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Chapter 1

Introduction

1.1 Outline

This thesis focuses on asymptotic behavior and stability of solutions of deterministic and

stochastic delay di�erential equations.

A delay di�erential equation is a di�erential equation where the derivatives at the current time

depend on the solution at previous times. Such equations are also called di�erential equations

with retarded argument. Strictly speaking, a delay di�erential equation is a speci�c example of

a functional di�erential equation, in which the functional part of the di�erential equation is the

evaluation of a functional on the past of the process.

Suppose r ≥ 0 is a given real number, R = (−∞,∞), Rn is an n-dimensional linear vector space

over the reals with norm | · |, C = C([−r, 0],Rn) is the set of continuous functions mapping [−r, 0]

into Rn. Then C is a Banach space with respect to the supremum norm ‖ϕ‖ = sup−r≤θ≤0 |ϕ(θ)|,
where ϕ ∈ C. If σ ∈ R, A ≥ 0 and x ∈ C([σ − r, σ + A],Rn), then for any t ∈ [σ, σ + A], we let

xt ∈ C be de�ned by xt(θ) = x(t+ θ) for −r ≤ θ ≤ 0. If Ω is a subset of R×C, f : Ω→ Rn is a

given function and "·" represents the right-hand derivative, we say the relation

ẋ(t) = f(t, xt), (1.1)

is a delay di�erential equation on Ω, which is denoted by DDE (f). The number r is called the

delay. The case r = 0 corresponds with an ordinary di�erential equation.

Equation (1.1) is called linear if f(t, ϕ) = L(t)ϕ, where L(t) is linear for each t. Equation

(1.1) is called nonhomogeneous if f(t, ϕ) = L(t)ϕ + h(t), where h(t) 6≡ 0. Equation (1.1) is

called autonomous if f(t, ϕ) = g(ϕ), where g does not depend on t.

Now, we show some examples of delay di�erential equations.

ẋ(t) =

∫ 0

−r
x(t+ θ) dθ, (1.2)

ẋ(t) = ax(t) + bx(t− 1), (1.3)

ẋ(t) = c(t)x(t) + d(t)x(t− τ(t)), (1.4)

where a, b are constants, c(t), d(t), τ(t) are continuous functions. Equation (1.2) is a linear

integro-di�erential equation with a distributed delay, equation (1.3) is linear autonomous dif-

ferential equation with a constant delay and equation (1.4) is linear nonautonomous di�erential
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equation with a time dependent delay.

Suppose that Ω ⊆ R × C is open, f : Ω → Rn, D : Ω → Rn are given continuous functions

with D atomic at zero (See Subsection 1.3.2 on page 10 for the concept of atomic at zero). The

relation

d

dt
D(t, xt) = f(t, xt) (1.5)

is called a neutral delay di�erential equation, which is denoted by NDDE (D, f), the function D

is called the di�erence operator for the neutral delay di�erential equation. In the following, we

present two examples of neutral delay di�erential equations.

d

dt
[x(t)−Bx(t− r)] = f(t, xt),

where r > 0, B is an n×n constant matrix, D(φ) = φ(0)−Bφ(−r) and f : Ω→ Rn is continuous.

If Dφ = φ(0) for all φ, then D is atomic at 0. Therefore, for any continuous f : Ω → Rn,
the pair (D, f) de�nes a neutral delay di�erential equation. Consequently, DDEs are NDDEs.

Delay di�erential equations arise from a variety of applications including control systems, elec-

trodynamics, mixing liquids, neutron transportation and population models. In the following,

we show some models to illustrate the applications of neutral delay di�erential equations.

Biological models

Di�erential equations have long been used to model various types of populations. In many

cases ordinary di�erential equations are the starting point in the modeling process. When time

delays (due to feedback, cells division time lags, etc.) become important, then delay di�erential

equations become a natural tool for modeling in the life sciences.

Predator-prey model

The classic predator-prey model suggested by Lotka and Volterra in the 1920's has the form
ẋ(t) = a1x(t)− b1x(t)y(t)

ẏ(t) = a2y(t)− b2x(t)y(t),

(1.6)

with initial condition

x(0) = x0, y(0) = y0, (1.7)

where x(t) represents the population of prey and y(t) the population of predators at time t and

a1, a2, b1, b2 are positive constants. If we consider the fact that a change in the population of

the prey will not immediately a�ect the population of the predators and conversely, then the

system (1.6) with the initial condition (1.7) becomes a delay di�erential equation of the form
ẋ(t) = a1x(t)− b1x(t)y(t− r1)

ẏ(t) = a2y(t)− b2x(t− r2)y(t),

(1.8)
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with initial conditions

x(0) = x0, x(s) = φ(s), y(0) = y0, y(s) = ϕ(s), −τ < s < 0, (1.9)

where r1 > 0 and r2 > 0 are time delays and the functions φ(·) and ϕ(·) are the initial past

history functions, τ = max{r1, r2}, see [28, 47] for detailed information.

Australian blow�y

In the dynamic system of the blow�y population, resource limitation acts with a time delay,

roughly equal to the time for a larva to grow up to an adult. Thus May [97] proposed to model

the population dynamics of blow�ies with a delay di�erential equation

Ṅ(t) = rN(t)

(
1− 1

1000K
N(t− τ)

)
, (1.10)

where N(t) is the population size of the adult blow�ies, r is the rate of increase of the blow�y

population, K is a resource limitation parameter set by the supply of food, and τ is the time

delay, roughly equal to the time for a larva to grow up to an adult (about 11 days).

Metal cutting model

The metal cutting model (Moon and Johnson [99]) can be described by

mẍ(t) + γ1ẋ(t) + k1x(t) = F1(x(t)− x(t− τ), y(t)− y(t− τ))

mÿ(t) + γ2ẏ(t) + k2y(t) = F2(x(t)− x(t− τ), y(t)− y(t− τ)),

where x(t) is the x component of the tool tip position, y(t) is the y component of the tool tip

position, γj , kj (j = 1, 2) are the damping and spring force constants, τ = C
ω with C a constant

and ω the turning speed. Normally, ω is considered constant, but during the machine startup

or shut down, ω is a function of t, thus τ = τ(t). For the other applications of delay di�erential

equations, refer to [29, 50, 51].

Delay di�erential equations are studied from several di�erent perspectives, mostly concerned

with their solutions. Only the simplest equations admit solutions given by explicit formulas.

However, some properties of solutions of a given equation may be determined without �nding

their exact form. In the case when a self-contained formula for the solution is not available,

qualitative analysis, which has been proved to be a useful tool to investigate the properties of

solutions, will be emphasised on. In the qualitative analysis of equations, asymptotic behavior

and stability of solutions play an important role. The investigation of asymptotic behavior and

stability of solutions of delay di�erential equations is more complicated than the case for ordinary

di�erential equations because of the delay e�ects, refer to [29, 50, 51, 72] for detailed information.

Besides delay e�ects, impulsive e�ects likewise exist in a great variety of evolutionary process-

es in which states are changed abruptly at certain moments of time. Time-dependent impulses

arise naturally in many biological and physiological systems, including ones from delayed cellular

neural networks with impulsive e�ects.
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Chapter 1. Introduction

Figure 1.1: Delayed cellular neural network without impulses.

Delayed cellular neural networks with impulsive e�ects

Consider the following system of delayed cellular neural networks with impulsive e�ects
ẏ1(t) = −2y1(t)− g(y1(t)) + 0.5g(y2(t))− 0.5g(y1(t− 0.2 sin t)) + 0.5g(y2(t− 0.2 cos t))

ẏ2(t) = −3.5y2(t) + 0.5g(y1(t))− g(y2(t))

+0.5g(y1(t− 0.2 sin t)) + 0.5g(y2(t− 0.2 cos t)),

where

g(x) =
|x+ 1| − |x− 1|

2
.

The initial condition is given by y1(t) = 0.5 and y2(t) = 0.5. At each impulse time tk = 0.2k an

impulse is applied with y1(tk) being replaced by 1.8y1(tk) and y2(tk) being replaced by 1.7y2(tk).

