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Chapter 1

Introduction

1.1 Outline

This thesis focuses on asymptotic behavior and stability of solutions of deterministic and

stochastic delay di�erential equations.

A delay di�erential equation is a di�erential equation where the derivatives at the current time

depend on the solution at previous times. Such equations are also called di�erential equations

with retarded argument. Strictly speaking, a delay di�erential equation is a speci�c example of

a functional di�erential equation, in which the functional part of the di�erential equation is the

evaluation of a functional on the past of the process.

Suppose r ≥ 0 is a given real number, R = (−∞,∞), Rn is an n-dimensional linear vector space

over the reals with norm | · |, C = C([−r, 0],Rn) is the set of continuous functions mapping [−r, 0]

into Rn. Then C is a Banach space with respect to the supremum norm ‖ϕ‖ = sup−r≤θ≤0 |ϕ(θ)|,
where ϕ ∈ C. If σ ∈ R, A ≥ 0 and x ∈ C([σ − r, σ + A],Rn), then for any t ∈ [σ, σ + A], we let

xt ∈ C be de�ned by xt(θ) = x(t+ θ) for −r ≤ θ ≤ 0. If Ω is a subset of R×C, f : Ω→ Rn is a

given function and "·" represents the right-hand derivative, we say the relation

ẋ(t) = f(t, xt), (1.1)

is a delay di�erential equation on Ω, which is denoted by DDE (f). The number r is called the

delay. The case r = 0 corresponds with an ordinary di�erential equation.

Equation (1.1) is called linear if f(t, ϕ) = L(t)ϕ, where L(t) is linear for each t. Equation

(1.1) is called nonhomogeneous if f(t, ϕ) = L(t)ϕ + h(t), where h(t) 6≡ 0. Equation (1.1) is

called autonomous if f(t, ϕ) = g(ϕ), where g does not depend on t.

Now, we show some examples of delay di�erential equations.

ẋ(t) =

∫ 0

−r
x(t+ θ) dθ, (1.2)

ẋ(t) = ax(t) + bx(t− 1), (1.3)

ẋ(t) = c(t)x(t) + d(t)x(t− τ(t)), (1.4)

where a, b are constants, c(t), d(t), τ(t) are continuous functions. Equation (1.2) is a linear

integro-di�erential equation with a distributed delay, equation (1.3) is linear autonomous dif-

ferential equation with a constant delay and equation (1.4) is linear nonautonomous di�erential
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Chapter 1. Introduction

equation with a time dependent delay.

Suppose that Ω ⊆ R × C is open, f : Ω → Rn, D : Ω → Rn are given continuous functions

with D atomic at zero (See Subsection 1.3.2 on page 10 for the concept of atomic at zero). The

relation

d

dt
D(t, xt) = f(t, xt) (1.5)

is called a neutral delay di�erential equation, which is denoted by NDDE (D, f), the function D

is called the di�erence operator for the neutral delay di�erential equation. In the following, we

present two examples of neutral delay di�erential equations.

d

dt
[x(t)−Bx(t− r)] = f(t, xt),

where r > 0, B is an n×n constant matrix, D(φ) = φ(0)−Bφ(−r) and f : Ω→ Rn is continuous.

If Dφ = φ(0) for all φ, then D is atomic at 0. Therefore, for any continuous f : Ω → Rn,
the pair (D, f) de�nes a neutral delay di�erential equation. Consequently, DDEs are NDDEs.

Delay di�erential equations arise from a variety of applications including control systems, elec-

trodynamics, mixing liquids, neutron transportation and population models. In the following,

we show some models to illustrate the applications of neutral delay di�erential equations.

Biological models

Di�erential equations have long been used to model various types of populations. In many

cases ordinary di�erential equations are the starting point in the modeling process. When time

delays (due to feedback, cells division time lags, etc.) become important, then delay di�erential

equations become a natural tool for modeling in the life sciences.

Predator-prey model

The classic predator-prey model suggested by Lotka and Volterra in the 1920's has the form
ẋ(t) = a1x(t)− b1x(t)y(t)

ẏ(t) = a2y(t)− b2x(t)y(t),

(1.6)

with initial condition

x(0) = x0, y(0) = y0, (1.7)

where x(t) represents the population of prey and y(t) the population of predators at time t and

a1, a2, b1, b2 are positive constants. If we consider the fact that a change in the population of

the prey will not immediately a�ect the population of the predators and conversely, then the

system (1.6) with the initial condition (1.7) becomes a delay di�erential equation of the form
ẋ(t) = a1x(t)− b1x(t)y(t− r1)

ẏ(t) = a2y(t)− b2x(t− r2)y(t),

(1.8)

2



1.1. Outline

with initial conditions

x(0) = x0, x(s) = φ(s), y(0) = y0, y(s) = ϕ(s), −τ < s < 0, (1.9)

where r1 > 0 and r2 > 0 are time delays and the functions φ(·) and ϕ(·) are the initial past

history functions, τ = max{r1, r2}, see [28, 47] for detailed information.

Australian blow�y

In the dynamic system of the blow�y population, resource limitation acts with a time delay,

roughly equal to the time for a larva to grow up to an adult. Thus May [97] proposed to model

the population dynamics of blow�ies with a delay di�erential equation

Ṅ(t) = rN(t)

(
1− 1

1000K
N(t− τ)

)
, (1.10)

where N(t) is the population size of the adult blow�ies, r is the rate of increase of the blow�y

population, K is a resource limitation parameter set by the supply of food, and τ is the time

delay, roughly equal to the time for a larva to grow up to an adult (about 11 days).

Metal cutting model

The metal cutting model (Moon and Johnson [99]) can be described by

mẍ(t) + γ1ẋ(t) + k1x(t) = F1(x(t)− x(t− τ), y(t)− y(t− τ))

mÿ(t) + γ2ẏ(t) + k2y(t) = F2(x(t)− x(t− τ), y(t)− y(t− τ)),

where x(t) is the x component of the tool tip position, y(t) is the y component of the tool tip

position, γj , kj (j = 1, 2) are the damping and spring force constants, τ = C
ω with C a constant

and ω the turning speed. Normally, ω is considered constant, but during the machine startup

or shut down, ω is a function of t, thus τ = τ(t). For the other applications of delay di�erential

equations, refer to [29, 50, 51].

Delay di�erential equations are studied from several di�erent perspectives, mostly concerned

with their solutions. Only the simplest equations admit solutions given by explicit formulas.

However, some properties of solutions of a given equation may be determined without �nding

their exact form. In the case when a self-contained formula for the solution is not available,

qualitative analysis, which has been proved to be a useful tool to investigate the properties of

solutions, will be emphasised on. In the qualitative analysis of equations, asymptotic behavior

and stability of solutions play an important role. The investigation of asymptotic behavior and

stability of solutions of delay di�erential equations is more complicated than the case for ordinary

di�erential equations because of the delay e�ects, refer to [29, 50, 51, 72] for detailed information.

Besides delay e�ects, impulsive e�ects likewise exist in a great variety of evolutionary process-

es in which states are changed abruptly at certain moments of time. Time-dependent impulses

arise naturally in many biological and physiological systems, including ones from delayed cellular

neural networks with impulsive e�ects.

3



Chapter 1. Introduction

Figure 1.1: Delayed cellular neural network without impulses.

Delayed cellular neural networks with impulsive e�ects

Consider the following system of delayed cellular neural networks with impulsive e�ects
ẏ1(t) = −2y1(t)− g(y1(t)) + 0.5g(y2(t))− 0.5g(y1(t− 0.2 sin t)) + 0.5g(y2(t− 0.2 cos t))

ẏ2(t) = −3.5y2(t) + 0.5g(y1(t))− g(y2(t))

+0.5g(y1(t− 0.2 sin t)) + 0.5g(y2(t− 0.2 cos t)),

where

g(x) =
|x+ 1| − |x− 1|

2
.

The initial condition is given by y1(t) = 0.5 and y2(t) = 0.5. At each impulse time tk = 0.2k an

impulse is applied with y1(tk) being replaced by 1.8y1(tk) and y2(tk) being replaced by 1.7y2(tk).

Figure 1.1 and Figure 1.2 show that the impulses can destabilize a system.

Consider the following system of delayed cellular neural networks with impulsive e�ects

ẏ1(t) = −0.2y1(t)− g(y1(t)) + 0.5g(y2(t))

−0.5g(y1(t− 0.2 sin t)) + 0.5g(y2(t− 0.2 cos t))

ẏ2(t) = −0.1y2(t) + 0.5g(y1(t))− g(y2(t))

+0.5g(y1(t− 0.2 sin t)) + 0.5g(y2(t− 0.2 cos t)),

4



1.1. Outline

Figure 1.2: Delayed cellular neural network with impulses.

where

g(x) =
|x+ 1| − |x− 1|

2
.

The initial condition is given by y1(t) = 0.5 and y2(t) = 0.5. At each impulse time tk = 0.2k

an impulse is applied with y1(tk) being replaced by −0.8y1(tk) and y2(tk) being replaced by

−0.7y2(tk).

Figure 1.3 and Figure 1.4 show that the impulses can stabilize a system.

When modeling systems which do not noticeably a�ect their environment, stochastic variables

are often used to model the environmental �uctuations, which is described as stochastic delay

di�erential equations. Stochastic delay di�erential equations can be considered as deterministic

delay di�erential equations with random elements or stochastic di�erential equations with time

delays. As an important mathematical model to describe real world problems more e�ectively,

stochastic delay di�erential equations have been applied in many �elds of science, such as au-

tomatic control, neural networks, biology, economics, chemical reaction engineering, etc. As an

example, we consider an entire delayed neural network appeared in Huang et al.[56].

Stochastic neural networks

Figure 1.5 shows the scheme of the entire delayed neural network, where the nonlinear neuron

transfer function S is constructed by using the voltage operational ampli�ers. The time delay

5



Chapter 1. Introduction

Figure 1.3: Delayed cellular neural network without impulses.

Figure 1.4: Delayed cellular neural network with impulses.
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Chapter 1. Introduction

is achieved by using a digital signal processor (DSP) with an analog-to-digital converter (ADC)

and a digital-to -analog converter (DAC). There is white noise is generated by a white noise

signal generator.

The schematic circuit diagram can be described by the following stochastic recurrent neural

network with time-varying delays

dx(t) = −
(

4.5 0

0 4.5

)(
x1(t)

x2(t)

)
dt+

(
2 0.4

0.6 1

)(
0.2 tanh(x1(t))

0.2 tanh(x2(t))

)
dt (1.11)

+

(
−0.8 2

1 4

)(
0.2 tanh(x1(t− τ1(t)))

0.2 tanh(x2(t− τ2(t)))

)
dt+ σ(t, x(t), x(t− τ(t))) dw(t),

where τ(t) = (τ1(t), τ2(t))T , τi is any bounded positive function for i = 1, 2, and σ : R+ ×R2 ×
R2 → R2 ×R2 satis�es trace

[
σT (t, x, y)σ(t, x, y)

]
≤ x2

1 + x2
2 + y2

1 + y2
2.

Figure 1.6: Numerical solution E(x3
1(t)) of system (1.11), which comes from Huang et al.[56].

1.2 Objectives and main results of this thesis

The general aim of this thesis is to present a systematic study of di�erent methods for stability

and asymptotic stability for di�erent types of equations. We are interested in the versatility of

the methods to deal with di�erent classes of equations and veri�ability of the conditions. We

also wish to understand the relations between the methods: for what equations do they even-

tually coincide, and what are their advantages and restrictions. In particular, we emphasize a

�xed point approach to stability of delay di�erential equations and stability of stochastic delay

di�erential equations.

8



1.2. Objectives and main results of this thesis

Figure 1.7: Numerical solution E(x3
2(t)) of system (1.11), which comes from Huang et al.[56].

This thesis focuses on �ve objectives. The �rst objective is concerned with asymptotic behavior

of autonomous delay di�erential equations (see Chapter 2). The ODE method and spectral

method are generally viewed as e�ective techniques in dealing with asymptotic behavior of au-

tonomous delay di�erential equations. However, there seems to be no discussion about the

relations of these two methods. In Chapter 2, we will study the relations of the ODE method

and spectral method by considering a class of second order neutral delay di�erential equations

of the form

x′′(t) + cx′′(t− τ) = p1x
′(t) + p2x

′(t− τ) + q1x(t) + q2x(t− τ), (1.12)

where c, p1, p2, q1, q2 ∈ R, τ > 0. It is concluded that under the same assumptions, the results

by the ODE method is equivalent to the results by the spectral method (see Section 2.4). The

conditions for the spectral method are weaker than those by the ODE method, (see Example

2.4.2), and the asymptotic behavior of neutral delay di�erential equations can be presented by

a general formula (see Theorem 2.2.6). Furthermore, the asymptotic behavior of neutral delay

di�erential equations with matrix coe�cients can be investigated by the spectral method.

The second objective focuses on asymptotic behavior of nonautonomous delay di�erential e-

quations (see Chapter 3). It should be emphasized that asymptotic behavior of nonautonomous

equations is much more di�cult than the case of autonomous equations. Frasson and Verduyn

Lunel [39] have applied a spectral method to study asymptotic behavior of a class of linear

periodic delay equations of the form

x′(t) = a(t)x(t) +
k∑
j=1

bj(t)x(t− τj), (1.13)

where a(t + ω) = a(t), bj(t + ω) = bj(t), j = 1, 2, · · · , k. They considered a particular case

where τj = jω (i.e. the delays are integer multiples of the period ω). Determining asymptotic

9



Chapter 1. Introduction

behavior of general classes of nonautonomous equations seems untractable. For a special class of

nonautonomous problems, we can use an approach similar to the ODE method as we discussed

in Chapter 2, which is based on the application of an appropriate solution of the generalized

characteristic equation. For nonautonomous equations, solving the generalized characteristic

equation becomes much harder: a functional equation instead of an algebraic equation. This

approach only succeeds if the generalized characteristic equation has a real solution.

The third objective concerns a �xed point approach towards stability of deterministic delay

di�erential equations (see Chapter 4). Although there is an extensive literature on stability

analysis of delay equations discussed using a �xed point approach, stability analysis of more

general classes of delay equations has not been satisfactorily researched. Hence, in Chapter

4, several classes of delay equations with a combination of time-dependent delays, distributed

delays and neutral terms are studied, such as, for example, a scalar neutral integro-di�erential

equation

x′(t)− c(t)x′(t− r1(t)) = −a(t)x(t− r2(t)) +

∫ t

t−r3(t)
g(t, x(s)) dµ(t, s). (1.14)

The last term in (1.14) includes the following two cases:

(1)

∫ t

t−r(t)
g(t, x(s))k(t, s) ds (2)

n∑
i=1

ai(t)g(t, x(t− ri(t))).

In our result, two auxiliary continuous functions h1(t) and h2(t) are introduced and used to de-

�ne an appropriate contraction mapping related to the equation. Our stability results typically

say that the equation is stable if a certain expression involving the coe�cients of the equation

is less than one.

The fourth objective involves stability of stochastic delay di�erential equations with impuls-

es (see Chapter 5). Besides delay and stochastic e�ects, impulsive e�ects are also likely to

exist in mechanical, electronical or economical systems, which could stabilize or destabilize the

system. Therefore, it is necessary to take delay e�ects, stochastic e�ects and impulsive e�ects

into account when studying the dynamical behavior of the system. In Chapter 5, we consider

two classes of neutral stochastic delay di�erential equations with impulses. The �rst class is an

impulsive neutral stochastic delay di�erential equations is of the form
d[x(t)− q(t)x(t− τ(t))] = [a(t)x(t) + b(t)x(t− τ(t))]dt

+[c(t)x(t) + e(t)x(t− δ(t))]dw(t), t 6= tk,

x(tk
+)− x(tk) = bkx(tk), t = tk.

(1.15)

Equation (1.15) is a combination of a neutral term, a delay term, a stochastic term and an

impulsive e�ect.

A �xed point method is used to study stability properties of the �rst class of equations. We

consider two di�erent norms:

‖x‖2 := sup
t≥ϑ

(
E|x(t)|2

)
10
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and

‖x‖2 := sup
t≥0

[
E
(

sup
t−τ≤s≤t

|x(s)|2
)]

,

where ϑ = min {infs≥0{s− τ(s)}, infs≥0{s− δ(s)}}, and τ is an upper bound of {τ(s), δ(s), s ≥
0}. These two norms lead to di�erent stability results. It turns out that the analysis for the sec-

ond norm yields a stronger conclusion under a stronger assumption than the analysis involving

the �rst norm.

The second class consists of equations of the form

d[x(t) + u(t, x(t− τ(t)))] = [Ax(t)dt+ f(t, x(t− δ(t)))]dt+ g(t, x(t− ρ(t))dw(t)

+
∫
Z h(t, x(t− σ(t)), y) Ñ(dt, dy), t ≥ 0, t 6= tk,

∆x(tk) = Ik(x(t−k )), t = tk, k = 1, 2, · · · ,

x0(θ) = φ, θ ∈ [−τ, 0], a.s.,

(1.16)

which is an in�nite dimensional impulsive stochastic delay di�erential equation. Exponential

stability of this class of equations is studied by two methods, one is the method using an

impulsive-integral inequality and the other one is a �xed point method. The stability criteria

derived by the two methods are similar. A �xed point argument can yields existence, unique-

ness and stability result in one step. However, the existence and uniqueness theorem should be

provided seperately before using the method using an impulsive-integral inequality.

The �fth objective concerns an application to stochastic delayed neural networks (see Chap-

ter 6). It is natural to consider random noise in neural networks. In real nervous, for instance,

synaptic transmission is a noisy process with the noise brought on by random �uctuations from

the release of neurotransmitters and other probabilistic causes. A neural network could be sta-

bilized or destabilized by stochastic inputs. Therefore, the stochastic stability analysis problem

for various neural networks has attracted considerable interest in recent years. In Chapter 6, a

class of stochastic delayed neural networks is considered, which is described by

dxi(t) =

[
− cixi(t) +

n∑
j=1

aijfj(xj(t)) +

n∑
j=1

bijfj(xj(t− τ(t))) (1.17)

+

n∑
j=1

lij

∫ t

t−r(t)
fj(xj(s)) ds

]
dt+

n∑
j=1

σij(t, xj(t), xj(t− τ(t))) dwj(t).

A �xed point method is applied to study stability properties of this class of stochastic delayed

neural networks. As in Chapter 5, two di�erent types of norms are de�ned to study the system

(1.17), that is,

‖x‖p := sup
t≥ϑ

[
E

(
n∑
i=1

|xi(t)|p
)]

and

‖x‖p = sup
t≥0

{
n∑
i=1

E
[

sup
t−τ≤s≤t

|xi(s)|p
]}

.

11
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Both norms lead to a complete space and a contraction mapping related to the equation. Our

results neither require the boundedness, monotonicity and di�erentiability of the activation

functions nor di�erentiability of the time varying delays. In addition, the case when there are

impulsive e�ects to the system (1.17) and the case when there are no stochastic perturbations

are also considered.

1.3 Preliminaries

In this section, we present basic de�nitions and lemmas which are frequently used in this the-

sis, and present some background materials on stability of deterministic and stochastic delay

di�erential equations.

1.3.1 Delay di�erential equations

For r > 0, let C = C([−r, 0],Rn) denote the Banach space of continuous functions from [−r, 0]

(r > 0) with values in Rn endowed with the supremum norm. For Ω ⊆ R× C, f : Ω→ Rn is a

given function, consider the delay di�erential equation

ẋ(t) = f(t, xt), (1.18)

where xt(θ) = x(t+ θ) for −r ≤ θ ≤ 0.

It is clear that an appropriate "initial condition" at time t = σ must at least specify the vector

x for all t in [σ − r, σ], i.e.,

x(t) = φ(t), σ − r ≤ t ≤ σ. (1.19)

Here φ : [σ− r, σ]→ Rn is a known function, usually we suppose φ to be a continuous function.

The function φ is called the initial function of the delay di�erential equation, σ the initial con-

stant and [σ − r, σ] the initial set.

Hence, the initial value problem of (1.18) is given by the following relation{
ẋ(t) = f(t, xt) for t ≥ σ
x(t) = φ(t) for σ − r ≤ t ≤ σ, (1.20)

where φ is a given function de�ned on [σ − r, σ].

De�nition 1.3.1. (Hale and Verduyn Lunel [51]) A function x is said to be a solution of (1.18)

on [σ − r, σ + A] if there are σ ∈ R, A > 0 such that x ∈ C([σ − r, σ + A],Rn), (t, xt) ∈ D and

x(t) satis�es (1.18) for t ∈ [σ, σ + A]. For given σ ∈ R, φ ∈ C([−r, 0],Rn), we say x(t, σ, φ) is

a solution of (1.20) with initial value φ at σ or simply a solution through (σ, φ) if there is an

A > 0 such that x(t, σ, φ) is a solution of equation (1.20) on [σ− r, σ+A] and xσ(σ, φ) = φ; we

say x(t, σ, φ) is a solution of (1.20) on [σ − r,∞), if for every A > 0, x(t, σ, φ) is a solution of

equation (1.20) on [σ − r, σ +A] and xσ(σ, φ) = φ.

Lemma 1.3.2. (Hale and Verduyn Lunel [51]) If σ ∈ R, φ ∈ C are given, and f(t, φ) is

continuous, then �nding a solution of equation (1.18) through (σ, φ) is equivalent to solving the

integral equation {
x(t) = φ(σ) +

∫ t
σ f(s, xs) ds, t ≥ σ,

xσ = φ.
(1.21)

12



1.3. Preliminaries

We are now consider the existence and uniqueness of the system (1.20), we assume that f is

continuous. To prove the existence of the solution through a point (σ, φ) ∈ R×C, we consider an
α > 0 and all functions x on [σ− r, σ+α] that are continuous and coincide with φ on [σ− r, σ],

that is xσ = φ.

Theorem 1.3.3. (Existence) ([51]) Suppose that Ω is an open subset in R×C and f ∈ C(Ω,Rn).

If (σ, φ) ∈ Ω, then there is a solution of the DDE (f) passing through (σ, φ).

De�nition 1.3.4. We say f(t, φ) is Lipschitz in φ in a compact set K of R × C if there is a

constant L > 0 such that, for any (t, φi) ∈ K, i = 1, 2,

‖f(t, φ1)− f(t, φ2)‖ ≤ L‖φ1 − φ2‖.

Theorem 1.3.5. (Existence and uniqueness) ([51]) Suppose that Ω is an open set in R × C,
f : Ω→ Rn is continuous and f(t, φ) is Lipschitz in φ in each compact set in Ω. If (σ, φ) ∈ Ω,

then there is a unique solution of (1.20) through (σ, φ).

Let x be a solution of (1.20) on [σ, a), a > σ. We say x̂ is a continuation of x if there is a b > a

such that x̂ is de�ned on [σ− r, b), coincides with x on [σ− r, a), and x̂ satis�es (1.20) on [σ, b).

A solution x is noncontinuable if no such continuation exists; that is, the interval [σ, a) is the

maximal interval of existence of the solution x.

Theorem 1.3.6. ([51]) Suppose that Ω is an open set in R × C, f : Ω → Rn is completely

continuous (that is, f is continuous and takes closed bounded sets into compact sets), and x is

a noncontinuable solution of (1.20) on [σ − r, b). Then for any closed bounded set U in R × C,
U ⊂ Ω, there is a tU such that (t, xt) /∈ U for tU ≤ t < b.

In other words, Theorem 1.3.6 says that solution of (1.20) either exists for all t ≥ σ or becomes

unbounded (with respect to Ω) at some �nite time.

1.3.2 Neutral delay di�erential equations

De�nition 1.3.7. (Hale and Verduyn Lunel [51]) Suppose that Ω ⊆ R×C is open with elements

(t, φ). A function D : Ω → Rn is said to be atomic at β on Ω if D is continuous together with

its �rst and second Fréchet derivatives with respect to φ; and Dφ, the derivative with respect to

φ, is atomic at β on Ω.

Suppose that Ω ⊆ R× C is open, f : Ω→ Rn, D : Ω→ Rn are given continuous functions with

D atomic at zero. Consider the neutral delay di�erential equation

d

dt
D(t, xt) = f(t, xt). (1.22)

De�nition 1.3.8. (Hale and Verduyn Lunel [51]) A function x is said to be a solution of (1.22)

on [σ − r, σ +A] if there are σ ∈ R and A > 0 such that

x ∈ C([σ − r, σ +A],Rn), (t, xt) ∈ Ω, t ∈ [σ, σ +A],

D(t, xt) is continuously di�erentiable and satis�es equation (1.22) on [σ, σ + A]. For a given

t0 ∈ R, φ ∈ C, and (σ, φ) ∈ Ω, we say x(t, σ, φ) is a solution of equation (1.22) with initial value

φ at σ or simply a solution through (σ, φ) if there is an A > 0 such that x(t, σ, φ) is a solution

of equation (1.22) on [σ− r, σ+A] and xσ(σ, φ) = φ; we say x(t, σ, φ) is a solution of (1.22) on

[σ − r,∞), if for every A > 0, x(t, σ, φ) is a solution of equation (1.20) on [σ − r, σ + A] and

xσ(σ, φ) = φ.

13
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Theorem 1.3.9. (Existence) (Hale and Verduyn Lunel [51]) If Ω is an open set in R × C and

(σ, φ) ∈ Ω, then there exists a solution of the NDDE (D, f) through (σ, φ).

Theorem 1.3.10. (Existence and Uniqueness) (Hale and Verduyn Lunel [51]) If Ω is an open

set in R × C and f(t, φ) is Lipschitzian in φ on compact sets of Ω, then, for any (σ, φ) ∈ Ω,

there exists a unique solution of the NDDE (D, f) through (σ, φ).

A continuation result similar to Theorem 1.3.6 also exists for neutral delay di�erential equations,

refer to Hale and Verduyn Lunel [51] for details.

1.3.3 Stability of delay di�erential equations

Suppose that f : R× C → Rn is continuous and consider the delay di�erential equation

ẋ(t) = f(t, xt). (1.23)

The function f will be supposed to be completely continuous and to satisfy enough additional

smoothness conditions to ensure the solution x(t, σ, φ) through (σ, φ) is continuous in (t, σ, φ) in

the domain of de�nition of the function.

De�nition 1.3.11. Suppose that f(t, 0) = 0 for all t ∈ R. The solution x = 0 of equation (1.23)

is said to be stable if for any σ ∈ R, ε > 0, there is a δ = δ(ε, σ) > 0 such that φ ∈ B(0, δ)

implies xt(σ, φ) ∈ B(0, ε) for t ≥ σ. The solution x = 0 of equation (1.23) is said to be uniformly

stable if the number δ in the de�nition is independent of σ.

De�nition 1.3.12. The solution x = 0 of equation (1.23) is said to be asymptotically stable

if it is stable and there is a b0 = b0(σ) such that φ ∈ B(0, b0) implies that x(t, σ, φ) → 0 as

t → ∞. The solution x = 0 of equation (1.23) is said to be uniformly asymptotically stable if

it is uniformly stable and there is b0 > 0 such that for every η > 0 there is a t0(η) such that

φ ∈ B(0, b0) implies xt(σ, φ) ∈ B(0, η) for t ≥ σ + t0(η) for every σ ∈ R.

De�nition 1.3.13. A solution x(t, σ, φ) of an DDE (f) is bounded if there is a β(σ, φ) such

that |x(t, σ, φ)| < β(σ, φ) for t ≥ σ − r. The solutions are uniformly bounded if for any α > 0,

there is a β = β(α) > 0 such that for all σ ∈ R, φ ∈ C and |φ| ≤ α, we have |x(t, σ, φ)| ≤ β(α)

for all t ≥ σ.

1.3.4 Stability by spectral theory

Consider a linear ordinary di�erential equation of the form

x′(t) = ax(t). (1.24)

The characteristic equation of (1.24) is λ = a, the solution of (1.24) is asymptotically stable if

Re(a) < 0 and it is unstable if Re(a) > 0.

What about the stability of delay di�erential equations? Consider the following delay di�er-

ential equation

x′(t) = ax(t) + bx(t− 1), (1.25)

Here a, b are constants. From Figure 1.8, the solution of (1.25) is stable with a = 1
2 and b = −1

14
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Figure 1.8: Numerical solution of (1.25) with a = 1
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Figure 1.9: Numerical solution (1.25) with a = −7
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and unstable with a = 1
2 and b = −2. From Figure 1.9, the solution is stable of (1.25) with

a = −7
2 and b = 3 and unstable with a = −7

2 and b = 4. It is not di�cult to �nd that the

stability theory of delay di�erential equations is more complicated than the case for ordinary

di�erential equations.

For such linear, autonomous delay di�erential equations, a simple way to study its stability

is by spectral theory.

In fact, the characteristic equation of (1.25) is

z − a− be−z = 0. (1.26)

It is stable if all roots of the characteristic equation satisfy Re(z) ≤ β < 0; It is unstable if for

some root z, Re(z) ≥ 0. Hence, to study the stability of (1.25) is to derive as much information

as we can about the location of the roots of the characteristic equation (1.26) in the complex

plane.

Let z = µ+ iν in (1.26), we obtain two real equations

µ− a− be−µ cos ν = 0

ν + be−µ sin ν = 0, (1.27)

where µ and ν are real numbers. By studying (1.27), some results towards the location of the

roots in the complex plane of (1.26) are presented in Diekmann et al. [29].

De�ne the following strips,

Σ+
k = {µ+ iν | ν ∈ I+

k = (2kπ, (2k + 1)π)},
Σk = {µ+ iν | ν ∈ Ik = ((2k − 1)π, (2k + 1)π)},
Σ−k = {µ+ iν | ν ∈ I−k = ((2k − 1)π, 2kπ)}.

Theorem 1.3.14. (Diekmann et al. [29]) For b > 0, equation (1.26) has a unique and simple

root λk in the strip Σk for k = 0, 1, 2, · · · and no other roots. For k = 1, 2, · · · , the root λk is

contained in Σ−k .

Theorem 1.3.15. (Diekmann et al. [29]) For b < 0, equation (1.26) has a unique and simple

root λk in the strip Σ+
k for k = 1, 2, · · · . There are two roots in Σ0 (which are real and simple

for −ea−1 < b < 0 and complex conjugate for b < −ea−1). There are no other roots.

However, in some real-world applications, the delay di�erential equations are nonautonomous,

for example,

x′(t) = a(t)x(t)− b(t)x(t− r), (1.28)

and

x′(t) = a(t)x(t)− b(t)x(t− r(t)). (1.29)

What can we say about asymptotic behavior and stability of nonautonomous delay di�erential

equations such as (1.28) and (1.29)? In the following, we present three methods, Liapunov's di-

rect method, �xed point method and LMI method, which are extensively applied to the stability

of nonautonomous equations.
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1.3.5 Liapunov's direct method

Liapunov's direct method has long been viewed the main classical method of studying stability

problems in many areas of di�erential equations. The di�culty of this method is to look for a

suitable Liapunov functional or Liapunov function.

If V : R × C → R is continuous and x(t, σ, φ) is the solution of equation (1.23) through (σ, φ),

we de�ne

V̇ (t, φ) = lim sup
h→0+

1

h
[V (t+ h, xt+h(t, φ))− V (t, φ)].

The function V̇ (t, φ) is the upper right-hand derivative of V (t, φ) along the solution of (1.23).

Theorem 1.3.16. (Hale and Verduyn Lunel [51]) Suppose f : R × C → Rn takes R× (bound-

ed sets of C) into bounded sets of Rn, and u, v, w : R+ → R+ are continuous nondecreasing

functions, u(s) and v(s) are positive for s > 0, and u(0) = v(0) = 0. If there is a continuous

function V : R× C → R such that

u(|φ(0)|) ≤ V (t, φ) ≤ v(|φ|)
V̇ (t, φ) ≤ −w(|φ(0)|),

then the solution x = 0 of equation (1.23) is uniformly stable. If u(s) → ∞ as s → ∞, the

solutions of equation (1.23) are unifomly bounded. If w(s) > 0 for s > 0, then the solution x = 0

is uniformly asymptotically stable.

Example 1.3.17. (Burton [11]) Consider the delay di�erential equation

ẋ(t) = −b(t)x(t− r), (1.30)

where r > 0 is a constant, b : [0,∞)→ R is a bounded and continuous function.

The equation (1.30) can be written as the form

ẋ(t) = −b(t+ r)x(t) +
d

dt

∫ t

t−r
b(s+ r)x(s) ds, (1.31)

equation (1.31) is equivalent to(
x(t)−

∫ t

t−r
b(s+ r)x(s) ds

)′
= −b(t+ r)x(t). (1.32)

By constructing the following the Liapunov functional V (t, xt) = V1(t, xt) + V2(t, xt), where

V1(t, xt) =

(
x(t)−

∫ t

t−r
b(s+ r)x(s) ds

)2

+

∫ 0

−r

∫ t

t+s
b(u+ r)x2(u) du ds (1.33)

and

V2(t, xt) = γ

(
x2 +

∫ t

t−r
b(s+ r)x2(s) ds

)
. (1.34)

Burton [11] obtained the following theorem.
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Theorem 1.3.18. (Burton [11]) If b(t+ r) ≥ 0 for all t ≥ 0 and
∫∞

0 b(s) ds =∞, an ε > 0 with

b(t+ r)

∫ t

t−r
b(s+ r) ds− 2 + r ≤ −ε for all t ≥ 0,

and there is a γ > 0 with γ[b(t) + b(t + r)] ≤ (ε/2)b(t + r) for all t ≥ 0, then the zero solution

of (1.30) is asymptotically stable.

Example 1.3.19. (Burton [11]) Let b(t) = 1.1 + sin t in (1.30), we have

ẋ(t) = −(1.1 + sin t)x(t− r). (1.35)

Theorem 1.3.18 holds if there is an ε > 0 such that

2.1(1.1r + 2 sin(r/2))− 2 + r < −ε. (1.36)

Using a rough estimate (taking sin(r/2) = r/2) on (1.36), we have that r < 0.37. Therefore, the

zero solution of (1.35) is asymptotically stable if r < 0.37.

1.3.6 Fixed point method

Liapunov's direct method has been very e�ective in establishing stability results for a wide

variety of di�erential equations. The success of Liapunov's direct method depends on �nding

good Liapunov functions or Liapunov functionals, which may be very di�cult, especially for

the equations with unbounded terms or unbounded delays, see the examples in Burton [13].

Therefore, it was recently proposed by Burton [13] and co-workers to use �xed point methods

as an alternative. While Liapunov's direct method usually requires pointwise conditions, �xed

point methods need conditions of an averaging nature.

Theorem 1.3.20. (Banach's �xed point theorem) Let (X, d) be a non-empty complete

metric space, let T : X → X be a contraction mapping on X, i.e. there is a nonegative real

number q < 1 such that d(Tx, Ty) ≤ qd(x, y) for all x, y ∈ X. Then the map T admits one and

only one �xed point x∗ in X (Tx∗ = x∗).

Hence, to solve a problem using a �xed point approach we have to identify:

(a) a set S consisting of points which would be acceptable solutions;

(b) a mapping P : S → S with the property that a �xed point solves the problem;

(c) a �xed point theorem stating that this mapping on the set S will have a �xed point.

The following steps represent the way in which we can establish stability of the zero solution of

a delay di�erential equation by applying �xed point theory.

Step 1. An examination of the di�erential equation reveals that for a given initial time σ

there is an initial interval we denote it to be Eσ and we require an initial function φ : Eσ → Rn.
We then must determine a set S of functions ϕ : Eσ ∪ [σ,∞) → Rn with ϕ(t) = φ(t) on Eσ
which could serve as acceptable functions. Usually, this means that we would ask some other

conditions on ϕ, for example, the boundedness, and sometimes we require that ϕ(t) → 0 as

t→∞.
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Step 2. Next, invert the di�erential equation and de�ne a mapping from S to S.

Step 3. Finally, we select a �xed point theorem which will show that the mapping P has

a �xed point in S.

Notice that the process of application of a �xed point method relies on three principles: an

elementary variation of constants formula, a complete metric space and the contraction map-

ping principle. Moreover, in one step, a �xed point argument yields existence, uniqueness and

stability. Hence, our major problem, when using �xed point theory to deal with stability anal-

ysis, is to de�ne a suitable Banach space and a suitable mapping.

In the following, some results are presented to illustrate the application of a �xed point method.

Consider the delay di�erential equation (1.30), by using a �xed point method, Burton [11] ob-

tained the following result.

Theorem 1.3.21. (Burton [11]) Suppose there exists a constant α < 1 such that∫ t

t−r
|b(s+ r)| ds+

∫ t

0
|b(s+ r)|e−

∫ t
s b(u+r) du

∫ s

s−r
|b(u+ r)| du ds ≤ α, (1.37)

for all t ≥ 0 and
∫∞

0 b(s) ds = ∞. Then for every continuous initial function φ : [−r,∞) → R,
the solution x(t) = x(t, 0, φ) of (1.30) is bounded and tends to zero as t→∞.

Example 1.3.22. (Burton [11]) Consider the di�erential equation

ẋ(t) = −(1 + 2 sin t)x(t− r), (1.38)

where 0 < r < 1. The zero solution of (1.38) is asymptotically stable when (r + 4 sin(r/2))(2 +

2e2) < 1, this is approximately 0 ≤ r < 0.02.

Since 1 + 2 sin t changes sign for t ≥ 0, Theorem 1.3.18 is not applicable to Example 1.3.22.

Consider Example 1.3.19 by using Theorem 1.3.21, we obtain that the zero solution of (1.35) is

asymptotically stable if 2(1.1r+2 sin(r/2)) < 1. This is approximated by 0 < r < 0.2, compared

to r < 0.37 by using Liapunov's direct method.

From the above discussion, we �nd it is very di�cult to �nd a way to interpret a relation between

the �xed point method and Liapunov's direct method. Sometimes the �xed point method can

provide conditions for stability when the Liapunov's direct method can not, see Example 1.3.22.

Sometimes Liapunov's direct method can provide better conditions, see Example 1.3.19.

If we let r = 0.1 in (1.38), the condition (1.37) in Theorem 1.3.21 is not satis�ed, then Theorem

1.3.21 is not applicable. Therefore, new conditions are needed to study the case of r = 0.1.

Following the similar arguments as Burton [11], Ra�oul [110] studied the following linear neutral

di�erential equation

ẋ(t)− c(t)ẋ(t− r(t)) = −a(t)x(t)− b(t)x(t− r(t)), (1.39)

and he obtained the following result.
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Figure 1.10: Numerical solution of (1.38).

Theorem 1.3.23. (Ra�oul [110]) Let r(t) be twice di�erentiable and r′(t) 6= 1 for all t ∈ R.
Suppose that there exists a constant α ∈ (0, 1) such that for t ≥ 0∫ t

0
a(s) ds→∞ as t→∞, (1.40)

and such that∣∣∣∣ c(t)

1− r′(t)

∣∣∣∣+

∫ t

0
e−
∫ t
s a(u) du

∣∣∣∣b(s) +
[c(s)a(s) + c′(s)](1− r′(s)) + c(s)r′′(s)

(1− r′(s))2

∣∣∣∣ ds ≤ α, (1.41)

Then every solution x(t) = x(t, 0, φ) of (1.39) with a small continuous initial function φ is

bounded and tends to zero as t→∞.

Example 1.3.24. Consider the linear neutral delay di�erential equation

ẋ(t) = − 1

t+ 1
x(t) + 0.48ẋ(t− 0.05t). (1.42)

However, the condition (1.41) in Theorem 1.3.23 is not satis�ed. In fact,∣∣∣∣ c(t)

1− r′(t)

∣∣∣∣+

∫ t

0
e−
∫ t
s a(u) du

∣∣∣∣b(s) +
[c(s)a(s) + c′(s)](1− r′(s)) + c(s)r′′(s)

(1− r′(s))2

∣∣∣∣ ds
=

0.48(2t+ 1)

0.95(t+ 1)
. (1.43)

Since the right-hand side of (1.43) is increasing in t > 0 and

lim sup
t≥0

0.48(2t+ 1)

0.95(t+ 1)
= 1.0105,
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then there exists some t0 > 0 such that t ≥ t0, we have∣∣∣∣ c(t)

1− r′(t)

∣∣∣∣+

∫ t

0
e−
∫ t
s a(u) du

∣∣∣∣b(s) +
[c(s)a(s) + c′(s)](1− r′(s)) + c(s)r′′(s)

(1− r′(s))2

∣∣∣∣ ds > 1.01.

This implies that condition (1.41) does not hold. Thus, Theorem 1.3.23 is not applicable.

Hence, weaker conditions needed to be provieded to solve such problems (Example 1.3.22 for

r = 0.1 and Example 1.3.24). By introducing a continuous function v(t) for constructing �xed

point mapping, Jin and Luo [62] provided su�cient conditions for the asymptotic stability of

(1.39), which can be applied to Example 1.3.22 and Example 1.3.24.

Theorem 1.3.25. (Jin and Luo [62]) Suppose the following conditions are statis�ed.

(i) the delay r(t) is twice di�erentiable and r′(t) 6= 1 for all t ∈ R+.

(ii) there exists a constant α ∈ (0, 1) and a continuous function v(R+ → R) such that

lim inft→∞
∫ t

0 v(s) ds > −∞ and

P (t) =

∫ t

t−r(t)
|v(s)− a(s)| ds+

∣∣∣∣ c(t)

1− r′(t)

∣∣∣∣
+

∫ t

0
e−
∫ t
s v(u) du| − b(s) + [v(s− r(s))− a(s− r(s))]− k(s)| ds

+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)
|v(u)− a(u)| du ds ≤ α, (1.44)

then the zero solution of (1.39) is asymptotically stable if and only if
∫ t

0 v(s) ds→∞ as t→∞.

It is clear that Theorem 1.3.25 is consistant with Theorem 1.3.23 if v(t) = a(t) for t ≥ 0 in

(1.44). In addition, Theorem 1.3.25 can be applied to some equations that Theorem 1.3.23 can

not. Motivated by the work as in [62], in this thesis, we will discuss some general classes of delay

di�erential equations by using the approach as in Theorem 1.3.25.

Notice that the condition (1.44) in Theorem 1.3.25 is mainly dependent on the constrain-

t
∣∣∣ c(t)

1−r′(t)

∣∣∣ < 1. However, There are some interesting examples where the constraint is not

satis�ed. Zhao [145] investigated (1.39) without the constraint by employing another auxiliary

function p(t) to construct the �xed point mapping. In this thesis, we will study the approaches

used in [62] and [145] to consider some general classes of delay di�erential equations.

1.3.7 Linear matrix inequality (LMI) method

The linear matrix inequality (LMI) method has become one of basic approaches to study sta-

bility of delay di�erential equations and stochastic delay di�erential equations. This approach

is based on constructing suitable Liapunov functionals and combining with a linear matrix in-

equality. To illustrate this method, we present some results from Fridman [44].

Consider the following system

ẋ(t) =
m∑
i=0

Aix(t− hi), x(t) = φ(t), t ∈ [−h, 0], (1.45)
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where x(t) ∈ Rn, h0 = 0, 0 < hi ≤ h, Ai is a constant n × n matrix, φ is a continuously

di�erentiable initial function. We represent (1.45) in the equivalent descriptor form

ẋ(t) = y(t), y(t) =

(
m∑
i=0

Ai

)
x(t)−

m∑
i=1

Ai

∫ t

t−hi
y(s) ds. (1.46)

Liapunov-Krasovskii functional for the system (1.46) has the form

V (t) =
(
xT (t) yT (t)

)
EP

(
x(t)

y(t)

)
+ V1, (1.47)

where

E =

(
I 0

0 0

)
, P =

(
P1 0

P2 P3

)
, P1 = P T1 > 0,

V1 =

m∑
i=1

∫ 0

−hi

∫ t

t+θ
yTRiy(s) ds dθ, Ri > 0.

Computing dV (t)/dt and using the conditions in Theorem 1.3.26, we obtain that the function

V of (1.47) has a negative derivative, which implies asymptotically stable of (1.45).

Theorem 1.3.26. (Fridman [44]) Equation (1.45) is asymptotically stable if there exist 0 <

P1 = P T1 , P2, P3 and Ri = RTi , i = 1, · · · ,m that satisfy the following linear matrix inequality

(LMI):

(
∑m

i=0A
T
i )P2 + P T2 (

∑m
i=0Ai) P1 − P T2 + (

∑m
i=0A

T
i )P3 h1P

T
2 A1 · · · hmP

T
2 Am

P1 − P2 + P T3 (
∑m

i=0Ai) −P3 − P T3 +
∑m

i=1 hiRi h1P
T
3 A1 · · · hmP

T
3 Am

h1A
T
1 P2 h1A

T
1 P3 −h1R1 · · · 0

· · · · · · ·
· · · · · · ·

hmA
T
mP2 hmA

T
mP3 · · · · −hmRm


< 0.

Example 1.3.27. (Fridman [44]) Consider the system

ẋ = A0x(t) +A1x(t− h1) (1.48)

with

A0 =

(
−1 0.5

−0.5 −1

)
, A1 =

(
−2 2

−2 −2

)
.

Applying LMI condition in Theorem 1.3.26, we obtain that h1 ≤ 0.271. Therefore, the equation

(1.48) is asymptotically stable if h1 ≤ 0.271. For h1 = 0.271 we obtain the following solution to

LMI condition:

P1 =

(
94.1609 0.1653

−0.1653 94.0469

)
, P2 =

(
93.5589 0.1872

0.1872 94.6599

)
,

P3 =

(
18.5170 −0.0930

−0.0930 18.4880

)
, R1 =

(
68.2748 0.0349

0.0349 68.1810

)
.

The LMI method is also widely used to study stability of neural networks, to know more about

this method, refer to [44, 45, 77, 114, 126, 127].
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1.3.8 Stochastic processes

Let (Ω,F ,P) be a probability space, where Ω is the collection of all possible outcomes, and F is

the set of all events A to which a probability P(A) can be attached. F is σ− algebra, and P a

probability measure. We are often very interested in events A ∈ F which are realized for almost

all ω ∈ Ω. Such events are called almost sure events, and A is an almost sure event if P[A] = 1.

We will often use the abbreviation a.s. to stand for almost sure or almost surely.

De�nition 1.3.28. Let T ⊆ [0,∞). A stochastic process is a family (X(t))t∈T of random

variables on (Ω, F, P ). For each ω ∈ Ω, the map t→ X(t)(ω) is called a path of X.

De�nition 1.3.29. If I ⊂ R is an interval, f : I → R is a function, and x ∈ I, then f is said

to have a right limit at x if

f(x+) := lim
y↓x

f(y) exists

and a left limit if

f(x−) := lim
y↑x

f(y) exists

f is right continuous at x if it has a right limit at x and f(x+) = f(x) and left continuous if it

has a left limit and f(x−) = f(x). The function f is called a càdlàg function if at each x ∈ I it

is right continuous and has a left limit. f is called càglàd if it is left continuous and has a right

limit at each point of I.

De�nition 1.3.30. A stochastic process is called a càdlàg process if each if its paths is a càdlàg

function. A function f is of bounded variation if it equals the di�erence of two increasing func-

tions. A process is said to be of bounded variation if each of its paths is of bounded variation.

De�nition 1.3.31. A �ltration in (Ω,F ,P) is a �mily of σ-algebras (Ft)t∈T in Ω such that

Ft ⊆ F for all t ∈ T and

s ≤ t⇒ Fs ⊆ Ft.

A null set is a subset A ⊆ Ω for which there exists a B ∈ F such that A ⊆ B and P(B) = 0. F
is called P-complete if each null set is a member of F .

A �ltration is said to satisfy the "usual conditions" if for every t, Ft is P-complete and Ft =

∩u>tFu.

De�nition 1.3.32. A process (X(t))t ∈ T is called adapted to a �ltration (Ft)t∈T if X(t) is

Ft-measurable for all t ∈ T .

De�nition 1.3.33. For a random variable X on (Ω,F ,P) its expectation is de�ned as

EX =

∫
Ω
X(ω) dP(ω),

provided X ≥ 0 a.e. on Ω or
∫

Ω |X(ω)| dP(ω) <∞.
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For a random variable X with E|X| <∞ and a σ-algebra G ⊆ F ,

µ(G) :=

∫
G
X(ω) dP(ω), G ∈ G

de�nes a measure µ on G. Clearly, if P (G) = 0, then µ(G) = 0. Due to the Radon-Nikodym

theorem there exists a G-measurable function XG : Ω→ R such that

µ(G) =

∫
G
XG(ω) dP(ω), for all G ∈ G,

This G-measurable random variable XG is called the conditional expectation of X with respect

to G and is denoted by E[X|G].

Fix a probability space (Ω,F ,P) and a �ltration (Ft)t≥0 in F that sati�es the usual condi-

tions.

De�nition 1.3.34. A martingale is a stochastic process (X(t))t∈T which is adapted, E|X(t)| <
∞ for all t, and such that E[X(t)|Fs] = X(s) whenever s ≤ t, s, t ∈ T .

De�nition 1.3.35. A random variable T with values in [0,∞] is called a stopping time if

{ω ∈ Ω : T (ω) ≤ t} ∈ Ft for every 0 ≤ t ≤ ∞.

For instance, if (X(t))t≥0 is an adapted càdlàg process with X(0) = 0 and B ⊆ R is open, then

the �rst time of hitting B de�ned by

T (ω) = inf{t > 0 : X(t)(ω) ∈ B orX(t−)(ω) ∈ B}.

De�nition 1.3.36. If (X(t))t≥0 is a stochastic process and T is a stopping time, then the stopped

process XT is given by

XT (t)(ω) =


X(t)(ω), t < T (ω),

X(T (ω))(ω), t ≥ T (ω), ∈ Ω, t ≥ 0

In particular, if (X(t))t≥0 is adapted and continuous, T is the �rst time of hitting R \ (−M,M),

then XT is uniformly bounded and XT (t) ≤M for all t ≥ 0.

De�nition 1.3.37. A process (X(t))t≥0 is called uniformly integrable if

lim
n→∞

sup
t≥0

∫
{|X(t)|≥n}

|X(t)| dP = 0.

If X is a random variable with E|X| <∞, then (X(t))t≥0 given by X(t) = E[X|Ft], t ≥ 0, is a

uniformly integrable martingale.

De�nition 1.3.38. An adapted càdlàg process (X(t))t≥0 is called a local martingale, if there

exists a sequence of stopping times T1, T2, · · · with 0 ≤ T1 ≤ T2 · · · a.s. and limn→∞ Tn = ∞
a.s. such that for each n, the stopped process XTn is a uniformly integrable martingale.
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Note that any càdlàg martingale is a local martingale. (Taking Tn = n, n ∈ N).

We show that the following stochastic convolution is not a martingale.∫ t

0
e−c(t−s)σ(s) dw(s), (1.49)

where σ(t) is a continuous function. In fact, for 0 ≤ u ≤ t,

E
[∫ t

0
e−c(t−s)σ(s) dw(s) | Fu

]
(1.50)

= E
[∫ u

0
e−c(t−s)σ(s) dw(s) | Fu

]
+ E

[∫ t

u
e−c(t−s)σ(s) dw(s) | Fu

]
=

∫ u

0
e−c(t−s)σ(s) dw(s) 6=

∫ u

0
e−c(u−s)σ(s) dw(s).

It can also be shown that
∫ t

0 e
−c(t−s)σ(s) dω(s) is not a local martingale. To show this, we need

the following Lemma.

Lemma 1.3.39. ([109]) If M(t) is a local martingale and for every t, E sups∈[0,t] |M(s)| < ∞,

then M(t) is a martingale.

Lemma 1.3.40. For continuous function σ(t),
∫ t

0 e
−c(t−s)σ(s) dw(s) is not a local martingale.

Proof. We suppose that
∫ t

0 e
−c(t−s)σ(s) dw(s) is a local martingale. For every t, we have that

E sup
s∈[0,t]

∣∣∣∣∫ s

0
e−c(s−u)σ(u) dw(u)

∣∣∣∣ = E sup
s∈[0,t]

e−cs
∣∣∣∣∫ s

0
ecuσ(u) dw(u)

∣∣∣∣
≤ E sup

s∈[0,t]

∣∣∣∣∫ s

0
ecuσ(u) dw(u)

∣∣∣∣
≤ K1E

(∫ t

0
e2cuσ2(u) du

)1/2

≤ K1

(∫ t

0
e2cuEσ2(u) du

)1/2

<∞.

From Lemma 1.3.39, we obtain that M is a martingale. However, from (1.50), we know that∫ t
0 e
−c(t−s)σ(s) dw(s) is not a martingale, which is a contradiction.

Lemma 1.3.41. (Mao [96] Burkholder-Davis-Gundy Inequality) There exists a universal con-

stant Kp for any 0 < p < ∞ such that for every continuous local martingale M vanishing at

zero and any stopping time τ ,

E
(

sup
0≤s≤τ

|Ms|p
)
≤ KpE((M,M)τ )p/2,

where (M,M)τ is the cross-variation of M and in particular, one can take

Kp =

(
32

p

)p/2
if 0 < p < 2,

Kp = 4 if p = 2,

Kp =

(
pp+1

2(p− 1)p−1

)p/2
if p > 2.
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Lemma 1.3.42. ([109] Doob's inequality, on Page 11) Let X be a positive submartingale. For

all p > 1, with q conjugate to p (i.e. 1
p + 1

q = 1), we have

‖ sup
t
Xt‖Lp ≤ q sup

t
‖Xt‖Lp .

For a real valued process, we let X∗ denote sups |Xs|. Note that if M is a martingale with

M∞ ∈ Lp, then |M | is a positive submartingale, and we have

E{(M∗)p} ≤ qpE{Mp
∞}.

For p = 2, we have E{(M∗)2} ≤ 4E{M2
∞}. The last inequality is called Doob's maximal quadratic

inequality.

Lemma 1.3.43. (Hölder inequality) Assume that there exists two continuous functions f(x),

g(x) and a set Ω, p and q satisfying 1
p + 1

q = 1, for any p > 0, q > 0, if p > 1, then the following

inequality holds. ∫
Ω
|f(x)g(x)| dx ≤

(∫
Ω
|f(x)|p dx

)1/p(∫
Ω
|g(x)|q dx

)1/q

.

Lemma 1.3.44. ([120]) For any real numbers ak ≥ 0, k = 1, 2, 3, · · ·n, and p > 1, the following

inequality holds, (
n∑
k=1

ak

)p
≤ np−1

n∑
k=1

apk.

1.3.9 Stochastic delay di�erential equations

The existence, uniqueness and stability of stochastic delay di�erential equations have been ex-

tensively investigated by many authors, see, for example, Friedman [43], Ikeda and Watanabe

[60], Mao [96].

The techniques dealing the existence and uniqueness of stochastic delay di�erential equations

have been developed mainly by using two di�erent methods, the iterative method [2, 22, 96] and

the �xed point method [1, 3, 7, 46].

One of the powerful techniques employed in the study of the stability problems of stochas-

tic delay di�erential equations is the method of the Liapunov function or functional, see, for

example, Kolmanovskii [71], Mao [93, 94]. Further, a great number classes of stochastic neural

networks with delays are studied by using LMI method, see the work [73, 77, 113, 115, 133].

For the stochastic di�erential equations with in�nite delays, it was recently proposed by Luo

[90] and Appleby [4] to use �xed point methods to deal with the stability problems for stochastic

delay di�erential equations. Many authors, e.g., Luo [90, 91], Luo and Taniguchi [92], Sakthivel

and Luo [117, 118], Cui et al. [27] have applied �xed point methods to study stability properties

of many classes of stochastic delay di�erential equations. It turns out the �xed point method

is a powerful technique to deal with asymptotic stability and exponential stability of stochastic

delay di�erential equations.
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1.3.10 Some examples of Banach spaces

A normed linear space is a metric space with respect to the metric d derived from its norm,

where d(x, y) = ‖x− y‖.
De�nition 1.3.45. A Banach space is a normed linear space that is complete metric space with

respect to the metric derived from its norm.

Here are some examples.

Example 1.3.46. The space C([a, b]) of continuous, real-valued (or complex-valued) functions

on [a, b] with the sup-normed is a Banach space. More generally, we have the following examples.

(i) If X is a Banach space, the space C([a, b];X) of continuous, X-valued functions on [a, b]

equipped with the sup-norm is a Banach space.

(ii) If X is a Banach space, the space BC([a, b];X) := {ϕ ∈ C([a, b];X), ‖ϕ‖ <∞} of bounded
continuous, X-valued functions on [a, b] equipped with the sup-norm is a Banach space.

(iii) If X is a Banach space, the space {ϕ | ϕ ∈ C([a, b];X), limt→∞ ϕ(t) = 0} with the

sup-norm is a Banach space. Further, the space{
ϕ
∣∣ ϕ ∈ C([a, b];X), ϕ(t)→ 0 as t→∞

}
and the sapce{

ϕ
∣∣ ϕ ∈ C([a, b];X), ‖ϕ‖ = sup

s∈[a,b]
|ϕ(s)| is bounded and ϕ(t)→ 0 as t→∞

}
are Banach spaces with respect to the sup-norm. Clearly, the space{

ϕ
∣∣ ϕ ∈ C([a, b];Lp(Ω,Rn)), lim

t→∞
E|ϕ(t)|p = 0

}
is a Banach spaces with respect to the norm de�ned as

‖ϕ‖ :=

(
sup
s

E|ϕ(s)|p
)1/p

.

Lemma 1.3.47. Suppose that Ft is complete, (that is, contains all null sets). Denote by

C0([0,∞);Lp(Ω,Rn)) :=
{
ϕ
∣∣ ϕ ∈ C([0,∞);Lp(Ω,Rn)), lim

t→∞
E|ϕ(t)|p = 0

}
,

then the space

D :=
{
ϕ
∣∣ ϕ ∈ C0([0,∞);Lp(Ω,Rn)), ϕ(t) is Ft −measurable for all t

}
is a closed subspace of C0([0,∞);Lp(Ω,Rn)).

Proof. If ϕ(t), ψ(t) ∈ D, then ϕ(t) and ψ are Ft-measurable, so ϕ(t) + ψ(t) and αϕ(t) (α ∈ C)
are Ft-measurable.

Suppose that the sequences ϕ1(t), ϕ2(t), · · ·ϕn(t) · · · ∈ D, ϕ ∈ C0([0,∞);Lp(Ω,Rn)), and

ϕn(t)→ ϕ(t), we claim that ϕ(t) is Ft-measurable. In fact, since ϕn(t)→ ϕ(t), then

sup
s∈Ω

(E|ϕn(s)− ϕ(s)|p)→ 0 as n→∞.

So, for every t, we have that E|ϕn(s) − ϕ(s)|p → 0 as n → ∞, then there exists a squence

(ϕnk(t))k such that ϕnk(t)→ ϕ(t) a.e. on Ω. On the other hand, Ft is complete. Hence, we ob-

tain that ϕ(t) is Ft-measurable, which implies thatD is a closed subspace of C0([0,∞);Lp(Ω,Rn)).
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1.4 Structure of this thesis

This thesis is divided into two parts. The �rst part deals with asymptotic behavior and stability

of deterministic delay di�erential equations. The second part is concerned with the stability

properties of stochastic delay di�erential equations. Each chapter starts with an introduction,

in which we summarize the main results. A brief overview of the contents of the thesis is given

below.

Chapter 2 presents three methods concerning asymptotic behavior of autonomous neutral

delay di�erential equations. One method based on spectral theory, another method that treats

the equation as an ordinary di�erential equation (ODE) with the other state-dependent terms

considered as perturbations, and a third method using Banach's �xed point theorem. We also

address the relations of the spectral method and the ODE method. To a retarded form of the

autonomous neutral delay di�erential equation, we illustrate a third method, �xed point method.

Chapter 3 focuses on asymptotic behavior of a class of nonautonomous neutral delay dif-

ferential equations in which the coe�cient for neutral term is constant. Such equations can not

be treated by spectral theory, but in some special cases, a generalized characteristic equation

can be used. This is a functional equation. If it can be solved, the precise asymptotic behavior

of solution of the neutral equation and their derivative can be determined. Examples are given

in which the generalized characteristic equation can be solved.

Chapter 4 addresses a �xed point approach to a series of di�erential and di�erence equations.

In Section 4.1, four general classes of equations are considered by unifying recent results in the

literature. For each of these classes of equations, di�erent techniques are combined to prove

new stability theorems. In addition, various examples are presented to illustrate our results. In

Section 4.2, the stability of two classes of nonlinear neutral di�erential equations is studied by

introducing two auxiliary functions. In Section 4.3, the stability of one class of nonlinear delay

di�erence equations is investigated. The obtained theorems show the general applicability of the

�xed point method.

Chapter 5 discusses the stability of two classes of neutral stochastic delay di�erential equa-

tions with impulses. In Section 5.1, asymptotic stability of a class of neutral stochastic delay

di�erential equations with linear impulses is studied by means of the �xed point method. More

speci�cally, two theorems for the asymptotic stability of the equations are presented by using two

contraction mapping which are de�ned on di�erent complete metric spaces. In Section 5.2, expo-

nential stability of a class of neutral stochastic partial di�erential equations with variable delays

and impulses is investigated. The equation is considered as an in�nite dimensional stochastic

di�erential equation with delays. The method by using an impulsive-integral inequality and a

�xed point method are applied to study exponential stability of mild solutions of the impulsive

neutral stochastic partial delay di�erential equations, respectively.

Chapter 6 studies stability properties of stochastic delayed neural networks without impulses

and stochastic delayed neural networks with impulses. Our approaches are based on a �xed point

method and the method by using an approporiate integral inequality. In Section 6.1, asymptotic

stability and exponential stability of a class of stochastic delayed neural networks with discrete
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and distributed delays are studied. In particular, a class of delayed neural networks without

stochastic perturbations is considered. In Section 6.2, impulsive e�ects to the class of stochastic

delayed neural networks are studied.
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Chapter 2

Asymptotic behavior of a class of

autonomous neutral delay di�erential

equations

In this chapter, three di�erent methods to study the asymptotic behavior of a class of au-

tonomous neutral delay di�erential equations are presented. Our approach is either based on

methods from functional analysis, ordinary di�erential equations or �xed point theory. The

relations of the method from functional analysis (called spectral method) and the method from

ordinary di�erential equations (called ODE method) are addressed. If there are no neutral terms

in the considered equations, a third method based on �xed point theory is introduced.

The organization of this chapter is as follows. In Section 2.2, the spectral approach is in-

troduced and used to study the asymptotic behavior of the solutions of (2.1). In Section 2.3, the

ODE approach is introduced to study the asymptotic behavior of solutions of (2.1). In Section

2.4, both approaches are analysed by investigating a number of examples. In Section 2.5, an

approach based on �xed point theory is introduced and used to study the asymptotic behavior

of (2.2). An application to the mechanical model of turning processes is presented in Section

2.6.

2.1 Introduction

In 1973, Driver, Sasser and Slater [35] studied asymptotic behavior, oscillation and stability of

�rst order delay di�erential equations with small delay using an approach based on an ordinary

di�erential equation (ODE) method. The key idea of the ODE approach is to transform the

di�erential equation into a lower order equation by using a real root of the corresponding char-

acteristic equation. Following this approach as presented in [35], a number of papers appeared

in which the asymptotic behavior, oscillation and stability for �rst (or second or higher) order

(neutral) delay di�erential equations, and integro-di�erential equations with unbounded delay

as well as for delay di�erence equations were studied, see [51, 84, 101, 106, 105, 107]. A disad-

vantage of this ODE approach is that it does not lead to explicit formulas for the reduced lower

order equations and that it only works if the characteristic equation has a real root.

In 2003, by using residue calculus and spectral theory, Frasson and Verduyn Lunel [39] pre-

sented a new approach to study the asymptotic behavior of neutral delay di�erential equations,

the so-called spectral projection method. In this chapter, by studying asymptotic behavior of

a class of second order neutral delay di�erential equations, we discuss the relations of the two

approaches. We obtain that under the same assumptions, the ODE approach is equivalent to the

spectral approach (see Section 2.4). However, the spectral approach has some advantages, since
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the conditions for the spectral method are weaker than those needed for the ODE method, as is

illustrated by Example 2.4.2, and the asymptotic behavior of neutral delay di�erential equations

can be presented by a general formula (see Theorem 2.2.6). Furthermore, by using the spectral

approach, we can also study the asymptotic behavior of neutral delay di�erential equations with

matrix coe�cients.

In this chapter, we consider a speci�c class of second order neutral delay di�erential equations

of the following form
x′′(t) + cx′′(t− τ) = p1x

′(t) + p2x
′(t− τ) + q1x(t) + q2x(t− τ),

x(t) = φ(t), −τ ≤ t ≤ 0,

(2.1)

where c, p1, p2, q1, q2 ∈ R, τ > 0, the initial function φ is a given continuously di�erentiable

real-valued function on the initial interval [−τ, 0].

A special case of system (2.1) is the retarded delay di�erential equation

x′′(t) + ax′(t) + bx(t− r) + cx(t) = 0, a, b, c ∈ R, r > 0, (2.2)

which is often called a delayed oscillator, is well-studied in applications [59]. It appears, for

example, as the basic governing equation of the regenerative model of machine tool chatter.

2.2 Asymptotic behavior by a spectral approach

Let C = C([−τ, 0],Cn) denote the Banach space of continuous functions endowed with the

supremum norm. From the Riesz representation theorem it follows that every bounded linear

mapping L : C → Cn can be represented by

Lϕ =

∫ 0

−τ
dη(θ)ϕ(θ),

where η(θ), −τ ≤ θ ≤ 0, is an n×n-matrix whose elements are of bounded variation, normalized

so that η(0) = 0 and η is continuous from the left on (−τ, 0) with values in the matrix space

Cn×n. This set of functions is denoted by NBV([−τ, 0],Cn×n). For a function x : [−τ,∞)→ Cn,
we denote by xt ∈ C the function xt(θ) = x(t+ θ), −τ ≤ θ ≤ 0 and t ≥ 0.

An initial value problem for a linear autonomous neutral delay di�erential equation is given

by the following relation 
d
dtDxt = Lxt, t ≥ 0,

x0 = φ, φ ∈ C,
(2.3)

where D : C → Cn is continuous, linear and atomic at zero, L : C → Cn is linear and continuous

and, both operators are respectively, presented by

Lϕ =

∫ 0

−τ
dη(θ)ϕ(θ), Dϕ = ϕ(0)−

∫ 0

−τ
dµ(θ)ϕ(θ),
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where η, µ ∈ NBV([−τ, 0],Cn×n), and µ is continuous at zero. See Hale and Verduyn Lunel [51]

for a detailed information.

For the second order neutral delay di�erential equation (2.1), let y(t) = x′(t), then (2.1) can be

written in the form{
x′(t) = y(t),

y′(t) + cy′(t− τ) = p1y(t) + p2y(t− τ) + q1x(t) + q2x(t− τ).

Let X(t) =

(
x(t)

y(t)

)
, we have

X ′(t) + CX ′(t− τ) = EX(t) + FX(t− τ), (2.4)

where

C =

(
0 0

0 c

)
, E =

(
0 1

q1 p1

)
and F =

(
0 0

q2 p2

)
.

By taking µ(θ) = C, for θ ≤ −τ , µ(θ) = 0, for θ > −τ , and η(θ) = −F , for θ ≤ −τ , η(θ) = 0,

for −τ < θ < 0, η(θ) = E, for θ ≥ 0, (2.1) can be written in the form (2.3).

Throughout this chapter, a continuous real-valued function x de�ned on the interval [−τ,∞)

is said to be a solution of the initial value problem (2.1) if x satis�es (2.1) in the mild sense,

see Lemma 2.2.1. It is well known (see [35]) that for any given initial function φ, there exists a

unique solution of the initial value problem (2.1).

Given the solution x(φ) of the initial value problem (2.3), the solution operator T (t) : C → C is
de�ned by the relation

T (t)φ = xt(.;φ), t ≥ 0.

Lemma 2.2.1. (Hale and Verduyn Lunel [51]) The solution operator T (t) is a C0-semigroup on

C with in�nitesimal generator{
D(A) =

{
φ ∈ C | dφdθ ∈ C, D

dφ
dθ = Lφ

}
Aφ = dφ

dθ

(2.5)

Lemma 2.2.2. (Hale and Verduyn Lunel [51]) If A is de�ned by equation (2.5), then σ(A) =

Pσ(A) and λ ∈ σ(A) if and only if λ satis�es the characteristic equation det4(λ) = 0, where

4(λ) = λI −
∫ 0

−τ
λeλθdµ(θ)−

∫ 0

−τ
eλθdη(θ). (2.6)

Here Pσ(A) denotes the point spectrum of A.

It is well known that there is a close connection between the spectral properties of the ini�nites-

imal generator A and the characteristic matrix 4(λ) given by (2.6). In particular, the geometric

multiplicity dλ is equal to the dimension of the null space of 4(z) at z = λ, and the algebraic
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multiplicity mλ is equal to the multiplicity of z = λ as a zero of det4(λ) = 0. Furthermore, the

generalized eigenspace at λ is given by

Mλ = N (λI −A)kλ ,

where kλ denotes the order of z = λ as a pole of 4(z)−1. See Kaashoek and Verduyn Lunel [66]

for more information.

