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Chapter 3

Asymptotic behavior of a class of

nonautonomous neutral delay

di�erential equations

In this chapter, asymptotic behavior of a class of nonautonomous neutral delay di�erential

equations is studied. It should be emphasized that asymptotic behavior of nonautonomous

equations is much more di�cult than the case of autonomous equations. For instance, Frasson

and Verduyn Lunel [39] studied the following linear periodic delay equation

x′(t) = a(t)x(t) +
k∑
j=1

bj(t)x(t− τj), (3.1)

where a(t+ω) = a(t), bj(t+ω) = bj(t), j = 1, 2, · · · , k, they considered a particular case where

τj = jω (i.e. the delays are integer multiples of the period ω). However, it is very di�cult to

study general nonautonomous problems.

For a special class of nonautonomous problems, we can use an approach similar to the ODE

method as we discussed in Chapter 2, which is based on the application of an appropriate solution

of the generalized characteristic equation. For nonautonomous equations, solving the generalized

characteristic equation becomes much harder: functional equation instead of algebraic equation.

Our result can be applied in case the assumptions are satis�ed, i.e., the generalized characteristic

equation has a real solution.

3.1 Introduction and main result

For r ≥ 0, let C = C([−r, 0],C) be the space of continuous functions taking [−r, 0] into C with

‖ϕ‖, ϕ ∈ C, de�ned by ‖ϕ‖ = max−r≤θ≤0 |ϕ(θ)|. A delay di�erential equation of neutral type,

or shortly, a neutral equation is a system of the form

d

dt
Mxt = L(t)xt t > t0 ∈ R, (3.2)

where xt ∈ C is de�ned by xt(θ) = x(t + θ), −r ≤ θ ≤ 0, M : C → C is continuous, linear and

atomic at zero, (see [51] on page 255 for the concept of atomic at zero),

Mϕ = ϕ(0)−
∫ 0

−r
ϕ(θ) dµ(θ), (3.3)

where Var[s,0]µ→ 0, as s→ 0.
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For (3.2), L(t) denotes a family of bounded linear functionals on C, and by the Riesz repre-

sentation theorem, for each t > t0, there exists a complex valued function of bounded variation

η(t, ·) on [−r, 0], normalized so that η(t, 0) = 0 and η(t, ·) is continuous from the left in (−r, 0)

such that

L(t)ϕ =

∫ 0

−r
ϕ(θ) dθη(t, θ). (3.4)

For any ϕ ∈ C, σ ∈ [t0,∞), a function x = x(σ, ϕ) de�ned on [σ − r, σ + A) is said to be a

solution of (3.2) on (σ, σ + A) with initial ϕ at σ if x is continuous on [σ − r, σ + A), xσ = ϕ,

Mxt is continuously di�erentiable on (σ, σ+A) and relation (3.2) is satis�ed on (σ, σ+A). For

more information on this type of equations, see [51].

The initial-value problem (IVP) is
d
dtMxt = L(t)xt t ≥ σ,

xσ = ϕ.

(3.5)

For µ = 0 in (3.3), Mϕ = ϕ(0) and equation (3.2) becomes a retarded functional di�erential

equation,

x′(t) = L(t)xt. (3.6)

Consider the generalized characteristic equation of (3.6)

λ(t) =

∫ r

0
exp

(
−
∫ t

t−θ
λ(s)ds

)
dθη(t, θ) (3.7)

which is obtained by looking for solutions to (3.6) of the form

x(t) = exp

(∫ t

0
λ(s) ds

)
. (3.8)

By a solution of the generalized characteristic equation (3.7), we mean a continuous real-valued

function λ(·) de�ned on [t0 − r,∞) which satis�es (3.7).

Cuevas and Frasson [26] studied the asymptotic behavior of solutions of (3.6) with initial con-

dition xσ = ϕ, and obtained the following result.

Theorem 3.1.1. Assume that λ(t) is a real solution of (3.7) such that

lim sup
t→∞

∫ r

0
θ|e−

∫ t
t−θ λ(s)ds|dθ|η|(t, θ) < 1.