Figure 1.1 and Figure 1.2 show that the impulses can destabilize a system.

Consider the following system of delayed cellular neural networks with impulsive e�ects

ẏ1(t) = −0.2y1(t)− g(y1(t)) + 0.5g(y2(t))

−0.5g(y1(t− 0.2 sin t)) + 0.5g(y2(t− 0.2 cos t))

ẏ2(t) = −0.1y2(t) + 0.5g(y1(t))− g(y2(t))

+0.5g(y1(t− 0.2 sin t)) + 0.5g(y2(t− 0.2 cos t)),
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1.1. Outline

Figure 1.2: Delayed cellular neural network with impulses.

where

g(x) =
|x+ 1| − |x− 1|

2
.

The initial condition is given by y1(t) = 0.5 and y2(t) = 0.5. At each impulse time tk = 0.2k

an impulse is applied with y1(tk) being replaced by −0.8y1(tk) and y2(tk) being replaced by

−0.7y2(tk).

Figure 1.3 and Figure 1.4 show that the impulses can stabilize a system.

When modeling systems which do not noticeably a�ect their environment, stochastic variables

are often used to model the environmental �uctuations, which is described as stochastic delay

di�erential equations. Stochastic delay di�erential equations can be considered as deterministic

delay di�erential equations with random elements or stochastic di�erential equations with time

delays. As an important mathematical model to describe real world problems more e�ectively,

stochastic delay di�erential equations have been applied in many �elds of science, such as au-

tomatic control, neural networks, biology, economics, chemical reaction engineering, etc. As an

example, we consider an entire delayed neural network appeared in Huang et al.[56].

Stochastic neural networks

Figure 1.5 shows the scheme of the entire delayed neural network, where the nonlinear neuron

transfer function S is constructed by using the voltage operational ampli�ers. The time delay
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Figure 1.3: Delayed cellular neural network without impulses.

Figure 1.4: Delayed cellular neural network with impulses.
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Figure 1.5: A schematic circuit diagram for system (1.11), where Ri = 1kΩ (i =

1, · · · , 11, 13, · · · , 23), R12 = R24 = 100kΩ; Rf1 = 4.5kΩ, Rf2 = 0.16kΩ, Rf3 = Rf4 = 0.4kΩ,

Rf5 = 0.08kΩ, Rf6 = 1kΩ, Rf7 = 4.5kΩ, Rf8 = 0.8kΩ, Rf9 = Rf10 = 0.2kΩ, Rf11 = 0.12kΩ,

Rf12 = 1kΩ; C1 = C2 = 0.1µF .
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Chapter 1. Introduction

is achieved by using a digital signal processor (DSP) with an analog-to-digital converter (ADC)

and a digital-to -analog converter (DAC). There is white noise is generated by a white noise

signal generator.

The schematic circuit diagram can be described by the following stochastic recurrent neural

network with time-varying delays

dx(t) = −
(

4.5 0

0 4.5

)(
x1(t)

x2(t)

)
dt+

(
2 0.4

0.6 1

)(
0.2 tanh(x1(t))

0.2 tanh(x2(t))

)
dt (1.11)

+

(
−0.8 2

1 4

)(
0.2 tanh(x1(t− τ1(t)))

0.2 tanh(x2(t− τ2(t)))

)
dt+ σ(t, x(t), x(t− τ(t))) dw(t),

where τ(t) = (τ1(t), τ2(t))T , τi is any bounded positive function for i = 1, 2, and σ : R+ ×R2 ×
R2 → R2 ×R2 satis�es trace

[
σT (t, x, y)σ(t, x, y)

]
≤ x2

1 + x2
2 + y2

1 + y2
2.

Figure 1.6: Numerical solution E(x3
1(t)) of system (1.11), which comes from Huang et al.[56].

1.2 Objectives and main results of this thesis

The general aim of this thesis is to present a systematic study of di�erent methods for stability

and asymptotic stability for di�erent types of equations. We are interested in the versatility of

the methods to deal with di�erent classes of equations and veri�ability of the conditions. We

also wish to understand the relations between the methods: for what equations do they even-

tually coincide, and what are their advantages and restrictions. In particular, we emphasize a

�xed point approach to stability of delay di�erential equations and stability of stochastic delay

di�erential equations.
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Figure 1.7: Numerical solution E(x3
2(t)) of system (1.11), which comes from Huang et al.[56].

This thesis focuses on �ve objectives. The �rst objective is concerned with asymptotic behavior

of autonomous delay di�erential equations (see Chapter 2). The ODE method and spectral

method are generally viewed as e�ective techniques in dealing with asymptotic behavior of au-

tonomous delay di�erential equations. However, there seems to be no discussion about the

relations of these two methods. In Chapter 2, we will study the relations of the ODE method

and spectral method by considering a class of second order neutral delay di�erential equations

of the form

x′′(t) + cx′′(t− τ) = p1x
′(t) + p2x

′(t− τ) + q1x(t) + q2x(t− τ), (1.12)

where c, p1, p2, q1, q2 ∈ R, τ > 0. It is concluded that under the same assumptions, the results

by the ODE method is equivalent to the results by the spectral method (see Section 2.4). The

conditions for the spectral method are weaker than those by the ODE method, (see Example

2.4.2), and the asymptotic behavior of neutral delay di�erential equations can be presented by

a general formula (see Theorem 2.2.6). Furthermore, the asymptotic behavior of neutral delay

di�erential equations with matrix coe�cients can be investigated by the spectral method.

The second objective focuses on asymptotic behavior of nonautonomous delay di�erential e-

quations (see Chapter 3). It should be emphasized that asymptotic behavior of nonautonomous

equations is much more di�cult than the case of autonomous equations. Frasson and Verduyn

Lunel [39] have applied a spectral method to study asymptotic behavior of a class of linear

periodic delay equations of the form

x′(t) = a(t)x(t) +
k∑
j=1

bj(t)x(t− τj), (1.13)

where a(t + ω) = a(t), bj(t + ω) = bj(t), j = 1, 2, · · · , k. They considered a particular case

where τj = jω (i.e. the delays are integer multiples of the period ω). Determining asymptotic

9
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behavior of general classes of nonautonomous equations seems untractable. For a special class of

nonautonomous problems, we can use an approach similar to the ODE method as we discussed

in Chapter 2, which is based on the application of an appropriate solution of the generalized

characteristic equation. For nonautonomous equations, solving the generalized characteristic

equation becomes much harder: a functional equation instead of an algebraic equation. This

approach only succeeds if the generalized characteristic equation has a real solution.

The third objective concerns a �xed point approach towards stability of deterministic delay

di�erential equations (see Chapter 4). Although there is an extensive literature on stability

analysis of delay equations discussed using a �xed point approach, stability analysis of more

general classes of delay equations has not been satisfactorily researched. Hence, in Chapter

4, several classes of delay equations with a combination of time-dependent delays, distributed

delays and neutral terms are studied, such as, for example, a scalar neutral integro-di�erential

equation

x′(t)− c(t)x′(t− r1(t)) = −a(t)x(t− r2(t)) +

∫ t

t−r3(t)
g(t, x(s)) dµ(t, s). (1.14)

The last term in (1.14) includes the following two cases:

(1)

∫ t

t−r(t)
g(t, x(s))k(t, s) ds (2)

n∑
i=1

ai(t)g(t, x(t− ri(t))).

In our result, two auxiliary continuous functions h1(t) and h2(t) are introduced and used to de-

�ne an appropriate contraction mapping related to the equation. Our stability results typically

say that the equation is stable if a certain expression involving the coe�cients of the equation

is less than one.

