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CHAPTER 1

Introduction

1.1 Outline

This thesis focuses on asymptotic behavior and stability of solutions of deterministic and
stochastic delay differential equations.

A delay differential equation is a differential equation where the derivatives at the current time
depend on the solution at previous times. Such equations are also called differential equations
with retarded argument. Strictly speaking, a delay differential equation is a specific example of
a functional differential equation, in which the functional part of the differential equation is the
evaluation of a functional on the past of the process.

Suppose r > 0 is a given real number, R = (—o00, 00), R™ is an n-dimensional linear vector space
over the reals with norm |- |, C = C([—r, 0], R") is the set of continuous functions mapping [—r, 0]
into R™. Then C is a Banach space with respect to the supremum norm ||¢|| = sup_,<g<q |©(0)],
where p € C. If 6 € R, A> 0 and 2 € C([o — 7,0 + A],R™), then for any ¢ € [0, 0 + A], we let
x¢ € C be defined by x4(0) = z(t +6) for —r <6 < 0. If Qisasubset of RxC, f: Q2 —R"isa
given function and "-" represents the right-hand derivative, we say the relation

B(t) = f(t,20), (1.1)

is a delay differential equation on €, which is denoted by DDE (f). The number r is called the
delay. The case r = 0 corresponds with an ordinary differential equation.

Equation (1.1) is called linear if f(t,) = L(t)p, where L(t) is linear for each ¢t. Equation
(1.1) is called nonhomogeneous if f(t,¢) = L(t)p + h(t), where h(t) # 0. Equation (1.1) is
called autonomous if f(t,¢) = g(p), where g does not depend on t.

Now, we show some examples of delay differential equations.

() = /0 2(t +0) do, (1.2)

'

&(t) = ax(t) + bx(t — 1), (1.3)

B(t) = c(t)a(t) + d(t)z(t — (1)), (1.4)

where a,b are constants, c(t),d(t),7(t) are continuous functions. Equation (1.2) is a linear
integro-differential equation with a distributed delay, equation (1.3) is linear autonomous dif-
ferential equation with a constant delay and equation (1.4) is linear nonautonomous differential
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Chapter 1. Introduction

equation with a time dependent delay.

Suppose that Q C R x Cis open, f : Q@ — R” D : Q — R" are given continuous functions
with D atomic at zero (See Subsection 1.3.2 on page 10 for the concept of atomic at zero). The
relation

d

is called a neutral delay differential equation, which is denoted by NDDE (D, f), the function D
is called the difference operator for the neutral delay differential equation. In the following, we
present two examples of neutral delay differential equations.

4
dt
where r > 0, B is an n xn constant matrix, D(¢) = ¢(0)—B¢(—r) and f : Q@ — R™ is continuous.

[2(t) = Ba(t —r)] = f(t, 1),

If D = ¢(0) for all ¢, then D is atomic at 0. Therefore, for any continuous f : Q@ — R”,
the pair (D, f) defines a neutral delay differential equation. Consequently, DDEs are NDDEs.

Delay differential equations arise from a variety of applications including control systems, elec-
trodynamics, mixing liquids, neutron transportation and population models. In the following,
we show some models to illustrate the applications of neutral delay differential equations.

Biological models

Differential equations have long been used to model various types of populations. In many
cases ordinary differential equations are the starting point in the modeling process. When time
delays (due to feedback, cells division time lags, etc.) become important, then delay differential
equations become a natural tool for modeling in the life sciences.

Predator-prey model

The classic predator-prey model suggested by Lotka and Volterra in the 1920’s has the form
i(t) = ar(t) — b (t)y()
(1.6)
y(t) = azy(t) — baz(t)y(?),

with initial condition

z(0) = x0,  y(0) = o, (1.7)

where x(t) represents the population of prey and y(¢) the population of predators at time ¢ and
a1, asz, by, be are positive constants. If we consider the fact that a change in the population of
the prey will not immediately affect the population of the predators and conversely, then the
system (1.6) with the initial condition (1.7) becomes a delay differential equation of the form

z(t) = a1z(t) — brz(t)y(t — ry1)
(1.8)
y(t) = agy(t) — baw(t — r2)y(t),




1.1. Outline

with initial conditions

z(0) =xo, x(s) =0(s), y(0)=uwo, y(s)=e(s), —T<s<0, (1.9)

where 71 > 0 and 72 > 0 are time delays and the functions ¢(-) and ¢(-) are the initial past
history functions, 7 = max{r1,r2}, see |28, 47| for detailed information.

Australian blowfly

In the dynamic system of the blowfly population, resource limitation acts with a time delay,
roughly equal to the time for a larva to grow up to an adult. Thus May [97] proposed to model
the population dynamics of blowflies with a delay differential equation

N(t) = rN(#) (1 _ 10010K]\7(t _ T)> , (1.10)

where N(t) is the population size of the adult blowflies, r is the rate of increase of the blowfly
population, K is a resource limitation parameter set by the supply of food, and 7 is the time
delay, roughly equal to the time for a larva to grow up to an adult (about 11 days).

Metal cutting model

The metal cutting model (Moon and Johnson [99]) can be described by

mi(t) + v1&(t) + kix(t) = Fi(z(t) —z(t —
mi(t) + y2y(t) + kay(t) = Folz(t) — =t -
where x(t) is the = component of the tool tip position, y(¢) is the y component of the tool tip
position, v;, k; (j = 1,2) are the damping and spring force constants, 7 = % with C' a constant
and w the turning speed. Normally, w is considered constant, but during the machine startup
or shut down, w is a function of ¢, thus 7 = 7(¢). For the other applications of delay differential
equations, refer to [29, 50, 51].

Delay differential equations are studied from several different perspectives, mostly concerned
with their solutions. Only the simplest equations admit solutions given by explicit formulas.
However, some properties of solutions of a given equation may be determined without finding
their exact form. In the case when a self-contained formula for the solution is not available,
qualitative analysis, which has been proved to be a useful tool to investigate the properties of
solutions, will be emphasised on. In the qualitative analysis of equations, asymptotic behavior
and stability of solutions play an important role. The investigation of asymptotic behavior and
stability of solutions of delay differential equations is more complicated than the case for ordinary
differential equations because of the delay effects, refer to [29, 50, 51, 72] for detailed information.

Besides delay effects, impulsive effects likewise exist in a great variety of evolutionary process-
es in which states are changed abruptly at certain moments of time. Time-dependent impulses
arise naturally in many biological and physiological systems, including ones from delayed cellular
neural networks with impulsive effects.
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Figure 1.1: Delayed cellular neural network without impulses.

Delayed cellular neural networks with impulsive effects

Consider the following system of delayed cellular neural networks with impulsive effects

yi(t) = =2y1(t) — 9(y1(¢)) + 0.59(y2(t)) — 0.59(y1 (¢t — 0.2sint)) + 0.5g(y2(t — 0.2 cos?))

ya(t) = —=3.52(t) + 0.5g(y1(t)) — g(v2(t))
+0.5g(y1(t — 0.2sint)) 4+ 0.5g(y2(t — 0.2 cost)),

where

e+ 1 =z -1

9() 5

The initial condition is given by y1(¢) = 0.5 and y2(¢) = 0.5. At each impulse time ¢ = 0.2k an
impulse is applied with y; (tx) being replaced by 1.8y (t) and y2(tx) being replaced by 1.7y (t).

Figure 1.1 and Figure 1.2 show that the impulses can destabilize a system.

Consider the following system of delayed cellular neural networks with impulsive effects

yi(t) = —0.2y1(t) — g(y1(t)) + 0.59(y2(t))
—0.5g(y1(t — 0.2sint)) + 0.5g(y2(t — 0.2 cost))

Y2(t) = —0.1y2(t) + 0.5g(y1(t)) — g(y2(1))
+0.5¢(y1(t — 0.2sint)) 4+ 0.5g(y2(t — 0.2 cost)),
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Figure 1.2: Delayed cellular neural network with impulses.

where

z+1—|xz—1
glay = 1=l 1]

The initial condition is given by y1(t) = 0.5 and y2(t) = 0.5. At each impulse time ¢, = 0.2k
an impulse is applied with y;(¢;) being replaced by —0.8y1(tx) and y2(tx) being replaced by
—0.7y2(tx).

Figure 1.3 and Figure 1.4 show that the impulses can stabilize a system.

When modeling systems which do not noticeably affect their environment, stochastic variables
are often used to model the environmental fluctuations, which is described as stochastic delay
differential equations. Stochastic delay differential equations can be considered as deterministic
delay differential equations with random elements or stochastic differential equations with time
delays. As an important mathematical model to describe real world problems more effectively,
stochastic delay differential equations have been applied in many fields of science, such as au-
tomatic control, neural networks, biology, economics, chemical reaction engineering, etc. As an
example, we consider an entire delayed neural network appeared in Huang et al.[56].

Stochastic neural networks

Figure 1.5 shows the scheme of the entire delayed neural network, where the nonlinear neuron
transfer function S is constructed by using the voltage operational amplifiers. The time delay

5
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is achieved by using a digital signal processor (DSP) with an analog-to-digital converter (ADC)
and a digital-to -analog converter (DAC). There is white noise is generated by a white noise
signal generator.

The schematic circuit diagram can be described by the following stochastic recurrent neural
network with time-varying delays

e = (40 5 (0 o () (RZ Yy

—-0.8 2 0.2 tanh(z1(t — 71(2)))
" ( 1 4 ) ( 0.2 tanh(zs(t — 2(t))) >dt+0(t7fv(t),x(t —7())) dw(?),

where 7(t) = (11(t), 2(t))T, 7; is any bounded positive function for i = 1,2, and ¢ : Ry x R? x
R? — R? x R? satisfies trace [o7 (¢, x,y)o(t,z,y)] < 2% + a3 + y7 + v3.

0.1

0.08 —

0.04 - T

solution x

0.02 B

-0.02 - —

—-0.04
0

Figure 1.6: Numerical solution E(x3(t)) of system (1.11), which comes from Huang et al.[56].

1.2 Objectives and main results of this thesis

The general aim of this thesis is to present a systematic study of different methods for stability
and asymptotic stability for different types of equations. We are interested in the versatility of
the methods to deal with different classes of equations and verifiability of the conditions. We
also wish to understand the relations between the methods: for what equations do they even-
tually coincide, and what are their advantages and restrictions. In particular, we emphasize a
fixed point approach to stability of delay differential equations and stability of stochastic delay
differential equations.
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Figure 1.7: Numerical solution E(x3(t)) of system (1.11), which comes from Huang et al.[56].

This thesis focuses on five objectives. The first objective is concerned with asymptotic behavior
of autonomous delay differential equations (see Chapter 2). The ODE method and spectral
method are generally viewed as effective techniques in dealing with asymptotic behavior of au-
tonomous delay differential equations. However, there seems to be no discussion about the
relations of these two methods. In Chapter 2, we will study the relations of the ODE method
and spectral method by considering a class of second order neutral delay differential equations
of the form

2"(t) +cx”(t — 1) = p1a’ (t) + pox’(t — 7) + qua(t) + qea(t — 1), (1.12)

where ¢, p1,p2,q1,q2 € R, 7 > 0. It is concluded that under the same assumptions, the results
by the ODE method is equivalent to the results by the spectral method (see Section 2.4). The
conditions for the spectral method are weaker than those by the ODE method, (see Example
2.4.2), and the asymptotic behavior of neutral delay differential equations can be presented by
a general formula (see Theorem 2.2.6). Furthermore, the asymptotic behavior of neutral delay
differential equations with matrix coefficients can be investigated by the spectral method.

The second objective focuses on asymptotic behavior of nonautonomous delay differential e-
quations (see Chapter 3). It should be emphasized that asymptotic behavior of nonautonomous
equations is much more difficult than the case of autonomous equations. Frasson and Verduyn
Lunel [39] have applied a spectral method to study asymptotic behavior of a class of linear
periodic delay equations of the form

k

2(t) = a(t)z(t) + > bij(t)x(t — 1), (1.13)

j=1

where a(t + w) = a(t), bj(t + w) = b;(t), j = 1,2,--- ,k. They considered a particular case
where 7; = jw (i.e. the delays are integer multiples of the period w). Determining asymptotic

9



Chapter 1. Introduction

behavior of general classes of nonautonomous equations seems untractable. For a special class of
nonautonomous problems, we can use an approach similar to the ODE method as we discussed
in Chapter 2, which is based on the application of an appropriate solution of the generalized
characteristic equation. For nonautonomous equations, solving the generalized characteristic
equation becomes much harder: a functional equation instead of an algebraic equation. This
approach only succeeds if the generalized characteristic equation has a real solution.

The third objective concerns a fixed point approach towards stability of deterministic delay
differential equations (see Chapter 4). Although there is an extensive literature on stability
analysis of delay equations discussed using a fixed point approach, stability analysis of more
general classes of delay equations has not been satisfactorily researched. Hence, in Chapter
4, several classes of delay equations with a combination of time-dependent delays, distributed
delays and neutral terms are studied, such as, for example, a scalar neutral integro-differential
equation

2'(t) —c(t)2' (t —ri(t)) = —a(t)x(t —ra(t)) + /t_ o g(t,x(s)) du(t, s). (1.14)

The last term in (1.14) includes the following two cases:

n

(1) /t g(t,x()k(t,s)ds — (2) D ai(t)g(t,=(t — ri(t))).

—7r(t) i—1

In our result, two auxiliary continuous functions hq(t) and ho(t) are introduced and used to de-
fine an appropriate contraction mapping related to the equation. Our stability results typically
say that the equation is stable if a certain expression involving the coefficients of the equation
is less than one.

The fourth objective involves stability of stochastic delay differential equations with impuls-
es (see Chapter 5). Besides delay and stochastic effects, impulsive effects are also likely to
exist in mechanical, electronical or economical systems, which could stabilize or destabilize the
system. Therefore, it is necessary to take delay effects, stochastic effects and impulsive effects
into account when studying the dynamical behavior of the system. In Chapter 5, we consider
two classes of neutral stochastic delay differential equations with impulses. The first class is an
impulsive neutral stochastic delay differential equations is of the form

dlz(t) — q(t)z(t = 7(1))] = [a(t)z(t) + b(t)x(t — 7(t))]dt
+et)z(t) +e(t)z(t — o(t))]dw(t), t# tg, (1.15)
o(tp™) — x(ty) = bpx(ty), t=tg.
Equation (1.15) is a combination of a neutral term, a delay term, a stochastic term and an

impulsive effect.

A fixed point method is used to study stability properties of the first class of equations. We
consider two different norms:

lz[|* := sup (Elz(t)[?)
t>9

10



1.2. Objectives and main results of this thesis

and

] = sup [E( sup rx<s>|2)} ,
>0 t—T<s<t

where ¥ = min {inf;>0{s — 7(s) }, infs>0{s — d(s)}}, and 7 is an upper bound of {7(s),d(s),s >
0}. These two norms lead to different stability results. It turns out that the analysis for the sec-
ond norm yields a stronger conclusion under a stronger assumption than the analysis involving
the first norm.

The second class consists of equations of the form

dlz(t) + u(t,z(t — 7(t)))] = [Az(t)dt + f(t,z(t — 5(@) Jdt + g(t, z(t — p(t))dw(t)
+ [, h(t,z(t — o(t)),y) N(dt,dy), t>0, tF#t,

Az(ty) = I(z(ty)), t=ty, k=12, (1.16)

[ 70(0) =9, 0¢€[-7,0], as.,

which is an infinite dimensional impulsive stochastic delay differential equation. Exponential
stability of this class of equations is studied by two methods, one is the method using an
impulsive-integral inequality and the other one is a fixed point method. The stability criteria
derived by the two methods are similar. A fixed point argument can yields existence, unique-
ness and stability result in one step. However, the existence and uniqueness theorem should be
provided seperately before using the method using an impulsive-integral inequality.

