.2.16. Suppose that the conditions (A1)-(A4) hold. If the following conditions are

satis�ed,

(i) the delay τ(t) is bounded by a constant τ (τ > 0);

(ii) there exist constants pi (i = 1, 2, · · · , n) such that pik ≤ pi(tk − tk−1), k = 1, 2, · · · ;

(iii) and such that

α ,
n∑
i=1

1

ci
max

j=1,2,··· ,n
|aijαj |+

n∑
i=1

1

ci
max

j=1,2,··· ,n
|bijβj |+ max

j=1,2,··· ,n

{
pi
ci

}
< 1, (6.76)
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then the trivial solution of (6.70) is exponentially stable.

Remark 6.2.17. Zhang and Luo [142] has studied exponential stability of (6.70) by using �xed

point theory. The conditions in [142] are as follows

(i) the delay τ(t) is bounded by a constant τ (τ > 0);

(ii) there exists a constant µ such that infk=1,2,···{tk − tk−1} ≥ µ;

(iii) there exist constants pi (i = 1, 2, · · · , n) such that pik ≤ piµ, k = 1, 2, · · · ;

(iv) and such that

α ,
n∑
i=1

1

ci
max

j=1,2,··· ,n
|aijαj |+

n∑
i=1

1

ci
max

j=1,2,··· ,n
|bijβj |+ max

i=1,2,··· ,n

{
pi
ci

+ piµ

}
< 1.

It is clear that Corollary 6.2.16 is an improvement of the result in [142].

6.2.6 Examples

Example 6.2.18. Consider the following two-dimensional cellular neural network
dxi(t)
dt = −cixi(t) +

∑2
j=1 aijgj(xj(t)) +

∑2
j=1 bijgj(xj(t− τ(t))) i = 1, 2, t 6= tk

∆xi(tk) = Iikxi(tk), t = tk, k = 1, 2, 3, · · · ,

(6.77)

with the initial conditions x1(s) = cos(s), x2(s) = sin(s) on −1
2 ≤ s ≤ 0, where c1 = c2 = 3,

a11 = 6/7, a12 = 3/7, a21 = −1/7, a22 = −1/7, b11 = 6/7, b12 = 2/7, b21 = 3/7, b22 =

1/7, the activation function is described by gi(x) = |x+1|−|x−1|
2 , τ(t) = 0.4t + 1. Iik(xi(tk)) =

arctan(0.4xi(tk)), tk = tk−1 + 0.5k, i = 1, 2 and k = 1, 2, · · · .

It is clear that αi = βi = 1, pik = 0.4 for i = 1, 2, k = 1, 2, · · · , we select pi = 0.8, then

2∑
i=1

1

ci
max
j=1,2

|aijαj |+
2∑
i=1

1

ci
max
j=1,2

|bijβj |+ max
j=1,2,··· ,n

{
pi
ci

}
≤ 1

3
×
(

6

7
+

1

7
+

6

7
+

3

7

)
+

4

35

=
16

21
+

4

35
< 0.88 < 1.

Hence, by Corollary 6.2.14, the trivial solution of (6.77) is asymptotically stable. However,

2∑
i=1

1

ci
max
j=1,2

|aijαj |+
2∑
i=1

1

ci
max
j=1,2

|bijβj |+ max
i=1,2,··· ,n

{
pi
ci

+ piµ

}
> 1,

which implies that the result in [143] is not applicable.

Example 6.2.19. Consider a two-dimensional stochastically perturbed Hop�eld neural network

with time-varying delays,
dx(t) = [−Cx(t) +Af(x(t)) +Bg(xτ (t))] dt+ σ(t, x(t), xτ (t)) dw(t), t 6= tk

∆x(tk) = Ik(x(tk)), t = tk, k = 1, 2, 3, · · · ,
(6.78)
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where f(x) = 1
5 arctanx, g(x) = 1

5 tanhx = 1
5(ex − e−x)/(ex + e−x), τ(t) = 1

2 sin t+ 1
2 ,

C =

(
5 0

0 4.5

)
, A =

(
2 0.4

0.6 1

)
and B =

(
−0.8 2

1 4

)
.

In this example, let p = 3, take αj = 0.2, βj = 0.2, j = 1, 2, σ : R+ × R2 × R2 → R2 × R2

satis�es

σ2
i1(t, x, y) ≤ 0.01(x2

1 + y2
1) and σ2

i2(t, x, y) ≤ 0.01(x2
2 + y2

2), i = 1, 2.

Iik(xi(tk)) = 0.1xi(tk), tk = tk−1 + 0.5, i = 1, 2 and k = 1, 2, · · · .

It is clear that pik = 0.1, we choose pi = 0.2, let p = 2, we check the condition in Corollary

6.2.10,

5p−1
n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 5p−1
n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

+5p−1np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)
+ 5p−1c−1 max

i=1,2

{
ppi
cp−1
i

}
< 0.53 < 1.

From Corollary 6.2.10, the trivial solution of (6.78) is asymptotically stable. On the other

hand, since |τ(t)| =
∣∣1

2 sin t+ 1
2

∣∣ ≤ 1, from Corollary 6.2.12, the trivial solution of (6.78) is

exponentially stable.

6.3 Notes and remarks

Neural networks have received an increasing interest in various areas [34, 119]. The stability of

neural networks [38, 82, 139, 140] is critical for signal processing, especially in image processing

and solving some classes of optimization problems. For the stochastic e�ects to the dynamical

behaviors of neural networks, Liao and Mao [79, 80] initiated the study of stability and insta-

bility of stochastic neural networks.

Many articles [54, 55, 56, 120, 129] have considered a special case of the stochastic equation

(6.1). Hu et al.[54] and Wan and Sun [129] studied a special case of (6.1) with the delays

constant and discrete. The activation functions appearing in [54] are required to be bounded.

Liao and Mao [81] investigated exponential stability of stochastic delay interval systems via

Razumikihin-type theorems developed in [95], several exponential stability results were provid-

ed. However, the results are not only di�cult to verify but also restrict to a case of the interval

matrices Ã = B̃ = C̃ = 0. Sun and Cao [120] investigated the pth moment exponential stability

of stochastic di�erential equations with discrete bounded delays by using the method of variation

parameter, inequality technique and stochastic analysis. This method was �rstly used in [129],

which does not require the boundedness, monotonicity and di�erentiability of the activation

functions. However, the stability criteria in [120] requires that the delay functions are bounded,

di�erentiable and their derivatives are simultaneously required to be not greater than 1, this

may impose a very strict constraint on model (see [138]). Huang et al. [55, 56] investigated the

exponential stability of stochastic di�erential equations with discrete time-varying delays with

the help of the Liapunov function and Dini derivative. However, the use of their criteria depends
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very much on the choice of positive numbers kij etc. and a positive diagonal matrix M (see

Theorem 3.3 in [55] and Theorem 3.3 in [56]).

Based on the contents of this chapter, two papers [19, 20] have been submitted for possible

publication.
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