The fourth objective involves stability of stochastic delay di�erential equations with impuls-

es (see Chapter 5). Besides delay and stochastic e�ects, impulsive e�ects are also likely to

exist in mechanical, electronical or economical systems, which could stabilize or destabilize the

system. Therefore, it is necessary to take delay e�ects, stochastic e�ects and impulsive e�ects

into account when studying the dynamical behavior of the system. In Chapter 5, we consider

two classes of neutral stochastic delay di�erential equations with impulses. The �rst class is an

impulsive neutral stochastic delay di�erential equations is of the form
d[x(t)− q(t)x(t− τ(t))] = [a(t)x(t) + b(t)x(t− τ(t))]dt

+[c(t)x(t) + e(t)x(t− δ(t))]dw(t), t 6= tk,

x(tk
+)− x(tk) = bkx(tk), t = tk.

(1.15)

Equation (1.15) is a combination of a neutral term, a delay term, a stochastic term and an

impulsive e�ect.

A �xed point method is used to study stability properties of the �rst class of equations. We

consider two di�erent norms:

‖x‖2 := sup
t≥ϑ

(
E|x(t)|2

)
10
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and

‖x‖2 := sup
t≥0

[
E
(

sup
t−τ≤s≤t

|x(s)|2
)]

,

where ϑ = min {infs≥0{s− τ(s)}, infs≥0{s− δ(s)}}, and τ is an upper bound of {τ(s), δ(s), s ≥
0}. These two norms lead to di�erent stability results. It turns out that the analysis for the sec-

ond norm yields a stronger conclusion under a stronger assumption than the analysis involving

the �rst norm.

The second class consists of equations of the form

d[x(t) + u(t, x(t− τ(t)))] = [Ax(t)dt+ f(t, x(t− δ(t)))]dt+ g(t, x(t− ρ(t))dw(t)

+
∫
Z h(t, x(t− σ(t)), y) Ñ(dt, dy), t ≥ 0, t 6= tk,

∆x(tk) = Ik(x(t−k )), t = tk, k = 1, 2, · · · ,

x0(θ) = φ, θ ∈ [−τ, 0], a.s.,

(1.16)

which is an in�nite dimensional impulsive stochastic delay di�erential equation. Exponential

stability of this class of equations is studied by two methods, one is the method using an

impulsive-integral inequality and the other one is a �xed point method. The stability criteria

derived by the two methods are similar. A �xed point argument can yields existence, unique-

ness and stability result in one step. However, the existence and uniqueness theorem should be

provided seperately before using the method using an impulsive-integral inequality.

The �fth objective concerns an application to stochastic delayed neural networks (see Chap-

ter 6). It is natural to consider random noise in neural networks. In real nervous, for instance,

synaptic transmission is a noisy process with the noise brought on by random �uctuations from

the release of neurotransmitters and other probabilistic causes. A neural network could be sta-

bilized or destabilized by stochastic inputs. Therefore, the stochastic stability analysis problem

for various neural networks has attracted considerable interest in recent years. In Chapter 6, a

class of stochastic delayed neural networks is considered, which is described by

dxi(t) =

[
− cixi(t) +

n∑
j=1

aijfj(xj(t)) +

n∑
j=1

bijfj(xj(t− τ(t))) (1.17)

+

n∑
j=1

lij

∫ t

t−r(t)
fj(xj(s)) ds

]
dt+

n∑
j=1

σij(t, xj(t), xj(t− τ(t))) dwj(t).

A �xed point method is applied to study stability properties of this class of stochastic delayed

neural networks. As in Chapter 5, two di�erent types of norms are de�ned to study the system

(1.17), that is,

‖x‖p := sup
t≥ϑ

[
E

(
n∑
i=1

|xi(t)|p
)]

and

‖x‖p = sup
t≥0

{
n∑
i=1

E
[

sup
t−τ≤s≤t

|xi(s)|p
]}

.

11



Chapter 1. Introduction

Both norms lead to a complete space and a contraction mapping related to the equation. Our

results neither require the boundedness, monotonicity and di�erentiability of the activation

functions nor di�erentiability of the time varying delays. In addition, the case when there are

impulsive e�ects to the system (1.17) and the case when there are no stochastic perturbations

are also considered.

1.3 Preliminaries

In this section, we present basic de�nitions and lemmas which are frequently used in this the-

sis, and present some background materials on stability of deterministic and stochastic delay

di�erential equations.

1.3.1 Delay di�erential equations

For r > 0, let C = C([−r, 0],Rn) denote the Banach space of continuous functions from [−r, 0]

(r > 0) with values in Rn endowed with the supremum norm. For Ω ⊆ R× C, f : Ω→ Rn is a

given function, consider the delay di�erential equation

ẋ(t) = f(t, xt), (1.18)

where xt(θ) = x(t+ θ) for −r ≤ θ ≤ 0.

It is clear that an appropriate "initial condition" at time t = σ must at least specify the vector

x for all t in [σ − r, σ], i.e.,

x(t) = φ(t), σ − r ≤ t ≤ σ. (1.19)

Here φ : [σ− r, σ]→ Rn is a known function, usually we suppose φ to be a continuous function.

The function φ is called the initial function of the delay di�erential equation, σ the initial con-

stant and [σ − r, σ] the initial set.

Hence, the initial value problem of (1.18) is given by the following relation{
ẋ(t) = f(t, xt) for t ≥ σ
x(t) = φ(t) for σ − r ≤ t ≤ σ, (1.20)

where φ is a given function de�ned on [σ − r, σ].

De�nition 1.3.1. (Hale and Verduyn Lunel [51]) A function x is said to be a solution of (1.18)

on [σ − r, σ + A] if there are σ ∈ R, A > 0 such that x ∈ C([σ − r, σ + A],Rn), (t, xt) ∈ D and

x(t) satis�es (1.18) for t ∈ [σ, σ + A]. For given σ ∈ R, φ ∈ C([−r, 0],Rn), we say x(t, σ, φ) is

a solution of (1.20) with initial value φ at σ or simply a solution through (σ, φ) if there is an

A > 0 such that x(t, σ, φ) is a solution of equation (1.20) on [σ− r, σ+A] and xσ(σ, φ) = φ; we

say x(t, σ, φ) is a solution of (1.20) on [σ − r,∞), if for every A > 0, x(t, σ, φ) is a solution of

equation (1.20) on [σ − r, σ +A] and xσ(σ, φ) = φ.

Lemma 1.3.2. (Hale and Verduyn Lunel [51]) If σ ∈ R, φ ∈ C are given, and f(t, φ) is

continuous, then �nding a solution of equation (1.18) through (σ, φ) is equivalent to solving the

integral equation {
x(t) = φ(σ) +

∫ t
σ f(s, xs) ds, t ≥ σ,

xσ = φ.
(1.21)

12



1.3. Preliminaries

We are now consider the existence and uniqueness of the system (1.20), we assume that f is

continuous. To prove the existence of the solution through a point (σ, φ) ∈ R×C, we consider an
α > 0 and all functions x on [σ− r, σ+α] that are continuous and coincide with φ on [σ− r, σ],

that is xσ = φ.

Theorem 1.3.3. (Existence) ([51]) Suppose that Ω is an open subset in R×C and f ∈ C(Ω,Rn).

If (σ, φ) ∈ Ω, then there is a solution of the DDE (f) passing through (σ, φ).

De�nition 1.3.4. We say f(t, φ) is Lipschitz in φ in a compact set K of R × C if there is a

constant L > 0 such that, for any (t, φi) ∈ K, i = 1, 2,

‖f(t, φ1)− f(t, φ2)‖ ≤ L‖φ1 − φ2‖.

Theorem 1.3.5. (Existence and uniqueness) ([51]) Suppose that Ω is an open set in R × C,
f : Ω→ Rn is continuous and f(t, φ) is Lipschitz in φ in each compact set in Ω. If (σ, φ) ∈ Ω,

then there is a unique solution of (1.20) through (σ, φ).

Let x be a solution of (1.20) on [σ, a), a > σ. We say x̂ is a continuation of x if there is a b > a

such that x̂ is de�ned on [σ− r, b), coincides with x on [σ− r, a), and x̂ satis�es (1.20) on [σ, b).

A solution x is noncontinuable if no such continuation exists; that is, the interval [σ, a) is the

maximal interval of existence of the solution x.