Lemma 2.2.3. (Hale and Verduyn Lunel [51]) For any λ in σ(A), the generalized eigenspace

Mλ(A) is �nite dimensional and there is an integer k such that Mλ(A) = N ((λI − A)k) and

we have a direct sum decomposition

C = N ((λI −A)k)⊕R((λI −A)k).

From the spectral theory [29, 51], it follows that the spectral projection onto Mλ(A) along

R((λI −A)k) can be represented by a Dunford integral

Pλ =
1

2πi

∫
Γλ

(zI −A)−1 dz, (2.7)

where Γλ is a small circle such that λ is the only singularity of (zI −A)−1 inside Γλ.

De�nition 2.2.4. An eigenvalue λd is called a dominant eigenvalue of A, if there exists a ε > 0,

such that if λ is another eigenvalue of A, then Reλ < Reλd − ε.

Consider the scalar case of initial value problem (2.3), the characteristic equation ∆(z) is given

by (2.6). De�ne the auxiliary function χ : C→ [0,∞) by

χ(z) =

∫ 0

−τ
(1− θ|z|)ezθ dV (µ)(θ) +

∫ 0

−τ
(−θ)ezθ dV (η)(θ), (2.8)

where V (µ)(θ) denotes the total variation function of µ on [−τ, θ] for each θ in (−τ, 0].

Theorem 2.2.5. (Frasson [40]) Suppose that z0 ∈ C is a zero of det∆(z) in (2.6). If χ(z0) < 1,

then z0 is a simple dominant zero of ∆(z).

Next, we provide the main result of Frasson and Verduyn Lunel [39], which presents the explicit

representation of asymptotic behavior of neutral delay di�erential equations.

Theorem 2.2.6. (Frasson and Verduyn Lunel [39]) Let A be given by (2.5), if A has a simple

and dominant eigenvalue λd, then there exists positive numbers ε and M such that

‖e−λdtT (t)φ− Pλdφ‖ ≤Me−εt,

and

lim
t→∞

e−λdtT (t)φ = eλd·
[
d

dz
det4(λd)

]−1

adj4(λd)K(λd)φ.

Furthermore, if x(t) = x(·, φ) denotes the solution of (2.3) with initial data x0 = φ, then

lim
t→∞

e−λdtx(t) =

[
d

dz
det4(λd)

]−1

adj4(λd)K(λd)φ,

where adj4(λd) denotes the matrix of cofactors of 4(λd),

K(λd)φ = Dφ+

∫ 0

−τ
(λddµ(θ) + dη(θ))eλdθ

∫ 0

θ
e−λdsφ(s) ds.

34



2.2. Asymptotic behavior by a spectral approach

Combining Theorem 2.2.5 with Theorem 2.2.6, we arrive at

Theorem 2.2.7. Let x(·) be the solution of (2.3) subjected to the initial condition x0 = φ ∈
C([−τ, 0],R). If λd is a real zero of characteristic equation ∆(z) given by (2.6) such that χ(λd) <

1, where χ(·) is given by (2.8), then the asymptotic behavior of x(·) is given by

lim
t→∞

e−λdtx(t) =
1

H(λd)
K(λd)φ,

where

H(λd) = 1−
∫ 0

−τ
eλdθ dµ(θ)−

∫ 0

−τ
θeλdθ (λddµ(θ) + dη(θ)),

K(λd)φ = Mψ +

∫ 0

−τ
(λd dµ(θ) + dη(θ))eλdθ

∫ 0

θ
e−λdsψ(s) ds.

Note that the result of Theorem 2.2.7 is consistent with the result in [101] which was obtained

by using ODE method.

Example 2.2.8. 
x′(t) + cx′(t− σ) = ax(t) + bx(t− τ),

x(t) = φ(t), −τ ≤ t ≤ 0.

(2.9)

The characteristic equation of (2.9) is

∆(λ) = λ(1 + ce−λσ)− a− be−λτ . (2.10)

Note that the characteristic equation (2.10) may have no real root. Suppose that the character-

istic equation (2.10) has a real root λ0 which satis�es

|c|(1 + |λ0|σ)e−λ0σ + |b|τe−λ0τ < 1,

then by Theorem 2.2.5, λ0 is a simple dominant root of (2.10). Hence, applying Theorem 2.2.7,

we obtain that

lim
t→∞

e−λ0tx(φ; t) =
K(λ0;φ)

H(λ0)
, (2.11)

where

K(λ0;φ) = φ(0) + cφ(−σ)− cλ0e
−λ0σ

∫ 0

−σ
eλ0sφ(s) ds+ be−λ0τ

∫ 0

−τ
eλ0sφ(s) ds,

H(λ0) = 1 + c(1− λ0σ)e−λ0σ + bτe−λ0τ ,

(2.11) is consistent with the result in Kordonis et al. [84] which was obtained by using ODE

method .

Now, we use Theorem 2.2.7 to study the asymptotic behavior of (2.1). Let the initial condition

associated with (2.4) be given by

X0 =

(
φ

φ′

)
∈ C([−τ, 0],R2),
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The characteristic matrix corresponding to (2.4) is given by

4(z) = zI + ze−τzC − E − Fe−τz =

(
z −1

−q1 − q2e
−τz z + cze−τz − p1 − p2e

−τz

)
so the characteristic equation is det4(z) = z2 + cz2e−τz − (p1 + p2e

−τz)z − q2e
−τz − q1. Note

that the characteristic equation may have no simple dominant zero. Suppose that there exists a

simple dominant zero λd of the characteristic equation det4(z) = 0, by Theorem 2.2.6, we have

lim
t→∞

e−λdtX(t) = lim
t→∞

(
e−λdtx(t)

e−λdty(t)

)
=

[
d

dz
det4(λd)

]−1

adj4(λd)K(λd)φ

=

(
λd+cλde

−τλd−p1−p2e−τλd
β(λd)

1
β(λd)

q1+q2e
−τλd

β(λd)
λd

β(λd)

)
×A

where

A =

(
φ(0)

φ′(0) + cφ′(−τ) +
∫ 0
−τ (p2 − cλd)e−λd(s+τ)φ′(s) ds+

∫ 0
−τ q2e

−λd(s+τ)φ(s) ds

)
.

It follows that

lim
t→∞

e−λdtx(t) =
1

β(λd)

[
(λd + cλde

−τλd − p1 − p2e
−τλd)φ(0) + φ′(0) + cφ′(−σ)

+

∫ 0

−τ
(p2 − cλd)e−λd(s+τ)φ′(s) ds+

∫ 0

−τ
q2e
−λd(s+τ)φ(s) ds

]
,

where β(λd) = 2λd + (2cλd − cτλ2
d − p2 + p2τλd + q2τ)e−τλd − p1 6= 0.

The next theorem gives a result similar to Theorem 2.2.6, in case that the real dominant eigen-

value is not simple.

Theorem 2.2.9. (Frasson [42]) Let λd be a real dominant zero of det4(z) of geometric mul-

tiplicity n ≥ 1. If x(t) = x(t;φ) denote the solution of (2.1) with initial data x0 = φ, then the

large time behaviour as a function of the initial data φ is described as follows.

1. If Pλdφ 6= 0, then

lim
t→∞

1

tm
e−λdtx(t) = qm(n, λd, φ),

where m = max{j ∈ 0, 1, 2, ...n− 1 : qj(n, λd, φ) 6= 0}, qj is given by

qj(n, λ, φ) =
1

j!

n−1∑
k=j

Dn−1−kK(λ)

(n− 1− k)!

Dk−j
1 H(λ, φ)

(k − j)!
.

Furthermore, for integer n ≥ 1, the n− th Fréchet derivative of H(λ, φ) with respect to the �rst

variable is given by

Dn
1H(z, φ) = (−1)n+1n

∫ r

0
dµ(θ)

∫ θ

0
τn−1e−zτφ(τ − θ) dτ

+(−1)nz

∫ r

0
dµ(θ)

∫ θ

0
τne−zτφ(τ − θ) dτ

+(−1)n
∫ r

0
dη(θ)

∫ θ

0
τne−zτφ(τ − θ) dτ.
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2. If Pλdφ = 0, then

lim
t→∞

e−λdtx(t) = 0.

2.3 An ODE approach to asymptotic behavior

In this section, we study the asymptotic behavior of the solutions of a class of second order neu-

tral delay di�erential equation (2.1) by employing ODE approach. An estimation of solutions of

the initial value problem (2.1) is made. As a consequence of this result, the su�cient conditions

for stability, the asymptotic stability and instability of the trivial solution are presented.

The characteristic equation of (2.1) is

λ2 + cλ2e−λτ = p1λ+ p2λe
−λτ + q1 + q2e

−λτ . (2.12)

Suppose that λ0 is a real solution of the characteristic equation (2.12), we consider the �rst

order neutral delay di�erential equation

z′(t) + ce−λ0τz′(t− τ) + (2λ0 − p1)z(t) + (2cλ0 − p2)e−λ0τz(t− τ)

= (p1λ0 + q1 − λ2
0)

∫ 0

−τ
z(s+ t) ds. (2.13)

With (2.13), we associate the equation

µ+ (cµ+ 2cλ0 − p2)e−τ(λ0+µ) + 2λ0 − p1 − (p1λ0 + q1 − λ2
0)

∫ 0

−τ
eµs ds = 0, (2.14)

which is said to be the second characteristic equation, and it is obtained from (2.13) by seeking

solutions of the form z(t) = eµt.

Now, we present a proposition, which plays a crucial role in obtaining our main result pre-

sented in Theorem 2.3.2. This proposition essentially estabishes a transformation (via a solution

of the characteristic equation (2.12)) of the second order neutral delay di�erential equation (2.1)

into the �rst order neutral delay di�erential equation (2.13).

Proposition 2.3.1. Suppose λ0 is a real root of the characteristic equation (2.12), and let

β(λ0) = 2λd + (2cλ0 − cτλ2
0 − p2 + p2τλ0 + q2τ)e−τλ0 − p1.

Suppose that β(λ0) 6= 0, then a continuous real-valued function x de�ned on the interval [−τ,∞)

is the solution of the initial value problem (2.1) on [0,∞) if and only if z de�ned by

z(t) = e−λ0tx(t)− K(λ0, φ)

β(λ0)
for t ≥ 0, (2.15)

is the solution of the neutral delay di�erential equation (2.13) with the initial condition

z(t) = e−λ0tφ(t)− K(λ0, φ)

β(λ0)
for − τ ≤ t ≤ 0, (2.16)
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where x(t) = φ(t) on [−τ, 0] and

K(λ0, φ) = φ′(0) + (λ0 − p1)φ(0) + cφ′(−τ) + cλ0φ(−τ)− p2φ(−τ)

−(p1λ0 + q1 − λ2
0)

∫ 0

−τ
e−λ0sφ(s) ds.

Proof. Let x be the solution of the initial value problem (2.1) for t ≥ 0 with x(t) = φ(t) for

−τ ≤ t ≤ 0. De�ne

y(t) = e−λ0tx(t) for t ≥ −τ.

Using the fact that λ0 is a real root of the characteristic equation (2.12), we have for every t ≥ 0,

[y′(t) + ce−λ0τy′(t− τ) + (2λ0 − p1)y(t) + (2cλ0 − p2)e−λ0τy(t− τ)]′

= (p1λ0 + q1 − λ2
0)y(t) + (p2λ0 + q2 − cλ2

0)e−λ0τy(t− τ) (2.17)

with the initial condition satis�es

y(t) = e−λ0tφ(t) for − τ ≤ t ≤ 0. (2.18)

By integrating (2.17), and using the initial condition (2.18), we have

y′(t) + ce−λ0τy′(t− τ) + (2λ0 − p1)y(t) + (2cλ0 − p2)e−λ0τy(t− τ)

= (p1λ0 + q1 − λ2
0)

∫ 0

−τ
y(s+ t) ds+K(λ0, φ) (2.19)

for all t ≥ 0, where K(λ0, φ) is de�ned as in Proposition 2.3.1.

Now we suppose that β(λ0) 6= 0 and de�ne

z(t) = y(t)− K(λ0, φ)

β(λ0)
for t ≥ −τ,

by the de�nition of β(λ0), we obtain that y satis�es (2.19) if and only if z satis�es (2.15) for all

t ≥ 0. Moreover, the initial condition (2.18) is equivalent to (2.16).

An estimate of the solution of initial value problem (2.1) will be given in the following theorem.

Theorem 2.3.2. Suppose λ0 is a real root of the characteristic equation (2.12), and let β(λ0)

and K(λ0, φ) be de�ned as in Proposition 2.3.1. Suppose that β(λ0) 6= 0, let µ0 be a real root of

the characteristic equation(2.30), and set

γ(λ0, µ0) = 1 + ce−(λ0+µ0)τ − τ(cµ0 + 2cλ0 − p2)e−(λ0+µ0)τ

−(p1λ0 + q1 − λ2
0)µ−2

0 (µ0τe
−µ0τ + e−µ0τ − 1).

De�ne

H(λ0, µ0, φ) = φ(0) + cφ(−τ) + (p1λ0 + q1 − λ2
0)

∫ 0

−τ
eµ0s

∫ 0

s
e−(λ0+µ0)uφ(u) du ds

−(cµ0 + 2cλ0 − p2)e−(λ0+µ0)τ

∫ 0

−τ
e−(λ0+µ0)sφ(s) ds

−K(λ0, φ)

β(λ0)

[
1 + ce−λ0τ + (p1λ0 + q1 − λ2

0)µ−2
0 (1− e−µ0τ − µ0τ)

−(cµ0 + 2cλ0 − p2)µ−1
0 (1− e−µ0τ )e−(λ0+µ0)τ

]
.
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We assume that the real roots λ0 and µ0 have the following property

χλ0,µ0 := |c|e−(λ0+µ0)τ + τ |p1 − µ0 − 2λ0|+ µ−2
0 (µ0τ + e−µ0τ − 1)

∣∣p1λ0 + q1 − λ2
0

∣∣ < 1.

Then for any φ ∈ C([−τ, 0],R), the solution x of (2.1) satis�es∣∣∣∣e−(µ0+λ0)tx(t)− e−µ0tK(λ0, φ)

β(λ0)
− H(λ0, µ0, φ)

γ(λ0, µ0)

∣∣∣∣ ≤M(λ0, µ0;φ)χλ0,µ0 ,

where

M(λ0, µ0;φ) = max
−τ≤t≤0

∣∣∣∣e−µ0t(e−λ0tφ(t)− K(λ0, φ)

β(λ0)

)
− H(λ0, µ0;φ)

γ(λ0, µ0)

∣∣∣∣ , for t ≥ 0.

Proof. Note that µ0 = 0 is a root of (2.30) if and only if 2λ0 − p1 + (2cλ0 − p2)e−τλ0 − (p1λ0 +

q1 − λ2
0)τ = 0, from the de�nition of β(λ0), we obtain that if zero is a root of (2.30) if and only

if β(λ0) = 0. Hence, if we assume that β(λ0) 6= 0, then we always have µ0 6= 0.

From the assumption that |χλ0,µ0 | < 1, we conclude γ(λ0, µ0) > 0. Suppose that x is the

solution of the initial value problem (2.1) with x(θ) = φ(θ) for −τ ≤ θ ≤ 0, by Proposition

2.3.1, the fact that x is the solution of the initial value problem (2.1) is equivalent to the fact

that z is the solution of the delay di�erential equation (2.15) which satis�es the initial condition

(2.16). Set

w(t) = e−µ0tz(t) for t ≥ −τ,

then by using the fact that µ0 is a real root of the characteristic equation (2.30), we obtain, for

every t ≥ 0,

[w(t) + ce−(λ0+µ0)τw(t− τ)]′ = (p1 − µ0 − 2λ0)w(t)− (cµ0 + 2cλ0 − p2)e−(λ0+µ0)τw(t− τ)

+(p1λ0 + q1 − λ2
0)

∫ 0

−τ
eµ0sw(s+ t) ds, (2.20)

and the initial condition satis�es

w(t) = e−(µ0+λ0)tφ(t)− e−µ0tK(λ0, φ)

β(λ0)
for − τ ≤ t ≤ 0. (2.21)

By integrating (2.20) and using the initial condition of (2.21), we obtain

w(t) + ce−(λ0+µ0)τw(t− τ) = (p1 − µ0 − 2λ0)

∫ t

t−τ
w(s) ds (2.22)

+(p1λ0 + q1 − λ2
0)

∫ 0

−τ
eµ0s

∫ s+t

t−τ
w(u) du ds+H(λ0, µ0;φ),

for all t ≥ 0, where H(λ0, µ0;φ) is de�ned in Theorem 2.3.2.

De�ne

v(t) = w(t)− H(λ0, µ0;φ)

γ(λ0, µ0)
for t ≥ −τ,
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then by the de�nition of γ(λ0, µ0) in Theorem 2.3.2, we obtain that the fact that w satis�es

(2.22) is equivalent to the fact that v satis�es the following equation

v(t) + ce−(λ0+µ0)τv(t− τ) = (p1 − µ0 − 2λ0)

∫ t

t−τ
v(s) ds (2.23)

+(p1λ0 + q1 − λ2
0)

∫ 0

−τ
eµ0s

∫ s+t

t−τ
v(u) du ds,

for all t ≥ 0. Moreover, the initial condition is equivalent to

v(t) = e−(µ0+λ0)tφ(t)− e−µ0tK(λ0, φ)

β(λ0)
− H(λ0, µ0;φ)

γ(λ0, µ0)
for − τ ≤ t ≤ 0. (2.24)

De�ne

M(λ0, µ0;φ) := max
−τ≤t≤0

∣∣∣∣e−(µ0+λ0)tφ(t)− e−µ0tK(λ0, φ)

β(λ0)
− H(λ0, µ0;φ)

γ(λ0, µ0)

∣∣∣∣ .
In view of (2.24), we have

|v(t)| ≤M(λ0, µ0;φ) for − τ ≤ t ≤ 0.

We will next show that M(λ0, µ0;φ) is also a bound of v on the whole positive half line. For

this purpose, we take an arbitrary ε > 0 and claim that |v(t)| < M(λ0, µ0;φ) + ε for t ≥ −τ .
Indeed, suppose that there exists a point t0 > 0 such that

|v(t)| < M(λ0, µ0;φ) + ε for − τ ≤ t < t0,

|v(t0)| = M(λ0, µ0;φ) + ε. (2.25)

Then by (2.23) and the de�nition of χλ0,µ0 , we have

M(λ0, µ0;φ) + ε = |v(t0)|

≤ |c|e−(λ0+µ0)τ |v(t0 − τ)|+ |p1 − µ0 − 2λ0|
∫ t0

t0−τ
|v(s)| ds

+|p1λ0 + q1 − λ2
0|
∫ 0

−τ
eµ0s

∫ s+t

t0−τ
|v(u)| du ds

≤ (M(λ0, µ0;φ) + ε)
(
|c|e−(λ0+µ0)τ + τ |p1 − µ0 − 2λ0|

+µ−2
0 (µ0τ + e−µ0τ − 1)

∣∣p1λ0 + q1 − λ2
0

∣∣ )
= (M(λ0, µ0;φ) + ε)χλ0,µ0 < M(λ0, µ0;φ) + ε,

and we arrive at a contradiction. This implies that our claim is true and since ε is arbitrary, it

follows that |v(t)| ≤M(λ0, µ0;φ) for t ≥ −τ . Together with (2.23), we arrive at

|v(t)| ≤ |c|e−(λ0+µ0)τ |v(t− τ)|+ |p1 − µ0 − 2λ0|
∫ t

t−τ
|v(s)| ds

+|p1λ0 + q1 − λ2
0|
∫ 0

−τ
eµ0s

∫ s+t

t−τ
|v(u)| du ds,

≤ M(λ0, µ0;φ)
(
|c|e−(λ0+µ0)τ + τ |p1 − µ0 − 2λ0|

+µ−2
0 (µ0τ + e−µ0τ − 1)

∣∣p1λ0 + q1 − λ2
0

∣∣ )
= M(λ0, µ0;φ)χλ0,µ0 < M(λ0, µ0;φ),
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for all t ≥ 0. This implies

|v(t)| =
∣∣∣∣e−(µ0+λ0)tx(t)− e−µ0tK(λ0, φ)

β(λ0)
− H(λ0, µ0;φ)

γ(λ0, µ0)

∣∣∣∣ ≤M(λ0, µ0;φ)χλ0,µ0 ,

for all t ≥ 0. This completes the proof of Theorem 2.3.2.

Using the result of Theorem 2.3.2, we can next discuss the asymptotic behavior of the solution

of initial value problem (2.1).

Theorem 2.3.3. Suppose λ0 and µ0 are real roots of the characteristic equations (2.12) and

(2.30), respectively. Let β(λ0), χλ0,µ0, γ(λ0, µ0) be de�ned as in Proposition 2.3.1 and Theorem

2.3.2. Then for any φ ∈ C([−τ, 0],R), the solution x of initial value problem (2.1) with x(θ) =

φ(θ) for −τ ≤ θ ≤ 0 satis�es

lim
t→∞

e−(µ0+λ0)tx(t)− e−µ0tK(λ0, φ)

β(λ0)
=
H(λ0, µ0;φ)

γ(λ0, µ0)
,

where K(λ0, φ), β(λ0), H(λ0, µ0;φ), γ(λ0, µ0) are given in Proposition 2.3.1 and Theorem 2.3.2

respectively.

Proof. By the de�nition of x, y, z, w and v, we have to prove that

lim
t→∞

v(t) = 0.

From Theorem 2.3.2, one can show by induction that v satis�es

|v(t)| ≤M(λ0, µ0;φ)(χλ0,µ0)n for all t ≥ nτ − τ. (2.26)

Since 0 ≤ χλ0,µ0 < 1, thus from (2.26), we obtain that v tends to zero as t→∞.

De�nition 2.3.4. The trivial solution of (2.1) is said to be stable if for any t0 ∈ R and any

ε > 0, there exists δ = δ(t0, ε) > 0 such that ‖xt0‖ < δ implies |x(t)| < ε for t ≥ t0. The solution
is said to be asymptotically stable if it is stable and for any t0 ∈ R and any ε > 0, there exists a

δa = δa(t0, ε) > 0 such that ‖xt0‖ < δa implies limt→∞ x(t) = 0.

As a consequence of Theorem 2.3.2 and Theorem 2.3.3, we have the following stability criterion.

Theorem 2.3.5. Let λ0 and µ0 be real roots of the characteristic equations (2.12) and (2.30),

and let β(λ0), χλ0,µ0 , γ(λ0, µ0) be de�ned as in Proposition 2.3.1 and Theorem 2.3.2 respectively,

and satisfy the conditions in Theorem 2.3.2. Then for any φ ∈ C([−τ, 0],R), the solution x of

(2.1) with x(θ) = φ(θ) for −τ ≤ θ ≤ 0 satis�es

|x(t)| ≤ kλ0
|β(λ0)|

N(λ0, µ0;φ)eλ0t +

[
hλ0,µ0
|γ(λ0, µ0)|

+

(
1 +

Kλ0eµ0
|β(λ0)|

+
hλ0,µ0
|γ(λ0, µ0)|

)
χλ0,µ0

]
N(λ0, µ0;φ)e(λ0+µ0)t,
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where

kλ0 = 1 + |c|+ |λ0 − p1|+ |c||λ0|+ |p2|+ |p1λ0 + q1 − λ2
0|τ,

eµ0 = max
−τ≤t≤0

{e−µ0t},

hλ0,µ0 = 1 + |c|+ |p1λ0 + q1 − λ2
0|µ−2

0 (1− e−µ0τ − µ0τe
−µ0τ )

+|cµ0 + 2cλ0 − p2|τe−(λ0+µ0)τ

+
kλ0
|β(λ0)|

[
1 + |c|e−λ0τ + |p1λ0 + q1 − λ2

0|µ−2
0 (µ0τ + e−µ0τ − 1)

+|cµ0 + 2cλ0 − p2||µ−1
0 (1− e−µ0τ )|e−(λ0+µ0)τ

]
,

N(λ0, µ0;φ) = max

{
max
−τ≤t≤0

|e−λ0tφ(t)|, max
−τ≤t≤0

|e−(λ0+µ0)tφ(t)|, max
−τ≤t≤0

|φ′(t)|, max
−τ≤t≤0

|φ(t)|
}
.

Furthermore, the trivial solution of (2.1) is stable if λ0 ≤ 0, λ0 + µ0 ≤ 0; it is asymptotically

stable if λ0 < 0, λ0 + µ0 < 0; and it is unstable if µ0 > 0, λ0 + µ0 > 0.

Proof. From Theorem 2.3.2, it follows that

e−(µ0+λ0)t|x(t)| ≤ |K(λ0, φ)|
|β(λ0)|

e−µ0t +
|H(λ0, µ0;φ)|
|γ(λ0, µ0)|

+ |M(λ0, µ0;φ)|χλ0,µ0 ,

whereK(λ0, φ), H(λ0, µ0, φ),M(λ0, µ0;φ), β(λ0), γ(λ0, µ0), χλ0,µ0 are de�ned as in Theorem 2.3.2

respectively. From the representation of K(λ0, φ), H(λ0, µ0, φ) and M(λ0, µ0;φ) we have

|K(λ0, φ)| ≤ kλ0N(λ0, µ0;φ), |H(λ0, µ0, φ)| ≤ hλ0,µ0N(λ0, µ0;φ),

|M(λ0, µ0;φ)| ≤
(

1 +
Kλ0eµ0
|β(λ0)|

+
hλ0,µ0
|γ(λ0, µ0)|

)
N(λ0, µ0;φ).

Hence, it follows that

e−(µ0+λ0)t|x(t)| ≤ kλ0
|β(λ0)|

e−µ0tN(λ0, µ0;φ) +
hλ0,µ0
|γ(λ0, µ0)|

N(λ0, µ0;φ)

+

(
1 +

Kλ0eµ0
|β(λ0)|

+
hλ0,µ0
|γ(λ0, µ0)|

)
N(λ0, µ0;φ)χλ0,µ0 ,

which yields

|x(t)| ≤
[

hλ0,µ0
|γ(λ0, µ0)|

+

(
1 +

Kλ0eµ0
|β(λ0)|

+
hλ0,µ0
|γ(λ0, µ0)|

)
χλ0,µ0

]
N(λ0, µ0;φ)e(λ0+µ0)t

+
kλ0
|β(λ0)|

N(λ0, µ0;φ)eλ0t (2.27)

for t ≥ 0. Next, we consider three cases to discuss the stability of the trivial solution.

Case 1. Suppose that λ0 ≤ 0, λ0 + µ0 ≤ 0, then eλ0t ≤ 1, e(λ0+µ0)t ≤ 1. De�ne ‖φ‖ =

max−τ≤t≤0 |φ(t)|, it is not di�cult to obtain that ‖φ‖ ≤ N(λ0, µ0;φ). From (2.27), we have

|x(t)| ≤
[

kλ0
|β(λ0)|

+

(
1 +

Kλ0eµ0
|β(λ0)|

)
χλ0,µ0 + (1 + χλ0,µ0)

hλ0,µ0
|γ(λ0, µ0)|

]
N(λ0, µ0;φ) (2.28)

42



2.4. Discussion of the two approaches

for every t ≥ 0. De�ne

ρ :=
kλ0
|β(λ0)|

+

(
1 +

Kλ0eµ0
|β(λ0)|

)
χλ0,µ0 + (1 + χλ0,µ0)

hλ0,µ0
|γ(λ0, µ0)|

.

For any ε > 0, we choose δ = ερ−1 such that N(λ0, µ0;φ) < δ, since

‖φ‖ ≤ N(λ0, µ0;φ), we obtain that ‖φ‖ ≤ δ. From estimate (2.28), we obtain |x(t)| ≤
ρN(λ0, µ0;φ) < ρδ = ε. This implies the trivial solution of (2.1) is stable.

Case 2. Suppose that λ0 < 0, λ0+µ0 < 0. From estimate (2.27), it follows that limt→∞ x(t) = 0.

Hence, the trivial solution of (2.1) is asymptotically stable.

Case 3. Let µ0 > 0, λ0 + µ0 > 0. If the trivial solution of (2.1) is stable, then there ex-

ists a number l = l(1) > 0 such that, for any φ ∈ C([−τ, 0],R) with ‖φ‖ < l the solution x of

(2.1) with x(θ) = φ(θ) for −τ ≤ θ ≤ 0 satis�es |x(t)| < 1 for t ≥ 0. De�ne

φ0(t) = e(λ0+µ0)t − eλ0t for t ∈ [−τ, 0].

By de�nition of K(λ0, φ)and H(λ0, µ0, φ), and using the relation of (2.12) , we have K(λ0, φ0) =

−β(λ0) and H(λ0, µ0, φ0) = γ(λ0, µ0). Let φ ∈ C([−τ, 0],R) be de�ned by φ = l1
‖φ0‖φ0 with

0 < l1 < l. From Theorem 2.3.3, we have

lim
t→∞

e−(µ0+λ0)tx(t)− e−µ0tK(λ0, φ)

β(λ0)
=
H(λ0, µ0;φ)

γ(λ0, µ0)
. (2.29)

On the other hand,

lim
t→∞

e−(µ0+λ0)tx(t)− e−µ0tK(λ0, φ)

β(λ0)
= lim

t→∞
e−(µ0+λ0)tx(t) +

l1
‖φ0‖

e−µ0t = 0,

but

H(λ0, µ0;φ)

γ(λ0, µ0)
=

(l1/‖φ0‖)H(λ0, µ0;φ)

γ(λ0, µ0)
=

l1
‖φ0‖

> 0.

This is a contradiction to (2.29) and this shows that the trivial solution of (2.1) is unstable.

2.4 Discussion of the two approaches

In this section, we discuss the relations of spectral method and ODE method. First, we consider

the conditions of Theorem 2.3.3 in more detail. Suppose µ0 is a real root of second characteristic

equation (2.30). If µ0 satis�es χλ0,µ0 < 1, we claim that µ0 is a simple dominant zero. Let

G(µ) := µ+ (cµ+ 2cλ0 − p2)e−τ(λ0+µ) + 2λ0 − p1 − (p1λ0 + q1 − λ2
0)

∫ 0

−τ
eµs ds. (2.30)

By the condition χλ0,µ0 < 1 in Theorem 2.3.3, we have G′(µ0) 6= 0.

Indeed, since χλ0,µ0 < 1,

|G′(µ0)| ≥ 1−
[
|c|e−(λ0+µ0)τ + τ |p1 − µ0 − 2λ0|+ µ−2

0 (µ0τ + e−µ0τ − 1)
∣∣p1λ0 + q1 − λ2

0

∣∣] > 0.
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Since χλ0,µ0 < 1, let 0 < δ < 1 such that χλ0,µ0 < δ. From the representation of χλ0,µ0 , we can

estimate

1− 1

δ
|c|e−(λ0+µ0)τ >

1

δ

[
τ |p1 − µ0 − 2λ0|+ µ−2

0 (µ0τ + e−µ0τ − 1)
∣∣p1λ0 + q1 − λ2

0

∣∣] .
Let ε > 0 such that 1 < eεr ≤ 1

δ , and we let Ω denote the right half plane given by

Ω = {µ ∈ C : Reµ > µ0 − ε}.

For µ ∈ Ω and 0 ≤ s ≤ r, we have |e−sµ| = e−sReµ < e−sµ0eεs ≤ e−sµ0
δ . If µ ∈ Ω, let γ denote

the line segment between µ0 and µ, such that the segment is in Ω, then for 0 ≤ s ≤ r,

|e−sµ − e−sµ0 | =
∣∣∣∣∫ µ

µ0

se−ts dt

∣∣∣∣ = s

∣∣∣∣∫
γ
e−ts dt

∣∣∣∣ ≤ e−sµ0

δ
|µ− µ0|s, (2.31)

since G(µ0) = 0, we have

G(µ) = (µ− µ0)(1 + ce−τ(λ0+µ)) + cµ0e
−τλ0(e−τµ − e−τµ0)

+(2cλ0 − p2)e−τλ0(e−τµ − e−τµ0)− (p1λ0 + q1 − λ2
0)

∫ 0

−τ
(e−τµ − e−τµ0) ds.

Now, we estimate |G(µ)| by using (2.31),

|G(µ)| ≥ |µ− µ0|
(

1−
∣∣∣∣1δ ce−τ(λ0+µ0)

∣∣∣∣)
−|µ− µ0|

δ

{
τ |p1 − µ0 − 2λ0|+ µ−2

0 (µ0τ + e−µ0τ − 1)
∣∣p1λ0 + q1 − λ2

0

∣∣} > 0,

which means µ0 is the only zero in the right half plane Ω, so µ0 is a simple dominant zero.

For the case when the space C = C([−τ, 0],R). The main result in [101] (using ODE method)

and Theorem 2.2.7 implies that spectral approach is equivalent to the ODE appraoch in this case.

For the case when the space C = C([−τ, 0],Cn), as we discussed in Section 2.2, the spectral

approach can be applied to study the asymptotic behavior of the functional di�erential equa-

tions with the solutions in this space. However, for this case, the ODE approach is not applicable.

In the following, we present two examples to illustrate the relations of the two approaches.

Example 2.4.1. We suppose a = 1, b = 1, c = 1 and σ = τ = 1 in (2.1). We have
x′′(t) + x′′(t− 1) = x(t) + x(t− 1),

x(t) = φ(t), −1 ≤ t ≤ 0.

(2.32)

The characteristic equation of (2.32) is λ2 + λ2e−λ = 1 + e−λ. We denote

F1(λ) = λ2 + λ2e−λ− 1− e−λ = (λ2− 1)(1 + e−λ), Since F1(1) = 0, F ′1(1) = 2 + 2
e 6= 0, we have

that λ0 = 1. is a simple zero of F1(λ). Hence, (2.32) becomes

z′(t) + e−1z′(t− 1) + 2z(t) + 2e−1z(t− 1) = 0, (2.33)

44



2.4. Discussion of the two approaches

and the characteristic equation of (2.33) is

µ+ (µ+ 2)e−(µ+1) + 2 = (µ+ 2)(1 + e−µ−1) = 0.

We denote G1(µ) = (µ+ 2)(1 + e−µ−1). Since µ0 = −2 is a real zero of G1(µ), the condition of

Theorem 2.3.3 is χ1,−2 = e > 1, so Theorem 2.3.3 is not applicable.

But λ = −1 is another root of F1(λ) and satis�es F ′1(−1) = −2− 2e 6= 0, so (2.32) becomes

z′(t) + ez′(t− 1)− 2z(t)− 2ez(t− 1) = 0, (2.34)

and the characteristic equation of (2.34) is

µ+ (µ− 2)e−(µ−1) − 2 = (µ− 2)(1 + e−(µ−1)) = 0. (2.35)

It is easy to check that µ = µ0 = 2 is a real root of (2.35). Corresponding to the roots λ0 = −1

and µ0 = 2, the condition of Theorem 2.3.3 becomes χ−1,2 = e−1 < 1. Therefore by using the

result of Theorem 2.3.3, the asymptotic behavior of initial value problem (2.32) is

lim
t→∞

e−tx(t) =
H(−1, 2;φ)

γ(−1, 2)
=

φ(0) + φ(−1) + φ′(0) + φ′(−1)

2 + 2e−1
.

Next, we apply Theorem 2.2.6 to study the asymptotic behavior of initial value problem (2.32).

The characteristic matrix of (2.32) is

4(z) =

(
z −1

−e−z − 1 z + ze−z

)
.

Since z = z0 = 1 is a dominant zero of det4(z), and d
dz (det4(z))|z=z0 = 2+2e−1 6= 0, we obtain

that z0 = 1 is a simple dominant zero of det4(z), which satis�es the condition of Theorem 2.2.6.

Therefore, we have

lim
t→∞

e−tx(t) =
φ(0) + φ(−1) + φ′(0) + φ′(−1)

2 + 2e−1
.

From this example, we see that the result by the spectral approach is the same as the one by

the ODE approach.

Example 2.4.2. We suppose a = 1, σ = τ = 1, b = c in (2.1), we have
x′′(t) + cx′′(t− 1) = x(t) + cx(t− 1),

x(t) = φ(t), −1 ≤ t ≤ 0.

(2.36)

The characteristic equation of (2.36) is

λ2 + cλ2e−λ = 1 + ce−λ,

we denotes F2(λ) = λ2 + cλ2e−λ − 1− ce−λ = (λ2 − 1)(1 + ce−λ). Since F2(−1) = 0, F ′2(−1) =

−2− 2ce 6= 0, So λ0 = −1 is a simple zero of F2(λ), (2.36) becomes

z′(t) + cez′(t− 1)− 2z(t)− 2cez(t− 1) = 0. (2.37)
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Figure 2.1: Numerical solution of equation (2.32).

The characteristic equation of (2.37) is

µ+ (µ− 2)ce−(µ−1) − 2 = (µ− 2)(1 + ce−(µ−1)) = 0.

We denote G2(µ) = (µ − 2)(1 + ce−(µ−1)). Since µ0 = 2 is a real zero of G2(µ), corresponding

to the roots λ0 = −1 and µ0 = 2, the condition of Theorem 2.3.3 is χ−1,2 = |c|e−1. If |c| < e,

we have χ−1,2 < 1. Therefore by using the result of Theorem 2.3.3, the asymptotic behavior of

initial value problem (2.36) is

lim
t→∞

e−tx(t) =
H(−1, 2;φ)

γ(−1, 2)
=
φ(0) + φ′(0) + c(φ(−1) + φ′(−1))

2 + 2ce−1
.

Next, we consider (2.36) by applying spectral approach. For (2.36), the characteristic matrix is

given by

4(z) =

(
z −1

−ce−z − 1 z + cze−z

)
.

(1) Case −e < c. It is not di�cult to check z0 = 1 is a dominant zero of det4(z), since
d
dz det4(z)|z=z0 = 2 + 2ce−1 6= 0, so z0 = 1 is a simple dominant zero of det4(z).

Therefore, by applying the result of Theorem 2.2.6,

lim
t→∞

e−tx(t) =
φ(0) + φ′(0) + c(φ(−1) + φ′(−1))

2 + 2ce−1
.

(2) Case c < −e. After checking the roots of det4(z), we �nd z0 = ln(−c) is a dominant zero

of det4(z) and we can also use Theorem 2.2.6 to obtain the asymptotic behavior of the

equation initial value problem (2.36).

(3) Case c = −e. We learned that z0 = 1 is a dominant zero with order 2, so by the spectral

approach in [6], we can have the asymptotic behavior of the equation initial value problem

(2.36).
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From this example, we derive that for the ODE approach, the coe�cient c should satisfy |c| < e.

However, for every c ∈ R, the asymptotic behavior of the equation initial value problem (2.36)

can be obtained by the spectral projection approach, and the result is the same as the one by

the ODE approach when c satis�es |c| < e.

2.5 A �xed point method towards asymptotic behavior

In this section, we study the special case of the system (2.1) with c = 0 and p2 = 0. Since

it is not easy to apply the ODE approach or the spectral approach to discuss the asymptotic

behavior because of the di�culty in computing the roots of the characteristic eequation, we

introduce a third approach, based on a �xed point method, to study the asymptotic behavior of

such equations.

This approach is based on �xed point theory and relies on three principles: a complete metric

space, the contraction mapping principle, and an elementary variation of parameters formula.

Together this yields existence, uniqueness and stability.

By using a �xed point approach, Burton and Furumochi [10] have considered asymptotic stability

of the following linear equation

x′′(t) + ax′(t) + bx(t− r) = 0 (2.38)

and obtained the following.

Theorem 2.5.1. (Burton and Furumochi [10]) Let a > 0 and b > 0. If

br

(
1 +

∫ t

0
|AeA(t−s)| ds

)
< 1

holds, where A =

(
0 1

−b −a

)
, then every solution of equation (2.38) and its derivative tend to

0 as t→∞.

By using a similar technique as Burton and Furumochi [10], we consider the retarded delay

di�erential equation

x′′(t) + ax′(t) + bx(t− r) + cx(t) = 0. (2.39)

Let x′ = y, (2.39) can be written in the following form

y′ = −ay − (b+ c)x+ (d/dt)

∫ t

t−r
bx(s) ds,

which is then expressed as the vector system

z′ = Az + (d/dt)

∫ t

t−r
Bz(s) ds,

where A and B are

A =

(
0 1

−(b+ c) −a

)
and B =

(
0 0

b 0

)
. (2.40)
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By the variation of parameters formula

z(t) = eAtz0 +

∫ t

0
eA(t−s)(d/ds)

∫ s

s−r
Bz(u) du ds,

employing an integration by parts, we have

z(t) = eAtz0 +

∫ t

t−r
Bz(u) du− eAt

∫ 0

−r
Bz(u) du+A

∫ t

0
eA(t−s)

∫ s

s−r
Bz(u) du ds.

In order to have eAt → 0 as t→∞, we need

b+ c > 0, a > 0.

Let C([−r, 0],R2) be the space of continuous functions, let φ ∈ C be an initial function and

de�ne

Sφ :=
{
ϕ : ϕ ∈ C([−r, 0],R2), ϕ(t) = φ(t) on [−r, 0], ϕ(t)→ 0 as t→∞

}
.

De�ne a mapping P : Sφ → Sφ

(Pϕ)(t) = eAtφ(0) +

∫ t

t−r
Bϕ(u) du− eAt

∫ 0

−r
Bϕ(u) du+A

∫ t

0
eA(t−s)

∫ s

s−r
Bϕ(u) du ds.

We choose a suitable norm for a vector or matrix. For

z =

(
x

y

)
let |z|0 := |x|+ |y|. Let Q be a �xed 2× 2 nonsingular matrix such that |q|0 ≤ 1, where q is the

second column of Q, and let |z| := |Qz|0. For a 2× 2 matrix M , let

|M | := sup
{
|QMQ−1z|0 : |z|0 = 1

}
, (2.41)

then |M | is the norm of M . We have the following theorem.

Theorem 2.5.2. Let b+ c > 0, b > 0 and a > 0, if the following condition is satis�ed

br

(
1 +

∫ t

0
|AeA(t−s)| ds

)
< 1, (2.42)

where A is given by (2.40), then every solution of equation (2.39) and its derivative tend to 0 as

t→∞.

Proof. Since eAt is a L1-function on R+, if ϕ ∈ Sφ, then (Pϕ)(t) → 0 as t → ∞. Thus,

P : Sφ → Sφ. Furthermore, from condition (2.42), we have that P is a contraction with respect

to the norm (2.41) on Sφ. The proof proceeds similarly to the proof as presented by Burton and

Furumochi [10].

Example 2.5.3. Consider the equation

x′′(t) +
7

12
x′(t) +

1

6
x(t− 2)− 1

12
x(t) = 0, t ∈ R+. (2.43)
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Figure 2.2: Numerical solution of equation (2.43).

We have

A =

(
0 1

−1/12 −7/12

)
and B =

(
0 0

1/6 0

)
.

The eigenvalues of A are −1
3 and −1

4 , let Q be a 2× 2 nonsingular matrix such that

QAQ−1 =

(
−1/3 0

0 −1/4

)
.

Then we have AeA(t−s) = QEQ−1, where

E =

(
−(1/3)e−(t−s)/3 0

0 −(1/4)e−(t−s)/4

)
,

and

|AeA(t−s)| = sup{|Ez|0 : |z|0 = 1}
= sup{(|x|/3)e−(t−s)/3 + (|y|/4)e−(t−s)/4 : |x|+ |y| = 1}
≤ (1/3)e−(t−s)/3 + (1/4)e−(t−s)/4.

Hence,∫ t

0
|AeA(t−s)| ds ≤

∫ t

0

[
(1/3)e−(t−s)/3 + (1/4)e−(t−s)/4

]
ds = 2− e−t/3 − e−t/4 < 2

for t ≥ 0, which together with br = 1
3 implies that (2.42) holds. Thus, by Theorem 2.5.2, we

have that the zero solution of (2.43) tends to 0 as t→∞.
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2.6 An application to a mechanical model of turning processes

Systems governed by (neutral) delay di�erential equations (DDEs) often come up in di�eren-

t �elds of science and engineering. One of the most important mechanical application is the

turning processes. For the simplest model of turning, the governing equation of motion is an

autonomous DDE with a corresponding in�nite dimensional state space. This fact results in

an in�nite number of characteristic roots, most of them having negative real parts referring to

damped components of the vibration signals. There may be some �nite number of characteristic

roots that have positive real parts.

From the detailed introduction of mechanical models of turning processes in [59], we focus

on a linear autonomous delay di�erential equation

mξ′′(t) + cξ′(t) + kξ(t) = −wh(ξ(t)− ξ(t− τ)), (2.44)

where m, c, k, w, h, τ are constants. For the meaning of every parameter, refer to [59].

Using the model parameters, equation (2.44) reads

ξ′′(t) + 2ζwnξ
′(t) + w2

nξ(t) = −wh
m

(ξ(t)− ξ(t− τ)), (2.45)

where wn =
√
k/m, ζ = c/(2mwn). Generally, ζ ≈ 0.005 ∼ 0.02. Equation (2.45) is the stan-

dard linear delay di�erential equation model of the turning process.

Equation (2.45) can be even further simpli�ed. Introduce the dimensionless time t̃ by t̃ = twn,

and by abuse of notation, drop the tilde immediately. This gives the dimensionless equation of

motion

ξ′′(t) + 2ζξ′(t) + ξ(t) = −w̃(ξ(t)− ξ(t− wnτ)), (2.46)

where w̃ = wh
mw2

n
. In the following, we study the asymptotic stability of equation (2.46) by The-

orem 2.5.2.

Equation (2.46) can be written as the following.

ξ′′(t) + 2ζξ′(t) + (1 + w̃)ξ(t)− w̃ξ(t− wnτ) = 0, (2.47)

We denote wnτ = r. From (2.47), we have

A =

(
0 1

−1 −2ζ

)
and B =

(
0 0

−w̃ 0

)
.

The characteristic equation of A is

λ2 + 2ζλ+ 1 = 0.

The eigenvalues are

λ1 = −ζ + i
√

1− ζ2, λ2 = −ζ − i
√

1− ζ2,

50



2.7. Notes and remarks

so |λ1| = |λ2| = 1, |λ1e
λ1(t−s)| = |λ1|e(Reλ1)(t−s) and |λ2e

λ2(t−s)| = |λ2|e(Reλ2)(t−s).

If ζ /∈ {−1, 1}, the two di�erent eigenvalues λ1, λ2 have eigenvectors V1 and V2, which are

linearly independent. Suppose that Q = (V1, V2)−1, then

QAQ−1 =

(
λ1 0

0 λ2

)
, Λ.

Hence,

A = Q−1ΛQ = (V1, V2)A(V1, V2)−1, eA(t−s) = Q−1eΛ(t−s)Q.

Then we have

AeA(t−s) = Q−1ΛQQ−1eΛ(t−s)Q = Q−1ΛeΛ(t−s)Q = Q−1EQ,

where

E =

(
λ1e

λ1(t−s) 0

0 λ2e
λ2(t−s)

)
.

Using the norm in Theorem 2.5.2, we have

|AeA(t−s)| = sup{|Ez|0 : |z|0 = 1}

= sup
{∣∣∣xλ1e

λ1(t−s)
∣∣∣+
∣∣∣yλ2e

λ2(t−s)
∣∣∣ : |x|+ |y| = 1

}
= sup

{
|x||λ1|e(Reλ1)(t−s) + |y||λ2|e(Reλ2)(t−s) : |x|+ |y| = 1

}
≤ 2e−ζ(t−s).

Hence, ∫ t

0
|AeA(t−s)| ds ≤

∫ t

0
2e−ζ(t−s) ds ≤ 2ζ−1(1− e−ζt), t ≥ 0,

(−w̃)r

(
1 +

∫ t

0
|AeA(t−s)| ds

)
≤ (−w̃)r(1 + 2ζ−1(1− e−ζt)) ≤ (−w̃)r(1 + 2ζ−1).

If (−w̃)r/ζ < 1/3, the conditions of Theorem 2.5.2 are satis�ed, that is to say, if w̃ < 0 very

large or r very small, then every solution of (2.47) and its derivative tends to 0 as t→∞.

2.7 Notes and remarks

For more results on asymptotic behavior of autonomous delay di�erential equations, see the

overview books by Hale and Verduyn Lunel [51], Diekmann, van Gils, Verduyn Lunel and

Walther [29], Driver [35], papers by Driver [36], Philos and Purnaras [101, 102, 105, 106], Dix,

Philos and Purnaras [33], Frasson [41, 40, 42], Frasson and Verduyn Lunel [39].

In this chapter, we used three methods to study asymptotic behavior of the solutions of function-

al di�erential equations, that is, ordinary di�erential equation (ODE) method, spectral method
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and �xed point method. The basic idea for the ODE method in Section 2.3 essentially originat-

ed in a very interesting asymptotic result due to Driver [37] concerning the solutions of linear

di�erential systems with small delays. Motivated by the treatment in [37], Philos, Purnaras and

many other authors [84, 101, 102, 103, 104, 105, 106, 137] have obtained some interesting results

on the asymptotic behavior of the solutions to autonomous di�erential and di�erence equations

with delays. For example, equations with neutral terms, equations with variable delays, periodic

di�erential and di�erence equations with delays. Continuing the study for asymptotic behavior

of a wide class of functional di�erential equations, Frasson and Verduyn Lunel [39] explored a

new approach, the so-called spectral approach. Frasson [40, 41, 42] established some interesting

results based on the results in [39]. Towards asymptotic behavior, a �xed point method (see

Burton [13]) is introduced. This method is one of the main methods in this thesis. For more

detailed information about the �xed point method, refer to Chapter 4, Chapter 5 and Chapter 6.

A paper based on the contents of this chapter has been submitted for publication ([17]).
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Chapter 3

Asymptotic behavior of a class of

nonautonomous neutral delay

di�erential equations

In this chapter, asymptotic behavior of a class of nonautonomous neutral delay di�erential

equations is studied. It should be emphasized that asymptotic behavior of nonautonomous

equations is much more di�cult than the case of autonomous equations. For instance, Frasson

and Verduyn Lunel [39] studied the following linear periodic delay equation

x′(t) = a(t)x(t) +
k∑
j=1

bj(t)x(t− τj), (3.1)

where a(t+ω) = a(t), bj(t+ω) = bj(t), j = 1, 2, · · · , k, they considered a particular case where

τj = jω (i.e. the delays are integer multiples of the period ω). However, it is very di�cult to

study general nonautonomous problems.

For a special class of nonautonomous problems, we can use an approach similar to the ODE

method as we discussed in Chapter 2, which is based on the application of an appropriate solution

of the generalized characteristic equation. For nonautonomous equations, solving the generalized

characteristic equation becomes much harder: functional equation instead of algebraic equation.

Our result can be applied in case the assumptions are satis�ed, i.e., the generalized characteristic

equation has a real solution.

3.1 Introduction and main result

For r ≥ 0, let C = C([−r, 0],C) be the space of continuous functions taking [−r, 0] into C with

‖ϕ‖, ϕ ∈ C, de�ned by ‖ϕ‖ = max−r≤θ≤0 |ϕ(θ)|. A delay di�erential equation of neutral type,

or shortly, a neutral equation is a system of the form

d

dt
Mxt = L(t)xt t > t0 ∈ R, (3.2)

where xt ∈ C is de�ned by xt(θ) = x(t + θ), −r ≤ θ ≤ 0, M : C → C is continuous, linear and

atomic at zero, (see [51] on page 255 for the concept of atomic at zero),

Mϕ = ϕ(0)−
∫ 0

−r
ϕ(θ) dµ(θ), (3.3)

where Var[s,0]µ→ 0, as s→ 0.
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For (3.2), L(t) denotes a family of bounded linear functionals on C, and by the Riesz repre-

sentation theorem, for each t > t0, there exists a complex valued function of bounded variation

η(t, ·) on [−r, 0], normalized so that η(t, 0) = 0 and η(t, ·) is continuous from the left in (−r, 0)

such that

L(t)ϕ =

∫ 0

−r
ϕ(θ) dθη(t, θ). (3.4)

For any ϕ ∈ C, σ ∈ [t0,∞), a function x = x(σ, ϕ) de�ned on [σ − r, σ + A) is said to be a

solution of (3.2) on (σ, σ + A) with initial ϕ at σ if x is continuous on [σ − r, σ + A), xσ = ϕ,

Mxt is continuously di�erentiable on (σ, σ+A) and relation (3.2) is satis�ed on (σ, σ+A). For

more information on this type of equations, see [51].

The initial-value problem (IVP) is
d
dtMxt = L(t)xt t ≥ σ,

xσ = ϕ.

(3.5)

For µ = 0 in (3.3), Mϕ = ϕ(0) and equation (3.2) becomes a retarded functional di�erential

equation,

x′(t) = L(t)xt. (3.6)

Consider the generalized characteristic equation of (3.6)

λ(t) =

∫ r

0
exp

(
−
∫ t

t−θ
λ(s)ds

)
dθη(t, θ) (3.7)

which is obtained by looking for solutions to (3.6) of the form

x(t) = exp

(∫ t

0
λ(s) ds

)
. (3.8)

By a solution of the generalized characteristic equation (3.7), we mean a continuous real-valued

function λ(·) de�ned on [t0 − r,∞) which satis�es (3.7).

Cuevas and Frasson [26] studied the asymptotic behavior of solutions of (3.6) with initial con-

dition xσ = ϕ, and obtained the following result.

Theorem 3.1.1. Assume that λ(t) is a real solution of (3.7) such that

lim sup
t→∞

∫ r

0
θ|e−

∫ t
t−θ λ(s)ds|dθ|η|(t, θ) < 1.

Then for each solution x of (3.6), we have that the limit

lim
t→∞

x(t)e
−
∫ t
t0
λ(s)ds

exists, and

lim
t→∞

[
x(t)e

−
∫ t
t0
λ(s)ds

]′
= 0.

Furthermore,

lim
t→∞

x′(t)e
−
∫ t
t0
λ(s)ds

= lim
t→∞

λ(t)x(t)e
−
∫ t
t0
λ(s)ds

,

if limt→∞ λ(t)x(t)e
−
∫ t
t0
λ(s)ds

exists.
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Motivated by the work of [26], we provide a generalization of [26], as it can be applied for in-

stance for neutral delay di�erential equations with distributed delays or discrete delays, as far

as the delays we considered are uniformly bounded. The method for the proof of the main result

is similar to [26, 33].

For equation (3.2), the generalized characteristic equation is

λ(t) =

∫ 0

−r
dµ(θ)λ(t+ θ) exp

(
−
∫ t

t+θ
λ(s)ds

)
+

∫ 0

−r
dθη(t, θ) exp

(
−
∫ t

t+θ
λ(s)ds

)
, (3.9)

which is obtained by looking for solutions of (3.2) of the form (3.8) and the solutions of (3.9)

are continuous functions de�ned in [σ − r,∞) satisfying (3.9). For autonomous neutral delay

di�erential equations, the constant solutions of (3.9) are the roots of the so called characteristic

equation. The following is our main result.

Theorem 3.1.2. Assume that a real-valued function λ(t) is a solution of (3.9) such that

lim sup
t→∞

χλ,t < 1, (3.10)

where

χλ,t =

∫ 0

−r
e−
∫ t
t+θ λ(s) ds d|µ|(θ) +

∫ 0

−r
(−θ)e−

∫ t
t+θ λ(s) ds (|λ(t+ θ)| d|µ|(θ) + dθ|η|(t, θ)) .

Then for each solution x of (3.5), we have that the limit

lim
t→∞

x(t)e
−
∫ t
t0
λ(s) ds

(3.11)

exists, and

lim
t→∞

[
x(t)e

−
∫ t
t0
λ(s) ds

]′
= 0. (3.12)

Furthermore,

lim
t→∞

x′(t)e
−
∫ t
t0
λ(s) ds

= lim
t→∞

λ(t)x(t)e
−
∫ t
t0
λ(s) ds

(3.13)

if the limit at the right-hand side exists.

Remark 3.1.3. The conditions in Theorem 3.1.2 are very strong and therefore the theorem is

far from providing a general theory. However, it can be applied to deal with certain examples,

see Section 3.3.

3.2 Proof of Theorem 3.1.2

In this section, we prove Theorem 3.1.2. We start with some preparations.

From (3.10), we obtain that there exists t1 ≥ t0, such that supt≥t1 χλ,t < 1. Without loss

of generality, we assume t1 = 0 and de�ne

Γλ := sup
t≥0

χλ,t < 1.
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For solutions x of (3.5), we set

y(t) = x(t)e−
∫ t
0 λ(s) ds, t > −r.

Then (3.5) becomes

y′(t) + λ(t)y(t)−
∫ 0

−r
dµ(θ)y′(t+ θ)e−

∫ t
t+θ λ(s) ds

=

∫ 0

−r
y(t+ θ)e−

∫ t
t+θ λ(s) ds (λ(t+ θ) dµ(θ) + dθη(t, θ)) (3.14)

and the initial condition is equivalent to

y(t) = ϕ(t)e−
∫ t
0 λ(s) ds, −r ≤ t ≤ 0. (3.15)

Combining (3.15) with (3.9), for t ≥ −r, we have

y′(t) =

∫ 0

−r
dµ(θ)y′(t+ θ)e−

∫ t
t+θ λ(s) ds

−
∫ 0

−r
e−
∫ t
t+θ λ(s) ds

∫ 0

−r
y′(s) ds (λ(t+ θ) dµ(θ) + dθη(t, θ)) . (3.16)

From the de�nition of the solutions to (3.5), we know that y′(t) is continuous, Let

Mϕ,λ1 = max
{∣∣∣ϕ′(t)e− ∫ t0 λ(s) ds − λ(t)ϕ(t)e−

∫ t
0 λ(s) ds

∣∣∣ : −r ≤ t ≤ 0
}
.

We shall show that Mϕ,λ1 is also a bound of y′ on the whole interval [−r,∞); i.e.,

|y′(t)| ≤Mϕ,λ1 , t ≥ −r. (3.17)

For this purpose, take ε > 0, then

|y′(t)| < Mϕ,λ1 + ε for t ≥ −r. (3.18)

In fact, we suppose that there exists a point t∗ > 0 such that

|y′(t)| < Mϕ,λ1 + ε for − r ≤ t < t∗,

|y′(t∗)| = Mϕ,λ1 + ε. (3.19)

Then combining (3.16) and (3.19), we obtain

y′(t∗) = Mϕ,λ1 + ε

≤
∣∣∣∣∫ 0

−r
y′(t∗ + θ)e−

∫ t∗
t∗+θ λ(s) ds dµ(θ)

∣∣∣∣
+

∣∣∣∣∫ 0

−r
e−
∫ t∗
t∗+θ λ(s) ds

∫ 0

−r
y′(s) ds (λ(t∗ + θ) dµ(θ) + dθη(t∗, θ))

∣∣∣∣
≤ (Mϕ,λ1 + ε)

{∫ 0

−r
|e−

∫ t∗
t∗+θ λ(s) ds| d|µ|(θ)

+

∫ 0

−r
(−θ)|e−

∫ t∗
t∗+θ λ(s) ds| (|λ(t∗ + θ)| d|µ|(θ) + dθ|η|(t∗, θ))

}
= (Mϕ,λ1 + ε)Γλ < Mϕ,λ1 + ε, (3.20)
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which is a contradiction, so (3.18) holds. Since (3.18) holds for every ε > 0, it follows that

|y′(t)| ≤Mϕ,λ0 for all t ≥ −r.

We are now ready to prove Theorem 3.1.2.

Proof. By using (3.16) and (3.17), for t ≥ 0, we have

|y′(t)| ≤
∣∣∣∣∫ 0

−r
y′(t+ θ)e−

∫ t
t+θ λ(s)ds dµ(θ)

∣∣∣∣
+

∣∣∣∣∫ 0

−r
e−
∫ t
t+θ λ(s) ds

∫ 0

−r
y′(s) ds (λ(t+ θ) dµ(θ) + dθη(t, θ))

∣∣∣∣
≤ Mϕ,λ1

{∫ 0

−r
|e−

∫ t
t+θ λ(s) ds| d|µ|(θ)

+

∫ 0

−r
(−θ)|e−

∫ t
t+θ λ(s) ds| (|λ(t+ θ)| d|µ|(θ) + dθ|η|(t, θ))

}
= Mϕ,λ1Γλ (3.21)

which means |y′(t)| ≤Mϕ,λ1Γλ1 for t ≥ 0.

One can show by induction, that y′(t) satis�es

|y′(t)| ≤Mϕ,λ1(Γλ)n for t ≥ nr − r, (n = 0, 1, 2, 3, . . . ). (3.22)

Since 0 ≤ χλ,t < 1, it follows that y′(t) tends to zero as t→∞. So we proved (3.12) and hence

(3.13) holds. In the following, we will show (3.11) holds.

To prove that limt→∞ y(t) exists, we consider (3.22). For an arbitrary t ≥ 0, we set n = [t/r]+1

(the greatest integer less than or equal to t/r+1), then from n = [t/r]+1 ≤ t/r+1 ≤ [t/r]+2 =

n+ 1, we have t/r ≤ n. From (3.22),

|y′(t)| ≤Mϕ,λ1(Γλ)n ≤Mϕ,λ1(Γλ)t/r for t ≥ nr − r. (3.23)

Now we use the Cauchy convergence criterion. For t > T ≥ 0, from (3.23), we have

|y(t)− y(T )| ≤
∫ t

T
|y′(s)| ds ≤

∫ t

T
Mϕ,λ1(Γλ)s/r ds = Mϕ,λ1

r

ln Γλ

[
(Γλ)s/r

]s=t
s=T

(3.24)

= Mϕ,λ1

r

ln Γλ

[
(Γλ)t/r − (Γλ)T/r

]
.

Let T →∞, we have t→∞, and by (3.25), we have

Mϕ,λ
r

ln Γλ

[
(Γλ)t/r − (Γλ)T/r

]
→ 0;

and limT→∞ |y(t) − y(T )| = 0. The Cauchy convergence criterion implies the existence of

limt→∞ y(t).

Remark 3.2.1. Under the conditions of Theorem 3.1.2, a solution of (3.5) can not grow faster

than exponential; i.e., there exists a constant M > 0, such that

|x(t)| ≤Me
∫ t
0 λ(s) ds for t ≥ 0. (3.25)

From (3.25), it is not di�cult to show that:
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(i) Every solution of (3.5) is bounded if and only if lim supt→∞
∫ t

0 λ(s) ds <∞;

(ii) Every solution of (3.5) tends to zero if and only if lim supt→∞
∫ t

0 λ(s) ds→ −∞.

Remark 3.2.2. If the generalized characteristic equation (3.9) has a constant solution λ(t) = λ0,

then from Theorem 3.1.2, limt→∞ x(t)e−λ0t exists.

3.3 Examples

Example 3.3.1. Consider the linear di�erential equation with distributed delay

x′(t)− 1

2
x′(t− 1) =

∫ 0

−1

x(t+ θ)

2(t+ θ)
dθ, t > 1. (3.26)

This equation can be written in the form (3.2) by setting µ(θ) = −1
2 for θ ≤ −1, µ(θ) = 0 for

θ > −1, η(t, θ) = ln t+ 1
2 ln(t+ θ) for t > 1 and θ ∈ [−1, 0]. Since both θ 7→ η(t, θ) and θ 7→ µ(θ)

are increasing functions, |µ| = µ, |η| = η.

The generalized characteristic equation associated with (3.26) is

λ(t) =
λ(t− 1)

2
exp

(
−
∫ t

t−1
λ(s) ds

)
+

∫ 0

−1

1

2(t+ θ)
exp

(
−
∫ t

t+θ
λ(s) ds

)
dθ,

which has a solution

λ(t) = 1/t. (3.27)

For this λ(t) and for t > 1, using the expression of χλ,t, we obtain that

χλ,t =
1

2

(
1− 1

2t

)
+

1

4t
+

∫ 0

−1

−θ
2(t+ θ)

exp

[
−
∫ t

t+θ

ds

s

]
dθ

=
1

2
+

1

4(t)
→ 1

2
< 1 as t→∞.

Hence the hypothesis (3.10) of Theorem 3.1.2 is ful�lled. So we obtain that for each solution of

(3.3.1)

lim
t→∞

x(t)

t
exists, lim

t→∞

[
x(t)

t

]′
= 0 and lim

t→∞

x′(t)

t
= 0. (3.28)

Example 3.3.2. Consider the linear di�erential equation with distributed delay

x′(t)− 1

p
x′(t− 1) =

∫ 0

−1

x(t+ θ)

q(t+ ε+ θ)
dθ, t > 1, (3.29)

ε is any constant, p and q are positive constants such that 1/p + 1/q = 1. This equation

can be written in the form (3.2) by setting µ(θ) = −1
p for θ ≤ −1, µ(θ) = 0 for θ > −1,

η(t, θ) = ln t+ 1
q ln(t+ ε+ θ) for t > 1 and θ ∈ [−1, 0]. Since both θ 7→ η(t, θ) and θ 7→ µ(θ) are

increasing functions, |µ| = µ, |η| = η.

The generalized characteristic equation associated with (3.29) is

λ(t) =
λ(t− 1)

p
exp

(
−
∫ t

t−1
λ(s) ds

)
+

∫ 0

−1

1

q(t+ ε+ θ)
exp

(
−
∫ t

t+θ
λ(s) ds

)
dθ,
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which has a solution

λ(t) =
1

t+ ε
.

For this λ(t) and for t > 1, using the expression of χλ,t, we obtain that

χλ,t =
1

p

(
1− 1

2(t+ ε)

)
+

1

2p(t+ ε)
+

∫ 0

−1

−θ
2q(t+ ε+ θ)

exp

[
−
∫ t

t+θ

ds

s+ ε

]
dθ

=
1

p
+

1

2q(t+ ε)
→ 1

p
< 1 as t→∞.

Hence the hypothesis (3.10) of Theorem 3.1.2 is ful�lled. So we obtain that for each solution of

(3.3.1)

lim
t→∞

x(t)

t
exists, lim

t→∞

[
x(t)

t

]′
= 0 and lim

t→∞

x′(t)

t
= 0. (3.30)

Remark 3.3.3. Note that if the generalized characteristic equation (3.9) has a solution is di�cult

to verify. Example 3.3.2 is an extension of Example 3.3.1, we added an ε, and the coe�cients

1/2 and 1/2 changed to be 1/p and 1/q, which has to be satis�ed 1/p+ 1/q = 1.

Example 3.3.4. Consider the equation with variable delay

x′(t)− 2

3
x′(t− 1) =

x(t− τ(t))

3(t+ c− τ(t))
, t > t0. (3.31)

where c ∈ R and τ : [0,∞) → [−1, 0] is a continuous function such that t + c − τ(t) > 0 for

t > t0.

Equation (3.31) can be written in the form (3.2) by letting µ(θ) = −2
3 for θ ≤ −1, µ(θ) = 0 for

θ > −1, η(t, θ) = 0 for θ < τ(t), η(t, θ) = 1/3(t+ c− τ(t)) for θ > τ(t). Since both θ 7→ η(t, θ)

and θ 7→ µ(θ) are increasing functions, we have that |µ| = µ, |η| = η.

The generalzied characteristic equation associated with (3.31) is

λ(t) =
2λ(t− 1)

3
exp

(
−
∫ t

t−1
λ(s)ds

)
+

1

3(t+ c− τ(t))
exp

(
−
∫ t

t−τ(t)
λ(s)ds

)
(3.32)

and we have that a solution of (3.32) is

λ(t) =
1

t+ c
. (3.33)

For (3.33), the left hand side of (3.10) reads

lim sup
t→∞

[
2

3

(
1− 1

t+ c

)
+

1

6(t+ c)
+

∫ 0

−1
(−θ)|e−

∫ t
t−θ λ(s)ds|dθ|η|(t, θ)

]
= lim sup

t→∞

[
2

3
− τ(t)

3(t+ c)

]
=

2

3
< 1.

and hence hypothesis (3.10) of Theorem 3.1.2 is ful�lled and therefore, for each solution x(t) of

(3.31), we have that

lim
t→∞

x(t)

t+ c
exists, and lim

t→∞

(
x(t)

t+ c

)′
= 0.

Manipulating further the limits in (3.31), we are able to establish that x(t) = O(t) and x′(t) =

o(t) as t→∞.
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3.4 Notes and remarks

A paper based on the contents of this chapter has been published in [15].