The fifth objective concerns an application to stochastic delayed neural networks (see Chap-
ter 6). It is natural to consider random noise in neural networks. In real nervous, for instance,
synaptic transmission is a noisy process with the noise brought on by random fluctuations from
the release of neurotransmitters and other probabilistic causes. A neural network could be sta-
bilized or destabilized by stochastic inputs. Therefore, the stochastic stability analysis problem
for various neural networks has attracted considerable interest in recent years. In Chapter 6, a
class of stochastic delayed neural networks is considered, which is described by

dl‘i (t) =

—cqi(t) + Y aig fi(wi () + Y bigfi(a(t = (t))) (1.17)
= =

+Zz”/t £ (;(s)) ds

7”

dt + 3 o (t,x(t), 25(t — (1)) dw; (t).

j=1

A fixed point method is applied to study stability properties of this class of stochastic delayed
neural networks. As in Chapter 5, two different types of norms are defined to study the system

(1.17), that is,
o)

JelP = sup {ZE sl } .

i—1 t—7<s<t

|z[|? = sup

and

11
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Both norms lead to a complete space and a contraction mapping related to the equation. Our
results neither require the boundedness, monotonicity and differentiability of the activation
functions nor differentiability of the time varying delays. In addition, the case when there are
impulsive effects to the system (1.17) and the case when there are no stochastic perturbations
are also considered.

1.3 Preliminaries

In this section, we present basic definitions and lemmas which are frequently used in this the-
sis, and present some background materials on stability of deterministic and stochastic delay
differential equations.

1.3.1 Delay differential equations

For r > 0, let C = C([—r,0],R™) denote the Banach space of continuous functions from [—r, 0]
(r > 0) with values in R"™ endowed with the supremum norm. For Q CR xC, f: Q2 - R" is a
given function, consider the delay differential equation

z(t) = f(t,z), (1.18)
where z4(0) = 2(t + 6) for —r <0 <0.

It is clear that an appropriate "initial condition" at time ¢ = o must at least specify the vector
x for all tin [0 — r, 0], i.e.,

x(t) = o(t), o—r<t<o. (1.19)
Here ¢ : [0 — r,0] — R™ is a known function, usually we suppose ¢ to be a continuous function.

The function ¢ is called the initial function of the delay differential equation, o the initial con-
stant and [0 — r, o] the initial set.

Hence, the initial value problem of (1.18) is given by the following relation

{ #(t) = f(t,xy) for t>o

z(t) = ¢(t) for oc—r<t<o, (1.20)

where ¢ is a given function defined on [0 — r, o].

Definition 1.3.1. (Hale and Verduyn Lunel [51]) A function x is said to be a solution of (1.18)
on [0 —r,o + A] if there are 0 € R, A > 0 such that x € C([oc —r,0 + A],R"), (t,2¢) € D and
x(t) satisfies (1.18) for t € [o,0 + A]. For given 0 € R, ¢ € C([-r,0],R"™), we say x(t,0,¢) is
a solution of (1.20) with initial value ¢ at o or simply a solution through (o, ) if there is an
A > 0 such that x(t,0, ) is a solution of equation (1.20) on [0 —r,0 + A] and z,(0,p) = ¢; we
say x(t, o, @) is a solution of (1.20) on [0 — r,00), if for every A > 0, x(t,0,¢) is a solution of
equation (1.20) on [0 — 7,0 + A] and z,(0, ) = ¢.

Lemma 1.3.2. (Hale and Verduyn Lunel [51]) If 0 € R, ¢ € C are given, and f(t,¢) is
continuous, then finding a solution of equation (1.18) through (o, ®) is equivalent to solving the
integral equation

{ o(t) = ¢(o) + [} f(s,xs)ds,  t>o, (1.21)

12
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We are now consider the existence and uniqueness of the system (1.20), we assume that f is
continuous. To prove the existence of the solution through a point (o, ¢) € R xC, we consider an
a > 0 and all functions x on [0 — 7,0 + ¢ that are continuous and coincide with ¢ on [0 — 7, 0],
that is x, = ¢.

Theorem 1.3.3. (Existence) ([51]) Suppose that 2 is an open subset in RxC and f € C(Q2,R").
If (0,¢) € Q, then there is a solution of the DDFE (f) passing through (o, ).

Definition 1.3.4. We say f(t,¢) is Lipschitz in ¢ in a compact set K of R x C if there is a
constant L > 0 such that, for any (t,¢;) € K, i=1,2,

I f(t, 1) — f(t, d2)| < L|d1 — o2l

Theorem 1.3.5. (Existence and uniqueness) ([51]) Suppose that 2 is an open set in R x C,
f:Q — R"™ is continuous and f(t,p) is Lipschitz in ¢ in each compact set in Q. If (o,¢) € Q,
then there is a unique solution of (1.20) through (o, ¢).

Let z be a solution of (1.20) on [0, a), a > 0. We say T is a continuation of x if thereisa b > a
such that & is defined on [0 — 7, b), coincides with x on [0 — r,a), and Z satisfies (1.20) on [0, b).
A solution z is noncontinuable if no such continuation exists; that is, the interval [o,a) is the
mazimal interval of existence of the solution x.

Theorem 1.3.6. ([51]) Suppose that 2 is an open set in R x C, f : Q — R™ is completely
continuous (that is, f is continuous and takes closed bounded sets into compact sets), and x is
a noncontinuable solution of (1.20) on [0 — r,b). Then for any closed bounded set U in R x C,
U C Q, there is a ty such that (t,z;) ¢ U for ty <t <b.

In other words, Theorem 1.3.6 says that solution of (1.20) either exists for all ¢ > o or becomes
unbounded (with respect to £2) at some finite time.

1.3.2 Neutral delay differential equations

Definition 1.3.7. (Hale and Verduyn Lunel [51]) Suppose that 2 C R x C is open with elements
(t,d). A function D : Q — R™ is said to be atomic at B on Q if D is continuous together with
its first and second Fréchet derivatives with respect to ¢; and Dy, the derivative with respect to
@, is atomic at B on €.

Suppose that & CR x Cis open, f: Q — R" D :Q — R" are given continuous functions with
D atomic at zero. Consider the neutral delay differential equation

d

aD(t, xt) = f(t,x¢). (1.22)

Definition 1.3.8. (Hale and Verduyn Lunel [51]) A function x is said to be a solution of (1.22)
on [o —r,0+ A] if there are 0 € R and A > 0 such that

x€C(lo—r,o+ ALR"Y), (t,z) €N, telo,0+ A,

D(t,z) is continuously differentiable and satisfies equation (1.22) on [0,0 + A]. For a given
to € R, ¢ €C, and (0,9) € Q, we say x(t, o, ) is a solution of equation (1.22) with initial value
¢ at o or simply a solution through (o, @) if there is an A > 0 such that x(t,o,$) is a solution
of equation (1.22) on [0 —r,o 4+ A] and x,(0, ¢) = ¢; we say x(t, 0, ) is a solution of (1.22) on
[0 —1,00), if for every A > 0, x(t,0,¢) is a solution of equation (1.20) on [0 — r,o + A] and
zo(0,0) = ¢.

13



Chapter 1. Introduction

Theorem 1.3.9. (Existence) (Hale and Verduyn Lunel [51]) If Q is an open set in R x C and
(0,0) € Q, then there exists a solution of the NDDE (D, f) through (o, ¢).

Theorem 1.3.10. (Existence and Uniqueness) (Hale and Verduyn Lunel [51]) If Q is an open
set in R x C and f(t,¢) is Lipschitzian in ¢ on compact sets of , then, for any (o,¢) € Q,
there ezists a unique solution of the NDDE (D, f) through (o, ®).

A continuation result similar to Theorem 1.3.6 also exists for neutral delay differential equations,
refer to Hale and Verduyn Lunel [51] for details.

1.3.3 Stability of delay differential equations

Suppose that f: R x C — R" is continuous and consider the delay differential equation

@(t) = f(t, ). (1.23)

The function f will be supposed to be completely continuous and to satisfy enough additional
smoothness conditions to ensure the solution z(t, o, ¢) through (o, ¢) is continuous in (¢, o, ¢) in
the domain of definition of the function.

Definition 1.3.11. Suppose that f(t,0) = 0 for allt € R. The solution x = 0 of equation (1.23)
is said to be stable if for any o € R, € > 0, there is a § = §(g,0) > 0 such that ¢ € B(0,0)
implies x1(o, ¢) € B(0,¢) fort > o. The solution x = 0 of equation (1.23) is said to be uniformly
stable if the number & in the definition is independent of o.

Definition 1.3.12. The solution © = 0 of equation (1.23) is said to be asymptotically stable
if it is stable and there is a by = bo(c) such that ¢ € B(0,by) implies that x(t,o,¢) — 0 as
t — oo. The solution x = 0 of equation (1.23) is said to be uniformly asymptotically stable if
it is uniformly stable and there is by > 0 such that for every n > 0 there is a to(n) such that
¢ € B(0,by) implies xi(o,¢) € B(0,n) fort > o+ to(n) for every o € R.

Definition 1.3.13. A solution z(t,o0,¢) of an DDE (f) is bounded if there is a B(o,d) such
that |x(t,o,¢)| < B(o, @) fort > o —r. The solutions are uniformly bounded if for any o > 0,
there is a B = B(a) > 0 such that for all 0 € R, ¢ € C and |¢| < a, we have |x(t,0,¢)| < f(a)
forallt > o.

1.3.4 Stability by spectral theory

Consider a linear ordinary differential equation of the form
2'(t) = ax(t). (1.24)

The characteristic equation of (1.24) is A = a, the solution of (1.24) is asymptotically stable if
Re(a) < 0 and it is unstable if Re(a) > 0.

What about the stability of delay differential equations? Consider the following delay differ-
ential equation

2'(t) = ax(t) + bzt — 1), (1.25)

Here a, b are constants. From Figure 1.8, the solution of (1.25) is stable with a = 1 and b = —1

14
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25 f

Figure 1.8: Numerical solution of (1.25) with a = 1,6 = —1 (2(t)) and a = 1,b = =2 (y(?)).
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and unstable with @ = 1 and b = —2. From Figure 1.9, the solution is stable of (1.25) with
a = —% and b = 3 and unstable with a = —% and b = 4. It is not difficult to find that the
stability theory of delay differential equations is more complicated than the case for ordinary
differential equations.

For such linear, autonomous delay differential equations, a simple way to study its stability
is by spectral theory.
In fact, the characteristic equation of (1.25) is

z—a—be *=0. (1.26)

It is stable if all roots of the characteristic equation satisfy Re(z) < 8 < 0; It is unstable if for
some root z, Re(z) > 0. Hence, to study the stability of (1.25) is to derive as much information
as we can about the location of the roots of the characteristic equation (1.26) in the complex
plane.

Let z = p+iv in (1.26), we obtain two real equations
w—a—>be Fcosy = 0
v+be Fsiny = 0, (1.27)
where p and v are real numbers. By studying (1.27), some results towards the location of the

roots in the complex plane of (1.26) are presented in Diekmann et al. [29].

Define the following strips,

Elj = {p+iv|ve I]j = (2km, (2k + 1)m)},
Sko= {p4iv|vel=(2k- 1 (2k+ 1))},
¥, = {p+iv|vel =(2k—-1)r 2km)}.

Theorem 1.3.14. (Diekmann et al. [29]) For b > 0, equation (1.26) has a unique and simple
root A\, in the strip X for k = 0,1,2,--- and no other roots. For k = 1,2,---, the root A\ is
contained in ¥ .

Theorem 1.3.15. (Diekmann et al. [29]) For b < 0, equation (1.26) has a unique and simple
root A\ in the strip EZ for k =1,2,---. There are two roots in ¥ (which are real and simple
for —e®1 < b < 0 and complex conjugate for b < —e®1). There are no other roots.

However, in some real-world applications, the delay differential equations are nonautonomous,
for example,

2'(t) = a(t)z(t) — b(t)z(t — 1), (1.28)
and
2'(t) = at)z(t) — b(t)x(t — r(t)). (1.29)

What can we say about asymptotic behavior and stability of nonautonomous delay differential
equations such as (1.28) and (1.29)? In the following, we present three methods, Liapunov’s di-
rect method, fixed point method and LMI method, which are extensively applied to the stability
of nonautonomous equations.
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1.3.5 Liapunov’s direct method

Liapunov’s direct method has long been viewed the main classical method of studying stability
problems in many areas of differential equations. The difficulty of this method is to look for a
suitable Liapunov functional or Liapunov function.

If V:R xC — R is continuous and z(t, 0, ¢) is the solution of equation (1.23) through (o, ¢),
we define

V(0.0) = limsup £V (¢ -+ b (t.0)) = V(0L

The function V (¢, $) is the upper right-hand derivative of V (¢, ¢) along the solution of (1.23).

Theorem 1.3.16. (Hale and Verduyn Lunel [51]) Suppose f : R x C — R" takes Rx (bound-
ed sets of C) into bounded sets of R™, and u,v,w : RT — RT are continuous nondecreasing
functions, u(s) and v(s) are positive for s > 0, and u(0) = v(0) = 0. If there is a continuous
function V : R x C = R such that

u(lp(0))) < V(t,¢) < v(|o])
then the solution x = 0 of equation (1.23) is uniformly stable. If u(s) — oo as s — oo, the

solutions of equation (1.23) are unifomly bounded. If w(s) > 0 for s > 0, then the solution x =0
is uniformly asymptotically stable.

Example 1.3.17. (Burton |11|) Consider the delay differential equation
z(t) = =b(t)z(t — ), (1.30)
where 7 > 0 is a constant, b: [0,00) — R is a bounded and continuous function.

The equation (1.30) can be written as the form
d t
&(t) = =b(t +r)x(t) + T / b(s +r)z(s)ds, (1.31)

t—r

equation (1.31) is equivalent to

=T

(x(t) - /tt b(s +r)z(s) ds)l = —b(t + r)x(t). (1.32)

By constructing the following the Liapunov functional V (¢, z;) = Vi (¢, z¢) + Va(t, ), where
t 2 0yt
Vi(t,x) = (x(t) — / b(s +r)x(s) ds) +/ / b(u +r)x?(u) duds (1.33)
t—r —r Jt+s
and
t
Vo(t,xy) =~ <x2 +/ b(s + r)z?(s) ds> . (1.34)
t—r

Burton [11] obtained the following theorem.
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Theorem 1.3.18. (Burton [11]) Ifb(t+r) > 0 for all t > 0 and [;°b(s) ds = oo, an e > 0 with

t
b(t—H“)/ b(s+r)ds—2+4+r<—e for all t>0,
t

—-T

and there is a v > 0 with y[b(t) + b(t + )] < (¢/2)b(t + r) for all t > 0, then the zero solution
of (1.30) is asymptotically stable.

Example 1.3.19. (Burton [11]) Let b(t) = 1.1 + sint in (1.30), we have
#(t) = —(1.1 4 sint)x(t — 7). (1.35)
Theorem 1.3.18 holds if there is an € > 0 such that
2.1(1.1r + 2sin(r/2)) — 24+ r < —e. (1.36)

Using a rough estimate (taking sin(r/2) = r/2) on (1.36), we have that r < 0.37. Therefore, the
zero solution of (1.35) is asymptotically stable if r < 0.37.

1.3.6 Fixed point method

Liapunov’s direct method has been very effective in establishing stability results for a wide
variety of differential equations. The success of Liapunov’s direct method depends on finding
good Liapunov functions or Liapunov functionals, which may be very difficult, especially for
the equations with unbounded terms or unbounded delays, see the examples in Burton [13].
Therefore, it was recently proposed by Burton [13] and co-workers to use fixed point methods
as an alternative. While Liapunov’s direct method usually requires pointwise conditions, fixed
point methods need conditions of an averaging nature.