Theorem 1.3.6. ([51]) Suppose that Ω is an open set in R × C, f : Ω → Rn is completely

continuous (that is, f is continuous and takes closed bounded sets into compact sets), and x is

a noncontinuable solution of (1.20) on [σ − r, b). Then for any closed bounded set U in R × C,
U ⊂ Ω, there is a tU such that (t, xt) /∈ U for tU ≤ t < b.

In other words, Theorem 1.3.6 says that solution of (1.20) either exists for all t ≥ σ or becomes

unbounded (with respect to Ω) at some �nite time.

1.3.2 Neutral delay di�erential equations

De�nition 1.3.7. (Hale and Verduyn Lunel [51]) Suppose that Ω ⊆ R×C is open with elements

(t, φ). A function D : Ω → Rn is said to be atomic at β on Ω if D is continuous together with

its �rst and second Fréchet derivatives with respect to φ; and Dφ, the derivative with respect to

φ, is atomic at β on Ω.

Suppose that Ω ⊆ R× C is open, f : Ω→ Rn, D : Ω→ Rn are given continuous functions with

D atomic at zero. Consider the neutral delay di�erential equation

d

dt
D(t, xt) = f(t, xt). (1.22)

De�nition 1.3.8. (Hale and Verduyn Lunel [51]) A function x is said to be a solution of (1.22)

on [σ − r, σ +A] if there are σ ∈ R and A > 0 such that

x ∈ C([σ − r, σ +A],Rn), (t, xt) ∈ Ω, t ∈ [σ, σ +A],

D(t, xt) is continuously di�erentiable and satis�es equation (1.22) on [σ, σ + A]. For a given

t0 ∈ R, φ ∈ C, and (σ, φ) ∈ Ω, we say x(t, σ, φ) is a solution of equation (1.22) with initial value

φ at σ or simply a solution through (σ, φ) if there is an A > 0 such that x(t, σ, φ) is a solution

of equation (1.22) on [σ− r, σ+A] and xσ(σ, φ) = φ; we say x(t, σ, φ) is a solution of (1.22) on

[σ − r,∞), if for every A > 0, x(t, σ, φ) is a solution of equation (1.20) on [σ − r, σ + A] and

xσ(σ, φ) = φ.
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Theorem 1.3.9. (Existence) (Hale and Verduyn Lunel [51]) If Ω is an open set in R × C and

(σ, φ) ∈ Ω, then there exists a solution of the NDDE (D, f) through (σ, φ).

Theorem 1.3.10. (Existence and Uniqueness) (Hale and Verduyn Lunel [51]) If Ω is an open

set in R × C and f(t, φ) is Lipschitzian in φ on compact sets of Ω, then, for any (σ, φ) ∈ Ω,

there exists a unique solution of the NDDE (D, f) through (σ, φ).

A continuation result similar to Theorem 1.3.6 also exists for neutral delay di�erential equations,

refer to Hale and Verduyn Lunel [51] for details.

1.3.3 Stability of delay di�erential equations

Suppose that f : R× C → Rn is continuous and consider the delay di�erential equation

ẋ(t) = f(t, xt). (1.23)

The function f will be supposed to be completely continuous and to satisfy enough additional

smoothness conditions to ensure the solution x(t, σ, φ) through (σ, φ) is continuous in (t, σ, φ) in

the domain of de�nition of the function.

De�nition 1.3.11. Suppose that f(t, 0) = 0 for all t ∈ R. The solution x = 0 of equation (1.23)

is said to be stable if for any σ ∈ R, ε > 0, there is a δ = δ(ε, σ) > 0 such that φ ∈ B(0, δ)

implies xt(σ, φ) ∈ B(0, ε) for t ≥ σ. The solution x = 0 of equation (1.23) is said to be uniformly

stable if the number δ in the de�nition is independent of σ.

De�nition 1.3.12. The solution x = 0 of equation (1.23) is said to be asymptotically stable

if it is stable and there is a b0 = b0(σ) such that φ ∈ B(0, b0) implies that x(t, σ, φ) → 0 as

t → ∞. The solution x = 0 of equation (1.23) is said to be uniformly asymptotically stable if

it is uniformly stable and there is b0 > 0 such that for every η > 0 there is a t0(η) such that

φ ∈ B(0, b0) implies xt(σ, φ) ∈ B(0, η) for t ≥ σ + t0(η) for every σ ∈ R.

De�nition 1.3.13. A solution x(t, σ, φ) of an DDE (f) is bounded if there is a β(σ, φ) such

that |x(t, σ, φ)| < β(σ, φ) for t ≥ σ − r. The solutions are uniformly bounded if for any α > 0,

there is a β = β(α) > 0 such that for all σ ∈ R, φ ∈ C and |φ| ≤ α, we have |x(t, σ, φ)| ≤ β(α)

for all t ≥ σ.

1.3.4 Stability by spectral theory

Consider a linear ordinary di�erential equation of the form

x′(t) = ax(t). (1.24)

The characteristic equation of (1.24) is λ = a, the solution of (1.24) is asymptotically stable if

Re(a) < 0 and it is unstable if Re(a) > 0.

What about the stability of delay di�erential equations? Consider the following delay di�er-

ential equation

x′(t) = ax(t) + bx(t− 1), (1.25)

Here a, b are constants. From Figure 1.8, the solution of (1.25) is stable with a = 1
2 and b = −1

14
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and unstable with a = 1
2 and b = −2. From Figure 1.9, the solution is stable of (1.25) with

a = −7
2 and b = 3 and unstable with a = −7

2 and b = 4. It is not di�cult to �nd that the

stability theory of delay di�erential equations is more complicated than the case for ordinary

di�erential equations.

For such linear, autonomous delay di�erential equations, a simple way to study its stability

is by spectral theory.

In fact, the characteristic equation of (1.25) is

z − a− be−z = 0. (1.26)

It is stable if all roots of the characteristic equation satisfy Re(z) ≤ β < 0; It is unstable if for

some root z, Re(z) ≥ 0. Hence, to study the stability of (1.25) is to derive as much information

as we can about the location of the roots of the characteristic equation (1.26) in the complex

plane.

Let z = µ+ iν in (1.26), we obtain two real equations

µ− a− be−µ cos ν = 0

ν + be−µ sin ν = 0, (1.27)

where µ and ν are real numbers. By studying (1.27), some results towards the location of the

roots in the complex plane of (1.26) are presented in Diekmann et al. [29].

De�ne the following strips,

Σ+
k = {µ+ iν | ν ∈ I+

k = (2kπ, (2k + 1)π)},
Σk = {µ+ iν | ν ∈ Ik = ((2k − 1)π, (2k + 1)π)},
Σ−k = {µ+ iν | ν ∈ I−k = ((2k − 1)π, 2kπ)}.

Theorem 1.3.14. (Diekmann et al. [29]) For b > 0, equation (1.26) has a unique and simple

root λk in the strip Σk for k = 0, 1, 2, · · · and no other roots. For k = 1, 2, · · · , the root λk is

contained in Σ−k .

Theorem 1.3.15. (Diekmann et al. [29]) For b < 0, equation (1.26) has a unique and simple

root λk in the strip Σ+
k for k = 1, 2, · · · . There are two roots in Σ0 (which are real and simple

for −ea−1 < b < 0 and complex conjugate for b < −ea−1). There are no other roots.

However, in some real-world applications, the delay di�erential equations are nonautonomous,

for example,

x′(t) = a(t)x(t)− b(t)x(t− r), (1.28)

and

x′(t) = a(t)x(t)− b(t)x(t− r(t)). (1.29)

What can we say about asymptotic behavior and stability of nonautonomous delay di�erential

equations such as (1.28) and (1.29)? In the following, we present three methods, Liapunov's di-

rect method, �xed point method and LMI method, which are extensively applied to the stability

of nonautonomous equations.
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1.3.5 Liapunov's direct method

Liapunov's direct method has long been viewed the main classical method of studying stability

problems in many areas of di�erential equations. The di�culty of this method is to look for a

suitable Liapunov functional or Liapunov function.