Dix et al. [32] studied the asymptotic behavior of solutions to a class of nonautonomous d-

i�erential equation with discrete delays of the form

x′(t) = a(t)x(t) +

k∑
j=1

bj(t)x(t− τj), t ≥ 0

where the coe�cients a(t) and bj(t) are continuous real-valued functions on [0,∞), τj > 0 for

j = 1, 2, · · · , k, by introducing the concept of the generalized characteristic equation and using

an appropriate solution of this generalized characteristic equation. Existence of such a solution,

however, is quite a restrictive condition. The basic idea in [32] is essentially originated in the

work in Driver [37]. The extended results for asymptotic behavior of neutral delay di�erential

equations can be found in Dix et al [33]. An asymptotic property of the solutions to second order

linear nonautonomous delay di�erential equations is discussed in [107]. Cuevas and Frasson [26]

provide a generalization of [32], as it can be applied for instance for retarded delay di�erential

equations with distributed delays or discrete variable delays, as far as the delays are uniformly

bounded. Our results in this chapter was motivated by the work in Cuevas and Frasson [26],

we generalized the class of delay di�erential equations studied in Cuevas and Frasson [26] by

adding a neutral term, the coe�cient for the neutral term is restricted to be constant.
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Chapter 4

A �xed point approach to stability of

delay di�erential equations

In this chapter, we focus on stability of neutral delay di�erential equations that can have time

dependent delays, mixed point delays and distributed delays, nonlinearities and impulsive e�ects.

The approach we used in this chapter is based on a �xed point method. In Section 4.1, we

consider four classes of equations of neutral type. In Section 4.2, we investigate the �xed point

method for a class of equation that contains x′ in a nonlinearity. In Section 4.3, we show that

the �xed point method can be applied in a similar fashion to di�erence equations.

4.1 Stability results for nonlinear neutral delay di�erential equa-

tions

4.1.1 Introduction and main results

Liapunov's direct method provides simple geometric theorems for deciding the stability or in-

stability of an equilibrium point of a di�erential equation. However, in the context of delay

di�erential equations, Liapunov's direct method is not always as e�ective, in particular if the

delay is unbounded or if the di�erential equation has unbounded terms. Therefore, it was re-

cently proposed by Burton [13] and co-workers to use a �xed point method as an alternative.

While Liapunov's direct method usually requires pointwise conditions, �xed point methods need

conditions of an averaging nature, and, therefore, can handle various delays or unbounded terms

more easily.

A typical stability result based on �xed point theory arguments follows a number of stan-

dard arguments adapted to the special structure of the equation under consideration. This

leads to many di�erent results in the literature for di�erent classes of equations, for example,

with time dependent delays, distributed delays, neutral terms, and certain nonlinearities, see

[5, 6, 9, 11, 12, 13, 31, 34, 63, 64, 65, 110, 111, 112, 117, 118, 144, 145]. The aim of this section

is to study the approach using �xed point theory in a systematic way and to unify recent results

in the literature by considering four general classes of equations. For each of these classes of

equations, we combine di�erent techniques to prove new stability theorems. In addition, we

present a number of examples to illustrate our results.

The �rst class consists of scalar neutral integro-di�erential equations of the form

x′(t)− c(t)x′(t− r1(t)) = −a(t)x(t− r2(t)) +

∫ t

t−r3(t)
g(t, x(s)) dµ(t, s), t ≥ 0 (4.1)
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where the delays rj(t) : [0,∞)→ [0,∞) are continuous functions, the coe�cients a, c : [0,∞)→
R are continuous, where

r0 = min

{
inf
t≥0
{t− r1(t)}, inf

t≥0
{t− r2(t)}, inf

t≥0
{t− r3(t)}

}
.

The kernal µ(t, s) is of bounded variation for each t and g : [0,∞) × R → R is a continuous

function, and for each t, xg(t, x) > 0 if x 6= 0 is su�cient small. We assume that g satis�es:

(G) g(t, 0) = 0, there exists an l > 0 such that g satis�es a Lipschitz condition with respect

to x on [0,∞)× [−l, l], that is, there exists a constant L = 1, such that

|g(t, x)− g(t, y)| ≤ L|x− y| for t ≥ 0 and x, y ∈ [−l, l].

A standard �xed point argument shows that the di�erential equation (4.1) provided with an

initial condition

x(t) = φ(t), t ∈ [r0, 0]. (4.2)

where φ(s) ∈ C([r0, 0],R) de�nes a well-posed initial-value problem and we denote by x(t) :=

x(t, φ) the solution of (4.1) with initial condition (4.2).

De�nition 4.1.1. The zero solution of (4.1) is said to be stable if for every ε > 0, there exists

a δ > 0 such that for every initial function φ : [r0, 0]→ (−δ, δ), we have that the corresponding

solution satis�es |x(t)| < ε for t ≥ 0.

De�nition 4.1.2. The zero solution of (4.1) is said to be asymptotically stable if it is stable and

there exists a δ > 0 such that for every initial function φ : [r0, 0] → (−δ, δ), the corresponding

solution x(t) tends to zero as t→∞.

In our �rst result we obtain su�cient and necessary conditions for the asymptotic stability of

(4.1) by introducing two auxiliary continuous functions h1(t) and h2(t) which will be used to

de�ne an appropriate map de�ned on a complete metric space so that we can apply a �xed point

argument.

Theorem 4.1.3. Consider the neutral integro-di�erential equation (4.1) and suppose that the

following conditions are satis�ed

(i) the delay r2(t) is di�erentiable, the delay r1(t) is twice di�erentiable with r′1(t) 6= 1, and

t− rj(t)→∞ as t→∞, j = 1, 2, 3;

(ii) there exists a constant α ∈ (0, 1) and continuous functions hj : [r0,∞) → R (j=1,2) such

that ∣∣∣∣∣ c(t)

1− r′1(t)

∣∣∣∣∣+

2∑
j=1

∫ t

t−rj(t)
|hj(s)| ds+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

(
V[s−r3(s),s](µ(s, ·))

)
ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du|h2(s− r2(s))(1− r′2(s))− a(s)| ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du|h1(s− r1(s))(1− r′1(s))− k(s)| ds

+

2∑
j=1

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du |h1(s) + h2(s)|

(∫ s

s−rj(s)
|hj(u)| du

)
ds ≤ α,
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where k(s) =
(
(1 − r′1(s))2

)−1(
[c(s)(h1(u) + h2(u)) + c′(s)](1 − r′1(s)) + c(s)r′′1(s)

)
and

V[s−r3(s),s](µ(s, ·)) denotes the total variation of µ(s, ·) on [s− r3(s), s];

(iii) and such that

lim inf
t→∞

∫ t

0
(h1(s) + h2(s)) ds > −∞.

Then the zero solution of (4.1) is asymptotically stable if and only if

(iv) ∫ t

0
(h1(s) + h2(s)) ds→∞ as t→∞.

Remark 4.1.4. Theorem 4.1.3 contains all the stability results for (4.1) discussed in [8, 11, 12,

13, 31, 34, 63, 110, 144]. In addition, in our result the delays can be unbounded and that the

coe�cients can change sign. See Example 4.1.17 and Example 4.1.19.

A simple illustrative example is the scalar equation

x′(t)− c(t)x′(t− r(t)) = −a(t)x(t) +

∫ t

t−r(t)
k(t, s)x(s) ds, t ≥ 0,

where r(t) is variable delay, a, c : [0,∞)→ R are continuous functions, k(t, s) is continuous with

respect to its arguments.

The second class of delay di�erential equations that we will study in this section is of the

form

x′(t) = −
∫ t

t−r(t)
a(t, s)g(s, x(s)) ds. (4.3)

where r(t) : [0,∞) → [0,∞), a(t, s) : [0,∞) × [r0,∞) → R are continuous functions, g is

a continuous function that satis�es Lipschitz condition with respect to x on [r0,∞) × [−l, l],
where r0 = inft≥0{t− r(t)}.

Theorem 4.1.5. Consider the functional di�erential equation (4.3) and suppose that the fol-

lowing conditions are satis�ed,

(i) g(s,−x) = −g(s, x);

(ii) there exists an l > 0 such that g satis�es a Lipschitz condition with respect to x on [r0,∞)×
[−l, l], that is, there exists a constant L > 0, such that

|g(s, x)− g(s, y)| ≤ L|x− y| for s ≥ r0 and x, y ∈ [−l, l];

(iii) there are functions w and W that are continuous, odd and strictly increasing on [−l, l]
such that w(x) ≤ g(s, x) ≤W (x) for x ∈ [0, l];

(iv) x− w(x) is non-decreasing on [0, l];

(v) |x− g(s, x)| ≤ l − w(l) for x ∈ [−l, l];
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(vi) v : [r0,∞)→ R is a continuous function, v(t) ≥ 0 for t ≥ 0;

(vii) there exists a continuous function q such that∣∣∣∣∣
∫ u

t
a(s, u) ds

∣∣∣∣∣ ≤ q(u) for t− r(t) ≤ u ≤ t;

(viii) a positive number α < w(l)[W (l)]−1 exists such that∫ t

t−r(t)

∣∣∣∣∣v(u) +

∫ u

t
a(s, u) ds

∣∣∣∣∣ du
+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)

∣∣∣∣∣v(u) +

∫ u

s
a(s, u) ds

∣∣∣∣∣ du ds
+

∫ t

0
e−
∫ t
s v(u) du

∣∣∣∣∣v(s− r(s)) +

∫ s−r(s)

s
a(u, s− r(s)) du

∣∣∣∣∣|1− r′(s)| ds ≤ α.
Then there exists a δ ∈ (0, l) such that, for each continuous initial function φ : [r0, 0]→ (−δ, δ),
there is a unique solution x : [0,∞) → R with x(t) = φ(t) on [r0, 0] of (4.3) such that |x(t)| is
bounded by l on [r0,∞). This implies that the zero solution of (4.3) is stable.

Remark 4.1.6. The proof is based on a generaliztion of some ideas of Jin and Luo [64] who

discussed the case when g(s, x) = g(x). We eliminate the condition that t − r(t) is strictly

increasing and obtain weaker conditions in Theorem 4.1.5 than those obtained in Theorem 4.1

of Becker and Burton [8]. See Example 4.1.22.

A simple example is the scalar equation

x′(t) = −
∫ t

t−r(t)
a(s)x(s) ds, t ≥ 0,

where r(t) is a variable delay, r0 = inft≥0{t− r(t)}, a : [r0,∞) is a continuous function.

The third class consists of nonlinear delay di�erential equations of the form

x′(t) = −a(t)f(x(t− r1(t))) + b(t)g(x(t− r2(t))), t ≥ 0, (4.4)

where r1, r2 : [0,∞) → [0,∞) are continuous functions, r0 = min{inft≥0{t − r1(t)}, inft≥0{t −
r2(t)}}. The coe�cients a, b : [0,∞) → R and f, g : R → R are continuous functions. We

have the following result. Suppose, in addition, that r1(t) is di�erentiable, t − rj(t) → ∞
as t → ∞, j = 1, 2, and that there exists a continuous function ã : [0,∞) → R such that

a(t) = ã(t)(1− r′1(t)) and, �nally, that the inverse function h(t) of t− r1(t) exists. We then have

the following result.

Theorem 4.1.7. Consider the nonlinear delay di�erential equation (4.4) and suppose that

(i) v(t) : [r0,∞)→ R is a continuous function, v(t) ≥ 0 as t ≥ 0;

(ii) there exists a constant l > 0 such that f(x), x−f(x), and g(x) satisfy a Lipschitz condition

with constant L > 0 on the interval [−l, l];
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(iii) the functions f and g are odd, increasing on [0, l], x− f(x) is nondecreasing on [0, l];

(iv) there exists an α ∈ (0, 1) with αg(l) < (1− α)f(l) such that for t ≥ 0,∫ t

0
e−
∫ t
s v(u) du|ã(h(s))| ds+

∫ t

0
e−
∫ t
s v(u) du|b(s)| ds

+

∫ t

0
e−
∫ t
s v(u) du|v(s− r1(s))(1− r′1(s))| ds+

∫ t

t−r1(t)
|ã(h(s)) + v(s)| ds

+

∫ t

0
e−
∫ t
s v(u) duv(s)

∫ s

s−r1(s)
|ã(h(u)) + v(u)| du ds ≤ α.

Then the zero solution of (4.4) is stable.

Remark 4.1.8. Burton [13] studied the special case when b(t) ≡ 0 and r1 is a constant. Fol-

lowing the technique of Burton [12], Ding and Li [31] studied stability properties of (4.4) as

well. However, the condition (iv) in Ding and Li [31] is restrictive. By introducing a continuous

function v(t) for constructing a �xed point mapping argument, the alternative condition (iv) in

Theorem 4.1.7 is obtained. Note that the condition that the functions t− r1(t) and t− r2(t) are

strictly increasing is not needed in Theorem 4.1.7.

A simple example is the scalar equation

x′(t) = −a(t)x(t− r1(t)) + b(t)x(t− r2(t)), t ≥ 0,

where rj(t), j = 1, 2, are variable delays, a, b : [0,∞)→ R are continuous functions.

If we consider the impulsive e�ect on the solutions of equation (4.1), we come to our fourth

class of equations
x′(t)− c(t)x′(t− r1(t)) = −b(t)x(t− r2(t)) +

∫ t
t−r3(t) g(t, x(s)) dµ(t, s), t 6= tk,

x(t+k )− x(tk) = dkx(tk), k = 1, 2, ....

(4.5)

Suppose that the following conditions are satis�ed

(H1) 0 ≤ 0 < t1 < t2 · · · < tk < · · · are �xed points with tk →∞ as k →∞.

(H2) b, c : [r0,∞)→ R, and rj(t) : [0,∞)→ [0,∞), j = 1, 2, , 3, are continuous functions, where

r0 = min {inft≥0{t− r1(t)}, inft≥0{t− r2(t)}, inft≥0{t− r3(t)}}.

(H3) µ(t, s) is of bounded variation for each t, and g : [r0,∞)× R→ R is continuous function,

g(t, cx) = cg(t, x) for positive c, xg(t, x) > 0 if x 6= 0 is su�cient small. We assume that

g satis�es:

(G) g(t, 0) = 0, there exists an l > 0 such that g satis�es Lipschitz condition with re-

spect to x on [r0,∞)× [−l, l], that is,

|g(t, x)− g(t, y)| ≤ |x− y| for t ≥ r0 and x, y ∈ [−l, l].

(H4) dk ∈ (−1,∞) are constants for k = 1, 2, ....
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(H5) limt→t−k
= x(t−k ) and limt→t+k

= x(t+k ) for k = 1, 2, ....

De�nition 4.1.9. For the initial function φ ∈ C([r0, 0],R), we denote by x(t) := x(t, φ) the

solution of (4.5) with initial condition (4.2), which satis�es the following conditions

(i) x(t) is absolutely continuous on [0, t1) and each interval (tk, tk+1);

(ii) x(t−k ) and x(t+k ) exist and x(t−k ) = x(tk) for any tk ∈ [0,∞);

(iii) x(t) satis�es (4.5) almost everywhere in [0,∞), and may have a discontinuity of the �rst

kind at tk for k = 1, 2, ....

Theorem 4.1.10. Consider the impulsive nonlinear neutral integro-di�erential equation (4.5)

and suppose that the following conditions are satis�ed

(i) the delay r2(t) is di�erentiable, the delay r1(t) is twice di�erentiable with r′1(t) 6= 1, and

t− rj(t)→∞ as t→∞, j = 1, 2, 3;

(ii) there exists a constant α ∈ (0, 1) and continuous functions hj : [r0,∞) → R (j = 1, 2)

such that

n∑
l=1

∣∣∣∣∣ dl
1 + dl

∏
tl−r1(tl)≤tk<tl

(1 + dk)
−1e
−
∫ t
tl

(h1(u)+h2(u)) du c(tl)

1− r′1(tl)

∣∣∣∣∣
+

∣∣∣∣∣ ∏
t−r1(t)≤tk<t

(1 + dk)
−1 c(t)

1− r′1(t)

∣∣∣∣∣+

2∑
j=1

∫ t

t−rj(t)
|hj(u)| du

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du|h1(s) + h2(s)|

2∑
j=1

∫ s

s−rj(s)
|hj(u)| du ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

∣∣∣∣∣h1(s− r1(s))(1− r′1(s))−
∏

s−r1(s)≤tk<s

(1 + dk)
−1k(s)

∣∣∣∣∣ ds
+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

∣∣∣∣∣h2(s− r2(s))(1− r′2(s))−
∏

s−r2(s)≤tk<s

(1 + dk)
−1b(s)

∣∣∣∣∣ ds
+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

∏
s−r3(s)≤tk<s

(1 + dk)
−1
(
V[s−r3(s),s](µ(s, ·))

)
ds ≤ α. (4.6)

where k(s) =
(
(1 − r′1(s))2

)−1(
[c(s)(h1(u) + h2(u)) + c′(s)](1 − r′1(s)) + c(s)r′′1(s)

)
and

V[s−r3(s),s](µ(s, ·)) denotes the total variation of µ(s, ·) on [s− r3(s), s];

(iii) and such that

lim inf
t→∞

∫ t

0
(h1(s) + h2(s)) ds > −∞.

(iv) there exists a positive constant M > 0 such that
∏

0≤tk<t(1 + dk) ≤M .

Then the zero solution of (4.5) is asymptotically stable if and only if
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(v) ∫ t

0
(h1(s) + h2(s)) ds→∞ as t→∞.

Remark 4.1.11. The proof is based on the ideas in [144]. Our result is a generalization of [144].

The organization of this section is as follows. In Subsection 4.1.2, we present a proof of Theorem

4.1.3. The proof the Theorem 4.1.5 is presented in Subsection 4.1.3. The proof of Theorem 4.1.7

and the proof of 4.1.10 are given in Subsection 4.1.4 and Subsection 4.1.5, respectively.

4.1.2 Proof of Theorem 4.1.3

In this subsection, we will prove Theorem 4.1.3. We start with some preparation. First de�ne

Slφ =
{
x | x ∈ C([r0,∞),R), ‖x‖ = sup

t≥r0
|x(t)| ≤ l, x(t) = φ(t) for t ∈ [r0, 0],

and x(t)→ 0 as t→∞
}
.

If we de�ne the metric ρ(x, y) = supt≥r0{|x(t)−y(t)|}, then Slφ becomes a complete metric space.

If we multiply both sides of (4.1) by e
∫ t
0 (h1(s)+h2(s)) ds, integrate from 0 to t, and perform an

integration by parts, we obtain

x(t) =

{
φ(0)− c(0)

1− r′1(0)
φ(−r1(0))−

2∑
j=1

∫ 0

−rj(0)
hj(s)φ(s) ds

}
e−
∫ t
0 (h1(s)+h2(s)) ds

+
c(t)

1− r′1(t)
x(t− r1(t)) +

2∑
j=1

∫ t

t−rj(t)
hj(s)x(s) ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du[h2(s− r2(s))(1− r′2(s))− a(s)]x(s− r2(s)) ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du[h1(s− r1(s))(1− r′1(s))− k(s)]x(s− r1(s)) ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

∫ s

s−r3(s)
g(s, x(u)) dµ(s, u) ds

−
2∑
j=1

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du(h1(s) + h2(s))

∫ s

s−rj(s)
hj(u)x(u) du ds.

Lemma 4.1.12. Let ϕ ∈ Slφ and de�ne an operator by Pϕ(t) = φ(t) for t ∈ [r0, 0] and for t ≥ 0,

(Pϕ)(t) =

{
φ(0)− c(0)

1− r′1(0)
φ(−r1(0))−

2∑
j=1

∫ 0

−rj(0)
hj(s)φ(s) ds

}
e−
∫ t
0 (h1(s)+h2(s)) ds

+
c(t)

1− r′1(t)
ϕ(t− r1(t)) +

2∑
j=1

∫ t

t−rj(t)
hj(s)ϕ(s) ds
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+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du[h2(s− r2(s))(1− r′2(s))− a(s)]ϕ(s− r2(s)) ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du[h1(s− r1(s))(1− r′1(s))− k(s)]ϕ(s− r1(s)) ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

∫ s

s−r3(s)
g(s, ϕ(u)) dµ(s, u) ds

−
2∑
j=1

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du(h1(s) + h2(s))

∫ s

s−rj(s)
hj(u)ϕ(u) du ds. (4.7)

If conditions (i)-(iv) in Theorem 4.1.3 are satis�ed, then there exists δ > 0 such that for any

φ : [r0, 0]→ (−δ, δ), we have that P : Slφ → Slφ and P is a contraction with respect to the metric

de�ned on Slφ.

Proof. Let J = supt≥0

{
e−
∫ t
0 (h1(s)+h2(s)) ds

}
, by (iv), J is well de�ned. Suppose that (iv) holds.

It is clear that Pϕ ∈ C([r0,∞),R). Hence, by (ii) and condition (G), we have

|(Pϕ)(t)| ≤ ‖φ‖

(
1 +

∣∣∣∣∣ c(0)

1− r′1(0)

∣∣∣∣∣+

2∑
j=1

∫ 0

−rj(0)
|hj(s)| ds

)
e−
∫ t
0 (h1(s)+h2(s)) ds

+l

{∣∣∣∣∣ c(t)

1− r′1(t)

∣∣∣∣∣+
2∑
j=1

∫ t

t−rj(t)
|hj(s)| ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

(
V[s−r3(s),s](µ(s, ·))

)
ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du|h2(s− r2(s))(1− r′2(s))− a(s)| ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du|h1(s− r1(s))(1− r′1(s))− k(s)| ds

+
2∑
j=1

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du|h1(s) + h2(s)|

∫ t

s−rj(s)
|hj(u)| du ds

}

≤ ‖φ‖

(
1 +

∣∣∣∣∣ c(0)

1− r′1(0)

∣∣∣∣∣+

2∑
j=1

∫ 0

−rj(0)
|hj(s)| ds

)
J + lα.

From this estimate, it follows that if

δ :=
(1− α)l(

1 + |c(0)|
|1−r′1(0)| +

∑2
j=1

∫ 0
−rj(0) |hj(s)| ds

)
J
,

then ‖φ‖ ≤ δ implies that |(Pϕ)(t)| ≤ l.

Next, we show that (Pϕ)(t) → 0 as t → ∞. Since ϕ(t) → 0 and t − rj(t) → ∞ as t → ∞, for

each ε > 0, there exists a T1 > 0 such that t > T1 implies |ϕ(t − rj(t))| < ε for j = 1, 2. Thus
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for t ≥ T1,

|I2| :=

∣∣∣∣∣
2∑
j=1

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du(h1(s) + h2(s))

(∫ s

s−rj(s)
hj(u)ϕ(u) du

)
ds

∣∣∣∣∣
≤

2∑
j=1

∫ T1

0
e−
∫ t
s (h1(u)+h2(u)) du|h1(s) + h2(s)|

(∫ s

s−rj(s)
|hj(u)||ϕ(u)| du

)
ds

+
2∑
j=1

∫ t

T1

e−
∫ t
s (h1(u)+h2(u)) du|h1(s) + h2(s)|

(∫ s

s−rj(s)
|hj(u)||ϕ(u)| du

)
ds

≤ l
2∑
j=1

∫ T1

0
e−
∫ t
s (h1(u)+h2(u)) du|h1(s) + h2(s)|

(∫ s

s−rj(s)
|hj(u)| du

)
ds

+ε
2∑
j=1

∫ t

T1

e−
∫ t
s (h1(u)+h2(u)) du|h1(s) + h2(s)|

(∫ s

s−rj(s)
|hj(u)| du

)
ds. (4.8)

By the condition (iv), there exists T2 > T1 such that t > T2 implies

l

2∑
j=1

∫ T1

0
e−
∫ t
s (h1(u)+h2(u)) du|h1(s) + h2(s)|

(∫ s

s−rj(s)
|hj(u)| du

)
ds < ε.

Applying (ii), we have |I2| → 0 as t→∞.

Since ϕ(t) → 0 and t − r3(t) → ∞ as t → ∞, for each ε > 0, there exists a T3 > 0 such

that t > T3 implies |ϕ(t− r3(t))| < ε. Thus for t ≥ T3,

|I3| :=

∣∣∣∣∣
∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

∫ s

s−r3(s)
g(s, ϕ(u)) dµ(s, u) ds

∣∣∣∣∣
≤ l

∫ T3

0
e−
∫ t
s (h1(u)+h2(u)) du

(
V[s−r3(s),s](µ(s, ·))

)
ds

+ε

∫ t

T3

e−
∫ t
s (h1(u)+h2(u)) du

(
V[s−r3(s),s](µ(s, ·))

)
ds (4.9)

By the condition (iv), there exists T4 > T3 such that t > T4 implies

l

∫ T3

0
e−
∫ t
s (h1(u)+h2(u)) du

(
V[s−r3(s),s](µ(s, ·))

)
ds < ε.

Applying (ii), we have |I3| → 0 as t→∞.

Similarly, we can show that the rest terms in (4.7) approach zero as t → ∞, which yields

(Pϕ)(t)→ 0 as t→∞.

Finally, we show that P is a contraction mapping with contraction constant α. In fact, for
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ϕ, η ∈ Slφ,

|(Pϕ)(t)− (Pη)(t)|

≤

{∣∣∣∣∣ c(t)

1− r′1(t)

∣∣∣∣∣+

2∑
j=1

∫ t

t−rj(t)
|hj(s)| ds+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

(
V[s−r3(s),s](µ(s, ·))

)
ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du|h2(s− r2(s))(1− r′2(s))− a(s)| ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du|h1(s− r1(s))(1− r′1(s))− k(s)| ds

+

2∑
j=1

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du|(h1(s) + h2(s))|

∫ t

s−rj(s)
|hj(u)| du ds

}
‖ϕ− η‖

≤ α‖ϕ− η‖.

Thus, P : Slφ → Slφ and P is a contraction mapping.

We are now ready to prove Theorem 4.1.3.

Proof. Let P be de�ned as in Lemma 4.1.12. By the contraction mapping principle, P has a

unique �xed point x in Slφ which is by construction a solution of (4.1) with x(t) = φ(t) on [r0, 0]

and x(t)→ 0 as t→∞.

Let ε > 0 be given, then we choose m > 0 so that m < min{l, ε}. By considering Smφ , we

obtain that there is a δ > 0 such that ‖φ‖ < δ implies that the unique solution of (4.1) with

x(t) = φ(t) on [r0, 0] sati�es |x(t)| ≤ m < ε for all t ≥ r0. This shows that the zero solution of

(4.1) is asymptotically stable if (iv) holds.

Conversely, we suppose that condition (iv) fails. Then by (iii), there exists a sequence {tn}
with tn → ∞ as n → ∞ such that limn→∞

∫ tn
0 (h1(s) + h2(s)) ds = v for some v ∈ R. We may

choose a positive constant M such that

−M ≤
∫ tn

0
(h1(s) + h2(s)) ds ≤M, for all n ≥ 1. (4.10)

To simplify our expressions, we de�ne

w(s) := |h2(s− r2(s))(1− r′2(s))− a(s)|+ |h1(s− r1(s))(1− r′1(s))− k(s)|

+V[s−r3(s),s](µ(s, ·)) + |(h1(s) + h2(s))|
2∑
j=1

∫ t

s−rj(s)
|hj(u)| du, s ≥ 0.

By (ii) we have ∫ tn

0
e−
∫ tn
s (h1(u)+h2(u)) duw(s) ds ≤ α for all n ≥ 1. (4.11)

Combining (4.10) and (4.11), we have∫ tn

0
e
∫ s
0 (h1(u)+h2(u)) duw(s) ds ≤ αe

∫ tn
0 (h1(u)+h2(u)) du ≤ αeM for all n ≥ 1,
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which yields that the sequence
∫ tn

0 e
∫ s
0 (h1(u)+h2(u)) duw(s) ds is bounded. Therefore, there exists

a convergent subsequence and without loss of generality, we can assume that

lim
k→∞

∫ tnk

0
e
∫ s
0 (h1(u)+h2(u)) duw(s) ds = γ for some γ ∈ R+.

We choose a positive integer k so large that

lim
k→∞

∫ tnk

tn
k

e
∫ s
0 (h1(u)+h2(u)) duw(s) ds ≤ δ0

4J

for all nk > nk, where δ0 > 0 satis�es 2δ0Je
M + α < 1.

Now, we consider the solution x(t) = x(t, tnk , φ) of (4.1) with x(tnk) = δ0 and x(s) ≤ δ0

for tnk − r0 ≤ s ≤ tnk , and we may choose φ such that |x(t)| ≤ 1 for t ≥ tnk and

x(tnk)−
c(tnk)

1− r′1(tnk)
x(tnk − r1(tnk))−

2∑
j=1

∫ tn
k

tn
k
−rj(tn

k
)
hj(s)x(s) ds ≥ 1

2
δ0. (4.12)

So, it follows from (4.12) with x(t) = (Px)(t) that for k ≥ k,∣∣∣∣∣x(tnk)− c(tnk)

1− r′1(tnk)
x(tnk − r1(tnk))−

2∑
j=1

∫ tnk

tnk−rj(tnk )
hj(s)x(s) ds

∣∣∣∣∣
≥ 1

2
δ0e
−
∫ tnk
tn
k

(h1(u)+h2(u)) du
−
∫ tnk

tn
k

e−
∫ tnk
s (h1(u)+h2(u)) duw(s) ds

≥ e
−
∫ tnk
tn
k

(h1(u)+h2(u)) du

(
1

2
δ0 − J

∫ tnk

tn
k

e
∫ s
0 (h1(u)+h2(u)) duw(s) ds

)

≥ 1

4
δ0e
−
∫ tnk
tn
k

(h1(u)+h2(u)) du
≥ 1

4
δ0e
−2M > 0. (4.13)

On the other hand, suppose that x(t) = x(t, tnk , φ)→ 0 as t→∞. Since tnk − rj(tnk)→∞ as

k →∞, j = 1, 2 and (ii) holds, this would imply that

x(tnk)− c(tnk)

1− r′1(tnk)
x(tnk − r1(tnk))−

2∑
j=1

∫ tnk

tnk−rj(tnk )
hj(s)x(s) ds→ 0 as k →∞,

which contradicts the estimate. Hence condition (iv) is necessary for the asymptotic stability of

the zero solution of (4.1).

Corollary 4.1.13. Consider the equation

x′(t)− c(t)x′(t− r(t)) = −a(t)x(t) +

∫ t

t−r(t)
g(t, x(s)) dµ(t, s). (4.14)

Assume that r(t) is twice di�erentiable, r′(t) 6= 1, t− r(t)→∞ as t→∞, g satis�es condition

(G). Suppose that there exists a constant α ∈ (0, 1) and a continuous function v : [r0,∞) → R
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such that lim inft→∞
∫ t

0 v(s) ds > −∞ and∫ t

t−r(t)
|v(s)− a(s)| ds+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)
|v(u)− a(u)| du ds

+

∣∣∣∣∣ c(t)

1− r′(t)

∣∣∣∣∣+

∫ t

0
e−
∫ t
s v(u) du

∣∣[v(s− r(s))− a(s− r(s))](1− r′(s))− k(s)
∣∣ ds

+

∫ t

0
e−
∫ t
s v(u) duV[s−r(s),s](µ(s, ·)) ds ≤ α,

where

k(s) =
[c(s)v(s) + c′(s)](1− r′(s)) + c(s)r′′(s)

(1− r′(s))2
. (4.15)

Then the zero solution of (4.14) is asymptotically stable if and only if
∫ t

0 v(s) ds→∞ as t→∞.

Corollary 4.1.14. Consider the equation

x′(t)− c(t)x′(t− r1(t)) = −a(t)x(t− r2(t)) + b(t)g(t, x(t− r3(t))). (4.16)

Assume that r2(t) is di�erentiable, r1(t) is twice di�erentiable, r′1(t) 6= 1, t − rj(t) → ∞ as

t → ∞, j = 1, 2, 3, g satis�es condition (G). Suppose that there exists a constant α ∈ (0, 1)

and a continuous functions hj : [r0,∞) → R such that lim inft→∞
∫ t

0 (h1(s) + h2(s)) ds > −∞,

j = 1, 2, and ∣∣∣∣∣ c(t)

1− r′1(t)

∣∣∣∣∣+
2∑
j=1

∫ t

t−rj(t)
|hj(s)| ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du|h2(s− r2(s))(1− r′2(s))− a(s)| ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

[
|h1(s− r1(s))(1− r′1(s))− k(s)|+ |b(s)|

]
ds

+
2∑
j=1

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du|h1(s) + h2(s)|

∫ s

s−rj(s)
|hj(u)| du ds ≤ α,

where k(s) and hj(s) (j = 1, 2) are de�ned as in Theorem 4.1.3. Then the zero solution of (4.16)

is asymptotically stable if and only if
∫ t

0 (h1(s) + h2(s)) ds→∞ as t→∞.

Corollary 4.1.15. Consider the equation

x′(t)− c(t)x′(t− r(t)) = −a(t)x(t) + b(t)g(x(t− r(t))). (4.17)

Assume that r(t) is twice di�erentiable, r′(t) 6= 1, t− r(t)→∞ as t→∞. g satis�es condition

(G). Suppose that there exists a constant α ∈ (0, 1) and a continuous function v : [r0,∞) → R
such that lim inft→∞

∫ t
0 v(s) ds > −∞ and∣∣∣∣∣ c(t)

1− r′(t)

∣∣∣∣∣+

∫ t

t−r(t)
|v(s)− a(s)| ds+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)
|v(u)− a(u)| du ds

+

∫ t

0
e−
∫ t
s v(u) du

[∣∣(v(s− r(s))− a(s− r(s)))(1− r′(s))− k(s)
∣∣+ |b(s)|

]
ds ≤ α,
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where k(s) is de�ned as in (4.15). Then the zero solution of (4.17) is asymptotically stable if

and only if
∫ t

0 v(s) ds→∞ as t→∞.

Example 4.1.16. Consider the neutral di�erential equation

x′(t) = − 1

t+ 1
x(t) +

1

2t+ 2
x(t− 0.05t) + 0.05x′(t− 0.05t), (4.18)

De�ne a(t) = 1
t+1 , b(t) = 1

2t+2 , c(t) = 0.05, r(t) = 0.05t and v(t) = 2
t+1 . Then

|c(t)|
|1− r′(t)|

=
0.05

1− 0.05
=

1

19
≈ 0.0526.

Since |v(s)− a(s)| = 1
s+1 , k(s) = 2

19(s+1) , we have∫ t

t−r(t)
|v(s)− a(s)| ds =

∫ t

0.95t

1

s+ 1
ds < 0.0513,∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)
|v(u)− a(u)| du ds < 0.0513,

∫ t

0
e−
∫ t
s v(u) du

{ ∣∣[v(s− r(s))− a(s− r(s))](1− r′(s))− k(s) + b(s)
∣∣ } ds

=

∫ t

0
e−
∫ t
s

2
u+1

du

∣∣∣∣ 0.95

0.95s+ 1
− 2

19(s+ 1)
+

1

2(s+ 1)

∣∣∣∣ ds ≤ 17

2× 19
+

1

4
< 0.697.

Hence, we have∣∣∣∣ c(t)

1− r′(t)

∣∣∣∣+

∫ t

t−r(t)
|v(s)− a(s)| ds+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)
|v(u)− a(u)| du ds

+

∫ t

0
e−
∫ t
s v(u) du

{ ∣∣[v(s− r(s))− a(s− r(s))](1− r′(s))− k(s) + b(s)
∣∣ } ds < 1,

and since
∫ t

0 v(s) ds =
∫ t

0
2
s+1 ds = 2 ln(t + 1), the conditions of Corollary 4.1.15 are satis�ed.

Therefore, the zero solution of (4.18) is asymptotically stable.

Example 4.1.17. Consider the following di�erential equation

x′(t) = − 1

32

(
1

4
− 1

3
sin t+ ε1(t)

)
x

(
t−

(
1− 1

3
cos t+ ε2(t)

))
+

cos t

256
g(x(t− r3(t))), (4.19)

where |εj(t)| < ε < 2
51 , |ε

′
j(t)| < ε < 2

51 , j = 1, 2, r3(t) ∈ C(R+,R+) is an arbitrary continuous

function which satis�es t− r3(t)→∞ as t→∞, g satis�es condition (G).

De�ne a(t) = 1
32

(
1
4 −

1
3 sin t+ ε1(t)

)
, b(t) = cos t

256 , r2(t) = 1− 1
3 cos t+ε2(t), and v(t) = 1

32 . Then∫ t

t−r2(t)
|v(s)| ds =

∫ t

t−1+ 1
3

cos t−ε2(t)

1

32
ds =

1

32
(1− 1

3
cos t+ ε2(t)) ≤ 1

24
+

ε

32
,∫ t

0
e−
∫ t
s

1
32
du 1

32

∫ s

s−1+ 1
3

cos s+ε2(s)

1

32
du ds ≤ 1

24
+

ε

32
,
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∫ t

0
e−
∫ t
s v(u) du

(
|v(s− r2(s))(1− r′2(s))− a(s)|+ |b(s)|

)
ds

=

∫ t

0
e−
∫ t
s

1
32
du

(
1

32
× 3

4
+

ε

32
+

1

32
× 1

8

)
ds ≤ 7

8
+ ε.

Hence, ∫ t

t−r2(t)
|v(s)| ds+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r2(s)
|v(u)| du ds

+

∫ t

0
e−
∫ t
s v(u) du

(
|v(s− r2(s))(1− r′2(s))− a(s)|+ |b(s)|

)
ds

≤ 1

24
+

ε

32
+

1

24
+

ε

32
+

7

8
+ ε =

23

24
+

17ε

16
< 1,

and since
∫ t

0 v(s) ds =
∫ t

0
1
32 ds = 1

32 t, the conditions of Corollary 4.1.14 are satis�ed. Therefore,

the zero solution of (4.19) is asymptotically stable.

Example 4.1.18. Consider the following di�erential equation

x′(t) = −a(t)x

(
t− 1 +

1

3
cos t

)
+ b(t)g(x(t− r3(t))), (4.20)

where 0 < m1 ≤ a(t), |b(t)| ≤M2, r3(t) ∈ C(R+,R+) is an arbitrary continuous function which

satis�es t− r3(t)→∞ as t→∞, g satis�es condition (G).

De�ne r2(t) = 1− 1
3 cos t, if we choose v(t) = v is a constant satisfying v > 4m1

5 , we have∫ t

t−r2(t)
|v(s)| ds =

∫ t

t−1+ 1
3

cos t
v ds = v(1− 1

3
cos t) ≤ 4

3
v,∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r2(s)
|v(u)| du ds ≤ 4

3
v,

∫ t

0
e−
∫ t
s v(u) du

(
|v(s− r2(s))(1− r′2(s))− a(s)|+ |b(s)|

)
ds

≤
∫ t

0
e−(t−s)v(

5v

4
−m1 +M2) ds ≤ 5

4
− m1 −M2

v
.

Hence, ∫ t

t−r2(t)
|v(s)| ds+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r2(s)
|v(u)| du ds

+

∫ t

0
e−
∫ t
s v(u) du

(
|v(s− r2(s))(1− r′2(s))− a(s)|+ |b(s)|

)
ds

≤ 8

3
v +

5

4
− m1 −M2

v
.

Next, choose v such that 8
3v+ 5

4 −
m1−M2

v < 1, and since
∫ t

0 v(s) ds =
∫ t

0 v ds = vt, then the con-

ditions of Corollary 4.1.14 are satis�ed. Therefore, the zero solution of (4.20) is asymptotically

stable.

For instance, if we choose v = 1
32 , m1 = 1

32 , M2 = 1
64 , we have

8
3v + 5

4 −
m1−M2

v = 5
6 < 1.
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Figure 4.1: Numerical solution of (4.21).

Example 4.1.19. Consider the following di�erential equation

x′(t) = − 1

128

(
1− 2 sin

5t

16

)
x(t− 1), (4.21)

De�ne a(t) = 1
128

(
1− 2 sin 5t

16

)
, v(t) = 1

32 , we obtain that∫ t

t−1
|v(s)| ds =

1

32
,

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−1
|v(u)| du ds ≤ 1

32
,

∫ t

0
e−
∫ t
s v(u) du |v(s− 1)− a(s)| ds =

3

128

∫ t

0
e−v(t−s) ds+

1

64

∫ t

0
e−v(t−s) sin

(
5

16
s

)
ds < 0.104.

Hence, ∫ t

t−1
|v(s)| ds+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−1
|v(u)| du ds

+

∫ t

0
e−
∫ t
s v(u) du |v(s− 1)− a(s)| ds < 0.9165.

Since
∫ t

0 v(s) ds = t
32 →∞ as t→∞, the conditions of Corollary 4.1.14 are satis�ed. Therefore,

the zero solution of (4.21) is asymptotically stable.

Remark 4.1.20. Zhao [145] investigated the case for which
∣∣∣ c(t)

1−τ ′(t)

∣∣∣ < 1 does not hold by

considering the following neutral di�erential equation

x′(t) = −b(t)x(t− τ(t)) + c(t)x′(t− τ(t)),
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and presented a new criteria for asymptotic stability of the zero solution by employing an auxiliary

function p(t), but there seems to be a mistake in his computation for the transformations on page

6. We obtain that (4.12) in [145] actually should be

z′(t) = −p
′(t)

p(t)
z(t)− b(t)p(t− τ(t))− c(t)p′(t− τ(t))

p(t)
z(t− τ(t)) +

c(t)p(t− τ(t))

p(t)
z′(t− τ(t)),

which is a special form of (4.17). By using the condition in Corollary 4.1.14, the correct condition

(iii) in Theorem 3.1 on page 6 of Zhao [145] should be∣∣∣∣p(t− τ(t))c(t)

p(t)(1− τ ′(t))

∣∣∣∣+

∫ t

t−τ(t)

∣∣∣∣v(s)− p′(s)

p(s)

∣∣∣∣ ds
+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−τ(s)

∣∣∣∣v(u)− p′(u)

p(u)

∣∣∣∣ du ds
+

∫ t

0
e−
∫ t
s v(u) du

{∣∣∣∣−β(s) +

(
v(s− τ(s))− p′(s− τ(s))

p(s− τ(s))

)
(1− τ ′(s))− k(s)

∣∣∣∣} ds ≤ α,

where

β(s) =
b(s)p(s− τ(s))− c(s)p′(s− τ(s))

p(s)
,

and

k(s) =
[C(s)v(s) + C ′(s)](1− τ ′(s)) + C(s)τ ′′(s)

(1− τ ′(s))2
, C(s) =

c(s)p(s− τ(s))

p(s)
.

4.1.3 Proof of Theorem 4.1.5

In this subsection, we will prove Theorem 4.1.5. We start with some preparations. First we

write (4.3) in the following form

x′(t) = B(t, t− r(t))(1− r′(t))g(t− r(t), x(t− r(t))) +
d

dt

∫ t

t−r(t)
B(t, s)g(s, x(s)) ds, (4.22)

where

B(t, s) :=

∫ s

t
a(u, s) du, with B(t, t− r(t)) :=

∫ t−r(t)

t
a(u, t− r(t)) du. (4.23)

If we multiply both sides of (4.22) by e
∫ t
0 v(s) ds, then integrate from 0 to t, and then perform an

integration by parts, then we obtain

x(t) =

{
φ(0)−

∫ 0

−r(0)
[v(s) +B(0, s)]g(s, φ(s)) ds

}
e−
∫ t
0 v(s) ds

+

∫ t

t−r(t)
[v(s) +B(t, s)]g(s, φ(s))ds

−
∫ t

0
e−
∫ t
s v(u) duv(s)

∫ s

s−r(s)
[v(u) +B(s, u)]g(u, x(u)) du ds

+

∫ t

0
e−
∫ t
s v(u) duv(s)[x(s)− g(s, x(s))] ds

+

∫ t

0
e−
∫ t
s v(u) du[v(s− r(s)) +B(s, s− r(s))](1− r′(s))g(s− r(s), x(s− r(s))) ds.
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By (ii), we choose a common Lipschitz constant L for g(s, x) and x − g(s, x) on [−l, l]. For

t ∈ [r0,∞) and a constant k > 4, we de�ne

h(t) = kL

∫ t

0
[v(u) + q(u) + p(u)] du, (4.24)

where q is as de�ned in (iv) of Theorem 4.1.5 and

p(u) = [v(u− r(u)) +B(u, u− r(u))](1− r′(u)).

Now, let C be the space of all continuous functions ϕ : [r0,∞)→ R such that

|ϕ|h := sup
{
|ϕ(t)|e−h(t) : t ∈ [r0,∞)

}
<∞,

where h is given by (4.24). Then (C, | · |h) is a Banach space, which can be veri�ed by Cauchy's

criterion for uniform convergence. Thus (C, d) is a complete metric space, where d denotes the

induced metric: d(ϕ, η) = |ϕ− η|h for ϕ, η ∈ S. De�ne

C lφ =

{
ϕ | ϕ ∈ C, ‖ϕ‖ = sup

t≥r0
|ϕ(t)| ≤ l, ϕ(t) = φ(t) for t ∈ [r0, 0]

}
,

where φ : [r0, 0]→ [−l, l] is a given continuous initial function. Then C lφ is a closed subset of C

and hence a complete metric space with the metric inherited from C.

Lemma 4.1.21. De�ne the operator by Pϕ(t) = φ(t) for t ∈ [r0, 0] and for t ≥ 0,

(Pϕ)(t) =

{
φ(0)−

∫ 0

−r(0)
[v(s) +B(0, s)]g(s, φ(s)) ds

}
e−
∫ t
0 v(s) ds

+

∫ t

t−r(t)
[v(s) +B(t, s)]g(s, φ(s))ds

−
∫ t

0
e−
∫ t
s v(u) duv(s)

∫ s

s−r(s)
[v(u) +B(s, u)]g(u, x(u)) du ds (4.25)

+

∫ t

0
e−
∫ t
s v(u) duv(s)[x(s)− g(s, x(s))] ds

+

∫ t

0
e−
∫ t
s v(u) du[v(s− r(s)) +B(s, s− r(s))](1− r′(s))g(s− r(s), x(s− r(s))) ds.

If the conditions (i)-(viii) in Theorem 4.1.5 are satis�ed, then there exists δ > 0 such that for

any φ : [r0, 0]→ (−δ, δ), we have that P : C lφ → C lφ and P is a contraction.

Proof. First of all, given ϕ ∈ C lφ we show Pϕ ∈ C lφ. Let φ : [r0, 0] → (−δ, δ) be a continuous

function, where δ > 0 satis�es

δ +W (δ)

∫ 0

−r(0)
|v(u) +B(0, u)| du ≤ w(l)− αW (l). (4.26)

Such δ exists since W (0) = 0 and W is continuous on [0, l]. Note that w(l) − αW (l) > 0 by

(iii) and (viii). By (iv), w(l) ≤ l. For any ϕ ∈ C lφ, by (4.26), we have |(Pϕ)(t)| = |φ(t)| < l for
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t ∈ [r0, 0]. Now we consider (Pϕ)(t) for t > 0. By (i) and (iii), |g(s, x)| ≤ W (l) for x ∈ [−l, l]
and t ≥ r0, thus using (iii) and (v), we obtain

|P (ϕ)(t)| ≤ δ +W (δ)

∫ 0

−r(0)
|v(u) +B(0, u)| du

+W (l)

∫ t

t−r(t)
|v(u) +B(t, u)| du

+W (l)

∫ t

0
e−
∫ t
s v(u) duv(s)

∫ s

s−r(s)
|v(u) +B(s, u)| du ds

+W (l)

∫ t

0
e−
∫ t
s v(u) du|v(s− r(s)) +B(s, s− r(s))||1− r′(s)| ds

+(l − w(l))

∫ t

0
e−
∫ t
s v(u) duv(s) ds

≤ w(l)− αW (l) + αW (l) + l − w(l) = l. (4.27)

So |P (ϕ)(t)| ≤ l for t ∈ [r0,∞). Therefore, Pϕ ∈ C lφ.

Next, we show that P is a contraction mapping on C lφ. Suppose that ϕ, η ∈ C lφ,

|Pϕ(t)− Pη(t)|e−h(t)

≤
∫ t

t−r(t)
e−kL

∫ t
u[v(s)+q(s)] ds|v(u) +B(t, u)|L|ϕ(u)− η(u)|e−h(u) du

+

∫ t

0
e−
∫ t
s v(u) duv(s)

∫ s

s−r(s)
e−kL

∫ s
u [v(θ)+q(θ)] dθ|v(u) +B(s, u)|L|ϕ(u)− η(u)|e−h(u) du ds

+

∫ t

0
e−kL

∫ t
s p(u) dup(s)L|ϕ(s− r(s))− η(s− r(s))|e−h(s−r(s)) ds

+

∫ t

0
e−(kL+1)

∫ t
s v(u) duv(s)L|ϕ(s)− η(s)|e−h(s) ds,

since |v(u) +B(t, u)| ≤ v(u) + q(u) for t− r(t) ≤ u ≤ t, we have

|Pϕ− Pη|h ≤
(

1

kL
+

1

kL
+

1

kL
+

1

kL

)
L|ϕ− η|h =

4

k
|ϕ− η|h < |ϕ− η|h,

since k > 4. Therefore, P is a contraction mapping.

We are now ready to prove Theorem 4.1.5.

Proof. By contraction mapping principle, P has a unique �xed point x ∈ C lφ, which is by con-

struction a solution of (4.3) on [0,∞) and |x(t)| ≤ l for t ≥ r0. Hence x(t) is the only continuous

function satisfying (4.3) for t ≥ 0 with x(t) = φ(t) on [r0, 0].

Let ε > 0 be given and choose m > 0, such that m < min{ε, l}, replacing l with m in (4.27),

we see that there is δ > 0 such that |ϕ| ≤ m < ε for t ≥ r0. Hence, the zero solution of (4.3) is

stable.
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Example 4.1.22. Consider the following integro-di�erential equation

x′(t) = −
∫ t

0.4635t

0.9

s2 + 1

(
4

5
+

1

10
sin2 s

)
x3(s) ds. (4.28)

We check the condition (vii) of Theorem 4.1 in Becker and Burton [8]. Since f(t) = t
0.4635 , we

obtain that

G(t, s) =

∫ s/0.4635

t

0.9

s2 + 1
du =

0.9(s/0.4635− t)
s2 + 1

for t ≥ 0 and 0.4635t ≤ s ≤ t. Consequently,

lim
t≥0

{
2

∫ t

0.4635t
|G(t, u)| du

}
= 0.9× 2

(
− ln 0.4635 + 1

0.4635
+ 1

)
= 0.9027.

Then there exists some t0 > 0 such that for t ≥ t0, we have

2

∫ t

0.4635t
|G(t, u)| du > 0.9020.

Since
w( 1

2
)

W ( 1
2

)
= 8

9 = 0.8889 < 0.9020. This implies that condition (vii) of Theorem 4.1 in Becker

and Burton [8] does not hold. Thus Theorem 4.1 of Becker and Burton [8] can not be applied

to equation (4.28). However, by (4.23),

B(t, s) =

∫ s

t

0.9

s2 + 1
du =

0.9(s− t)
s2 + 1

.

Choosing v(t) = 0.9t
t2+1

,∫ t

t−r(t)
|v(u) +B(t, u)| du = 0.9×

∫ t

0.4635t
|2u− t
u2 + 1

| du

= 0.9×
∫ 0.5t

0.4635t

t− 2u

u2 + 1
du+ 0.9×

∫ t

0.5t

2u− t
u2 + 1

du

= 0.9×
[
t (2 arctan 0.5t− arctan t− arctan 0.4635t)

+ ln(t2 + 1) + ln(0.46352t2 + 1)− 2 ln(0.25t2 + 1)
]

:= w(t).

Since the function w(t) is increasing on [0,∞) and

lim
t→∞

w(t) = 0.9× (1/0.4635− 3 + 2 ln 2 + 2 ln 0.927) = 0.3530,

we have ∫ t

t−r(t)
|v(u) +B(t, u)| du < 0.3530,

∫ t

0
e−
∫ t
s v(u) du|v(s− r(s)) +B(s, s− r(s))||1− r′(s)| ds

= (1/0.4635− 2)

∫ t

0
e
−
∫ t
s

0.9u
u2+1

du 0.9s

s2 + 1/0.46352
ds < 0.1575,
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and
∫ t

0 e
−
∫ t
s v(u) duv(s)

∫ s
s−r(s) |v(u) +B(s, u)| du ds < 0.3530. Hence, we have∫ t

t−r(t)
|v(u) +B(t, u)| du+

∫ t

0
e−
∫ t
s v(u) duv(s)

∫ s

s−r(s)
|v(u) +B(s, u)| du ds

+

∫ t

0
e−
∫ t
s v(u) du|v(s− r(s)) +B(s, s− r(s))||1− r′(s)| ds

< 0.8635 <
w(1

2)

W (1
2)

=
8

9
= 0.8889.

By Theorem 4.1.5, the zero solution of (4.28) is stable. Together with Remark 4.1.6, this shows

that our results extends the result of Becker and Burton [8].

4.1.4 Proof of Theorem 4.1.7

In this subsection, we will prove Theorem 4.1.7. We start with some preparation. Equation

(4.4) can be written in the following equivalent form

x′(t) = −ã(h(t))f(x(t)) +
d

dt

∫ t

t−r1(t)
ã(h(s))f(x(s)) ds+ b(t)g(x(t− r2(t))). (4.29)

If we multiply both sides of (4.29) by e
∫ t
0 v(s) ds, integrate from 0 to t, and perform an integration

by parts, then we obtain

x(t) =

{
φ(0)−

∫ 0

−r1(0)
[ã(h(s)) + v(s)]f(φ(s)) ds

}
e−
∫ t
0 v(s) ds

+

∫ t

0
e−
∫ t
s v(u) duv(s)[x(s)− f(x(s))] ds−

∫ t

0
e−
∫ t
s v(u) duã(h(s))f(x(s)) ds

−
∫ t

0
e−
∫ t
s v(u) duv(s)

∫ s

s−r1(s)
[ã(h(u)) + v(u)]f(x(u)) du ds

+

∫ t

0
e−
∫ t
s v(u) duv(s− r1(s))(1− r′1(s))f(x(s− r1(s))) ds

+

∫ t

t−r1(t)
[ã(h(s)) + v(s)]f(x(s)) ds+

∫ t

0
e−
∫ t
s v(u) dub(s)g(x(s− r2(s))) ds.

Let C be the weighted space of all continuous functions ϕ : [r0,∞)→ R with

|ϕ|q := sup{|ϕ(t)|e−q(t) : t ∈ [r0,∞)} <∞.

The weight function q : [r0,∞)→ R is here de�ned as follows

q(t) =


1 for t ∈ [r0, 0],

dl
∫ t

0 [v(s) + |ã(h(s))|+ |b(s)|+ w(s)] ds for t ∈ [0,∞),

where d > 5 is a constant, and

w(s) =


0 for s ∈ [r0, 0],

|v(s− r1(s))(1− r′1(s))| for s ∈ [0,∞).
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The space (C, | · |q) becomes a Banach space, which can be veri�ed with Cauchy's criterion for

uniform convergence. De�ne

C lφ =

{
ϕ | ϕ ∈ C, ‖ϕ‖ = sup

t≥r0
|ϕ(t)| ≤ l, ϕ(t) = φ(t) for t ∈ [r0, 0]

}
where φ : [r0, 0] → [−l, l] is a given continuous initial function. Then C lφ is a closed subset of

(C, | · |) and hence a complete metric space with the metric inherited from C.

Lemma 4.1.23. Let ϕ ∈ C lφ. De�ne the operator by P : C lφ → C lφ by (Pϕ)(t) = φ(t), t ∈ [r0, 0],

and for t ≥ 0,

(Pϕ)(t) =

{
φ(0)−

∫ 0

−r1(0)
[ã(h(s)) + v(s)]f(φ(s)) ds

}
e−
∫ t
0 v(s) ds

+

∫ t

0
e−
∫ t
s v(u) duv(s)[ϕ(s)− f(ϕ(s))] ds−

∫ t

0
e−
∫ t
s v(u) duã(h(s))f(ϕ(s)) ds

−
∫ t

0
e−
∫ t
s v(u) duv(s)

∫ s

s−r1(s)
[ã(h(u)) + v(u)]f(ϕ(u)) du ds

+

∫ t

0
e−
∫ t
s v(u) duv(s− r1(s))(1− r′1(s))f(ϕ(s− r1(s))) ds

+

∫ t

t−r1(t)
[ã(h(s)) + v(s)]f(ϕ(s)) ds+

∫ t

0
e−
∫ t
s v(u) dub(s)g(ϕ(s− r2(s))) ds.

If the conditions (i)-(iv) in Theorem 4.1.7 are satis�ed, then there exists δ > 0 such that for any

φ : [r0, 0]→ (−δ, δ), we have that P : C lφ → C lφ and P is a contraction with respect to the metric

we de�ned on C lφ.

Proof. Since f is odd and satis�es a Lipschitz condition on [−l, l], and f(0) = 0, we choose a

δ < l that satis�es

δ + f(δ)

∫ 0

−r1(0)
|ã(h(s)) + v(s)| ds ≤ (1− α)f(l)− αg(l).

Let φ : [r0, 0] → (−δ, δ) be a continuous function. Thus |φ(t)| ≤ l for t ∈ [r0, 0]. Now we show

for such φ, P : C lφ → C lφ. In fact, for arbitrary ϕ ∈ C lφ, it follows from the conditions in Theorem

4.1.7 that we have for t > 0,

|(Pϕ)(t)| ≤ δ + f(δ)

∫ 0

−r1(0)
|ã(h(s)) + v(s)| ds

+f(l)

[∫ t

0
e−
∫ t
s v(u) du|ã(h(s))| ds+

∫ t

t−r1(t)
|ã(h(s)) + v(s)| ds

+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r1(s)
|ã(h(u)) + v(u)| du ds

+

∫ t

0
e−
∫ t
s v(u) du|v(s− r1(s))(1− r′1(s))| ds

]

+g(l)

∫ t

0
e−
∫ t
s v(u) du|b(s)| ds+ (l − f(l))

∫ t

0
e−
∫ t
s v(u) duv(s) ds

≤ (1− α)f(l)− αg(l) + αf(l) + αg(l) + l − f(l) = l.
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Hence |(Pϕ)(t)| ≤ l for t ∈ [r0,∞). Therefore Pϕ ∈ C lφ.

Next, we will show that P is a contraction mapping in C lφ. For ϕ, η ∈ C lφ,

|(Pϕ)(t)− (Pη)(t)| e−q(t)

≤
∫ t

0
e−dL

∫ t
s [v(u)+|ã(h(u))|] du [v(s) + |ã(h(s))|]L|ϕ(s)− η(s)|e−q(s) ds

+

∫ t

0
e−
∫ t
s v(u) duv(s)

∫ s

s−r1(s)
e−dL

∫ t
s [v(s)+|ã(h(s))|] ds[|ã(h(u))|+ v(u)]

×L|ϕ(u)− η(u)|e−q(u) du ds

+

∫ t

0
e−dL

∫ t
s w(u) duw(s)L|ϕ(s− r1(s))− η(s− r1(s))|e−q(s−r1(s)) ds

+

∫ t

t−r1(t)
e−dL

∫ t
s [v(u)+|ã(h(u))|] du[|ã(h(s))|+ v(s)]L|ϕ(s)− η(s)|e−q(s) ds

+

∫ t

0
e−dL

∫ t
s |b(u)| du|b(s)|L|ϕ(s− r2(s))− η(s− r2(s))|e−q(s−r2(s)) ds.

So, we have

|(Pϕ)(t)− (Pη)(t)|e−q(t) ≤
(

1

dL
+

1

dL
+

1

dL
+

1

dL
+

1

dL

)
L|ϕ− η|q ≤

5

d
|ϕ− η|q

for all t > 0. Thus |Pϕ−Pη|q ≤ 5
d |ϕ− η|q. Since d > 5, we conclude that P is a contraction on

(C lφ, | · |q).

We are now ready to prove Theorem 4.1.7.

Proof. By the contraction mapping principle, P has a unique �xed point x in C lφ, which is a

solution of (4.4) with x(t) = φ(t) on [r0, 0] and |x(t)| ≤ l.

Let ε > 0 be given. Then, we choose m > 0 so that m < min{l, ε}. By considering Cmφ ,

we obtain existence of a δ > 0 such that ‖φ‖ < δ implies that the unique solution of (4.4) with

x(t) = φ(t) on [r0, 0] sati�es |x(t)| ≤ m < ε for all t ≥ r0. This shows that the zero solution of

(4.4) is stable. This completes the proof of Theorem 4.1.7.

Remark 4.1.24. It is an open problem whether the zero solution of (4.4) is asymptotically stable.

Our method of proof can not be used to solve this problem. The reason is that if we would add

the condition to C lφ that ϕ(t) → 0 as t → ∞, then C lφ would no longer be complete under the

weighted metric.

4.1.5 Proof of Theorem 4.1.10

In this subsection, we will prove Theorem 4.1.10. We start with some preparations. First, we

transform (4.5) into a neutral delay di�erential equation without impuses

z′(t)−
∏

t−r1(t)≤tk<t

(1 + dk)
−1c(t)(1− r′1(t))z′(t− r1(t)) (4.30)

= −
∏

t−r2(t)≤tk<t

(1 + dk)
−1b(t)z(t− r2(t)) +

∏
t−r3(t)≤tk<t

(1 + dk)
−1

∫ t

t−r3(t)
g(t, z(s)) dµ(t, s)
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for t ≥ 0 with initial value z(t) = ψ(t), t ∈ [r0, 0]. By a solution of (4.30), we mean

z(t) ∈ C([r0,∞],R) satisfying (4.30).

Two fundamental results are esdtablished in the following lemmas.

Lemma 4.1.25. Assume that (H1)− (H5) hold.

(i) If z(t, ψ) is a solution of (4.30), then x(t, ψ) =
∏

0≤tk<t(1 + dk)z(t, ψ) is a solution of

(4.5).

(ii) If x(t, ψ) is a solution of (4.5), then z(t, ψ) =
∏

0≤tk<t(1 + dk)
−1x(t, ψ) is a solution of

(4.30).

Proof. Denote by z(t, ψ) := z(t) and x(t, ψ) := x(t). First, we prove (i). It is clear that

x(t) =
∏

0≤tk<t(1 + dk)z(t, ψ) is absolutely continuous on each interval (tk, tk+1) and for any

t 6= tk, k = 1, 2, ..., we have that

x′(t)− c(t)x′(t− r1(t)) + b(t)x(t− r2(t))−
∫ t

t−r3(t)
g(t, x(s)) dµ(t, s)

=
∏

0≤tk<t
(1 + dk)z

′(t)− c(t)
∏

0≤tk<t−r1(t)

(1 + dk)z
′(t− r1(t))

+b(t)
∏

0≤tk<t−r2(t)

(1 + dk)z(t− r2(t))−
∫ t

t−r3(t)

∏
0≤tk<s

(1 + dk)g(t, z(s)) dµ(t, s)

=
∏

0≤tk<t
(1 + dk)

[
z′(t)−

∏
t−r1(t)≤tk<t

(1 + dk)
−1c(t)z′(t− r1(t))

+
∏

t−r2(t)≤tk<t

(1 + dk)
−1b(t)z(t− r2(t))−

∫ t

t−r3(t)

∏
s≤tk<t

(1 + dk)
−1g(t, z(s)) dµ(t, s)

]
= 0.

On the other hand, for every tk, k = 1, 2, 3 · · · ,

x(t+k ) = lim
t→t+k

∏
0≤tj<t

(1 + dj)z(t) =
∏

0≤tj≤tk

(1 + dj)z(tk)

and x(tk) =
∏

0≤tj<tk(1 + dj)z(tk). Hence, we obtain

x(t+k ) = (1 + dk)x(tk), (4.31)

for k = 1, 2, ...,. From (4.31) and (4.31), we have that x(t) is the solution of (4.5).

Next, we prove (ii). Since x(t) is absolutely continuous on each interval (tk, tk+1), it follows

that, for any k = 1, 2, ...,

z(t+k ) =
∏

0≤tj≤tk

(1 + dj)
−1x(t+k ) =

∏
0≤tj<tk

(1 + dj)
−1x(tk) = z(tk)

and

z(t−k ) =
∏

0≤tj≤tk−1

(1 + dj)
−1x(t−k ) = z(tk)
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which implies that z(t) is continuous on [0,∞). It is easy to �nd that z(t) is also absolutely

continuous on [0,∞). and we can easily to check that z(t) is the solution of (4.30) corresponding

to intial condition z(t) = ψ(t), t ∈ [r0, 0]. The proof of Lemma 4.1.25 is complete.

Lemma 4.1.26. (Yan and Zhao [134]) Assume that (H1)− (H5) hold.

(i) Suppose that there exists a positive constant M > 0 such that for any t ≥ 0,
∏

0≤tk<t(1 +

dk) ≤M . In addition, if the zero solution of (4.30) is stable, then the zero solution of (4.5)

is also stable.

(ii) Suppose that there exists a positive constant M > 0 such that for any t ≥ 0,
∏

0≤tk<t(1 +

dk) ≤M . In addition, if the zero solution of (4.30) is asymptotically stable, then the zero

solution of (4.5) is also asymptotically stable.

Proof. If we multiply both sides of (4.30) by e
∫ t
0 (h1(s)+h2(s)) ds, integrate from 0 to t, we obtain

z(t) = ψ(0)e−
∫ t
0 (h1(u)+h2(u)) du +

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du(h1(s) + h2(s))z(s) ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

∏
s−r1(s)≤tk<s

(1 + dk)
−1c(s)(1− r′1(s))z′(s− r1(s)) ds

−
∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

∏
s−r2(s)≤tk<s

(1 + dk)
−1b(s)z(s− r2(s)) ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

∏
s−r3(s)≤tk<s

(1 + dk)
−1

∫ s

s−r3(s)
g(s, z(u)) dµ(s, u) ds.

(4.32)

De�ning

J1(t) :=

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

2∑
j=1

hj(s)z(s) ds

=
2∑
j=1

∫ t

t−rj(t)
hj(u)z(u) du− e−

∫ t
0 (h1(u)+h2(u)) du

2∑
j=1

∫ 0

−rj(0)
hj(u)ψ(u) du

−
∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du(h1(s) + h2(s))

2∑
j=1

∫ s

s−rj(s)
hj(u)z(u) du ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

2∑
j=1

hj(s− rj(s))(1− r′j(s))z(s− rj(s)) ds,

(4.33)

we see that (4.32) can be written as

z(t) = ψ(0)e−
∫ t
0 (h1(u)+h2(u)) du + J1(t) +

∏
0≤tk<t

(1 + dk)
−1(J2(t) + J3(t) + J4(t)),
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where

J2(t) =

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

∏
s≤tk<t

(1 + dk)
c(s)

1− r′1(s)
dx(s− r1(s))

J3(t) = −
∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

∏
s≤tk<t

(1 + dk)b(s)x(s− r2(s)) ds

J4(t) =

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

∏
s≤tk<t

(1 + dk)

∫ s

s−r3(s)
g(s, x(u)) dµ(s, u) ds. (4.34)

De�ne n(t) := max{k ∈ Z+ : tk < t}. Because of the discontinuity of
∏

0≤tk<t(1 + dk) at t = tk,

we obtain that J2(t) is given by the following

J2(t) =

∫ t1

0
e−
∫ t
s (h1(u)+h2(u)) du

∏
s≤tk<t

(1 + dk)
c(s)

1− r′1(s)
dx(s− r1(s))

+

n(t)∑
l=2

∫ tl

tl−1

e−
∫ t
s (h1(u)+h2(u)) du

∏
l≤k≤n

(1 + dk)
c(s)

1− r′1(s)
dx(s− r1(s))

+

∫ t

tn(t)

e−
∫ t
s (h1(u)+h2(u)) du c(s)

1− r′1(s)
dx(s− r1(s)).

Performing an integration by parts, we have

J2(t) = e−
∫ t
0 (h1(u)+h2(u)) du

×

{ ∏
l≤k≤n

(1 + dk)

[
e
∫ t1
0 H(u) du c(t1)

1− r′1(t1)
x(t1 − r1(t1))− c(0)x(−r1(0))

1− r′1(0)

]

+

n(t)∑
l=2

∏
l≤k≤n

(1 + dk)

[
e
∫ tl
0 (h1(u)+h2(u)) du c(tl)

1− r′1(tl)
x(tl − r1(tl))

−e
∫ tl−1
0 (h1(u)+h2(u)) du c(tl−1)

1− r′1(tl−1)
x(tl−1 − r1(tl−1))

]
−e

∫ tn
0 (h1(u)+h2(u)) du c(tn)

1− r′1(tn)
x(tn − r1(tn))

}
+

c(t)

1− r′1(t)
x(t− r1(t))

−
∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

∏
s≤tk<t

(1 + dk)x(s− r1(s))k(s) ds, (4.35)

where

k(s) =
[c(s)(h1(s) + h2(s)) + c′(s)](1− r′1(s)) + c(s)r′′1(s)

(1− r′1(s))2
.
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Combining (4.33), (4.34), (4.35) together with x(t, ψ) =
∏

0≤tk<t(1 + dk)z(t, ψ), we have

z(t) = e−
∫ t
0 (h1(u)+h2(u)) du

[
ψ(0)−

2∑
j=1

∫ 0

−rj(0)
hj(u)ψ(u) du− c(0)

1− r′1(0)
ψ(−r1(0)) +M(t)

]

+
2∑
j=1

∫ t

t−rj(t)
hj(u)z(u) du+

∏
t−r1(t)≤tk<t

(1 + dk)
−1 c(t)

1− r′1(t)
z(t− r1(t))

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

[
h1(s− r1(s))(1− r′1(s))−

∏
s−r1(s)≤tk<s

(1 + dk)
−1k(s)

]
×z(s− r1(s)) ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

[
h2(s− r2(s))(1− r′2(s))−

∏
s−r2(s)≤tk<s

(1 + dk)
−1b(s)

]
×z(s− r2(s)) ds

−
∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du(h1(s) + h2(s))

2∑
j=1

∫ s

s−rj(s)
hj(u)z(u) du ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

∏
s−r3(s)≤tk<s

(1 + dk)
−1

∫ s

s−r3(s)
g(s, z(u)) dµ(s, u) ds,

where

M(t) =

n(t)∑
l=1

dl
1 + dl

∏
tl−r1(tl)≤tk<tl

(1 + dk)
−1e

∫ tl
0 (h1(u)+h2(u)) du c(tl)

1− r′1(tl)
z(tl − r1(tl)).