Then for each solution x of (3.6), we have that the limit

lim
t→∞

x(t)e
−
∫ t
t0
λ(s)ds

exists, and

lim
t→∞

[
x(t)e

−
∫ t
t0
λ(s)ds

]′
= 0.

Furthermore,

lim
t→∞

x′(t)e
−
∫ t
t0
λ(s)ds

= lim
t→∞

λ(t)x(t)e
−
∫ t
t0
λ(s)ds

,

if limt→∞ λ(t)x(t)e
−
∫ t
t0
λ(s)ds

exists.
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Motivated by the work of [26], we provide a generalization of [26], as it can be applied for in-

stance for neutral delay di�erential equations with distributed delays or discrete delays, as far

as the delays we considered are uniformly bounded. The method for the proof of the main result

is similar to [26, 33].

For equation (3.2), the generalized characteristic equation is

λ(t) =

∫ 0

−r
dµ(θ)λ(t+ θ) exp

(
−
∫ t

t+θ
λ(s)ds

)
+

∫ 0

−r
dθη(t, θ) exp

(
−
∫ t

t+θ
λ(s)ds

)
, (3.9)

which is obtained by looking for solutions of (3.2) of the form (3.8) and the solutions of (3.9)

are continuous functions de�ned in [σ − r,∞) satisfying (3.9). For autonomous neutral delay

di�erential equations, the constant solutions of (3.9) are the roots of the so called characteristic

equation. The following is our main result.

Theorem 3.1.2. Assume that a real-valued function λ(t) is a solution of (3.9) such that

lim sup
t→∞

χλ,t < 1, (3.10)

where

χλ,t =

∫ 0

−r
e−
∫ t
t+θ λ(s) ds d|µ|(θ) +

∫ 0

−r
(−θ)e−

∫ t
t+θ λ(s) ds (|λ(t+ θ)| d|µ|(θ) + dθ|η|(t, θ)) .

Then for each solution x of (3.5), we have that the limit

lim
t→∞

x(t)e
−
∫ t
t0
λ(s) ds

(3.11)

exists, and

lim
t→∞

[
x(t)e

−
∫ t
t0
λ(s) ds

]′
= 0. (3.12)

Furthermore,

lim
t→∞

x′(t)e
−
∫ t
t0
λ(s) ds

= lim
t→∞

λ(t)x(t)e
−
∫ t
t0
λ(s) ds

(3.13)

if the limit at the right-hand side exists.

Remark 3.1.3. The conditions in Theorem 3.1.2 are very strong and therefore the theorem is

far from providing a general theory. However, it can be applied to deal with certain examples,

see Section 3.3.

3.2 Proof of Theorem 3.1.2

In this section, we prove Theorem 3.1.2. We start with some preparations.

From (3.10), we obtain that there exists t1 ≥ t0, such that supt≥t1 χλ,t < 1. Without loss

of generality, we assume t1 = 0 and de�ne

Γλ := sup
t≥0

χλ,t < 1.
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For solutions x of (3.5), we set

y(t) = x(t)e−
∫ t
0 λ(s) ds, t > −r.

Then (3.5) becomes

y′(t) + λ(t)y(t)−
∫ 0

−r
dµ(θ)y′(t+ θ)e−

∫ t
t+θ λ(s) ds

=

∫ 0

−r
y(t+ θ)e−

∫ t
t+θ λ(s) ds (λ(t+ θ) dµ(θ) + dθη(t, θ)) (3.14)

and the initial condition is equivalent to

y(t) = ϕ(t)e−
∫ t
0 λ(s) ds, −r ≤ t ≤ 0. (3.15)

Combining (3.15) with (3.9), for t ≥ −r, we have

y′(t) =

∫ 0

−r
dµ(θ)y′(t+ θ)e−

∫ t
t+θ λ(s) ds

−
∫ 0

−r
e−
∫ t
t+θ λ(s) ds

∫ 0

−r
y′(s) ds (λ(t+ θ) dµ(θ) + dθη(t, θ)) . (3.16)

From the de�nition of the solutions to (3.5), we know that y′(t) is continuous, Let

Mϕ,λ1 = max
{∣∣∣ϕ′(t)e− ∫ t0 λ(s) ds − λ(t)ϕ(t)e−

∫ t
0 λ(s) ds

∣∣∣ : −r ≤ t ≤ 0
}
.