Theorem 1.3.20. (Banach’s fixed point theorem) Let (X,d) be a non-empty complete
metric space, let T : X — X be a contraction mapping on X, i.e. there is a nonegative real
number ¢ < 1 such that d(Tx,Ty) < qd(z,y) for all x,y € X. Then the map T admits one and
only one fized point x* in X (Tx* = z*).

Hence, to solve a problem using a fixed point approach we have to identify:
(a) a set S consisting of points which would be acceptable solutions;
(b) a mapping P : S — S with the property that a fixed point solves the problem,;
(¢c) a fixed point theorem stating that this mapping on the set S will have a fixed point.

The following steps represent the way in which we can establish stability of the zero solution of
a delay differential equation by applying fixed point theory.

Step 1. An examination of the differential equation reveals that for a given initial time o
there is an initial interval we denote it to be E, and we require an initial function ¢ : £, — R".
We then must determine a set S of functions ¢ : E, U [0,00) — R™ with ¢(t) = ¢(t) on E,
which could serve as acceptable functions. Usually, this means that we would ask some other
conditions on ¢, for example, the boundedness, and sometimes we require that ¢(t) — 0 as
t — oo.
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Step 2. Next, invert the differential equation and define a mapping from S to S.

Step 3. Finally, we select a fixed point theorem which will show that the mapping P has
a fixed point in S.

Notice that the process of application of a fixed point method relies on three principles: an
elementary variation of constants formula, a complete metric space and the contraction map-
ping principle. Moreover, in one step, a fixed point argument yields existence, uniqueness and
stability. Hence, our major problem, when using fixed point theory to deal with stability anal-
ysis, is to define a suitable Banach space and a suitable mapping.

In the following, some results are presented to illustrate the application of a fixed point method.
Consider the delay differential equation (1.30), by using a fixed point method, Burton [11] ob-
tained the following result.

Theorem 1.3.21. (Burton [11]) Suppose there exists a constant o < 1 such that

t t s
/ |b(s+r)|ds+/ yb(s+r)|ef$b<u+">dU/ b(u+ )| duds < o, (1.37)
t—r 0 s—r

Jor allt >0 and [;°b(s)ds = oo. Then for every continuous initial function ¢ : [—r,00) — R,
the solution x(t) = x(t,0,¢) of (1.30) is bounded and tends to zero as t — oo.

Example 1.3.22. (Burton [11]) Consider the differential equation
(t) = —(1 +2sint)z(t — ), (1.38)

where 0 < r < 1. The zero solution of (1.38) is asymptotically stable when (r + 4sin(r/2))(2 +
2¢%) < 1, this is approzimately 0 < r < 0.02.

Since 1 + 2sint changes sign for ¢ > 0, Theorem 1.3.18 is not applicable to Example 1.3.22.
Consider Example 1.3.19 by using Theorem 1.3.21, we obtain that the zero solution of (1.35) is
asymptotically stable if 2(1.1r+2sin(r/2)) < 1. This is approximated by 0 < r < 0.2, compared
to r < 0.37 by using Liapunov’s direct method.

From the above discussion, we find it is very difficult to find a way to interpret a relation between
the fixed point method and Liapunov’s direct method. Sometimes the fixed point method can
provide conditions for stability when the Liapunov’s direct method can not, see Example 1.3.22.
Sometimes Liapunov’s direct method can provide better conditions, see Example 1.3.19.

If we let » = 0.1 in (1.38), the condition (1.37) in Theorem 1.3.21 is not satisfied, then Theorem
1.3.21 is not applicable. Therefore, new conditions are needed to study the case of r = 0.1.
Following the similar arguments as Burton [11], Raffoul [110] studied the following linear neutral
differential equation

B(t) — c(t)i(t — r(t)) = —a(t)z(t) — b()x(t — r(t)), (1.39)

and he obtained the following result.
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Figure 1.10: Numerical solution of (1.38).

Theorem 1.3.23. (Raffoul [110]) Let r(t) be twice differentiable and r'(t) # 1 for all t € R.
Suppose that there exists a constant o € (0,1) such that for t > 0

t
/ a(s)ds — oo as t— oo, (1.40)
0

and such that
c(t) /t [ a(w) du [c(s)a(s) + < ()](1 —1(s)) + c(s)r"(s)
— |+ e Js
0 (1—1'(s))?
Then every solution x(t) = x(t,0,¢) of (1.39) with a small continuous initial function ¢ is
bounded and tends to zero as t — oo.

b(s) + ds < a, (1.41)

1—7r'(t)

Example 1.3.24. Consider the linear neutral delay differential equation

1) = — i (1) + 0,483 — 0.051). (1.42)

However, the condition (1.41) in Theorem 1.3.23 is not satisfied. In fact,

c(t) L fatany ) , [e)als) + B0 =1 (5) + sl (s)]
’1 0 ’ + o) + 11— () !
0.48(2t + 1)
= 00+ 1) (143)

Since the right-hand side of (1.43) is increasing in t > 0 and

0.48(2t + 1
lim sup (2t+1)

S T ) 1.0105,
>0 0.95(t+1)
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then there exists some tg > 0 such that ¢ > ¢y, we have

ﬂ te— f; a(u) du s [C(S)a(s) + CI(S)](l — 7“/(3)) + C(S)?"//(S)
ol et 1-r0)

This implies that condition (1.41) does not hold. Thus, Theorem 1.3.23 is not applicable.

ds > 1.01.

Hence, weaker conditions needed to be provieded to solve such problems (Example 1.3.22 for
r = 0.1 and Example 1.3.24). By introducing a continuous function v(t) for constructing fixed
point mapping, Jin and Luo [62]| provided sufficient conditions for the asymptotic stability of
(1.39), which can be applied to Example 1.3.22 and Example 1.3.24.

Theorem 1.3.25. (Jin and Luo [62]) Suppose the following conditions are statisfied.
(i) the delay r(t) is twice differentiable and ' (t) # 1 for all t € RT.

(ii) there exists a constant o € (0,1) and a continuous function v(RT — R) such that
lim inf;_, o0 fot v(s)ds > —o0 and
c(t) ‘

+/ e~ Je v du) _pis) 4 [u(s — r(s)) — a(s — r(s))] — k(s)| ds
0

t : S
_|_/ e Js o) du|v(s)|/ lv(u) —a(u)|duds < a, (1.44)
0 s=r(s)

then the zero solution of (1.39) is asymptotically stable if and only if f(f v(s)ds — 0o ast — oo.

It is clear that Theorem 1.3.25 is consistant with Theorem 1.3.23 if v(¢) = a(t) for ¢ > 0 in
(1.44). In addition, Theorem 1.3.25 can be applied to some equations that Theorem 1.3.23 can
not. Motivated by the work as in [62], in this thesis, we will discuss some general classes of delay
differential equations by using the approach as in Theorem 1.3.25.

Notice that the condition (1.44) in Theorem 1.3.25 is mainly dependent on the constrain-

t ‘%‘ < 1. However, There are some interesting examples where the constraint is not
satisfied. Zhao [145] investigated (1.39) without the constraint by employing another auxiliary
function p(t) to construct the fixed point mapping. In this thesis, we will study the approaches

used in [62] and [145] to consider some general classes of delay differential equations.

1.3.7 Linear matrix inequality (LMI) method

The linear matrix inequality (LMI) method has become one of basic approaches to study sta-
bility of delay differential equations and stochastic delay differential equations. This approach
is based on constructing suitable Liapunov functionals and combining with a linear matrix in-
equality. To illustrate this method, we present some results from Fridman [44].

Consider the following system

B(t) =Y Aiw(t—hi), a(t)=¢(t), te[-h0] (1.45)
=0
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where z(t) € R, hg = 0, 0 < h; < h, A; is a constant n X n matrix, ¢ is a continuously
differentiable initial function. We represent (1.45) in the equivalent descriptor form

i(t) = y(t), y(t)z(ZAi) o0 =Y A [ yls)ds (1.46)
i=0 i=1 t=h;

Liapunov-Krasovskii functional for the system (1.46) has the form

V()= (2T(t) y*(t) )EP< ”;Eg ) + 1, (1.47)

where

I 0 P 0 .
(0 0>7 <P2 Pg)’ 1 1>0>

m 0 t
V= Z/ / yTRyy(s)dsdd, R; > 0.
i=1 —h; Jt+60

Computing dV'(t)/dt and using the conditions in Theorem 1.3.26, we obtain that the function
V of (1.47) has a negative derivative, which implies asymptotically stable of (1.45).

Theorem 1.3.26. (Fridman [44]) Equation (1.45) is asymptotically stable if there exist 0 <
Pr=PL P, P;and R, = RiT, 1 =1,---,m that satisfy the following linear matriz inequality
(LMI):

(CZg AD P+ Py (3T Ai) L= Py + (C2g AT)Ps Py Ay o b Py A,
P — P+ PF(YT A —Py—PF+>" R mPFA, - hy,PLA,
h1 AT Py h1 AT Ps —hRy - 0
. . . DY < 0'
hm AL Py hm AL Ps : oo —hmRy,
Example 1.3.27. (Fridman [44]) Consider the system
T = A():L'(t) + All'(t — hl) (1.48)

with

-1 05 —2 2
A0_<—0.5 —1>’ A1_<—2 —2)‘

Applying LMI condition in Theorem 1.3.26, we obtain that h; < 0.271. Therefore, the equation
(1.48) is asymptotically stable if hy < 0.271. For h; = 0.271 we obtain the following solution to
LMI condition:

o 94.1609  0.1653 b, _ (935580 0.1872
! —0.1653 94.0469 )’ "2\ 0.1872 94.6599 )’

< 18.5170 —0.0930) R <68.2748 0.0349 >
) 1= .

P =
s —0.0930 18.4880 0.0349 68.1810

The LMI method is also widely used to study stability of neural networks, to know more about
this method, refer to [44, 45, 77, 114, 126, 127].
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1.3.8 Stochastic processes

Let (Q, F,P) be a probability space, where € is the collection of all possible outcomes, and F is
the set of all events A to which a probability P(A) can be attached. F is o— algebra, and P a
probability measure. We are often very interested in events A € F which are realized for almost
all w € Q. Such events are called almost sure events, and A is an almost sure event if P[A] = 1.
We will often use the abbreviation a.s. to stand for almost sure or almost surely.

Definition 1.3.28. Let T' C [0,00). A stochastic process is a family (X (t))ier of random
variables on (Q, F, P). For each w € Q, the map t — X (t)(w) is called a path of X.

Definition 1.3.29. If I C R is an interval, f : I — R is a function, and x € I, then [ is said
to have a right limit at x if

flz+) = lifn fy) exists
ylz
and a left limit if
flz=) = li%n fy) exists
ytz

f is right continuous at x if it has a right limit at x and f(x+) = f(x) and left continuous if it
has a left limit and f(xz—) = f(x). The function f is called a cadlag function if at each x € I it
is right continuous and has a left limit. f is called caglad if it is left continuous and has a right
limit at each point of I.

Definition 1.3.30. A stochastic process is called a cadlag process if each if its paths is a cadlag
function. A function fis of bounded variation if it equals the difference of two increasing func-
tions. A process is said to be of bounded variation if each of its paths is of bounded variation.

Definition 1.3.31. A filtration in (Q, F,P) is a fimily of o-algebras (Fy)ier in Q such that
F: CF forallt €T and

s<t=Fs CF.

A null set is a subset A C Q for which there exists a B € F such that A C B and P(B) = 0. F
is called P-complete if each null set is a member of F.

A filtration is said to satisfy the "usual conditions" if for every ¢, F; is P-complete and F; =
mu>1f~7:.u~

Definition 1.3.32. A process (X(t)); € T is called adapted to a filtration (Fi)ier if X (t) is
Fi-measurable for all t € T.

Definition 1.3.33. For a random variable X on (0, F,P) its expectation is defined as

EX:/QX(w) dP(w),

provided X >0 a.e. on Q or [o|X(w)|dP(w) < oc.
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For a random variable X with E|X| < co and a o-algebra G C F,
(G) ::/X(w) iPw), Ged
g

defines a measure p on G. Clearly, if P(G) = 0, then u(G) = 0. Due to the Radon-Nikodym
theorem there exists a G-measurable function Xg : 2 — R such that

M(G):/GXg(w)d]P’(w), for all Geg,

This G-measurable random variable Xg is called the conditional expectation of X with respect
to G and is denoted by E[X|G].

Fix a probability space (©,F,P) and a filtration (F;);>¢ in F that satifies the usual condi-
tions.

Definition 1.3.34. A martingale is a stochastic process (X (t))ier which is adapted, E| X (t)| <
oo for all t, and such that E[X (t)|Fs] = X (s) whenever s <t, s,t € T.

Definition 1.3.35. A random wvariable T with values in [0,00] is called a stopping time if
{weQ:T(w) <t} €F for every 0 <t < oo.

For instance, if (X (¢)):>0 is an adapted cadlag process with X (0) = 0 and B C R is open, then
the first time of hitting B defined by

T(w)=inf{t >0: X(t)(w) € B orX(t—)(w) € B}.

Definition 1.3.36. If (X ())t>0 is a stochastic process and T' is a stopping time, then the stopped
process X1 is given by

X(t)(w), t<T(w),
X(T(w)(w), t>T(w), €9, t>0

In particular, if (X (¢)):>0 is adapted and continuous, 7" is the first time of hitting R\ (=M, M),
then X7 is uniformly bounded and X7 (t) < M for all ¢ > 0.

Definition 1.3.37. A process (X (t))i>0 is called uniformly integrable if

lim sup/ | X (t)] dP = 0.
o020 J{|X (t)|>n}

If X is a random variable with E|X| < oo, then (X (¢))¢>0 given by X (t) = E[X|F],t >0, is a

uniformly integrable martingale.

Definition 1.3.38. An adapted cadlag process (X (t))i>o0 is called a local martingale, if there
exists a sequence of stopping times Ty, To,--- with 0 < Ty < T -+ a.s. and limy,_ T, = 00
a.s. such that for each n, the stopped process X' is a uniformly integrable martingale.
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Note that any cadlag martingale is a local martingale. (Taking T, = n, n € N).

We show that the following stochastic convolution is not a martingale.

/0 e =g (s) dw(s), (1.49)

where o () is a continuous function. In fact, for 0 < wu <'t,

E [ /0 t e )5 (s) dw(s) | ]-"u} (1.50)

=E[/0“e—c<t—s> () (W} [/te—cﬁ-S)a(s)dw(s)ra
:/0 —e(t=3) g (5) (s ;&/ Ver(s) duw(s).

It can also be shown that ft —e(t=%) () dw(s) is not a local martingale. To show this, we need
the following Lemma.

Lemma 1.3.39. ([109]) If M(t) is a local martingale and for every t, Esup,co | M(s)| < oo,
then M(t) is a martingale.

Lemma 1.3.40. For continuous function o( fo o(s)dw(s) is not a local martingale.

Proof. We suppose that fg e~“=9)g(s) dw(s) is a local martingale. For every t, we have that

E sup /ec(su)a(u)dw(u) = E sup e / e“o(u) dw(u)
sef0,4] 1Jo se[0,1] 0
< E sup / e“o(u)dw(u)
s€[0,¢] 1/0

1/2

IN

t
KE (/ eXUg? (u) du)
0
t 1/2
< K; (/ > Eo?(u) du) < 00.
0

From Lemma 1.3.39, we obtain that M is a martingale. However, from (1.50), we know that
5 e=t=9)5(s) dw(s) is not a martingale, which is a contradiction. O

Lemma 1.3.41. (Mao [96] Burkholder-Davis-Gundy Inequality) There exists a universal con-
stant K, for any 0 < p < oo such that for every continuous local martingale M vanishing at
zero and any stopping time T,

IE( sup Msyp) < K E((M, M), )?/?,
0<s<t
where (M, M), is the cross-variation of M and in particular, one can take

32 p/2
K, = <> if 0<p<2,
p

K, = 4 if p=2,

/2
B pp+1 p ]
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Lemma 1.3.42. (|109] Doob’s inequality, on Page 11) Let X be a positive submartingale. For
all p > 1, with q conjugate to p (i.e. % + % = 1), we have

I Slip Xillz, < qstip 1 Xz, -

For a real valued process, we let X* denote supg|Xs|. Note that if M is a martingale with
Mo € LP, then | M| is a positive submartingale, and we have

E{(M")"} < ¢"E{ME.}.