De�ne the space

Slφ =
{
ϕ | ϕ ∈ C([r0,∞),R), ‖ϕ‖ = sup

t≥r0
|ϕ(t)| ≤ l, ϕ(t) = φ(t) for t ∈ [r0, 0],

ϕ(t)→ 0 as t→∞
}
.

Then Slφ is a complete metric space with metric ρ(x, y) = supt≥r0{|x(t)− y(t)|}.

Lemma 4.1.27. Let ϕ(t) ∈ Slφ and de�ne an operator by Pϕ(t) = φ(t) for t ∈ [r0, 0] and for

t ≥ 0,

Pϕ(t) =

8∑
i=1

Ii(t),

where

I1(t) = e−
∫ t
0 (h1(u)+h2(u)) du

[
ψ(0)−

2∑
j=1

∫ 0

−rj(0)
hj(u)ψ(u) du− c(0)

1− r′1(0)
ψ(−r1(0))

]
,

I2(t) =

n(t)∑
l=1

dl
1 + dl

∏
tl−r1(tl)≤tk<tl

(1 + dk)
−1e
−
∫ t
tl

(h1(u)+h2(u)) du c(tl)

1− r′1(tl)
ϕ(tl − r1(tl)),
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I3(t) =
∏

t−r1(t)≤tk<t

(1 + dk)
−1 c(t)

1− r′1(t)
ϕ(t− r1(t)), I4(t) =

2∑
j=1

∫ t

t−rj(t)
hj(u)ϕ(u) du,

I5(t) =

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

[
h1(s− r1(s))(1− r′1(s))−

∏
s−r1(s)≤tk<s

(1 + dk)
−1k(s)

]
×ϕ(s− r1(s)) ds,

I6(t) =

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

[
h2(s− r2(s))(1− r′2(s))−

∏
s−r2(s)≤tk<s

(1 + dk)
−1b(s)

]
×ϕ(s− r2(s)) ds,

I7(t) = −
∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du(h1(s) + h2(s))

2∑
j=1

∫ s

s−rj(s)
hj(u)ϕ(u) du ds,

I8(t) =

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

∏
s−r3(s)≤tk<s

(1 + dk)
−1

∫ s

s−r3(s)
g(s, ϕ(u)) dµ(s, u) ds.

If conditions (i)-(iv) in Theorem 4.1.3 are satis�ed, then there exists δ > 0 such that for any

φ : [r0, 0]→ (−δ, δ), we have that P : Slφ → Slφ and P is a contraction with respect to the metric

de�ned on Slφ.

Proof. Fisrt, we prove that Pϕ ≤ l, for ϕ ∈ Slφ. Indeed, we set

J = sup
t≥0

{
e−
∫ t
0 (h1(s)+h2(s)) ds

}
,

by (iv), J is well de�ned. Since ϕ ∈ Slφ, we have

‖Pϕ‖ ≤

[
1 +

2∑
j=1

∫ 0

−rj(0)
|hj(u)| du+

∣∣∣∣∣ c(0)

1− r′1(0)

∣∣∣∣∣
]
‖φ‖J + αl.

Thus, we choose

‖φ‖ ≤ δ :=
(1− α)l(

1 +
∑2

j=1

∫ 0
−rj(0) |hj(u)| du+

∣∣∣ c(0)
1−r′1(0)

∣∣∣) J ,
and we obtain |(Pϕ)(t)| ≤ l.

Then, we prove that (Pϕ)(t) is continuous. It is clear that Ii(t) is continuous for i = 1, 4, 7

and I2(t), I3(t), I5(t), I6(t) are continuous for t ∈ (0, t1) or t ∈ (tj , tj+1) for j = 1, 2, · · · . It

remains to prove that I2(t) + I3(t), I5(t), I6(t) and I8(t) are continuous at t = tj . Following the

same discussion as [6] on page 7245, we have

lim
r→0+

|I2(tj + r)− I2(tj) + I3(tj + r)− I3(tj)| = 0

lim
r→0−

|I2(tj + r)− I2(tj) + I3(tj + r)− I3(tj)| = 0.

87



Chapter 4. A �xed point approach to stability of delay di�erential equations

Take the limr→0, we have

|I5(tj + r)− I5(tj)|

≤

∣∣∣∣∣e− ∫ tj+rtj
(h1(u)+h2(u)) du − 1

∣∣∣∣∣
∫ tj

0
e−
∫ tj
s (h1(u)+h2(u)) du

×

∣∣∣∣∣h1(s− r1(s))(1− r′1(s))−
∏

s−r1(s)≤tk<s

(1 + dk)
−1k(s)

∣∣∣∣∣|ϕ(s− r1(s))| ds

+

∫ tj+r

tj

e−
∫ tj+r
s (h1(u)+h2(u)) du

∣∣∣∣∣h1(s− r1(s))(1− r′1(s))−
∏

s−r1(s)≤tk<s

(1 + dk)
−1k(s)

∣∣∣∣∣
×|ϕ(s− r1(s))| ds→ 0.

In the same way, we can prove that I6(t) and I8(t) are continuous at t = tj . Therefore, Pϕ is

continuous.

Next, we prove that (Pϕ)(t) → 0 as t → ∞. Obviously, we have that Ii(t) → 0 for i = 1, 3, 4

since
∫ t

0 (h1(u) + h2(u)) du→∞, t− r1(t)→∞ and ϕ(t)→ 0 as t→∞.

In the following, we prove that I2(t) → 0 as t → ∞. Since ϕ(t) → 0 and t − rj(t) → ∞ as

t→∞, for each ε > 0, there exists a N > 0 such that n(t) ≥ N implies |ϕ(tn(t)− rj(tn(t)))| < ε,

for j = 1, 2. Thus, we have

|I2(t)| =

∣∣∣∣∣e− ∫ ttN (h1(u)+h2(u)) du
N∑
l=1

dl
1 + dl

∏
tl−r1(tl)≤tk<tl

(1 + dk)
−1e
−
∫ tN
tl

(h1(u)+h2(u)) du

× c(tl)

1− r′1(tl)
ϕ(tl − r1(tl))

+

n(t)∑
l=N+1

dl
1 + dl

∏
tl−r1(tl)≤tk<tl

(1 + dk)
−1e
−
∫ t
tl

(h1(u)+h2(u)) du c(tl)

1− r′1(tl)
ϕ(tl − r1(tl))

∣∣∣∣∣
≤ ε+ αε.

for t is large enough. In the same way, we can prove that Ii(t)→ 0 as t→∞ for i = 5, 6, 7, 8.

Finally, we prove that P is a contraction. In fact, for ϕ, η ∈ Slφ,

|(Pϕ)(t)− (Pη)(t)|

≤

{
n(t)∑
l=1

∣∣∣∣∣ dl
1 + dl

∏
tl−r1(tl)≤tk<tl

(1 + dk)
−1e
−
∫ t
tl

(h1(u)+h2(u)) du c(tl)

1− r′1(tl)

∣∣∣∣∣
+

∣∣∣∣∣ ∏
t−r1(t)≤tk<t

(1 + dk)
−1 c(t)

1− r′1(t)

∣∣∣∣∣+
2∑
j=1

∫ t

t−rj(t)
|hj(u)| du
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+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

∣∣∣∣∣h1(s− r1(s))(1− r′1(s))−
∏

s−r1(s)≤tk<s

(1 + dk)
−1k(s)

∣∣∣∣∣ ds
+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

∣∣∣∣∣h2(s− r2(s))(1− r′2(s))−
∏

s−r2(s)≤tk<s

(1 + dk)
−1b(s)

∣∣∣∣∣ ds
+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du|h1(s) + h2(s)|

2∑
j=1

∫ s

s−rj(s)
|hj(u)| du ds

+

∫ t

0
e−
∫ t
s (h1(u)+h2(u)) du

∏
s−r3(s)≤tk<s

(1 + dk)
−1
(
V[s−r3(s),s](µ(s, ·))

)
ds

}
‖ϕ− η‖

≤ α‖ϕ− η‖.

Thus, P : Slφ → Slφ is a contraction.

We are now ready to prove Theorem 4.1.10.

Proof. Let P be de�ned as in Lemma 4.1.27. By the contraction mapping principle, P has a

unique �xed point x in Slφ which is a solution of (4.30) with x(t) = φ(t) on [r0, 0] and x(t)→ 0

as t→∞.

To prove stability at t = 0, let ε > 0 be given, then we choose m > 0 so that m < min{l, ε}. By
considering Smφ , we obtain there is a δ > 0 such that ‖φ‖ < δ implies that the unique solution of

(4.30) with z(t) = φ(t) on [r0, 0] sati�es |z(t)| ≤ m < ε for all t ≥ r0. This shows that the zero

solution of (4.30) is asymptotically stable if (v) holds. Combining this fact with Lemma 4.1.26,

we obtain that the zero solution of (4.5) is asymptotically stable.

Conversely, we suppose that (v) fails. Then by (iii), there exists a sequence {tn}, tn → ∞ as

n→∞ such that limn→∞
∫ tn

0 (h1(s) + h2(s)) ds = v for some v ∈ R. We may choose a positive

constant M such that

−M ≤
∫ tn

0
(h1(s) + h2(s)) ds ≤M (4.36)

for all n ≥ 1. To simplify our expressions, we de�ne

w(s) :=

∣∣∣∣∣h1(s− r1(s))(1− r′1(s))−
∏

s−r1(s)≤tk<s

(1 + dk)
−1k(s)

∣∣∣∣∣
+

∣∣∣∣∣h2(s− r2(s))(1− r′2(s))−
∏

s−r2(s)≤tk<s

(1 + dk)
−1b(s)

∣∣∣∣∣
+|h1(s) + h2(s)|

2∑
j=1

∫ s

s−rj(s)
|hj(u)| du+

∏
s−r3(s)≤tk<s

(1 + dk)
−1
(
V[s−r3(s),s](µ(s, ·))

)
for all s ≥ 0. By (ii) we have∫ tn

0
e−
∫ tn
s (h1(u)+h2(u)) duw(s) ds ≤ α. (4.37)
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Combining (4.36) and (4.37), we have∫ tn

0
e
∫ s
0 (h1(u)+h2(u)) duw(s) ds ≤ αe

∫ tn
0 (h1(u)+h2(u)) du ≤ αeM ,

which yields that the sequence
∫ tn

0 e
∫ s
0 (h1(u)+h2(u)) duw(s) ds is bounded, there exists a convergent

subsequence, we assume that

lim
k→∞

∫ tnk

0
e
∫ s
0 (h1(u)+h2(u)) duw(s) ds = γ,

for some γ ∈ R+. We choose a positive integer k so large that

lim
k→∞

∫ tnk

tn
k

e
∫ s
0 (h1(u)+h2(u)) duw(s) ds ≤ δ0

4J

for all nk > nk, where δ0 > 0 satis�es 2δ0Je
M + α < 1.

Now, we consider the solution x(t) = x(t, tnk , ψ) of (4.5) with ψ(tnk) = δ0 and ψ(s) ≤ δ0

for s ≤ tnk , and we may choose ψ such that |x(t)| ≤ l for t ≥ tnk and

ψ(tnk)−
c(tnk)

1− r′1(tnk)
ψ(tnk − r1(tnk))−

2∑
j=1

∫ tn
k

tn
k
−rj(tn

k
)
hj(s)ψ(s) ds ≥ 1

2
δ0.

So, it follows from the above inequality combining with x(t) = (Px)(t) that for k ≥ k,∣∣∣∣∣z(tnk)−M(t)e−
∫ tnk
0 (h1(u)+h2(u)) du −

∏
tnk−r1(tnk )≤ti<tnk

(1 + di)
−1 c(tnk)

1− r′1(tnk)
z(tnk − r1(tnk))

−
2∑
j=1

∫ tnk

tnk−rj(tnk )
hj(u)z(u) du

∣∣∣∣∣
≥ 1

2
δ0e
−
∫ tnk
tn
k

(h1(u)+h2(u)) du
−
∫ tnk

tn
k

e−
∫ tnk
s (h1(u)+h2(u)) duw(s) ds

= e
−
∫ tnk
tn
k

(h1(u)+h2(u)) du

(
1

2
δ0 − e−

∫ tn
k

0 (h1(u)+h2(u)) du

∫ tnk

tn
k

e−
∫ s
0 (h1(u)+h2(u)) duw(s) ds

)

≥ e
−
∫ tnk
tn
k

(h1(u)+h2(u)) du

(
1

2
δ0 − J

∫ tnk

tn
k

e
∫ s
0 (h1(u)+h2(u)) duw(s) ds

)

≥ 1

4
δ0e

∫ tnk
tn
k

(h1(u)+h2(u)) du
≥ 1

4
δ0e
−2M > 0. (4.38)

On the other hand, if the solution of (4.5) x(t) = x(t, tnk , φ)→ 0 as t→∞. Since tnk−rj(tnk)→
∞ as k →∞, j = 1, 2 and (ii) holds, we have

z(tnk)−M(t)e−
∫ tnk
0 (h1(u)+h2(u)) du −

∏
tnk−r1(tnk )≤ti<tnk

(1 + di)
−1 c(tnk)

1− r′1(tnk)
z(tnk − r1(tnk))

−
2∑
j=1

∫ tnk

tnk−rj(tnk )
hj(u)z(u) du→ 0, as k →∞,
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which contradicts (4.38). Hence condition (iv) is necessary for the asymptotic stability of the

zero solution of (4.5).

Remark 4.1.28. When dk = 0, Theorem 4.1.10 is Theorem 1.3 in [16] under the same su�cient

conditions.

Corollary 4.1.29. Consider the equation
x′(t)− c(t)x′(t− r(t)) = −b(t)x(t) +

∫ t
t−r(t) g(t, x(s)) dµ(t, s), t 6= tk,

x(t+k )− x(tk) = dkx(tk), k = 1, 2, ...,

(4.39)

which can be transformed into a neutral delay di�erential equation without impuses

z′(t)−
∏

t−r(t)≤tk<t

(1 + dk)
−1c(t)(1− r′(t))z′(t− r(t)) (4.40)

= −
∏

t−r(t)≤tk<t

(1 + dk)
−1b(t)z(t) +

∏
t−r(t)≤tk<t

(1 + dk)
−1

∫ t

t−r(t)
g(t, z(s)) dµ(t, s)

Assume that the delay r(t) is twice di�erentiable with r′(t) 6= 1, and t − r(t) → ∞ as t → ∞,

g satis�es (G). Suppose that there exists a constant α ∈ (0, 1) and a continuous function v :

[r0,∞)→ R such that lim inft→∞
∫ t

0 v(s) ds > −∞ and

n(t)∑
l=1

∣∣∣∣∣ dl
1 + dl

∏
tl−r(tl)≤tk<tl

(1 + dk)
−1e
−
∫ t
tl
v(u) du c(tl)

1− r′(tl)

∣∣∣∣∣
+

∣∣∣∣∣ ∏
t−r(t)≤tk<t

(1 + dk)
−1 c(t)

1− r′(t)

∣∣∣∣∣+

∫ t

t−r(t)
|v(s)− b(s)| ds

+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)
|v(u)− b(u)| du ds

+

∫ t

0
e−
∫ t
s v(u) du

∣∣∣∣∣ (v(s− r(s))− b(s− r(s))) (1− r′(s))−
∏

s−r(s)≤tk<s

(1 + dk)
−1k(s)

∣∣∣∣∣ ds
+

∫ t

0
e−
∫ t
s v(u) du

∏
s−r(s)≤tk<s

(1 + dk)
−1V[s−r(s),s](µ(s, ·)) ds ≤ α,

where

k(s) =
[c(s)v(s) + c′(s)](1− r′(s)) + c(s)r′′(s)

(1− r′(s))2
. (4.41)

Then the zero solution of (4.40) is asymptotically stable if and only if∫ t

0
v(s) ds→∞ as t→∞.

Remark 4.1.30. Suppose that the conditions of Corollary 4.1.29 hold. If there exists a positive

constant M > 0 such that for any t ≥ 0,
∏

0≤tk<t(1 + dk) ≤M , then the zero solution of (4.39)

is asymptotically stable. Furthermore, when dk = 0, we obtain Corollary 2.1 in [16].
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Corollary 4.1.31. Consider the equation
x′(t)− c(t)x′(t− r(t)) = −b(t)x(t) + a(t)g(x(t− r(t))), t 6= tk,

x(t+k )− x(tk) = dkx(tk), k = 1, 2, ...,

(4.42)

which can be transformed into a neutral delay di�erential equation without impuses

z′(t)−
∏

t−r(t)≤tk<t

(1 + dk)
−1c(t)(1− r′(t))z′(t− r(t)) (4.43)

= −
∏

t−r(t)≤tk<t

(1 + dk)
−1b(t)z(t) +

∏
t−r(t)≤tk<t

(1 + dk)
−1a(t)g(z(t− r(t)))

Assume that r(t) is twice di�erentiable, r′(t) 6= 1, t − r(t) → ∞ as t → ∞. g satis�es (G).

Suppose that there exists a constant α ∈ (0, 1) and a continuous function v : [r0,∞) → R such

that lim inft→∞
∫ t

0 v(s) ds > −∞ and

n(t)∑
l=1

∣∣∣∣∣ dl
1 + dl

∏
tl−r(tl)≤tk<tl

(1 + dk)
−1e
−
∫ t
tl
v(u) du c(tl)

1− r′(tl)

∣∣∣∣∣
+

∣∣∣∣∣ ∏
t−r(t)≤tk<t

(1 + dk)
−1 c(t)

1− r′(t)

∣∣∣∣∣+

∫ t

t−r(t)
|v(s)− b(s)| ds

+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)
|v(u)− b(u)| du ds

+

∫ t

0
e−
∫ t
s v(u) du

∣∣∣∣∣ (v(s− r(s))− b(s− r(s))) (1− r′(s))−
∏

s−r(s)≤tk<s

(1 + dk)
−1k(s)

∣∣∣∣∣ ds
+

∫ t

0
e−
∫ t
s v(u) du

∏
s−r(s)≤tk<s

(1 + dk)
−1|a(s)| ds ≤ α, (4.44)

where k(s) is de�ned as (4.41). Then the zero solution of (4.43) is asymptotically stable if and

only if
∫ t

0 v(s) ds→∞ as t→∞.

Remark 4.1.32. Suppose the conditions of Corollary 4.1.31 hold. If there exists a positive

constant M > 0 such that for any t ≥ 0,
∏

0≤tk<t(1 + dk) ≤M , then the zero solution of (4.42)

is asymptotically stable. Furthermore, when dk = 0, we obtain Corollary 4.1.15.

Remark 4.1.33. For the case when g(x) = x, condition (4.44) becomes

n(t)∑
l=1

∣∣∣∣∣ dl
1 + dl

∏
tl−r(tl)≤tk<tl

(1 + dk)
−1e
−
∫ t
tl
v(u) du c(tl)

1− r′(tl)

∣∣∣∣∣+

∣∣∣∣∣ ∏
t−r(t)≤tk<t

(1 + dk)
−1 c(t)

1− r′(t)

∣∣∣∣∣
+

∫ t

t−r(t)
|v(s)− b(s)| ds+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)
|v(u)− b(u)| du ds

+

∫ t

0
e−
∫ t
s v(u) du

∣∣∣∣∣ ∏
s−r(s)≤tk<s

(1 + dk)
−1

∣∣∣∣∣ (4.45)

×

∣∣∣∣∣a(s) +
∏

s−r(s)≤tk<s

(1 + dk) (v(s− r(s))− b(s− r(s))) (1− r′(s))− k(s)

∣∣∣∣∣ ds ≤ α.
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Remark 4.1.34. In the proof of Theorem 3.1 of [144], on page 7243 and page 7244, it seems to

be some mistakes in their computations for J4(t) and z(t), we obtain that on the �rst line of the

representation of J4(t) (on page 7243) is

J4(t) = e−
∫ t
0 (h1(u)+h2(u)) du

×

{ ∏
1≤k≤n

(1 + dk)

[
e
∫ t1
0 (h1(u)+h2(u)) du c(t1)

1− τ ′(t1)
x(t1 − τ(t1))− c(0)x(−τ(0))

1− τ ′(0)

]
· · · ,

and on the third line of the representation of z(t) (on page 7244) is∫ t

0
e−
∫ t
s h(u) du(1 + dk)

−1N(s)z(s− τ(s)) ds.

Furthermore, we have that N(t) (on page 7244) is

N(t) = −b(t) +
∏

t−τ(t)≤tk<t

(1 + dk)h(t− τ(t))(1− τ ′(t))− r(t).

Example 4.1.35. 
x′(t) = −b(t)x(t) + a(t)g(x(t− r(t))), t 6= tk,

x(t+k )− x(tk) = dkx(tk), k = 1, 2, ...,

(4.46)

for t ≥ 1
2 , where g(x) = γ1x if x ≥ 0, g(x) = γ2x if x < 0, γ1, γ2 ∈ [0, 1], r(t) = 4, b(t) = α

t+1 ,

a(t) = β
t+1 , α, β > 0, 5β

α < 1, tk = 3kπ, 1 + dk = 1
5 for all k = 1, 2, ....

Then the zero solution of (4.46) is asymptotically stable.

Proof. It is not di�cult to check that g satis�es the conditions in (H3), tk = 2kπ and r(t) = 4 im-

plies that at most one impulse occurs at interval [t−r(t), t) and hence
∏
t−r(t)≤tk<t(1+dk)

−1 ≤ 5.

Choosing v(t) = b(t) = α
t+1 , from (4.44) of Corollary 4.1.31, we have∫ t

0
e−
∫ t
s v(u) du

∏
s−r(s)≤tk<s

(1 + dk)
−1|a(s)| ds ≤ 5

∫ t

0
e−
∫ t
s

α
u+1

du β

s+ 1
ds ≤ 5β

α
< 1.

Since v(t) = b(t), the left terms in (4.44) are all 0. Hence all the conditions of Corollary 4.1.31

hold. On the other hand,
∣∣∣∏ 1

2
≤tk<t(1 + dk)

∣∣∣ ≤ 1. Hence, we obtain that the zero solution of

(4.46) is asymptotically stable.

Example 4.1.36.
x′(t)− c(t)x′(t− r(t)) = −b(t)x(t) + a(t)x(t− r(t)), t 6= tk,

x(t+k )− x(tk) = dkx(tk), k = 1, 2, ...

(4.47)

for t ≥ 1
2 , where c(t) = α sin3( t2), α < 1, r(t) = 2 + sin t, b(t) = 0.1

t+1 , a(t) = k(t), k(t) is denoted

as (4.41), tk = 2kπ, 1 + dk = 1
2 for all k = 1, 2, ....

Then the zero solution of (4.47) is asymptotically stable.
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Proof. tk = 2kπ and r(t) = 2 + sin t < 3 implies that at most one impulse occurs at interval

[t− r(t), t) and hence
∏
t−r(t)≤tk<t(1 + dk)

−1 ≤ 2. Choosing v(t) = 0.1
t+1 , from (4.45) of Remark

4.1.33, we have

max
t∈[0.5,∞]

∣∣∣∣∣ ∏
t−r(t)≤tk<t

(1 + dk)
−1 c(t)

1− r′(t)

∣∣∣∣∣ ≤ max
t∈[0.5,∞]

{
2 · α

2
·
∣∣∣∣sin t

2

∣∣∣∣} ≤ α,
n(t)∑
l=1

∣∣∣∣∣ dl
1 + dl

∏
tl−r(tl)≤tk<tl

(1 + dk)
−1e
−
∫ t
tl
v(u) du c(tl)

1− r′(tl)

∣∣∣∣∣ = 0.

Since v(t) = b(t) and a(t) = k(t), the left terms in (4.45) are all 0. Hence all the conditions of

Remark 4.1.33 hold. On the other hand,
∣∣∣∏ 1

2
≤tk<t(1 + dk)

∣∣∣ ≤ 1. Hence, we obtain that the zero

solution of (4.47) is asymptotically stable.

4.2 A new criteria for stability of nonlinear functional di�erential

equations based on a �xed point method

4.2.1 Introduction and main results

In this section, we study the stability of the following two classes of nonlinear neutral di�erential

equations

x′(t)− c(t)x(t− r(t))x′(t− r(t)) = −a(t)x(t) + b(t)g(x(t− r(t))), (4.48)

x′(t)− c(t)x(t− r(t))x′(t− r(t)) = −a(t)x(t) +

∫ t

t−r(t)
K(t, s)g(x(s)) ds, (4.49)

using a �xed point method, where a, b : [0,∞)→ R are continuous functions, c(t) : [0,∞)→ R
is continuously di�erentiable function and r(t) : [0,∞) → [0,∞) is a continuous function,

K(t, s) : [0,∞) × [r0,∞) → R is a continuous function, where r0 = inf{t − r(t) : t ≥ 0},
g(x) = xγ for γ ≥ 1, then g satis�es a locally Lipschitz condition, that is, there exists L > 0 and

l > 0 such that g satis�es |g(x)− g(y)| ≤ L|x− y|, for x, y ∈ [−l, l].

Ahcene and Rabah [34] have studied the special case of (4.48) and (4.49) when g(x) = x2.

The results in [34] mainly dependent on the constraint
∣∣∣ c(t)

1−r′(t)

∣∣∣ < 1. However, there are inter-

esting examples where the constraint is not satis�ed. It is our aim in this section to remove this

constraint condition and consider the stability of (4.48) and (4.49). We introduce an auxiliary

continuous function p(t) to de�ne an appropriate mapping de�ned on a complete metric space

so that we can apply a �xed point argument, and present new criteria for asymptotic stability

of di�erential equations (4.48) and (4.49) which can be applied to the case
∣∣∣ c(t)

1−r′(t)

∣∣∣ ≥ 1 as well.

In addition, we present two examples to illustrate our main results.

A standard �xed point argument shows that the di�erential equation (4.48) provided with an

initial condition

x(t) = φ(t) for t ∈ [r0, 0], (4.50)
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where φ ∈ C([r0, 0],R) de�nes a well-posed initial-value problem and we denote by x(t) := x(t, φ)

the solution of (4.48) with initial function (4.50).

Theorem 4.2.1. Consider the nonlinear neutral delay di�erential equation (4.48) and suppose

that

(i) the delay r(t) is twice di�erentiable with r′(t) 6= 1, and t− r(t)→∞ as t→∞;

(ii) there exists a bounded positive function p : [r0,∞) → (0,∞) with p(0) = 1 such that p′(t)

exists on [r0,∞), and there exists a constant α ∈ (0, 1), a constant l > 0 and an arbitrary

continuous functions v : [r0,∞)→ R such that

l

{∣∣∣∣∣c(t)p2(t− r(t))
p(t)(1− r′(t))

∣∣∣∣∣+

∫ t

0
|k(s)− 2b1(s)|e−

∫ t
s v(u) du ds

}

+L

∫ t

0
e−
∫ t
s v(u) du |b(s)|p(s− r(s))γ

p(s)
ds+

∫ t

t−r(t)

∣∣∣∣∣v(s)− a(s)− p′(s)

p(s)

∣∣∣∣∣ ds
+

∫ t

0
e−
∫ t
s v(u) du

∣∣∣∣∣v(s− r(s))− a(s− r(s))− p′(s− r(s))
p(s− r(s))

∣∣∣∣∣|1− r′(s)| ds
+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)

∣∣∣∣∣v(u)− a(u)− p′(u)

p(u)

∣∣∣∣∣ du ds ≤ α, (4.51)

where

k(s) =
[c(s)v(s) + c′(s)](1− r′(s)) + c(s)r′′(s)

(1− r′(s))2
,

c(s) =
c(s)p2(s− r(s))

p(s)
, (4.52)

b1(s) =
c(s)p(s− r(s))p′(s− r(s))

p(s)
; (4.53)

(iii) and such that

lim inf
t→∞

∫ t

0
v(s) ds > −∞.

Then the zero solution x(t, φ) of (4.48) with a small continuous function φ(t) is asymptot-

ically stable if and only if

(iv) ∫ t

0
v(s) ds→∞ as t→∞.

Remark 4.2.2. The technique for constructing a mapping for �xed point argument comes from

the idea in [145]. Our work extends and improves the results in [34, 145].

Theorem 4.2.3. Consider the nonlinear neutral delay di�erential equation (4.49) and suppose

that
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(i) the delay r(t) is twice di�erentiable with r′(t) 6= 1, and t− r(t)→∞ as t→∞;

(ii) there exists a bounded function p : [r0,∞)→ (0,∞) with p(0) = 1 such that p′(t) exists on

[r0,∞), and there exists a constant α ∈ (0, 1), a constant l > 0 and a continuous functions

v : [r0,∞)→ R such that

l

{∣∣∣∣∣c(t)p2(t− r(t))
p(t)(1− r′(t))

∣∣∣∣∣+

∫ t

0
|k(s)− 2b1(s)|e−

∫ t
s v(u) du ds

}
(4.54)

+L

∫ t

0
e−
∫ t
s v(u) du

∫ s

s−r(s)

|K(s, u)|pγ(u)

p(s)
du+

∫ t

t−r(t)

∣∣∣∣∣v(s)− a(s)− p′(s)

p(s)

∣∣∣∣∣ ds
+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)

∣∣∣∣∣v(u)− a(u)− p′(u)

p(u)

∣∣∣∣∣ du ds
+

∫ t

0
e−
∫ t
s v(u) du

∣∣∣∣∣v(s− r(s))− a(s− r(s))− p′(s− r(s))
p(s− r(s))

∣∣∣∣∣|1− r′(s)| ds ≤ α,
where k(s) and b1(s) are de�ned as (4.52) and (4.53), respectively.

(iii)

lim inf
t→∞

∫ t

0
v(s) ds > −∞.

Then the zero solution of x(t, ψ) of (4.49) with a small continuous function ψ(t) is asymp-

totically stable if and only if

(iv) ∫ t

0
v(s) ds→∞ as t→∞.

4.2.2 Proof of Theorem 4.2.1

In this subsection, we will prove Theorem 4.2.1. We start with some preparations. First de�ne

Slφ =
{
ϕ | ϕ ∈ C([r0,∞),R), ‖ϕ‖ = sup

ϕ≥r0
|ϕ(t)| ≤ l, ϕ(t) = φ(t) for t ∈ [r0, 0],

ϕ(t)→ 0 as t→∞
}
.

Then Slφ is complete metric space with metric ρ(x, y) = supt≥r0{|x(t)− y(t)|}.

Let z(t) = φ(t) on [r0, 0], and let

x(t) = p(t)z(t) for t ≥ 0. (4.55)

Substituting (4.55) into (4.48), we obtain that

z′(t) = −
(
a(t) +

p′(t)

p(t)

)
z(t) +

c(t)p(t− r(t))p′(t− r(t))
p(t)

z2(t− r(t))

+
c(t)p2(t− r(t))

p(t)
z(t− r(t))z′(t− r(t)) +

b(t)p(t− r(t))γ

p(t)
g(z(t− r(t))).(4.56)
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Since p(t) is a positive bounded function, we only have to prove that the zero solution of (4.56)

is asymptotically stable.

If we multiply both sides of (4.56) by e
∫ t
0 v(s) ds, integrate from 0 to t, and perform an inte-

gration by parts, we obtain

z(t) =

{
φ(0)−

∫ 0

−r(0)

[
v(s)− a(s)− p′(s)

p(s)

]
φ(s) ds− p2(−r(0))

2p(0)

c(0)

1− r′(0)
φ2(−r(0))

}

×e−
∫ t
0 v(s) ds +

p2(t− r(t))
2p(t)

c(t)

1− r′(t)
z2(t− r(t))

+

∫ t

t−r(t)

[
v(s)− a(s)− p′(s)

p(s)

]
z(s) ds

−
∫ t

0
e−
∫ t
s v(u) duv(s)

∫ s

s−r(s)

[
v(u)− a(u)− p′(u)

p(u)

]
z(u) du ds

+

∫ t

0
e−
∫ t
s v(u) du

[
v(s− r(s))− a(s− r(s))− p′(s− r(s))

p(s− r(s))

]
(1− r′(s))z(s− r(s)) ds

−1

2

∫ t

0
e−
∫ t
s v(u) du

(
k(s)− 2b1(s)

)
z2(s− r(s)) ds

+

∫ t

0
e−
∫ t
s v(u) du b(s)p(s− r(s))γ

p(s)
g(z(s− r(s))) ds,

where k(s) and b1(s) are de�ned as in (4.52) and (4.53) respectively.

Lemma 4.2.4. Let ϕ(t) ∈ Slφ and de�ne an operator by Pϕ(t) = φ(t) for t ∈ [r0, 0] and for

t ≥ 0,

(Pϕ)(t) = I1(t) + I2(t) + I3(t) + I4(t) + I5(t) + I6(t), (4.57)

where

I1(t) =

[
ψ(0)−

∫ 0

−r(0)

[
v(s)− a(s)− p′(s)

p(s)

]
φ(s) ds− p2(−r(0))

2p(0)

c(0)

1− r′(0)
φ2(−r(0))

]
×e−

∫ t
0 v(s) ds,

I2(t) =
p2(t− r(t))

2p(t)

c(t)

1− r′(t)
ϕ2(t− r(t)), I3(t) =

∫ t

t−r(t)

[
v(s)− a(s)− p′(s)

p(s)

]
ϕ(s) ds,

I4(t) = −
∫ t

0
e−
∫ t
s v(u) duv(s)

∫ s

s−r(s)

[
v(u)− a(u)− p′(u)

p(u)

]
ϕ(u) du ds,

I5(t) =

∫ t

0
e−
∫ t
s v(u) du

[
v(s− r(s))− a(s− r(s))− p′(s− r(s))

p(s− r(s))

]
(1− r′(s))ϕ(s− r(s)) ds,
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I6(t) = −1

2

∫ t

0
e−
∫ t
s v(u) du

(
k(s)− 2b1(s)

)
ϕ2(s− r(s)) ds,

I7(t) =

∫ t

0
e−
∫ t
s v(u) du b(s)p(s− r(s))γ

p(s)
g(ϕ(s− r(s))) ds.

If conditions (i)-(iv) in Theorem 4.2.1 are satis�ed, then there exists δ > 0 such that for any

φ : [r0, 0]→ (−δ, δ), we have that P : Slφ → Slφ and P is a contraction with respect to the metric

de�ned on Slφ.

Proof. Set J = supt≥0

{
e−
∫ t
0 v(s) ds

}
, by (iii), J is well de�ned. Suppose that (iv) holds.

Let φ be a given small bounded initial function with ‖φ‖ < δ, and let ϕ ∈ Slφ, then ‖ϕ‖ ≤ l for
l and α, we choose δ > 0 such that[

δ + δ

∫ 0

−r(0)

∣∣∣∣∣v(s)− a(s)− p′(s)

p(s)

∣∣∣∣∣ ds+
p2(−r(0))

2p(0)

c(0)

1− r′(0)
δ2

]
J ≤ (1− α)l.

Since g satis�es locally Lipschitz condition, from (4.51) in Theorem 4.2.1, we have

|Pϕ(t)| ≤

[
δ + δ

∫ 0

−r(0)

∣∣∣∣∣v(s)− a(s)− p′(s)

p(s)

∣∣∣∣∣ ds+
p2(−r(0))

2p(0)

c(0)

1− r′(0)
δ2

]
J + αl ≤ l.

Thus, ‖Pϕ‖ ≤ l.

Next, we show that Pϕ → 0 as t → ∞. It is clear that Ii(t) → 0 for i = 1, 2, 3, 4, 5, 7, s-

ince e
∫ t
0 v(s) ds → ∞, t − r(t) → ∞ and ϕ → 0 as t → ∞. Now, we prove that I6(t) → 0 as

t→∞. For t− r(t)→∞ and ϕ→ 0, we obtain that for any ε > 0, there is a positive number

T1 > 0 such that for t ≥ T1, ϕ(t− r(t)) < ε, so we have

|I6(t)| =

∣∣∣∣∣12
∫ t

0
e−
∫ t
s v(u) du

(
k(s)− 2b1(s)

)
ϕ2(s− r(s)) ds

∣∣∣∣∣
≤ 1

2
e
−
∫ t
T1
v(u) du

∫ T1

0
e−
∫ T1
s v(u) du

∣∣∣∣∣k(s)− 2b1(s)

∣∣∣∣∣ϕ2(s− r(s)) ds

+
1

2

∫ t

T1

e−
∫ t
s v(u) du

∣∣∣∣∣k(s)− 2b1(s)

∣∣∣∣∣ϕ2(s− r(s)) ds

≤ 1

2

(
sup
t≥r0
|ϕ(t)|

)2

e
−
∫ t
T1
v(u) du

∫ T1

0
e−
∫ T1
s v(u) du

∣∣∣∣∣k(s)− 2b1(s)

∣∣∣∣∣ ds
+

1

2
ε2

∫ t

T1

e−
∫ t
s v(u) du

∣∣∣∣∣k(s)− 2b1(s)

∣∣∣∣∣ ds
≤ α

2
l2e
−
∫ t
T1
v(u) du

+ αε

By (iv), there exists T2 > T1 such that t > T2 implies α
2 l

2e
−
∫ t
T1
v(u) du

< ε, which implies

I6(t)→ 0 as t→∞. Hence, we have (Pϕ)(t)→ 0 as t→∞.
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Finally, we show that P is a contraction mapping. In fact, for ϕ, η ∈ Slφ, using condition

(4.51) in Theorem 4.2.1, we obtain that

|(Pϕ)(t)− (Pη)(t)|

≤ 2l

∣∣∣∣∣p2(t− r(t))
2p(t)

c(t)

1− r′(t)

∣∣∣∣∣ ‖ϕ− η‖+

∫ t

t−r(t)

∣∣∣∣∣v(s)− a(s)− p′(s)

p(s)

∣∣∣∣∣‖ϕ− η‖ ds
+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)

∣∣∣∣∣v(u)− a(u)− p′(u)

p(u)

∣∣∣∣∣ · ‖ϕ− η‖ du ds
+

∫ t

0
e−
∫ t
s v(u) du

∣∣∣∣∣v(s− r(s))− a(s− r(s))− p′(s− r(s))
p(s− r(s))

∣∣∣∣∣|1− r′(s)|‖ϕ− η‖ ds
+l

∫ t

0
e−
∫ t
s v(u) du

∣∣∣∣∣k(s)− 2b1(s)

∣∣∣∣∣‖ϕ− η‖ ds
+L

∫ t

0
e−
∫ t
s v(u) du |b(s)|p(s− r(s))γ

p(s)
‖ϕ− η‖ ds ≤ α‖ϕ− η‖.

Therefore, P : Slφ → Slφ is a contraction.

We are now ready to prove Theorem 4.2.1.

Proof. Let P be de�ned as in Lemma 4.2.4. By the contraction mapping principle, P has a

unique �xed point z in Slφ which is a solution of (4.56) with z(t) = φ(t) on [r0, 0] and z(t)→ 0

as t→∞.

To prove stability, let ε > 0 be given, then we choose m > 0 so that m < min{L, ε}. Re-

placing L with m in S, we obtain there is a δ > 0 such that ‖φ‖ < δ implies that the unique

solution of (4.56) with z(t) = φ(t) on [r0, 0] sati�es |z(t)| ≤ m < ε for all t ≥ r0. This shows

that the zero solution of (4.56) is asymptotically stable if (iv) holds.

Conversely, we suppose that (iv) fails. Then by (iii), there exists a sequence {tn}, tn → ∞
as n→∞ such that limn→∞

∫ tn
0 v(s) ds = v for some v ∈ R. We may choose a positive constant

M such that

−M ≤
∫ tn

0
v(s) ds ≤M (4.58)

for all n ≥ 1. To simplify our expressions, we de�ne

w(s) = l|k(s)− 2b1(s)|+ |v(s)|
∫ s

s−r(s)

∣∣∣∣∣v(u)− a(u)− p′(u)

p(u)

∣∣∣∣∣ du+
L|b(s)|p(s− r(s))γ

p(s)

+

∣∣∣∣∣v(s− r(s))− a(s− r(s))− p′(s− r(s))
p(s− r(s))

∣∣∣∣∣|1− r′(s)|
for all s ≥ 0. By (ii) we have ∫ tn

0
e−
∫ tn
s v(u) duw(s) ds ≤ α. (4.59)
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Combining (4.58) and (4.59), we have∫ tn

0
e
∫ s
0 v(u) duw(s) ds ≤ αe

∫ tn
0 v(u) du ≤ αeM ,

which yields that the sequence
∫ tn

0 e
∫ s
0 v(u) duw(s) ds is bounded, there exists a convergent sub-

sequence, we assume that

lim
k→∞

∫ tnk

0
e
∫ s
0 v(u) duw(s) ds = γ

for some γ ∈ R+. We choose a positive integer k1 so large that

lim
k→∞

∫ tnk

tnk1

e
∫ s
0 v(u) duw(s) ds ≤ δ0

4J

for all nk > nk1 , where δ0 > 0 satis�es 2δ0Je
M + α < 1.

Now, we consider the solution z(t) = z(t, tnk1 , φ) of (4.56) with φ(tnk1 ) = δ0 and φ(s) ≤ δ0

for s ≤ tnk1 , and we may choose φ such that |z(t)| ≤ 1 for t ≥ tnk1 and

φ(tnk1 )−
∫ tnk1

tnk1
−r(tnk1 )

(
v(s)− a(s)− p′(s)

p(s)

)
φ(s) ds

−
p2(tnk1 − r(tnk1 ))

2p(tnk1 )

c(tnk1 )

1− r′(tnk1 )
φ2(tnk1 − r(tnk1 )) ≥ 1

2
δ0. (4.60)

So, it follows from (4.60) with z(t) = (Pz)(t) that for k ≥ k1,∣∣∣∣∣z(tnk)− p2(tnk − r(tnk))

2p(tnk)

c(tnk)

1− r′(tnk)
z2(t− r(tnk))

−
∫ tnk

tnk−r(tnk )

[
v(s)− a(s)− p′(s)

p(s)

]
z(s) ds

∣∣∣∣∣
≥ 1

2
δ0e
−
∫ tnk
tnk1

v(u) du
−
∫ tnk

tnk1

e−
∫ tnk
s v(u) duw(s) ds

= e
−
∫ tnk
tnk1

v(u) du

[
1

2
δ0 − e−

∫ tnk1
0 v(u) du

∫ tnk

tnk1

e
∫ s
0 v(u) duw(s) ds

]

≥ e
−
∫ tnk
tnk1

v(u) du

[
1

2
δ0 − J

∫ tnk

tnk1

e
∫ s
0 v(u) duw(s) ds

]

≥ 1

4
δ0e
−
∫ tnk
tnk1

v(u) du
≥ 1

4
δ0e
−2M > 0. (4.61)

On the other hand, if the solution of (4.56) z(t) = z(t, tnk1 , φ)→ 0 as t→∞. Since tnk−r(tnk)→
∞ as k →∞, and (ii) holds, we have

z(tnk)− p2(tnk − r(tnk))

2p(tnk)

c(tnk)

1− r′(tnk)
z2(t− r(tnk))

−
∫ tnk

tnk−r(tnk )

[
v(s)− a(s)− p′(s)

p(s)

]
z(s) ds→ 0 as k →∞,

100



4.2. A new criteria for stability of nonlinear functional di�erential equations

based on a �xed point method

which contradicts (4.61). Hence condition (iv) is necessary for the asymptotic stability of the

zero solution of (4.56).

Since p(t) is a positive bounded function, from the above arguments we obtain that (iv) is nec-

essary and su�cient condtion for the asymptotic stability of the zero solution of (4.48).

In case g(x) = x2 in (4.48), we have the following result.

Corollary 4.2.5. Suppose the following conditions are satis�ed:

(i) the delay r(t) is twice di�erentiable with r′(t) 6= 1, and t− r(t)→∞ as t→∞;

(ii) there exists a bounded function p : [r0,∞)→ (0,∞) with p(0) = 1 such that p′(t) exists on

[r0,∞), and there exists a constant α ∈ (0, 1), a constant l > 0 and an arbitrary continuous

functions v : [r0,∞)→ R such that

l

{∣∣∣∣∣c(t)p2(t− r(t))
p(t)(1− r′(t))

∣∣∣∣∣+

∫ t

0
|k(s)− 2b(s)|e−

∫ t
s v(u) du ds

}
(4.62)

+

∫ t

t−r(t)

∣∣∣∣∣v(s)− a(s)− p′(s)

p(s)

∣∣∣∣∣ ds
+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)

∣∣∣∣∣v(u)− a(u)− p′(u)

p(u)

∣∣∣∣∣ du ds
+

∫ t

0
e−
∫ t
s v(u) du

∣∣∣∣∣v(s− r(s))− a(s− r(s))− p′(s− r(s))
p(s− r(s))

∣∣∣∣∣|1− r′(s)| ds ≤ α,
where k(s) is de�ned as in (4.52),

b(s) =
b(s)p2(s− r(s)) + c(s)p(s− r(s))p′(s− r(s))

p(s)
; (4.63)

(iii) and such that

lim inf
t→∞

∫ t

0
v(s) ds > −∞.

Then the zero solution x(t, φ) of (4.48) with a small continuous function φ(t) is asymptot-

ically stable if and only if

(iv) ∫ t

0
v(s) ds→∞ as t→∞.

Let p(t) ≡ 1 in Corollary 4.2.5, we have the following.

Corollary 4.2.6. Suppose the following conditions are satis�ed:

(i) the delay r(t) is twice di�erentiable with r′(t) 6= 1, and t− r(t)→∞ as t→∞;
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(ii) there exists a constant α ∈ (0, 1), a constant l > 0 and a continuous functions v : [r0,∞)→
R such that

l

{∣∣∣∣∣ c(t)

1− r′(t)

∣∣∣∣∣+

∫ t

0
|k(s)− 2b(s)|e−

∫ t
s v(u) du ds

}
+

∫ t

t−r(t)
|v(s)− a(s)| ds

+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)
|v(u)− a(u)| du ds

+

∫ t

0
e−
∫ t
s v(u) du |v(s− r(s))− a(s− r(s))| |1− r′(s)| ds ≤ α,

where

k(s) =
[c(s)a(s) + c′(s)](1− r′(s)) + c(s)r′′(s)

(1− r′(s))2
;

(iii) and such that

lim inf
t→∞

∫ t

0
v(s) ds > −∞.

Then the zero solution x(t, φ) of (4.48) with a small continuous function φ(t) is asymptot-

ically stable if and only if

(iv) ∫ t

0
v(s) ds→∞ as t→∞.

4.2.3 Proof of Theorem 4.2.3

In this subsection, we will prove Theorem 4.2.3. We start with some preparations. First de�ne

Slφ =

{
ϕ | ϕ ∈ C([r0,∞),R), ‖ϕ‖ = sup

ϕ≥r0
|ϕ(t)| ≤ l, ϕ(t) = φ(t) for t ∈ [r0, 0],

ϕ(t)→ 0 as t→∞

}
.

Then Slφ is complete metric space with metric ρ(x, y) = supt≥r0{|x(t)− y(t)|}.

Let z(t) = φ(t) on [r0, 0], and let

x(t) = p(t)z(t), for t ≥ 0. (4.64)

If we substitute (4.64) into (4.49), we obtain

z′(t) = −
(
a(t) +

p′(t)

p(t)

)
z(t) +

c(t)p(t− r(t))p′(t− r(t))
p(t)

z2(t− r(t)) (4.65)

+
c(t)p2(t− r(t))

p(t)
z(t− r(t))z′(t− r(t)) +

∫ t

t−r(t)

pγ(s)K(t, s)

p(t)
g(z(s)) ds.
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Since p(t) is bounded, we only need to prove that the zero solution of (4.65) is asymptotically

stable.

If we multiply both sides of (4.65) by e
∫ t
0 v(s) ds, integrate from 0 to t, and perform an inte-

gration by parts, we obtain

z(t) =

{
φ(0)−

∫ 0

−r(0)

[
v(s)− a(s)− p′(s)

p(s)

]
φ(s) ds− p2(−r(0))

2p(0)

c(0)

1− r′(0)
φ2(−r(0))

}
×e−

∫ t
0 v(s) ds

+
p2(t− r(t))

2p(t)

c(t)

1− r′(t)
z2(t− r(t)) +

∫ t

t−r(t)

[
v(s)− a(s)− p′(s)

p(s)

]
z(s) ds

−
∫ t

0
e−
∫ t
s v(u) duv(s)

∫ s

s−r(s)

[
v(u)− a(u)− p′(u)

p(u)

]
z(u) du ds

+

∫ t

0
e−
∫ t
s v(u) du

[
v(s− r(s))− a(s− r(s))− p′(s− r(s))

p(s− r(s))

]
(1− r′(s))z(s− r(s)) ds

−1

2

∫ t

0
e−
∫ t
s v(u) du

[
k(s)− 2b1(s)

]
z2(s− r(s)) ds

+

∫ t

0
e−
∫ t
s v(u) du

∫ s

s−r(s)

K(s, u)pγ(u)

p(s)
g(z(u)) du ds

where k(s) and b1(s) are de�ned as in (4.52) and (4.53) respectively.

Lemma 4.2.7. Let ϕ(t) ∈ Slφ and de�ne an operator by Pϕ(t) = φ(t) for t ∈ [r0, 0] and for

t ≥ 0,

(Pϕ)(t) =
7∑
i=1

Ii(t), (4.66)

where

I1(t) =

{
φ(0)−

∫ 0

−r(0)

[
v(s)− a(s)− p′(s)

p(s)

]
φ(s) ds− p2(−r(0))

2p(0)

c(0)

1− r′(0)
φ2(−r(0))

}
×e−

∫ t
0 v(s) ds

I2(t) =
p2(t− r(t))

2p(t)

c(t)

1− r′(t)
ϕ2(t− r(t)),

I3(t) =

∫ t

t−r(t)

[
v(s)− a(s)− p′(s)

p(s)

]
ϕ(s) ds,

I4(t) = −
∫ t

0
e−
∫ t
s v(u) duv(s)

∫ s

s−r(s)

[
v(u)− a(u)− p′(u)

p(u)

]
ϕ(u) du ds,
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I5(t) =

∫ t

0
e−
∫ t
s v(u) du

[
v(s− r(s))− a(s− r(s))− p′(s− r(s))

p(s− r(s))

]
(1− r′(s))ϕ(s− r(s)) ds,

I6(t) = −1

2

∫ t

0
e−
∫ t
s v(u) du

(
k(s)− 2b1(s)

)
ϕ2(s− r(s)) ds,

I7(t) =

∫ t

0
e−
∫ t
s v(u) du

∫ s

s−r(s)

K(s, u)pγ(u)

p(s)
g(ϕ(u)) du ds.

If conditions (i)-(iii) in Theorem 4.2.3 are satis�ed, then there exists δ > 0 such that for any

φ : [r0, 0]→ (−δ, δ), we have that P : Slφ → Slφ and P is a contraction with respect to the metric

de�ned on Slφ.

Proof. Set J = supt≥0

{
e−
∫ t
0 v(s) ds

}
, by (iii), J is well de�ned. Suppose that (iii) holds.

By using the similar arguments as in section 3.2.2, we obtain that Pϕ ∈ Slφ. Now, we show that

P is a contraction mapping. In fact, for ϕ, η ∈ S, by using condition (4.54) in Theorem 4.2.3,

we obtain that

|(Pϕ)(t)− (Pη)(t)|

≤

∣∣∣∣∣p2(t− r(t))
2p(t)

c(t)

1− r′(t)

∣∣∣∣∣2l ‖ϕ− η‖+

∫ t

t−r(t)

∣∣∣∣∣v(s)− a(s)− p′(s)

p(s)

∣∣∣∣∣ · ‖ϕ− η‖ ds
+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)

∣∣∣∣∣v(u)− a(u)− p′(u)

p(u)

∣∣∣∣∣ · ‖ϕ− η‖ du ds
+

∫ t

0
e−
∫ t
s v(u) du

∣∣∣∣∣v(s− r(s))− a(s− r(s))− p′(s− r(s))
p(s− r(s))

∣∣∣∣∣|1− r′(s)|‖ϕ− η‖ ds
+

1

2

∫ t

0
|k(s)− 2b1(s)| · 2l · ‖ϕ− η‖

+L

∫ t

0
e−
∫ t
s v(u) du

∫ s

s−r(s)

|K(s, u)|pγ(u)

p(s)
du · ‖ϕ− η‖ ds ≤ α‖ϕ− η‖.

Hence, we obtain that P : Slφ → Slφ is a contraction.

We are now ready to prove Theorem 4.2.3.

Proof. Let P be de�ned as in Lemma 4.2.7. By the contraction mapping principle, P has a

unique �xed point z in Slφ which is a solution of (4.49) with z(t) = φ(t) on [r0, 0] and z(t)→ 0

as t→∞.

Let ε > 0 be given, then we choose m > 0 so that m < min{l, ε}. Replacing l with m in

Slφ, we obtain there is a δ > 0 such that ‖φ‖ < δ implies that the unique solution of (4.49) with

z(t) = φ(t) on [r0, 0] sati�es |z(t)| ≤ m < ε for all t ≥ r0. This shows that the zero solution of

(4.49) is asymptotically stable if (iv) holds.

Following the similar arguments as the proof of Theorem 4.2.1, we have that (v) is necessary for

the asymptotic stability of the zero solution of (4.49). The proof is complete.
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In case g(x) = x2, we have the following corollary.

Corollary 4.2.8. Suppose the following conditions are satis�ed:

(i) the delay r(t) is twice di�erentiable, r′(t) 6= 1, t− r(t)→∞ as t→∞;

(ii) there exists a bounded function p : [r0,∞)→ (0,∞) with p(0) = 1 such that p′(t) exists on

[r0,∞), and there exists a constant α ∈ (0, 1), a constant l > 0 and a continuous functions

v : [r0,∞)→ R such that

l

{∣∣∣∣∣c(t)p2(t− r(t))
p(t)(1− r′(t))

∣∣∣∣∣+

∫ t

0

[
|k(s)− 2b1(s)|

+2

∫ s

s−r(s)

∣∣∣∣∣K(s, u)p2(u)

p(s)

∣∣∣∣∣ du
]
e−
∫ t
s v(u) du ds

}
+

∫ t

t−r(t)

∣∣∣∣∣v(s)− a(s)− p′(s)

p(s)

∣∣∣∣∣ ds
+

∫ t

0
e−
∫ t
s v(u) du

∣∣∣∣∣v(s− r(s))− a(s− r(s))− p′(s− r(s))
p(s− r(s))

∣∣∣∣∣|1− r′(s)| ds
+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)

∣∣∣∣∣v(u)− a(u)− p′(u)

p(u)

∣∣∣∣∣ du ds ≤ α, (4.67)

where k(s) and b1(s) are de�ned as in (4.52) and (4.53);

(iii) and such that

lim inf
t→∞

∫ t

0
v(s) ds > −∞.

Then the zero solution of x(t, φ) of (4.49) with a small continuous function φ(t) is asymp-

totically stable if and only if

(iv) ∫ t

0
v(s) ds→∞ as t→∞.

Let p(t) ≡ 1 in Corollary 4.2.8, we have the following result.

Corollary 4.2.9. Suppose the following conditions are satis�ed:

(i) the delay r(t) is twice di�erentiable with r′(t) 6= 1, and t− r(t)→∞ as t→∞;

(ii) there exists a constant α ∈ (0, 1) and a constant l > 0 and a continuous functions v :

[r0,∞)→ R such that

l

{∣∣∣∣ c(t)

1− r′(t)

∣∣∣∣+

∫ t

0

[
|k(s)|+ 2

∫ s

s−r(s)
|K(s, u)| du

]
e−
∫ t
s v(u) du ds

}

+

∫ t

t−r(t)
|v(s)− a(s)| ds+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)
|v(u)− a(u)| du ds

+

∫ t

0
e−
∫ t
s v(u) du |v(s− r(s))− a(s− r(s))| |1− r′(s)| ds ≤ α, (4.68)
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where

k(s) =
[c(s)a(s) + c′(s)](1− r′(s)) + c(s)r′′(s)

(1− r′(s))2
;

(iii) and such that

lim inf
t→∞

∫ t

0
v(s) ds > −∞.

Then the zero solution of x(t, φ) of (4.49) with a small continuous function φ(t) is asymp-

totically stable if and only if

(iv) ∫ t

0
v(s) ds→∞ as t→∞.

4.2.4 Examples of the main results

Example 4.2.10. Consider the following nonlinear neutral di�erential equation

x′(t)− c(t)x(t− r(t))x′(t− r(t)) = −a(t)x(t) + b(t)x2(t− r(t)) (4.69)

for t ≥ 0, where a(t) = 2
t+1 , c(t) = 0.95, r(t) = 0.05t, l = 1, b(t) satis�es |k(s)− 2b(s)| ≤ 0.3

s+1 ,

then the zero solution of (4.69) is asymptotically stable.

Proof. We check the condition (4.62) in Corollary 4.2.5, choosing v(t) = 1.5
t+1 and p(t) = 1

t+1 ,∣∣∣∣∣c(t)p2(t− r(t))
p(t)(1− r′(t))

∣∣∣∣∣ =
t+ 1

(0.95t+ 1)2
< 0.36,∫ t

0
e−
∫ t
s v(u) du|k(s)− 2b(s)| ds ≤

∫ t

0
e−
∫ t
s

1.5
u+1

du 0.3

s+ 1
ds < 0.2,∫ t

t−r(t)
|v(s)− a(s)− p′(s)

p(s)
| ds =

∫ t

0.95t

0.5

s+ 1
ds < 0.026,∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)
|v(u)− a(u)− p′(u)

p(u)
| du ds < 0.026,

∫ t

0
e−
∫ t
s v(u) du

∣∣∣∣v(s− r(s))− a(s− r(s))− p′(s− r(s))
p(s− r(s))

∣∣∣∣ |1− r′(s)| ds
=

∫ t

0
e−
∫ t
s

1.5
u+1

du 0.5

0.95s+ 1
× 0.95 ds < 0.33.

Hence, we have

l

{∣∣∣∣c(t)p2(t− r(t))
p(t)(1− r′(t))

∣∣∣∣+

∫ t

0
e−
∫ t
s v(u) du|k(s)− 2b(s)| ds

}
+

∫ t

t−r(t)

∣∣∣∣v(s)− a(s)− p′(s)

p(s)

∣∣∣∣ ds+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)

∣∣∣∣v(u)− a(u)− p′(u)

p(u)

∣∣∣∣ du ds
+

∫ t

0
e−
∫ t
s v(u) du

∣∣∣∣v(s− r(s))− a(s− r(s))− p′(s− r(s))
p(s− r(s))

∣∣∣∣ |1− r′(s)| ds
< 0.36 + 0.026 + 0.026 + 0.33 + 0.2 = 0.941 < 1,
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and since
∫ t

0 v(s) ds =
∫ t

0
1.5
s+1 ds = 1.5 ln(t + 1) → ∞ as t → ∞, p(t) ≤ 1, so the conditions of

Corollary 4.2.5 are satis�ed. Therefore, the zero solution of (4.69) is asymptotically stable.

However,
∣∣∣ c(t)

1−r′(t)

∣∣∣ = 1, the result in [34] is not applicable.

Example 4.2.11. Consider the following nonlinear neutral Volterra integral equation

x′(t)− c(t)x(t− r(t))x′(t− r(t)) = −a(t)x(t) +

∫ t

t−r(t)
K(t, s)x2(s) ds (4.70)

for t ≥ 0, where a(t) = 2.5
t+0.1 , c(t) = (0.95t+0.1)2

t+0.1 , r(t) = 0.05t, l = 1, K(t, s) = 1
t+0.1 , then the

zero solution of (4.70) is asymptotically stable.

Proof. We check the condition (4.67) in Corollary 4.2.8, choosing v(t) = 2
t+0.1 and p(t) = 0.1

t+0.1 ,∣∣∣∣c(t)p2(t− r(t))
p(t)(1− r′(t))

∣∣∣∣ =
0.1

0.95
< 0.106,

b1(s) =
c(s)p(s− r(s))p′(s− r(s))

p(s)
= − 0.1

0.95s+ 0.1
,

c(s) =
c(s)p2(s− r(s))

p(s)
= 0.1,

k(s) =
[c(s)v(s) + c′(s)](1− r′(s)) + c(s)r′′(s)

(1− r′(s))2
=

0.2

0.95(s+ 0.1)
,

∫ t

0

[
|k(s)− 2b1(s)|+ 2

∫ s

s−r(s)

∣∣∣∣K(s, u)p2(u)

p(s)

∣∣∣∣ du
]
e−
∫ t
s v(u) du ds

≤
∫ t

0
e−
∫ t
s

2
u+0.1

du

∣∣∣∣ 0.2

0.95(s+ 0.1)
+

0.2

0.95s+ 0.1

∣∣∣∣ ds
+2

∫ t

0
e−
∫ t
s

2
u+0.1

du
∫ s

0.95s

0.1

(u+ 0.1)2
du ds

<
0.1

0.95
+

0.1

0.95
+ 0.2×

(
1

0.95× 2
+

1

2

)
< 0.416,

∫ t

t−r(t)

∣∣∣∣v(s)− a(s)− p′(s)

p(s)

∣∣∣∣ ds < 0.026,∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)

∣∣∣∣v(u)− a(u)− p′(u)

p(u)

∣∣∣∣ du ds < 0.026,

∫ t

0
e−
∫ t
s v(u) du

∣∣∣∣v(s− r(s))− a(s− r(s))− p′(s− r(s))
p(s− r(s))

∣∣∣∣ |1− r′(s)| ds
=

∫ t

0
e−
∫ t
s

2
u+1

du 0.5

0.95s+ 0.1
× 0.95 ds < 0.25.
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Hence,

l

{∣∣∣∣c(t)p2(t− r(t))
p(t)(1− r′(t))

∣∣∣∣+

∫ t

0

[
|k(s)− 2b1(s)|

+2

∫ s

s−r(s)

∣∣∣∣K(s, u)p2(u)

p(s)

∣∣∣∣ du
]
e−
∫ t
s v(u) du ds

}
+

∫ t

t−r(t)

∣∣∣∣v(s)− a(s)− p′(s)

p(s)

∣∣∣∣ ds
+

∫ t

0
e−
∫ t
s v(u) du|v(s)|

∫ s

s−r(s)

∣∣∣∣v(u)− a(u)− p′(u)

p(u)

∣∣∣∣ du ds
+

∫ t

0
e−
∫ t
s v(u) du

∣∣∣∣v(s− r(s))− a(s− r(s))− p′(s− r(s))
p(s− r(s))

∣∣∣∣ |1− r′(s)| ds
< 0.106 + 0.416 + 0.026 + 0.026 + 0.25 = 0.824 < 1,

and since
∫ t

0 v(s) ds =
∫ t

0
2

s+0.1 ds = 2 ln(t+ 0.1) → ∞ as t → ∞, p(t) ≤ 1, so the conditions of

Corollary 4.2.8 are satis�ed. Therefore, the zero solution of (4.70) is asymptotically stable.

However,
∣∣∣ c(t)

1−r′(t)

∣∣∣ = (0.95t+0.1)2

0.95(t+0.1) →∞ as t→∞, the result in [34] is not applicable.

4.3 Stability of nonlinear di�erence equations based on a �xed

point method

4.3.1 Introduction and main results

In this section, we study the stability of zero solution of the nonlinear delay di�erence equation

of the form

∆x(n) = −a(n)f(x(n− τ(n))), (4.71)

using a �xed point method, where ∆ is a forward di�erence operator de�ned by ∆x(n) =

x(n + 1) − x(n), a : Z+ → R, τ : Z+ → Z+ with n − τ(n) → ∞ as n → ∞, and we de�ne

m(0) = inft≥0{n − τ(n)}. Assume that f is continuous, locally Lipschitz, and odd, while

x − f(x) is nondecreasing and f(x) is increasing on an interval [0, l] for some l > 0. We say

x(n) = x(n, 0, φ) is a solution of (4.71) if x(n) = φ(n) on [m(0), 0] ∩ Z and x(n) satis�es (4.71)

for n ∈ Z+.

De�nition 4.3.1. The zero solution of (4.71) is said to be stable at n = 0 if for every ε > 0, there

exists a δ > 0 such that φ : [m(0), 0]∩Z→ (−δ, δ) implies that |x(n)| < ε for n ∈ [m(0),∞)∩Z.

De�nition 4.3.2. The zero solution of (4.71) is said to be asymptotically stable at n = 0 if it

is stable at n = 0 and a δ > 0 exists such that for any continuous function φ : [m(0), 0] ∩ Z →
(−δ, δ), the solution x(n) = φ(n) on [m(0), 0] ∩ Z and tends to zero as n→∞.

Some articles [65, 111, 135] have studied the the special cases of (4.71) by means of �xed point

theory. Ra�oul [111] studied the following linear di�erence equation with constant delay

∆x(n) = −a(n)x(n− τ). (4.72)

Jin and Luo [65] considered the generalized form of (4.72),

∆x(n) = −a(n)f(x(n− τ)), (4.73)

where f is continuous function, and obtained the following.
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Theorem 4.3.3. (Jin and Luo [65]) Let f be odd, increasing on [0, l], satisfy a Lipschitz condi-

tion, and let x− f(x) be nondecreasing on [0, l]. Suppose that |a(n)| < 1 and for each l1 ∈ (0, l]

we have

|l1 − f(l1)| sup
n∈Z+

n−1∑
s=0

|a(s+ τ)|
n−1∏
k=s+1

[1− a(k + τ)]

+f(l1) sup
n∈Z+

n−1∑
s=0

|a(s+ τ)|
n−1∏
k=s+1

[1− a(k + τ)]

s−1∑
u=s−τ

|a(u+ τ)|

+f(l1) sup
n∈Z+

n−1∑
s=n−τ

|a(s+ τ)| < αl1

Then the zero solution of (4.73) is stable.

For the case when the delays are variable, Yankson [135] investigated the following delay di�er-

ence equation

∆x(n) = −a(n)x(n− τ(n))

and its generalization

∆x(n) = −
N∑
j=1

aj(n)x(n− τj(n)) (4.74)

and obtained the following two theorems.

Theorem 4.3.4. (Yankson [135]) Suppose that the inverse function gj(n) of n − τj(n) exists,

and assume that there exists a constant α ∈ (0, 1) such that

n−1∑
s=0

[∣∣∣∣∣
N∑
j=1

aj(gj(s))

∣∣∣∣∣
∣∣∣∣∣
n−1∏
k=s+1

[1−
N∑
j=1

aj(gj(k))]

∣∣∣∣∣
N∑
j=1

s−1∑
u=s−τj(s)

∣∣∣∣∣aj(gj(u))

∣∣∣∣∣
]

+

N∑
j=1

n−1∑
s=n−τj(n)

|aj(gj(s))| ≤ α.

Moreover, assume that there exists a positive constant M such that∣∣∣∣∣
n−1∏
s=0

[
1−

N∑
j=1

aj(gj(s))

]∣∣∣∣∣ ≤M
Then the zero solution of (4.74) is stable.

Theorem 4.3.5. (Yankson [135]) Assume that the hypotheses of Theorem 4.3.4 hold. Also

assume that

n−1∏
k=0

[
1−

N∑
j=1

aj(gj(k))

]
→ 0 as n→∞. (4.75)

Then the zero solution of (4.74) is asymptotically stable.
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It is our aim to study a class of nonlinear delay di�erence equations (4.71) using �xed point

theory. This class of equations is more general than the equations considered in [65, 111, 135].

Our method of proof will be a �xed point approach similar to the one used in [65, 111, 135].