We shall show that Mϕ,λ1 is also a bound of y′ on the whole interval [−r,∞); i.e.,

|y′(t)| ≤Mϕ,λ1 , t ≥ −r. (3.17)

For this purpose, take ε > 0, then

|y′(t)| < Mϕ,λ1 + ε for t ≥ −r. (3.18)

In fact, we suppose that there exists a point t∗ > 0 such that

|y′(t)| < Mϕ,λ1 + ε for − r ≤ t < t∗,

|y′(t∗)| = Mϕ,λ1 + ε. (3.19)

Then combining (3.16) and (3.19), we obtain

y′(t∗) = Mϕ,λ1 + ε

≤
∣∣∣∣∫ 0

−r
y′(t∗ + θ)e−

∫ t∗
t∗+θ λ(s) ds dµ(θ)

∣∣∣∣
+

∣∣∣∣∫ 0

−r
e−
∫ t∗
t∗+θ λ(s) ds

∫ 0

−r
y′(s) ds (λ(t∗ + θ) dµ(θ) + dθη(t∗, θ))

∣∣∣∣
≤ (Mϕ,λ1 + ε)

{∫ 0

−r
|e−

∫ t∗
t∗+θ λ(s) ds| d|µ|(θ)

+

∫ 0

−r
(−θ)|e−

∫ t∗
t∗+θ λ(s) ds| (|λ(t∗ + θ)| d|µ|(θ) + dθ|η|(t∗, θ))

}
= (Mϕ,λ1 + ε)Γλ < Mϕ,λ1 + ε, (3.20)
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which is a contradiction, so (3.18) holds. Since (3.18) holds for every ε > 0, it follows that

|y′(t)| ≤Mϕ,λ0 for all t ≥ −r.

We are now ready to prove Theorem 3.1.2.

Proof. By using (3.16) and (3.17), for t ≥ 0, we have

|y′(t)| ≤
∣∣∣∣∫ 0

−r
y′(t+ θ)e−

∫ t
t+θ λ(s)ds dµ(θ)

∣∣∣∣
+

∣∣∣∣∫ 0

−r
e−
∫ t
t+θ λ(s) ds

∫ 0

−r
y′(s) ds (λ(t+ θ) dµ(θ) + dθη(t, θ))

∣∣∣∣
≤ Mϕ,λ1

{∫ 0

−r
|e−

∫ t
t+θ λ(s) ds| d|µ|(θ)

+

∫ 0

−r
(−θ)|e−

∫ t
t+θ λ(s) ds| (|λ(t+ θ)| d|µ|(θ) + dθ|η|(t, θ))

}
= Mϕ,λ1Γλ (3.21)

which means |y′(t)| ≤Mϕ,λ1Γλ1 for t ≥ 0.

One can show by induction, that y′(t) satis�es

|y′(t)| ≤Mϕ,λ1(Γλ)n for t ≥ nr − r, (n = 0, 1, 2, 3, . . . ). (3.22)

Since 0 ≤ χλ,t < 1, it follows that y′(t) tends to zero as t→∞. So we proved (3.12) and hence

(3.13) holds. In the following, we will show (3.11) holds.

To prove that limt→∞ y(t) exists, we consider (3.22). For an arbitrary t ≥ 0, we set n = [t/r]+1

(the greatest integer less than or equal to t/r+1), then from n = [t/r]+1 ≤ t/r+1 ≤ [t/r]+2 =

n+ 1, we have t/r ≤ n. From (3.22),

|y′(t)| ≤Mϕ,λ1(Γλ)n ≤Mϕ,λ1(Γλ)t/r for t ≥ nr − r. (3.23)

Now we use the Cauchy convergence criterion. For t > T ≥ 0, from (3.23), we have

|y(t)− y(T )| ≤
∫ t

T
|y′(s)| ds ≤

∫ t

T
Mϕ,λ1(Γλ)s/r ds = Mϕ,λ1

r

ln Γλ

[
(Γλ)s/r

]s=t
s=T

(3.24)

= Mϕ,λ1

r

ln Γλ

[
(Γλ)t/r − (Γλ)T/r

]
.