If V : R × C → R is continuous and x(t, σ, φ) is the solution of equation (1.23) through (σ, φ),

we de�ne

V̇ (t, φ) = lim sup
h→0+

1

h
[V (t+ h, xt+h(t, φ))− V (t, φ)].

The function V̇ (t, φ) is the upper right-hand derivative of V (t, φ) along the solution of (1.23).

Theorem 1.3.16. (Hale and Verduyn Lunel [51]) Suppose f : R × C → Rn takes R× (bound-

ed sets of C) into bounded sets of Rn, and u, v, w : R+ → R+ are continuous nondecreasing

functions, u(s) and v(s) are positive for s > 0, and u(0) = v(0) = 0. If there is a continuous

function V : R× C → R such that

u(|φ(0)|) ≤ V (t, φ) ≤ v(|φ|)
V̇ (t, φ) ≤ −w(|φ(0)|),

then the solution x = 0 of equation (1.23) is uniformly stable. If u(s) → ∞ as s → ∞, the

solutions of equation (1.23) are unifomly bounded. If w(s) > 0 for s > 0, then the solution x = 0

is uniformly asymptotically stable.

Example 1.3.17. (Burton [11]) Consider the delay di�erential equation

ẋ(t) = −b(t)x(t− r), (1.30)

where r > 0 is a constant, b : [0,∞)→ R is a bounded and continuous function.

The equation (1.30) can be written as the form

ẋ(t) = −b(t+ r)x(t) +
d

dt

∫ t

t−r
b(s+ r)x(s) ds, (1.31)

equation (1.31) is equivalent to(
x(t)−

∫ t

t−r
b(s+ r)x(s) ds

)′
= −b(t+ r)x(t). (1.32)

By constructing the following the Liapunov functional V (t, xt) = V1(t, xt) + V2(t, xt), where

V1(t, xt) =

(
x(t)−

∫ t

t−r
b(s+ r)x(s) ds

)2

+

∫ 0

−r

∫ t

t+s
b(u+ r)x2(u) du ds (1.33)

and

V2(t, xt) = γ

(
x2 +

∫ t

t−r
b(s+ r)x2(s) ds

)
. (1.34)

Burton [11] obtained the following theorem.
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Theorem 1.3.18. (Burton [11]) If b(t+ r) ≥ 0 for all t ≥ 0 and
∫∞

0 b(s) ds =∞, an ε > 0 with

b(t+ r)

∫ t

t−r
b(s+ r) ds− 2 + r ≤ −ε for all t ≥ 0,

and there is a γ > 0 with γ[b(t) + b(t + r)] ≤ (ε/2)b(t + r) for all t ≥ 0, then the zero solution

of (1.30) is asymptotically stable.

Example 1.3.19. (Burton [11]) Let b(t) = 1.1 + sin t in (1.30), we have

ẋ(t) = −(1.1 + sin t)x(t− r). (1.35)

Theorem 1.3.18 holds if there is an ε > 0 such that

2.1(1.1r + 2 sin(r/2))− 2 + r < −ε. (1.36)

Using a rough estimate (taking sin(r/2) = r/2) on (1.36), we have that r < 0.37. Therefore, the

zero solution of (1.35) is asymptotically stable if r < 0.37.

1.3.6 Fixed point method

Liapunov's direct method has been very e�ective in establishing stability results for a wide

variety of di�erential equations. The success of Liapunov's direct method depends on �nding

good Liapunov functions or Liapunov functionals, which may be very di�cult, especially for

the equations with unbounded terms or unbounded delays, see the examples in Burton [13].

Therefore, it was recently proposed by Burton [13] and co-workers to use �xed point methods

as an alternative. While Liapunov's direct method usually requires pointwise conditions, �xed

point methods need conditions of an averaging nature.

Theorem 1.3.20. (Banach's �xed point theorem) Let (X, d) be a non-empty complete

metric space, let T : X → X be a contraction mapping on X, i.e. there is a nonegative real

number q < 1 such that d(Tx, Ty) ≤ qd(x, y) for all x, y ∈ X. Then the map T admits one and

only one �xed point x∗ in X (Tx∗ = x∗).

Hence, to solve a problem using a �xed point approach we have to identify:

(a) a set S consisting of points which would be acceptable solutions;

(b) a mapping P : S → S with the property that a �xed point solves the problem;

(c) a �xed point theorem stating that this mapping on the set S will have a �xed point.

The following steps represent the way in which we can establish stability of the zero solution of

a delay di�erential equation by applying �xed point theory.

Step 1. An examination of the di�erential equation reveals that for a given initial time σ

there is an initial interval we denote it to be Eσ and we require an initial function φ : Eσ → Rn.
We then must determine a set S of functions ϕ : Eσ ∪ [σ,∞) → Rn with ϕ(t) = φ(t) on Eσ
which could serve as acceptable functions. Usually, this means that we would ask some other

conditions on ϕ, for example, the boundedness, and sometimes we require that ϕ(t) → 0 as

t→∞.
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Step 2. Next, invert the di�erential equation and de�ne a mapping from S to S.

Step 3. Finally, we select a �xed point theorem which will show that the mapping P has

a �xed point in S.

Notice that the process of application of a �xed point method relies on three principles: an

elementary variation of constants formula, a complete metric space and the contraction map-

ping principle. Moreover, in one step, a �xed point argument yields existence, uniqueness and

stability. Hence, our major problem, when using �xed point theory to deal with stability anal-

ysis, is to de�ne a suitable Banach space and a suitable mapping.

In the following, some results are presented to illustrate the application of a �xed point method.

Consider the delay di�erential equation (1.30), by using a �xed point method, Burton [11] ob-

tained the following result.

Theorem 1.3.21. (Burton [11]) Suppose there exists a constant α < 1 such that∫ t

t−r
|b(s+ r)| ds+

∫ t

0
|b(s+ r)|e−

∫ t
s b(u+r) du

∫ s

s−r
|b(u+ r)| du ds ≤ α, (1.37)

for all t ≥ 0 and
∫∞

0 b(s) ds = ∞. Then for every continuous initial function φ : [−r,∞) → R,
the solution x(t) = x(t, 0, φ) of (1.30) is bounded and tends to zero as t→∞.

Example 1.3.22. (Burton [11]) Consider the di�erential equation

ẋ(t) = −(1 + 2 sin t)x(t− r), (1.38)

where 0 < r < 1. The zero solution of (1.38) is asymptotically stable when (r + 4 sin(r/2))(2 +

2e2) < 1, this is approximately 0 ≤ r < 0.02.

Since 1 + 2 sin t changes sign for t ≥ 0, Theorem 1.3.18 is not applicable to Example 1.3.22.

Consider Example 1.3.19 by using Theorem 1.3.21, we obtain that the zero solution of (1.35) is

asymptotically stable if 2(1.1r+2 sin(r/2)) < 1. This is approximated by 0 < r < 0.2, compared

to r < 0.37 by using Liapunov's direct method.

From the above discussion, we �nd it is very di�cult to �nd a way to interpret a relation between

the �xed point method and Liapunov's direct method. Sometimes the �xed point method can

provide conditions for stability when the Liapunov's direct method can not, see Example 1.3.22.

Sometimes Liapunov's direct method can provide better conditions, see Example 1.3.19.

If we let r = 0.1 in (1.38), the condition (1.37) in Theorem 1.3.21 is not satis�ed, then Theorem

1.3.21 is not applicable. Therefore, new conditions are needed to study the case of r = 0.1.

Following the similar arguments as Burton [11], Ra�oul [110] studied the following linear neutral

di�erential equation

ẋ(t)− c(t)ẋ(t− r(t)) = −a(t)x(t)− b(t)x(t− r(t)), (1.39)

and he obtained the following result.
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Figure 1.10: Numerical solution of (1.38).