Forp =2, we have E{(M*)?} < 4E{M?2}. The last inequality is called Doob’s mazimal quadratic
imequality.

Lemma 1.3.43. (Holder inequality) Assume that there exists two continuous functions f(x),
g(z) and a set Q, p and q satisfying I%—i—% =1, foranyp >0, q¢q>0, if p>1, then the following

inequality holds.
[ ds < [ 1P ar) " ([ 1storac) "

Lemma 1.3.44. ([120]) For any real numbers ap, > 0, k =1,2,3,---n, and p > 1, the following
inequality holds,

n p n
(Z ) LI
k=1

k=1

1.3.9 Stochastic delay differential equations

The existence, uniqueness and stability of stochastic delay differential equations have been ex-
tensively investigated by many authors, see, for example, Friedman [43], Tkeda and Watanabe
[60], Mao [96].

The techniques dealing the existence and uniqueness of stochastic delay differential equations
have been developed mainly by using two different methods, the iterative method |2, 22, 96] and
the fixed point method [1, 3, 7, 46].

One of the powerful techniques employed in the study of the stability problems of stochas-
tic delay differential equations is the method of the Liapunov function or functional, see, for
example, Kolmanovskii [71], Mao [93, 94]. Further, a great number classes of stochastic neural
networks with delays are studied by using LMI method, see the work [73, 77, 113, 115, 133].

For the stochastic differential equations with infinite delays, it was recently proposed by Luo
[90] and Appleby [4] to use fixed point methods to deal with the stability problems for stochastic
delay differential equations. Many authors, e.g., Luo [90, 91|, Luo and Taniguchi [92], Sakthivel
and Luo [117, 118], Cui et al. [27] have applied fixed point methods to study stability properties
of many classes of stochastic delay differential equations. It turns out the fixed point method
is a powerful technique to deal with asymptotic stability and exponential stability of stochastic
delay differential equations.
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1.3.10 Some examples of Banach spaces
A normed linear space is a metric space with respect to the metric d derived from its norm,
where d(z,y) = ||z — y]|.

Definition 1.3.45. A Banach space is a normed linear space that is complete metric space with
respect to the metric derived from its norm.

Here are some examples.

Example 1.3.46. The space C([a,b]) of continuous, real-valued (or complez-valued) functions
on |a, b] with the sup-normed is a Banach space. More generally, we have the following examples.

(i) If X is a Banach space, the space C([a,b]; X) of continuous, X -valued functions on [a,b]

equipped with the sup-norm is a Banach space.

(ii) If X is a Banach space, the space BC([a,b]; X) := {p € C([a,b]; X), ||¢]| < oo} of bounded

continuous, X -valued functions on [a,b] equipped with the sup-norm is a Banach space.
(i) If X s a Banach space, the space {¢ | ¢ € C([a,b]; X), limi o0 @p(t) = 0} with the
sup-norm s a Banach space. Further, the space
{o|peC(la,b]; X), ¢(t) = 0ast— oo}
and the sapce
{@ | ¢ € C([a,b]; X), |l¢ll = sup |¢(s)| is bounded and @(t) — 0 as t — oo}
s€[a,b]

are Banach spaces with respect to the sup-norm. Clearly, the space

{]¢ec(abP@RrY), lm Elp@t)P =0}

t—o0

is a Banach spaces with respect to the norm defined as
1/p
loll = (swBlplp)
S

Lemma 1.3.47. Suppose that F; is complete, (that is, contains all null sets). Denote by
Co([0, 00 L@ B™) = {p | o € C(0,00); IP(, M), Jim Elp(1)f? =0}
then the space
D :={¢| ¢ € Co([0,00); LP(Q,R™)), ¢(t) is F; — measurable for all ¢}
is a closed subspace of Cp(]0,00); LP(2,R™)).

Proof. 1t ¢(t),9(t) € D, then ¢(t) and 1 are Fi-measurable, so ¢(t) + ¥(t) and ap(t) (o € C)
are Fy-measurable.

Suppose that the sequences ¢i(t),pa(t), - -@n(t)--- € D, ¢ € Cp(]0,00); LP(£2,R™)), and
on(t) = (t), we claim that ¢(t) is F;-measurable. In fact, since ¢, (t) — (t), then

sup (E|en(s) —¢(s)[P) -0 as n — oo.

seN
So, for every t, we have that E|p,(s) — ¢(s)|P — 0 as n — oo, then there exists a squence
(¢n, (t))k such that ¢y, (t) = ¢(t) a.e. on Q. On the other hand, F; is complete. Hence, we ob-
tain that () is Fi-measurable, which implies that D is a closed subspace of C([0, 00); LP(2,R™)).
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1.4 Structure of this thesis

This thesis is divided into two parts. The first part deals with asymptotic behavior and stability
of deterministic delay differential equations. The second part is concerned with the stability
properties of stochastic delay differential equations. Each chapter starts with an introduction,
in which we summarize the main results. A brief overview of the contents of the thesis is given
below.

Chapter 2 presents three methods concerning asymptotic behavior of autonomous neutral
delay differential equations. One method based on spectral theory, another method that treats
the equation as an ordinary differential equation (ODE) with the other state-dependent terms
considered as perturbations, and a third method using Banach’s fixed point theorem. We also
address the relations of the spectral method and the ODE method. To a retarded form of the
autonomous neutral delay differential equation, we illustrate a third method, fixed point method.

Chapter 3 focuses on asymptotic behavior of a class of nonautonomous neutral delay dif-
ferential equations in which the coefficient for neutral term is constant. Such equations can not
be treated by spectral theory, but in some special cases, a generalized characteristic equation
can be used. This is a functional equation. If it can be solved, the precise asymptotic behavior
of solution of the neutral equation and their derivative can be determined. Examples are given
in which the generalized characteristic equation can be solved.

Chapter 4 addresses a fixed point approach to a series of differential and difference equations.
In Section 4.1, four general classes of equations are considered by unifying recent results in the
literature. For each of these classes of equations, different techniques are combined to prove
new stability theorems. In addition, various examples are presented to illustrate our results. In
Section 4.2, the stability of two classes of nonlinear neutral differential equations is studied by
introducing two auxiliary functions. In Section 4.3, the stability of one class of nonlinear delay
difference equations is investigated. The obtained theorems show the general applicability of the
fixed point method.

Chapter 5 discusses the stability of two classes of neutral stochastic delay differential equa-
tions with impulses. In Section 5.1, asymptotic stability of a class of neutral stochastic delay
differential equations with linear impulses is studied by means of the fixed point method. More
specifically, two theorems for the asymptotic stability of the equations are presented by using two
contraction mapping which are defined on different complete metric spaces. In Section 5.2, expo-
nential stability of a class of neutral stochastic partial differential equations with variable delays
and impulses is investigated. The equation is considered as an infinite dimensional stochastic
differential equation with delays. The method by using an impulsive-integral inequality and a
fixed point method are applied to study exponential stability of mild solutions of the impulsive
neutral stochastic partial delay differential equations, respectively.

Chapter 6 studies stability properties of stochastic delayed neural networks without impulses
and stochastic delayed neural networks with impulses. Our approaches are based on a fixed point
method and the method by using an approporiate integral inequality. In Section 6.1, asymptotic
stability and exponential stability of a class of stochastic delayed neural networks with discrete
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and distributed delays are studied. In particular, a class of delayed neural networks without
stochastic perturbations is considered. In Section 6.2, impulsive effects to the class of stochastic

delayed neural networks are studied.
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CHAPTER 2

Asymptotic behavior of a class of
autonomous neutral delay differential
equations

In this chapter, three different methods to study the asymptotic behavior of a class of au-
tonomous neutral delay differential equations are presented. Our approach is either based on
methods from functional analysis, ordinary differential equations or fixed point theory. The
relations of the method from functional analysis (called spectral method) and the method from
ordinary differential equations (called ODE method) are addressed. If there are no neutral terms
in the considered equations, a third method based on fixed point theory is introduced.

The organization of this chapter is as follows. In Section 2.2, the spectral approach is in-
troduced and used to study the asymptotic behavior of the solutions of (2.1). In Section 2.3, the
ODE approach is introduced to study the asymptotic behavior of solutions of (2.1). In Section
2.4, both approaches are analysed by investigating a number of examples. In Section 2.5, an
approach based on fixed point theory is introduced and used to study the asymptotic behavior
of (2.2). An application to the mechanical model of turning processes is presented in Section
2.6.

2.1 Introduction

In 1973, Driver, Sasser and Slater [35] studied asymptotic behavior, oscillation and stability of
first order delay differential equations with small delay using an approach based on an ordinary
differential equation (ODE) method. The key idea of the ODE approach is to transform the
differential equation into a lower order equation by using a real root of the corresponding char-
acteristic equation. Following this approach as presented in [35], a number of papers appeared
in which the asymptotic behavior, oscillation and stability for first (or second or higher) order
(neutral) delay differential equations, and integro-differential equations with unbounded delay
as well as for delay difference equations were studied, see [51, 84, 101, 106, 105, 107]. A disad-
vantage of this ODE approach is that it does not lead to explicit formulas for the reduced lower
order equations and that it only works if the characteristic equation has a real root.

In 2003, by using residue calculus and spectral theory, Frasson and Verduyn Lunel [39] pre-
sented a new approach to study the asymptotic behavior of neutral delay differential equations,
the so-called spectral projection method. In this chapter, by studying asymptotic behavior of
a class of second order neutral delay differential equations, we discuss the relations of the two
approaches. We obtain that under the same assumptions, the ODE approach is equivalent to the
spectral approach (see Section 2.4). However, the spectral approach has some advantages, since
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the conditions for the spectral method are weaker than those needed for the ODE method, as is
illustrated by Example 2.4.2, and the asymptotic behavior of neutral delay differential equations
can be presented by a general formula (see Theorem 2.2.6). Furthermore, by using the spectral
approach, we can also study the asymptotic behavior of neutral delay differential equations with
matrix coefficients.

In this chapter, we consider a specific class of second order neutral delay differential equations
of the following form

z"(t) + ca”(t — 7) = p1a’(t) + pa2’(t — 7) + qua(t) + gz (t — 1),
(2.1)
x(t) =o(t), —17<t<0,

where ¢, p1,p2,q1,q2 € R, 7 > 0, the initial function ¢ is a given continuously differentiable
real-valued function on the initial interval [—,0].

A special case of system (2.1) is the retarded delay differential equation
2" (t) + az'(t) + bx(t —r) + cx(t) =0, a,b,ceR, r >0, (2.2)

which is often called a delayed oscillator, is well-studied in applications [59]. It appears, for
example, as the basic governing equation of the regenerative model of machine tool chatter.

2.2 Asymptotic behavior by a spectral approach

Let C = C([-7,0],C") denote the Banach space of continuous functions endowed with the
supremum norm. From the Riesz representation theorem it follows that every bounded linear
mapping L : C — C™ can be represented by

0
Lo= [ dno)e(o)
-7
where n(0), —7 < 6 < 0, is an n X n-matrix whose elements are of bounded variation, normalized
so that #(0) = 0 and 7 is continuous from the left on (—7,0) with values in the matrix space
C™*™. This set of functions is denoted by NBV([—7, 0], C"*™). For a function z : [—7,00) — C",
we denote by x; € C the function z(0) = z(t+6), —7 <6 <0 and t > 0.

An initial value problem for a linear autonomous neutral delay differential equation is given
by the following relation

4 Dzy = Lay, t>0,
(2.3)
o = ¢7 ¢ € Ca

where D : C — C" is continuous, linear and atomic at zero, L : C — C" is linear and continuous
and, both operators are respectively, presented by

0 0
Ly = dn(0)e(0), Dy = p(0) — du(0)p(9),

-7 -7
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where 1, u € NBV([—7,0],C"*"™), and p is continuous at zero. See Hale and Verduyn Lunel [51]
for a detailed information.

For the second order neutral delay differential equation (2.1), let y(t) = 2/(¢), then (2.1) can be
written in the form

{ '(t) = y(t),

v () +cey(t—71)=pry(t) + poy(t — 7) + qr(t) + gz (t — 7).

x(t)

Let X(t) = ( ()

) , we have

X't)+CX'(t—7)=EX(t)+ FX(t—71), (2.4)

C’:(OO),E:(O 1) and F:(O O).
0 ¢ Q1 p1 G2 P2

By taking u(0) = C, for 0 < —71, u(0) = 0, for § > —7, and n(0) = —F, for 6 < —7, n(0) = 0,
for -7 <0 <0,n(0) = E, for # >0, (2.1) can be written in the form (2.3).

where

Throughout this chapter, a continuous real-valued function = defined on the interval [—7,00)
is said to be a solution of the initial value problem (2.1) if x satisfies (2.1) in the mild sense,
see Lemma 2.2.1. It is well known (see [35]) that for any given initial function ¢, there exists a
unique solution of the initial value problem (2.1).

Given the solution x(¢) of the initial value problem (2.3), the solution operator T'(t) : C — C is
defined by the relation

T(t)p =mz(59), t=>0.

Lemma 2.2.1. (Hale and Verduyn Lunel [51]) The solution operator T'(t) is a Cy-semigroup on
C with infinitesimal generator

{D(A):{¢ecy§<gec, D%:Ld)} 2.5

Ap =12

Lemma 2.2.2. (Hale and Verduyn Lunel [51]|) If A is defined by equation (2.5), then o(A) =
Pyay and X € o(A) if and only if X satisfies the characteristic equation det/A(\) =0, where

0 0
AN) =M — [ XeMdu(d) — / eMdn(0). (2.6)

r s,
Here P, () denoles the point spectrum of A.

It is well known that there is a close connection between the spectral properties of the inifinites-
imal generator A and the characteristic matrix A(\) given by (2.6). In particular, the geometric
multiplicity dy is equal to the dimension of the null space of A(z) at z = A, and the algebraic
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multiplicity my is equal to the multiplicity of z = A as a zero of det A(\) = 0. Furthermore, the
generalized eigenspace at A is given by

My =N — AP,
where k) denotes the order of z = \ as a pole of A(2)~!. See Kaashoek and Verduyn Lunel [66]

for more information.

Lemma 2.2.3. (Hale and Verduyn Lunel [51]) For any X\ in o(A), the generalized eigenspace
M\(A) is finite dimensional and there is an integer k such that My(A) = N((AI — A)¥) and
we have a direct sum decomposition

C=N(M — AF) @ RN — A)F).
From the spectral theory [29, 51], it follows that the spectral projection onto Mjy(A) along
R((M — A)¥) can be represented by a Dunford integral
1
P\ = (21 — A)~ldz, (2.7)

= 3mi o,
where Ty is a small circle such that X is the only singularity of (2 — A)~! inside T'y.

Definition 2.2.4. An eigenvalue Ay is called a dominant eigenvalue of A, if there exists a € > 0,
such that if X is another eigenvalue of A, then Re\ < Relg — €.

Consider the scalar case of initial value problem (2.3), the characteristic equation A(z) is given
by (2.6). Define the auxiliary function y : C — [0, 00) by
0

0
() = / (1~ 0]2])e*® AV (1)(8) + / (—0)¢* dV (1) (9), 2.8)

-7 -7

where V' (u)(0) denotes the total variation function of p on [—7, 6] for each 6 in (—7,0].