Let T →∞, we have t→∞, and by (3.25), we have

Mϕ,λ
r

ln Γλ

[
(Γλ)t/r − (Γλ)T/r

]
→ 0;

and limT→∞ |y(t) − y(T )| = 0. The Cauchy convergence criterion implies the existence of

limt→∞ y(t).

Remark 3.2.1. Under the conditions of Theorem 3.1.2, a solution of (3.5) can not grow faster

than exponential; i.e., there exists a constant M > 0, such that

|x(t)| ≤Me
∫ t
0 λ(s) ds for t ≥ 0. (3.25)

From (3.25), it is not di�cult to show that:
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(i) Every solution of (3.5) is bounded if and only if lim supt→∞
∫ t

0 λ(s) ds <∞;

(ii) Every solution of (3.5) tends to zero if and only if lim supt→∞
∫ t

0 λ(s) ds→ −∞.

Remark 3.2.2. If the generalized characteristic equation (3.9) has a constant solution λ(t) = λ0,

then from Theorem 3.1.2, limt→∞ x(t)e−λ0t exists.

3.3 Examples

Example 3.3.1. Consider the linear di�erential equation with distributed delay

x′(t)− 1

2
x′(t− 1) =

∫ 0

−1

x(t+ θ)

2(t+ θ)
dθ, t > 1. (3.26)

This equation can be written in the form (3.2) by setting µ(θ) = −1
2 for θ ≤ −1, µ(θ) = 0 for

θ > −1, η(t, θ) = ln t+ 1
2 ln(t+ θ) for t > 1 and θ ∈ [−1, 0]. Since both θ 7→ η(t, θ) and θ 7→ µ(θ)

are increasing functions, |µ| = µ, |η| = η.

The generalized characteristic equation associated with (3.26) is

λ(t) =
λ(t− 1)

2
exp

(
−
∫ t

t−1
λ(s) ds

)
+

∫ 0

−1

1

2(t+ θ)
exp

(
−
∫ t

t+θ
λ(s) ds

)
dθ,

which has a solution

λ(t) = 1/t. (3.27)

For this λ(t) and for t > 1, using the expression of χλ,t, we obtain that

χλ,t =
1

2

(
1− 1

2t

)
+

1

4t
+

∫ 0

−1

−θ
2(t+ θ)

exp

[
−
∫ t

t+θ

ds

s

]
dθ

=
1

2
+

1

4(t)
→ 1

2
< 1 as t→∞.

Hence the hypothesis (3.10) of Theorem 3.1.2 is ful�lled. So we obtain that for each solution of

(3.3.1)

lim
t→∞

x(t)

t
exists, lim

t→∞

[
x(t)

t

]′
= 0 and lim

t→∞

x′(t)

t
= 0. (3.28)

Example 3.3.2. Consider the linear di�erential equation with distributed delay

x′(t)− 1

p
x′(t− 1) =

∫ 0

−1

x(t+ θ)

q(t+ ε+ θ)
dθ, t > 1, (3.29)

ε is any constant, p and q are positive constants such that 1/p + 1/q = 1. This equation

can be written in the form (3.2) by setting µ(θ) = −1
p for θ ≤ −1, µ(θ) = 0 for θ > −1,

η(t, θ) = ln t+ 1
q ln(t+ ε+ θ) for t > 1 and θ ∈ [−1, 0]. Since both θ 7→ η(t, θ) and θ 7→ µ(θ) are

increasing functions, |µ| = µ, |η| = η.

The generalized characteristic equation associated with (3.29) is

λ(t) =
λ(t− 1)

p
exp

(
−
∫ t

t−1
λ(s) ds

)
+

∫ 0

−1

1

q(t+ ε+ θ)
exp

(
−
∫ t

t+θ
λ(s) ds

)
dθ,
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which has a solution

λ(t) =
1

t+ ε
.