Theorem 4.3.6. Consider the nonlinear delay di�erence equation (4.71) and suppose that the

following conditions are satis�ed

(i) the function f is odd, increasing on [0, l];

(ii) assume that f(x), x− f(x) satisfy a Lipschitz condition with constant

K > 0 on an interval [−l, l], x− f(x) is nondecreasing on [0, l];

(iii) suppose that the inverse function g(n) of n− τ(n) exists and |a(g(n))| < 1;

(iv) there exists a constant α ∈ (0, 1) such that

n−1∑
s=0

|a(g(s))|
n−1∏
k=s+1

|1− a(g(k))|+
n−1∑

s=n−τ(n)

|a(g(s))|

+
n−1∑
s=0

|a(g(s))|
n−1∏
k=s+1

|1− a(g(k))|
s−1∑

u=s−τ(s)

|a(g(u))| ≤ α. (4.76)

Then the zero solution of (4.71) is stable.

Theorem 4.3.7. Assume that the hypotheses of Theorem 4.3.6 hold. Also assume that

n−1∏
k=0

[1− a(g(k))]→ 0 as n→∞. (4.77)

Then the zero solution of (4.71) is asymptotically stable.

4.3.2 Proof of Theorem 4.3.6

In this subsection, we will prove Theorem 4.3.6. We start with some preparations. First we

write (4.71) as the following form

∆x(n) = −a(g(n))f(x(n)) + ∆n

n−1∑
s=n−τ(n)

a(g(s))f(x(s)) (4.78)

= −a(g(n))x(n) + a(g(n))[x(n)− f(x(n)] + ∆n

n−1∑
s=n−τ(n)

a(g(s))f(x(s))

where ∆n represents that the di�erence depends on n, (4.78) is equivalent to

x(n+ 1) = [1− a(g(n))]x(n) + a(g(n))[x(n)− f(x(n)] + ∆n

n−1∑
s=n−τ(n)

a(g(s))f(x(s)).
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From variation of parameters followed by summation by parts, we have

x(n) = x(0)
n−1∏
s=0

[1− a(g(s))]−
n−1∏
u=0

[1− a(g(u))]
−1∑

s=−τ(0)

a(g(s))f(x(s))

+
n−1∑
s=0

a(g(s))
n−1∏
k=s+1

[1− a(g(k))][x(s)− f(x(s))]

+
n−1∑

s=n−τ(n)

a(g(s))f(x(s))−
n−1∑
s=0

a(g(s))
n−1∏
k=s+1

[1− a(g(k))]
s−1∑

u=s−τ(s)

a(g(u))f(x(u))

Let D(0) the set of bounded sequences ϕ : [m(0),∞) ∩ Z → R with the supremum norm ‖ · ‖.
Also, let (C, ‖ · ‖) be the Banach space of real sequences ϕ : [m(0),∞) ∩ Z → R with the

supremum norm ‖ · ‖. For any sequence ϕ with ‖ϕ‖ ≤ l we de�ne

S lφ = {ϕ | ϕ ∈ C, ϕ(n) = φ(n) for n ∈ [m(0), 0] ∩ Z, |ϕ(n)| ≤ l} .

Then (S lφ, ‖ · ‖) is a complete space.

Lemma 4.3.8. Let ϕ ∈ S lφ. De�ne an operator by Pϕ(n) = φ(n) for n ∈ [m(0), 0] ∩ Z, and for

n ∈ Z+,

(Pϕ)(n) =

[
φ(0)−

−1∑
s=−τ(0)

a(g(s))f(φ(s))

]
n−1∏
s=0

[1− a(g(s))]

+
n−1∑
s=0

a(g(s))
n−1∏
k=s+1

[1− a(g(k))][ϕ(s)− f(ϕ(s))]

+

n−1∑
s=n−τ(n)

a(g(s))f(ϕ(s))−
n−1∑
s=0

a(g(s))

n−1∏
k=s+1

[1− a(g(k))]

s−1∑
u=s−τ(s)

a(g(u))f(ϕ(u)).

(4.79)

If conditions (i)-(iv) in Theorem 4.3.6 are satis�ed, then there exists δ > 0 such that for any

φ : [m(0), 0] → (−δ, δ), we have that P : Slφ → Slφ and P is a contraction mapping with respect

to the metric de�ned on Slφ.

Proof. For every ϕ ∈ S lφ, we have

|(Pϕ)(n)| ≤ ‖φ‖+

−1∑
s=−τ(0)

|a(g(s))|‖f(φ)‖+ f(l)

n−1∑
s=n−τ(n)

|a(g(s))|

+ (l − f(l))

n−1∑
s=0

|a(g(s))|
n−1∏
k=s+1

|1− a(g(k))|

+f(l)


n−1∑
s=0

|a(g(s))|
n−1∏
k=s+1

|1− a(g(k))|
s−1∑

u=s−τ(s)

|a(g(u))|


≤ ‖φ‖+

−1∑
s=−τ(0)

|a(g(s))|‖f(φ)‖+ (l − f(l))α+ f(l)α
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= ‖φ‖+
−1∑

s=−τ(0)

|a(g(s))|‖f(φ)‖+ lα.

Choose δ > 0 such that ‖φ‖ < δ, the Lipschitz constant K for f on [0, l] implies that δ +

Kδ
∑−1

s=−τ(0) |a(g(s))| ≤ (1− α)l, then we have |(Pϕ)(n)| ≤ l. Hence, Pϕ ∈ S lφ.

Suppose that d > max{3, 1/K}. If we de�ne a metric on S lφ as follows,

|ϕ− η|K := sup
n∈Z+

n−1∏
j=0

1− |a(g(j))|
dK[1 + |a(g(j))|]

|ϕ(n)− η(n)|, (4.80)

then (S lφ, | · |K) is a complete metric space.

Next, we show that P is a contraction mapping on S lφ with respect to the metric (4.80). For

ϕ, η ∈ S lφ, we have

|(Pϕ)(t)− (Pη)(t)|

≤
n−1∑
s=0

|a(g(s))|
n−1∏
k=s+1

|1− a(g(k))||ϕ(s)− f(ϕ(s))− η(s) + f(η(s))|

+
n−1∑

s=n−τ(n)

|a(g(s))||f(ϕ(s))− f(η(s))|

+
n−1∑
s=0

|a(g(s))|
n−1∏
k=s+1

|1− a(g(k))|
s−1∑

u=s−τ(s)

|a(g(u))||f(ϕ(u))− f(η(u))|. (4.81)

Let h(x) := x − f(x), then h(x) satis�es a Lipschitz condition with constant K > 0 on an

interval [−l, l]. If we multiply both sides of (4.81) by

n−1∏
j=0

1− |a(g(j))|
dK[1 + |a(g(j))|]

,

then the �rst term on the right-hand side of (4.81) becomes

n−1∏
j=0

1− |a(g(j))|
dK[1 + |a(g(j))|]

n−1∑
s=0

|a(g(s))|
n−1∏
k=s+1

|1− a(g(k))||h(ϕ(s))− h(η(s))|

≤ K
n−1∑
s=0

|a(g(s))|[1− |a(g(s))|]
dK[1 + |a(g(s))|]

s−1∏
j=0

1− |a(g(j))|
dK[1 + |a(g(j))|]

|ϕ(s)− η(s)|

×
n−1∏
k=s+1

|1− a(g(k))|[1− |a(g(k))|]
dK[1 + |a(g(k))|]

≤ 1

d
|ϕ− η|K

n−1∑
s=0

|a(g(s))|
n−1∏
k=s+1

[1− |a(g(k))|] ≤ 1

d
|ϕ− η|K .
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Similarly, we have

n−1∏
j=0

1− |a(g(j))|
dK[1 + |a(g(j))|]

n−1∑
s=n−τ(n)

|a(g(s))||f(ϕ(s))− f(η(s))|

≤ K
n−1∑

s=n−τ(n)

|a(g(s))|[1− |a(g(s))|]
dK[1 + |a(g(s))|]

s−1∏
j=0

1− |a(g(j))|
dK[1 + |a(g(j))|]

|ϕ(s)− η(s)|

×
n−1∏
k=s+1

1− |a(g(k))|
dK[1 + |a(g(k))|]

≤ 1

d
|ϕ− η|K

n−1∑
s=n−τ(n)

|a(g(s))|
n−1∏
k=s+1

[1− |a(g(k))|] ≤ 1

d
|ϕ− η|K ,

and

n−1∏
j=0

1− |a(g(j))|
dK[1 + |a(g(j))|]

n−1∑
s=0

|a(g(s))|
n−1∏
k=s+1

|1− a(g(k))|

×
s−1∑

u=s−τ(s)

|a(g(u))||f(ϕ(u))− f(η(u))|

≤ K
n−1∑
s=0

|a(g(s))|[1− |a(g(s))|]
dK[1 + |a(g(s))|]

n−1∏
k=s+1

|1− a(g(k))|[1− |a(g(k))|]
dK[1 + |a(g(k))|]

×
s−1∑

u=s−τ(s)

|a(g(u))|
u−1∏
j=0

1− |a(g(u))|
dK[1 + |a(g(u))|]

|ϕ(u)− η(u)|
s−1∏
j=u

1− |a(g(j))|
dK[1 + |a(g(j))|]

≤ 1

d
|ϕ− η|K

n−1∑
s=0

|a(g(s))|
n−1∏
k=s+1

[1− |a(g(k))|]
s−1∑

u=s−τ(s)

|a(g(u))|
s−1∏
j=u

[1− |a(g(j))|]

≤ 1

d
|ϕ− η|K .

Hence, |Pϕ− Pη|K ≤ 3
d |ϕ− η|K , since d > 3, we have that P is a contraction mapping on S lφ.

We are now ready to prove Theorem 4.3.6.

Proof. Let P be de�ned as in Lemma 4.3.8. By the contraction mapping principle, P has a

unique �xed point in S lφ, which is a solution of (4.71) with x(n) = φ(n) on [m(0), 0] ∩ Z.

To prove stability at n = 0, let ε > 0 be given, then we choose m > 0 so that m < min{l, ε}. By
considering Smφ , we obtain there is a δ > 0 such that ‖φ‖ < δ implies that the unique solution

of (4.71) with x(n) = φ(n) on [m(0), 0]∩Z sati�es |x(n)| ≤ m < ε for all n ≥ m(0). This shows

that the zero solution of (4.71) is stable.

4.3.3 Proof of Theorem 4.3.7

In this subsection, we will prove Theorem 4.3.7.
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Proof. From Theorem 4.3.6, the zero solution of (4.71) is stable. Let φ ∈ D(0) such that φ(n) < δ

and de�ne the space

Sεφ = {ϕ | ϕ ∈ C, ϕ(n) = φ(n) for n ∈ [m(0), 0] ∩ Z, |ϕ(n)| ≤ ε and ϕ(n)→ 0 as n→∞} .

Then Sεφ is a complete metric space with respect to the metric (4.80). De�ne P : Sεφ → Sεφ by

(4.79). From the proof of Theorem 4.3.6, the mapping P is a contraction and for every ϕ ∈ Sεφ,
‖Pϕ‖ ≤ ε.

Next, we show that (Pϕ)(n) → 0 as n → ∞. The �rst term on the right side of (4.79) goes to

zero because of condition (4.77). Consider the second term on the right side of (4.79),

|I2| :=

∣∣∣∣∣
n−1∑
s=0

a(g(s))
n−1∏
k=s+1

[1− a(g(k))][ϕ(s)− f(ϕ(s))]

∣∣∣∣∣
≤ K

n−1∑
s=0

|a(g(s))|
n−1∏
k=s+1

|1− a(g(k))||ϕ(s)| ≤ Kαε,

which yields that I2 → 0 as n→∞. It is clear that

I3 :=
∑n−1

s=n−τ(n) a(g(s))f(ϕ(s)) goes to zero because of (4.76) and the fact ϕ(n)→ 0 as n→∞.

Now, we show that the last term on the right side of (4.79) goes to zero as n → ∞. Since

ϕ(n)→ 0 and n− τ(n)→∞ as n→∞, for every ε1 > 0, there exists N1 > 0 such that s > N1

implies ϕ(n− τ(n)) < ε1. Thus for n ≥ N1, the last term on the right side of (4.79) satis�es

|I4| :=

∣∣∣∣∣
n−1∑
s=0

a(g(s))

n−1∏
k=s+1

[1− a(g(k))]

s−1∑
u=s−τ(s)

a(g(u))f(ϕ(u))

∣∣∣∣∣
≤

N1−1∑
s=0

|a(g(s))|

∣∣∣∣∣
n−1∏
k=s+1

[1− a(g(k))]

∣∣∣∣∣
s−1∑

u=s−τ(s)

|a(g(u))||f(ϕ(u))|

+

n−1∑
s=N1

|a(g(s))|

∣∣∣∣∣
n−1∏
k=s+1

[1− a(g(k))]

∣∣∣∣∣
s−1∑

u=s−τ(s)

|a(g(u))||f(ϕ(u))|

≤ K max
0≥m(0)

|ϕ(0)|
N1−1∑
s=0

|a(g(s))|

∣∣∣∣∣
n−1∏
k=s+1

[1− a(g(k))]

∣∣∣∣∣
s−1∑

u=s−τ(s)

∣∣∣∣∣a(g(u))

∣∣∣∣∣
+Kε1

n−1∑
s=N1

|a(g(s))|

∣∣∣∣∣
n−1∏
k=s+1

[1− a(g(k))]

∣∣∣∣∣
s−1∑

u=s−τ(s)

|a(g(u))|.

Since ϕ(n)→ 0 as n→∞, there exisits N2 > N1 such that n > N2 implies

max
0≥m(0)

|ϕ(0)|
N1−1∑
s=0

|a(g(s))|

∣∣∣∣∣
n−1∏
k=s+1

[1− a(g(k))]

∣∣∣∣∣
s−1∑

u=s−τ(s)

|a(g(u))| < ε1.

Applying (4.76) we obtain |I4| ≤ Kαε1 + Kε1 < 2Kε1. Thus I4 → 0 as n → ∞. Hence

(Pϕ)(n)→ 0 as n→∞.

By the contraction mapping principle, P has a unique �xed point which is a solution of (4.71)

and goes to zero as n→∞. Therefore, the zero solution is asymptotically stable.
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4.4 Notes and remarks

In 1997 several investigators began a systematic study towards a comprehensive stability method

based on �xed point theory. Afterwards, a great deal of interesting results concerning stability

theory are published by employing this method, see the overview papers by Burton [8, 9, 11, 12],

Ra�oul [110, 111, 112], Ardjouni and Djoudi [5, 6], Djoudi and Khemis [34], Zhang [141], Jin

and Luo [63, 64, 65, 62], and Zhao [144, 145]. The book by Burton [13] o�ers a large collection

of examples investigated by �xed point theory as a viable tool.

In this chapter, we study the appoarch based on �xed point theory to general classes of e-

quations with delays. Section 4.1 includes the stability criteria of four classes of neutral delay

di�erential equations, our results in Section 4.1 extend and improve the work in [8, 11, 12, 13,

31, 34, 63, 110, 144] by considering more general classes of neutral delay di�erential equations.

Our results in Section 4.2 can be applied to the case when
∣∣∣ c(t)

1−r′(t)

∣∣∣ ≥ 1, which improve the work

in [34]. Our results in Section 4.3 concerns a class of nonlinear di�erence equations with variable

delays, which is a generalization of the work in [65, 111, 135].

A paper [16] based the contents of Section 4.1 has been submitted to a journal for possible

publication.

115





Chapter 5

Stability of neutral stochastic delay

di�erential equations with impulses

This chapter concerns the stability of two classes of neutral stochastic delay di�erential equa-

tions with impulses.

In Section 5.1, asymptotic stability of a class of neutral stochastic delay di�erential equations

with linear impulses is studied by means of �xed point methods. More speci�cally, two theorems

for the asymptotic stability of the equations are presented by using two complete metric spaces

which are de�ned by di�erent types of norms.

In Section 5.2, exponential stability of a class of neutral stochastic partial di�erential equations

with delays and impulses is investigated. The equation that will be considered in this section

is an in�nite dimensional stochastic di�erential equation with variable delays. The method by

using an impulsive-integral inequality and the method based on �xed point theory, are applied

to study exponential stability of mild solutions of the impulsive neutral stochastic partial delay

di�erential equations, respectively.

5.1 Asymptotic stability of a class of neutral stochastic delay

di�erential equations with linear impulses

5.1.1 Introduction and main results

A stochastic delay di�erential equation is a stochastic di�erential equation where the increment

of the process depends on values of the process (and maybe other functions) of the past. These

equations can be used to model processes with a memory.

Besides delay e�ect on the stochastic di�erential equations, impulsive e�ect is also a common

phnomenon in a wide range of physical and engineering systems including the biological stocking

or harvesting, the function of the heart, the change of an economy of a state, etc. For stochastic

di�erential equations which include delay e�ects and impulsive e�ects are described as impulsive

stochastic delay di�erential equations.

It was recently proposed by Luo [90] and Appleby [4] to use �xed point methods to deal with

the stability problems for stochastic delay di�erential equations. However, to the best of our

knowledge, the stochastic delay di�erential equations which have been studied by using �xed

points method are those without impulses.

Very recently, Li, Sun and Shi [75, 62, 76] obtained some interesting results for the stability
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impulses

of zero solution of stochastic delay di�erential equations with impulsive e�ects by using the

equivalent method. This method provides a way to study the stability of impulsive equations by

constructing an equivalent relation between the stability of stochastic delay di�erential equations

under impulses and that of a corresponding stochastic delay di�erential equations without im-

pulses. As a consequence of this approach, the su�cient conditions for the stability of stochastic

delay di�erential equations with impulses are obtained by using the existing stability results of

the corresponding stochastic delay di�erential equations without impulses.

The aim of this section is to combine the approach based on �xed point methods and the

equivalent method in order to study the stability of a general class of neutral stochastic de-

lay di�erential equations with linear impulses. For the class of equations, we �rst transform

the equations into the one without impulses, and then we use �xed point argument to obtain

the su�cient conditions for asymptotic stability of the considered equations. In particular, we

present two di�erent su�cient conditions for the asymptotic stability of the equations by using

two appropriate contraction mappings that are de�ned on di�erent complete metric spaces. It

turns out that our stability results for stochastic delay di�erential equations with impulses do

not depend on the existing stability results for the corresponding stochastic delay di�erential

equations without impulses.

The class of neutral stochastic di�erential equations that we will study in this section is of

the form 
d[x(t)− q(t)x(t− τ(t))] = [a(t)x(t) + b(t)x(t− τ(t))] dt

+[c(t)x(t) + e(t)x(t− δ(t))] dw(t), t 6= tk,

x(tk
+)− x(tk) = dkx(tk), t = tk, k = 1, 2, 3, · · · ,

(5.1)

where w is a one-dimensional standard Brownian motion on some �ltrated probability space

{Ω,F , {Ft}t≥0,P} which satis�es the usual conditions.

Denote by R = (−∞,∞), R+ = [0,∞), Z+ = {1, 2, 3, · · · }. De�ne

ϑ = min

{
inf
s≥t0
{s− τ(s)}, inf

s≥t0
{s− δ(s)}

}
and n(t) = max{k ∈ Z+ : tk < t}. For simplicity, we de�ne

∏
u≤tk<v(·) =

∏
k∈{k|k∈Z+,u≤tk<v}(·)

for all u, v ∈ R. Here and in the sequel, we assume that a product equals unity if the number of

factors is equal to zero.

A standard �xed point argument shows that the di�erential equation (5.1) provided with an

initial condition

x(t) = φ(t), t ∈ [ϑ, 0], (5.2)

where φ(t) ∈ C([ϑ, 0],R) de�nes a well-posed initial-value problem, and we denote x(t) := x(t, φ)

the solution of (5.1) with initial condition (5.2).

For equation (5.1) with initial condition (5.2), we suppose that the following conditions are

satis�ed
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equations with linear impulses

(H1) 0 ≤ t0 < t1 < t2 < t3 < · · · < tk < · · · are �xed impulsive points such that tk → ∞ for

k →∞;

(H2) a(t), b(t), c(t), e(t) ∈ C(R+,R) and τ(t), δ(t) ∈ C(R+,R+);

(H3) dk is a real sequence such that dk ∈ (−1,∞), k = 1, 2, 3, · · · .

De�nition 5.1.1. For any φ ∈ C([ϑ, 0],R), a function x : [ϑ,∞) → R denoted by x(t, 0, φ) is

said to be a solution of the system (5.1) on [0,∞) satisfying the initial value condition (5.2), if

the following conditions are satis�ed:

(i) x : [ϑ,∞) → L2(Ω,R) is continuous on [ϑ,∞)\{tk : k = 1, 2, 3, · · · } and adapted to

(Ft)t≥0.

(ii) for any tk, k = 1, 2, 3, · · · , x(tk
+) = limt→tk+ x(t) and x(tk

−) = limt→tk− x(t) exist

in L2(Ω,P) and x(tk
−) = x(t), i.e. there exist x(tk

+), x(tk
−) ∈ L2(Ω,P) such that

limt→tk+ E|x(tk
+)− x(t)|2 = 0, limt→tk− E|x(tk

−)− x(t)|2 = 0 and x(tk
−) = x(t) P-a.e.

(iii) x(t) satis�es the di�erential equation in (5.1) in the sense that for every k and every

s0, s1 ∈ (tk, tk+1] with s0 ≤ s1, P-almost surely,

(x(s1)− q(s1)x(s1 − τ(s1)))− (x(s0)− q(s0)x(s0 − τ(s0)))

=

∫ s1

s0

[a(s)x(s) + b(s)x(s− τ(s))] ds+

∫ s1

s0

[c(s)x(s) + e(s)x(s− δ(s))] dw(s).

Remark 5.1.2. Note that continuity of x : (tk, tk+1) → L2(Ω,P) implies that x is measurable

with respect to B(tk,tk+1)⊗F , where B(tk,tk+1) is the Borel-σ-algebra, and that
∫∫
|x(t, ω)|2 dP dt ≤

supt∈(tk,tk+1)

∫
|x(t, ω)|2 dP <∞.

Denote

CbF0
(δ) =

{
φ
∣∣ φ ∈ CbF0

([ϑ, 0],R), sup
ϑ≤s≤0

E|φ(s)|2 ≤ δ

}
,

where E denotes expectation with respect to the probability measure P, refer to Section 1.3 for

more detailed information.

De�nition 5.1.3. The zero solution of the system (5.1) is said to be

(i) mean square stable if for any ε > 0, there is a scalar δ = δ(ε) > 0 such that for ev-

ery initial function φ ∈ CbF0
(δ) we have that for corresponding solution x(t, 0, φ) satis�es

E|x(t, 0, φ)|2 < ε for t ≥ 0.

(ii) mean square asymptotically stable if it is stable and for any ε > 0, there exists a scalar

δ = δ(ε) > 0 such that for every initial function φ ∈ CbF0
(δ), the corresponding solution

x(t, 0, φ) satis�es limt→∞ E|x(t, 0, φ)|2 = 0 for t ≥ 0.
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(iii) exponentially stable in mean square if there is a pair of positive constants λ and K such

that

E|x(t, 0, φ)|2 ≤ K‖φ‖2L2e
−λt,

holds for any φ ∈ CbF0
([ϑ, 0],R), here λ is called the exponential convergence rate.

Denote by Sφ the space of all F-adapted processes ϕ(t, ω) : [ϑ,∞)×Ω→ R such that t 7→ ϕ(t) :

[ϑ,∞) 7→ L2(Ω,R) is continuous in t 6= tk (k = 1, 2, · · · ), limt→t−k
ϕ(t) and limt→t+k

ϕ(t) exist,

and limt→t−k
ϕ(t) = ϕ(tk) in L2(Ω;P). Moreover, ϕ(t, ·) = φ(t) for t ∈ [ϑ, 0], and E|ϕ(t)|2 → 0

as t→∞. If we de�ne a norm as

‖ϕ‖2 := sup
t≥ϑ

(
E|ϕ(t)|2

)
, (5.3)

then Sφ is a complete metric space with respect to the norm (5.3). Using a contraction mapping

de�ned on the space Sφ, we come to our �rst result, which is proved in Subsection 5.1.2.

Theorem 5.1.4. Consider the impulsive neutral stochastic di�erential equation (5.1) and sup-

pose that the following conditions are satis�ed

(i) the delay τ(t) is di�erentiable and t− τ(t)→∞ as t→∞, t− δ(t)→∞ as t→∞;

(ii) there exist a constant α ∈ (0, 1) and a continuous function h(t) such that for t ≥ 0,

H1(t) := 2


n(t)∑
l=1

∣∣∣∣∣ dl
1 + dl

∏
tl−τ(tl)≤tk<tl

(1 + dk)
−1e
−
∫ t
tl
h(u) du

q(tl)

∣∣∣∣∣
+

∣∣∣∣∣ ∏
t−τ(t)<tk<t

(1 + dk)
−1q(t)

∣∣∣∣∣+

∫ t

t−τ(t)
|a(s) + h(s)| ds

+

∫ t

0
e−
∫ t
s h(u) du|h(s)|

∫ s

s−τ(s)
|a(u) + h(u)| du ds

+

∫ t

0
e−
∫ t
s h(u) du

∣∣∣∣∣(a(s− τ(s)) + h(s− τ(s)))(1− τ ′(s))

+
∏

s−τ(s)≤tk<s

(1 + dk)
−1b(s)−

∏
s−τ(s)≤tk<s

(1 + dk)
−1h(s)q(s)

∣∣∣∣∣ ds


2

+2

∫ t

0
e−2

∫ t
s h(u) du

|c(s)|+ ∣∣∣∣∣ ∏
s−δ(s)≤tk<s

(1 + dk)
−1e(s)

∣∣∣∣∣
2

ds ≤ α,

(iii) and such that lim inft→∞
∫ t

0 h(s) ds > −∞;

(iv) there exists a constant M > 0 such that for any t ≥ 0,∣∣∣∣∣ ∏
0≤tk<t

(1 + dk)

∣∣∣∣∣ ≤M.

Then the zero solution of (5.1) is mean square asmptotically stable if
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(v) ∫ t

0
h(s) ds→∞ as t→∞.

Remark 5.1.5. Note that if ϕ ∈ C([a, b];L2(Ω,R)), then ϕ ∈ L2([a, b];L2(Ω,R)) and the latter

space is known to be naturally isometrically isomorphic to L2([a, b]× Ω;R) (see [30] for detail),

so ϕ is joint measurable and
∫ b
a

∫
Ω |ϕ(t, ω)|2 dt dP(ω) <∞.

Remark 5.1.6. Note that if −1 < dk ≤ 0 for all k, then (iv) in Theorem 5.1.4 is always satis�ed.

If dk = 0, Theorem 5.1.4 is Theorem 2.1 in [90] under su�cient conditions.

Remark 5.1.7. Impulses are small perturbation, it can stabilize or destabilize a system. As an

example, consider the equation
x′(t) = ax(t) a > 0,

x(k+) = (1 + dk)x(k), k ∈ N,
(5.4)

From (5.4), we obtain that

(1) if dk = 0 for all k ∈ N, x(t) = eatx(0);

(2) if dk 6= 0 for all k ∈ N,

x(1) = eax(0) x(1+) = (1 + d1)eax(0)

x(1 + t) = eatx(1+) = eat(1 + d1)eax(0), 0 < t ≤ 1,

x(2) = (1 + d1)e2ax(0) x(2+) = (1 + d1)(1 + d2)e2ax(0)

x(2 + t) = eatx(2+) = eat(1 + d1)(1 + d2)e2ax(0), 0 < t ≤ 1,

...

x(n) = (1 + d1)(1 + d2) · · · (1 + dn−1)enax(0).

x(n+) = (1 + d1)(1 + d2) · · · (1 + dn)enax(0).

If dk = d (k = 1, 2, 3, · · · ) is a constant, then

x(n+) = (1 + d)nenax(0) = [(1 + d)ea]nx(0),

If (1 + d)ea < 1, then x(n+)→ 0; If (1 + d)ea > 1, then x(n+)→∞.

Remark 5.1.8. The condition (ii) in Theorem 5.1.4 can not be changed to be H1(t) < 1. For

example, if H1(t) =
∫ t

0 e
−s ds for all t, then H1(t) = 1 − e−t < 1. However, H1(t) → 1 as

t → ∞. Hence, the condition H1(t) < 1 can not imply that there exsits a constant α ∈ (0, 1)

such that H1(t) ≤ α < 1.
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For the case when the delays τ(t) and δ(t) are bounded by a positive constant τ , we de�ne

another complete metric space as the following.

Denote by Cφ the space of all F-adapted processes ϕ(t, ω) : [−τ,∞) × Ω → R, which is al-

most surely continuous in t 6= tk (k = 1, 2, · · · ) for �xed ω ∈ Ω, limt→t−k
ϕ(t) and limt→t+k

ϕ(t)

exist, and limt→t−k
ϕ(t) = ϕ(tk). Moreover, ϕ(t, ·) = φ(t) for t ∈ [−τ, 0] and for t → ∞,

E
(
supt−τ≤s≤t |ϕ(s)|2

)
→ 0. If we de�ne a norm as

‖ϕ‖2 := sup
t≥0

E
(

sup
t−τ≤s≤t

|ϕ(s)|2
)
, (5.5)

then Cφ is a complete metric space. Based on the space Cφ, we come to our second result, which

is proved in Subsection 5.1.3.

Theorem 5.1.9. Consider the impulsive neutral stochastic di�erential equation (5.1) and sup-

pose that the following conditions are satis�ed

(i) the delay τ(t) is di�erentiable;

(ii) there exist a constant α ∈ (0, 1) and a continuous function h(t) such that for t ≥ 0,

H2(t) := 2


n(t)∑
l=1

∣∣∣∣∣ dl
1 + dl

∏
tl−τ(tl)≤tk<tl

(1 + dk)
−1e
−
∫ t
tl
h(u) du

q(tl)

∣∣∣∣∣
+

∣∣∣∣∣ ∏
t−τ(t)<tk<t

(1 + dk)
−1q(t)

∣∣∣∣∣+

∫ t

t−τ(t)
|a(s) + h(s)| ds

+

∫ t

0
e−
∫ t
s h(u) du|h(s)|

∫ s

s−τ(s)
|a(u) + h(u)| du ds

+

∫ t

0
e−
∫ t
s h(u) du

∣∣∣∣∣(a(s− τ(s)) + h(s− τ(s)))(1− τ ′(s))

+
∏

s−τ(s)≤tk<s

(1 + dk)
−1b(s)−

∏
s−τ(s)≤tk<s

(1 + dk)
−1h(s)q(s)

∣∣∣∣∣ ds


2

+8

∫ t

0

(
sup

t−τ≤r≤t
e−2

∫ r
s h(u) du

)|c(s)|+ ∣∣∣∣∣ ∏
s−δ(s)≤tk<s

(1 + dk)
−1e(s)

∣∣∣∣∣
2

ds

≤ α;

where n(t) := sup{k ∈ Z+ : tk < t}.

(iii) and such that lim inft→∞
∫ t

0 h(s) ds > −∞;

(iv) there exists a constant M > 0 such that for any t ≥ 0,
∣∣∣∏0≤tk<t(1 + dk)

∣∣∣ ≤M .

Then the zero solution of (5.1) is asymptotically stable if

(v) ∫ t

0
h(s) ds→∞ as t→∞.
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5.1.2 Proof of Theorem 5.1.4

In this subsection, we will prove Theorem 5.1.4. We start with some preparations. First we

transform (5.1) into a neutral stochastic delay di�erential equation without impulses:

d [y(t)− q̃(t)y(t− τ(t))] =
[
a(t)y(t) + b̃(t)y(t− τ(t))

]
dt

+ [c(t)y(t) + ẽ(t)y(t− δ(t))] dw(t), (5.6)

where

q̃(t) =
∏

t−τ(t)≤tk<t

(1 + dk)
−1q(t), b̃(t) =

∏
t−τ(t)≤tk<t

(1 + dk)
−1b(t),

ẽ(t) =
∏

t−δ(t)≤tk<t

(1 + dk)
−1e(t).

By a solution of the system (5.6) and (5.2) we mean a continuous function y(t) on [ϑ,∞) satis-

fying equation (5.6) almost everywhere for t ≥ 0 and satis�es equation (5.2).

We start with two fundamental lemmas. The lemmas allow us to reduce the problem of stability

of an impulsive neutral stochastic delay di�erential equation to problem of stability of a neutral

stochastic delay di�erential equation.

Lemma 5.1.10. Assume that (H1)− (H3) hold, then

(i) if y(t) is a solution of (5.6), then x(t) =
∏

0<tk<t
(1 + dk)y(t) is a solution of (5.1);

(ii) if x(t) is a solution of (5.1), then y(t) =
∏

0<tk<t
(1 + dk)

−1x(t) is a solution of (5.6).

Proof. First we prove (i). Let y(t) be a possible solution of the problem (5.6), it is easy to see

that x(t) =
∏

0<tj<t
(1 + dk)y(t) is continuous on (0, t1] and on each interval (tk, tk+1], k ∈ N

and for any t 6= tk, j ∈ N,

dx(t) = d

[ ∏
0<tk<t

(1 + dj)y(t)

]
=

∏
0<tk<t

(1 + dk)dy(t)

=
∏

0<tk<t

(1 + dk)
{
d [q̃(t)y(t− τ(t))] +

(
a(t)y(t) + b̃(t)y(t− τ(t))

)
dt

+ (c(t)y(t) + ẽ(t)y(t− δ(t))) dw(t)
}

= d[q(t)x(t− τ(t))] + [a(t)x(t) + b(t)x(t− τ(t))]dt+ [c(t)x(t) + e(t)x(t− δ(t))]dw(t).

Thus x(t) satis�es the di�erential equation (5.1) for almost everywhere in [0,∞) when t 6= tk,

k ∈ N, On the other hand, for every t = tk, k ∈ N,

x(t+k ) = lim
t→t+k

∏
0<tj<t

(1 + dj)y(t) =
∏

0<tj≤tk

(1 + dj)y(t+k )

= (1 + dk)
∏

0<tj<tk

(1 + dj)y(tk) = (1 + dk)x(tk)

and

x(t−k ) = lim
t→t−k

∏
0<tj<t

(1 + dj)y(t) =
∏

0<tj<tk

(1 + dj)y(t−k ) = x(tk).
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Therefore, we have that x(t) is a solution of equation (5.1) corresponding to the initial con-

dition (5.2). In fact, if y(t) is a solution of (5.6) with initial condition (5.2), then x(t) =∏
0<tk<t

(1 + dk)y(t) = y(t) = φ(t) on [ϑ, 0].

Next, we prove (ii). If x(t) is a solution of (5.1), then x(t) is continuous on (0, t1] and on

each interval (tk, tk+1], j ∈ N. Therefore, y(t) =
∏

0<tk<t
(1 + dk)

−1x(t) is continuous on (0, t1]

and on each interval (tk, tk+1], k ∈ N. Using the similar way as the proof for (i), we can easily

check that y(t) =
∏

0<tk<t
(1 + dk)

−1x(t) is the solution of (5.6) on [ϑ,∞) corresponding to the

initial condition (5.2). On the other hand, for every t = tk, k ∈ N,

y(t+k ) = lim
t→t+k

∏
0<tj<t

(1 + dj)
−1x(t) =

∏
0<tj≤tk

(1 + dj)
−1x(t+k )

= (1 + dk)
−1

∏
0<tj<tk

(1 + dj)
−1x(t+k ) =

∏
0<tj<tk

(1 + dj)
−1x(tk) = y(tk)

and

y(t−k ) = lim
t→t−k

∏
0<tj<t

(1 + dj)
−1x(t) =

∏
0<tj<tk

(1 + dj)
−1x(t−k ) =

∏
0<tj<tk

(1 + dj)
−1x(tk) = y(tk).

This completes the proof of the lemma.

Lemma 5.1.11. Assume that (H1)− (H3) hold, and there exists a positive constant M such

that, for any t > 0, ∣∣∣∣∣ ∏
0<tk<t

(1 + dk)

∣∣∣∣∣ ≤M. (5.7)

(i) If the zero solution of equation (5.6) is mean square stable, then the zero solution of equation

(5.1) is also mean square stable.

(ii) If the zero solution of equation (5.6) is mean square asymptotically stable, then the zero

solution of equation (5.1) is also mean square asymptotically stable.

(iii) If the zero solution of equation (5.6) is mean square exponentially stable, then the zero

solution of equation (5.1) is also mean square exponentially stable.

Proof. First, we prove (i). Let x(t) and y(t) be the solution of equations (5.1) and (5.6) corre-

sponding to initial conditions (5.2). If the zero solution of equation (5.6) is mean square stable,

from the de�nition of mean square stable, we have that, for any ε > 0, there exists δ > 0 such

that the initial function φ ∈ CbF0
(δ) implies

E|y(t)|2 < ε

M2
, for t > 0. (5.8)

From Lemma 5.1.10, we obatin that x(t) =
∏

0<tk<t
(1 + dk)y(t) is a solution of (5.1) on [ϑ,∞),

and combining with (5.8), we have that

E|x(t)|2 = E

∣∣∣∣∣ ∏
0<tk<t

(1 + dk)y(t)

∣∣∣∣∣
2

≤

∣∣∣∣∣ ∏
0<tk<t

(1 + dk)

∣∣∣∣∣
2

E|y(t)|2 < M2 ε

M2
= ε,
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which implies that the zero solution of (5.1) is mean square stable.

(ii)and (iii) can be proved similarly as (i).

If we multiply both sides of (5.6) by e
∫ t
0 h(s) ds, integrate from 0 to t, and perform an integration

by parts, we obtain

(Py)(t) =

[
φ(0)−

∫ 0

τ(0)
(a(s) + h(s))φ(s) ds− q(0)φ(−τ(0)) +M(t)

]
e−
∫ t
0 h(u) du

+
∏

t−τ(t)≤tk<t

(1 + dk)
−1q(t)y(t− τ(t)) +

∫ t

t−τ(t)
(a(s) + h(s))y(s) ds

−
∫ t

0
e−
∫ t
s h(u) duh(s)

∫ s

s−τ(s)
(a(u) + h(u))y(u) du ds

+

∫ t

0
e−
∫ t
s h(u) du

[
(a(s− τ(s)) + h(s− τ(s)))(1− τ ′(s))

+
∏

s−τ(s)≤tk<s

(1 + dk)
−1b(s)−

∏
s−τ(s)≤tk<s

(1 + dk)
−1h(s)q(s)

]
y(s− τ(s)) ds

+

∫ t

0
e−
∫ t
s h(u) du

[
c(s)y(s) +

∏
s−δ(s)≤tk<s

(1 + dk)
−1e(s)y(s− δ(s))

]
dw(s).

Lemma 5.1.12. Let ϕ ∈ Sφ. De�ne an operator by (Pϕ)(t) = φ(t) for t ∈ [ϑ, 0] and for t ≥ 0,

(Pϕ)(t) =
5∑
i=1

Ii(t), (5.9)

where

M(t) =

n(t)∑
l=1

dl
1 + dl

∏
tl−τ(tl)≤tk<tl

(1 + dk)
−1e

∫ tl
0 h(u) duq(tl)ϕ(tl − τ(tl)),

I1(t) =

[
φ(0)−

∫ 0

τ(0)
(a(s) + h(s))φ(s) ds− q(0)φ(−τ(0))

]
e−
∫ t
0 h(u) du,

I2(t) =

n(t)∑
l=1

dl
1 + dl

∏
tl−τ(tl)≤tk<tl

(1 + dk)
−1e
−
∫ t
tl
h(u) du

q(tl)ϕ(tl − τ(tl))

+
∏

t−τ(t)≤tk<t

(1 + dk)
−1q(t)ϕ(t− τ(t)),

I3(t) =

∫ t

t−τ(t)
(a(s) + h(s))ϕ(s) ds−

∫ t

0
e−
∫ t
s h(u) duh(s)

∫ s

s−τ(s)
(a(u) + h(u))ϕ(u) du ds,
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I4(t) =

∫ t

0
e−
∫ t
s h(u) du

[
(a(s− τ(s)) + h(s− τ(s)))(1− τ ′(s))

+
∏

s−τ(s)≤tk<s

(1 + dk)
−1b(s)−

∏
s−τ(s)≤tk<s

(1 + dk)
−1h(s)q(s)

]
ϕ(s− τ(s)) ds,

I5(t) =

∫ t

0
e−
∫ t
s h(u) du

[
c(s)y(s) +

∏
s−δ(s)≤tk<s

(1 + dk)
−1e(s)ϕ(s− δ(s))

]
dw(s). (5.10)

If conditions (i)-(iv) in Theorem 5.1.4 are satis�ed, then there exists δ > 0 such that for any

φ : [ϑ, 0] → (−δ, δ), we have that P : Sφ → Sφ and P is a contraction with respect to the norm

(5.3).

Proof. We �rst verify the continuity of Pϕ on [0,∞) to L2(Ω,F ,P).I2(t) is continuous if t ∈
(0, t1) or t ∈ (tj , tj+1) for j = 1, 2, 3, · · · . It remains to prove that I2(t) is continuous at t = tj .

Let ϕ ∈ S, take the limit r → 0+, we have

E|I2(tj + r)− I2(tj)|2

= E

∣∣∣∣∣∣
(
e
−
∫ tj+r
tj

h(u) du − 1

) j−1∑
l=1

dl
1 + dl

∏
tl−τ(tl)≤tk<tl

(1 + dk)
−1e
−
∫ tj
tl
h(u) du

q(tl)ϕ(tl − τ(tl))

+
dj

1 + dj

∏
tj−τ(tj)≤tk<tj

(1 + dk)
−1e
−
∫ tj+r
tj

h(u) du
q(tj)ϕ(tj − τ(tj))

+
∏

tj+r−τ(tj+r)≤tk<tj+r

(1 + dk)
−1q(tj + r)ϕ(tj + r − τ(tj + r))

−
∏

tj−τ(tj)≤tk<tj

(1 + dk)
−1q(tj)ϕ(tj − τ(tj))

∣∣∣∣∣∣
2

≤ 2E
∣∣∣∣e− ∫ tj+rtj

h(u) du − 1

∣∣∣∣2
∣∣∣∣∣∣
j∑
l=1

dl
1 + dl

∏
tl−τ(tl)≤tk<tl

(1 + dk)
−1e
−
∫ tj
tl
h(u) du

q(tl)ϕ(tl − τ(tl))

∣∣∣∣∣∣
2

+2E

[∣∣∣∣∣ 1

1 + dj

∏
tj−τ(tj)≤tk<tj

(1 + dk)
−1

∣∣∣∣∣
× |q(tj + r)ϕ(tj + r − τ(tj + r))− q(tj)ϕ(tj − τ(tj))|

+

∣∣∣∣∣ ∏
tj+r−τ(tj+r)≤tk<tj+r

(1 + dk)
−1 − 1

1 + dj

∏
tj−τ(tj)≤tk<tj

(1 + dk)
−1

∣∣∣∣∣
× |q(tj + r)ϕ(tj + r − τ(tj + r))|

]2

−→ 0,

126



5.1. Asymptotic stability of a class of neutral stochastic delay di�erential

equations with linear impulses

since

lim
r→0+

∏
tj+r−τ(tj+r)≤tk<tj+r

(1 + dk)
−1 =

1

1 + dj

∏
tj−τ(tj)≤tk<tj

(1 + dk)
−1.

Take the limit r → 0−, we have

E|I2(tj + r)− I2(tj)|2

= E

∣∣∣∣∣
(
e
−
∫ tj+r
tj

h(u) du − 1

) j−1∑
l=1

dl
1 + dl

∏
tl−τ(tl)≤tk<tl

(1 + dk)
−1e
−
∫ tj
tl
h(u) du

q(tl)ϕ(tl − τ(tl))

+
∏

tj+r−τ(tj+r)≤tk<tj+r

(1 + dk)
−1q(tj + r)ϕ(tj + r − τ(tj + r))

−
∏

tj−τ(tj)≤tk<tj

(1 + dk)
−1q(tj)ϕ(tj − τ(tj))

∣∣∣∣∣
2

≤ 2E
∣∣∣∣e− ∫ tj+rtj

h(u) du − 1

∣∣∣∣2
∣∣∣∣∣
j−1∑
l=1

dl
1 + dl

∏
tl−τ(tl)≤tk<tl

(1 + dk)
−1e
−
∫ tj
tl
h(u) du

q(tl)y(tl − τ(tl))

∣∣∣∣∣
2

+2E

∣∣∣∣∣ ∏
tj+r−τ(tj+r)≤tk<tj+r

(1 + dk)
−1q(tj + r)ϕ(tj + r − τ(tj + r))

−
∏

tj−τ(tj)≤tk<tj

(1 + dk)
−1q(tj)ϕ(tj − τ(tj))

∣∣∣∣∣
2

→ 0,

since

lim
r→0−

∏
tj+r−τ(tj+r)≤tk<tj+r

(1 + dk)
−1 =

∏
tj−τ(tj)≤tk<tj

(1 + dk)
−1.

All the other terms continuous because of the following (a) and (b).

(a) If sups∈[0,t]

[
Eg(s)2

]
< ∞ for each t, then t 7→

∫ t
0 g(s) ds : [0,∞) 7→ L2(Ω,F0,P) is

continuous.

(b) If sups∈[0,t]

[
Eg(s)2

]
< ∞ for each t, then t 7→

∫ t
0 g(s) dw : [0,∞) 7→ L2(Ω,F0,P) is

continuous.

Thus P is continuous on [0,∞).
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Next, We prove that P (Sφ) ⊆ Sφ. For ϕ ∈ Sφ, we consider the �rst term of I3(t),

E

(∫ t

t−τ(t)
(a(s) + h(s))ϕ(s) ds

)2

= E

(∫ t

t−τ(t)
(a(s) + h(s))ϕ(s) ds

∫ t

t−τ(t)
(a(v) + h(v))ϕ(v) dv

)

=

∫ t

t−τ(t)

∫ t

t−τ(t)
(a(s) + h(s))(a(v) + h(v))Eϕ(s)ϕ(v) ds dv

≤
∫ t

t−τ(t)

∫ t

t−τ(t)
|a(s) + h(s)||a(v) + h(v)| ds dv sup

s,v∈[t−τ(t),t]
Eϕ(s)ϕ(v)

=

(∫ t

t−τ(t)
|a(s) + h(s)| ds

)2

sup
s,v∈[t−τ(t),t]

(
Eϕ(s)2

)1/2 (Eϕ(v)2
)1/2

.

Since Eϕ(t)2 → 0 and t− τ(t)→∞ as t→∞, so for every ε > 0, there exists T0 > 0 such that

t > T0 implies Eϕ(t)2 < ε and Eϕ(t− τ(t))2 < ε. Hence, for t > T0, we have that

sup
s,v∈[t−τ(t),t]

(
Eϕ(s)2

)1/2 (Eϕ(v)2
)1/2

< ε,

Combining with condition (ii) in Theorem 5.1.4, we obtain

E

(∫ t

t−τ(t)
(a(s) + h(s))ϕ(s) ds

)2

→ 0 as t→∞.

Following the similar estimation as above, we obtain that E|Ii(s)|2 → 0 as t→∞, i = 1, 2, 3, 4.

It follows from the last term I5(s) in (5.9) that

E|I5(t)|2

= E

∣∣∣∣∣
∫ t

0
e−
∫ t
z h(u) du

[
c(z)ϕ(z) +

∏
z−δ(z)≤sk<z

(1 + dk)
−1e(z)ϕ(z − δ(z))

]
dw(z)

∣∣∣∣∣
2

≤ E

∣∣∣∣∣
∫ t

0
e−
∫ t
z h(u) du

[
c(z)ϕ(z) +

∏
z−δ(z)≤sk<z

(1 + dk)
−1e(z)ϕ(z − δ(z))

]
dw(z)

∣∣∣∣∣
2

≤ E
∫ t

0
e−2

∫ t
z h(u) du

[
c(z)ϕ(z) +

∏
z−δ(z)≤sk<z

(1 + dk)
−1e(z)ϕ(z − δ(z))

]2

dz.

Since E|ϕ(t)|2 → 0 and t− δ(t)→ 0 as t→∞, then for any ε > 0, there exists T > 0 such that

t > T implies E|ϕ(t)|2 < ε and E|ϕ(t− δ(t))|2 < ε. Hence, for t > T , we have that

E
∫ t

0
e−2

∫ t
z h(u) du

[
c(z)ϕ(z) +

∏
z−δ(z)≤sk<z

(1 + dk)
−1e(z)ϕ(z − δ(z))

]2

dz

<

{∫ t

0
e−2

∫ t
z h(u) du

[
|c(z)|+

∣∣∣∣∣ ∏
z−δ(z)≤sk<z

(1 + dk)
−1e(z)

∣∣∣∣∣
]2

dz

}
ε,
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which yields E|I5(s)|2 → 0 as t→∞. Hence, we obtain that P (S)φ ⊆ Sφ.

Finally, We show that P is contraction mapping. For ϕ,ψ ∈ Sφ, we have that

sup
s≥ϑ

{
E|(Pϕ)(s)− (Pψ)(s)|2

}
= sup

s≥ϑ
E

∣∣∣∣∣
n(t)∑
l=1

dl
1 + dl

∏
sl−τ(sl)≤sk<sl

(1 + dk)
−1e
−
∫ s
sl
h(u) du

q(sl)

×(ϕ(sl − τ(sl))− ψ(sl − τ(sl)))

+
∏

s−τ(s)≤sk<s

(1 + dk)
−1q(s)(ϕ(s− τ(s))− ψ(s− τ(s)))

+

∫ s

s−τ(s)
(a(z) + h(z))(ϕ(z)− ψ(z)) dz

−
∫ s

0
e−
∫ s
z h(u) duh(z)

∫ z

z−τ(z)
(a(u) + h(u))(ϕ(u)− ψ(u)) du dz

+

∫ s

0
e−
∫ s
z h(u) du

[
(a(z − τ(z)) + h(z − τ(z)))(1− τ ′(z))

+
∏

z−τ(z)≤sk<z

(1 + dk)
−1b(z)−

∏
z−τ(z)≤sk<z

(1 + dk)
−1h(z)q(z)

]

× (ϕ(z − τ(z))− ψ(z − τ(z))) dz +

∫ s

0
e−
∫ s
z h(u) du

[
c(z)(ϕ(z)− ψ(z))

+
∏

z−δ(z)≤sk<z

(1 + dk)
−1e(z)(ϕ(z − δ(z))− ψ(z − δ(z)))

]
dw(z)

∣∣∣∣∣
2

≤ sup
s≥ϑ

{
2

[
n(t)∑
l=1

∣∣∣∣∣ dl
1 + dl

∏
sl−τ(sl)≤sk<sl

(1 + dk)
−1e
−
∫ s
sl
h(u) du

q(sl)

∣∣∣∣∣
+

∣∣∣∣∣ ∏
s−τ(s)<sk<s

(1 + dk)
−1q(s)

∣∣∣∣∣+

∫ s

s−τ(s)
|a(z) + h(z)| dz

+

∫ s

0
e−
∫ s
z h(u) du|h(z)|

∫ z

z−τ(z)
|a(u) + h(u)| du dz

+

∫ s

0
e−
∫ s
z h(u) du

∣∣∣∣∣(a(z − τ(z)) + h(z − τ(z)))(1− τ ′(z))

+
∏

z−τ(z)≤sk<z

(1 + dk)
−1b(z)−

∏
z−τ(z)≤sk<z

(1 + dk)
−1h(z)q(z)

∣∣∣∣∣ dz
]2

+2

∫ s

0
e−2

∫ s
z h(u) du

(
c(z) +

∏
z−δ(z)≤sk<z

(1 + dk)
−1e(z)

)2

dz

}
× sup
s≥ϑ

{
E|ϕ(s)− ψ(s)|2

}
≤ α sup

s≥ϑ

{
E|ϕ(s)− ψ(s)|2

}
.
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Therefore, P : Sφ → Sφ is a contraction mapping with respect to the norm (5.3).

We are now ready to prove Theorem 5.1.4.

Proof. Let P be de�ned as in Lemma 5.1.12. By a contraction mapping principle, P has a �xed

point y ∈ Sφ, which is a solution of (5.6) with initial function (5.2) and E|y(s)|2 → 0 as t→∞.

To obtain mean square asymptotic stability, we need to show that the zero solution of (5.6)

is mean square stable. Let ε > 0 be given and choose δ > 0 (δ < ε) satisfying

2δ

(
1 +

∫ 0

τ(0)
|a(s) + h(s)| ds+ |q(0)|

)2

e−2
∫ t∗
0 h(u) du + 2εα < ε,

If y(t, 0, φ) is a solution of (5.6) with ‖φ‖2 < δ, then y(t) = (Py)(t) as de�ned in (5.9). We

claim that E|y(t)|2 < ε for all t ≥ 0. Notice that E|y(t)|2 < ε on t ∈ [ϑ, 0]. Suppose there exists

t∗ > 0 such that E|y(t∗)|2 = ε and E|y(s)|2 < ε for all ϑ ≤ s < t∗, it follows from (5.9),

E|y(t∗)|2 ≤ 2‖φ‖2
(

1 +

∫ 0

τ(0)
|a(s) + h(s)| ds+ |q(0)|

)2

e−2
∫ t∗
0 h(u) du

+2ε

2

n(t)∑
l=1

∣∣∣∣∣∣ dl
1 + dl

∏
tl−τ(tl)≤tk<tl

(1 + dk)
−1e

∫ tl
t∗ h(u) duq(tl)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∏

t∗−τ(t∗)<tk<t∗

(1 + dk)
−1q(s)

∣∣∣∣∣∣+

∫ t∗

t∗−τ(t∗)
|a(z) + h(z)| dz

+

∫ t∗

0
e−
∫ t∗
z |h(u)| duh(z)

∫ z

z−τ(z)
|a(u) + h(u)| du dz

+

∫ t∗

0
e−
∫ t∗
z h(u) du

∣∣∣∣∣(a(z − τ(z)) + h(z − τ(z)))(1− τ ′(z))

+
∏

z−τ(z)≤sk<z

(1 + dk)
−1b(z)−

∏
z−τ(z)≤sk<z

(1 + dk)
−1h(z)q(z)

∣∣∣∣∣ dz
2

+2

∫ t∗

0
e−2

∫ t∗
z h(u) du

|c(z)|+
∣∣∣∣∣∣

∏
z−δ(z)≤sk<z

(1 + dk)
−1e(z)

∣∣∣∣∣∣
2

dz


≤ 2δ

(
1 +

∫ 0

τ(0)
|a(s) + h(s)| ds+ |q(0)|

)2

e−2
∫ t∗
0 h(u) du + 2εα < ε,

which contradicts the de�nition of t∗. Thus, the zero solution of (5.6) is mean square stable. It

follows that the zero solution of (5.6) is mean square asymptotically stable if (iii) holds.

Combining Lemma 5.1.11 and Theorem 5.1.4, we obtain that the zero solution of (5.1) is mean

square asymptotically stable.

Corollary 5.1.13. Suppose that the conditions of Theorem 5.1.4 hold. Moreover,
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(i) there exists a constant 0 < ρ ≤ 1 such that 1 + dk ≤ ρ,

(ii) there exist constants ζ > 0 such that tk ≤ ζk.

If there exists a constant M > 0 such that
∣∣∣∏0<tk<t

(1 + dk)
∣∣∣ ≤ M , then the zero solution of

(5.1) is mean square exponentially stable.

Proof. From (i) and (ii), we obtain that

E|x(s)|2 = E

∣∣∣∣∣ ∏
0<tk<s

(1 + dk)y(s)

∣∣∣∣∣
2

≤ ρ2nE|y(s)|2 =
1

ρ2
e−2(n+1)| ln ρ|E|y(s)|2

≤ 1

ρ2
e
− tn+1

ζ
|2 ln ρ|E|y(s)|2 ≤ 1

ρ2
e
− 2| ln ρ|

ζ
tE|y(s)|2

the proof of Theorem 5.1.4 indicates that for any ε > 0 and σ ≥ 0, there exists a δ = δ(ε, σ) > 0

such that ‖φ‖2 < δ implies E|y(t)|2 < ε for t ≥ 0. Therefore, the zero solution of (5.1) is mean

square exponentially stable.

If q(t) ≡ 0 in (5.1), then we come to the following stochastic delay di�erential equation
dx(t) = [a(t)x(t) + b(t)x(t− τ(t))]dt+ [c(t)x(t) + e(t)x(t− δ(t))]dw(t), t 6= tk,

x(tk
+)− x(tk) = dkx(tk), t = tk,

(5.11)

Corollary 5.1.14. Suppose that the following conditions are satis�ed

(i) the delay τ(t) is di�erentiable and t− τ(t)→∞ as t→∞, t− δ(t)→∞ as t→∞;

(ii) there exist a constant α ∈ (0, 1) and a continuous function h(t) such that for t ≥ 0,

2

[∫ t

t−τ(t)
|a(s) + h(s)| ds+

∫ t

0
e−
∫ t
s h(u) du|h(s)|

∫ s

s−τ(s)
|a(u) + h(u)| du ds

+

∫ t

0
e−
∫ t
s h(u) du

∣∣∣∣∣(a(s− τ(s)) + h(s− τ(s)))(1− τ ′(s))

+
∏

s−τ(s)≤tk<s

(1 + dk)
−1b(s)

∣∣∣∣∣ ds
]2

+2

∫ t

0
e−2

∫ t
s h(u) du

|c(s)|+ ∣∣∣∣∣ ∏
s−δ(s)≤tk<s

(1 + dk)
−1e(s)

∣∣∣∣∣
2

ds ≤ α;

(iii) and such that lim inft→∞
∫ t

0 h(s) ds > −∞;

(iv) there exists a constant M > 0 such that∣∣∣∣∣ ∏
0<tk<t

(1 + dk)

∣∣∣∣∣ ≤M.

Then the zero solution of (5.11) is mean square asmptotically stable if
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(v) ∫ t

0
h(s) ds→∞ as t→∞.

5.1.3 Proof of Theorem 5.1.9

Lemma 5.1.15. Let ϕ ∈ Cφ. De�ne an operator by (Pϕ)(t) = φ(t) for t ∈ [−τ, 0] and for t ≥ 0,

(Pϕ)(t) =
5∑
i=1

Ii(t),

where Ii(t), I = 1, 2, 3, 4, 5, is denoted as in (5.10).

If conditions (i)-(iv) in Theorem 5.1.9 are satis�ed, then there exists δ > 0 such that for any

φ : [−τ, 0]→ (−δ, δ), we have that P : Cφ → Cφ and P is a contraction with respect to the norm

(5.5).

Proof. First, following the proof of Theorem 5.1.4, we note that P is continuous on [0,∞).

Next, We prove that P (Cφ) ⊆ Cφ. For ϕ ∈ Cφ, it is easy to check that

E
(

sup
t−τ≤s≤t

|Ii(s)|2
)
→ 0 as t→∞, i = 1, 2, 3, 4.

Note that for every r,

∫ s

0
e−
∫ r
z h(u) du

[
c(z)ϕ(z) +

∏
z−δ(z)≤sk<z

(1 + dk)
−1e(z)ϕ(z − δ(z))

]
dw(z),

is a martingale, then

sup
t−τ≤r≤t

∣∣∣∣∣
∫ s

0
e−
∫ r
z h(u) du

[
c(z)ϕ(z) +

∏
z−δ(z)≤sk<z

(1 + dk)
−1e(z)ϕ(z − δ(z))

]
dw(z)

∣∣∣∣∣
is a submartingle, by Doob's inequality, we have that

E
[

sup
t−τ≤s≤t

|I5(s)|2
]

= E

{
sup

t−τ≤s≤t

∣∣∣∣∣
∫ s

0
e−
∫ s
z h(u) du

×

[
c(z)y(z) +

∏
z−δ(z)≤sk<z

(1 + dk)
−1e(z)ϕ(z − δ(z))

]
dw(z)

∣∣∣∣∣
2}

132



5.1. Asymptotic stability of a class of neutral stochastic delay di�erential

equations with linear impulses

≤ E

{
sup

t−τ≤s≤t
sup

t−τ≤r≤t

∣∣∣∣∣
∫ s

0
e−
∫ r
z h(u) du

×

[
c(z)ϕ(z) +

∏
z−δ(z)≤sk<z

(1 + dk)
−1e(z)ϕ(z − δ(z))

]
dw(z)

∣∣∣∣∣
2}

≤ 4E

{
sup

t−τ≤r≤t

∣∣∣∣∣
∫ t

0
e−
∫ r
z h(u) du

×

[
c(z)ϕ(z) +

∏
z−δ(z)≤sk<z

(1 + dk)
−1e(z)ϕ(z − δ(z))

]
dw(z)

∣∣∣∣∣
2}

≤ 4E
∫ t

0

[
sup

t−τ≤r≤t
e−2

∫ r
z h(u) du

][
c(z)y(z) +

∏
z−δ(z)≤sk<z

(1 + dk)
−1e(z)ϕ(z − δ(z))

]2

dz

≤ 4

∫ t

0

[
sup

t−τ≤r≤t
e−2

∫ r
z h(u) du

][
c(z) +

∏
z−δ(z)≤sk<z

(1 + dk)
−1e(z)

]2

dz

× sup
t≥0

E

[
sup

t−τ≤s≤t
|ϕ(s)|2

]
, (5.12)

since E
(
supt−τ≤s≤t |ϕ(s)|2

)
→ 0 as t → ∞, then for any ε > 0, there exists T > 0 such that

t > T implies E supt−τ≤s≤t |ϕ(s)|2 < ε. Hence, for t > T , we have that

4

∫ t

0

[
sup

t−τ≤r≤t
e−2

∫ r
z h(u) du

] [
c(z) +

∏
z−δ(z)≤sk<z

(1 + dk)
−1e(z)

]2

dz sup
t≥0

E

[
sup

t−τ≤s≤t
|ϕ(s)|2

]

<

4

∫ t

0

[
sup

t−τ≤r≤t
e−2

∫ r
z h(u) du

][
c(z) +

∏
z−δ(z)≤sk<z

(1 + dk)
−1e(z)

]2

dz

 ε,

which yields E
[
supt−τ≤s≤t |I5(s)|2

]
→ 0 as t→∞. Hence, we obtain that P (Cφ) ⊆ Cφ.

Finally, We show that P is contraction mapping. For ϕ,ψ ∈ Cφ, we have that

sup
t≥0

{
E
[

sup
t−τ≤s≤t

|(Pϕ)(s)− (Pψ)(s)|2
]}

= sup
t≥0

E

 sup
t−τ≤s≤t

∣∣∣∣∣
n(t)∑
l=1

dl
1 + dl

∏
sl−τ(sl)≤sk<sl

(1 + dk)
−1e
−
∫ s
sl
h(u) du

q(sl)

×(ϕ(sl − τ(sl))− ψ(sl − τ(sl)))

+
∏

s−τ(s)≤sk<s

(1 + dk)
−1q(s)(ϕ(s− τ(s))− ψ(s− τ(s)))

+

∫ s

s−τ(s)
(a(z) + h(z))(ϕ(z)− ψ(z)) dz

−
∫ s

0
e−
∫ s
z h(u) duh(z)

∫ z

z−τ(z)
(a(u) + h(u))(ϕ(u)− ψ(u)) du dz
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+

∫ s

0
e−
∫ s
z h(u) du

[
(a(z − τ(z)) + h(z − τ(z)))(1− τ ′(z))

+
∏

z−τ(z)≤sk<z

(1 + dk)
−1b(z)−

∏
z−τ(z)≤sk<z

(1 + dk)
−1h(z)q(z)

]

× (ϕ(z − τ(z))− ψ(z − τ(z))) dz +

∫ s

0
e−
∫ s
z h(u) du

[
c(z)(ϕ(z)− ψ(z))

+
∏

z−δ(z)≤sk<z

(1 + dk)
−1e(z)(ϕ(z − δ(z))− ψ(z − δ(z)))

]
dw(z)

∣∣∣∣∣
2


≤ sup
s≥0

2

[
n(t)∑
l=1

∣∣∣∣∣ dl
1 + dl

∏
sl−τ(sl)≤sk<sl

(1 + dk)
−1e
−
∫ s
sl
h(u) du

q(sl)

∣∣∣∣∣
+

∣∣∣∣∣ ∏
s−τ(s)<sk<s

(1 + dk)
−1q(s)

∣∣∣∣∣+

∫ s

s−τ(s)
|a(z) + h(z)| dz

+

∫ s

0
e−
∫ s
z h(u) du|h(z)|

∫ z

z−τ(z)
|a(u) + h(u)| du dz

+

∫ s

0
e−
∫ s
z h(u) du

∣∣∣∣∣(a(z − τ(z)) + h(z − τ(z)))(1− τ ′(z))

+
∏

z−τ(z)≤sk<z

(1 + dk)
−1b(z)−

∏
z−τ(z)≤sk<z

(1 + dk)
−1h(z)q(z)

∣∣∣∣∣ dz
]2

+8

∫ s

0

[
sup

s−τ≤r≤s
e−2

∫ r
z h(u) du

][
c(z) +

∏
z−δ(z)≤sk<z

(1 + dk)
−1e(z)

]2

dz


× sup

t≥0
E
[

sup
t−τ≤s≤t

|ϕ(s)− ψ(s)|2
]
≤ α sup

t≥0
E
[

sup
t−τ≤s≤t

|ϕ(s)− ψ(s)|2
]
.

Therefore, P is a contraction mapping with respect to the norm (5.5).

We are now ready to prove Theorem 5.1.9.

Proof. Let P be de�ned as in Lemma 5.1.15. By a contraction mapping principle, P has a �xed

point y ∈ S, which is a solution of (5.6) with initial function (5.2) and E supt−τ≤s≤t |y(s)|2 → 0

as t→∞.

To obtain mean square asymptotic stability, we need to show that the zero solution of (5.6)

is mean square stable. Let ε > 0 be given and choose δ > 0 (δ < ε) satisfying

2δ

(
1 +

∫ 0

τ(0)
|a(s) + h(s)| ds+ |q(0)|

)2

e−2
∫ t∗
0 h(u) du + 2εα < ε,

If y(t, 0, φ) is a solution of (5.6) with ‖φ‖2 < δ, then y(t) = (Py)(t) as de�ned in (5.9). We

claim that E|y(t)|2 < ε for all t ≥ 0. Notice that E|y(t)|2 < ε on t ∈ [−τ, 0]. Suppose there
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exists t∗ > 0 such that E|y(t∗)|2 = ε and E|y(s)|2 < ε for all −τ ≤ s < t∗, it follows from (5.9),

E|y(t∗)|2 ≤ 2‖φ‖2
(

1 +

∫ 0

τ(0)
|a(s) + h(s)| ds+ |q(0)|

)2

e−2
∫ t∗
0 h(u) du

+2ε

2

[
n(t)∑
l=1

∣∣∣∣∣ dl
1 + dl

∏
tl−τ(tl)≤tk<tl

(1 + dk)
−1e

∫ tl
t∗ h(u) duq(tl)

∣∣∣∣∣
+

∣∣∣∣∣ ∏
t∗−τ(t∗)<tk<t∗

(1 + dk)
−1q(s)

∣∣∣∣∣+

∫ t∗

t∗−τ(t∗)
|a(z) + h(z)| dz

+

∫ t∗

0
e−
∫ t∗
z |h(u)| duh(z)

∫ z

z−τ(z)
|a(u) + h(u)| du dz

+

∫ t∗

0
e−
∫ t∗
z h(u) du

∣∣∣∣∣(a(z − τ(z)) + h(z − τ(z)))(1− τ ′(z))

+
∏

z−τ(z)≤sk<z

(1 + dk)
−1b(z)−

∏
z−τ(z)≤sk<z

(1 + dk)
−1h(z)q(z)

∣∣∣∣∣ dz
]2

+8

∫ t∗

0
e−2

∫ t∗
z h(u) du

(
|c(z)|+

∣∣∣∣∣ ∏
z−δ(z)≤sk<z

(1 + dk)
−1e(z)

∣∣∣∣∣
)2

dz


≤ 2δ

[
1 +

∫ 0

τ(0)
|a(s) + h(s)| ds+ |q(0)|

]2

e−2
∫ t∗
0 h(u) du + 2εα < ε,

which contradicts the de�nition of t∗. Thus, the zero solution of (5.6) is mean square stable. It

follows that the zero solution of (5.6) is mean square asymptotically stable if (iii) holds.

Combining Lemma 5.1.11 and Theorem 5.1.9, we have that the zero solution of (5.1) is asymp-

totically stable.

Remark 5.1.16. In Theorem 5.1.9, we obtain limt→∞ E supt−τ≤s≤t |y(s, 0, φ)|2 = 0, that is, for

any function s 7→ yt(s, 0, φ), we have limt→∞ E|yt(·, 0, φ)|2C[−τ,0] = 0, which implies

limt→∞ E|y(t, 0, φ)|2 = 0.

Remark 5.1.17. In some papers, see, for example, [89, 90, 131, 132], the norm is de�ned by

‖ψ‖[0,t] =

{
E

(
sup
s∈[0,t]

|ψ(s, ω)|2
)}1/2

.