Theorem 1.3.23. (Ra�oul [110]) Let r(t) be twice di�erentiable and r′(t) 6= 1 for all t ∈ R.
Suppose that there exists a constant α ∈ (0, 1) such that for t ≥ 0∫ t

0
a(s) ds→∞ as t→∞, (1.40)

and such that∣∣∣∣ c(t)

1− r′(t)

∣∣∣∣+

∫ t

0
e−
∫ t
s a(u) du

∣∣∣∣b(s) +
[c(s)a(s) + c′(s)](1− r′(s)) + c(s)r′′(s)

(1− r′(s))2

∣∣∣∣ ds ≤ α, (1.41)

Then every solution x(t) = x(t, 0, φ) of (1.39) with a small continuous initial function φ is

bounded and tends to zero as t→∞.

Example 1.3.24. Consider the linear neutral delay di�erential equation

ẋ(t) = − 1

t+ 1
x(t) + 0.48ẋ(t− 0.05t). (1.42)

However, the condition (1.41) in Theorem 1.3.23 is not satis�ed. In fact,∣∣∣∣ c(t)

1− r′(t)

∣∣∣∣+

∫ t

0
e−
∫ t
s a(u) du

∣∣∣∣b(s) +
[c(s)a(s) + c′(s)](1− r′(s)) + c(s)r′′(s)

(1− r′(s))2

∣∣∣∣ ds
=

0.48(2t+ 1)

0.95(t+ 1)
. (1.43)

Since the right-hand side of (1.43) is increasing in t > 0 and

lim sup
t≥0

0.48(2t+ 1)

0.95(t+ 1)
= 1.0105,
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then there exists some t0 > 0 such that t ≥ t0, we have∣∣∣∣ c(t)

1− r′(t)

∣∣∣∣+

∫ t

0
e−
∫ t
s a(u) du

∣∣∣∣b(s) +
[c(s)a(s) + c′(s)](1− r′(s)) + c(s)r′′(s)

(1− r′(s))2

∣∣∣∣ ds > 1.01.

This implies that condition (1.41) does not hold. Thus, Theorem 1.3.23 is not applicable.

Hence, weaker conditions needed to be provieded to solve such problems (Example 1.3.22 for

r = 0.1 and Example 1.3.24). By introducing a continuous function v(t) for constructing �xed

point mapping, Jin and Luo [62] provided su�cient conditions for the asymptotic stability of

(1.39), which can be applied to Example 1.3.22 and Example 1.3.24.

Theorem 1.3.25. (Jin and Luo [62]) Suppose the following conditions are statis�ed.

(i) the delay r(t) is twice di�erentiable and r′(t) 6= 1 for all t ∈ R+.

(ii) there exists a constant α ∈ (0, 1) and a continuous function v(R+ → R) such that

lim inft→∞
∫ t

0 v(s) ds > −∞ and

P (t) =

∫ t

t−r(t)
|v(s)− a(s)| ds+

∣∣∣∣ c(t)

1− r′(t)

∣∣∣∣
+

∫ t

0
e−
∫ t
s v(u) du| − b(s) + [v(s− r(s))− a(s− r(s))]− k(s)| ds

+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)
|v(u)− a(u)| du ds ≤ α, (1.44)

then the zero solution of (1.39) is asymptotically stable if and only if
∫ t

0 v(s) ds→∞ as t→∞.

It is clear that Theorem 1.3.25 is consistant with Theorem 1.3.23 if v(t) = a(t) for t ≥ 0 in

(1.44). In addition, Theorem 1.3.25 can be applied to some equations that Theorem 1.3.23 can

not. Motivated by the work as in [62], in this thesis, we will discuss some general classes of delay

di�erential equations by using the approach as in Theorem 1.3.25.

Notice that the condition (1.44) in Theorem 1.3.25 is mainly dependent on the constrain-

t
∣∣∣ c(t)

1−r′(t)

∣∣∣ < 1. However, There are some interesting examples where the constraint is not

satis�ed. Zhao [145] investigated (1.39) without the constraint by employing another auxiliary

function p(t) to construct the �xed point mapping. In this thesis, we will study the approaches

used in [62] and [145] to consider some general classes of delay di�erential equations.

1.3.7 Linear matrix inequality (LMI) method

The linear matrix inequality (LMI) method has become one of basic approaches to study sta-

bility of delay di�erential equations and stochastic delay di�erential equations. This approach

is based on constructing suitable Liapunov functionals and combining with a linear matrix in-

equality. To illustrate this method, we present some results from Fridman [44].

Consider the following system

ẋ(t) =
m∑
i=0

Aix(t− hi), x(t) = φ(t), t ∈ [−h, 0], (1.45)

21



Chapter 1. Introduction

where x(t) ∈ Rn, h0 = 0, 0 < hi ≤ h, Ai is a constant n × n matrix, φ is a continuously

di�erentiable initial function. We represent (1.45) in the equivalent descriptor form

ẋ(t) = y(t), y(t) =

(
m∑
i=0

Ai

)
x(t)−

m∑
i=1

Ai

∫ t

t−hi
y(s) ds. (1.46)

Liapunov-Krasovskii functional for the system (1.46) has the form

V (t) =
(
xT (t) yT (t)

)
EP

(
x(t)

y(t)

)
+ V1, (1.47)

where

E =

(
I 0

0 0

)
, P =

(
P1 0

P2 P3

)
, P1 = P T1 > 0,

V1 =

m∑
i=1

∫ 0

−hi

∫ t

t+θ
yTRiy(s) ds dθ, Ri > 0.

Computing dV (t)/dt and using the conditions in Theorem 1.3.26, we obtain that the function

V of (1.47) has a negative derivative, which implies asymptotically stable of (1.45).

Theorem 1.3.26. (Fridman [44]) Equation (1.45) is asymptotically stable if there exist 0 <

P1 = P T1 , P2, P3 and Ri = RTi , i = 1, · · · ,m that satisfy the following linear matrix inequality

(LMI):

(
∑m

i=0A
T
i )P2 + P T2 (

∑m
i=0Ai) P1 − P T2 + (

∑m
i=0A

T
i )P3 h1P

T
2 A1 · · · hmP

T
2 Am

P1 − P2 + P T3 (
∑m

i=0Ai) −P3 − P T3 +
∑m

i=1 hiRi h1P
T
3 A1 · · · hmP

T
3 Am

h1A
T
1 P2 h1A

T
1 P3 −h1R1 · · · 0

· · · · · · ·
· · · · · · ·

hmA
T
mP2 hmA

T
mP3 · · · · −hmRm


< 0.

Example 1.3.27. (Fridman [44]) Consider the system

ẋ = A0x(t) +A1x(t− h1) (1.48)

with

A0 =

(
−1 0.5

−0.5 −1

)
, A1 =

(
−2 2

−2 −2

)
.

Applying LMI condition in Theorem 1.3.26, we obtain that h1 ≤ 0.271. Therefore, the equation

(1.48) is asymptotically stable if h1 ≤ 0.271. For h1 = 0.271 we obtain the following solution to

LMI condition:

P1 =

(
94.1609 0.1653

−0.1653 94.0469

)
, P2 =

(
93.5589 0.1872

0.1872 94.6599

)
,

P3 =

(
18.5170 −0.0930

−0.0930 18.4880

)
, R1 =

(
68.2748 0.0349

0.0349 68.1810

)
.

The LMI method is also widely used to study stability of neural networks, to know more about

this method, refer to [44, 45, 77, 114, 126, 127].
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1.3.8 Stochastic processes

Let (Ω,F ,P) be a probability space, where Ω is the collection of all possible outcomes, and F is

the set of all events A to which a probability P(A) can be attached. F is σ− algebra, and P a

probability measure. We are often very interested in events A ∈ F which are realized for almost

all ω ∈ Ω. Such events are called almost sure events, and A is an almost sure event if P[A] = 1.

We will often use the abbreviation a.s. to stand for almost sure or almost surely.

De�nition 1.3.28. Let T ⊆ [0,∞). A stochastic process is a family (X(t))t∈T of random

variables on (Ω, F, P ). For each ω ∈ Ω, the map t→ X(t)(ω) is called a path of X.