Theorem 2.2.5. (Frasson [40]) Suppose that zg € C is a zero of detA(z) in (2.6). If x(z0) < 1,
then zg is a simple dominant zero of A(z).

Next, we provide the main result of Frasson and Verduyn Lunel [39], which presents the explicit
representation of asymptotic behavior of neutral delay differential equations.

Theorem 2.2.6. (Frasson and Verduyn Lunel [39]) Let A be given by (2.5), if A has a simple
and dominant eigenvalue \g, then there exists positive numbers € and M such that

le™ 4 T(t)p — Pr,oll < Me™,

and

t—o0 dz

Furthermore, if x(t) = x(-, ¢) denotes the solution of (2.3) with initial data xo = ¢, then

-1
lim e T (1) = er [d det A()\d)] adiA(A) K (M) .

-1
Jim e My (t) = [jz det A()\d)} adjAM) K (M),

where adjA(N\g) denotes the matriz of cofactors of A(Ng),
0

0
K(\)é = Dé + / (adu(8) + d(6)) e / 53 (s) ds,

-7 0
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Combining Theorem 2.2.5 with Theorem 2.2.6, we arrive at

Theorem 2.2.7. Let x(-) be the solution of (2.3) subjected to the initial condition zo = ¢ €
C([-7,0],R). If Aq is a real zero of characteristic equation A(z) given by (2.6) such that x(A\g) <
1, where x(-) is given by (2.8), then the asymptotic behavior of x(-) is given by

lim e Mlg(t) =

100 Ay M

where

0 0
HO\) = 1- / A du(8) — [ M (Agdpu(8) + dn(6)),

-7 -7

0 0
KMo = Mw—i-/ (Addu(9)+dn(9))e)‘d9/ e S (s) ds.

-7 (4

Note that the result of Theorem 2.2.7 is consistent with the result in [101] which was obtained
by using ODE method.

Example 2.2.8.

2 (t) + e/ (t — o) = ax(t) + bx(t — 1),

(2.9)
z(t) = ¢(t), —1<t<N0.
The characteristic equation of (2.9) is
AN) =M1 +ce™) —a —be™7. (2.10)

Note that the characteristic equation (2.10) may have no real root. Suppose that the character-
istic equation (2.10) has a real root Ao which satisfies

le|(1 4 [Xolo)e 207 + |blre 20T < 1,

then by Theorem 2.2.5, )¢ is a simple dominant root of (2.10). Hence, applying Theorem 2.2.7,
we obtain that

lim e Molx(g;t) = K(X0; ¢)

Jim, HO) (2.11)

where

0 0
K(aid) = 0(0)+co(-) — e [ Moo(s)ds +0e [ v as,

—0 -7

H(X) = 14c¢(1—Xgo)e 2% 4 bre 207,

(2.11) is consistent with the result in Kordonis et al. [84] which was obtained by using ODE
method .

Now, we use Theorem 2.2.7 to study the asymptotic behavior of (2.1). Let the initial condition
associated with (2.4) be given by

X, = ( g ) e CO([-r, 0], R?),
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The characteristic matrix corresponding to (2.4) is given by
ANz)=z+2e7°C —E—Fe ™ = N -1

so the characteristic equation is det A(2) = 2% + c2%e™7% — (p1 + pae "?)z — qze”™* — q1. Note
that the characteristic equation may have no simple dominant zero. Suppose that there exists a
simple dominant zero Ay of the characteristic equation det A(z) = 0, by Theorem 2.2.6, we have

i —/\th(t) — i eiAdt;U(t) d d tA()\ ) - dA()\ )K()\ )
Jim e = lim e—’\dty(t) T e d ad) d )9
)\d+C/\d€_T>\?_I;1_p2€_T)\d (1 )

B B\ B(A
- ( qrtge N ) A

where

i 4(0)
¢'(0) + et/ (=7) + [7 (p2 — Ag)e Y (s) ds + [0 gre (A g(s)ds |
It follows that

fim e alt) = 5<1Ad> [+ eXae™™ = 1 — e ™)6(0) + 6/(0) + e (~o)
0 0
# [ a5 sk [ e o) as).

where B(Ag) = 2X\g + (2cAg — cTAZ — pa + paTAg + qaT)e” ™M —py £ 0.

The next theorem gives a result similar to Theorem 2.2.6, in case that the real dominant eigen-
value is not simple.

Theorem 2.2.9. (Frasson [42]) Let \; be a real dominant zero of det A(z) of geometric mul-
tiplicity n > 1. If x(t) = x(t; ¢) denote the solution of (2.1) with initial data xo = ¢, then the
large time behaviour as a function of the initial data ¢ is described as follows.
1. If P\,¢ # 0, then
1 —Agt _
tliglo Te x(t) - Qm(na )‘dv ¢)7

where m = max{j € 0,1,2,..n — 1: qj(n Ad, @) # 0}, q; is given by

D" FK(A) DY TH(, ¢)

S n—1-k) (k=)

qj(n, A, ¢) =

j!

Furthermore, for integer n > 1, the n —th Fréchet deriwative of H(\, ¢) with respect to the first
variable is given by

r 0

Do) = (1) [ dulo) [ e otr —0)ar
T %

+(1)”z/0 du(@)/o e *To(T — 0)dr
r 0

—i—(—l)"/o dn(@)/o e T P(T — 0) dr.
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2. If Py\,0 =0, then

lim e *!z(t) = 0.
t—r00

2.3 An ODE approach to asymptotic behavior

In this section, we study the asymptotic behavior of the solutions of a class of second order neu-
tral delay differential equation (2.1) by employing ODE approach. An estimation of solutions of
the initial value problem (2.1) is made. As a consequence of this result, the sufficient conditions
for stability, the asymptotic stability and instability of the trivial solution are presented.

The characteristic equation of (2.1) is
A4 eAZe ™ = pd 4 pode ™ g + e (2.12)

Suppose that Ag is a real solution of the characteristic equation (2.12), we consider the first
order neutral delay differential equation

2 (t) 4+ ce T2 (t — 7) + (20 — p1)2(t) 4 (2ehg — p2)e N7z (t — T)

0
= (p1ho+q1 — D) / z(s +1)ds. (2.13)
With (2.13), we associate the equation
0
p+ (cp+ 2cho — p)e” "X 42X — py — (p1ho + q1 — /\%)/ e ds =0, (2.14)

which is said to be the second characteristic equation, and it is obtained from (2.13) by seeking
solutions of the form z(t) = e/,

Now, we present a proposition, which plays a crucial role in obtaining our main result pre-
sented in Theorem 2.3.2. This proposition essentially estabishes a transformation (via a solution
of the characteristic equation (2.12)) of the second order neutral delay differential equation (2.1)
into the first order neutral delay differential equation (2.13).

Proposition 2.3.1. Suppose \g is a real root of the characteristic equation (2.12), and let
B()\O) = 2)\d + (26)\0 — C’T)\% —p2+ pQT)\U + QQT)G_T)\O — 1.

Suppose that (Ao) # 0, then a continuous real-valued function x defined on the interval [—7, 00)
is the solution of the initial value problem (2.1) on [0,00) if and only if z defined by

_ K(X,9)

2(t) = e Moy (¢ for  ¢>0, 2.15
(v 0~ =5 > (2.15)
is the solution of the neutral delay differential equation (2.13) with the initial condition
K(A
2(t) = e Ml (t) — £, ) for —7<t<0, (2.16)
B(Mo)
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where x(t) = ¢(t) on [—7,0] and
KXo, 0) = ¢'(0)+ (Ao = p1)e(0) + c¢'(=7) + chod(=7) — pag(—T)

0
—(p1ho +q1 — M) / e % (s) ds.

Proof. Let x be the solution of the initial value problem (2.1) for ¢ > 0 with z(¢) = ¢(¢) for
—7 <t <0. Define
y(t) = e Motz (t) for t>-1.

Using the fact that \g is a real root of the characteristic equation (2.12), we have for every ¢ > 0,

[ (t) + ce 0Ty (t — ) + (2h0 — p1)y(t) + (2ehg — p2)e 0T y(t — 7))

= (p1ho + g1 — N)y(t) + (p2Xo + g2 — eAd)e Ty(t — 7) (2.17)
with the initial condition satisfies
y(t) = e Mept)  for  —7<t<0. (2.18)

By integrating (2.17), and using the initial condition (2.18), we have

Y (t) + ce 0Ty (t — ) 4 (200 — p1)y(t) + (2cho — po)e Ty (t — 1)
0
S / y(s + 1) ds + K (Mo, 6) (2.19)

-7

for all ¢ > 0, where K (g, ¢) is defined as in Proposition 2.3.1.

Now we suppose that 3(A\g) # 0 and define

K (Mo, ¢)
z(t) = y(t) — ———= for t> -,
) =v®) =505, >
by the definition of 5(Ao), we obtain that y satisfies (2.19) if and only if z satisfies (2.15) for all
t > 0. Moreover, the initial condition (2.18) is equivalent to (2.16). O

An estimate of the solution of initial value problem (2.1) will be given in the following theorem.

Theorem 2.3.2. Suppose Ao is a real root of the characteristic equation (2.12), and let S(\o)
and K (o, @) be defined as in Proposition 2.3.1. Suppose that 5(Ao) # 0, let ug be a real root of
the characteristic equation(2.30), and set

Yo, o) = 1+ cemMoFHIT _(epg 4 2N — p)e” PotHo)T
—(P1ho + a1 — g > (oTe 0T + e7HOT — 1),
Define

0 0
Houin, ) = $(0) +ed(—7) + (rdo + a1 — N) / / e~ ot b ) du ds

0
—(cpo + 2¢ho — p2)€_(/\0+“°)T/ e~ (PotH)sg(s) ds

~ K(Xo,9)

L+ce ™™ + (pho+q1 — Ao 2 (1 — e 10T — por)
B(Ao)

—(cpg + 2chg — pZ)Mal(l _ 6—#0T)6—(>\0+#0)T] )
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We assume that the real roots Aoy and pg have the following property
= Je|e”Gotro) — jp — 2X - “HT 1) [pr A — A3l <1
Xooo = |cle + 7lp1 — o ol + g “(oT + € ) [p1do+ a1 — Ag| < L.
Then for any ¢ € C([—1,0],R), the solution x of (2.1) satisfies

_ _ K()\Ov(b) ()‘07/1’07¢)
(Ho+Xo)t _ ot _ H .
e \H .iU(t) e M 5(/\0) 7()\07/“)) ' < M(A07M07¢)XAo,uoa

where

M (Ao, po; @) = max

ax , for t>0.
<t

o—Hiot <e)\0t¢(t) B K()\o,ﬁb)) ~ H(Xos o3 9)

B(Mo) 7(Xos to)

Proof. Note that g = 0 is a root of (2.30) if and only if 2X\g — p1 + (2cAg — p2)e™ ™0 — (p1Ag +
q1 — A3)7 =0, from the definition of 3(\g), we obtain that if zero is a root of (2.30) if and only
if 5(Aog) = 0. Hence, if we assume that S(\g) # 0, then we always have po # 0.

From the assumption that |xx,u| < 1, we conclude (Ao, po) > 0. Suppose that x is the
solution of the initial value problem (2.1) with z(0) = ¢(0) for —7 < 6 < 0, by Proposition
2.3.1, the fact that x is the solution of the initial value problem (2.1) is equivalent to the fact
that z is the solution of the delay differential equation (2.15) which satisfies the initial condition
(2.16). Set

w(t) = e H0lx(t) for t>—,

then by using the fact that pg is a real root of the characteristic equation (2.30), we obtain, for

every t > 0,
[w(t) 4+ ce= oIyt — 7)) = (p1 — po — 220)w(t) — (cpo + 2cAg — pa)e~ CoHHOIT (¢ — 7)
+(p1Ao + @1 — A3) /0 eM%w(s +t) ds, (2.20)
and the initial condition satisfies
w(t) = e_(“°+/\°)tqﬁ(t) — e_“otL(/\o7 9) for —7<t<0. (2.21)

B(Xo)

By integrating (2.20) and using the initial condition of (2.21), we obtain
t
w(t) + ce” QoI (t — 1) = (p1 — po — 2Xo) / w(s)ds (2.22)

t—1
0 s+t
+(p1ho+q1 — )\(2)) / e“os/ w(u) duds + H(No, po; @),
-7 t—T1

for all t > 0, where H (Ao, po; ¢) is defined in Theorem 2.3.2.

Define

_ H(Xo, po; @)

v(t) = w(?) 7(Xos o)

for t>—7,
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then by the definition of v(\g, to) in Theorem 2.3.2, we obtain that the fact that w satisfies
(2.22) is equivalent to the fact that v satisfies the following equation

v(t) + ce”MoFHOITY(E — 7Y = (pr — o — 2X0) /t v(s)ds (2.23)

+(p1do +q1 — A3) / 6“05/ u) duds,
—T t—1

for all ¢ > 0. Moreover, the initial condition is equivalent to

e—uotK()‘O’d)) ~ H(Xo,s po; 9) for _r<t<0. (2.24)

B(Xo) v(Xos to)

o(t) = e~ (HotRo)t gy —

Define
_ —uot K (Ao, ¢) — H(Xo, po; @)
M(Xo, pio; @) := max |e (Hotro)tg ) _ g=rot S — 2
(o, o3 #) = _max, o) (o) 7(Ao, o)
In view of (2.24), we have
lv(t)| < M (Ao, po; @) for —7<t<0.

We will next show that M (Ao, po; @) is also a bound of v on the whole positive half line. For
this purpose, we take an arbitrary ¢ > 0 and claim that |v(t)] < M (Ao, po; ¢) + € for t > —7.
Indeed, suppose that there exists a point tg > 0 such that

lv(t)] < M(Xo,to; ) +¢€ for —7 <t <tp,
lv(to)] = M(Xo,po; @) + e (2.25)
Then by (2.23) and the definition of x, ., we have
M(Xo, po; @)+ = |v(to)]
< Jele™ 00 ufty = )] + [pr — i — 2 o) ds
0—T
+p1do+q1 — | 6“05 /t u)| duds
. o

IN

(M (N0, p036) + &) (Jele™ 07 4 7lp1 — g = 20|

+1g 2 (poT + €T — 1) |p1Ao + q1 — Aj] )
= (M()‘Oa,u()ad)) +5) XXo, k0 < M()\07M07¢) + €,
and we arrive at a contradiction. This implies that our claim is true and since ¢ is arbitrary, it

follows that |v(t)] < M (Ao, po; ¢) for t > —7. Together with (2.23), we arrive at

t
o(D)] < Jele” T fu(t — )+ |p1r — po = 2Xol [ [o(s)]ds

t—1

ot a2 [ ems / (w)| du ds,
—T t—1

IN

M (o, 103 )(H Rotu)™ 471y — pg — 220

'HLEQ(MOT 4 e HOT _ 1) ’pl)\o +q1 — )\%‘ )
= M(Xo, 10; D) Xro,u0 < M (Ao, po; @),
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for all ¢ > 0. This implies

o —(mo+o)t - OtK()\(bd)) . H(AO,,U/O,(Z)) .
”U(t)’ =le * .’I](t) e ! 6()\0) ’Y(AO,,U/O) < M(A07/*L07¢)X/\0,M07

for all ¢ > 0. This completes the proof of Theorem 2.3.2. O

Using the result of Theorem 2.3.2, we can next discuss the asymptotic behavior of the solution
of initial value problem (2.1).

Theorem 2.3.3. Suppose Ao and po are real roots of the characteristic equations (2.12) and
(2.30), respectively. Let B(Xo); Xxg,u0» V(o5 o) be defined as in Proposition 2.3.1 and Theorem
2.8.2. Then for any ¢ € C(]—7,0],R), the solution x of initial value problem (2.1) with x(0) =
d(0) for —t < 0 <0 satisfies

L ot K (N0, ) H (Ao, po; @)
lim e~ (WotA0)t (1) — g rot =
t—o00 ®) B(Ao) (Ao, o)

where K (o, @), 5(Xo), H(Xo, o; ¢), ¥(No, o) are given in Proposition 2.3.1 and Theorem 2.3.2
respectively.