As in [90], to show P (S) ⊆ S, we need to estimate E sups∈[0,t] |I5(s)|2, where

I5(s) =

∫ s

0
e−
∫ s
z h(u) du [c(z)x(z) + e(z)x(z − δ(z))] dw(z).

However, I5(s) is not a local martingale, see Lemma 1.3.40 in Section 1.3 of Chapter ?? for the

explanation. Hence, Burkholder-Davis-Gundy Inequality can not be applied directly.
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5.1.4 Examples

Example 5.1.18. Consider the following linear stochastic delay di�erential equation with linear

impulsive e�ects
dx(t) = [ax(t) + b(t)x(t− τ(t))]dt+ e(t)x(t− τ(t))dw(t), t 6= tk

x(tk
+)− x(tk) = dkx(tk), t = tk,

(5.13)

where tk = 2kπ, 1 + dk = 1
2 for all k = 1, 2, · · · , 0 ≤ τ(t) < 2π is a continuous function such

that t − τ(t) → ∞ as t → ∞, a < 0 is a constant, c(t), e(t) are bounded continuous function

such that |b(t)| ≤ b, |e(t)| ≤ e, where b, e are positive constants.

Since tk = 2kπ and 0 ≤ τ(t) < 2π, we have that at most one impulse occurs at interval

[t− τ(t), t), and hence
∏
t−τ(t)<tk<t

(1 + dk)
−1 ≤ 2. Choosing h(t) ≡ −a in Corollary 5.1.14,∫ t

t−τ(t)
|a(s) + h(s)| ds+

∫ t

0
e−
∫ t
s |h(u)| duh(s)

∫ s

s−τ(s)
|a(u) + h(u)| du ds = 0,

2

∫ t

0
e−
∫ t
s h(u) du

∣∣∣∣∣(a(s− τ(s)) + h(s− τ(s)))(1− τ ′(s)) +
∏

s−τ(s)≤tk<s

(1 + dk)
−1b(s)

∣∣∣∣∣ ds
2

≤ 2

∫ t

0
e
∫ t
s a du

∣∣∣∣∣ ∏
s−τ(s)≤tk<s

(1 + dk)
−1b

∣∣∣∣∣ ds
2

≤ 8b
2

a2
,

2

∫ t

0
e−2

∫ t
s h(u) du

∣∣∣∣∣ ∏
s−τ(s)≤tk<s

(1 + dk)
−1e(s)

∣∣∣∣∣
2

ds

≤ 2

∫ t

0
e2
∫ t
s a du

∣∣∣∣∣ ∏
s−τ(s)≤tk<s

(1 + dk)
−1e(s)

∣∣∣∣∣
2

ds ≤ 4e2

−a
.

Hence, we obtain that H1(t) ≤ 8b
2−4ae2

a2
. On the other hand,

∣∣∣∏0≤tk<t(1 + dk)
∣∣∣ ≤ 1. From

Corollary 5.1.14, we obtan that the zero solution of (5.13) is mean square asymptotically stable

if

8b
2 − 4ae2

a2
< 1. (5.14)

Now, we check the conditions in Theorem 5.1.9,

8

∫ t

0

[
sup

t−τ≤r≤t
e−2

∫ r
s h(u) du

][∣∣∣∣∣ ∏
s−δ(s)≤tk<s

(1 + dk)
−1e(s)

∣∣∣∣∣
]2

ds ≤ 16e2

−a
e−4aπ.

Hence, we obtain that H2(t) ≤ 8b
2−16ae2e−4aπ

a2
. From Theorem 5.1.9, the zero solution of (5.13)

is mean square asymptotically stable if

8b
2 − 16ae2e−4aπ

a2
< 1. (5.15)

It is not di�cult to �nd that condition (5.14) is weaker than condition (5.15).
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Example 5.1.19. Consider the following linear neutral stochastic delay di�erential equations

with impulsive e�ects
d
[
x(t)− qx

(
t− sin t

2

)]
= −2x(t)dt+ [cx(t) + ex(t− r)] dw(t), t 6= tk

x(tk
+)− x(tk) = dkx(tk), t = tk,

(5.16)

where dk = 1
2k
,1+dk = 1+ 1

2k
for all k = 1, 2, · · · , 0 ≤ r < 1 is a constant, infk∈N{tk+1−tk} = 1.

Suppose that q, c, e are positive constants.

Since infk∈N{tk+1 − tk} = 1 and τ(t) = sin t
2 ≤ 1

2 , we have that at most one impulse occurs at

interval [t−τ(t), t), and hence
∏
t−τ(t)<tk<t

(1+dk)
−1 ≤ 2

3 . Choosing h(t) ≡ 2 in Theorem 5.1.4,

n(t)∑
l=1

∣∣∣∣∣ dl
1 + dl

∏
tl−τ(tl)≤tk<tl

(1 + dk)
−1e
−
∫ t
tl
h(u) du

q(tl)

∣∣∣∣∣ ≤ 2q

3

n(t)∑
l=1

1

1 + 2l
<

2qn

9
,

∣∣∣∣∣ ∏
t−τ(t)<tk<t

(1 + dk)
−1q(t)

∣∣∣∣∣ =
2q

3
,

∫ t

t−τ(t)
|a(s) + h(s)| ds+

∫ t

0
e−
∫ t
s |h(u)| duh(s)

∫ s

s−τ(s)
|a(u) + h(u)| du ds = 0,

∫ t

0
e−
∫ t
s h(u) du

∣∣∣∣∣(a(s− τ(s)) + h(s− τ(s)))(1− τ ′(s)) +
∏

s−τ(s)≤tk<s

(1 + dk)
−1b(s)

−
∏

s−τ(s)≤tk<s

(1 + dk)
−1h(s)q(s)

∣∣∣∣∣ ds ≤
∫ t

0
e−
∫ t
s 2 du 4q

3
ds ≤ 2q

3
,

2

∫ t

0
e−2

∫ t
s h(u) du

[
|c(s)|+

∣∣∣∣∣ ∏
s−r≤tk<s

(1 + dk)
−1e(s)

∣∣∣∣∣
]2

ds ≤ 2

∫ t

0
e−2

∫ t
s 2 du

(
c+

2e

3

)2

ds

≤ 1

2

(
c+

2e

3

)2

.

Hence, we obtain that H1(t) ≤ 2
(

2nq
9 + 4q

3

)2
+ 1

2

(
c+ 2e

3

)2
. Hence, from Theorem 5.1.4, we

obtain that the zero solution of (5.13) is mean square asymptotically stable if

2

(
2nq

9
+

4q

3

)2

+
1

2

(
c+

2e

3

)2

< 1. (5.17)

Now, we check the conditions in Theorem 5.1.9,

8

∫ t

0

[
sup

t−τ≤r≤t
e−2

∫ r
s h(u) du

][
|c(s)|+

∣∣∣∣∣ ∏
s−δ(s)≤tk<s

(1 + dk)
−1e(s)

∣∣∣∣∣
]2

ds

≤ 2e2

(
c+

2d

3

)2

(1− e−4t) < 2e2

(
c+

2e

3

)2

.
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Hence, we obtain that H2(t) < 2
(

2nq
9 + 4q

3

)2
+ 2e2

(
c+ 2e

3

)2
.

On the other hand,
∣∣∣∏0≤tk<t(1 + dk)

∣∣∣ ≤ 2. From Theorem 5.1.9, the zero solution of (5.13) is

mean square asymptotically stable if

2

(
2nq

9
+

4q

3

)2

+ 2e2

(
c+

2d

3

)2

< 1. (5.18)

It is not di�cult to �nd that condition (5.17) is weaker than condition (5.18).

Example 5.1.20. Consider the following linear neutral stochastic delay di�erential equations

with impulsive e�ects 
dx(t) = −a(t)x(t)dt+ bx(t− r)dw(t), t 6= tk

x(tk
+)− x(tk) = dkx(tk), t = tk,

(5.19)

where 0 ≤ r < 2π, tk = 2kπ, 1 + dk = c for all k = 1, 2, · · · for some 0 < c ≤ 1, a(t) is a

continuous function such that
∫ t

0 a(s) ds =∞ and

sup
t≥0

{
b2

c2

∫ t

0
e−2

∫ t
s a(u) du ds

}
< 1,

then the zero solution of (5.19) is mean square asymptotically stable.

Since tk = 2kπ and 0 ≤ r < 2π, we have that at most one impulse occurs at interval [t − r, t),
and hence

∏
t−r<tk<t(1 + dk)

−1 ≤ 1
c . If we choose h(t) ≡ a(t) in Theorem 5.1.4, then by Theo-

rem 5.1.4, we have that the zero solution of (5.19) is mean square asymptotically stable. Since

1 + dk = c ≤ 1 and tk = 2kπ, from Theorem 5.1.13, we have that the zero solution of (5.19) is

also mean square exponentially stable.

If c = 1 for all k = 1, 2, · · · , the condition reduces to the condition (3.6) in [90] for equation

(5.19) without impulses.

5.2 Exponential stability of a class of impulsive neutral stochastic

partial di�erential equations with variable delays and Poisson

jumps

5.2.1 Introduction and preliminaries

The classical technique applied in the study of stability of stochastic delay di�erential equations

is based on a stochastic version of Liapunov's direct method. The success of Liapunov's direct

method depending on �nding good Liapunov functionals, which may be di�cult, especially for

equations with unbounded delays or unbounded terms. Recently, Chen [21] used an appropriate

impulsive-integral inequality to establish su�cient conditions for exponential stability of impul-

sive stochastic partial delay di�erential equations, and it turns out that it is a convenient way to

study exponential stability of mild solutions of impulsive stochastic delay di�erential equations.

Sakthivel and Luo [117, 118] have discussed the asymptotic stability for mild solutions of impul-

sive stochastic partial delay di�erential equations by using �xed point methods. This powerful
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method is also an e�ective tool to deal with exponential stability for mild solutions to stochastic

partial di�erential equations with delays, see, for example, [91] and Cui et al. [27]. However,

to the best of our knowledge, there is no result about exponential stability of mild solutions of

impulsive stochastic partial di�erential equations with variable delays and Poisson jumps.

The aim of this section is to study the impulsive e�ects to a class of stochastic partial dif-

ferential equations with variable delays and Poisson jumps by using two methods, the method

by using an appropriate impulsive-integral inequality and �xed point methods.

Let {Ω,F , {Ft}t≥0,P} be a complete probability space with a �ltration {Ft}t≥0 satisfying the

usual conditions (i.e. right continuous and F0 containing all P-null sets). Let X,Y be two real

separable Hilbert spaces which are both equipped with a norm denoted by ‖ · ‖. Let L(Y,X)

denote the space of all bounded linear operators from Y into X.

Suppose {p(t), t ≥ 0} is a σ-�nite stationary Ft-adapted Possion point process taking val-

ues in measurable space (U,B(U)). The random measure Np de�ned by Np((0, t] × Λ) :=∑
s∈(0,t] 1Λ(p(s)) for Λ ∈ B(U) is called the Poisson random measure induced by p(·), thus, we can

de�ne the measure Ñ by Ñ(dt, dy) = Np(dt, dy)−ν(dy)dt, where ν is the characteristic measure

of Np, which is called the compensated Poisson random measure. Let w = (w(t))t≥0, indepen-

dent of the Poisson point process, be a Y -valued Wiener process de�ned on {Ω,F , {Ft}t≥0, P}
with covariance operator Q, that is

E〈w(t), x〉Y 〈w(s), y〉Y = (t ∧ s)〈Qx, y〉Y , x, y ∈ Y,

where Q is a positive, self-adjoint, trace class operator on Y . Furthermore, L0
2(Y,X) denotes

the space of all Q-Hilbert-Schmidt operators from Y to X with the norm

‖ξ‖2L02 := tr(ξQξ∗) <∞, ξ ∈ L0
2(Y,X).

For the construction of a stochastic integral in a Hilbert space, see Da Prato and Zabczyk [108].

For Borel set Z ∈ B(U \ {0})), we consider the following impulsive neutral stochastic delay

di�erential equation with Poisson jumps

d[x(t) + u(t, x(t− τ(t)))] = [Ax(t)dt+ f(t, x(t− δ(t)))]dt+ g(t, x(t− ρ(t))dw(t)

+
∫
Z h(t, x(t− σ(t)), y) Ñ(dt, dy), t ≥ 0, t 6= tk,

∆x(tk) = Ik(x(t−k )), t = tk, k = 1, 2, · · · ,

x0(θ) = φ, θ ∈ [−τ, 0], a.s.

(5.20)

where φ ∈ PC and the functions τ(t), δ(t), ρ(t), σ(t) : [0,∞) → [0, τ ] (τ > 0 is a constant) are

continuous functions, where PC ≡ PC([−τ, 0];X) is the space of all almost surely bounded

F0-measurable functions from [−τ, 0] into X that are continuous everywhere except for a �nite

number of points s at which the left and right limits φ(s−) and φ(s+) exist and φ(s+) = φ(s)

as usual, equipped with the supremum norm ‖φ‖0 = essupω∈Ω supt∈[−τ,0] ‖φ(t)(ω)‖; −A is a

closed, densely de�ned linear operator generating an analytic semigroup S(t)(t ≥ 0) on the
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Hilbert space X; then it is possible under some circumstances (we refer the readers to [100] for a

detailed presentations of the de�nition and relevant properties of (−A)α) to de�ne the fractional

power (−A)α : D((−A)α) → X which is a closed linear operator with its domain D((−A)α),

for α ∈ (0, 1]. Moreover, the �xed moments of time tk satisfy 0 < t1 < t2 < · · · < tk < · · ·
and limk→∞ tk = ∞; x(t−k ) and x(t+k ) represent the left and right limits of x(t) at time t = tk,

k = 1, 2, · · · , respectively. ∆x(tk) = x(t+k ) − x(t−k ) denotes the jump in the state x at time tk
with Ik(·) : X → X(k = 1, 2, · · · ) determining the size of the jump; u, f : [0,∞) × X → X,

g : [0,∞)×X → L0
2(Y,X), h : [0,∞)×X × U → X are given functions to be speci�ed later.

De�nition 5.2.1. (Chen [21]) Let σ ∈ L(Y,X), and de�ne

‖σ‖2L02 := tr(σQσ∗) =
∞∑
n=1

‖
√
λnσen‖2

If ‖σ‖2L02 < +∞, then σ is called a Q-Hilbert-Schmidt operator and L0
2(Y,X) denotes the space

of all Q-Hilbert-Schmidt operators σ : Y → X.

Note that equation (5.20) could be the in�nite dimensional formulation of a partial di�erential

equation with delays, (see, e.g. Da Prato and Zabczyk [108]).

De�nition 5.2.2. An X-valued stochastic process x(t), t ∈ [0,+∞), is called a mild solution of

(5.20) if

(i) x(t) is adapted to Ft, t ≥ 0;

(ii) t 7→ x(t) has càdlàg paths on [0,+∞) almost surely, and for t ∈ [0,+∞), x(t) satis�es the

following integral equation

x(t) = S(t)(φ(0) + u(0, φ))− u(t, x(t− τ(t)))

−
∫ t

0
AS(t− s)u(s, x(s− τ(s))) ds+

∫ t

0
S(t− s)f(s, x(s− δ(s))) ds

+

∫ t

0

∫
Z
S(t− s)h(s, x(s− θ(s)), y) Ñ( ds, dy)

+

∫ t

0
S(t− s)g(s, x(s− ρ(s))) dw(s) +

∑
0<tk<t

S(t− tk)Ik(x(t−k )), (5.21)

where x0(·) = φ, a.s.

De�nition 5.2.3. Let p > 0. Equation (5.20) is said to be exponentially stable in pth moment,

if for any initial value φ ∈ PC, there exists a pair of positive constants γ and C such that

E‖x(t)‖p ≤ C‖φ‖p0e
−γt, t ≥ 0,

where E denotes expectation with respect to the probability measure P and x is the mild solution

of (5.20).

To obtain our main results, we impose the following assumptions:
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(A1) A is the in�nitesimal generator of an analytic semigroup of bounded linear operators

{S(t), t ≥ 0} in X such that 0 ∈ ρ(−A), the resolvent set of −A, and S(t) is uniformly

bounded,

‖S(t)‖ ≤Me−γt, t ≥ 0,

for some constants γ,M > 0;

(A2) the mappings f(t, ·), σ(t, ·) and h(t, ·) satisfy Lipschitz conditions, that is, there exist

L1, L2, L3 > 0 such that for any x, y ∈ H and t ≥ 0,

‖f(t, x)− f(t, y)‖ ≤ L1‖x− y‖, L1 > 0,

‖g(t, x)− g(t, y)‖ ≤ L2‖x− y‖, L2 > 0,∫
z
‖h(t, x, z)− h(t, y, z)‖2ν(dz) ≤ L2

3‖x− y‖2, L3 > 0,

we further assume that f(t, 0) = g(t, 0) = h(t, 0, z) = 0 for all t ≥ 0, z ∈ Z. Hence, (5.20)
has a trivial solution x = 0 when φ = 0.

(A3) The mapping (−A)αu(t, ·) satis�es a uniformly Lipschitz condition: there exists a positive

constant K > 0 such that for any x, y ∈ X,

‖(−A)αu(t, x)− (−A)αu(t, y)‖ ≤ K‖x− y‖, u(t, 0) = 0, t ≥ 0,

for α ∈ (1/p, 1] (for some p ≥ 2) and u(t, ·) ∈ D((−A)α). Moreover, for α ∈ (1/p, 1],

κ = ‖(−A)−α‖K < 1.

(A4) Ik ∈ C(X,X) and there exists a positive constant qk such that ‖Ik(x)−Ik(y)‖ ≤ qk‖x−y‖
and Ik(0) = 0, k = 1, 2, 3, · · · , for each x, y ∈ X.

Remark 5.2.4. Under the conditions (A1)-(A4) and suppose that the mappings f(t, ·), σ(t, ·)
and h(t, ·) satisfy linear growth conditions, the existence and uniqueness of the system (5.20) can

be shown by using Picard iterative method (see, Anguraj and Vinodkumar [2]).

Lemma 5.2.5. (Theorem 6.13, [100]) Suppose that the assumption (A1) holds, then for any

β ∈ (0, 1], we have that

(i) for each x ∈ D((−A)β),

S(t)(−A)βx = (−A)βS(t)x;

(ii) there exist positive constant Mβ > 0 such that∥∥∥(−A)βS(t)
∥∥∥ ≤Mβt

−βe−γt, t > 0.

Lemma 5.2.6. (Da Prato and Zabczyk [108]) For any p ≥ 2 and for an arbitrary L0
2-valued

adapted caglad process Φ(·),

sup
s∈[0,t]

E
∥∥∥∥∫ s

0
Φ(u)dw(u)

∥∥∥∥p ≤ cp(∫ t

0

(
E‖Φ(s)‖pL02

)2/p
ds

)p/2
.

where cp = (p(p− 1)/2)p/2.

Lemma 5.2.7. (Mao [96]) Let p ∈ [1,∞) and ν ∈ (0, 1). For any two real positive numbers

a, b > 0,

(a+ b)p ≤ ν1−pap + (1− ν)1−pbp.
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5.2.2 Exponential stability by an impulsive-integral inequality

In this subsection, we study exponential stability in pth moment of mild solution of the system

(5.20) by using an impulsive-integral inequality.

Theorem 5.2.8. Consider the neutral stochastic partial di�erential equations (5.20), let p ≥ 2

and suppose that the conditions (A1)-(A4) are satis�ed. Then (5.20) is exponentially stable in

pth moment, if the inequality

9p−1(1− κ)−p
[
Mp

1−αK
pγ1−pα(Γ(1 + p(α− 1)/(p− 1)))p−1 +MpLp3γ

1−p]
+3p−1(1− κ)−p

[
MpLp1γ

1−p + cpM
pLp2

(
2γ(p− 1)

p− 2

)1−p/2
]

+9p−1γ(1− κ)−pMp

(∑
tk<t

qk

)p
< γ (5.22)

and
∑

tk<t
qk < +∞ hold, where cp = (p(p− 1)/2)p/2, κ = ‖(−A)−α‖K < 1.

We start with an impulsive-integral inequality lemma, which is essential to the proof of Theorem

5.2.8.

Lemma 5.2.9. If γ > 0, and λ0, λ, λ
∗, λk(k = 1, 2, · · · ) are positive constants such that λ∗

γ +

λ+
∑∞

k=1 λk < 1, and a function y : [−τ,∞)→ [0,∞) such that the inequality

y(t) ≤



λ0e
−pγt + λ∗

∫ t
0 e
−γ(t−s) supθ∈[−τ,0] y(s+ θ) ds

+λ supθ∈[−τ,0] y(t+ θ) +
∑

tk<t
λke
−pγ(t−tk)y(t−k ), t ≥ 0,

λ0e
−pγt, t ∈ [−τ, 0],

(5.23)

holds, then we have that y(t) ≤ M2e
−pµt(t ≥ −τ), where µ is a positive root of the algebraic

equation
(
λ+ λ∗

γ−pµ

)
epµτ +

∑∞
k=1 λk = 1 and M2 = max

{
λ0(γ−pµ)
λ∗epµτ , λ0

}
> 0.

Proof. Let F (µ) =
(
λ+ λ∗

γ−pµ

)
epµτ +

∑∞
k=1 λk − 1. We have F (0)F (γ−/p) < 0, hence, there

exists constant µ ∈ (0, γ) such that F (µ) = 0. For any ε > 0, let

Cε = max

{
(ε+ λ0)(γ − pµ)

λ∗epµτ
, ε+ λ0

}
.

We claim that (5.23) implies

y(t) ≤ Cεe−pµt, t ≥ −τ. (5.24)

It is easily shown that (5.24) holds for t ∈ [−τ, 0]. Assume that there exists t∗1 > 0 such that

y(t) < Cεe
−pµt, t ∈ [−τ, t∗1), y(t∗1) = Cεe

−pµt∗1 . (5.25)
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Combining with (5.23), we have

y(t∗1) ≤ λ0e
−pγt∗1 + λCε sup

θ∈[−τ,0]
e−pµ(t∗1+θ)

+λ∗Cε

∫ t∗1

0
e−γ(t∗1−s) sup

θ∈[−τ,0]
e−pµ(s+θ) ds+ Cε

∑
tk<t

∗
1

λke
−pγ(t∗1−tk)e−pµtk

≤ λ0e
−pγt∗1 + λCεe

−pµt∗1epµτ − λ∗Cεe
pµτ

γ − pµ
e−γt

∗
1 +

λ∗epµτ

γ − pµ
Cεe

−pµt∗1 +

( ∞∑
k=1

λk

)
Cεe

−pµt∗1

= λ0e
−pγt∗1 − λ∗Cεe

pµτ

γ − pµ
e−γt

∗
1 +

[(
λ+

λ∗

γ − pµ

)
epµτ +

∞∑
k=1

λk

]
Cεe

−pµt∗1 .

From the de�nition of Cε, we have

λ0e
−pγt∗1 − λ∗Cεe

pµτ

γ − pµ
e−γt

∗
1 ≤ λ0e

−pγt∗1 − λ∗epµτ

γ − pµ
e−γt

∗
1 · (ε+ λ0)(γ − pµ)

λ∗epµτ
< 0.

Then, together with the de�nition of µ, we obtain that y(t∗1) < Cεe
−pµt∗1 , which contradicts

(5.25), so (5.24) holds. As ε > 0 is arbitrarily small, in view of (5.24), it follows that y(t) ≤
M2e

−pµt, for t ≥ −τ , where M2 = max
{
λ0(γ−pµ)
λ∗epµτ , λ0

}
.

We are now ready to prove Theorem 5.2.8.

Proof. Based on an elementary inequality and Lemma 5.2.7, for any real numbers a, b, c, d, e and

f , we have

(a+ b+ c+ d+ e+ f)p

≤ 3p−1(a+ b+ c+ d)p + 3p−1ep + 3p−1fp

≤ 3p−1

[(
1 +

1

ε

)p−1

ap + (1 + ε)p−1(b+ c+ d)p

]
+ 3p−1ep + 3p−1fp

≤ 3p−1

(
1 +

1

ε

)p−1

ap + 9p−1(1 + ε)p−1(bp + cp + dp) + 3p−1ep + 3p−1fp. (5.26)

From Lemma 5.2.7 and (5.21), we obtain

E‖x(t)‖p

≤ κ1−pE ‖u(t, x(t− τ(t)))‖p

+(1− κ)1−pE

∥∥∥∥∥S(t)(φ(0) + u(0, φ))−
∫ t

0
AS(t− s)u(s, x(s− τ(s))) ds

+

∫ t

0
S(t− s)f(s, x(s− δ(s))) ds+

∫ t

0
S(t− s)g(s, x(s− ρ(s))) dw(s)

+

∫ t

0

∫
Z
S(t− s)h(s, x(s− σ(s)), y) Ñ(ds, dy) +

∑
0<tk<t

S(t− tk)Ik(x(t−k ))

∥∥∥∥∥
p
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≤ κ1−pE ‖u(t, x(t− τ(t)))‖p + 3p−1(1− κ)1−p
(

1 +
1

ε

)p−1

E ‖S(t)(φ(0) + u(0, φ))‖p

+9p−1(1− κ)1−p(1 + ε)p−1E
∥∥∥∥∫ t

0
AS(t− s)u(s, x(s− τ(s))) ds

∥∥∥∥p
+9p−1(1− κ)1−p(1 + ε)p−1E

∥∥∥∥∫ t

0

∫
Z
S(t− s)h(s, x(s− σ(s)), y) Ñ(ds, dy)

∥∥∥∥p
+9p−1(1− κ)1−p(1 + ε)p−1E

∥∥∥∥∥∥
∑

0<tk<t

S(t− tk)Ik(x(t−k ))

∥∥∥∥∥∥
p

+3p−1(1− κ)1−pE
∥∥∥∥∫ t

0
S(t− s)f(s, x(s− δ(s))) ds

∥∥∥∥p
+3p−1(1− κ)1−pE

∥∥∥∥∫ t

0
S(t− s)g(s, x(s− ρ(s))) dw(s)

∥∥∥∥p . (5.27)

Now, we estimate the right-hand side of (5.27). By assumption (A3), we obtain

E ‖u(t, x(t− τ(t)))‖p ≤ ‖(−A)−α‖pE‖(−A)αu(t, x(t− τ(t)))‖p

≤ Kp‖(−A)−α‖pE‖x(t− τ(t))‖p. (5.28)

Applying Lemma 5.2.5, Hölder inequality and assumption (A3), we obtain

E
∥∥∥∥∫ t

0
AS(t− s)u(s, x(s− τ(s))) ds

∥∥∥∥p (5.29)

≤Mp
1−αK

pγ1−pα(Γ(1 + p(α− 1)/(p− 1)))p−1

∫ t

0
e−γ(t−s)E‖x(s− τ(s))‖p ds.

Similarly, we obtain that

E
∥∥∥∥∫ t

0
S(t− s)f(s, x(s− δ(s))) ds

∥∥∥∥p
≤ E

[∫ t

0
‖S(t− s)f(s, x(s− δ(s)))‖ ds

]p
≤ E

[∫ t

0
Me−γ(t−s)‖f(s, x(s− δ(s)))‖ ds

]p
≤MpLp1E

[∫ t

0
e−γ(t−s)‖x(s− δ(s))‖ ds

]p
= MpLp1E

[∫ t

0
e−(γ(p−1)/p)(t−s)e−(γ/p)(t−s)‖x(s− δ(s))‖ ds

]p
≤MpLp1

[∫ t

0
e−γ(t−s) ds

]p−1 ∫ t

0
e−γ(t−s)E‖x(s− δ(s))‖p ds

≤MpLp1γ
1−p

∫ t

0
e−γ(t−s)E‖x(s− δ(s))‖p ds; (5.30)
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E
∥∥∥∥∫ t

0
S(t− s)g(s, x(s− ρ(s))) dw(s)

∥∥∥∥p
≤ cpMp

[∫ t

0

(
e−γp(t−s)E‖g(s, x(s− ρ(s)))‖p

)2/p
ds

]p/2
≤ cpMpLp2

[∫ t

0

(
e−γp(t−s)E‖x(s− ρ(s))‖p

)2/p
ds

]p/2
= cpM

pLp2

[∫ t

0

(
e−γ(p−1)(t−s)e−γ(t−s)E‖x(s− ρ(s))‖p

)2/p
ds

]p/2
≤ cpMpLp2

[∫ t

0
e
−
(

2(p−1)
p−2

)
γ(t−s)

ds

]p−1 ∫ t

0
e−γ(t−s)E‖x(s− ρ(s))‖p ds

≤ cpMpLp2

(
2γ(p− 1)

p− 2

)1−p/2 ∫ t

0
e−γ(t−s)E‖x(s− ρ(s))‖p ds (5.31)

E
∥∥∥∥∫ t

0

∫
Z
S(t− s)h(s, x(s− σ(s)), z) Ñ(ds, dz)

∥∥∥∥p
≤ cpE

[∫ t

0

∫
Z
‖S(t− s)h(s, x(s− σ(s)), z)‖2 dsν(dz)

]p/2
≤ cpMpE

[∫ t

0

∫
Z
e−2γ(t−s)‖h(s, x(s− σ(s)), z)‖2 dsν(dz)

]p/2
≤ cpMpE

[∫ t

0
e−2γ(t−s)

∫
Z
‖h(s, x(s− σ(s)), z)‖2ν(dz) ds

]p/2
≤ cpMpLp3

[∫ t

0
e−2γ(t−s)E‖x(s− σ(s))‖2 ds

]p/2
= cpM

pLp3

[∫ t

0
e
− 2(p−1)

p
γ(t−s)

e
− 2
p
γ(t−s)E‖x(s− σ(s))‖2 ds

]p/2
≤ cpMpLp3

(∫ t

0
e
− 2(p−1)

p
· p
p−2

γ(t−s)
ds

)(p−2)/2

e−γ(t−s)E‖x(s− σ(s))‖p ds

≤ cpMpLp3

(
p− 2

2(p− 1)γ

)(p−2)/2 ∫ t

0
e−γ(t−s)E‖x(s− σ(s))‖p ds. (5.32)

Furthermore, we obtain that

E

∥∥∥∥∥∥
∑

0<tk<t

S(t− tk)Ik(x(t−k ))

∥∥∥∥∥∥
p

≤Mp

(∑
tk<t

qk

)p−1 ∑
tk<t

qke
−γp(t−tk)E‖x(t−k )‖p. (5.33)
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Hence, from (5.27)-(5.33), we obtain

E‖x(t)‖p

≤ κ sup
θ∈[−τ,0]

E‖x(t+ θ)‖p + 3p−1(1− κ)1−p
(

1 +
1

ε

)p−1

×Mpe−γpt(1 +K‖(−A)−α‖)p sup
θ∈[−τ,0]

E‖x(θ)‖p

+9p−1(1− κ)1−p(1 + ε)p−1Mp
1−αK

pγ1−pα(Γ(1 + p(α− 1)/(p− 1)))p−1

×
∫ t

0
e−γ(t−s) sup

θ∈[−τ,0]
E‖x(s+ θ(s))‖p ds

+9p−1(1− κ)1−p(1 + ε)p−1cpM
pLp3

(
p− 2

2(p− 1)γ

)(p−2)/2

×
∫ t

0
e−γ(t−s) sup

θ∈[−τ,0]
E‖x(s+ θ(s))‖p ds

+9p−1(1− κ)1−p(1 + ε)p−1Mp

(∑
tk<t

qk

)p−1 ∑
tk<t

qke
−γp(t−tk)E‖x(t−k )‖p

+3p−1(1− κ)1−pMpLp1γ
1−p

∫ t

0
e−γ(t−s) sup

θ∈[−τ,0]
E‖x(s+ θ(s))‖p ds (5.34)

+3p−1(1− κ)1−pcpM
pLp2

(
2γ(p− 1)

p− 2

)1−p/2 ∫ t

0
e−γ(t−s) sup

θ∈[−τ,0]
E‖x(s+ θ(s))‖p ds.

From inequality (5.22), (5.34) and the condition (A3), we can always �nd a number ε > 0 small

enough such that

κ+ 9p−1γ−1(1− κ)1−p(1 + ε)p−1

×

[
Mp

1−αK
pγ1−pα(Γ(1 + p(α− 1)/(p− 1)))p−1 + cpM

pLp3

(
p− 2

2(p− 1)γ

)(p−2)/2
]

+3p−1γ−1(1− κ)1−p

[
MpLp1γ

1−p + cpM
pLp2

(
2γ(p− 1)

p− 2

)1−p/2
]

+9p−1(1− κ)1−p(1 + ε)p−1Mp

(∑
tk<t

qk

)p
< 1.

Hence, from Lemma 5.2.9, we obtain that E‖x(t)‖p ≤ M̃e−pµt(M̃ > 0, µ ∈ (0, γ)). Therefore,

the mild solution of the system (5.20) is exponentially stable in pth moment.

If h ≡ 0 or ν ≡ 0, system (5.20) becomes

d[x(t) + u(t, x(t− τ(t)))] = [Ax(t)dt+ f(t, x(t− δ(t)))]dt
+g(t, x(t− ρ(t))dw(t), t ≥ 0, t 6= tk,

∆x(tk) = Ik(x(t−k )), t = tk, k = 1, 2, · · · ,

x0(·) = φ ∈ PC,

(5.35)
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Corollary 5.2.10. Consider the impulsive stochastic partial di�erential equation (5.35) and sup-

pose that the conditions (A1)-(A4) are satis�ed. Then the mild solution of (5.35) is exponential

stability in pth moment, if the following inequality

6p−1(1− κ)−pMp
1−αK

pγ1−pα(Γ(1 + p(α− 1)/(p− 1)))p−1

+3p−1(1− κ)−p

[
MpLp1γ

1−p + cpM
pLp2

(
2γ(p− 1)

p− 2

)1−p/2
]

+6p−1γ(1− κ)−pMp

(∑
tk<t

qk

)p
< γ

holds, where cp = (p(p− 1)/2)p/2.

Remark 5.2.11. If Ik(·) ≡ 0 (k = 1, 2, · · · ) in (5.35), Theorem 3.2 in [21] can be obtained from

Corollary 5.2.10.

If h ≡ 0 and the impulsive e�ects Ik(·) ≡ 0 (k = 1, 2, · · · ), system (5.20) becomes
dx(t) = [Ax(t)dt+ f(t, x(t− δ(t)))]dt+ g(t, x(t− ρ(t))dw(t) t ≥ 0,

x0(·) = φ ∈ PC.
(5.36)

Corollary 5.2.12. Consider the stochastic partial di�erential equation (5.36) and suppose that

the conditions (A1)-(A4) are satis�ed. Then the mild solution of (5.36) is exponential stability

in pth moment, if the following inequality

3p−1Mp

[
Lp1γ

1−p + cpL
p
2

(
2γ(p− 1)

p− 2

)1−p/2
]
< γ (5.37)

holds, where cp = (p(p− 1)/2)p/2.

Remark 5.2.13. Corollary 5.2.12 is consistent with the result in Luo [90] which was studied by

using �xed point methods.

Example 5.2.14. Consider the following neutral stochastic partial di�erential equation with

delays and poisson jumps of the form

d

[
x(t, ξ) +

α3

M1−α‖(−A)α‖
x(t− τ(t)), ξ)

]
=

[
∂2

∂ξ2
x(t, ξ)dt+ α1x(t− δ(t), ξ)

]
dt+ α2x(t− ρ(t), ξ)dw(t)

+

∫
Z
α4yx(t− θ(t), ξ) Ñ(dt, dy), t ≥ 0, t 6= tk, (5.38)

and for t = tk, k = 1, 2, · · ·m,

∆x(tk, ξ) = dkx(tk, ξ), (5.39)

where dk ≥ 0,
∑m

k=1 dk <∞, x(t, 0) = x(t, π) = 0, αi > 0, i = 1, 2, 3, 0 < τ(t), δ(t), ρ(t), θ(t) <

τ , x(s, ξ) = φ(s, ξ), φ(·, ξ) ∈ C, φ(s, ·) ∈ L2[0, π], −τ ≤ s ≤ 0, 0 ≤ ξ ≤ π, τ ≥ 0, t ≥ 0, w(t) is

a standard one-dimensional Wiener process and ‖φ‖C < +∞ a.s., and M1−α ≥ 1 (α ∈ (1/2, 1]).
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Take X = L2[0, π],Y = R1, de�ne A : X → X by −A = ∂2

∂ξ2
with domain

D(−A) =

{
ω ∈ X : ω,

∂2ω

∂ξ
are continuous,

∂2ω

∂ξ2
∈ X, ω(0) = ω(π) = 0

}
.

Then

(−A)ω =
∞∑
n=1

n2(ω, ωn)ωn, ω ∈ D(−A),

where ωn(ξ) =
√

2/π sinnξ, n = 1, 2, 3, · · · , is orthonormal set of eigenvector of −A. It is well
known that A is the in�nitesimal generator of an analytic semigroup S(t)(t ≥ 0) in X and is

given (see Pazy[100], Page 70) by

S(t)ω =

∞∑
n=1

exp(−n2t)(ω, ωn)ωn, ω ∈ X,

that satis�es ‖S(t)‖ ≤ exp
(
−π2t

)
, t ≥ 0, and hence is a contraction semigroup. Let

u(t, x(t− τ(t), ξ)) =
α3

M1−α‖(−A)α‖
x(t− τ(t)), ξ),

f(t, x(t− δ(t), ξ)) = α1x(t− δ(t), ξ), g(t, x(t− ρ(t), ξ) = α2x(t− ρ(t), ξ),

h(t, x(t− θ(t), ξ), z) = α4zx(t− θ(t), ξ).

We obtain that

‖f(t, x(t− δ(t), ξ))− f(t, y(t− δ(t), ξ))‖
≤ α1‖x(t− δ(t), ξ)− y(t− δ(t), ξ)‖, f(t, 0) = 0.

‖g(t, x(t− ρ(t), ξ)− g(t, y(t− ρ(t), ξ)‖
≤ α2‖x(t− δ(t), ξ)− y(t− δ(t), ξ)‖, g(t, 0) = 0.

∫
Z
‖h(t, x(t− θ(t), ξ), z)− h(t, y(t− θ(t), ξ), z)‖ ν(dz)

≤ α4

∫
Z
z ν(dz)‖x(t− θ(t), ξ)− y(t− θ(t), ξ)‖, h(t, 0, z) = 0.

‖(−A)αu(t, x(t− τ(t), ξ))− (−A)αu(t, y(t− τ(t), ξ))‖

≤ α3

M1−α
‖x(t− τ(t)), ξ)− y(t− τ(t)), ξ)‖, (−A)αu(t, 0, ξ)) = 0.

From the de�nition of (−A)−α, we obtain

‖(−A)−α‖ ≤ 1

Γ(α)

∫ +∞

0
tα−1‖S(t)‖ dt ≤ 1

π2α
.
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Thus, when α3 < M1−απ
2α(α ∈ (1/2, 1]). By Theorem 5.2.8, the mild solution of (5.20) is

exponential stability in mean square provide that

9α2
3π

2−4αΓ(2α− 1) + 9α2
4π
−2

(∫
Z
z ν(dz)

)2

+ 3
(
α2

1π
−2 + α2

2

)
+9π2

(
m∑
k=1

qk

)2

<

(
π − α3

M1−απ2α−1

)2

, α ∈
(

1

2
, 1

]
.

5.2.3 Exponential stability by using �xed point methods

In this subsection, we study existence and exponential stability in pth moment of mild solution

of the system (5.20) by using �xed point methods.

Denote by Sφ the space of all F-adapted càdlàg processes: ϕ(t, ω) : [−τ,∞) × Ω → X such

that φ(s, ·) = φ(s) for s ∈ [−τ, 0] and eηtE‖ϕ(t)‖p → 0 as t→∞, where 0 < η < γ. If we de�ne

the metric as

‖ϕ‖Sφ := sup
s≥−τ

E‖ϕ(s)‖p, (5.40)

then Sφ is a complete metric space with respect to (5.40). Using a contraction mapping de�ned

on the space Sφ and applying a contraction mapping principle, we obtain the following result.

Theorem 5.2.15. Suppose that the assumptions (A1)-(A4) hold for some α ∈ (1/p, 1], p ≥ 2,

and the following conditions also hold,

(i) there exists a constant q̃ such that qk ≤ q̃(tk − tk−1), k = 1, 2, · · · ,

(ii) and such that

6p−1‖(−A)−α‖pKp + 6p−1Mp
1−αK

pγ−pα(Γ(1 + p(α− 1)/(p− 1)))p−1

+6p−1MpLp1γ
−p + 6p−1cpM

pLp2

(
2γ(p− 1)

p− 2

)1−p/2
γ−1

+6p−1cpM
pLp3

(
p− 2

2(p− 1)γ

)(p−2)/2

γ−1 + 6p−1Mpq̃pγ−p < 1,

where Γ(·) is the Gamma function, M1−α is the corresponding constant as in Lemma 5.2.5,

then the mild solution of the system (5.20) is exponentially stable.

Remark 5.2.16. In our results, we do not require the monotone decreasing behavior of the

delays, i.e. τ ′(t) ≤ 0, δ′(t) ≤ 0, ρ′(t) ≤ 0, θ′(t) ≤ 0 for t ≥ 0, which is needed in [14].

Remark 5.2.17. Sakthivel and Luo [117, 118] and Jiang and Shen [61] studied asymptotic

stability of special cases of the system (5.20) by using �xed point theory. In [61, 117, 118], the

estimate of the impulsive term is

sup
t∈[0,T ]

E

∥∥∥∥∥∥
∑

0<tk<t

S(t− tk)(Ik(x(t−k ))− Ik(y(t−k )))

∥∥∥∥∥∥
p

≤Mpe−γpTE

(
m∑
k=1

qpk

)
sup
t∈[0,T ]

E‖x(t)− y(t)‖p
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which seems to be a mistake. It should be

sup
t≥0

E

∥∥∥∥∥∥
∑

0<tk<t

S(t− tk)(Ik(x(t−k ))− Ik(y(t−k )))

∥∥∥∥∥∥
p

≤Mp sup
t≥0

E

 ∑
0<tk<t

e−γ(t−tk)qk‖x(t−k )− y(t−k )‖

p .
To estimate the impulsive e�ects to the system (5.20), we consider the case which satisfy condition

(i) in Theorem 5.2.15. Note that k in condition (i) can be equal to in�nity.

To prove Theorem 5.2.15, we start with a lemma.

Lemma 5.2.18. De�ne an operator by (πϕ)(t) = φ(t) for t ∈ [−τ, 0], and for t ≥ 0,

(πϕ)(t) = S(t)(φ(0) + u(0, φ))− u(t, ϕ(t− τ(t)))−
∫ t

0
AS(t− s)u(s, ϕ(s− τ(s))) ds

+

∫ t

0
S(t− s)f(s, ϕ(s− δ(s))) ds+

∫ t

0
S(t− s)g(s, ϕ(s− ρ(s))) dw(s)

+

∫ t

0

∫
Z
S(t− s)h(s, ϕ(s− σ(s)), y) Ñ(ds, dy) +

∑
0<tk<t

S(t− tk)Ik(ϕ(t−k ))

:=

7∑
i=1

Ji(t). (5.41)

Suppose that the assumptions (A1)− (A4) hold. If the conditions (i) and (ii) in Theorem 5.2.15

are satis�ed, then π : Sφ → Sφ and π is a contraction mapping.

Proof. First, we prove the continuity in pth moment of π on [0,∞). Let ϕ ∈ Sφ, t1 ≥ 0, and |r|
be su�ciently small, from (5.41), we have

E‖(πϕ)(t1 + r)− (πϕ)(t1)‖p ≤ 7p−1
7∑
i=1

E‖Ji(t1 + r)− Ji(t1)‖p. (5.42)

It is easily to check that

E‖Ji(t1 + r)− Ji(t1)‖p → 0 as r → 0, i = 1, 2, 3, 4, 7.

Further, by using Hölder inequality and Lemma 5.2.6, we obtain

E‖J5(t1 + r)− J5(t1)‖p

≤ 2p−1E
∥∥∥∥∫ t1

0
(S(t1 + r − s)− S(t1))g(s, ϕ(s− ρ(s))) dw(s)

∥∥∥∥p
+2p−1E

∥∥∥∥∫ t1+r

t1

S(t1 + r − s)g(s, ϕ(s− ρ(s))) dw(s)

∥∥∥∥p
≤ 2p−1cp

(∫ t1

0
(E‖(S(t1 + r − s)− S(t1))g(s, ϕ(s− ρ(s)))‖p)2/p ds

)p/2
+2p−1cp

(∫ t1+r

t1

(E‖S(t1 + r − s)g(s, ϕ(s− ρ(s)))‖p)2/p ds

)p/2
→ 0 as r → 0.
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Similarly, we can verify that E‖J6(t1 + r) − J6(t1)‖p → 0 as r → 0. Thus, π is indeed

continuous in pth moment on [0,∞).

Next, We show that π(Sφ) ⊆ Sφ. It follows form (5.41) that

eηtE‖(πϕ)(t)‖p ≤ 7p−1eηtE‖S(t)(φ(0) + u(0, φ))‖p + 7p−1eηtE‖u(t, ϕ(t− τ(t)))‖p

+7p−1eηtE
∥∥∥∥∫ t

0
AS(t− s)u(s, ϕ(s− τ(s))) ds

∥∥∥∥p
+7p−1eηtE

∥∥∥∥∫ t

0
S(t− s)f(s, ϕ(s− δ(s))) ds

∥∥∥∥p
+7p−1eηtE

∥∥∥∥∫ t

0
S(t− s)g(s, ϕ(s− ρ(s))) dw(s)

∥∥∥∥p
+7p−1eηtE

∥∥∥∥∫ t

0

∫
Z
S(t− s)h(s, ϕ(s− σ(s)), y) Ñ(ds, dy)

∥∥∥∥p
+7p−1eηtE

∥∥∥∥∥∥
∑

0<tk<t

S(t− tk)Ikϕ(t−k )

∥∥∥∥∥∥
p

. (5.43)

Now, we estimate the terms on the right-hand side of (5.43). By the condition (A1) and (A3),

we obtain

7p−1eηtE‖S(t)(φ(0) + u(0, φ))‖p ≤Mpe(η−pγ)tE‖φ(0) + u(0, φ)‖p → 0 as t→∞ (5.44)

and

7p−1eηtE‖u(t, ϕ(t− τ(t)))‖p ≤ 7p−1eηt‖(−A)−α‖pE‖(−A)αu(t, ϕ(t− τ(t)))‖pH
≤ 7p−1eητKp‖(−A)−α‖peη(t−τ(t))E‖ϕ(t− τ(t))‖p

→ 0 as t→∞. (5.45)

Using Hölder inequality, we obtain

7p−1eηtE
∥∥∥∥∫ t

0
AS(t− s)u(s, ϕ(s− τ(s))) ds

∥∥∥∥p
≤ 7p−1eηtMp

1−αK
pγ1−pα(Γ(1 + p(α− 1)/(p− 1)))p−1

∫ t

0
e−γ(t−s)E‖ϕ(s− τ(s))‖p ds

≤ 7p−1Mp
1−αK

pγ1−pα(Γ(1 + p(α− 1)/(p− 1)))p−1

×eητ
∫ t

0
e−(γ−η)(t−s)eη(s−τ(s))E‖ϕ(s− τ(s))‖p ds. (5.46)

For any ϕ ∈ Sφ and ε > 0, there exists t1 > 0 such that eη(s−τ(s))E‖ϕ(s− τ(s))‖p < ε for t ≥ t1.
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Thus, from (5.46), we obtain

7p−1eηtE
∥∥∥∥∫ t

0
AS(t− s)u(s, ϕ(s− τ(s))) ds

∥∥∥∥p
≤ 7p−1Mp

1−αK
pγ1−pα(Γ(1 + p(α− 1)/(p− 1)))p−1

×eητ
∫ t1

0
e−(γ−α)(t−s)eη(s−τ(s))E‖ϕ(s− τ(s))‖p ds

+7p−1Mp
1−αK

pγ1−pα(Γ(1 + p(α− 1)/(p− 1)))p−1

×eητ
∫ t

t1

e−(γ−α)(t−s)eη(s−τ(s))E‖ϕ(s− τ(s))‖p ds

≤ 7p−1Mp
1−αK

pγ1−pα(Γ(1 + p(α− 1)/(p− 1)))p−1

×eητ
∫ t1

0
e−(γ−η)(t−s)eη(s−τ(s))E‖ϕ(s− τ(s))‖p ds

+7p−1Mp
1−αK

pγ1−pα(Γ(1 + p(α− 1)/(p− 1)))p−1 (eητ/(γ − η)) ε. (5.47)

Since e−(γ−η)t → 0 as t→∞, then there exists t2 ≥ t1 such that for t ≥ t2, we have

7p−1Mp
1−αK

pγ1−pα(Γ(1 + p(α− 1)/(p− 1)))p−1

eητ
∫ t1

0
e−(γ−η)(t−s)eη(s−τ(s))E‖ϕ(s− τ(s))‖p ds

≤ ε− 7p−1Mp
1−αK

pγ1−pα(Γ(1 + p(α− 1)/(p− 1)))p−1 (eητ/(γ − η)) ε. (5.48)

So, from (5.47)and (5.48), we obtain that for any t ≥ t2,

7p−1eηtE
∥∥∥∥∫ t

0
AS(t− s)u(s, ϕ(s− τ(s))) ds

∥∥∥∥p < ε. (5.49)

Hence

7p−1eηtE
∥∥∥∥∫ t

0
AS(t− s)u(s, ϕ(s− τ(s))) ds

∥∥∥∥p → 0 as t→∞.

As for the fourth term on the right-hand side of (5.43), for any ϕ ∈ Sφ, we have that for p > 2,

7p−1eηtE
∥∥∥∥∫ t

0
S(t− s)f(s, ϕ(s− δ(s))) ds

∥∥∥∥p
≤ 7p−1eηtE

[∫ t

0
Me−γ(t−s)‖f(s, ϕ(s− δ(s)))‖ ds

]p
≤ 7p−1eηtMpLp1E

[∫ t

0
e−γ(t−s)‖ϕ(s− δ(s))‖ ds

]p
≤ 7p−1eηtMpLp1

[∫ t

0
e−γ(t−s) ds

]p−1 ∫ t

0
e−γ(t−s)E‖ϕ(s− δ(s))‖p ds

≤ 7p−1eητMpLp1γ
1−p

∫ t

0
e−(γ−η)(t−s)eη(s−δ(s))E‖ϕ(s− δ(s))‖p ds. (5.50)
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From Lemma 5.2.6 and Hölder inequality, we obtain

7p−1eηtE
∥∥∥∥∫ t

0
S(t− s)g(s, ϕ(s− ρ(s))) dw(s)

∥∥∥∥p
≤ 7p−1eηtcpM

p

[∫ t

0

(
e−γp(t−s)E‖g(s, ϕ(s− ρ(s)))‖p

)2/p
ds

]p/2
≤ 7p−1eηtcpM

pLp2

[∫ t

0

(
e−γp(t−s)E‖ϕ(s− ρ(s))‖p

)2/p
ds

]p/2
≤ 7p−1eηtcpM

pLp2

[∫ t

0
e
−
(

2(p−1)
p−2

)
γ(t−s)

ds

]p−1 ∫ t

0
e−γ(t−s)E‖ϕ(s− ρ(s))‖p ds

≤ 7p−1eηtcpM
pLp2

(
2γ(p− 1)

p− 2

)1−p/2 ∫ t

0
e−γ(t−s)E‖ϕ(s− ρ(s))‖p ds (5.51)

≤ 7p−1cpM
pLp2

(
2γ(p− 1)

p− 2

)1−p/2
eητ
∫ t

0
e−(γ−η)(t−s)eη(s−ρ(s))E‖ϕ(s− ρ(s))‖p ds

and

7p−1eηtE
∥∥∥∥∫ t

0

∫
Z
S(t− s)h(s, ϕ(s− σ(s)), z) Ñ(ds, dz)

∥∥∥∥p
≤ 7p−1eηtcpE

[∫ t

0

∫
Z
‖S(t− s)h(s, ϕ(s− σ(s)), z)‖2 dsν(dz)

]p/2
≤ 7p−1eηtcpM

pE
[∫ t

0

∫
Z
e−2γ(t−s)‖h(s, ϕ(s− σ(s)), z)‖2 dsν(dz)

]p/2
≤ 7p−1eηtcpM

pE
[∫ t

0
e−2γ(t−s)

∫
Z
‖h(s, ϕ(s− σ(s)), z)‖2ν(dz) ds

]p/2
≤ 7p−1eηtcpM

pLp3

[∫ t

0
e−2γ(t−s)E‖ϕ(s− σ(s))‖2 ds

]p/2
≤ 7p−1eηtcpM

pLp3

(∫ t

0
e
− 2(p−1)

p
· p
p−2

γ(t−s)
ds

)(p−2)/2

e−γ(t−s)E‖ϕ(s− σ(s))‖p ds

≤ 7p−1eηtcpM
pLp3

(
p− 2

2(p− 1)γ

)(p−2)/2 ∫ t

0
e−γ(t−s)E‖ϕ(s− σ(s))‖p ds (5.52)

≤ 7p−1cpM
pLp3

(
p− 2

2(p− 1)γ

)(p−2)/2

eητ
∫ t

0
e−(γ−η)(t−s)eη(s−σ(s))E‖ϕ(s− σ(s))‖p ds,

where cp = (p(p − 1)/2)p/2. We remark that if p = 2, the inequality (5.51) also holds with

00 := 1. Similar to the proof of (5.46), from estimate (5.50), (5.51) and (5.52), we obtain that

7p−1eηtE
∥∥∥∥∫ t

0
S(t− s)f(s, ϕ(s− δ(s))) ds

∥∥∥∥p → 0 as t→∞,

7p−1eηtE
∥∥∥∥∫ t

0
S(t− s)g(s, ϕ(s− ρ(s))) dw(s)

∥∥∥∥p → 0 as t→∞,

7p−1eηtE
∥∥∥∥∫ t

0

∫
Z
S(t− s)h(s, ϕ(s− σ(s)), z) Ñ(ds, dz)

∥∥∥∥p → 0 as t→∞. (5.53)
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Now, we estimate the impulsive term, from the condition (i), we obtain

7p−1eηtE

∥∥∥∥∥∥
∑

0<tk<t

S(t− tk)Ikϕ(t−k )

∥∥∥∥∥∥
p

≤ 7p−1eηtE

 ∑
0<tk<t

Me−γ(t−tk)qk‖ϕ(t−k )‖

p

≤ 7p−1eηtE

 ∑
0<tk<t

Me−γ(t−tk)q̃‖ϕ(t−k )(tk − tk−1)‖

p

≤ 7p−1eηtE
(∫ t

0
Me−γ(t−s)q̃‖ϕ(s)‖ ds

)p
≤ 7p−1Mpq̃p

(∫ t

0
e−γ(t−s) ds

)p−1 ∫ t

0
e−γ(t−s)E‖ϕ(s)‖p ds

≤ 7p−1Mpq̃pγ1−p
∫ t

0
e−(γ−η)(t−s)eηsE‖ϕ(s)‖p ds. (5.54)

From (5.54), we obtain

7p−1eηtE

∥∥∥∥∥∥
∑

0<tk<t

S(t− tk)Ikϕ(t−k )

∥∥∥∥∥∥
p

→ 0 as t→∞. (5.55)

Hence, from (5.43), (5.53) and (5.55), we obtain that

eηtE ‖(πϕ)(t)‖p → 0 as t→∞.

Therefore, we conclude that π(Sφ) ⊆ Sφ.

Finally, we show that π is a contraction mapping. For any ϕ,ψ ∈ Sφ, using the estimate

(5.27)-(5.33), we obtain

sup
t≥−τ

E‖(πϕ)(t)− (πψ)(t)‖p

≤ 6p−1 sup
t≥−τ

E‖u(t, ϕ(t− τ(t)))− u(t, ψ(t− τ(t)))‖p

+6p−1 sup
t≥−τ

E
∥∥∥∥∫ t

0
AS(t− s)(u(s, ϕ(s− τ(s)))− u(s, ψ(s− τ(s)))) ds

∥∥∥∥p
+6p−1 sup

t≥−τ
E
∥∥∥∥∫ t

0
S(t− s)(f(s, ϕ(s− δ(s)))− f(s, ψ(s− δ(s)))) ds

∥∥∥∥p
+6p−1 sup

t≥−τ
E
∥∥∥∥∫ t

0
S(t− s)(g(s, ϕ(s− ρ(s)))− g(s, ψ(s− ρ(s))))) dw(s)

∥∥∥∥p
+6p−1 sup

t≥−τ
E
∥∥∥∥∫ t

0

∫
Z
S(t− s)(h(s, ϕ(s− σ(s)), y)− h(s, ψ(s− σ(s)), y)) Ñ(ds, dy)

∥∥∥∥p

+6p−1 sup
t≥−τ

E

∥∥∥∥∥∥
∑

0<tk<t

S(t− tk)(Ik(ϕ(t−k ))− Ik(ψ(t−k )))

∥∥∥∥∥∥
p
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≤

[
6p−1‖(−A)−α‖pKp + 6p−1Mp

1−αK
pγ−pα(Γ(1 + p(α− 1)/(p− 1)))p−1

+6p−1MpLp1γ
−p + 6p−1cpM

pLp2

(
2γ(p− 1)

p− 2

)1−p/2
γ−1

+6p−1cpM
pLp3

(
p− 2

2(p− 1)γ

)(p−2)/2

γ−1 + 6p−1Mpq̃pγ−p

]
sup
t≥0

E‖ϕ(t)− ψ(t)‖p.

Thus, by the condition (ii), we know that π is a contraction mapping.

Hence, using a contraction mapping principle, π has a unique �xed point x(t) in Sφ, which is a

solution of the system (5.20) with x(s) = φ(s) on [−τ, 0] and eηtE‖x(t)‖p → 0 as t→∞.

If the impulsive e�ects Ik(·) ≡ 0 (k = 1, 2, · · · ), system (5.20) reduces to the following neutral

stochastic partial di�erential equations with delays
d[x(t) + u(t, x(t− τ(t)))] = [Ax(t)dt+ f(t, x(t− δ(t)))]dt+ g(t, x(t− ρ(t))dw(t)

+
∫
Z h(t, x(t− θ(t)), y) Ñ(dt, dy), t ≥ 0

x0(·) = φ ∈ PC.

(5.56)

Corollary 5.2.19. Consider the stochastic partial di�erential equation (5.56) and suppose that

the conditions (A1)-(A4) are satis�ed. Then the mild solution of (5.56) is exponential stability

in pth moment, if the following inequality

5p−1‖(−A)−α‖pKp + 5p−1Mp
1−αK

pγ−pα(Γ(1 + p(α− 1)/(p− 1)))p−1

+5p−1MpLp1γ
−p + 5p−1cpM

pLp2

(
2γ(p− 1)

p− 2

)1−p/2
γ−1

+5p−1cpM
pLp3

(
p− 2

2(p− 1)γ

)(p−2)/2

γ−1 < 1

holds, where cp = (p(p− 1)/2)p/2.

Example 5.2.20. Consider a neutral stochastic partial di�erential equation with delays and

Poisson jumps of the form

d [x(t, ξ) + α0x(t− τ(t), ξ)] =
[
∂2

∂ξ2
x(t, ξ)dt+ α1x(t− δ(t), ξ)

]
dt

+α2x(t− ρ(t), ξ)dw(t), t 6= tk,

∆x(tk, ξ) = bkx(tk, ξ), t = tk, k = 1, 2, · · · ,

x(s, ξ) = φ(s, ξ), φ(·, ξ) ∈ C, φ(s, ·) ∈ L2[0, π], −τ ≤ s ≤ 0, 0 ≤ ξ ≤ π,

(5.57)

for t ≥ 0, where τ ≥ 0 is a constant, w(t) is a standard one-dimensional Wiener process

and ‖φ‖C < +∞ a.s., and α ∈ (1/p, 1], p ≥ 2. We suppose that x(t, 0) = x(t, π) = 0 and

0 ≤ τ(t), δ(t), ρ(t) ≤ τ , and we suppose that α0, α1 and α2 are positive constants. Further, we

suppose that there exists a constant b such that bk ≤ b(tk − tk−1).
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impulses

Take X = L2[0, π],Y = R1, de�ne A : X → X by A = ∂2

∂ξ2
with domain

D(A) =
{
x ∈ X | x, ∂x/∂ξ are continuous, ∂2x/∂ξ2 ∈ X, x(0) = x(π) = 0

}
.

Then Ax =
∑∞

n=1 n
2〈x, en〉en, x ∈ D(A), where en(ξ) =

√
2/π sinnξ, n = 1, 2, 3, · · · , is an

orthonormal set of eigenvectors of −A. It is well known that A is the in�nitesimal generator of

an analytic semigroup S(t) in X and is given (see [100], Page 70) by

S(t)x =

∞∑
n=1

e−n
2t〈x, en〉en, x ∈ X.

Hence, ‖S(t)‖ ≤ e−π
2t, t ≥ 0. We de�ne Aα (actually |A|α) for the self-adjoint operator A by

the classical spectral theorem,

|A|αS(t)x =

∞∑
n=1

(
n2
)α
e−n

2t〈x, en〉en.

From the arguments in [125], we have that for 0 < m < 1 and Mα =
(

α
1−m

)α
,

‖(−A)αS(t)x‖ ≤Mαe
−mtt−α‖x‖, t > 0

holds for all x ∈ X. Let u(t, x(t−τ(t), ξ)) = α0x(t−τ(t), ξ), f(t, x(t−δ(t), ξ)) = α1x(t−δ(t), ξ),
g(t, x(t − ρ(t), ξ)) = α2x(t − ρ(t), ξ). It is clear that u(t, ·), f(t, ·) and g(t, ·) satisfy conditions

(A2) and (A3). Further, from the de�nition of (−A)−α, we have that

‖(−A)−α‖ ≤ 1

Γ(α)

∫ +∞

0
tα−1‖S(t)‖ dt ≤ 1

π2α
.

Thus, by Theorem 5.2.15, the mild solution of (5.57) is exponentially stable in pth moment

provided that ( α0

π2α

)p
+

(
1− α
1−m

)1−α
αp0π

−2pα

(
Γ

(
1 +

p(α− 1)

p− 1

))p−1

+ αp1π
−2p

+cpα
p
2π
−2

(
2π2(p− 1)

p− 2

)1−p/2
+ bpπ−2p < 61−p,

where Γ(·) is the Gamma function, α ∈ (1/p, 1], p ≥ 2, 0 < m < 1, cp = (p(p− 1)/2)p/2.

5.3 Notes and remarks

Luo [90] and Appleby [4] have applied �xed point method to deal with the stability problems

for stochastic di�erential equations with stochastic e�ects. Following the ideas of [4, 90], by

employing a contraction mapping principle and stochastic integral technique, many other inves-

tigators [89, 131, 132, 147] considered its generalization.

Many methods which are used frequently to investigate the stability problems for stochastic

partial di�erential equations are ine�ective to study the exponential stability of mild solutions

for impulsive stochastic delay di�erential equations with delays, see, for example, the comparison
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5.3. Notes and remarks

theorem in Govindan [48, 49], the Gronwall inequality in Caraballo and Liu [14], the analytic

technique in Liu and Truman [87], Taniguchi [121] and the semigroup method in Taniguchi et

al.[123], the methods proposed in Caraballo et al.[122], Ichikawa [57, 58], Liu and Mao [86], Wan

and Duan [130], Liu [85, 88] and Taniguchi [124].

Based on the contents of Section 5.2, a paper [18] has been submitted to a journal for pos-

sible publication.
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Chapter 6

Stochastic delayed neural networks

This chapter presents stability properties of a class of stochastic delayed neural networks without

impulses and a class of stochastic delayed neural networks with impulses.

In Section 6.1, we present new conditions for asymptotic stability and exponential stability

of a class of stochastic recurrent neural networks with discrete and distributed time varying

delays. Our approaches are based on the method using �xed point theory and the method using

an appropriate integral inequality, which do not resort to any Liapunov function or Liapunov

functional. Our results neither require the boundedness, monotonicity and di�erentiability of

the activation functions nor di�erentiability of the time varying delays. In particular, a class of

neural networks without stochastic perturbations is also considered by using the two approaches.

In Section 6.2, we consider the impulsive e�ects on the class of stochastic delayed recurren-

t neural networks that is discussed in Section 6.1. New su�cient conditions for asymptotic

stability and exponential stability of the class of impulsive stochastic delayed recurrent neural

networks are presented by using �xed point methods. In particular, as in Section 6.1, a class of

impulsive neural networks without stochastic perturbations is also considered.

6.1 Stability of stochastic delayed neural networks

6.1.1 Introduction and main results

During the past few decades, neural networks such as Hop�eld neural networks [53], Cellular

neural networks [24, 25], Cohen-Grossberg neural networks [136] and bidirectional associative

memory neural networks (BAM Networks) [68, 69, 70] have been well investigated since they

play an important role in many areas such as combinatorial optimization, signal processing and

pattern recognition.

Due to the �nite switching speed of neurons and ampli�ers, time delays which may lead to

instability and bad performance in neural processing and signal transmission are commonly en-

countered in both biological and arti�cial neural networks. In addition, neural networks usually

have a spatial extent due to the presence of a multitude of parallel pathways with a variety of

axon sizes and lengths [128]. Thus there will be a distribution of conduction velocities along

these pathways and a distribution of propagation delays [146]. In these circumstances the sig-

nal propagation is not instantaneous and may not be suitably modeled with discrete delays.

Therefore, a more appropriate way which incorporates continuously distributed delays in neural

network models has been used. Further, due to random �uctuations and probabilistic causes in

the network, noises do exist in a neural network. Thus, it is necessary and rewarding to study

stochastic e�ects to the stability property of neural networks.
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Liapunov's direct method has long been viewed the main classical method of studying stability

problems in many areas of stochastic delay di�erential equations. The success of Lyapunov's di-

rect method depends on �nding a suitable Liapunov function or Liapunov functional. However,

it may be di�cult to look for a good Liapunov functional for some classes of stochastic delay

di�erential equations. Therefore, an alternative may be explored to overcome such di�culties.

It was proposed by Burton [13] and his co-workers to use �xed point methods to study the

stability problem for deterministic systems. Luo [90] and Appleby [4] have applied this method

to deal with the stability problems for stochastic delay di�erential equations, and afterwards,

a great number of classes of stochastic delay di�erential equations are discussed by using �xed

point methods, see, for example, [34, 91, 92, 117, 118]. It turns out that the �xed point method

is a powerful technique in dealing with stability problems for deterministic and stochastic dif-

ferential equations with delays. Moreover, it has an advantage that it can yield the existence,

uniqueness and stability criteria of the considered system in one step. Chen [21, 23] has applied

an appropriate integral inequality to study exponential stability of some classes of stochastic

delay di�erential equations, and it turns out that it is a convenient way to discuss exponential

stability of a system.

The aim of this section is to study a general class of stochastic neural networks by using �xed

point methods and the method by employing an appropriate integral inequality. Indeed, we

consider the following class of stochastic neural networks with varying discrete and distributed

delays which is described by

dxi(t) =

[
− cixi(t) +

n∑
j=1

aijfj(xj(t)) +

n∑
j=1

bijgj(xj(t− τ(t))) (6.1)

+
n∑
j=1

lij

∫ t

t−r(t)
hj(xj(s)) ds

]
dt+

n∑
j=1

σij(t, xj(t), xj(t− τ(t))) dwj(t),

or

dx(t) =

[
− Cx(t) +Af(x(t)) +Bg(x(t− τ(t))) +W

∫ t

t−r(t)
h(x(s)) ds

]
dt

+σ(t, x(t), x(t− τ(t))) dw(t)

for i = 1, 2, 3, · · · , n, where x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ Rn is the state vector associated

with the neurons; C = diag(c1, c2, · · · , cn) > 0 where ci > 0 represents the rate with which the

ith unit will reset its potential to the resting state in isolation when disconnected from the net-

work and the external stochastic perturbations; A = (aij)n×n, B = (bij)n×n and W = (lij)n×n
represent the connection weight matrix, delayed connection weight matrix and distributed de-

layed connection weight matrix, respectively; fj , gj , hj are activation functions, f(x(t)) =

(f1(x(t)), f2(x(t)), · · · , fn(x(t)))T ∈ Rn, g(x(t)) = (g1(x(t)), g2(x(t)), · · · , gn(x(t)))T ∈ Rn,
h(x(t)) = (h1(x(t)), h2(x(t)), · · · , hn(x(t)))T ∈ Rn. Moreover, w(t) = (w1(t), w2(t), · · · , wn(t))T

∈ Rn is an n-dimensional Brownion motion de�ned on a complete probability space (Ω,F ,P)

with natural complete �ltration {Ft}t≥0 (i.e. Ft = completion of σ{ω(s) : 0 ≤ s ≤ t}) and
σ : R+×Rn×Rn → Rn×n, σ = (σij)n×n is the di�usion coe�cient matrix. τ(t) and r(t) denote

a discrete time varying delay and the bound of a distributed time varying delay, respectively.