De�nition 1.3.29. If I ⊂ R is an interval, f : I → R is a function, and x ∈ I, then f is said

to have a right limit at x if

f(x+) := lim
y↓x

f(y) exists

and a left limit if

f(x−) := lim
y↑x

f(y) exists

f is right continuous at x if it has a right limit at x and f(x+) = f(x) and left continuous if it

has a left limit and f(x−) = f(x). The function f is called a càdlàg function if at each x ∈ I it

is right continuous and has a left limit. f is called càglàd if it is left continuous and has a right

limit at each point of I.

De�nition 1.3.30. A stochastic process is called a càdlàg process if each if its paths is a càdlàg

function. A function f is of bounded variation if it equals the di�erence of two increasing func-

tions. A process is said to be of bounded variation if each of its paths is of bounded variation.

De�nition 1.3.31. A �ltration in (Ω,F ,P) is a �mily of σ-algebras (Ft)t∈T in Ω such that

Ft ⊆ F for all t ∈ T and

s ≤ t⇒ Fs ⊆ Ft.

A null set is a subset A ⊆ Ω for which there exists a B ∈ F such that A ⊆ B and P(B) = 0. F
is called P-complete if each null set is a member of F .

A �ltration is said to satisfy the "usual conditions" if for every t, Ft is P-complete and Ft =

∩u>tFu.

De�nition 1.3.32. A process (X(t))t ∈ T is called adapted to a �ltration (Ft)t∈T if X(t) is

Ft-measurable for all t ∈ T .

De�nition 1.3.33. For a random variable X on (Ω,F ,P) its expectation is de�ned as

EX =

∫
Ω
X(ω) dP(ω),

provided X ≥ 0 a.e. on Ω or
∫

Ω |X(ω)| dP(ω) <∞.
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For a random variable X with E|X| <∞ and a σ-algebra G ⊆ F ,

µ(G) :=

∫
G
X(ω) dP(ω), G ∈ G

de�nes a measure µ on G. Clearly, if P (G) = 0, then µ(G) = 0. Due to the Radon-Nikodym

theorem there exists a G-measurable function XG : Ω→ R such that

µ(G) =

∫
G
XG(ω) dP(ω), for all G ∈ G,

This G-measurable random variable XG is called the conditional expectation of X with respect

to G and is denoted by E[X|G].

Fix a probability space (Ω,F ,P) and a �ltration (Ft)t≥0 in F that sati�es the usual condi-

tions.

De�nition 1.3.34. A martingale is a stochastic process (X(t))t∈T which is adapted, E|X(t)| <
∞ for all t, and such that E[X(t)|Fs] = X(s) whenever s ≤ t, s, t ∈ T .

De�nition 1.3.35. A random variable T with values in [0,∞] is called a stopping time if

{ω ∈ Ω : T (ω) ≤ t} ∈ Ft for every 0 ≤ t ≤ ∞.

For instance, if (X(t))t≥0 is an adapted càdlàg process with X(0) = 0 and B ⊆ R is open, then

the �rst time of hitting B de�ned by

T (ω) = inf{t > 0 : X(t)(ω) ∈ B orX(t−)(ω) ∈ B}.

De�nition 1.3.36. If (X(t))t≥0 is a stochastic process and T is a stopping time, then the stopped

process XT is given by

XT (t)(ω) =


X(t)(ω), t < T (ω),

X(T (ω))(ω), t ≥ T (ω), ∈ Ω, t ≥ 0

In particular, if (X(t))t≥0 is adapted and continuous, T is the �rst time of hitting R \ (−M,M),

then XT is uniformly bounded and XT (t) ≤M for all t ≥ 0.

De�nition 1.3.37. A process (X(t))t≥0 is called uniformly integrable if

lim
n→∞

sup
t≥0

∫
{|X(t)|≥n}

|X(t)| dP = 0.

If X is a random variable with E|X| <∞, then (X(t))t≥0 given by X(t) = E[X|Ft], t ≥ 0, is a

uniformly integrable martingale.

De�nition 1.3.38. An adapted càdlàg process (X(t))t≥0 is called a local martingale, if there

exists a sequence of stopping times T1, T2, · · · with 0 ≤ T1 ≤ T2 · · · a.s. and limn→∞ Tn = ∞
a.s. such that for each n, the stopped process XTn is a uniformly integrable martingale.
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Note that any càdlàg martingale is a local martingale. (Taking Tn = n, n ∈ N).

We show that the following stochastic convolution is not a martingale.∫ t

0
e−c(t−s)σ(s) dw(s), (1.49)

where σ(t) is a continuous function. In fact, for 0 ≤ u ≤ t,

E
[∫ t

0
e−c(t−s)σ(s) dw(s) | Fu

]
(1.50)

= E
[∫ u

0
e−c(t−s)σ(s) dw(s) | Fu

]
+ E

[∫ t

u
e−c(t−s)σ(s) dw(s) | Fu

]
=

∫ u

0
e−c(t−s)σ(s) dw(s) 6=

∫ u

0
e−c(u−s)σ(s) dw(s).

It can also be shown that
∫ t

0 e
−c(t−s)σ(s) dω(s) is not a local martingale. To show this, we need

the following Lemma.

Lemma 1.3.39. ([109]) If M(t) is a local martingale and for every t, E sups∈[0,t] |M(s)| < ∞,

then M(t) is a martingale.

Lemma 1.3.40. For continuous function σ(t),
∫ t

0 e
−c(t−s)σ(s) dw(s) is not a local martingale.

Proof. We suppose that
∫ t

0 e
−c(t−s)σ(s) dw(s) is a local martingale. For every t, we have that

E sup
s∈[0,t]

∣∣∣∣∫ s

0
e−c(s−u)σ(u) dw(u)

∣∣∣∣ = E sup
s∈[0,t]

e−cs
∣∣∣∣∫ s

0
ecuσ(u) dw(u)

∣∣∣∣
≤ E sup

s∈[0,t]

∣∣∣∣∫ s

0
ecuσ(u) dw(u)

∣∣∣∣
≤ K1E

(∫ t

0
e2cuσ2(u) du

)1/2

≤ K1

(∫ t

0
e2cuEσ2(u) du

)1/2

<∞.

From Lemma 1.3.39, we obtain that M is a martingale. However, from (1.50), we know that∫ t
0 e
−c(t−s)σ(s) dw(s) is not a martingale, which is a contradiction.

Lemma 1.3.41. (Mao [96] Burkholder-Davis-Gundy Inequality) There exists a universal con-

stant Kp for any 0 < p < ∞ such that for every continuous local martingale M vanishing at

zero and any stopping time τ ,

E
(

sup
0≤s≤τ

|Ms|p
)
≤ KpE((M,M)τ )p/2,

where (M,M)τ is the cross-variation of M and in particular, one can take

Kp =

(
32

p

)p/2
if 0 < p < 2,

Kp = 4 if p = 2,

Kp =

(
pp+1

2(p− 1)p−1

)p/2
if p > 2.
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Lemma 1.3.42. ([109] Doob's inequality, on Page 11) Let X be a positive submartingale. For

all p > 1, with q conjugate to p (i.e. 1
p + 1

q = 1), we have

‖ sup
t
Xt‖Lp ≤ q sup

t
‖Xt‖Lp .

For a real valued process, we let X∗ denote sups |Xs|. Note that if M is a martingale with

M∞ ∈ Lp, then |M | is a positive submartingale, and we have

E{(M∗)p} ≤ qpE{Mp
∞}.

For p = 2, we have E{(M∗)2} ≤ 4E{M2
∞}. The last inequality is called Doob's maximal quadratic

inequality.

Lemma 1.3.43. (Hölder inequality) Assume that there exists two continuous functions f(x),

g(x) and a set Ω, p and q satisfying 1
p + 1

q = 1, for any p > 0, q > 0, if p > 1, then the following

inequality holds. ∫
Ω
|f(x)g(x)| dx ≤

(∫
Ω
|f(x)|p dx

)1/p(∫
Ω
|g(x)|q dx

)1/q

.