For this λ(t) and for t > 1, using the expression of χλ,t, we obtain that

χλ,t =
1

p

(
1− 1

2(t+ ε)

)
+

1

2p(t+ ε)
+

∫ 0

−1

−θ
2q(t+ ε+ θ)

exp

[
−
∫ t

t+θ

ds

s+ ε

]
dθ

=
1

p
+

1

2q(t+ ε)
→ 1

p
< 1 as t→∞.

Hence the hypothesis (3.10) of Theorem 3.1.2 is ful�lled. So we obtain that for each solution of

(3.3.1)

lim
t→∞

x(t)

t
exists, lim

t→∞

[
x(t)

t

]′
= 0 and lim

t→∞

x′(t)

t
= 0. (3.30)

Remark 3.3.3. Note that if the generalized characteristic equation (3.9) has a solution is di�cult

to verify. Example 3.3.2 is an extension of Example 3.3.1, we added an ε, and the coe�cients

1/2 and 1/2 changed to be 1/p and 1/q, which has to be satis�ed 1/p+ 1/q = 1.

Example 3.3.4. Consider the equation with variable delay

x′(t)− 2

3
x′(t− 1) =

x(t− τ(t))

3(t+ c− τ(t))
, t > t0. (3.31)

where c ∈ R and τ : [0,∞) → [−1, 0] is a continuous function such that t + c − τ(t) > 0 for

t > t0.

Equation (3.31) can be written in the form (3.2) by letting µ(θ) = −2
3 for θ ≤ −1, µ(θ) = 0 for

θ > −1, η(t, θ) = 0 for θ < τ(t), η(t, θ) = 1/3(t+ c− τ(t)) for θ > τ(t). Since both θ 7→ η(t, θ)

and θ 7→ µ(θ) are increasing functions, we have that |µ| = µ, |η| = η.

The generalzied characteristic equation associated with (3.31) is

λ(t) =
2λ(t− 1)

3
exp

(
−
∫ t

t−1
λ(s)ds

)
+

1

3(t+ c− τ(t))
exp

(
−
∫ t

t−τ(t)
λ(s)ds

)
(3.32)

and we have that a solution of (3.32) is

λ(t) =
1

t+ c
. (3.33)

For (3.33), the left hand side of (3.10) reads

lim sup
t→∞

[
2

3

(
1− 1

t+ c

)
+

1

6(t+ c)
+

∫ 0

−1
(−θ)|e−

∫ t
t−θ λ(s)ds|dθ|η|(t, θ)

]
= lim sup

t→∞

[
2

3
− τ(t)

3(t+ c)

]
=

2

3
< 1.

and hence hypothesis (3.10) of Theorem 3.1.2 is ful�lled and therefore, for each solution x(t) of

(3.31), we have that

lim
t→∞

x(t)

t+ c
exists, and lim

t→∞

(
x(t)

t+ c

)′
= 0.

Manipulating further the limits in (3.31), we are able to establish that x(t) = O(t) and x′(t) =

o(t) as t→∞.
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3.4 Notes and remarks

A paper based on the contents of this chapter has been published in [15].

Dix et al. [32] studied the asymptotic behavior of solutions to a class of nonautonomous d-

i�erential equation with discrete delays of the form

x′(t) = a(t)x(t) +

k∑
j=1

bj(t)x(t− τj), t ≥ 0

where the coe�cients a(t) and bj(t) are continuous real-valued functions on [0,∞), τj > 0 for

j = 1, 2, · · · , k, by introducing the concept of the generalized characteristic equation and using

an appropriate solution of this generalized characteristic equation. Existence of such a solution,

however, is quite a restrictive condition. The basic idea in [32] is essentially originated in the

work in Driver [37]. The extended results for asymptotic behavior of neutral delay di�erential

equations can be found in Dix et al [33]. An asymptotic property of the solutions to second order

linear nonautonomous delay di�erential equations is discussed in [107]. Cuevas and Frasson [26]

provide a generalization of [32], as it can be applied for instance for retarded delay di�erential

equations with distributed delays or discrete variable delays, as far as the delays are uniformly

bounded. Our results in this chapter was motivated by the work in Cuevas and Frasson [26],

we generalized the class of delay di�erential equations studied in Cuevas and Frasson [26] by

adding a neutral term, the coe�cient for the neutral term is restricted to be constant.
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