Denote ϑ = inft≥0{t− τ(t), t− r(t)}.
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The initial condition for the system (6.1) is given by

x(t) = φ(t), t ∈ [ϑ, 0], (6.2)

where t 7→ φ(t) = (φ1(t), φ2(t), · · · , φn(t))T ∈ C
(

[ϑ, 0], LpF0
(Ω;Rn)

)
with the norm de�ned as

‖φ‖p = sup
ϑ≤t≤0

(
E

n∑
i=1

|φi(t)|p
)
,

where E denotes expectation with respect to the probability measure P and p ≥ 2.

To obtain our main results, we suppose the following conditions are satis�ed:

(A1) the delays τ(t), r(t) are continuous functions such that t− τ(t)→∞ and t− r(t)→∞ as

t→∞;

(A2) fj(x), gj(x), and hj(x) satisfy Lipschitz conditions. That is, for each j = 1, 2, 3, · · · , n,
there exist constants αj , βj , γj such that for every x, y ∈ Rn,

|fj(x)− fj(y)| ≤ αj |x− y|, |gj(x)− gj(y)| ≤ βj |x− y|, |hj(x)− hj(y)| ≤ γj |x− y|;

(A3) Assume that f(0) ≡ 0, g(0) ≡ 0, h(0) ≡ 0, σ(t, 0, 0) ≡ 0;

(A4) σ(t, x, y) satis�es a Lipschitz condition. That is, there are nonnegative constants µi and

νi such that ∀ i, j,

(σij(t, x, y)− σij(t, u, v))2 ≤ µj(xj − uj)2 + νj(yj − vj)2.

It follows from [43, 98] that under the hypotheses (A1), (A2), (A3) and (A4), system (6.1) with

initial condition (6.2) has one unique global solution which is denoted by x(t, φ) or x(t) such that

t 7→ x(t, φ) : [0,∞) → Lp(Ω;Rn) is adapted and continuous and E[sup0≤s≤t ‖x(s, 0, φ)‖p] < ∞
for t > 0. Clearly, system (6.1) admits the trivial solution x(t, 0, 0) ≡ 0.

De�nition 6.1.1. The trivial solution of system (6.1) is said to be stable in pth (p ≥ 2) moment

if for arbitrary given ε > 0, there exists a δ > 0 such that ‖φ‖p < δ yields that

E‖x(t, φ)‖p < ε, t ≥ 0.

where φ ∈ C
(

[ϑ, 0], LpF0
(Ω;Rn)

)
. In particular, when p = 2, the trivial solution is said to be

mean square stable.

De�nition 6.1.2. The trivial solution of system (6.1) is said to be asymptotically stable in pth

(p ≥ 2) moment if it is stable in pth moment and there exists a δ > 0, such that ‖φ‖p < δ

implies

lim
t→∞

E‖x(t, φ)‖p = 0.

where φ ∈ C
(

[ϑ, 0], LpF0
(Ω;Rn)

)
.
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De�nition 6.1.3. The trivial solution of system (6.1) is said to be pth (p ≥ 2) moment expo-

nentially stable if there exists a pair of constants λ,C > 0 such that

E‖x(t, φ)‖p ≤ CE‖φ‖pe−λt, t ≥ 0,

holds for φ ∈ C
(

[ϑ, 0], LpF0
(Ω;Rn)

)
. Especially, when p = 2, we speak of exponentially stable in

mean square.

Di�erent choices of norms can be considered on spaces of stochastic processes. The norms we

choose should be such that the space under consideration is complete and the equation yields

a contraction with respect to the norm. For the system (6.1) with initial condition (6.2), we

consider the following two di�erent complete spaces which are de�ned by using two types of

norms.

De�ne Sφ the space of all Ft-adapted processes ϕ(t, ω) : [ϑ,∞) × Ω → Rn such that ϕ ∈
C
(
[ϑ,∞), LpFt(Ω;Rn)

)
. Moreover, we require ϕ(t, ·) = φ(t) for t ∈ [ϑ, 0] and E

∑n
i=1 |ϕi(t)|p → 0

as t→∞, i = 1, 2, · · · , n. If we de�ne the norm

‖ϕ‖p := sup
t≥ϑ

(
E

n∑
i=1

|ϕi(t)|p
)
, (6.3)

then Sφ is a complete metric space. Using a contraction mapping de�ned on the space Sφ
and applying a contraction mapping principle, we obtain our �rst result. Its proof is given in

Subsection 6.1.2.

Theorem 6.1.4. Suppose that the assumptions (A1)-(A4) hold. If the following conditions are

satis�ed,

(i) the function r(t) is bounded by a constant r (r > 0);

(ii) and such that

α , 5p−1
n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 5p−1
n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

(6.4)

+5p−1
n∑
i=1

(
r

ci

)p( n∑
j=1

|lij |q|γj |q
)p/q

+ 5p−1np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)
< 1,

where µ = max{µ1, µ2, · · · , µn}, ν = max{ν1, ν2, · · · , νn};

then the trivial solution of (6.1) is pth moment asymptotically stable.

Consider a case when both the discrete delay τ(t) and r(t) in the distributed delay are bounded

by a constant τ . Let φ ∈ LpF0
(Ω, C([ϑ, 0],Rn)), de�ne Cφ to be the space of all Ft-adapted

processes ϕ(t, ω) : [−τ,∞) × Ω → Rn such that ϕ ∈ Lp(Ω, C([ϑ,∞),Rn)). Moreover, we set

ϕ(t, ·) = φ(t) for t ∈ [ϑ, 0], ϕ(t, ·) = φ(ϑ) for t ∈ [−τ, ϑ] (in case −τ < ϑ), and for t → ∞,∑n
i=1 E supt−τ≤s≤t |ϕi(s)|p → 0. The norm on Cφ is de�ned as

‖ϕ‖p = sup
t≥0

[
n∑
i=1

E

(
sup

t−τ≤s≤t
|ϕi(s)|p

)]
, (6.5)
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6.1. Stability of stochastic delayed neural networks

then Cφ is a complete metric space. Using a contraction mapping de�ned on the space Cφ
and applying a contraction mapping principle, we obtain our second result, which is proved in

Subsection 6.1.3.

Theorem 6.1.5. Suppose that the assumptions (A1)-(A4) hold. If the following conditions are

satis�ed,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ (τ > 0);

(ii) and such that

α , 5p−1ecτ c−p
n∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 5p−1ecτ c−p
n∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q

+5p−1τpecτ c−p
n∑
i=1

(
n∑
j=1

|lij |q|γj |q
)p/q

+5p−1Kpn
pepcτqpc1−p/2(2c)−1

(
µp/2 + νp/2

)
< 1, (6.6)

where c = min{c1, c2, · · · cn}, µ = max{µ1, µ2, · · ·µn}, ν = max{ν1, ν2, · · · νn};

then the trivial solution of (6.1) is pth moment asymptotically stable. More than that, for every

ε > 0, there exists a δ > 0 such that ‖φ‖ < δ implies
∑n

i=1 E supt−τ≤s≤t |xi(s)|p < ε and

limt→∞

{
E
[

supt−τ≤s≤t ‖x(s, 0, φ)‖p
]}

= 0.

Remark 6.1.6. In some papers, see, for example, [89, 90, 131, 132], the norm for the space of

stochastic process is de�ned as

‖ϕ‖[0,t] =

[
E
(

sup
s∈[0,t]

|ϕ(s)|2
)]1/2

.

As in [90], in order to show P (S) ⊆ S, we need to estimate E sups∈[0,t] |I5(s)|2, where

I5(s) =

∫ s

0
e−
∫ s
z h(u) du [c(z)x(z) + e(z)x(z − δ(z))] dω(z).

However, I5(s) is not a local martingale (see Section 1.4 for its proof). Hence, Burkholder-Davis-

Gundy Inequality can not be applied directly.

Using an appropriate integral inequality, we obtain su�cient conditions for exponential stability

of (6.1) with initial condition (6.2), which is our third result. For its proof, see Subsection 6.1.4.

Theorem 6.1.7. Suppose that the assumptions (A1)-(A4) hold. If the following conditions are

satis�ed,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ ;
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(ii) and such that

5p−1c−p
n∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 5p−1c−p
n∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q

(6.7)

+5p−1
(τ
c

)p n∑
i=1

(
n∑
j=1

|lij |q|γj |q
)p/q

+ 5p−1npc−p/2(µp/2 + νp/2) < 1,

where c = min{c1, c2, · · · , cn}, µ = max{µ1, µ2, · · · , µn}, ν = max{ν1, ν2, · · · , νn};

then the trivial solution of (6.1) is exponentially stable in pth moment,

Remark 6.1.8. The stability criteria we provided in our main results are only in terms of the

system parameters ci, aij, bij, lij, etc. Hence, these criteria can usually be veri�ed easily in

applications.

Remark 6.1.9. Many articles, see, for example, [116, 120] have studied stochastic neural net-

work (6.1) and special cases of (6.1). However, they impose the following condition on the delays

(H) the discrete delay τ(t) is di�erentiable function and r(t) in the distributed delay is non-

negative and bounded, that is, there exist constants τM , ζ, rM such that

0 ≤ τ(t) ≤ τM , τ ′(t) ≤ ζ, r(t) ≤ rM . (6.8)

In our results, condition (H) is replaced by other assumptions, which may be satis�ed when (H)

is not.

Theorem 6.1.7 can, for example, be applied to establish exponential stability in pth moment of a

two dimensional stochastically perturbed Hop�eld neural network with time-varying delay, the

delay is bounded but not di�erentiable, see Example 6.1.31 for details.

Consider a case when there are no stochastic e�ects in the system (6.1), which then comes

down to the neural network described by

dxi(t)

dt
= −cixi(t) +

n∑
j=1

aijfj(xj(t)) +

n∑
j=1

bijgj(xj(t− τ(t))) +

n∑
j=1

dij

∫ t

t−r(t)
hj(xj(s)) ds, (6.9)

i = 1, 2, 3, · · · , n,

or

dx(t)

dt
= −Cx(t) +Af(x(t)) +Bg(x− τ(t)) +D

∫ t

t−r(t)
h(x(s)) ds, (6.10)

where x(·) = (x1(·), x2(·), · · · , xn(·))T is the neuron state vector of the transformed system (6.9).

The initial condition for the system (6.9) is

x(t) = φ(t), t ∈ [ϑ, 0], (6.11)

where φ is a continuous function with the norm de�ned by ‖φ‖ = supϑ≤t≤0

∑n
i=1 |φi(t)|.

Assume that (A1) − (A3) are satis�ed, then (6.9) admits a trivial solution x = 0. Denote

by x(t, φ) = (x1(t, φ1), · · · , xn(t, φn))T ∈ Rn the solution of (6.9) with initial condition (6.11).
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De�nition 6.1.10. For the system (6.9) with initial condition (6.11), we have that

(i) the trivial solution of (6.9) is said to be stable if for any ε > 0, there exists δ > 0 such that

for any initial condition φ ∈ C([ϑ, 0],Rn) satisfying ‖φ‖ < δ, we have for the corresponding

solution that ‖x(t, φ)‖ < ε for t ≥ 0;

(ii) the trivial solution of (6.9) is said to be asymptotically stable if it is stable and for any

initial condition φ ∈ C([ϑ, 0],Rn) we have for the corresponding solution that

limt→∞ ‖x(t, φ)‖ = 0;

(iii) the trivial solution of (6.9) is said to be globally exponentially stable if there exist scalars

λ > 0 and C > 0 such that for any initial condition φ ∈ C([ϑ, 0],Rn), we have for the

corresponding solution that ‖x(t, φ)‖ ≤ Ce−λt‖φ‖ for t ≥ 0.

De�ne Hφ = H1φ ×H2φ × · · · × Hnφ, where Hiφ is the space consisting of continuous functions

ϕi(t) : [ϑ,∞)→ R such that ϕi(θ) = φ(θ) for ϑ ≤ θ ≤ 0 and ϕi(t)→ 0 as t→∞, i = 1, 2 · · · , n.
For any ϕ(t) = (ϕ1(t), ϕ2(t), · · · , ϕn(t)) ∈ Hφ and η(t) = (η1(t), η2(t), · · · , ηn(t)) ∈ Hφ, if we de-
�ne the metric as d(ϕ, η) = supt≥ϑ

∑n
i=1 |ϕi(t)−ηi(t)|, thenHφ becomes a complete metric space.

Using a contraction mapping de�ned on the space Hφ and applying a contraction mapping

principle, we obtain our fourth result, which is proved in Subsection 6.1.5.

Theorem 6.1.11. Suppose that the assumptions (A1)-(A3) hold. If the following conditions are

satis�ed,

(i) the function r(t) is bounded by a constant r (r > 0);

(ii) and such that

α ,
n∑
i=1

1

ci
max

j=1,2,··· ,n
|aijαj |+

n∑
i=1

1

ci
max

j=1,2,··· ,n
|bijβj |+

n∑
i=1

r

ci
max

j=1,2,··· ,n
|dijγj | < 1; (6.12)

then the trivial solution of (6.9) is asymptotically stable.

Remark 6.1.12. Theorem 6.1.11 is an extension and improvement of the result in Lai and

Zhang [74].

By establishing an appropriate integral inequality, we obtain su�cient conditions for exponential

stability of (6.9), which is our �fth result. Its proof is given in Subsection 6.1.6.

Theorem 6.1.13. Suppose that the assumptions (A1)-(A3) hold. If the following conditions are

satis�ed,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ (τ > 0);

(ii) and such that

1

c

n∑
i=1

max
j=1,2,··· ,n

|aijαj |+
1

c

n∑
i=1

max
j=1,2,··· ,n

|bijβj |+
1

c

n∑
i=1

τ max
j=1,2,··· ,n

|dijγj | < 1, (6.13)

where c = min{c1, c2, · · · , cn};
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then the trivial solution of (6.9) with initial condition (6.11) is exponentially stable.

Remark 6.1.14. Several exponential stability results [77, 126, 127] were provided for the system

(6.9), by constructing an appropriate Liapunov functional and employing linear matrix inequality

(LMI) method, and their results depends on the condition that the delays are satis�ed (H). From

our main results, we provide other assumptions. The delays in our results are required to be

bounded.

Remark 6.1.15. From Theorem 6.1.11 and Theorem 6.1.13, we �nd that the terms with f, g, h

in equation (6.10) can be viewed as perturbations of the stable equation dx(t)/dt = −Cx(t).

Condition (ii) in Theorem 6.1.11 and condition (ii) in Theorem 6.1.13 require the perturbation

to be small relative to the stabilizing force of C.

Theorem 6.1.13 can, for example, be applied to establish exponential stability of a two dimen-

sional cellular neural network with time-varying delay, see Example 6.1.29 for details.

The rest of this section is organized as follows. In Subsection 6.1.2, we present a proof of

Theorem 6.1.4. The proof of Theorem 6.1.5 is presented in Subsection 6.1.3 and the proof of

Theorem 6.1.7 is given in Section 6.1.4. we present the proofs of Theorem 6.1.11 and Theo-

rem 6.1.13 in Subsection 6.1.5 and Subsection 6.1.6, respectively. Some examples are given to

illustrate our main results in Subsection 6.1.7.

6.1.2 Proof of Theorem 6.1.4

In this subsection, we prove Theorem 6.1.4. We start with some preparations.

Lemma 6.1.16. ([96, 129]) If w(t) = (w1(t), w2(t), · · · , wn(t))T (t ≥ 0) is a n-dimensional

Brownian motion de�ned on a complete probability space (Ω,F ,P), then for each t ≥ 0, we have

the following formula

E
(∫ t

0
fi(s) dwi(s)

∫ t

0
fj(s) dwj(s)

)
= E

∫ t

0
fi(s)fj(s) d〈wi, wi〉s,

where 〈wi, wi〉s = δijs are the cross-variations, and δij is the correlation coe�cient, fi is adapted

and fi ∈ L2(Ω× [0, t]), i, j = 1, 2, · · · , n.

If we multiply both sides of (6.1) by ecit and integrate from 0 to t, we obtain

xi(t) = e−citxi(0) +

∫ t

0
e−ci(t−s)

n∑
j=1

aijfj(xj(s)) ds+

∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(xj(s− τ(s))) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s) (6.14)

for t ≥ 0, i = 1, 2, 3, · · · , n.
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Lemma 6.1.17. De�ne an operator by (Qϕ)(t) = φ(t) for t ∈ [ϑ, 0], and for t ≥ 0, i =

1, 2, 3, · · · , n,

(Qϕ)i(t) = e−citϕi(0) +

∫ t

0
e−ci(t−s)

n∑
j=1

aijfj(ϕj(s)) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(ϕj(s− τ(s))) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

lij

∫ s

s−r(s)
hj(ϕj(u)) du ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

σij(s, ϕj(s), ϕj(s− τ(s))) dwj(s). (6.15)

Suppose that the assumption (A1)-(A4) holds. If conditions (i) and (ii) in Theorem 6.1.4 are

satis�ed, then Q : Sφ → Sφ and Q is a contraction mapping.

Proof. Denote (Qϕ)i(t) := J1i(t) + J2i(t) + J3i(t) + J4i(t) + J5i(t), where

J1i(t) = e−citϕi(0), J2i(t) =

∫ t

0
e−ci(t−s)

n∑
j=1

aijfj(ϕj(s)) ds,

J3i(t) =

∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(ϕj(s− τ(s))) ds,

J4i(t) =

∫ t

0
e−ci(t−s)

n∑
j=1

lij

∫ s

s−r(s)
hj(ϕj(u)) du ds,

J5i(t) =

∫ t

0
e−ci(t−s)

n∑
j=1

σij(s, ϕj(s), ϕj(s− τ(s))) dwj(s).

Step1. From the de�nition of the metric space Sφ, we have that E
∑n

i=1 |ϕi(t)|p < ∞ for all

t ≥ 0, ϕ ∈ Sφ.

Step2. We prove the continuity in pth moment of Qx on [0,∞) for x ∈ Sφ. Let x ∈ Sφ,
t1 ≥ 0, let r ∈ R with |r| su�ciently small and r > 0 if t1 = 0, we have

E
n∑
i=1

|J2i(t1 + r)− J2i(t1)|p = E
n∑
i=1

∣∣∣∣∣
∫ t1

0

(
e−ci(t1+r−s) − e−ci(t1−s)

) n∑
j=1

aijfj(xj(s)) ds

+

∫ t1+r

t1

e−ci(t1+r−s)
n∑
j=1

aijfj(xj(s)) ds

∣∣∣∣∣
p

→ 0 as r → 0.

Similarly, we have that

E
n∑
i=1

|J3i(t1 + r)− J3i(t1)|p → 0 as r → 0, E
n∑
i=1

|J4i(t1 + r)− J4i(t1)|p → 0 as r → 0.
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In the following, we check the continuity of J5i(t).

E
n∑
i=1

|J5i(t1 + r)− J5i(t1)|p

= E
n∑
i=1

∣∣∣∣∣
∫ t1

0

(
e−ci(t1+r−s) − e−ci(t1−s)

) n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s)

+

∫ t1+r

t1

e−ci(t1+r−s)
n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s)

∣∣∣∣∣
p

≤ np−1
n∑
i=1

n∑
j=1

E

∣∣∣∣∣
∫ t1

0

(
e−ci(t1+r−s) − e−ci(t1−s)

)
σij(s, xj(s), xj(s− τ(s))) dwj(s)

+

∫ t1+r

t1

e−ci(t1+r−s)
n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s)

∣∣∣∣∣
p

≤ (2n)p−1
n∑
i=1

n∑
j=1

E

∣∣∣∣∣
∫ t1

0

(
e−ci(t1+r−s) − e−ci(t1−s)

)
σij(s, xj(s), xj(s− τ(s))) dwj(s)

∣∣∣∣∣
p

+(2n)p−1
n∑
i=1

n∑
j=1

E

∣∣∣∣∣
∫ t1+r

t1

e−ci(t1+r−s)σij(s, xj(s), xj(s− τ(s))) dwj(s)

∣∣∣∣∣
p

= (2n)p−1
n∑
i=1

n∑
j=1

{
E

[∫ t1

0

(
e−ci(t1+r−s) − e−ci(t1−s)

)2
σ2
ij(s, xj(s), xj(s− τ(s))) ds

]p/2

+E
[∫ t1+r

t1

e−2ci(t1+r−s)σ2
ij(s, xj(s), xj(s− τ(s))) ds

]p/2}
→ 0 as r → 0.

Thus, Qx is indeed continuous in pth moment on [0,∞).

Step3. We prove that Q(Sφ) ⊆ Sφ.

E
n∑
i=1

|(Qϕ)i(t)|p = E
n∑
i=1

∣∣∣∣∣
5∑
j=1

Jji(t)

∣∣∣∣∣
p

≤ 5p−1
5∑
j=1

E
n∑
i=1

|Jji(t)|p. (6.16)

Now, we estimate the terms on the right-hand side of the above inequality.

E
n∑
i=1

|J2i(t)|p ≤
n∑
i=1

E

[∫ t

0
e
− ci(t−s)

q e
− ci(t−s)

p

n∑
j=1

|aij ||fj(ϕj(s))| ds

]p

≤
n∑
i=1

E

[(∫ t

0
e−ci(t−s) ds

)p/q ∫ t

0
e−ci(t−s)

(
n∑
j=1

|aij ||fj(ϕj(s))|

)p
ds

]

≤
n∑
i=1

c
−p/q
i E

[∫ t

0
e−ci(t−s)

(
n∑
j=1

|aij ||αj ||ϕj(s)|

)p
ds

]

≤
n∑
i=1

c
−p/q
i

(
n∑
j=1

|aij |q|αj |q
)p/q ∫ t

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s)|p
)
ds. (6.17)
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Since ϕ ∈ Sφ, we have that limt→∞ E
∑n

i=1 |ϕi(t)|p = 0. Thus for any ε > 0, there exists T1 > 0

such that t ≥ T1 implies E
∑n

i=1 |ϕi(t)|p < ε, combining with (6.17), we obtain that

E
n∑
i=1

|J2i(t)|p ≤
n∑
i=1

c
−p/q
i

(
n∑
j=1

|aij |q|αj |q
)p/q ∫ T1

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s)|p
)
ds

+

n∑
i=1

c
−p/q
i

(
n∑
j=1

|aij |q|αj |q
)p/q ∫ t

T1

e−ci(t−s)E

(
n∑
j=1

|ϕj(s)|p
)
ds

<
n∑
i=1

c−pi e−cit(eciT1 − 1)

(
n∑
j=1

|aij |q|αj |q
)p/q

sup
0≤s≤T1

[
E

(
n∑
j=1

|ϕj(s)|p
)]

+ε
n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

.

Hence, from the fact that ci > 0 (i = 1, 2, · · · , n), we obtain that E
∑n

i=1 |J2i(t)|p → 0 as t→∞.

With the similar computation as (6.17), we obtain that

E
n∑
i=1

|J3i(t)|p ≤
n∑
i=1

c
−p/q
i

(
n∑
j=1

|bij |q|βj |q
)p/q ∫ t

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s− τ(s)))|p
)
ds

E
n∑
i=1

|J4i(t)|p ≤
n∑
i=1

c
−p/q
i

(
n∑
j=1

|lij |q|γj |q
)p/q ∫ t

0
e−ci(t−s)E

[
n∑
j=1

∣∣∣∣∣
∫ s

s−r(s)
ϕj(u) du

∣∣∣∣∣
p]
ds

≤
n∑
i=1

(
r

ci

)p/q( n∑
j=1

|lij |q|γj |q
)p/q ∫ t

0
e−ci(t−s)

∫ s

s−r(s)
E

[
n∑
j=1

|ϕj(u)|p
]
du ds.

(6.18)

Using Lemma 6.1.16, we obtain that

E
n∑
i=1

|J5i(t)|p =

n∑
i=1

E

∣∣∣∣∣∣
∫ t

0
e−ci(t−s)

n∑
j=1

σij(s, ϕj(s), ϕj(s− τ(s))) dwj(s)

∣∣∣∣∣∣
p

≤ np−1
n∑
i=1

n∑
j=1

E

{[∫ t

0
e−ci(t−s)|σij(s, ϕj(s), ϕj(s− τ(s)))| dwj(s)

]2
}p/2

= np−1
n∑
i=1

n∑
j=1

E
[∫ t

0
e−2ci(t−s)σ2

ij(s, ϕj(s), ϕj(s− τ(s))) ds

]p/2

≤ np−1
n∑
i=1

n∑
j=1

E
[∫ t

0
e−2ci(t−s)

(
µjϕ

2
j (s) + νjϕ

2
j (s− τ(s))

)
ds

]p/2
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≤ np−12p/2−1
n∑
i=1

n∑
j=1

E

[(∫ t

0
e−2ci(t−s)µjϕ

2
j (s) ds

)p/2

+

(∫ t

0
e−2ci(t−s)νjϕ

2
j (s− τ(s)) ds

)p/2]

≤ np−12p/2−1
n∑
i=1

n∑
j=1

E

[(∫ t

0
e−2ci(t−s) ds

)p/2−1 ∫ t

0
e−2ci(t−s)µ

p/2
j |ϕj(s)|

p ds

]

+np−12p/2−1
n∑
i=1

n∑
j=1

E

{(∫ t

0
e−2ci(t−s) ds

)p/2−1 ∫ t

0
e−2ci(t−s)ν

p/2
j |ϕj(s− τ(s))|p ds

}

≤ np−1
n∑
i=1

c
1−p/2
i

[
µp/2

∫ t

0
e−2ci(t−s)E

(
n∑
j=1

|ϕj(s)|p
)
ds

+νp/2
∫ t

0
e−2ci(t−s)E

(
n∑
j=1

|ϕj(s− τ(s))|p
)
ds

]

≤ np−1
n∑
i=1

c
1−p/2
i

[
µp/2

∫ t

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s)|p
)
ds

+νp/2
∫ t

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s− τ(s))|p
)
ds

]
. (6.19)

Since E
∑n

i=1 |ϕi(t)|p → 0, t − τ(t) → ∞ and t − r(t) → ∞ as t → ∞, for each ε > 0, there

exists T2 > 0 such that t ≥ T2 implies E
∑n

i=1 |ϕi(t− τ(s))|p < ε and E
∑n

i=1 |ϕi(t− r(t))|p < ε.

From (6.18), we obtain that

E
n∑
i=1

|J3i(t)|p ≤
n∑
i=1

c
−p/q
i

(
n∑
j=1

|bij |q|βj |q
)p/q ∫ T2

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s− τ(s)))|p
)
ds

+
n∑
i=1

c
−p/q
i

(
n∑
j=1

|bij |q|βj |q
)p/q ∫ t

T2

e−ci(t−s)E

(
n∑
j=1

|ϕj(s− τ(s)))|p
)
ds

<
n∑
i=1

(
1

ci

)p/q
e−cit

∫ T2

0
ecis ds

(
n∑
j=1

|bij |q|βj |q
)p/q

× sup
ϑ≤s≤T2

{
E

(
n∑
j=1

|ϕj(s− τ(s)))|p
)}

+ ε

n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

E
n∑
i=1

|J4i(t)|p ≤
n∑
i=1

(
r

ci

)p/q( n∑
j=1

|lij |q|γj |q
)p/q ∫ T2

0
e−ci(t−s)

∫ s

s−r(s)
E

(
n∑
j=1

|ϕj(u)|p
)
du ds

+

n∑
i=1

(
r

ci

)p/q( n∑
j=1

|lij |q|γj |q
)p/q ∫ t

T2

e−ci(t−s)
∫ s

s−r(s)
E

(
n∑
j=1

|ϕj(u)|p
)
du ds
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<
n∑
i=1

re−cit

(
r

ci

)p/q( n∑
j=1

|lij |q|γj |q
)p/q

sup
ϑ≤u≤T2

{
E

(
n∑
j=1

|ϕj(u)|p
)}(

eciT2 − 1
)

ci

+
n∑
i=1

εr

ci

(
r

ci

)p/q( n∑
j=1

|lij |q|γj |q
)p/q

.

Further, from (6.19), we obtain

E
n∑
i=1

|J5i(t)|p ≤ np−1
n∑
i=1

c
1−p/2
i

[
µp/2

∫ t

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s)|p
)
ds

+νp/2
∫ t

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s− τ(s))|p
)
ds

]

< np−1
n∑
i=1

c
1−p/2
i

{
µp/2 sup

0≤s≤T2

[
E

(
n∑
j=1

|ϕj(s)|p
)]

+νp/2 sup
ϑ≤s≤T2

[
E

(
n∑
j=1

|ϕj(s)|p
)]}

e−cit
(
eciT2 − 1

)
ci

+np−1
n∑
i=1

c
1−p/2
i

(
ε(µp/2 + νp/2)

ci

)
.

Hence, let t→∞, from the fact that ci > 0 (i = 1, 2, · · · , n), we obtain that

E
n∑
i=1

|J3i(t)|p → 0, E
n∑
i=1

|J4i(t)|p → 0, and E
n∑
i=1

|J5i(t)|p → 0.

Thus, combining with (6.16), we obtain that E
∑n

i=1 |(Qϕ)i(t)|p → 0 as E
∑n

i=1 |ϕi(t)|p → 0.

Therefore, Q : Sφ → Sφ.

Step4. We prove that Q is a contraction mapping. For any ϕ,ψ ∈ Sφ, from (6.17)-(6.19),

we obtain

sup
s≥ϑ

{
E

n∑
i=1

|Qϕi(s)−Qψi(s)|p
}

≤ 4p−1 sup
s≥ϑ

{
E

n∑
i=1

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

aij

(
fj(xj(u))− fj(yj(u))

)
du

∣∣∣∣∣
p}

+4p−1 sup
s≥ϑ

{
E

n∑
i=1

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

bij

(
gj(xj(u− τ(u)))− gj(yj(u− τ(u)))

)
du

∣∣∣∣∣
p}

+4p−1 sup
s≥ϑ

{
E

n∑
i=1

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

lij

∫ s

s−r(s)

(
hj(ϕj(v))− hj(ψj(v))

)
dv du

∣∣∣∣∣
p}
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+4p−1 sup
s≥ϑ

{
E

n∑
i=1

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

(
σij(s, xj(s), xj(u− τ(u)))

−σij(s, yj(s), yj(s− τ(u)))
)
dwj(u)

∣∣∣∣∣
p}

≤ 4p−1

{
n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+

n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

+
n∑
i=1

(
r

ci

)p( n∑
j=1

|lij |q|γj |q
)p/q

+ np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)}

× sup
s≥ϑ

{
E

n∑
j=1

|ϕj(s)− ψj(s)|p
}

= α sup
s≥ϑ

{
E

n∑
j=1

|ϕj(s)− ψj(s)|p
}
.

From (6.4), we obtain that Q : Sφ → Sφ is a contraction mapping.

We are now ready to prove Theorem 6.1.4.

Proof. From Lemma 6.1.17, by a contraction mapping principle, we obtain that Q has a unique

�xed point x(t), which is a solution of (6.1) with x(t) = φ(t) as t ∈ [ϑ, 0] and E
∑n

i=1 |xi(t)|p → 0

as t→∞.

Now, we prove that the trivial solution of (6.1) is pth moment stable. Let ε > 0 be given

and choose δ > 0 (δ < ε) such that 5p−1δ < (1− α)ε.

If x(t) = (x1(t), x2(t), · · · , xn(t))T is a solution of (6.1) with the initial condition satisfying

E
∑n

i=1 |φi(t)|p < δ, then x(t) = (Qx)(t) de�ned in (6.15). We claim that E
∑n

i=1 |xi(t)|p < ε

for all t ≥ 0. Notice that E
∑n

i=1 |xi(t)|p < ε for t ∈ [ϑ, 0], we suppose that there exists t∗ > 0

such that E
∑n

i=1 |xi(t∗)|p = ε and E
∑n

i=1 |xi(t)|p < ε for ϑ ≤ t < t∗, then it follows from (6.4),

we obtain that

E
n∑
i=1

|xi(t∗)|p

≤ 5p−1E
n∑
i=1

e−pcit
∗ |xi(0)|p

+5p−1
n∑
i=1

c
−p/q
i

(
n∑
j=1

|aij |q|αj |q
)p/q ∫ t∗

0
e−ci(t

∗−s)E

(
n∑
j=1

|xj(s)|p
)
ds

+5p−1
n∑
i=1

c
−p/q
i

(
n∑
j=1

|bij |q|βj |q
)p/q ∫ t∗

0
e−ci(t−s)E

(
n∑
j=1

|xj(s− τ(s)))|p
)
ds

+5p−1
n∑
i=1

(
r

ci

)p/q ( n∑
j=1

|lij |q|γj |q
)p/q ∫ t∗

0
e−ci(t

∗−s)
∫ s

s−r(s)
E

(
n∑
j=1

|xj(u)|p
)
du ds
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+5p−1np−1
n∑
i=1

c
1−p/2
i

[
µp/2

∫ t∗

0
e−ci(t

∗−s)E

(
n∑
j=1

|xj(s)|p
)
ds

+νp/2
∫ t∗

0
e−ci(t−s)E

(
n∑
j=1

|xj(s− τ(s))|p
)
ds

]

≤

[
5p−1

n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 5p−1
n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

+5p−1
n∑
i=1

(
r

ci

)p( n∑
j=1

|lij |q|γj |q
)p/q

+ 5p−1np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)]
ε+ 5p−1δ

< (1− α)ε+ αε = ε,

which is a contradiction. Therefore, the trivial solution of (6.1) is asymptotically stable in pth

moment.

Corollary 6.1.18. Suppose that the assumptions (A1)-(A4) hold. If the following conditions

are satis�ed,

(i) the function r(t) is bounded by a constant r (r > 0),

(ii) and such that

5

n∑
i=1

c−2
i

(
n∑
j=1

a2
ijα

2
j

)
+ 5

n∑
i=1

c−2
i

(
n∑
j=1

b2ijβ
2
j

)
+ 5

n∑
i=1

(
r

ci

)2
(

n∑
j=1

|lij |q|γj |q
)

+20n
n∑
i=1

c−1
i (µ+ ν) < 1,

where c, µ, ν are de�ned as in Theorem 6.1.4,

then the trivial solution of (6.1) is asymptotically stable in mean square.

Consider the stochastic neural networks without distributed delays

dxi(t) =

[
− cixi(t) +

n∑
j=1

aijfj(xj(t)) +
n∑
j=1

bijgj(xj(t− τ(t)))

]
dt

+
n∑
j=1

σij(t, xj(t), xj(t− τ(t))) dwj(t) (6.20)

for i = 1, 2, 3, · · · , n.

Corollary 6.1.19. Suppose that the assumptions (A1)-(A4) hold. The trivial solution of (6.20)

is asymptotically stable in pth moment if the following inequality holds,

4p−1
n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 4p−1
n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

+4p−1np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)
< 1, (6.21)

where µ, ν are de�ned as in Theorem 6.1.4. Note that the discrete delay τ(t) can be unbounded.
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Remark 6.1.20. Condition (A4) can be relaxed. In fact, if p = 2, then

(A4′) ∀i,
n∑
j=1

(σij(t, x, y)− σij(t, u, v))2 ≤
n∑
j=1

µj(xj − uj)2 + νj(yj − vj)2 (6.22)

is su�cient, as can be easily observed from the proof of Theorem 6.1.4. If p ≥ 2, then (A4)

can also be replaced by (A4′), but the factor np−1 in front of the last term in (6.4) has to be

repalced by n(3p/2)−2. This can be seen from the proof of Theorem 6.1.4 with the aid of a few

more application of the Hölder inequality.

6.1.3 Proof of Theorem 6.1.5

In this subsection, we prove Theorem 6.1.5. We start with some preparations.

Lemma 6.1.21. De�ne an operator by (Pϕ)(t) = φ(t) for t ∈ [−τ, 0], and for t ≥ 0, (Pϕ)(t)

is de�ned as the right hand side of (6.15). If the conditions (i) and (ii) in Theorem 6.1.5 are

satis�ed, then P : Cφ → Cφ is a contraction mapping.

Proof. Observe that all terms at the right hand side of (6.15) have continuous paths, almost

surely. Now, we prove that P (Cφ) ⊆ Cφ.

n∑
i=1

E
[

sup
t−τ≤s≤t

|(Pϕ)i(s)|p
]

=
n∑
i=1

E

[
sup

t−τ≤s≤t

∣∣∣∣∣
5∑
j=1

Jji(s)

∣∣∣∣∣
p]
≤ 5p−1

5∑
j=1

n∑
i=1

E
[

sup
t−τ≤s≤t

|Jji(s)|p
]
.

Estimating the terms on the right-hand side of the above inequality. Let c = min{c1, c2, c3, · · · , cn},
and let q be such that 1/p+ 1/q = 1,

E

[
n∑
i=1

sup
t−τ≤s≤t

|J2i(s)|p
]

= E

[
n∑
i=1

sup
t−τ≤s≤t

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

aijfj(ϕj(u)) du

∣∣∣∣∣
p]

≤ c−p/qE

{
n∑
i=1

sup
t−τ≤s≤t

[∫ s

0
e−c(s−u)

(
n∑
j=1

|aij |αj |ϕj(u)|

)p
du

]}

≤ c−p/q
n∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q

E

{
sup

t−τ≤s≤t

[∫ s

0
e−c(s−u)

(
n∑
j=1

|ϕj(u)|p
)
du

]}

≤ c−p/q
n∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q n∑

j=1

E

{
sup

t−τ≤s≤t

[∫ s

0
e−c(s−u)|ϕj(u)|p du

]}

≤ c−p/q
n∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q n∑

j=1

E

{
sup

t−τ≤s≤t

[∫ s

0
e−c(s−u)

(
sup

u−τ≤v≤u
|ϕj(v)|p

)
du

]}

≤ ecτ c−p/q
n∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q n∑

j=1

E

[∫ t

0
e−c(t−u)

(
sup

u−τ≤v≤u
|ϕj(v)|p

)
du

]
(6.23)
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Since
∑n

j=1 E supt−τ≤s≤t |ϕj(s)|p → 0 as t → ∞, then for any ε > 0, there exists T1 ≥ 0 such

that t ≥ T1 implies
n∑
j=1

E
(

sup
t−τ≤s≤t

|ϕj(s)|p
)
< ε,

which yields that

E

[∫ t

0
e−c(t−u)

(
sup

u−τ≤v≤u
|ϕj(v)|p

)
du

]

=

∫ T1

0
e−c(t−u)E

(
sup

u−τ≤v≤u
|ϕj(v)|p

)
du+

∫ t

T1

e−c(t−u)E

(
sup

u−τ≤v≤u
|ϕj(v)|p

)
du

≤
∫ T1

0
e−c(t−u)

(
sup

ϑ≤v≤T1
|ϕj(v)|p

)
du+

ε

c
.

Then combining with (6.23), we obatin that E
∑n

i=1 supt−τ≤s≤t |J2i(s)|p → 0 as t → ∞. Simi-

larly, we obtain that

E

[
n∑
i=1

sup
t−τ≤s≤t

|J3i(s)|p
]

≤ c−p/q
n∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q

E

{
sup

t−τ≤s≤t

[∫ s

0
e−c(s−u)

(
n∑
j=1

|ϕj(u− τ(u))|p
)
du

]}

≤ c−p/q
n∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q n∑

j=1

E

{
sup

t−τ≤s≤t

[∫ s

0
e−c(s−u)|ϕj(u− τ(u))|p du

]}

≤ c−p/q
n∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q n∑

j=1

E

{
sup

t−τ≤s≤t

[∫ s

0
e−c(s−u) sup

u−τ≤v≤u
|ϕj(v)|p du

]}

≤ ecτ c−p/q
n∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q n∑

j=1

E

[∫ t

0
e−c(t−u) sup

u−τ≤v≤u
|ϕj(v)|p du

]
(6.24)

and

E

[
n∑
i=1

sup
t−τ≤s≤t

|J4i(s)|p
]

≤ c−p/q
n∑
i=1

(
n∑
j=1

|lij |q|γj |q
)p/q

E

{
sup

t−τ≤s≤t

[∫ s

0
e−c(s−u)

n∑
j=1

∣∣∣∣∣
∫ u

u−r(u)
ϕj(v) dv

∣∣∣∣∣
p

du

]}

≤ c−p/q
n∑
i=1

(
n∑
j=1

|lij |q|γj |q
)p/q n∑

j=1

E

{
sup

t−τ≤s≤t

[∫ s

0
e−c(s−u)

∣∣∣∣∣
∫ u

u−r(u)
ϕj(v) dv

∣∣∣∣∣
p

du

]}

≤ τpc−p/q
n∑
i=1

(
n∑
j=1

|lij |q|γj |q
)p/q n∑

j=1

E

{
sup

t−τ≤s≤t

[∫ s

0
e−c(s−u) sup

u−τ≤v≤u
|ϕj(v)|p du

]}

≤ τpecτ c−p/q
n∑
i=1

(
n∑
j=1

|lij |q|γj |q
)p/q n∑

j=1

E

[∫ t

0
e−c(t−u) sup

u−τ≤v≤u
|ϕj(v)|p du

]
. (6.25)

175



Chapter 6. Stochastic delayed neural networks

Let µ = max{µ1, µ2, · · · , µn}, ν = max{ν1, ν2, · · · , νn}. Due to the fact that

∣∣∣∣∣
∫ s

0
e−ci(s−u)σij(u, ϕj(u), ϕj(u− τ(u))) dwj(u)

∣∣∣∣∣
p

is a submartingale and the supremum of submartingale is also a submartingale, using Doob's

inequality for positive submartingale, we obtain that

E

[
n∑
i=1

sup
t−τ≤s≤t

|J5i(s)|p
]

≤ np−1
n∑
i=1

n∑
j=1

E

[
sup

t−τ≤s≤t

∣∣∣∣∣
∫ s

0
e−ci(s−u)σij(u, ϕj(u), ϕj(u− τ(u))) dwj(u)

∣∣∣∣∣
p]

≤ np−1
n∑
i=1

n∑
j=1

E

{
sup

t−τ≤s≤t

[
sup

t−τ≤r≤t

∣∣∣∣∣
∫ s

0
e−c(r−u)σij(u, ϕj(u), ϕj(u− τ(u))) dwj(u)

∣∣∣∣∣
p]}

≤ np−1
n∑
i=1

n∑
j=1

qp sup
t−τ≤s≤t

{
E

[
sup

t−τ≤r≤t

∣∣∣∣∣
∫ s

0
e−c(r−u)σij(u, ϕj(u), ϕj(u− τ(u))) dwj(u)

∣∣∣∣∣
p]}

≤ np−1epcτ
n∑
i=1

n∑
j=1

qp sup
t−τ≤s≤t

[
E

∣∣∣∣∣
∫ s

0
e−c(t−u)σij(u, ϕj(u), ϕj(u− τ(u))) dwj(u)

∣∣∣∣∣
p]

≤ Kpn
p−1epcτ

n∑
i=1

n∑
j=1

qp sup
t−τ≤s≤t

[
E

(∫ s

0
e−2c(t−u)σ2

ij(u, ϕj(u), ϕj(u− τ(u))) du

)p/2]

≤ Kpn
p−1epcτ

n∑
i=1

n∑
j=1

qp2p/2−1 sup
t−τ≤s≤t

E

[(∫ s

0
e−2c(t−u)

(
µjϕ

2
j (u)

)
du

)p/2]

+Kpn
p−1epcτ

n∑
i=1

n∑
j=1

qp2p/2−1 sup
t−τ≤s≤t

[
E

(∫ s

0
e−2c(t−u)

(
νjϕ

2
j (u− τ(u))

)
du

)p/2]

≤ Kpn
p−1epcτ

n∑
i=1

n∑
j=1

qp2p/2−1 sup
t−τ≤s≤t

E

[(∫ s

0
e−2c(t−u) du

)p/2−1

×

(∫ s

0
e−2c(t−u)µ

p/2
j |ϕj(u)|p du+

∫ s

0
e−2c(t−u)ν

p/2
j |ϕj(u− τ(u))|p du

)]}

≤ Kpn
pepcτqpc1−p/2(µp/2 + νp/2)

∫ t

0
e−2c(t−u)

n∑
j=1

E

[
sup

u−τ≤v≤u
|ϕj(v)|p du

]
. (6.26)

Using the similar arguments as for the term (6.23) and combining with (6.24), (6.25) and (6.26),

we obtain that
∑n

i=1 E
[
supt−τ≤s≤t |(Pϕ)i(s)|p

]
→ 0 as t→∞. Thus, P (Cφ) ⊆ Cφ.

Finally, we prove that P is a contraction mapping. For any ϕ,ψ ∈ Cφ, from (6.23)-(6.26),
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we obtain that

sup
t≥0

{
E

[
n∑
i=1

sup
t−τ≤s≤t

|(Pϕ)i(s)− (Pψ)i(s)|p
]}

≤ 4p−1 sup
t≥0

{
E

[
n∑
i=1

sup
t−τ≤s≤t

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

aij

(
fj(ϕj(u))− fj(ψj(u))

)
du

∣∣∣∣∣
p]}

+4p−1 sup
t≥0

{
E

[
n∑
i=1

sup
t−τ≤s≤t

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

bij

×
(
gj(ϕj(u− τ(u)))− gj(ψj(u− τ(u)))

)
du

∣∣∣∣∣
p]}

+4p−1 sup
t≥0

{
E

[
n∑
i=1

sup
t−τ≤s≤t

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

lij

∫ s

s−r(s)

(
hj(ϕj(v))− hj(ψj(v))

)
dv du

∣∣∣∣∣
p]}

+4p−1 sup
t≥0

{
E

[
n∑
i=1

sup
t−τ≤s≤t

∣∣∣∣∣
∫ s

0
e−ci(s−u)

×
n∑
j=1

[σij(u, ϕj(u), ϕj(u− τ(u)))− σij(u, ψj(u), ψj(u− τ(u)))] dwj(u)

∣∣∣∣∣
p]}

≤ 4p−1

{
ecτ c−p

n∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q

+ ecτ c−p
n∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q

+τpecτ c−p
n∑
i=1

(
n∑
j=1

|lij |q|γj |q
)p/q

+Kpn
pepcτqpc1−p/2(2c)−1

(
µp/2 + νp/2

)}

× sup
t≥0

n∑
j=1

E

[
sup

t−τ≤s≤t
|ϕj(s)− ψj(s)|p

]
= α sup

t≥0

n∑
j=1

E

[
sup

t−τ≤s≤t
|ϕj(s)− ψj(s)|p

]
.

From (6.6), we obtain that P : Cφ → Cφ is a contraction mapping.

We are now ready to prove Theorem 6.1.5

Proof. From Lemma 6.1.21, by a contraction mapping principle, we obtain that P has a unique

�xed point x(t), which is a solution of (6.1) with x(t) = φ(t) as t ∈ [ϑ, 0] and∑n
i=1 E

[
supt−τ≤s≤t |xi(s)|p

]
→ 0 as t→∞.

We prove that the trivial solution of (6.1) is pth moment stable. Let ε > 0 be given, we

suppose that there exists t∗ > 0 such that

n∑
i=1

E
[

sup
t∗−τ≤s≤t∗

|xi(s)|p
]

= ε,

n∑
i=1

E
[

sup
t−τ≤s≤t

|xi(s)|p
]

< ε for ϑ ≤ t < t∗,

choose δ > 0 (δ < ε) satisfying

5p−1e−pct
∗
δ < (1− α)ε. (6.27)
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If x(t) = (x1(t), x2(t), · · ·xn(t))T is a solution of (6.1) with the initial condtion satisfying ‖φ‖p <
δ, then x(t) = (Px)(t) de�ned in (6.15). We claim that ‖x‖p < ε for all t ≥ 0. It follows from

(6.4) and (6.27), we obtain that

n∑
i=1

E
[

sup
t∗−τ≤s≤t∗

|xi(s)|p
]

≤ 5p−1
5∑
j=1

n∑
i=1

E
[

sup
t∗−τ≤s≤t∗

|Jji(s)|p
]

≤ 5p−1e−pct
∗
δ + 5p−1

{
ecτ c−p

n∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q

+ ecτ c−p
n∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q

+τpecτ c−p
n∑
i=1

(
n∑
j=1

|lij |q|γj |q
)p/q

+Kpn
pepcτqpc1−p/2(2c)−1

(
µp/2 + νp/2

)}
ε

< (1− α)ε+ αε = ε,

which is a contradiction. Thus, the proof follows.

6.1.4 Proof of Theorem 6.1.7

In this subsection, we prove Theorem 6.1.7. We start with a lemma presenting an integral

inequality lemma.

Lemma 6.1.22. Consider c, τ > 0, positive constants λ1, λ2, λ3 and a function y : [−τ,∞) →
[0,∞). If λ1 + λ2 + τλ3 < c and the following inequality holds,

y(t) ≤



y0e
−ct + λ1

∫ t
0 e
−c(t−s)y(s) ds+ λ2

∫ t
0 e
−c(t−s)y(s− τ(s)) ds

+λ3

∫ t
0 e
−c(t−s) ∫ s

s−r(s) y(u) du ds t ≥ 0,

y0e
−ct, t ∈ [−τ, 0],

(6.28)

then we have y(t) ≤ y0e
−γt(t ≥ −τ), where γ is a positive root of the transcendental equation

1
c−γ

(
λ1 + eγτλ2 + eγτ−1

γ λ3

)
= 1.

Proof. Let F (γ) = 1
c−γ

(
λ1 + eγτλ2 + eγτ−1

γ λ3

)
− 1. We have F (0)F (c−) < 0, that is, there

exists a positive constant γ ∈ (0, c) such that F (γ) = 0. For any ε > 0, let

Cε = ε+ y0.

To prove the lemma, we claim that (6.28) implies

y(t) ≤ Cεe−γt, t ≥ −τ. (6.29)

It is easily shown that (6.29) holds for t ∈ [−τ, 0]. Assume that there exists t∗1 > 0 such that

y(t) < Cεe
−γt, t ∈ [−τ, t∗1), y(t∗1) = Cεe

−γt∗1 . (6.30)
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Combining with (6.28), we have

y(t∗1) ≤ y0e
−ct∗1 + λ1

∫ t∗1

0
e−c(t

∗
1−s)y(s) ds+ λ2

∫ t∗1

0
e−c(t

∗
1−s)y(s− τ(s)) ds

+λ3

∫ t∗1

0
e−c(t

∗
1−s)

∫ s

s−r(s)
y(u) du ds

< y0e
−ct∗1 + Cελ1

∫ t∗1

0
e−c(t

∗
1−s)e−γs ds+ Cελ2

∫ t∗1

0
e−c(t

∗
1−s)e−γ(s−τ(s)) ds

+Cελ3

∫ t∗1

0
e−c(t

∗
1−s)

∫ s

s−r(s)
e−γu du ds

=

[
y0 −

Cε
c− γ

(
λ1 + eγτλ2 +

eγτ − 1

γ
λ3

)]
e−ct

∗
1

+
Cε
c− γ

(
λ1 + eγτλ2 +

eγτ − 1

γ
λ3

)
e−γt

∗
1 .

From the de�nition of Cε, we have

y0 −
Cε
c− γ

(
λ1 + eγτλ2 +

eγτ − 1

γ
λ3

)
= y0 − Cε < 0.

Then, together with the de�nition of γ, we obtain that y(t∗1) < Cεe
−γt∗1 , which contradicts (6.30),

so (6.29) holds. As ε > 0 is arbitrarily small, in view of (6.29), it follows that y(t) ≤ y0e
−γt for

t ≥ −τ .

Proof. For the representation (6.14), using (6.17)-(6.19), we obtain that

E
n∑
i=1

|xi(t)|p

≤ 5p−1e−ct
n∑
i=1

E|φi(0)|p

+5p−1c−p/q
n∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q ∫ t

0
e−c(t−s)E

(
n∑
j=1

|xj(s)|p
)
ds

+5p−1c−p/q
n∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q ∫ t

0
e−c(t−s)E

[
n∑
j=1

|xj(s− τ(s)))|p
]
ds

+5p−1
(τ
c

)p/q n∑
i=1

(
n∑
j=1

|lij |q|γj |q
)p/q ∫ t

0
e−c(t−s)

∫ s

s−r(s)
E

[
n∑
j=1

|xj(u)|p
]
du ds

+5p−1npc1−p/2

{
µp/2

∫ t

0
e−c(t−s)E

[
n∑
j=1

|xj(s)|p
]
ds

+νp/2
∫ t

0
e−c(t−s)E

[
n∑
j=1

|xj(s− τ(s))|p
]
ds

}
.

Hence, by using Lemma 6.1.22 and (6.7), we obtain that the trivial solution of (6.1) is exponen-

tially stable in pth moment.
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Corollary 6.1.23. Suppose that the assumptions (A1)-(A4) hold. If the following conditions

are satis�ed,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ (τ > 0),

(ii) and such that

5c−2
n∑
i=1

n∑
j=1

a2
ijα

2
j + 5c−2

n∑
i=1

n∑
j=1

b2ijβ
2
j + 5c−2τ2

n∑
i=1

n∑
j=1

l2ijγ
2
j + 20n2c−1(µ+ ν) < 1,

where c, µ, ν are de�ned as in Theorem 6.1.4,

then the trivial solution of (6.1) is exponentially stable in mean square.

Corollary 6.1.24. Let p ≥ 2. Suppose that the assumptions (A1)-(A4) hold. If the following

conditions are satis�ed,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ (τ > 0),

(ii) and such that

4p−1c−p
n∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 4p−1c−p
n∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q

+4p−1npc−p/2(µp/2 + νp/2) < 1,

where c, µ, ν are de�ned as in Theorem 6.1.4,

then the trivial solution of (6.20) is exponentially stable in pth moment.

6.1.5 Proof of Theorem 6.1.11

In this subsection, we prove Theorem 6.1.11. We start with some preparations.

Multiply both sides of (6.9) by ecit and integrate from 0 to t, we obtain that for t ≥ 0,

xi(t) = e−citxi(0) +

∫ t

0
e−ci(t−s)

n∑
j=1

aijgj(xj(s)) ds+

∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(xj(s− τ(s))) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

dij

∫ s

s−r(s)
gj(xj(u)) du ds, i = 1, 2, 3, · · · , n. (6.31)

Lemma 6.1.25. De�ne an operator by (Px)(θ) = φ(θ) for ϑ ≤ θ ≤ 0, and for t ≥ 0,

(Px)i(t) = e−citxi(0) +

∫ t

0
e−ci(t−s)

n∑
j=1

aijgj(xj(s)) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(xj(s− τ(s))) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

dij

∫ s

s−r(s)
gj(xj(u)) du ds :=

4∑
i=1

Ii(t). (6.32)

If the conditions (i) and (i) in Theorem 6.1.11 are satis�ed, then P : Hφ → Hφ and P is a

contraction mapping.
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Proof. First, we prove that PHφ ⊆ Hφ. In view of (6.32), we have that, for �xed time t1 ≥ 0,

it is easy to check that limr→0 [(Px)i(t1 + r)− (Px)i(t1)] = 0. Thus, P is continuous on [0,∞).

Note that (Px)i(θ) = φ(θ) for ϑ ≤ θ ≤ 0, we obtain that P is indeed continuous on [ϑ,∞).

Next, we prove that limt→∞(Px)i(t) = 0 for xi(t) ∈ Hiφ. Since xi(t) ∈ Hiφ, we have that

limt→∞ xi(t) = 0. Then for any ε > 0, there exists Ti > 0 such that s ≥ Ti implies |xi(s)| < ε.

Choose T = maxi=1,2,··· ,n{Ti}, combining with condition (A2),

|I2(t)| =

∣∣∣∣∣
∫ t

0
e−ci(t−s)

n∑
j=1

aijfj(xj(s)) ds

∣∣∣∣∣
≤

∫ T

0
e−ci(t−s)

n∑
j=1

|aijkj ||xj(s)| ds+

∫ t

T
e−ci(t−s)

n∑
j=1

|aijαj ||xj(s)| ds

≤
n∑
j=1

|aijαj | sup
0≤s≤T

|xj(s)|
∫ T

0
e−ci(t−s) ds+ ε

n∑
j=1

|aijαj |
∫ t

T
e−ci(t−s) ds

≤ e−cit
n∑
j=1

|aijαj | sup
0≤s≤T

|xj(s)|
∫ T

0
e−cis ds+

ε

ci

n∑
j=1

|aijαj |. (6.33)

From the fact that ci > 0 (i = 1, 2, · · · , n) and estimate (6.33), we have that I2(t)→ 0 as t→∞.

Since xi(t) → 0 and t − τ(t) → ∞ as t → ∞, for each ε > 0, there exists T ′i > 0 such

that s ≥ T ′i implies |xi(s − τ(s))| < ε for i = 1, 2, · · · , n. Choose T ′ = maxi=1,2,···n{T ′i}, we
obtain

|I3(t)| =

∣∣∣∣∣
∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(xj(s− τ(s))) ds

∣∣∣∣∣
≤

∫ T ′

0
e−ci(t−s)

n∑
j=1

|bijβj ||xj(s− τ(s))| ds+

∫ t

T ′
e−ci(t−s)

n∑
j=1

|bijkj ||xj(s− τ(s))| ds

≤ e−cit
n∑
j=1

|bijβj | sup
ϑ≤s≤T ′

|xj(s)|
∫ T ′

0
ecis ds+

ε

ci

n∑
j=1

|bijβj |. (6.34)

From the fact that ci > 0 (i = 1, 2, · · · , n) and estimate (6.34), we have that I3(t)→ 0 as t→∞.

Since xi(t) → 0 and t − r(t) → ∞ as t → ∞, for each ε > 0, there exists T ∗i > 0 such

that s ≥ T ∗i implies |xi(s − r(s))| < ε for i = 1, 2, · · · , n. Choose T ∗ = maxi=1,2,···n{T ∗i }, we
obtain

|I4(t)| =

∣∣∣∣∣
∫ t

0
e−ci(t−s)

n∑
j=1

dij

∫ s

s−r(s)
hj(xj(u)) du ds

∣∣∣∣∣
≤

∫ T ∗

0
e−ci(t−s)

n∑
j=1

|dijγj |
∫ s

s−r(s)
|xj(u)| du ds+ εr

∫ t

T ∗
e−ci(t−s)

n∑
j=1

|dijγj | ds

≤ r

n∑
j=1

|dijγj | sup
ϑ≤u≤T ∗

|xj(u)|
∫ T ∗

0
e−ci(t−s) ds+

εr

ci

n∑
j=1

|dijγj |. (6.35)
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From the fact that ci > 0(i = 1, 2, · · · , n) and estimate (6.35), we have that I4(t)→ 0 as t→∞.

From the above estimate, we conclude that limt→∞(Px)i)(t) = 0 for xi(t) ∈ Hiφ. Therefore,

P : Hφ → Hφ.

Now, we prove that P is a contraction mapping. For any x, y ∈ Hφ, from (6.33) and (6.35), we

obtain that

n∑
i=1

|(Px)i(t)− (Py)i(t)|

≤
n∑
i=1

max
j=1,2,··· ,n

|aijαj |
∫ t

0
e−ci(t−s)

n∑
j=1

|xj(s)− yj(s)| ds

+
n∑
i=1

max
j=1,2,··· ,n

|bijβj |
∫ t

0
e−ci(t−s)

n∑
j=1

|xj(s− τ(s))− yj(s− τ(s))| ds

+

n∑
i=1

max
j=1,2,··· ,n

|dijγj |
∫ t

0
e−ci(t−s)

n∑
j=1

∫ s

s−r(s)
|xj(u)− yj(u)| du ds

≤
n∑
i=1

{
1

ci
max

j=1,2,··· ,n
|aijαj |+

1

ci
max

j=1,2,··· ,n
|bijβj |+

r

ci
max

j=1,2,··· ,n
|dijγj |

}

× sup
ϑ≤s≤t

n∑
j=1

|xj(s)− yj(s)| = α sup
ϑ≤s≤t

n∑
j=1

|xj(s)− yj(s)|.

Hence, we obtain that P is a contraction mapping.

We are now ready to prove Theorem 6.1.11.

Proof. Let P be de�ned as in Lemma 6.1.25, by a contraction mapping principle, P has a unique

�xed point x ∈ Hφ with x(θ) = φ(θ) on ϑ ≤ θ ≤ 0 and x(t)→ 0 as t→∞.

To obtain asymptotic stability, it remains to prove that the trivial solution x = 0 of (6.9)

is stable. For any ε > 0, choose σ > 0 and σ < ε satisfying the condition σ + εα < ε.

If x(t, s, φ) = (x1(t, s, φ), x2(t, s, φ), · · · , xn(t, s, φ)) is the solution of (6.9) with the initial con-

dition ‖φ‖ < σ, then we claim that ‖x(t, s, φ)‖ < ε for all t ≥ 0. Indeed, we suppose that there

exists t∗ > 0 such that

n∑
i=1

|xi(t∗; s, φ)| = ε, and

n∑
i=1

|xi(t; s, φ)| < ε for 0 ≤ t < t∗. (6.36)

From (6.12) and (6.31), we obtain

n∑
i=1

|xi(t∗; s, φ)| ≤
n∑
i=1

[
|e−cit∗xi(0)|+

∫ t∗

0
e−ci(t

∗−s)
n∑
j=1

|aijfj(xj(s))| ds

+

∫ t∗

0
e−ci(t

∗−s)
n∑
j=1

|bijgj(xj(s− τ(s)))| ds
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+

∫ t∗

0
e−ci(t

∗−s)
n∑
j=1

|dij
∫ s

s−r(s)
hj(xj(u))| du ds

]

< σ + ε
n∑
i=1

(
1

ci
max

j=1,2,··· ,n
|aijαj |+

1

ci
max

j=1,2,··· ,n
|bijβj |+

r

ci
max

j=1,2,··· ,n
|dijγj |

)
≤ σ + εα < ε,

which contradicts (6.36). Therefore, ‖x(t, s, φ)‖ < ε for all t ≥ 0. This completes the proof.

Let dij ≡ 0 for i = 1, 2, · · · , n, j = 1, 2, · · · , n. The system (6.9) is then reduced to

dxi(t)

dt
= −cixi(t) +

n∑
j=1

aijfj(xj(t)) +
n∑
j=1

bijgj(xj(t− τ(t))), (6.37)

which is the description of a cellular neural network with time-varying delays. Following the

result of Theorem 6.1.11, we have the following corollary.

Corollary 6.1.26. Suppose that the assumptions (A1)-(A3) hold. If the following condition is

satis�ed,

n∑
i=1

1

ci
max

j=1,2,··· ,n
|aijαj |+

n∑
i=1

1

ci
max

j=1,2,··· ,n
|bijβj | < 1, (6.38)

then the trivial solution of (6.37) is asymptotically stable.

Remark 6.1.27. Note that the delay in Corollary 6.1.26 can be unbounded. Lai and Zhang [74]

studied the asymptotic stability (6.37) as well. However, the additional condition

max
i=1,2,···n

[
1

ci

n∑
j=1

|aijkj |+
1

ci

n∑
j=1

|bijkj |

]
<

1√
n

(6.39)

is needed in Theorem 4.1 of [74]. It is clear that Corollary 6.1.26 is an improvement of the result

in [74].

6.1.6 Proof of Theorem 6.1.13

Proof. From the represention (6.31), we obtain that

n∑
i=1

|xi(t)| ≤ e−ct
n∑
i=1

|xi(0)|+
n∑
i=1

max
j=1,2,···n

{|aijkj |}
∫ t

0
e−c(t−s)

n∑
j=1

|xj(s)| ds

+

n∑
i=1

max
j=1,2,···n

{|bijkj |}
∫ t

0
e−c(t−s)

n∑
j=1

|xj(s− τ(s))| ds

+
n∑
i=1

max
j=1,2,···n

{|dijkj |}
∫ t

0
e−c(t−s)

n∑
j=1

∫ s

s−r(s)
|xj(u)| du ds.

Combining with Lemma 6.1.22, we obtain that the trivial solution of (6.9) with initial condition

(6.11) is exponentially stable.
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For the cellular neural network (6.37), we have the following result.

Corollary 6.1.28. Suppose that the assumptions (A1)-(A3) hold. If the following conditions

are satis�ed,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ ,

(ii) and such that

n∑
i=1

max
j=1,2,··· ,n

|aijkj |+
n∑
i=1

max
j=1,2,··· ,n

|bijkj | < c, c = min{c1, c2, · · · c1},

then the trivial solution of (6.37) with initial condition (6.11) is exponentially stable.

6.1.7 Examples

Example 6.1.29. Consider the following two-dimensional cellular neural network

dx(t)

dt
= −Cx(t) +Ag(x(t)) +Bg(x− τ(t)),

where

C =

(
c1 0

0 c2

)
=

(
3 0

0 3

)
, A =

(
a11 a12

a21 a22

)
=

(
6/7 3/7

−1/7 −1/7

)

B =

(
b11 b12

b21 b22

)
=

(
6/7 2/7

3/7 1/7

)
.

The activation function is described by gi(x) = |x+1|−|x−1|
2 for i = 1, 2. The time-varying delay

τ(t) is continuous and |τ(t)| ≤ τ , where τ is a constant.

It is clear that αi = βi = 1 for i = 1, 2. We check the condition (6.38) in Corollary 6.1.26,

2∑
i=1

1

ci
max
j=1,2

|aijαj |+
2∑
i=1

1

ci
max
j=1,2

|bijβj | ≤
1

3
×
(

6

7
+

1

7
+

6

7
+

3

7

)
=

16

21
< 1.

Hence, by Corollary 6.1.26, the trivial solution x = 0 of this cellular neural network is asymp-

totically stable.

However, the condition (6.39) becomes

max
i=1,2

{
1

ci

2∑
j=1

|aijαj |+
1

ci

2∑
j=1

|bijβj |

}
=

17

21
>

1√
2
.

Hence, Theorem 4.1 of [74] is not applicable.
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Example 6.1.30. Consider a two-dimensional stochastic recurrent neural network with time-

varying delays

dx(t) = −
(

6 0

0 5

)(
x1(t)

x2(t)

)
dt+

(
2 0.4

0.6 1

)(
0.2 tanh(x1(t))

0.2 tanh(x2(t))

)
dt

+

(
−0.8 2

1 2

)(
0.2 tanh(x1(t− τ1(t)))

0.2 tanh(x2(t− τ2(t)))

)
dt

+

(
1 2

2 1

)( ∫ t
t−r(t) 0.2 tanh(x1(s)) ds∫ t
t−r(t) 0.2 tanh(x2(s)) ds)

)
dt

+σ(t, x(t), x(t− τ(t))) dw(t), (6.40)

where τ1(t), τ2(t), r(t) are continuous functions such that t− τ(t)→∞ as t→∞ and |r(t)| ≤ 1,

σ : R+ × R2 × R2 → R2 × R2 satis�es

trace
[
σT (t, x, y)σ(t, x, y)

]
≤ 0.003(x2

1 + x2
2 + y2

1 + y2
2),

and w(t) is a two dimensional Brownian motion.

We suppose p = 2, and take µi = νi = 0.003 for i = 1, 2, by simple computation, we have

αi = 0.2 for i = 1, 2, c = min{c1, c2} = 5, µ = ν = 0.003. From Corollary 6.1.18, we have that

5

2∑
i=1

c−2
i

(
2∑
j=1

a2
ijα

2
j

)
+ 5

2∑
i=1

c−2
i

(
2∑
j=1

b2ijα
2
j

)
+ 5

2∑
i=1

(
τ

ci

)2
(

2∑
j=1

l2ijα
2
j

)

+20× 2×
2∑
i=1

c−1
i (µ+ ν) < 0.256 < 1.

Then the trivial solution of (6.40) is mean square asymptotically stable.

If τ(t) is bounded, from Corollary 6.1.23, we obtain that

5c−2
2∑
i=1

2∑
j=1

a2
ijα

2
j + 5c−2

2∑
i=1

n∑
j=1

b2ijα
2
j + 5c−2τ2

2∑
i=1

2∑
j=1

l2ijα
2
j + 20× 4c−1(µ+ ν) < 0.298.

Hence, the trivial solution of (6.40) is mean square exponentially stable.

Example 6.1.31. Consider a two-dimensional stochastically perturbed HNN with time-varying

delays,

dx(t) = [−Cx(t) +Af(x(t)) +Bg(xτ (t))] dt+ σ(t, x(t), xτ (t)) dw(t), (6.41)

where fi(x) = 1
5 arctanx, gi(x) = 1

5 tanhx = 1
5(ex−e−x)/(exi +e−x), i = 1, 2, τ(t) = 1

2 sin t+ 1
2 ,

C =

(
5 0

0 4.5

)
, A =

(
2 0.4

0.6 1

)
and B =

(
−0.8 2

1 4

)
.