Lemma 1.3.44. ([120]) For any real numbers ak ≥ 0, k = 1, 2, 3, · · ·n, and p > 1, the following

inequality holds, (
n∑
k=1

ak

)p
≤ np−1

n∑
k=1

apk.

1.3.9 Stochastic delay di�erential equations

The existence, uniqueness and stability of stochastic delay di�erential equations have been ex-

tensively investigated by many authors, see, for example, Friedman [43], Ikeda and Watanabe

[60], Mao [96].

The techniques dealing the existence and uniqueness of stochastic delay di�erential equations

have been developed mainly by using two di�erent methods, the iterative method [2, 22, 96] and

the �xed point method [1, 3, 7, 46].

One of the powerful techniques employed in the study of the stability problems of stochas-

tic delay di�erential equations is the method of the Liapunov function or functional, see, for

example, Kolmanovskii [71], Mao [93, 94]. Further, a great number classes of stochastic neural

networks with delays are studied by using LMI method, see the work [73, 77, 113, 115, 133].

For the stochastic di�erential equations with in�nite delays, it was recently proposed by Luo

[90] and Appleby [4] to use �xed point methods to deal with the stability problems for stochastic

delay di�erential equations. Many authors, e.g., Luo [90, 91], Luo and Taniguchi [92], Sakthivel

and Luo [117, 118], Cui et al. [27] have applied �xed point methods to study stability properties

of many classes of stochastic delay di�erential equations. It turns out the �xed point method

is a powerful technique to deal with asymptotic stability and exponential stability of stochastic

delay di�erential equations.
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1.3.10 Some examples of Banach spaces

A normed linear space is a metric space with respect to the metric d derived from its norm,

where d(x, y) = ‖x− y‖.
De�nition 1.3.45. A Banach space is a normed linear space that is complete metric space with

respect to the metric derived from its norm.

Here are some examples.

Example 1.3.46. The space C([a, b]) of continuous, real-valued (or complex-valued) functions

on [a, b] with the sup-normed is a Banach space. More generally, we have the following examples.

(i) If X is a Banach space, the space C([a, b];X) of continuous, X-valued functions on [a, b]

equipped with the sup-norm is a Banach space.

(ii) If X is a Banach space, the space BC([a, b];X) := {ϕ ∈ C([a, b];X), ‖ϕ‖ <∞} of bounded
continuous, X-valued functions on [a, b] equipped with the sup-norm is a Banach space.

(iii) If X is a Banach space, the space {ϕ | ϕ ∈ C([a, b];X), limt→∞ ϕ(t) = 0} with the

sup-norm is a Banach space. Further, the space{
ϕ
∣∣ ϕ ∈ C([a, b];X), ϕ(t)→ 0 as t→∞

}
and the sapce{

ϕ
∣∣ ϕ ∈ C([a, b];X), ‖ϕ‖ = sup

s∈[a,b]
|ϕ(s)| is bounded and ϕ(t)→ 0 as t→∞

}
are Banach spaces with respect to the sup-norm. Clearly, the space{

ϕ
∣∣ ϕ ∈ C([a, b];Lp(Ω,Rn)), lim

t→∞
E|ϕ(t)|p = 0

}
is a Banach spaces with respect to the norm de�ned as

‖ϕ‖ :=

(
sup
s

E|ϕ(s)|p
)1/p

.

Lemma 1.3.47. Suppose that Ft is complete, (that is, contains all null sets). Denote by

C0([0,∞);Lp(Ω,Rn)) :=
{
ϕ
∣∣ ϕ ∈ C([0,∞);Lp(Ω,Rn)), lim

t→∞
E|ϕ(t)|p = 0

}
,

then the space

D :=
{
ϕ
∣∣ ϕ ∈ C0([0,∞);Lp(Ω,Rn)), ϕ(t) is Ft −measurable for all t

}
is a closed subspace of C0([0,∞);Lp(Ω,Rn)).

Proof. If ϕ(t), ψ(t) ∈ D, then ϕ(t) and ψ are Ft-measurable, so ϕ(t) + ψ(t) and αϕ(t) (α ∈ C)
are Ft-measurable.

Suppose that the sequences ϕ1(t), ϕ2(t), · · ·ϕn(t) · · · ∈ D, ϕ ∈ C0([0,∞);Lp(Ω,Rn)), and

ϕn(t)→ ϕ(t), we claim that ϕ(t) is Ft-measurable. In fact, since ϕn(t)→ ϕ(t), then

sup
s∈Ω

(E|ϕn(s)− ϕ(s)|p)→ 0 as n→∞.

So, for every t, we have that E|ϕn(s) − ϕ(s)|p → 0 as n → ∞, then there exists a squence

(ϕnk(t))k such that ϕnk(t)→ ϕ(t) a.e. on Ω. On the other hand, Ft is complete. Hence, we ob-

tain that ϕ(t) is Ft-measurable, which implies thatD is a closed subspace of C0([0,∞);Lp(Ω,Rn)).
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1.4 Structure of this thesis

This thesis is divided into two parts. The �rst part deals with asymptotic behavior and stability

of deterministic delay di�erential equations. The second part is concerned with the stability

properties of stochastic delay di�erential equations. Each chapter starts with an introduction,

in which we summarize the main results. A brief overview of the contents of the thesis is given

below.

Chapter 2 presents three methods concerning asymptotic behavior of autonomous neutral

delay di�erential equations. One method based on spectral theory, another method that treats

the equation as an ordinary di�erential equation (ODE) with the other state-dependent terms

considered as perturbations, and a third method using Banach's �xed point theorem. We also

address the relations of the spectral method and the ODE method. To a retarded form of the

autonomous neutral delay di�erential equation, we illustrate a third method, �xed point method.

Chapter 3 focuses on asymptotic behavior of a class of nonautonomous neutral delay dif-

ferential equations in which the coe�cient for neutral term is constant. Such equations can not

be treated by spectral theory, but in some special cases, a generalized characteristic equation

can be used. This is a functional equation. If it can be solved, the precise asymptotic behavior

of solution of the neutral equation and their derivative can be determined. Examples are given

in which the generalized characteristic equation can be solved.

Chapter 4 addresses a �xed point approach to a series of di�erential and di�erence equations.

In Section 4.1, four general classes of equations are considered by unifying recent results in the

literature. For each of these classes of equations, di�erent techniques are combined to prove

new stability theorems. In addition, various examples are presented to illustrate our results. In

Section 4.2, the stability of two classes of nonlinear neutral di�erential equations is studied by

introducing two auxiliary functions. In Section 4.3, the stability of one class of nonlinear delay

di�erence equations is investigated. The obtained theorems show the general applicability of the

�xed point method.

Chapter 5 discusses the stability of two classes of neutral stochastic delay di�erential equa-

tions with impulses. In Section 5.1, asymptotic stability of a class of neutral stochastic delay

di�erential equations with linear impulses is studied by means of the �xed point method. More

speci�cally, two theorems for the asymptotic stability of the equations are presented by using two

contraction mapping which are de�ned on di�erent complete metric spaces. In Section 5.2, expo-

nential stability of a class of neutral stochastic partial di�erential equations with variable delays

and impulses is investigated. The equation is considered as an in�nite dimensional stochastic

di�erential equation with delays. The method by using an impulsive-integral inequality and a

�xed point method are applied to study exponential stability of mild solutions of the impulsive

neutral stochastic partial delay di�erential equations, respectively.

Chapter 6 studies stability properties of stochastic delayed neural networks without impulses

and stochastic delayed neural networks with impulses. Our approaches are based on a �xed point

method and the method by using an approporiate integral inequality. In Section 6.1, asymptotic

stability and exponential stability of a class of stochastic delayed neural networks with discrete
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and distributed delays are studied. In particular, a class of delayed neural networks without

stochastic perturbations is considered. In Section 6.2, impulsive e�ects to the class of stochastic

delayed neural networks are studied.
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