Proof. By the definition of x,y, z, w and v, we have to prove that

lim v(t) = 0.

t—o00

From Theorem 2.3.2, one can show by induction that v satisfies
[(t)] < M(Xo, o5 @) (Xrg,mo)" for all t>nr —7. (2.26)

Since 0 < Xg,uo < 1, thus from (2.26), we obtain that v tends to zero as ¢ — oo. d

Definition 2.3.4. The trivial solution of (2.1) is said to be stable if for any ty € R and any
e > 0, there exists § = 0(to,e) > 0 such that ||, || < & implies |x(t)| < e fort > to. The solution
is said to be asymptotically stable if it is stable and for any to € R and any € > 0, there exists a
da = 0a(to,€) > 0 such that ||z, || < dq implies lim;_,o0 z(t) = 0.

As a consequence of Theorem 2.3.2 and Theorem 2.3.3, we have the following stability criterion.

Theorem 2.3.5. Let \g and po be real roots of the characteristic equations (2.12) and (2.30),
and let B(Xo0)s Xxg,u0- V( Ao, o) be defined as in Proposition 2.3.1 and Theorem 2.3.2 respectively,
and satisfy the conditions in Theorem 2.3.2. Then for any ¢ € C(|—1,0],R), the solution = of
(2.1) with x(0) = ¢(0) for —1 < 0 <0 satisfies

kxo Aot [ hxo .o
)\ . 0
‘$(t)| < |B()\O)|N( 07#07@5)6 + |7(AOaM0)|

Ky e h
(1 T ) ] N O )00
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where
kxg = L4 e|+ X0 —p1] + lel|do| + [p2] + [p1ho + a1 — N3],
— —pot
s _max fe ",
hago = 1+ | 4 [p1Ao + q1 — )\(%|N62(1 — e T — pgTe HOT)

+|cpo + 2¢ho — pg\Te_(AOJF“O)T

Ex,
1B(Xo)|
+epo + 2¢ho — pal|pg (1 — e*ﬂ@f)ye*@ow)f] ,

_|_

[1 +lele™0 + [prdo + g1 — A2|pg 2 (por + €707 — 1)

. — —Aot 7(}\04»“0)2‘/ /
N o) = max{ mx e o0, ma o0, ma 6] w6011}

Furthermore, the trivial solution of (2.1) is stable if Ao < 0, g + o < 0; it is asymptotically
stable if A\g < 0, Ao + o < 0; and it is unstable if po > 0, A\g + o > 0.

Proof. From Theorem 2.3.2, it follows that

—(po+Xo)t | ()‘qub)’ —pot | ()\07M07¢)| .
¢ (t)] < Tt 0 P oty ELO L0 v g ,
’ ( )| |B()‘0)| |ry(>\0”u0)| | ( 0, 10 ¢)|X>\07N0

where K(A07 qb)? H(AOa 1o, ¢), M(A07 Ho; ¢)> /B(AO% 7(>\07 MO)? Xo,po A€ defined as in Theorem 2.3.2
respectively. From the representation of K (Ao, ¢), H(\o, 0, ®) and M (g, j10; ¢) we have

|K(>‘07¢)| < kkoN(AmUO;Qb)v |H()‘0a/‘507¢)’ < h/\onuoN()‘Onu’O;qb)v

K)\oelto h>\07u0 )
M\ ; 1 N(A J0).
’ ( OaMOa(b)’ < ( + |,8(A0)‘ + "Y(AOHUO)’ ( 07/-1'07¢)

Hence, it follows that

k h
6_(”O+A°)t|x(t)] < me—#ot]\[()\o, Ho; ¢) + WN(AO’ 103 ¢)

Ky e hy
Bl R e i >N)\>M§¢X>\ ;
< B0 T o] ) ¥ Por 03 00

which yields

h K h
’w(t)‘ S [M + (1 4 )\oe,lto + Ao, 140 ) X)\0,/,L0:| N()\Oa/i0§¢)€()\0+uo)t

(Ao, 1o 1B(Ao)l  [v(Xos o)
k>\0 . Ao
+|5(A0)|N(AO’MO’ ¢)e! (2.27)

for ¢ > 0. Next, we consider three cases to discuss the stability of the trivial solution.

Case 1. Suppose that \g < 0,\g + o < 0, then et < 1, e(hotro)t < 1. Define ol =
max_r<¢<o |¢(t)], it is not difficult to obtain that ||¢| < N (Ao, o; ¢). From (2.27), we have

kxo Ky, Cuo > hAo,Mo
14+ == 1 —= 1 N(A ; 2.28
‘m(t)’ < |:|B(AO)| + < + |6<)\0)| X o, ko +( +X/\0“U«0) |’}/(>\0,,U,0)’ ( 07“07¢) ( )
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for every t > 0. Define

k/\o ( K>\061m> h/\o Ho

pi= + {1+ oo T (L + Xnomo) = -
1B(0)] B(Xo)] ) 7 "My (X0, o)

For any ¢ > 0, we choose § = ep~! such that N (A, uo; @) < J, since

lloll < N(Xo,uo; @), we obtain that [|¢| < §. From estimate (2.28), we obtain |z(t)| <

pN (No, to; @) < pd = . This implies the trivial solution of (2.1) is stable.

Case 2. Suppose that A\g < 0, \g+po < 0. From estimate (2.27), it follows that lim;_, o z(t) = 0.
Hence, the trivial solution of (2.1) is asymptotically stable.

Case 3. Let pg > 0,\g + o > 0. If the trivial solution of (2.1) is stable, then there ex-
ists a number [ = (1) > 0 such that, for any ¢ € C([—7,0],R) with ||¢|| < the solution = of
(2.1) with z(0) = ¢(0) for —7 < 6 < 0 satisfies |z(¢)| < 1 for ¢ > 0. Define

¢o(t) = ePotuo)t _ grot for ¢ ¢ [—T,0].

By definition of K (Ao, ¢)and H (Ao, po, @), and using the relation of (2.12) , we have K (Ao, ¢g) =
—B(Xo) and H (Ao, ko, o) = Y( o, ko). Let ¢ € C([—7,0],R) be defined by ¢ = H(Z?IOH% with
0 <y <. From Theorem 2.3.3, we have

. —(po+ro)t - OtK()\Oad)) _ H (o, po; ¢)
tll)rgloe a x(t) —e ¥ B0v) ~ 000) (2.29)

On the other hand,

. ot (X0, @) . L
lim e~ (HotA)t g4y — gm0t 220 T iy o= (BotA0)ty (4 4 e—Hot — ()
a " Blo) o OF Tl

)

but

H(Xo, po; @) (/l[¢oll)H (Ao, pos @) Ly 0.

~Oho, 10) 0o el

This is a contradiction to (2.29) and this shows that the trivial solution of (2.1) is unstable. [

2.4 Discussion of the two approaches

In this section, we discuss the relations of spectral method and ODE method. First, we consider
the conditions of Theorem 2.3.3 in more detail. Suppose g is a real root of second characteristic
equation (2.30). If ug satisfies x»,,u, < 1, we claim that pg is a simple dominant zero. Let

0
G(1) := 4 (cp + 2ehg — p2)e TAoH) L 2Xg — pi — (pr Ao + g1 — AD) / e ds.  (2.30)

—T

By the condition x),,u, < 1 in Theorem 2.3.3, we have G'(jo) # 0.

Indeed, since X0 < 1,

|G (po)| > 1 — [|C|€_(A°+’“’)T +7lp1 — ko — 2X0| + pg 2 (0T + €M7 — 1) [prAo + q1 — )\3” > 0.
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Since Xxg,uo < 1, 1let 0 < < 1 such that x), ., < J. From the representation of X, ,,, we can
estimate

1 1 } L
1—g!C|€ (Ro-Fro) >5[7|P1—M0—2)\0|+M02(M07+6 HT — 1) [prho + @1 — AG] -

Let € > 0 such that 1 < e < %, and we let 2 denote the right half plane given by
Q={peC:Reu>pu—e}.

For € Q and 0 < s < 7, we have |e™ | = e~sHer < gshoess < #. If ue Q,let v denote
the line segment between pg and p, such that the segment is in §2, then for 0 < s < r,

p e—5Ho
le™H — eTSHo| = / sets dt' =s /ets dt’ < | — pols, (2.31)
Ho g 0
since G (1) = 0, we have
Glp) = (= po)(1+ceTNF) 4 cpge ™0 (e — e7TH)

0
+(2cAg — pg)e_T)‘O(e_T“ —e TH) — (p1 Ao+ q1 — /\3) / (e7TH — e7THO) ds.

)

M — Ho . —HeT
_|5|{T!p1—uo—2/\o|+u02(u07+6 T =1 pdo + a1 = Agl} >0,

Now, we estimate |G(u)| by using (2.31),

1
G| = |u— ol (1_ léce—woﬂm)

which means pg is the only zero in the right half plane €2, so g is a simple dominant zero.

For the case when the space C = C([—7,0],R). The main result in [101] (using ODE method)
and Theorem 2.2.7 implies that spectral approach is equivalent to the ODE appraoch in this case.

For the case when the space C = C([—7,0],C"), as we discussed in Section 2.2, the spectral
approach can be applied to study the asymptotic behavior of the functional differential equa-
tions with the solutions in this space. However, for this case, the ODE approach is not applicable.

In the following, we present two examples to illustrate the relations of the two approaches.

Example 2.4.1. We suppose a=1,b=1,c=1and o =7=11in (2.1). We have

2+ 2" (t—1) =z(t) +z(t — 1),
(2.32)
z(t) = o(t), —-1<t<0.
The characteristic equation of (2.32) is A2 + A2e™* = 1 + e~*. We denote
F(A) =M+ e —1—e?*=(A=1)(1+e?), Since F1(1) =0, F{(1) =2+ 2 # 0, we have
that Ao = 1. is a simple zero of Fy(\). Hence, (2.32) becomes

)+ e (t— 1)+ 22(t) + 27 2(t — 1) = 0, (2.33)
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and the characteristic equation of (2.33) is
pA (p+2)e# 1 2 = (ut2)(1+e 1) =0

We denote G1 (i) = (1 +2)(1 4+ e #~1). Since g = —2 is a real zero of G1(u), the condition of
Theorem 2.3.3 is x1,—2 = e > 1, so Theorem 2.3.3 is not applicable.

But A = —1 is another root of F}(\) and satisfies F](—1) = —2 — 2e # 0, so (2.32) becomes
Z(t) +e(t—1) —22(t) — 2ez(t — 1) =0, (2.34)
and the characteristic equation of (2.34) is
p+(p—2)e” B —2 = (u—2)(1+e D)y =0. (2.35)

It is easy to check that u = pg = 2 is a real root of (2.35). Corresponding to the roots \g = —1
and po = 2, the condition of Theorem 2.3.3 becomes y_12 = e~ < 1. Therefore by using the
result of Theorem 2.3.3, the asymptotic behavior of initial value problem (2.32) is

lim e ~ta(t) = H(-1,2¢) _ ¢(0)+¢(=1) +¢(0) + ¢'(=1)
=00 v(~1,2) 2+ 2e71 '

Next, we apply Theorem 2.2.6 to study the asymptotic behavior of initial value problem (2.32).
The characteristic matrix of (2.32) is

z -1
Az = <—ez—1 z—i—zeZ)'

Since z = zp = 1 is a dominant zero of det A(z), and d%(det A(2))|2=20 = 2+2e71 # 0, we obtain
that zp = 1 is a simple dominant zero of det A(z), which satisfies the condition of Theorem 2.2.6.
Therefore, we have

Jim e~taft) = AOT D+ OO+ )

From this example, we see that the result by the spectral approach is the same as the one by
the ODE approach.

Example 2.4.2. We suppose a =1, c =7 =1, b=c in (2.1), we have

2’ (t) + e (t — 1) = z(t) + cx(t — 1),
(2.36)
z(t) = ¢(t), —-1<t<O0.

The characteristic equation of (2.36) is
N4eXNer =1+ ce_/\,

we denotes Fo(\) = A2 +cA2e™ —1 —ce ™ = (A2 — 1)(1 + ce™). Since Fy(—1) =0, Fj(—1) =
—2 —2ce # 0, So A\g = —1 is a simple zero of F5(\), (2.36) becomes

2 (t) + ced (t — 1) — 2z(t) — 2cez(t — 1) = 0. (2.37)
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1.4

— e x()

20 40 60 80

Figure 2.1: Numerical solution of equation (2.32).

The characteristic equation of (2.37) is
p+ (p—2)ce” W =2 = (1 —2)(1 4 ce=® V) =0.

We denote Ga(p) = (1 — 2)(1 + ce= 1), Since pug = 2 is a real zero of Go(u), corresponding
to the roots \g = —1 and pg = 2, the condition of Theorem 2.3.3 is x_12 = |cle™L. If || < e,
we have x_12 < 1. Therefore by using the result of Theorem 2.3.3, the asymptotic behavior of
initial value problem (2.36) is

H(=1,2;¢) _ ¢(0) + ¢'(0) + c(¢(=1) + ¢'(-1))

lim e ‘z(t) = =
1500 ®) v(—1,2) 2+ 2ce!

Next, we consider (2.36) by applying spectral approach. For (2.36), the characteristic matrix is
given by

z -1
A = .
(2) < —ce " =1 z+cze” )

(1) Case —e < c. It is not difficult to check zgp = 1 is a dominant zero of det A(z), since
d%det AN(2)|ymzg = 2+ 2ce™ # 0, 50 20 = 1 is a simple dominant zero of det A(z).
Therefore, by applying the result of Theorem 2.2.6,

lim e~tu(t) = AT IO +e(6(-1) +¢(=1))

{00 2+ 2ce~!

(2) Case ¢ < —e. After checking the roots of det A(z), we find 29 = In(—c) is a dominant zero
of det A(z) and we can also use Theorem 2.2.6 to obtain the asymptotic behavior of the
equation initial value problem (2.36).

(3) Case ¢ = —e. We learned that zp = 1 is a dominant zero with order 2, so by the spectral
approach in |6], we can have the asymptotic behavior of the equation initial value problem
(2.36).
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From this example, we derive that for the ODE approach, the coefficient ¢ should satisfy |c| < e.
However, for every ¢ € R, the asymptotic behavior of the equation initial value problem (2.36)
can be obtained by the spectral projection approach, and the result is the same as the one by
the ODE approach when ¢ satisfies |¢| < e.

2.5 A fixed point method towards asymptotic behavior

In this section, we study the special case of the system (2.1) with ¢ = 0 and py = 0. Since
it is not easy to apply the ODE approach or the spectral approach to discuss the asymptotic
behavior because of the difficulty in computing the roots of the characteristic eequation, we
introduce a third approach, based on a fixed point method, to study the asymptotic behavior of
such equations.

This approach is based on fixed point theory and relies on three principles: a complete metric
space, the contraction mapping principle, and an elementary variation of parameters formula.
Together this yields existence, uniqueness and stability.

By using a fixed point approach, Burton and Furumochi [10] have considered asymptotic stability
of the following linear equation

2"(t) + ax'(t) + bx(t —7) =0 (2.38)
and obtained the following.
Theorem 2.5.1. (Burton and Furumochi [10]) Let a > 0 and b > 0. If

t
br <1 —|—/ | AeAt=9)] d5> <1
0

0 1 . ‘ . S
>, then every solution of equation (2.38) and its derivative tend to

holds, where A = (
—b —a

0 ast— oo.