In this example, let p = 3, take αj = 0.2, βj = 0.2, j = 1, 2, σ : R+ × R2 × R2 → R2×2 satis�es

σi1(t, x, y)2 ≤ 0.01(x2
1 + y2

1) and σi2(t, x, y)2 ≤ 0.01(x2
2 + y2

2), i = 1, 2,

and w(t) is a two dimensional Brownian motion.
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Note that the exponential stability of (6.41) has been studied in Sun and Cao [120] by employing

the method of variation of parameter, inequality technique and stochastic analysis.

Now, we check the condition in Corollary 6.1.24,

4p−1c−(1+p/q)
2∑
i=1

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 4p−1c−(1+p/q)
2∑
i=1

(
n∑
j=1

|bij |q|βj |q
)p/q

+4p−12pc−p/2(µp/2 + νp/2) < 0.18 < 1.

From Corollary 6.1.24, the trivial solution of (6.41) is exponentially stable.

6.2 Stability of stochastic delayed neural networks with impulses

6.2.1 Introduction and main results

Besides delay and stochastic e�ects, impulsive e�ects are also likely to exist in the neural net-

works systems, which could stabilize or destabilize the systems. Therefore, it is of interest to

take delay e�ects, stochastic e�ects and impulsive e�ects into account in investigations of the

dynamical behavior of neural networks.

In this section, we apply �xed point methods to study asymptotic stability and exponential

stability of a class of stochastic delayed neural networks with impulsive e�ects, which is de-

scribed by 

dxi(t) =
[
−cixi(t) +

∑n
j=1 aijfj(xj(t)) +

∑n
j=1 bijgj(xj(t− τ(t)))

+
∑n

j=1 lij
∫ t
t−r(t) hj(xj(s)) ds

]
dt

+
∑n

j=1 σij(t, xj(t), xj(t− τ(t))) dwj(t), t 6= tk

∆xi(tk) = Iik(xi(tk)), t = tk, k = 1, 2, 3, · · ·

(6.42)

or 
dx(t) =

[
−Cx(t) +Af(x(t)) +Bg(x(t− τ(t))) +W

∫ t
t−r(t) h(x(s)) ds

]
dt

+σ(t, x(t), x(t− τ(t))) dw(t), t 6= tk

∆x(tk) = Ik(x(tk)), t = tk, k = 1, 2, 3, · · ·

i = 1, 2, 3, · · · , n, where x(t) = (x1(t), x2(t), · · ·xn(t))T ∈ Rn is the state vector associat-

ed with the neurons; C = diag(c1, c2, · · · , cn) > 0 where ci > 0 represents the rate with

which the ith unit will reset its ponential to the resting state in isolation when disconnect-

ed from the network and the external stochastic perturbations; A = (aij)n×n, B = (bij)n×n and

W = (lij)n×n represent the connection weight matrix, delayed connection weight matrix and

distributed delayed connection weight matrix, respectively; fj , gj , hj are activation functions,

f(x(t)) = (f1(x(t)), f2(x(t)), · · · fn(x(t)))T ∈ Rn, g(x(t)) = (g1(x(t)), g2(x(t)), · · · , gn(x(t)))T ∈
Rn, h(x(t)) = (h1(x(t)), h2(x(t)), · · · , hn(x(t)))T ∈ Rn, w(t) = (w1(t), w2(t), · · · , wn(t))T ∈ Rn
is an n-dimensional Brownion motion de�ned on a complete probability space (Ω,F ,P) with
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natural complete �ltration {Ft}t≥0 (i.e. Ft = completion of σ{w(s) : 0 ≤ s ≤ t}) and

σ : R+ × Rn × Rn → Rn×n, σ = (σij)n×n is the di�usion coe�cient matrix. ∆xi(tk) =

Iik(xi(tk)) = xi(t
+
k ) − xi(t−k ) is the impulse at moment tk, and t1 < t2 < · · · is a strictly in-

creasing sequence such that limk→∞ tk = +∞, xi(t
+
k ) and xi(t

−
k ) stand for the right-hand and

left-hand limit of xi(t) at t = tk, respectively. Iik(xi(tk)) shows the abrupt change of xi(t) at the

impulsive moment tk and Iik(·) ∈ C
(
LpFt(Ω;Rn), LpFt(Ω;Rn)

)
. τ(t) and r(t) denote a discrete

time varying delay and the bound of a distributed time varying delay, respectively. Denote

ϑ = inft≥0{t− τ(t), t− r(t)}.

The initial condition for the system (6.42) is given by

x(t) = φ(t), t ∈ [ϑ, 0], (6.43)

where t 7→ φ(t) = (φ1(t), φ2(t), · · · , φn(t))T ∈ C
(

[ϑ, 0], LpF0
(Ω;Rn)

)
with the norm is de�ned as

‖φ‖p = sup
ϑ≤s≤0

(
E

n∑
i=1

|φi(s)|p
)
,

where E denotes expectation with respect to the probability measure P and p ≥ 2.

To obtain our main results, we suppose the following conditions are satis�ed:

(A1) the delays τ(t), r(t) are continuous functions such that t− τ(t)→∞ and t− r(t)→∞ as

t→∞;

(A2) fi(x), gi(x), and hi(x) satisfy Lipschitz condition. That is, for each i = 1, 2, 3, · · · , n, there
exist constants αi, βi, γi such that for every x, y ∈ Rn,

|fj(x)− fi(y)| ≤ αi|x− y|, |gi(x)− gi(y)| ≤ βi|x− y|, |hj(x)− hi(y)| ≤ γi|x− y|;

(A3) there exists nonegative constants pik such that for any x, y ∈ Rn,

|Iik(x)− Iik(y)| ≤ pik|x− y|, i = 1, 2, · · · , n, k = 1, 2, 3, · · · ;

(A4) assume that f(0) ≡ 0, g(0) ≡ 0, h(0) ≡ 0, σ(t, 0, 0) ≡ 0, Iik(0) ≡ 0, i = 1, 2, · · · , n,
k = 1, 2, 3, · · · ;

(A5) σ(t, x, y) satis�es a Lipschitz condition. That is, there are nonnegative constants µi and

νi such that ∀ i, j,

(σij(t, x, y)− σij(t, u, v))2 ≤ µj(xj − uj)2 + νj(yj − vj)2.

The solution x(t) := x(t, φ) of the system (6.42) is, for the time t, a piecewise continuous vector-

valued function with the �rst kind discontinuity at the points tk (k = 1, 2, · · · ), where it is left
continuous, i.e.,

xi(t
−
k ) = xi(tk), xi(t

+
k ) = xi(tk) + Iik(xi(tk)), i = 1, 2, · · ·n, k = 1, 2, · · · .

De�ne Sφ the space of all Ft-adapted processes ϕ(t, w) : [ϑ,∞)×Ω→ Rn such that ϕ : [ϑ,∞) 7→
LpFt(Ω;Rn) is continuous on t 6= tk (k = 1, 2, · · · ), limt→t−k

ϕ(t, ·) and limt→t+k
ϕ(t, ·) exist, and

187



Chapter 6. Stochastic delayed neural networks

limt→t−k
ϕ(t, ·) = ϕ(tk, ·) for k = 1, 2, · · · . Moreover, we set ϕ(t, ·) = φ(t) for t ∈ [ϑ, 0] and

E (
∑n

i=1 |ϕi(t)|p)→ 0 as t→∞, i = 1, 2, · · · , n. If we de�ne the metric as the form

‖ϕ‖p := sup
t≥ϑ

(
E

n∑
i=1

|ϕi(t)|p
)
, (6.44)

then Sφ is a complete metric space with respect to the norm (6.44). Using the contraction

mapping de�ned on the space Sφ and applying a contraction mapping principle, we obtain our

�rst result, which is proved in Subsection 6.2.2.

Theorem 6.2.1. Suppose that the assumptions (A1)-(A5) hold. If the following conditions are

satis�ed,

(i) the function r(t) is bounded by a constant r (r > 0);

(ii) there exist constants pi (i = 1, 2, · · · , n) such that pik ≤ pi(tk − tk−1), k = 1, 2, · · · ;

(iii) and such that

α , 6p−1
n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 6p−1
n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

+6p−1
n∑
i=1

(
r

ci

)p( n∑
j=1

|lij |q|γj |q
)p/q

+6p−1np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)
+ 6p−1c−1 max

i=1,2,··· ,n

{
ppi
cp−1
i

}
< 1, (6.45)

where c = min{c1, c2, · · · , cn}, µ = max{µ1, µ2, · · · , µn}, ν = max{ν1, ν2, · · · , νn},

then the trivial solution of (6.42) is pth moment asymptotically stable.

De�ne Cφ the space of all Ft-adapted processes ϕ(t, ω) : [ϑ,∞)×Ω→ Rn such that ϕ : [ϑ,∞) 7→
LpFt(Ω;Rn) is continuous on t 6= tk (k = 1, 2, · · · ), limt→t−k

ϕ(t, ·) and limt→t+k
ϕ(t, ·) exist, and

limt→t−k
ϕ(t, ·) = ϕ(tk, ·) for k = 1, 2, · · · . Moreover, we set ϕ(t, ·) = φ(t) for t ∈ [ϑ, 0] and

eλtE (
∑n

i=1 |ϕi(t)|p) → 0 as t → ∞, λ < min{c1, c2, · · · , cn}, i = 1, 2, · · · , n. Then Cφ is a

complete metric space with respect to the norm (6.44). Using a contraction mapping de�ned on

the space Cφ and applying a contraction mapping principle, we obtain our second result. For its

proof, see Subsection 6.2.3.

Theorem 6.2.2. Suppose that the assumptions (A1)-(A5) hold. If the following conditions are

satis�ed,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ (τ > 0);

(ii) there exist constants pi (i = 1, 2, · · · , n) such that pik ≤ pi(tk − tk−1), k = 1, 2, · · · ;
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(iii) and such that

α , 6p−1
n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 6p−1
n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

+6p−1
n∑
i=1

(
τ

ci

)p( n∑
j=1

|lij |q|γj |q
)p/q

+6p−1np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)
+ 6p−1c−1 max

i=1,2,··· ,n

{
ppi
cp−1
i

}
< 1, (6.46)

where c = min{c1, c2, · · · , cn}, µ = max{µ1, µ2, · · · , µn}, ν = max{ν1, ν2, · · · , νn};

then the trivial solution of (6.42) is pth moment exponentially stable.

Remark 6.2.3. In Theorem 6.2.2, both the discrete delay τ(t) and distributed delay r(t) are

required to be bounded, while the discrete delay τ(t) in Theorem 6.2.1 can be unbounded. It is

clear that the conditions in Theorem 6.2.1 and Theorem 6.2.2 do not require the di�erentiability

of delays. In addition, condition (A2) implies that the activation functions discussed in this

section may be unbounded, non-monotonic and non-di�erentiable.

Remark 6.2.4. The system (6.42) is quite general and it includes several well-known neural net-

work models as its special cases, see, for example, the models in [54, 74, 78, 83, 116, 120, 129, 142].

Sakthivel et al. [116] has considered asymptotic stability in mean square of the system (6.42) with

linear impulsive e�ects, by employing Liapunov functional method and using linear matrix in-

equality optimization approach. However, the time varying delays in [116] should satisfy

(H1) 0 ≤ h1 ≤ τ(t) ≤ h2, τ ′(t) ≤ µ,

where h1, h2 are constants, the distributed delay r(t) is bounded, 0 ≤ r(t) ≤ r, r is a con-

stant. In our results, the condition (H1) is replaced by other assumptions, and the assumptions

in Theorem 6.2.1 and Theorem 6.2.2 may be satis�ed if (H1) is not.

Remark 6.2.5. In this section, our approach is based on �xed point methods, and in one step,

a �xed point argument can yield the existence and stability criteria of the considered system.

However, when using Liapunov's direct method, one must independently verify that a solution

exists. The stability criteria we provided in our main results are only in terms of the system

parameters ci, aij, bij, lij, pi etc. Hence, these criteria can be veri�ed easily in applications.

Consider the a when there are no stochastic perturbations on the system (6.42), the stochastic

neural networks become usual neural network which can be described as
dxi(t)
dt = −cixi(t) +

∑n
j=1 aijfj(xj(t)) +

∑n
j=1 bijgj(xj(t− τ(t)))

+
∑n

j=1 lij
∫ t
t−r(t) hj(xj(s)) ds, t 6= tk

∆xi(tk) = Iik(xi(tk)), t = tk, k = 1, 2, 3, · · ·

(6.47)

or 
dx(t)
dt = −Cx(t) +Af(x(t)) +Bg(x− τ(t)) +D

∫ t
t−r(t) h(x(s)) ds, t 6= tk

∆x(tk) = Ik(x(tk)), t = tk, k = 1, 2, 3, · · ·
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for i = 1, 2, 3, · · · , n, where x(·) = (x1(·), x2(·), · · · , xn(·))T is the neuron state vector of the

transformed system (6.47).

The initial condition for the system (6.47) is

x(t) = φ(t), t ∈ [ϑ, 0], (6.48)

where φ is a continuous function with the norm de�ned by ‖φ‖ =
∑n

i=1 supϑ≤s≤0 |φi(s)|. De�ne
Hφ = H1φ × H2φ × · · ·Hnφ, where Hiφ is the space consisting of continuous functions ϕi(t) :

R+ → R such that ϕi(t) is continuous on t 6= tk (k = 1, 2, · · · ), limt→t−k
ϕi(t) and limt→t+k

ϕi(t)

exist, and limt→t−k
ϕi(t) = ϕi(tk). Moreover, we set ϕi(θ) = φ(θ) for ϑ ≤ θ ≤ 0 and ϕi(t) → 0

as t→∞, i = 1, 2 · · ·n. For any ϕ(t), η(t) ∈ Hφ, if we de�ne the metric as

d(ϕ, η) =
n∑
i=1

sup
t≥ϑ
|ϕi(t)− ηi(t)|, (6.49)

then Hφ is a complete metric space with respect to the norm (6.49). Using a contraction

mapping de�ned on the space Hφ and applying a contraction mapping principle, we obtain our

third result, which is proved in Subsection 6.2.4.

Theorem 6.2.6. Suppose that the assumptions (A1)-(A4) hold. If the following conditions are

satis�ed,

(i) the function r(t) is bounded by a constant r (r > 0);

(ii) there exist constants pi (i = 1, 2, · · · , n) such that pik ≤ pi(tk − tk−1), k = 1, 2, · · · ;

(iii) and such that

α ,
n∑
i=1

1

ci
max

j=1,2,··· ,n
|aijαj |+

n∑
i=1

1

ci
max

j=1,2,··· ,n
|bijβj |

+

n∑
i=1

r

ci
max

j=1,2,··· ,n
|lijγj |+ max

i=1,2,··· ,n

{
pi
ci

}
< 1; (6.50)

then the trivial solution of (6.47) is asymptotically stable.

De�ne Bφ = B1φ × B2φ × · · · Bnφ, where Biφ is the space consisting of continuous functions

ϕi(t) : R+ → R such that ϕi(t) is continuous on t 6= tk (k = 1, 2, · · · ), limt→t−k
ϕi(t) and

limt→t+k
ϕi(t) exist, and limt→t−k

ϕi(t) = ϕi(tk). Moreover, we set ϕi(θ) = φ(θ) for ϑ ≤ θ ≤ 0

and eλtϕi(t)→ 0 as t→∞, where λ < min{c1, c2, · · · , cn}, i = 1, 2 · · ·n. Then Bφ is a complete

metric space with respect to the metric (6.49). Using a contraction mapping de�ned on the

space Bφ and applying a contraction mapping principle, we obtain our fourth result, which is

proved in Subsection 6.2.5.

Theorem 6.2.7. Suppose that the assumptions (A1)-(A4) hold. If the following conditions are

satis�ed,

(i) the discrete delay τ(t) and r(t) in the distributed delay are bounded by a constant τ (τ > 0);

(ii) there exist constants pi (i = 1, 2, · · ·n) such that pik ≤ pi(tk − tk−1), k = 1, 2, · · · ;
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(iii) and such that

α ,
n∑
i=1

1

ci
max

j=1,2,··· ,n
|aijαj |+

n∑
i=1

1

ci
max

j=1,2,··· ,n
|bijβj |

+

n∑
i=1

τ

ci
max

j=1,2,··· ,n
|lijγj |+ max

i=1,2,··· ,n

{
pi
ci

}
< 1; (6.51)

then the trivial solution of (6.47) is exponentially stable.

Remark 6.2.8. Zhang et al. [142, 143] have investigated exponential stability and asymptotic

stability of a class of impulsive cellular neural networks by using �xed point methods, which is a

special case of the system (6.47). Our results in Theorem 6.2.6 and Theorem 6.2.7 improve and

extend the results in [142, 143] (see Remark 6.2.15 and Remark 6.2.17 for more information).

The rest of this section is organized as follows. The proofs of Theorem 6.2.1 and Theorem 6.2.2

are presented in Subsection 6.2.2 and Subsection 6.2.3, respectively. The proofs of Theorem 6.2.6

and Theorem 6.2.7 are provided in Subsection 6.2.4 and Subsection 6.2.5, respectively. Some

examples are given to illustrate our main results in Subsection 6.2.6.

6.2.2 Proof of Theorem 6.2.1

In this subsection, we prove Theorem 6.2.1. We start with some preparations.

Multiply both sides of (6.42) by ecit, we obtain that for t 6= tk, i = 1, 2, 3, · · · , n,

d(ecitxi(t)) = ecit

[
n∑
j=1

aijfj(xj(t)) +

n∑
j=1

bijgj(xj(t− τ(t))) +

n∑
j=1

lij

∫ t

t−r(t)
hj(xj(u)) du

]
dt

+ecit
n∑
j=1

σij(t, xj(t), xj(t− τ(t))) dwj(t). (6.52)

Integrate (6.52) from tk−1 + ε (ε > 0) to t ∈ (tk−1, tk) (k = 1, 2, · · · ), we obtain that

ecitxi(t) = eci(tk−1+ε)xi(tk−1 + ε) +

∫ t

tk−1+ε
ecis

n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s)

+

∫ t

tk−1+ε
ecis

[
n∑
j=1

aijfj(xj(s))

+

n∑
j=1

bijgj(xj(s− τ(s))) +

n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du

]
ds. (6.53)
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Let ε→ 0 in (6.53), for t ∈ (tk−1, tk) (k = 1, 2, · · · ), we obtain that

ecitxi(t) = ecitk−1xi(t
+
k−1) +

∫ t

tk−1

ecis
n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s)

+

∫ t

tk−1

ecis

[
n∑
j=1

aijfj(xj(s))

+
n∑
j=1

bijgj(xj(s− τ(s))) +
n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du

]
ds. (6.54)

Set t = tk − ε (ε > 0) in (6.54), we obtain that

eci(tk−ε)xi(tk − ε) = ecitk−1xi(t
+
k−1) +

∫ tk−ε

tk−1

ecis
n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s)

+

∫ tk−ε

tk−1

ecis

[
n∑
j=1

aijfj(xj(s)) +

n∑
j=1

bijgj(xj(s− τ(s)))

+

n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du

]
ds. (6.55)

Let ε→ 0 in (6.55), we obtain that

ecitkxi(t
−
k ) = ecitk−1xi(t

+
k−1) +

∫ tk

tk−1

ecis
n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s)

+

∫ tk

tk−1

ecis

[
n∑
j=1

aijfj(xj(s)) +
n∑
j=1

bijgj(xj(s− τ(s)))

+
n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du

]
ds. (6.56)

Note that xi(tk) = xi(t
−
k ), from (6.54) and (6.56), we obtain that for t ∈ (tk−1, tk] (k = 1, 2, · · · ),

ecitxi(t) = ecitk−1xi(t
+
k−1) +

∫ t

tk−1

ecis

[
n∑
j=1

aijfj(xj(s))

+

n∑
j=1

bijgj(xj(s− τ(s))) +

n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du

]
ds

+

∫ t

tk−1

ecis
n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s)

= ecitk−1xi(tk−1) +

∫ t

tk−1

ecis

[
n∑
j=1

aijfj(xj(s)) +

n∑
j=1

bijgj(xj(s− τ(s)))

+

n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du

]
ds

+

∫ t

tk−1

ecis
n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s) + ecitk−1Ii(k−1)(xi(tk−1)).
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Hence, we obtain that

ecitk−1xi(tk−1) = ecitk−2xi(tk−1) +

∫ tk−1

tk−2

ecis

[
n∑
j=1

aijfj(xj(s))

+
n∑
j=1

bijgj(xj(s− τ(s))) +
n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du

]
ds

+

∫ tk−1

tk−2

ecis
n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s) + ecitk−2Ii(k−2)(xi(tk−2))

...

...

ecit2xi(t2) = ecit1xi(t1) +

∫ t2

t1

ecis

[
n∑
j=1

aijfj(xj(s))

+
n∑
j=1

bijgj(xj(s− τ(s))) +
n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du

]
ds

+

∫ t2

t1

ecis
n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s) + ecit1Ii1(xi(t1))

ecit1xi(t1) = φi(0) +

∫ t1

0
ecis

[
n∑
j=1

aijfj(xj(s))

+

n∑
j=1

bijgj(xj(s− τ(s))) +

n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du

]
ds

+

∫ t1

0
ecis

n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s),

which yields that for t > 0,

xi(t) = e−citφi(0) +

∫ t

0
e−ci(t−s)

n∑
j=1

aijfj(xj(s)) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(xj(s− τ(s))) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

lij

∫ s

s−r(s)
hj(xj(u)) du ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

σij(s, xj(s), xj(s− τ(s))) dwj(s) +
∑

0<tk<t

e−ci(t−tk)Iik(xi(tk)).

Lemma 6.2.9. De�ne an operator by (Qϕ)(t) = φ(t) for t ∈ [ϑ, 0], and for t ≥ 0,
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i = 1, 2, 3, · · · , n,

(Qϕ)i(t) (6.57)

= e−citφi(0) +

∫ t

0
e−ci(t−s)

n∑
j=1

aijfj(ϕj(s)) ds+

∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(ϕj(s− τ(s))) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

lij

∫ s

s−r(s)
hj(ϕj(u)) du ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

σij(s, ϕj(s), ϕj(s− τ(s))) dwj(s) +
∑

0<tk<t

e−ci(t−tk)Iik(ϕi(tk)).

Suppose that the assumptions (A1)-(A5) hold. If the conditions (i)-(iii) in Theorem 6.2.1 are

satis�ed, then Q : Sφ → Sφ and Q is a contraction mapping.

Proof. Denote (Qϕ)i(t) := J1i(t) + J2i(t) + J3i(t) + J4i(t) + J5i(t) + J6i(t), where

J1i(t) = e−citϕi(0), J2i(t) =

∫ t

0
e−ci(t−s)

n∑
j=1

aijfj(ϕj(s)) ds,

J3i(t) =

∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(ϕj(s− τ(s))) ds,

J4i(t) =

∫ t

0
e−ci(t−s)

n∑
j=1

lij

∫ s

s−r(s)
hj(ϕj(u)) du ds,

J5i(t) =

∫ t

0
e−ci(t−s)

n∑
j=1

σij(s, ϕj(s), ϕj(s− τ(s))) dwj(s),

J6i(t) =
∑

0<tk<t

e−ci(t−tk)Pik(xi(tk)).

Step1. From the de�nition of the metric space Sφ, we have that E
∑n

i=1 |ϕi(t)|p < ∞ for all

t ≥ 0, ϕ ∈ Sφ.
Step2. We prove the continuity in pth moment of Qx on [0,∞) \ {t1, t2, · · · } for x ∈ Sφ and

left continuity and existence of a right limit at each tk (k = 1, 2, · · · ). It is clear that (Qϕ)i(t)

is continuous on [ϑ, 0]. For a �xed time t > 0, it is easy to check that J1i(t), J2i(t), J3i(t),

J4i(t), J5i(t), J6i(t) are continuous in pth moment on the �xed time t 6= tk (k = 1, 2, · · · ).
Hence, (Qϕi)(t) is continuous in pth moment on the �xed time t 6= tk (k = 1, 2, · · · ). On the

other hand, as t = tk, it is easy to check that J1i(t), J2i(t), J3i(t), J4i(t), J5i(t) are continuous in

pth moment on the �xed time t = tk (k = 1, 2, · · · ). In the following, we check pth moment left

continuity of J6i(t) on t = tk (k = 1, 2, · · · ). Let r < 0 be small enough,

E
n∑
i=1

|J6i(tk + r)− J6i(tk)|p

= E
n∑
i=1

∣∣∣∣∣ ∑
0<tm<tk+r

e−ci(tk+r−tm)Iim(ϕi(tm))−
∑

0<tm<tk

e−ci(tk−tm)Iim(ϕi(tm))

∣∣∣∣∣
p

≤ E
n∑
i=1

∣∣∣∣∣ (e−ci(tk+r) − e−citk
) ∑

0<tm<tk

ecitmIim(ϕi(tm))

∣∣∣∣∣
p

,
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which implies that limr→0− E
∑n

i=1 |J6i(tk + r)− J6i(tk)|p = 0. Let r > 0 be small enough,

E
n∑
i=1

|J6i(tk + r)− J6i(tk)|p

= E
n∑
i=1

∣∣∣∣∣ ∑
0<tm<tk+r

e−ci(tk+r−tm)Iim(ϕi(tm))−
∑

0<tm<tk

e−ci(tk−tm)Iim(ϕi(tm))

∣∣∣∣∣
p

= E
n∑
i=1

∣∣∣∣∣e−ci(tk+r)

[ ∑
0<tm<tk

ecitmIim(ϕi(tm)) + ecitkIik(ϕi(tk))

]

−e−citk
∑

0<tm<tk

ecitmIim(ϕi(tm))

∣∣∣∣∣
p

= E
n∑
i=1

∣∣∣∣∣ (e−ci(tk+r) − e−citk
) ∑

0<tm<tk

ecitmIim(ϕi(tm)) + e−cirIik(ϕi(tk))

∣∣∣∣∣
p

,

which implies that limr→0+ E
∑n

i=1 |J6i(tk + r)− J6i(tk)|p = E
∑n

i=1 |Iik(ϕi(tk))|
p.

Based on the above discussion, we obtain that (Qϕ)i(t) : [ϑ,∞) → LpFt(Ω;Rn) is continu-

ous in pth moment on t 6= tk (k = 1, 2, · · · ), and for t = tk (k = 1, 2, · · · ), limt→t+k
(Qϕ)i(t)

and limt→t−k
(Qϕ)i(t) exist. Furthermore, we also obtain that limt→t−k

(Qϕ)i(t) = (Qϕ)i(tk) 6=
limt→t+k

(Qϕ)i(t).

Step3. We prove that Q(Sφ) ⊆ Sφ. From (6.57),

E
n∑
i=1

|Qϕi(t)|p = E
n∑
i=1

∣∣∣∣∣
6∑
j=1

Jji(t)

∣∣∣∣∣
p

≤ 6p−1
6∑
j=1

E

(
n∑
i=1

|Jji(t)|p
)
. (6.58)

Now, we estimate the right-hand terms of (6.58). From (A3), we know that |Iik(xi(tk))| ≤
pik|xi(tk)|, combining with the condition (ii), we obtain that

E
n∑
i=1

|J6i(t)|p ≤ E
n∑
i=1

[ ∑
0<tk<t

e−ci(t−tk)pik|ϕi(tk)|

]p

≤ E
n∑
i=1

[
pi
∑

0<tk<t

e−ci(t−tk)|ϕi(tk)|(tk − tk−1)

]p

≤ E
n∑
i=1

[
pi

∫ t

0
e−ci(t−s)|ϕi(s)| ds

]p

≤ E
n∑
i=1

ppi

(∫ t

0
e−ci(t−s) ds

)p/q ∫ t

0
e−ci(t−s)|ϕi(s)|p ds

≤ max
i=1,2,··· ,n

{
ppi
cp−1
i

}∫ t

0
e−c(t−s)E

(
n∑
i=1

|ϕi(s)|p
)
ds. (6.59)

Since E
∑n

i=1 |ϕi(t)| → 0, t − τ(t) → ∞ and t − r(t) → ∞ as t → ∞. Thus, from (6.58),

(6.59) and combining with (6.17), (6.18) and (6.19), we obtain that E
∑n

i=1 |Qϕi(t)|p → 0 as
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E
∑n

i=1 |ϕi(t)|p → 0. Therefore, Q : Sφ → Sφ.

Step4. We prove that Q is a contraction mapping. For any ϕ,ψ ∈ Sφ, from (6.17), (6.18),

(6.19), (6.58) and (6.59), we obtain

sup
s≥ϑ

{
E

n∑
i=1

|Qϕi(s)−Qψi(s)|p
}

≤ 5p−1 sup
s≥ϑ

{
E

n∑
i=1

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

aij

(
fj(xj(u))− fj(yj(u))

)
du

∣∣∣∣∣
p}

+5p−1 sup
s≥ϑ

{
E

n∑
i=1

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

bij

(
gj(xj(u− τ(u)))− gj(yj(u− τ(u)))

)
du

∣∣∣∣∣
p}

+5p−1 sup
s≥ϑ

{
E

n∑
i=1

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

lij

∫ s

s−r(s)

(
hj(ϕj(v))− hj(ψj(v))

)
dv du

∣∣∣∣∣
p}

+5p−1 sup
s≥ϑ

{
E

n∑
i=1

∣∣∣∣∣
∫ s

0
e−ci(s−u)

n∑
j=1

(
σij(s, xj(s), xj(u− τ(u)))

−σij(s, yj(s), yj(s− τ(u)))
)
dwj(u)

∣∣∣∣∣
p}

+5p−1 sup
s≥ϑ

{
E

n∑
i=1

∣∣∣∣∣ ∑
0<tk<t

e−ci(t−tk) (Iik(ϕi(tk))− Iik(ψi(tk)))

∣∣∣∣∣
p}

≤ 5p−1

{
n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+
n∑
i=1

c−pi

 n∑
j=1

|bij |q|βj |q
)p/q

+
n∑
i=1

(
r

ci

)p( n∑
j=1

|lij |q|γj |q
)p/q

+ np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)

+
1

c
max

i=1,2,··· ,n

{
ppi
cp−1
i

}}
sup
s≥ϑ

{
E

n∑
j=1

|ϕj(s)− ψj(s)|p
}

= α sup
s≥ϑ

{
E

n∑
j=1

|ϕj(s)− ψj(s)|p
}
.

From (6.45), we obtain that Q : Sφ → Sφ is a contraction mapping.

We are now ready to prove Theorem 6.2.1.

Proof. From Lemma 6.2.9, by a contraction mapping principle, we obtain that Q has a unique

�xed point x(t), which is a solution of (6.42) with x(t) = φ(t) as t ∈ [ϑ, 0] and E
∑n

i=1 |xi(t)|p → 0

as t→∞.

Now, we prove that the trivial solution of (6.42) is pth moment stable. From (6.45), For any

ε > 0, we choose δ > 0 (δ < ε) such that 6p−1δ < (1− α)ε.

If x(t) = (x1(t), x2(t), · · · , xn(t))T is a solution of (6.42) with the initial condtion satisfying

E
∑n

i=1 |φi(t)|p < δ, then x(t) = (Qx)(t) de�ned in (6.57). We claim that E
∑n

i=1 |xi(t)|p < ε for

all t ≥ 0. Notice that E
∑n

i=1 |xi(t)|p < ε for t ∈ [ϑ, 0], we suppose that there exists t∗ > 0 such
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that E
∑n

i=1 |xi(t∗)|p = ε and E
∑n

i=1 |xi(t)|p < ε for −τ ≤ t < t∗, then it follows from (6.45),

we obtain that

E
n∑
i=1

|xi(t∗)|p

≤ 6p−1E
n∑
i=1

e−pcit
∗ |xi(0)|p

+6p−1
n∑
i=1

c
−p/q
i

(
n∑
j=1

|aij |q|αj |q
)p/q ∫ t∗

0
e−ci(t

∗−s)E

(
n∑
j=1

|xj(s)|p
)
ds

+6p−1
n∑
i=1

c
−p/q
i

(
n∑
j=1

|bij |q|βj |q
)p/q ∫ t∗

0
e−ci(t−s)E

(
n∑
j=1

|xj(s− τ(s)))|p
)
ds

+6p−1
n∑
i=1

(
r

ci

)p/q ( n∑
j=1

|lij |q|γj |q
)p/q ∫ t∗

0
e−ci(t

∗−s)
∫ s

s−r(s)
E

(
n∑
j=1

|xj(u)|p
)
du ds

+6p−1np−1
n∑
i=1

c
1−p/2
i

[
µp/2

∫ t∗

0
e−ci(t

∗−s)E

(
n∑
j=1

|xj(s)|p
)
ds

+νp/2
∫ t∗

0
e−ci(t−s)E

(
n∑
j=1

|xj(s− τ(s))|p
)
ds

]

+6p−1 max
i=1,2,··· ,n

{
ppi
cp−1
i

}∫ t∗

0
e−c(t

∗−s)E

(
n∑
i=1

|xi(s)|p
)
ds

≤ 6p−1δ +

[
6p−1

n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 6p−1
n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

+6p−1
n∑
i=1

(
r

ci

)p( n∑
j=1

|lij |q|γj |q
)p/q

+ 6p−1np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)

+
1

c
max

i=1,2,··· ,n

{
ppi
cp−1
i

}]
ε < (1− α)ε+ αε = ε,

which is a contradiction. Therefore, the trivial solution of (6.42) is asymptotically stable in pth

moment.

Let lij ≡ 0, the system (6.42) is reduced to
dx(t) = [−Cx(t) +Af(x(t)) +Bg(x(t− τ(t)))] dt

+σ(t, x(t), x(t− τ(t))) dw(t), t 6= tk

∆x(tk) = Ik(x(tk)), t = tk, k = 1, 2, 3, · · · .

(6.60)

which is a description of a stochastically perturbed Hop�eld neural networks with time-varying

delays.

Corollary 6.2.10. Suppose that the assumptions (A1)-(A5) hold. If the following conditions

are satis�ed,
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(i) there exist constants pi (i = 1, 2, · · · , n) such that pik ≤ pi(tk − tk−1), k = 1, 2, · · · ;

(ii) and such that

5p−1
n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 5p−1
n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

+5p−1np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)
+ 5p−1c−1 max

i=1,2,··· ,n

{
ppi
cp−1
i

}
< 1,

where c = min{c1, c2, · · · , cn}, µ = max{µ1, µ2, · · · , µn}, ν = max{ν1, ν2, · · · , νn};

then the trivial solution of (6.60) is pth moment asymptotically stable.

Remark 6.2.11. Note that the delay τ(t) in Corollary 6.2.10 can be unbounded.

6.2.3 Proof of Theorem 6.2.2

De�ne an operator (Qϕ)(t) = φ(t) for t ∈ [ϑ, 0] and for t ≥ 0, (Qϕ)(t) is de�ned as the right

hand side of (6.57). Following the proof of Theorem 6.2.1, we �nd that to show Theorem 6.2.2,

we only need to prove that eλtE
∑n

i=1 |(Qϕ)i(t)|p → 0 as t→∞. It follows from (6.57) that

eλtE
n∑
i=1

|(Qϕ)i(t)|p = eλtE
n∑
i=1

∣∣∣∣∣
6∑
j=1

Jji(t)

∣∣∣∣∣
p

≤ 6p−1eλt
6∑
j=1

E

(
n∑
i=1

|Jji(t)|p
)
. (6.61)

Now, we estimate the right-hand terms of (6.61). First, by using Hölder's inequality,

eλtE
n∑
i=1

|J2i(t)|p = eλt
n∑
i=1

E

∣∣∣∣∣
∫ t

0
e−ci(t−s)

n∑
j=1

aijfj(ϕj(s)) ds

∣∣∣∣∣
p

(6.62)

≤ eλteλt
n∑
i=1

E

[∫ t

0
e
− ci(t−s)

q e
− ci(t−s)

p

n∑
j=1

|aij ||fj(ϕj(s))| ds

]p

≤ eλt
n∑
i=1

E

{[∫ t

0
e−ci(t−s) ds

]p/q ∫ t

0
e−ci(t−s)

[
n∑
j=1

|aij ||fj(ϕj(s))|

]p
ds

}

≤ eλt
n∑
i=1

c
−p/q
i E

{∫ t

0
e−ci(t−s)

[
n∑
j=1

|aij ||αj ||ϕj(s)|

]p
ds

}

≤ eλt
n∑
i=1

c
−p/q
i

(
n∑
j=1

|aij |q|αj |q
)p/q ∫ t

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s)|p
)
ds

=

n∑
i=1

c
−p/q
i

(
n∑
j=1

|aij |q|αj |q
)p/q ∫ t

0
e(λ−ci)(t−s)eλsE

(
n∑
j=1

|ϕj(s)|p
)
ds.
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With a similar computation to (6.62), we obtain that

eλtE
n∑
i=1

|J3i(t)|p (6.63)

≤ eλt
n∑
i=1

c
−p/q
i

(
n∑
j=1

|bij |q|βj |q
)p/q ∫ t

0
e−ci(t−s)E

[
n∑
j=1

|ϕj(s− τ(s)))|p
]
ds

≤ eλτ
n∑
i=1

c
−p/q
i

(
n∑
j=1

|bij |q|βj |q
)p/q ∫ t

0
e−(ci−λ)(t−s)eλ(s−τ(s))E

[
n∑
j=1

|ϕj(s− τ(s)))|p
]
ds.

eλtE
n∑
i=1

|J4i(t)|p (6.64)

≤ eλt
n∑
i=1

c
−p/q
i

(
n∑
j=1

|lij |q|γj |q
)p/q ∫ t

0
e−ci(t−s)E

[
n∑
j=1

∣∣∣∣∣
∫ s

s−r(s)
ϕj(u) du

∣∣∣∣∣
p]
ds

≤ eλt
n∑
i=1

(
τ

ci

)p/q ( n∑
j=1

|lij |q|γj |q
)p/q ∫ t

0
e−ci(t−s)

∫ s

s−r(s)
E

(
n∑
j=1

|ϕj(u)|p
)
du ds

≤ eλτ
n∑
i=1

(
τ

ci

)p/q ( n∑
j=1

|lij |q|γj |q
)p/q ∫ t

0
e−(ci−λ)(t−s)

∫ s

s−r(s)
eλuE

(
n∑
j=1

|ϕj(u)|p
)
du ds.

Using Lemma 6.1.16 and Hölder's inequality, we obtain that

eλtE
n∑
i=1

|J5i(t)|p (6.65)

= eλt
n∑
i=1

E

∣∣∣∣∣
∫ t

0
e−ci(t−s)

n∑
j=1

σij(s, ϕj(s), ϕj(s− τ(s))) dwj(s)

∣∣∣∣∣
p

≤ eλtnp−1
n∑
i=1

n∑
j=1

E

{[∫ t

0
e−ci(t−s)|σij(s, ϕj(s), ϕj(s− τ(s)))| dwj(s)

]2}p/2

= eλtnp−1
n∑
i=1

n∑
j=1

E

[∫ t

0
e−2ci(t−s)σ2

ij(s, ϕj(s), ϕj(s− τ(s))) ds

]p/2

≤ eλtnp−1
n∑
i=1

n∑
j=1

E

[∫ t

0
e−2ci(t−s)

(
µjϕ

2
j (s) + νjϕ

2
j (s− τ(s))

)
ds

]p/2

≤ eλtnp−12p/2−1
n∑
i=1

n∑
j=1

E

[(∫ t

0
e−2ci(t−s)µjϕ

2
j (s) ds

)p/2

+

(∫ t

0
e−2ci(t−s)νjϕ

2
j (s− τ(s)) ds

)p/2]
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≤ eλtnp−12p/2−1
n∑
i=1

n∑
j=1

E

[(∫ t

0
e−2ci(t−s) ds

)p/2−1 ∫ t

0
e−2ci(t−s)µ

p/2
j |ϕj(s)|

p ds

]

+eλtnp−12p/2−1
n∑
i=1

n∑
j=1

E

[(∫ t

0
e−2ci(t−s) ds

)p/2−1 ∫ t

0
e−2ci(t−s)ν

p/2
j |ϕj(s− τ(s))|p ds

]

≤ eλtnp−1
n∑
i=1

c
1−p/2
i

[
µp/2

∫ t

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s)|p
)
ds

]

+eλtnp−1
n∑
i=1

c
1−p/2
i

[
νp/2

∫ t

0
e−ci(t−s)E

(
n∑
j=1

|ϕj(s− τ(s))|p
)
ds

]

≤ np−1
n∑
i=1

c
1−p/2
i

[
µp/2

∫ t

0
e−(ci−λ)(t−s)eλsE

(
n∑
j=1

|ϕj(s)|p
)
ds

]

+eλτnp−1
n∑
i=1

c
1−p/2
i

[
νp/2

∫ t

0
e−(ci−λ)(t−s)eλ(s−τ(s))E

(
n∑
j=1

|ϕj(s− τ(s))|p
)
ds

]
.

Further, from (A3), we know that |Iik(xi(tk))| ≤ pik|xi(tk)| for i = 1, 2, · · · , n, k = 1, 2, · · · .
Combining with the condition that pik ≤ pi(tk − tk−1), we obtain that

eλtE
n∑
i=1

|J6i(t)|p ≤ eλtE
n∑
i=1

[ ∑
0<tk<t

e−ci(t−tk)pik|ϕi(tk)|

]p

≤ eλtE
n∑
i=1

[
pi
∑

0<tk<t

e−ci(t−tk)|ϕi(tk)|(tk − tk−1)

]p

≤ eλtE
n∑
i=1

[
pi

∫ t

0
e−ci(t−s)|ϕi(s)| ds

]p

≤ eλtE
n∑
i=1

ppi

(∫ t

0
e−ci(t−s) ds

)p/q ∫ t

0
e−ci(t−s)|ϕi(s)|p ds

≤ max
i=1,2,··· ,n

{
ppi
cp−1
i

}∫ t

0
e−(c−λ)(t−s)eλsE

(
n∑
i=1

|ϕi(s)|p
)
ds. (6.66)

Since E
∑n

i=1 |ϕi(t)| → 0, t − τ(t) → ∞ and t − r(t) → ∞ as t → ∞. Thus, from (6.61) to

(6.66), we obtain that eλtE
∑n

i=1 |(Qϕ)i(t)|p → 0 as eλtE
∑n

i=1 |ϕi(t)|p → 0. Hence, combining

the proof of Theorem 6.2.1, there exists a unique �xed point ϕ(·) of Q in Cφ, which is a solution

of the system (6.42) such that eλtE
∑n

i=1 |ϕi(t)|p → 0 as t→∞. This completes the proof.

Corollary 6.2.12. Suppose that the assumptions (A1)-(A5) hold. Assume that

(i) the discrete delay τ(t) is bounded by a constant τ (τ > 0);

(ii) there exist constants pi (i = 1, 2, · · · , n) such that pik ≤ pi(tk − tk−1), k = 1, 2, · · · ;
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(iii) and such that

5p−1
n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 5p−1
n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

+5p−1np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)
+ 5p−1c−1 max

i=1,2,··· ,n

{
ppi
cp−1
i

}
< 1,

where c = min{c1, c2, · · · , cn}, µ = max{µ1, µ2, · · · , µn}, ν = max{ν1, ν2, · · · , νn},

then the trivial solution of (6.60) is pth moment exponentially stable.

6.2.4 Proof of Theorem 6.2.6

In this subsection, we prove Theorem 6.2.6. We start with some preparations.

Using similar computations as in Subsection 6.2.2, we obtain that for t ≥ 0, the system (6.47)

is equivalent to

xi(t) = e−citxi(0) +

∫ t

0
e−ci(t−s)

n∑
j=1

aijgj(xj(s)) ds+

∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(xj(s− τ(s))) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

lij

∫ s

s−r(s)
gj(xj(u)) du ds+

∑
0<tk<t

e−ci(t−tk)Iik(xi(tk)),

i = 1, 2, 3, · · · , n, k = 1, 2, · · · .

Lemma 6.2.13. De�ne an operator by (Pϕ)(t) = φ(t) for −τ ≤ t ≤ 0, and for t ≥ 0,

(Pϕ)i(t) = e−citϕi(0) +

∫ t

0
e−ci(t−s)

n∑
j=1

aijgj(ϕj(s)) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(ϕj(s− τ(s))) ds

+

∫ t

0
e−ci(t−s)

n∑
j=1

lij

∫ s

s−r(s)
gj(ϕj(u)) du ds+

∑
0<tk<t

e−ci(t−tk)Iik(xi(tk))

:= I1(t) + I2(t) + I3(t) + I4(t) + I5(t). (6.67)

If the conditions (i)-(iii) in Theorem 6.2.6 are satis�ed, then P : Sφ → Sφ and P is a contraction

mapping.

Proof. First, we prove that PSφ ⊆ Sφ. In view of (6.67), it is easy to check that (Pxi)(t) is

continuous on �xed time t 6= tk (k = 1, 2, · · · ). On the other hand, as t = tk (k = 1, 2, · · · ), it is
not di�cult to show that I1(t), I2(t), I3(t), I4(t) is continuous on �xed time t = tk (k = 1, 2, · · · ).
Let r < 0 be small enough, we obtain that

|J5i(tk + r)− J5i(tk)| =

∣∣∣∣∣ ∑
0<tm<tk+r

e−ci(tk+r−tm)Iim(ϕi(tm))−
∑

0<tm<tk

e−ci(tk−tm)Iim(ϕi(tm))

∣∣∣∣∣
≤

∣∣∣∣∣ (e−ci(tk+r) − e−citk
) ∑

0<tm<tk

ecitmIim(ϕi(tm))

∣∣∣∣∣,
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which implies that limr→0− |J5i(tk + r)− J5i(tk)| = 0. Let r > 0 be small enough, we obtain

that

|J5i(tk + r)− J5i(tk)| =

∣∣∣∣∣ ∑
0<tm<tk+r

e−ci(tk+r−tm)Iim(ϕi(tm))−
∑

0<tm<tk

e−ci(tk−tm)Iim(ϕi(tm))

∣∣∣∣∣
=

∣∣∣∣∣e−ci(tk+r)

[ ∑
0<tm<tk

ecitmIim(ϕi(tm)) + ecitkIik(ϕi(tk))

]

−e−citk
∑

0<tm<tk

ecitmIim(ϕi(tm))

∣∣∣∣∣
=

∣∣∣∣∣ (e−ci(tk+r) − e−citk
) ∑

0<tm<tk

ecitmIim(ϕi(tm)) + e−cirIik(ϕi(tk))

∣∣∣∣∣,
which implies that limr→0+ |J5i(tk + r)− J5i(tk)| = |Iik(ϕi(tk))|.

Based on the above discussion, we obtain that (Pϕ)i(t) : [ϑ,∞) → Rn is continuous on t 6= tk
(k = 1, 2, · · · ), and for t = tk (k = 1, 2, · · · ), limt→t+k

(Pϕ)i(t) and limt→t−k
(Pϕ)i(t) exist. Fur-

thermore, we also obtain that limt→t−k
(Pϕ)i(t) = (Pϕ)i(tk) 6= limt→t+k

(Pϕ)i(t).

Next, we prove that limt→∞(Pϕ)i(t) = 0 for ϕi(t) ∈ Siφ.

|I5(t)| =

∣∣∣∣∣ ∑
0<tk<t

e−ci(t−tk)Iik(xi(tk))

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑

0<tk<t

e−ci(t−tk)pi(tk − tk−1)xi(tk)

∣∣∣∣∣
≤ pi

∫ t

0
e−ci(t−s)|xi(s)| ds. (6.68)

From the fact that ci > 0 (i = 1, 2, · · · , n) and the estimate (6.33), (6.34), (6.35) and (6.68), we

conclude that limt→∞(Pxi)(t) = 0 for xi(t) ∈ Siφ. Therefore, P : Sφ → Sφ.

Now, we prove that P is a contraction mapping. For any x(t), y(t) ∈ Sφ, we obtain that

n∑
i=1

sup
ϑ≤s≤t

|(Px)i(t)− (Py)i(t)|

≤
n∑
i=1

max
j=1,2,··· ,n

|aijαj |
∫ t

0
e−ci(t−s)

n∑
j=1

|xj(s)− yj(s)| ds

+
n∑
i=1

max
j=1,2,··· ,n

|bijβj |
∫ t

0
e−ci(t−s)

n∑
j=1

|xj(s− τ(s))− yj(s− τ(s))| ds

+
n∑
i=1

max
j=1,2,··· ,n

|lijγj |
∫ t

0
e−ci(t−s)

n∑
j=1

∫ s

s−r(s)
|xj(u)− yj(u)| du ds

+

n∑
i=1

pi

∫ t

0
e−ci(t−s)|xi(s)− yi(s)| ds
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≤

[
n∑
i=1

1

ci
max

j=1,2,··· ,n
|aijαj |+

n∑
i=1

1

ci
max

j=1,2,··· ,n
|bijβj |

+

n∑
i=1

τ

ci
max

j=1,2,··· ,n
|lijγj |+ max

j=1,2,··· ,n

{
pi
ci

}]
n∑
j=1

[
sup
ϑ≤s≤t

|xj(s)− yj(s)|

]

= α

n∑
j=1

[
sup
ϑ≤s≤t

|xj(s)− yj(s)|

]
.

From (6.50), we obtain that P is a contraction mapping.

We are now ready to prove Theorem 6.2.6.

Proof. Let P be de�ned as in Lemma 6.2.13, by a contraction mapping principle, P has a unique

�xed point x ∈ Sφ with x(θ) = φ(θ) on −τ ≤ θ ≤ 0 and x(t)→ 0 as t→∞.

To obtain asymptotically stable, we need to prove that the trivial equilibrium x = 0 of (6.47)

is stable. From (6.50), For any ε > 0, choose σ > 0 and σ < ε satisfying the condition σ+εα < ε.

If x(t, φ) = (x1(t, φ), x2(t, φ), · · · , xn(t, φ)) is the solution of (6.47) with the initial condition

‖φ‖ < σ, the we claim that ‖x(t, φ)‖ < ε for all t ≥ 0. Indeed, we suppose that there exists

t∗ > 0 such that

n∑
i=1

|xi(t∗, φ)| = ε, and
n∑
i=1

|xi(t, φ)| < ε for 0 ≤ t < t∗. (6.69)

From (6.50), we obtain

n∑
i=1

|xi(t∗, φ)|

≤
n∑
i=1

[
|e−cit∗xi(0)|+

∫ t∗

0
e−ci(t

∗−s)
n∑
j=1

|aijfj(xj(s))| ds

+

∫ t∗

0
e−ci(t

∗−s)
n∑
j=1

|bijgj(xj(s− τ(s)))| ds

+

∫ t∗

0
e−ci(t

∗−s)
n∑
j=1

|lij
∫ s

s−r(s)
hj(xj(u))| du ds+ pi

∫ t∗

0
e−ci(t

∗−s)|xi(s)| ds

]

< σ + ε

[
n∑
i=1

1

ci
max

j=1,2,··· ,n
|aijαj |+

n∑
i=1

1

ci
max

j=1,2,··· ,n
|bijβj |

+
n∑
i=1

τ

ci
max

j=1,2,··· ,n
|lijγj |+ max

j=1,2,··· ,n

{
pi
ci

}]
≤ σ + εα < ε.

which contradicts (6.69). Therefore, ‖x(t, φ)‖ < ε for all t ≥ 0. This completes the proof.
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Let lij ≡ 0 for i = 1, 2, · · · , n, j = 1, 2, · · · , n, the system (6.47) is reduced to
dxi(t)
dt = −cixi(t) +

∑n
j=1 aijfj(xj(t)) +

∑n
j=1 bijgj(xj(t− τ(t))), t 6= tk

∆xi(tk) = Iikxi(tk), t = tk, k = 1, 2, 3, · · · ,

(6.70)

which is the description of cellular neural network with time-varying delays. Following the result

of Theorem 6.2.6, we have the following corollary. Note that the delay in Corollary 6.2.14 can

be unbounded.

Corollary 6.2.14. Suppose that the conditions (A1)-(A4) hold. If the following conditions are

satis�ed,

(i) there exist constants pi (i = 1, 2, · · · , n) such that pik ≤ pi(tk − tk−1), k = 1, 2, · · · ;

(ii) and such that

α ,
n∑
i=1

1

ci
max

j=1,2,··· ,n
|aijαj |+

n∑
i=1

1

ci
max

j=1,2,··· ,n
|bijβj |+ max

i=1,2,··· ,n

{
pi
ci

}
< 1, (6.71)

then the trivial solution of (6.70) is asymptotically stable.

Remark 6.2.15. Zhang and Guan [143] has studied asymptotic stability of (6.70) by using �xed

point theory. The conditions in [143] are as follows

(i) there exists a constant µ such that infk=1,2,···{tk − tk−1} ≥ µ;

(ii) there exist constants pi (i = 1, 2, · · · , n) such that pik ≤ piµ, k = 1, 2, · · · ;

(iii) and such that

λ∗ ,
n∑
i=1

1

ci
max

j=1,2,··· ,n
|aijαj |+

n∑
i=1

1

ci
max

j=1,2,··· ,n
|bijβj |+ max

i=1,2,··· ,n

{
pi
ci

+ piµ

}
< 1;

(iv)

max
i=1,2,··· ,n

{λi} <
1√
n
, where λi =

1

ci

n∑
j=1

|aijαj |+
1

ci

n∑
j=1

|bijβj |+
(
pi
ci

+ piµ

)
.

It is clear that Corollary 6.2.16 is an improvement of the result in [143].

6.2.5 Proof of Theorem 6.2.7

De�ne the operator P as in Subsection 6.2.4. Following the proof of Theorem 6.2.6, we only

need to prove that eλt(Pϕ)i(t) → 0 as t → ∞. We estimate the right-hand terms of (6.67), we
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obtain that

eλt|I2(t)| =

∣∣∣∣∣
∫ t

0
e−ci(t−s)

n∑
j=1

aijfj(ϕj(s)) ds

∣∣∣∣∣
≤ eλt

∫ t

0
e−ci(t−s)

n∑
j=1

|aijαj ||ϕj(s)| ds

≤ max
j=1,2,··· ,n

|aijαj |
∫ t

0
e−(ci−λ)(t−s)eλs

n∑
j=1

|ϕj(s)| ds, (6.72)

eλt|I3(t)| = eλt

∣∣∣∣∣
∫ t

0
e−ci(t−s)

n∑
j=1

bijgj(ϕj(s− τ(s))) ds

∣∣∣∣∣
≤ eλt

∫ t

0
e−ci(t−s)

n∑
j=1

|bijβj ||ϕj(s− τ(s))| ds

≤ eλτ max
j=1,2,··· ,n

|bijβj |
∫ t

0
e−(ci−λ)(t−s)eλ(s−τ(s))

n∑
j=1

|ϕj(s− τ(s))| ds, (6.73)

eλt|I4(t)| = eλt

∣∣∣∣∣
∫ t

0
e−ci(t−s)

n∑
j=1

lij

∫ s

s−r(s)
hj(ϕj(u)) du ds

∣∣∣∣∣
≤ eλt

∫ t

0
e−ci(t−s)

n∑
j=1

|lijγj |
∫ s

s−r(s)
|ϕj(u)| du ds

≤ eλτ max
j=1,2,··· ,n

|lijγj |
∫ t

0
e−(ci−λ)(t−s)

∫ s

s−r(s)
eλu

n∑
j=1

|ϕj(u)| du ds, (6.74)

eλt|I5(t)| = eλt

∣∣∣∣∣ ∑
0<tk<t

e−ci(t−tk)Iik(xi(tk))

∣∣∣∣∣ ≤ eλt

∣∣∣∣∣ ∑
0<tk<t

e−ci(t−tk)pi(tk − tk−1)xi(tk)

∣∣∣∣∣
≤ pi

∫ t

0
e−(ci−λ)(t−s)eλs|xi(s)| ds. (6.75)

From the fact that λ < min{c1, c2, · · · , cn}, ci > 0 (i = 1, 2, · · · , n) and the above estimate, we

obtain that eλt(Pϕ)i(t)→ 0 as t→∞.

Corollary 6.2.16. Suppose that the conditions (A1)-(A4) hold. If the following conditions are

satis�ed,

(i) the delay τ(t) is bounded by a constant τ (τ > 0);

(ii) there exist constants pi (i = 1, 2, · · · , n) such that pik ≤ pi(tk − tk−1), k = 1, 2, · · · ;

(iii) and such that

α ,
n∑
i=1

1

ci
max

j=1,2,··· ,n
|aijαj |+

n∑
i=1

1

ci
max

j=1,2,··· ,n
|bijβj |+ max

j=1,2,··· ,n

{
pi
ci

}
< 1, (6.76)
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then the trivial solution of (6.70) is exponentially stable.

Remark 6.2.17. Zhang and Luo [142] has studied exponential stability of (6.70) by using �xed

point theory. The conditions in [142] are as follows

(i) the delay τ(t) is bounded by a constant τ (τ > 0);

(ii) there exists a constant µ such that infk=1,2,···{tk − tk−1} ≥ µ;

(iii) there exist constants pi (i = 1, 2, · · · , n) such that pik ≤ piµ, k = 1, 2, · · · ;

(iv) and such that

α ,
n∑
i=1

1

ci
max

j=1,2,··· ,n
|aijαj |+

n∑
i=1

1

ci
max

j=1,2,··· ,n
|bijβj |+ max

i=1,2,··· ,n

{
pi
ci

+ piµ

}
< 1.

It is clear that Corollary 6.2.16 is an improvement of the result in [142].

6.2.6 Examples

Example 6.2.18. Consider the following two-dimensional cellular neural network
dxi(t)
dt = −cixi(t) +

∑2
j=1 aijgj(xj(t)) +

∑2
j=1 bijgj(xj(t− τ(t))) i = 1, 2, t 6= tk

∆xi(tk) = Iikxi(tk), t = tk, k = 1, 2, 3, · · · ,

(6.77)

with the initial conditions x1(s) = cos(s), x2(s) = sin(s) on −1
2 ≤ s ≤ 0, where c1 = c2 = 3,

a11 = 6/7, a12 = 3/7, a21 = −1/7, a22 = −1/7, b11 = 6/7, b12 = 2/7, b21 = 3/7, b22 =

1/7, the activation function is described by gi(x) = |x+1|−|x−1|
2 , τ(t) = 0.4t + 1. Iik(xi(tk)) =

arctan(0.4xi(tk)), tk = tk−1 + 0.5k, i = 1, 2 and k = 1, 2, · · · .

It is clear that αi = βi = 1, pik = 0.4 for i = 1, 2, k = 1, 2, · · · , we select pi = 0.8, then

2∑
i=1

1

ci
max
j=1,2

|aijαj |+
2∑
i=1

1

ci
max
j=1,2

|bijβj |+ max
j=1,2,··· ,n

{
pi
ci

}
≤ 1

3
×
(

6

7
+

1

7
+

6

7
+

3

7

)
+

4

35

=
16

21
+

4

35
< 0.88 < 1.

Hence, by Corollary 6.2.14, the trivial solution of (6.77) is asymptotically stable. However,

2∑
i=1

1

ci
max
j=1,2

|aijαj |+
2∑
i=1

1

ci
max
j=1,2

|bijβj |+ max
i=1,2,··· ,n

{
pi
ci

+ piµ

}
> 1,

which implies that the result in [143] is not applicable.

Example 6.2.19. Consider a two-dimensional stochastically perturbed Hop�eld neural network

with time-varying delays,
dx(t) = [−Cx(t) +Af(x(t)) +Bg(xτ (t))] dt+ σ(t, x(t), xτ (t)) dw(t), t 6= tk

∆x(tk) = Ik(x(tk)), t = tk, k = 1, 2, 3, · · · ,
(6.78)
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where f(x) = 1
5 arctanx, g(x) = 1

5 tanhx = 1
5(ex − e−x)/(ex + e−x), τ(t) = 1

2 sin t+ 1
2 ,

C =

(
5 0

0 4.5

)
, A =

(
2 0.4

0.6 1

)
and B =

(
−0.8 2

1 4

)
.

In this example, let p = 3, take αj = 0.2, βj = 0.2, j = 1, 2, σ : R+ × R2 × R2 → R2 × R2

satis�es

σ2
i1(t, x, y) ≤ 0.01(x2

1 + y2
1) and σ2

i2(t, x, y) ≤ 0.01(x2
2 + y2

2), i = 1, 2.

Iik(xi(tk)) = 0.1xi(tk), tk = tk−1 + 0.5, i = 1, 2 and k = 1, 2, · · · .

It is clear that pik = 0.1, we choose pi = 0.2, let p = 2, we check the condition in Corollary

6.2.10,

5p−1
n∑
i=1

c−pi

(
n∑
j=1

|aij |q|αj |q
)p/q

+ 5p−1
n∑
i=1

c−pi

(
n∑
j=1

|bij |q|βj |q
)p/q

+5p−1np−1
n∑
i=1

c
−p/2
i

(
µp/2 + νp/2

)
+ 5p−1c−1 max

i=1,2

{
ppi
cp−1
i

}
< 0.53 < 1.

From Corollary 6.2.10, the trivial solution of (6.78) is asymptotically stable. On the other

hand, since |τ(t)| =
∣∣1

2 sin t+ 1
2

∣∣ ≤ 1, from Corollary 6.2.12, the trivial solution of (6.78) is

exponentially stable.

6.3 Notes and remarks

Neural networks have received an increasing interest in various areas [34, 119]. The stability of

neural networks [38, 82, 139, 140] is critical for signal processing, especially in image processing

and solving some classes of optimization problems. For the stochastic e�ects to the dynamical

behaviors of neural networks, Liao and Mao [79, 80] initiated the study of stability and insta-

bility of stochastic neural networks.

Many articles [54, 55, 56, 120, 129] have considered a special case of the stochastic equation

(6.1). Hu et al.[54] and Wan and Sun [129] studied a special case of (6.1) with the delays

constant and discrete. The activation functions appearing in [54] are required to be bounded.

Liao and Mao [81] investigated exponential stability of stochastic delay interval systems via

Razumikihin-type theorems developed in [95], several exponential stability results were provid-

ed. However, the results are not only di�cult to verify but also restrict to a case of the interval

matrices Ã = B̃ = C̃ = 0. Sun and Cao [120] investigated the pth moment exponential stability

of stochastic di�erential equations with discrete bounded delays by using the method of variation

parameter, inequality technique and stochastic analysis. This method was �rstly used in [129],

which does not require the boundedness, monotonicity and di�erentiability of the activation

functions. However, the stability criteria in [120] requires that the delay functions are bounded,

di�erentiable and their derivatives are simultaneously required to be not greater than 1, this

may impose a very strict constraint on model (see [138]). Huang et al. [55, 56] investigated the

exponential stability of stochastic di�erential equations with discrete time-varying delays with

the help of the Liapunov function and Dini derivative. However, the use of their criteria depends
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very much on the choice of positive numbers kij etc. and a positive diagonal matrix M (see

Theorem 3.3 in [55] and Theorem 3.3 in [56]).

Based on the contents of this chapter, two papers [19, 20] have been submitted for possible

publication.
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Notational conventions

Here we state some conventions regarding mathematical notation that we will use in this thesis.

• Denote by R = (−∞,∞), R+ = [0,∞), Z+ = {1, 2, 3, · · · }.

• For any positive integer n, Rn denotes the set of all n-tuples of real numbers forms an

n-dimensional vector space over R.

• Rm×n denotes the set of real m× n matrices.

• AT denotes the transpose of matrix A.

• Re(a) denotes the real part of the complex number a.

• λd(A) denotes dominant eigenvalue of matrix A.

• diag(d1, d2, · · · dn) denotes a diagonal matrix.

• C([a, b];R) denotes the space of continuous, real-valued functions on [a, b].

• C([a, b];Rn) denotes the space of continuous, Rn-valued functions on [a, b].

• C([a, b];X) denotes the space of continuous, X-valued functions on [a, b].

• BC([a, b];X) denotes the space of bounded continuous, X-valued functions on [a, b].

• L2[0,∞) denotes the space of square-integrable functions on [0,∞).

• (Ω,F ,P) denotes a probability space, where Ω is the collection of all possible outcomes,

and F is the set of all events A to which a probability P(A) can be attached. F is

σ−algebra, and P a probability measure.

• E denotes expectation with respect to the probability measure P.
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Summary

Asymptotic behavior and stability of solutions of delay di�erential equations play an important

role in the qualitative analysis of delay di�erential equations. This thesis studies asymptotic

behavior and stability of determinsitic and stochastic delay di�erential equations.

The approach used in this thesis is based on �xed point theory, which does not resort to any

Liapunov function or Liapunov functional. This approach relies mainly on three principles: an

elementary variation of parameters formula, a complete metric space and a constraction mapping

principle. The bene�t of this approach is that the �xed point arguments can yield existence,

uniqueness and stability of a system in one step. The main di�culty of this approach is to

de�ne a suitable complete metric space and a suitable mapping. Di�erent choices of norms can

be considered on de�ned spaces. The norms we choose should be such that the space under

consideration is complete and the equation yields a contraction with respect to the norm.

The main contribution of this thesis is to study the approach using �xed point theory in a

systematic way and to unify recent results in the literature by considering some general classes

of equations. The equation we considered is a combination of time dependent delays, distributed

delays, impulses and stochastic perturbations. In addition, an application to stochastic delayed

neural networks is investigated. The results in this thesis extend and improve some exist re-

sults in the literature in some ways. Examples are discussed in each chapter to illustrate our

main results. Chapter 2 presents three methods concerning asymptotic behavior of autonomous

neutral delay di�erential equations. More speci�cally, we address the relations of the spectral

method and the ODE method by considering a class of second order delay di�erential equations.

For a case when there are no neutral terms to the considered equations, we illustrate a third

method, �xed point method. Chapter 3 focuses on asymptotic behavior of a class of nonau-

tonomous neutral delay di�erential equations. Chapter 4 addresses a �xed point approach to

stability of deterministic delay di�erential equations and Chapter 5 discusses the stability of

two classes of neutral stochastic delay di�erential equations with impulses. Chapter 6 studies

stability properties of a class of stochastic delayed neural networks.
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Samenvatting

Asymptotisch gedrag en stabiliteit van oplossingen spelen een belangrijke rol in de analyse van

het kwalitatieve gedrag van delay di�erentiaalvergelijkingen. Dit proefschrift bestudeert asymp-

totisch gedrag en stabiliteit van deterministische en stochastische delay di�erentiaalvergelijkin-

gen.

De gekozen aanpak is gebaseerd op theorie van vaste punten, zonder gebruik te maken van

Lyapunov-functies of Lyapunov-functionalen. De aanpak berust hoofdzakelijk op drie

uitgangspunten: een elementaire variatie-van-constantenformule, een volledige metrische ruimte

en een contractieve afbeelding. Het voordeel van deze aanpak is dat de vaste-puntargumenten

in één moeite door zowel existentie en eenduidigheid van oplossingen als stabiliteit van een

vergelijking kunnen geven. Er kunnen verschillende metrieken gekozen worden. Er moet daar-

bij gezorgd worden dat de metrische ruimte volledig is en dat de vergelijking een contractieve

afbeelding geeft.

De belangrijkste bijdrage van dit proefschrift is een systematisch onderzoek naar het gebruik van

vaste-punttheorie voor stabiliteit van vergelijkingen en het verenigen van verschillende recente re-

sultaten uit de vakliteratuur door enkele algemene klassen van vergelijkingen te beschouwen. De

di�erentiaalvergelijkingen die we beschouwen kunnen een combinatie bevatten van tijdsafhanke-

lijke delays, gespreide delays, neutral termen, impulsen en stochastische verstoringen. Verder

wordt toepassing op stochastische neurale netwerken met delays onderzocht.

De resultaten in dit proefschrift verbeteren bestaande resultaten op verschillende punten en

breiden die ook in verschillende richtingen uit. In ieder hoofdstuk worden voorbeelden bespro-

ken die de resultaten illustreren.

In Hoofdstuk 2 worden drie methoden besproken om het asymptotisch gedrag van autonome neu-

tral delay di�erentiaalvergelijkingen te analyseren. Meer speci�ek worden een spectrale methode

en een methode gebaseerd op gewone di�erentiaalvergelijkingen vergeleken aan de hand van een

klasse van tweede orde delay di�erentiaalvergelijkingen. Voor het geval de vergelijkingen geen

neutral term hebben vergelijken we ook met een derde methode gebaseerd op vaste-punttheorie.

Hoofdstuk 3 richt zich op het asymptotisch gedrag van een klasse van niet-autonome neutral de-

lay di�erentiaalvergelijkingen. Hoofdstuk 4 gaat over een vaste-puntbenadering voor stabiliteit

van deterministische delay di�erentiaalvergelijkingen en Hoofdstuk 5 bespreekt de stabiliteit van

twee klassen van stochastische neutral delay di�erentiaalvergelijkingen met impulsen. Hoofd-

stuk 6, ten slotte, bestudeert stabiliteitseigenschappen van een klasse van stochastische neurale

netwerken met delays.
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