By using a similar technique as Burton and Furumochi [10], we consider the retarded delay
differential equation

2" (t) + az'(t) + bx(t — r) + cx(t) = 0. (2.39)

Let 2’ =y, (2.39) can be written in the following form

Yy =—ay— (b+c)z + (d/dt) /t bx(s)ds,

t—r
which is then expressed as the vector system

2= Az + (d/dt) /t Bz(s) ds,

t—r

where A and B are

A:<_(b0+c) _1a) and B:(g 8) (2.40)

47




Chapter 2. Asymptotic behavior of a class of autonomous neutral delay
differential equations

By the variation of parameters formula

t s
2(t) = ez +/ A=) (d/dS)/ Bz(u) duds,
0 s—r

employing an integration by parts, we have
t 0 t s
2(t) = etz + Bz(u) du — e | Bz(u) du + A/ eAlt=s) / Bz(u) duds.
0 s—r

t—r —r

In order to have e4* — 0 as t — oo, we need
b+c¢>0, a>0.

Let C([-r,0],R?) be the space of continuous functions, let ¢ € C be an initial function and
define

Se:={p:p€C(-r, 0,R?),o(t) = ¢(t) on [-r,0], o) =0 as t— 0o} .

Define a mapping P : Sy — Sy

t 0 t s

(Po)(t) = e (0)+/ Bop(u) du—eAt/ Bop(u) du—i—A/ eA(t_S)/ Bp(u) duds.
0 s—r

t—r —r

We choose a suitable norm for a vector or matrix. For

-(3)

let |z]p :=|z| + |y|. Let @ be a fixed 2 x 2 nonsingular matrix such that |¢|op < 1, where ¢ is the
second column of @, and let |z| := |Qz]p. For a 2 x 2 matrix M, let

|M| = sup {|QMQ "zl : |2lo = 1}, (2.41)

then |M]| is the norm of M. We have the following theorem.
Theorem 2.5.2. Letb+c¢ >0, b>0 and a > 0, if the following condition is satisfied

t
br <1 —I—/ | AeAt=9)] ds) <1, (2.42)
0

where A is given by (2.40), then every solution of equation (2.39) and its derivative tend to 0 as
t — 00.

Proof. Since et is a L'-function on R*, if ¢ € Sy, then (Pp)(t) — 0 as t — oo. Thus,
P :S4 — Sg. Furthermore, from condition (2.42), we have that P is a contraction with respect
to the norm (2.41) on Sy4. The proof proceeds similarly to the proof as presented by Burton and
Furumochi [10]. O

Example 2.5.3. Consider the equation

! () + lx(t —2) — ig;(lt) =0, teRT. (2.43)

1!
t -
T+ o7 6 12
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Figure 2.2: Numerical solution of equation (2.43).

We have

A:<—1(}12 —71/12> and B:(l(/)ﬁ' 8)‘

The eigenvalues of A are —% and —%, let @ be a 2 x 2 nonsingular matrix such that

QAQ1:<—1/3 0 >

0 -1/4
Then we have Ae( = QFEQ™ ', where
o ( —(1/3)e~lt=2)/3 0 >
0 —(1/4)e~t=9)/4 )»
and
[4eM7)) = sup{|Ez|o : |z]o = 1}

= sup{(Ja1/3)e I3 1yl eI af + [yl = 1)
< (1/3)e7 B 4 (1/a)em I

Hence,
t t
/ ]AeA(t_S)]dsg/ [(1/3) (t=9)/3 L (1/4)e==3)/4) ds =2 — e/ — 7t < 2
0 0

for ¢ > 0, which together with br = % implies that (2.42) holds. Thus, by Theorem 2.5.2, we
have that the zero solution of (2.43) tends to 0 as ¢ — oo.
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2.6 An application to a mechanical model of turning processes

Systems governed by (neutral) delay differential equations (DDEs) often come up in differen-
t fields of science and engineering. One of the most important mechanical application is the
turning processes. For the simplest model of turning, the governing equation of motion is an
autonomous DDE with a corresponding infinite dimensional state space. This fact results in
an infinite number of characteristic roots, most of them having negative real parts referring to
damped components of the vibration signals. There may be some finite number of characteristic
roots that have positive real parts.

From the detailed introduction of mechanical models of turning processes in [59]|, we focus
on a linear autonomous delay differential equation

m&(t) + c'(t) + k&(t) = —wh(§(t) — &(t — 7)), (2.44)

where m, ¢, k,w, h, T are constants. For the meaning of every parameter, refer to [59].

Using the model parameters, equation (2.44) reads

_wh

£"(t) + 2Cwn€' (1) + wié(t) = (&) =&t —1)), (2.45)

m

where wy, = \/k/m, ( = ¢/(2mwy,). Generally, ¢ =~ 0.005 ~ 0.02. Equation (2.45) is the stan-
dard linear delay differential equation model of the turning process.

Equation (2.45) can be even further simplified. Introduce the dimensionless time ¢ by £ = twy,
and by abuse of notation, drop the tilde immediately. This gives the dimensionless equation of
motion

(1) +2¢8"(t) + £(t) = —w(&(t) — &(t — wnT)), (2.46)

where @ = m“’—ﬁ& In the following, we study the asymptotic stability of equation (2.46) by The-

n

orem 2.5.2.
Equation (2.46) can be written as the following.
¢"(t) +2¢€' (1) + (1 + )& (t) — wE(t — wnt) =0, (2.47)

We denote w,,7 = r. From (2.47), we have

0 1 0 O
(—1 —2<> and (—w 0>
The characteristic equation of A is
M 4200 +1=0.

The eigenvalues are

M=—CHiVI-G d=-C—iV1-C,
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2.7. Notes and remarks

S0 |[A1] = |A2] =1, \Ale’\l(t_s)\ = \Al\e(ReM)(t_s) and ’)\26,\2@—5)‘ = ]/\2]6(36/\2)@—3).

If ¢ ¢ {—1,1}, the two different eigenvalues Aj, A2 have eigenvectors Vi and Va, which are
linearly independent. Suppose that Q = (V4,V2)~!, then

(A 0.
QAQ _<o )\2)_A.

Hence,
A=Q7'AQ = (Vi, Vo) A(Vi, Vo), eAlm9) — @ 1eAl=9)q,
Then we have

AeA(tfs) — Q*lAQQfleA(tfs)Q — QflAeA(tfs)Q — QilEQ,

)\16)\1(15—5) 0
b :< 0 et )

Using the norm in Theorem 2.5.2; we have

where

|AeAt3) | = sup{|Ez|y : |z]o = 1}
= sup{‘x)\lekl(t_s) + [yroe?2 9| ¢ || + Jy| = 1}
— sup {Ja felFANE [yl BAN) o] 1 [y 1}

2e ¢ (=),

IN

Hence,

t t
/ |AeAt=9) | ds < / 2e =) ds <271 — e, ¢ >0,
0 0

(—@)r <1+/0 |AeA<t—s>|ds) < (—0)r(1+2¢7H1 — e™%Y)) < (—w)r(1 +2¢7Y).

If (—w)r/¢ < 1/3, the conditions of Theorem 2.5.2 are satisfied, that is to say, if w < 0 very
large or r very small, then every solution of (2.47) and its derivative tends to 0 as t — 0.

2.7 Notes and remarks

For more results on asymptotic behavior of autonomous delay differential equations, see the
overview books by Hale and Verduyn Lunel [51], Diekmann, van Gils, Verduyn Lunel and
Walther [29], Driver [35], papers by Driver [36], Philos and Purnaras [101, 102, 105, 106], Dix,
Philos and Purnaras [33], Frasson [41, 40, 42|, Frasson and Verduyn Lunel [39].

In this chapter, we used three methods to study asymptotic behavior of the solutions of function-
al differential equations, that is, ordinary differential equation (ODE) method, spectral method
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and fixed point method. The basic idea for the ODE method in Section 2.3 essentially originat-
ed in a very interesting asymptotic result due to Driver [37]| concerning the solutions of linear
differential systems with small delays. Motivated by the treatment in [37], Philos, Purnaras and
many other authors [84, 101, 102, 103, 104, 105, 106, 137] have obtained some interesting results
on the asymptotic behavior of the solutions to autonomous differential and difference equations
with delays. For example, equations with neutral terms, equations with variable delays, periodic
differential and difference equations with delays. Continuing the study for asymptotic behavior
of a wide class of functional differential equations, Frasson and Verduyn Lunel [39] explored a
new approach, the so-called spectral approach. Frasson [40, 41, 42| established some interesting
results based on the results in [39]. Towards asymptotic behavior, a fixed point method (see
Burton [13]) is introduced. This method is one of the main methods in this thesis. For more
detailed information about the fixed point method, refer to Chapter 4, Chapter 5 and Chapter 6.

A paper based on the contents of this chapter has been submitted for publication ([17]).
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CHAPTER 3

Asymptotic behavior of a class of
nonautonomous neutral delay
differential equations

In this chapter, asymptotic behavior of a class of nonautonomous neutral delay differential
equations is studied. It should be emphasized that asymptotic behavior of nonautonomous
equations is much more difficult than the case of autonomous equations. For instance, Frasson
and Verduyn Lunel [39] studied the following linear periodic delay equation

k

2(t) = a(t)a(t) + > bi(t)a(t — 7)), (3.1)

J=1

where a(t +w) = a(t), bj(t+w) =b;(t), j =1,2,--- , k, they considered a particular case where
7; = jw (i.e. the delays are integer multiples of the period w). However, it is very difficult to
study general nonautonomous problems.

For a special class of nonautonomous problems, we can use an approach similar to the ODE
method as we discussed in Chapter 2, which is based on the application of an appropriate solution
of the generalized characteristic equation. For nonautonomous equations, solving the generalized
characteristic equation becomes much harder: functional equation instead of algebraic equation.
Our result can be applied in case the assumptions are satisfied, i.e., the generalized characteristic
equation has a real solution.

3.1 Introduction and main result

For r > 0, let C = C([—r,0],C) be the space of continuous functions taking [—r, 0] into C with
llell, ¢ € C, defined by ||¢|| = max_,<p<o |©(0)|. A delay differential equation of neutral type,
or shortly, a neutral equation is a system of the form

d
Mz =L(t)ze t>ty€R, (3.2)

where z; € C is defined by z4(0) = z(t +6), —r < 0 <0, M : C — C is continuous, linear and
atomic at zero, (see [51] on page 255 for the concept of atomic at zero),
0
Mo =(0)~ [ ¢(6)du®), (33)

-r

where Varp, gju — 0, as s — 0.
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For (3.2), L(t) denotes a family of bounded linear functionals on C, and by the Riesz repre-
sentation theorem, for each ¢ > tg, there exists a complex valued function of bounded variation
n(t,-) on [—r,0], normalized so that n(¢,0) = 0 and n(t,-) is continuous from the left in (—r,0)
such that 0
Lty = [ (6 dun(t,6). (34
T
For any ¢ € C, 0 € [tg,o0), a function z = z(o,¢) defined on [ — r,o + A) is said to be a
solution of (3.2) on (0,0 + A) with initial ¢ at o if x is continuous on [0 —r,0 + A), 7, = ¢,
Mz, is continuously differentiable on (0,0 + A) and relation (3.2) is satisfied on (0,0 + A). For
more information on this type of equations, see [51].

The initial-value problem (IVP) is
4 Mz, =L(t)zy t>o,
(3.5)
Ty = .
For = 0in (3.3), My = ¢(0) and equation (3.2) becomes a retarded functional differential

equation,

2'(t) = L(t)zs. (3.6)

Consider the generalized characteristic equation of (3.6)

A#) = /0 "exp <— /t;)\(s)ds) don(t,6) (3.7)

which is obtained by looking for solutions to (3.6) of the form

(1) = exp ( /0 ) ds> . (3.8)

By a solution of the generalized characteristic equation (3.7), we mean a continuous real-valued
function A(-) defined on [tg — r, 00) which satisfies (3.7).

Cuevas and Frasson |26] studied the asymptotic behavior of solutions of (3.6) with initial con-
dition z, = ¢, and obtained the following result.

Theorem 3.1.1. Assume that A(t) is a real solution of (3.7) such that

lim sup / Ble Ko X4 o1 (1,0 < 1.

t—o00 0

Then for each solution x of (3.6), we have that the limit

t
lim z(t)e Jig Me)ds
t—»00

exists, and

/
lim |:1,‘(t)€_ ftto A(s)ds —0

t—o00

Furthermore,
t t
lim 2/(t)e” Jug MM _ iy At)z(t)e Jio /\(S)ds,

t—o00 t—o0

t
if limy_yo0 A(t)z(t)e Jug MM it
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3.2. Proof of Theorem 3.1.2

Motivated by the work of [26], we provide a generalization of [26], as it can be applied for in-
stance for neutral delay differential equations with distributed delays or discrete delays, as far
as the delays we considered are uniformly bounded. The method for the proof of the main result
is similar to [26, 33].

For equation (3.2), the generalized characteristic equation is

A(t) = /i dp(0)A(t + 0) exp (— /t;)\(s)ds> + /(i don(t,0) exp <— /t;)\(s)ds) , (3.9)

which is obtained by looking for solutions of (3.2) of the form (3.8) and the solutions of (3.9)
are continuous functions defined in [0 — 7, 00) satisfying (3.9). For autonomous neutral delay
differential equations, the constant solutions of (3.9) are the roots of the so called characteristic
equation. The following is our main result.

Theorem 3.1.2. Assume that a real-valued function \(t) is a solution of (3.9) such that

limsup x»; < 1, (3.10)

t—o00

where

0 t 0 t
xmz/ e_f””(s)dsdlul(G)Jr/ (=0)e™ eva XU (1Nt + 0)[ d|p|(8) + doln|(t,6)).-

—r —r

Then for each solution x of (3.5), we have that the limit

'
lim a(t)e” Jio M) ds (3.11)
exists, and t ,
Tim |z (t)e” Ji M s _ g (3.12)
Furthermore, t .
Jim 2/ (t)e” Jig M) s Jim A(t)a(t)e” Jig Ae)ds (3.13)

if the limit at the right-hand side ezists.

Remark 3.1.3. The conditions in Theorem 3.1.2 are very strong and therefore the theorem is
far from providing a general theory. However, it can be applied to deal with certain examples,
see Section 3.3.

3.2 Proof of Theorem 3.1.2

In this section, we prove Theorem 3.1.2. We start with some preparations.

From (3.10), we obtain that there exists t; > fo, such that sup,>; xx: < 1. Without loss
of generality, we assume ¢; = 0 and define

[y :=supxy: <1
t>0
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For solutions x of (3.5), we set

Then (3.5) becomes

0 t
y (1) + AB)y(t) — / () (t + B)e— o A s

-T

N / e+ 0)e S50 8 (A1 10) du(6) + don(, )

—-r

and the initial condition is equivalent to
y(t) = plt)e™ hXE <t <o,

Combining (3.15) with (3.9), for ¢ > —r, we have
0
y/(t) = / du(@)y’(t +0)e” ftt_w A(s) ds

—-r

0 . 0
_ / e~ JiyoAs)ds / y'(s)ds (At +0) du(8) + don(t,0)) .

—r —r

From the definition of the solutions to (3.5), we know that y/(¢) is continuous, Let

Mgy, = max{

o (t)e Jo Mo ds _ \yp(t)e Jo Meds| . _p < g < 0} .
We shall show that M., ), is also a bound of %' on the whole interval [—r, c0); i.e.,
YO < My, t2-r.
For this purpose, take € > 0, then
Y/ (t)] < Mya, +€ for t>—r.
In fact, we suppose that there exists a point t* > 0 such that

Y1) < Myy +e for —r<t<th,
Y/ () = M, +e

Then combining (3.16) and (3.19), we obtain
y/(t*) = M‘Pz)\l + €

0 -
[ v s o) B gye)

IN

0 . 0
+ ‘/ e~ Jixro M) ds/ Y (s)ds (A(t* + 0) du(0) + den(t*, 9))‘

IN

0 £
(Mp, +2) { [l EE o a0

-

0 £*
+ [l O (@ 1) dlal6) + dollt” 0))}

=T

= (M%)\l + 6)F>\ < Mcp,)q + &,

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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which is a contradiction, so (3.18) holds. Since (3.18) holds for every ¢ > 0, it follows that
[y ()| < My, for all ¢t > —r.

We are now ready to prove Theorem 3.1.2.
Proof. By using (3.16) and (3.17), for t > 0, we have
0 t
ol < | [ o ot
o C iords [0
+' / e Jero As) ds / y'(s) ds (A\(t + 0) du(0) + d(m(t,ﬁ))‘
0 t

Mo { [l apul)

0 t
[ ol X e+ 0) alul(0) + ol )}

T

= My, T') (3.21)

IN

which means |y/(t)| < My, Ty, for t > 0.

One can show by induction, that y/(t) satisfies
ly' (1) < My, (DA)" fort >nr—r, (n=0,1,2,3,...). (3.22)

Since 0 < xa ¢ < 1, it follows that ¢/(¢) tends to zero as t — co. So we proved (3.12) and hence
(3.13) holds. In the following, we will show (3.11) holds.

To prove that lim;_, y(t) exists, we consider (3.22). For an arbitrary ¢ > 0, we set n = [t/r]+1
(the greatest integer less than or equal to t/r+1), then from n = [t/r]+1 <t/r+1 < [t/r]|+2 =
n + 1, we have t/r < n. From (3.22),

Y/ (£)] < My, (DA)" < My, (D)7 for t > nr —r. (3.23)

Now we use the Cauchy convergence criterion. For ¢ > T > 0, from (3.23), we have

! / ! s/r r s/r s=t
)~ oD < [ WOlds < [ Mo ) ds = Mop, T [00°] (321

T T HF)\ s=T

r
e [T = @]
Let T — oo, we have t — oo, and by (3.25), we have
T
M. |: r t/T‘ —(T T/T‘] :

and limp_, |y(t) — y(T)] = 0. The Cauchy convergence criterion implies the existence of
limy 00 y(2). O

Remark 3.2.1. Under the conditions of Theorem 3.1.2, a solution of (3.5) can not grow faster
than exponential; i.e., there exists a constant M > 0, such that

|z(t)| < MehM)ds for 4 > 0. (3.25)
From (3.25), it is not difficult to show that:
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(i) Every solution of (3.5) is bounded if and only if limsup,_, fg A(s)ds < oo;

(ii) Fwvery solution of (3.5) tends to zero if and only if lim sup,_, ., f(f A(s)ds — —o0.

Remark 3.2.2. If the generalized characteristic equation (3.9) has a constant solution A(t) = Ao,

e—)\ot

then from Theorem 3.1.2, limy_,o x(t) exists.

3.3 Examples
Example 3.3.1. Consider the linear differential equation with distributed delay

, 1, [P a(t+0)
()=t =1 = | S

t>1. (3.26)

This equation can be written in the form (3.2) by setting p(6) = —% for < —1, u(#) = 0 for
0> —1,n(t,0) =Int+1In(t+0) for t > 1 and 6 € [—1,0]. Since both 6 — n(t,0) and 6 — 1(0)
are increasing functions, |u| = u, |n| = 7.

The generalized characteristic equation associated with (3.26) is

A(#) = A(t; Y exp (- /ttl)\(s) ds> +/01 2(ti€) exp (— /t;)\(s) ds) o,

which has a solution

A(t) = 1/t. (3.27)

For this A(t) and for ¢t > 1, using the expression of x ¢, we obtain that

_11 1_|_1+/0 _9 /tds d@
=g ot) T )20+ 0) TP s

1+ 1 —>1<1 t—
= = — — as Q.
2 A(t) 2

Hence the hypothesis (3.10) of Theorem 3.1.2 is fulfilled. So we obtain that for each solution of
(3.3.1)

!/ /
im 29 exists,  Tim [m(tﬂ =0 and lim xit) = 0. (3.28)

t—0o0 t—0o0 t—o00
Example 3.3.2. Consider the linear differential equation with distributed delay

PR _ [0 x(t+6)
x(t)—px(t_n_/_lwde, P> 1, (3.29)

¢ is any constant, p and ¢ are positive constants such that 1/p + 1/¢ = 1. This equation
can be written in the form (3.2) by setting u(6) = —%D for 0 < —1, u(@) = 0 for 6 > —1,
n(t,0) =1Int+ % In(t +e+0) fort > 1 and 0 € [-1,0]. Since both 6 — n(t,6) and 0 — p(6) are
increasing functions, |u| = u, [n| = 7.

The generalized characteristic equation associated with (3.29) is

At) = A(tp_ D exp (— ;A(s) ds) + /_01 Mexp <— t;x(s) ds) de,

58



3.3. Examples

which has a solution )

A = t+e

For this A(t) and for ¢t > 1, using the expression of x ;, we obtain that

) R I e R
- = _ exp |—
T U T2 o)) Tt te) a2t ret0) T | Jugste

1 1 1
= —+-————>—-<1 ast— oo
P 2q(t+e) p
Hence the hypothesis (3.10) of Theorem 3.1.2 is fulfilled. So we obtain that for each solution of

(3.3.1)

/ /
lim @ exists, lim [a:(t)} =0 and lim v(t)
t—oo t t—00 t t—oo t

Remark 3.3.3. Note that if the generalized characteristic equation (3.9) has a solution is difficult
to verify. Example 3.3.2 is an extension of Erxample 3.3.1, we added an €, and the coefficients

1/2 and 1/2 changed to be 1/p and 1/q, which has to be satisfied 1/p+ 1/q = 1.

= 0. (3.30)

Example 3.3.4. Consider the equation with variable delay

2 x(t —7(t))
") —z2'(t—1)= —/————2—
v =30t =D =5~y
where ¢ € R and 7 : [0,00) — [—1,0] is a continuous function such that t + c — 7(t) > 0 for
t>to.

t > to. (3.31)

—2 for < —1, pu(6) = 0 for

Equation (3.31) can be written in the form (3.2) by letting u(0) =
ro > ( ). Since both 6 — n(t, 0)
‘ =

0> —1,n(t,0)=0for 0 <7(t), n(t,0) =1/3(t+c—7(t)) fo
and 0 — u(0) are increasing functions, we have that |u| = u,|n

The generalzied characteristic equation associated with (3.31) is

= 72)\(1;_ 1) — t s)as ;GX — t s)as
Ay = 2 exp< /HA( )d ) + T p< /t_T(t))\( )d > (3.32)

and we have that a solution of (3.32) is

= ) 3.33
MO = (3.33)
For (3.33), the left hand side of (3.10) reads
0 t
I —@)|e™ J=o X% g ) (1,6
o |3 (1= ) + g + Ok ol )
= lims [ (t) } 2<1
= limsup |- — =-<1.
oo |3 3(t+ o] =3

and hence hypothesis (3.10) of Theorem 3.1.2 is fulfilled and therefore, for each solution x(t) of
(3.31), we have that

t Y
lim z(?) exists, and lim (x( ) ) = 0.
t—oo t+ ¢ t—oo \t+ ¢

Manipulating further the limits in (3.31), we are able to establish that x(t) = O(t) and 2/(t) =
o(t) as t — 0.
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Chapter 3. Asymptotic behavior of a class of nonautonomous neutral delay
differential equations

3.4 Notes and remarks

A paper based on the contents of this chapter has been published in [15].

Dix et al. [32] studied the asymptotic behavior of solutions to a class of nonautonomous d-
ifferential equation with discrete delays of the form

k

2(t) = a(t)x(t) + > bt —15), t>0

=1

where the coefficients a(t) and b;(t) are continuous real-valued functions on [0,00), 7; > 0 for
j=1,2,---  k, by introducing the concept of the generalized characteristic equation and using
an appropriate solution of this generalized characteristic equation. Existence of such a solution,
however, is quite a restrictive condition. The basic idea in [32] is essentially originated in the
work in Driver [37]. The extended results for asymptotic behavior of neutral delay differential
equations can be found in Dix et al [33]. An asymptotic property of the solutions to second order
linear nonautonomous delay differential equations is discussed in [107]. Cuevas and Frasson [26]
provide a generalization of [32], as it can be applied for instance for retarded delay differential
equations with distributed delays or discrete variable delays, as far as the delays are uniformly
bounded. Our results in this chapter was motivated by the work in Cuevas and Frasson [26],
we generalized the class of delay differential equations studied in Cuevas and Frasson [26] by
adding a neutral term, the coefficient for the neutral term is restricted to be constant.
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CHAPTER 4
A fixed point approach to stability of
delay differential equations

In this chapter, we focus on stability of neutral delay differential equations that can have time
dependent delays, mixed point delays and distributed delays, nonlinearities and impulsive effects.
The approach we used in this chapter is based on a fixed point method. In Section 4.1, we
consider four classes of equations of neutral type. In Section 4.2, we investigate the fixed point
method for a class of equation that contains 2’ in a nonlinearity. In Section 4.3, we show that
the fixed point method can be applied in a similar fashion to difference equations.

4.1 Stability results for nonlinear neutral delay differential equa-
tions

4.1.1 Introduction and main results

Liapunov’s direct method provides simple geometric theorems for deciding the stability or in-
stability of an equilibrium point of a differential equation. However, in the context of delay
differential equations, Liapunov’s direct method is not always as effective, in particular if the
delay is unbounded or if the differential equation has unbounded terms. Therefore, it was re-
cently proposed by Burton [13] and co-workers to use a fixed point method as an alternative.
While Liapunov’s direct method usually requires pointwise conditions, fixed point methods need
conditions of an averaging nature, and, therefore, can handle various delays or unbounded terms
more easily.

A typical stability result based on fixed point theory arguments follows a number of stan-
dard arguments adapted to the special structure of the equation under consideration. This
leads to many different results in the literature for different classes of equations, for example,
with time dependent delays, distributed delays, neutral terms, and certain nonlinearities, see
[5, 6,9, 11, 12, 13, 31, 34, 63, 64, 65, 110, 111, 112, 117, 118, 144, 145]. The aim of this section
is to study the approach using fixed point theory in a systematic way and to unify recent results
in the literature by considering four general classes of equations. For each of these classes of
equations, we combine different techniques to prove new stability theorems. In addition, we
present a number of examples to illustrate our results.

The first class consists of scalar neutral integro-differential equations of the form

2 (t) — ()2 (t —r(t) = —a(t)x(t —ra(t)) + /t_ o g(t,z(s))du(t,s), t>0 (4.1)
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Chapter 4. A fixed point approach to stability of delay differential equations

where the delays r;(t) : [0,00) — [0, 00) are continuous functions, the coefficients a, ¢ : [0, 00) —
R are continuous, where

ro = min {gg{t - rl(t)},%rzlg{t — m(t)},%rzl(f]{t — Tg(t)}} .

The kernal u(t,s) is of bounded variation for each ¢ and g : [0,00) x R — R is a continuous
function, and for each t, zg(t,x) > 0 if = # 0 is sufficient small. We assume that g satisfies:

(G) g(t,0) = 0, there exists an | > 0 such that g satisfies a Lipschitz condition with respect
to x on [0,00) x [—[, 1], that is, there exists a constant L = 1, such that

lg(t,x) —g(t,y)| < Lz —y| for t>0 and z,y€[-1]1.

A standard fixed point argument shows that the differential equation (4.1) provided with an
initial condition

z(t) = ¢(t), t € [ro,0]. (4.2)

where ¢(s) € C([ro,0],R) defines a well-posed initial-value problem and we denote by z(t) :=
x(t, ¢) the solution of (4.1) with initial condition (4.2).

Definition 4.1.1. The zero solution of (4.1) is said to be stable if for every € > 0, there exists
a 0 > 0 such that for every initial function ¢ : [ro,0] — (=9,09), we have that the corresponding
solution satisfies |z(t)| < e fort > 0.

Definition 4.1.2. The zero solution of (4.1) is said to be asymptotically stable if it is stable and
there exists a § > 0 such that for every initial function ¢ : [rg,0] — (=9,9), the corresponding
solution x(t) tends to zero as t — oo.

In our first result we obtain sufficient and necessary conditions for the asymptotic stability of
(4.1) by introducing two auxiliary continuous functions hj(t) and ho(t) which will be used to
define an appropriate map defined on a complete metric space so that we can apply a fixed point
argument.

Theorem 4.1.3. Consider the neutral integro-differential equation (4.1) and suppose that the
following conditions are satisfied

(i) the delay ro(t) is differentiable, the delay r1(t) is twice differentiable with v (t) # 1, and
t—rj(t) >o00ast—o00, j=1,2,3;

(ii) there ezists a constant o € (0,1) and continuous functions hj : [rg,00) = R (j=1,2) such
that

2 t

t t
+ Z/ ‘hJ(S)‘ ds + / e Js (h(w)tha(u)) du (‘/[s—rg(s),s} (M(87 ))) ds
j=1 t—r;(t) 0

c(t)
1—=r(t)

t t
+/ e~ Jsmlwtha(w)dup) (6 — po($))(1 = 1%(s)) — a(s)|ds
0

t t
+/ e~ Jsmwtha(w)duip (6 — py(6))(1 = 7, (s)) — k(s)| ds
0

2
N Z/ o= JL (hi(w)+ha(u)) du |h1(s) + ha(s)| (/
j=170 8

S

|hj () du> ds < a,
—7;(s)
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4.1. Stability results for nonlinear neutral delay differential equations

where k(s) = (<; ¥4 ()2) 7 (Ie(s) (ha () + ha(w)) + ()1 = 4 (s)) + e(s)r(s)) and

Vis—ry(s),s] (1(8,*)) denotes the total variation of u(s,-) on [s —r3(s), s];

(iii) and such that

t—00

t
liminf/ (h1(s) + ha(s))ds > —oc.
0
Then the zero solution of (4.1) is asymptotically stable if and only if
(iv)

/Ot(hl(s) + ha(s))ds = 00 as t— 0.

Remark 4.1.4. Theorem 4.1.3 contains all the stability results for (4.1) discussed in |8, 11, 12,
13, 31, 34, 63, 110, 144]. In addition, in our result the delays can be unbounded and that the
coefficients can change sign. See Example 4.1.17 and Ezample 4.1.19.

A simple illustrative example is the scalar equation
t
() — (D)2 (t — r(t)) = —a(t)z(t) + / k(t, $)a(s) ds, t>0,
t—r(t)

where r(t) is variable delay, a, ¢ : [0,00) — R are continuous functions, k(¢, s) is continuous with
respect to its arguments.

The second class of delay differential equations that we will study in this section is of the
form

2 () = —/t_ , a(t, s)g(s, z(s)) ds. (4.3)

where r(t) : [0,00) — [0,00), a(t,s) : [0,00) X [rg,00) — R are continuous functions, ¢ is
a continuous function that satisfies Lipschitz condition with respect to z on [rg,00) x [—I,1],
where rg = inf;>o{t — r(t)}.

Theorem 4.1.5. Consider the functional differential equation (4.3) and suppose that the fol-
lowing conditions are satisfied,

(i) g(S, —:L’) = _9(87‘77);

(i) there exists anl > 0 such that g satisfies a Lipschitz condition with respect to x on [rg, 00) X
[—1,1], that is, there exists a constant L > 0, such that

lg(s,x) —g(s,y)| < Llx —y| for s>ry and z,y€ -1l

(iii) there are functions w and W thatl are continuous, odd and strictly increasing on [—1,]
such that w(z) < g(s,x) < W(x) for x € [0,1];

(iv) = — w(x) is non-decreasing on [0,1];

(V) |z —g(s,z)| <1l —w(l) for x € [-1,1];
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Chapter 4. A fixed point approach to stability of delay differential equations

(vi) v : [ro,00) = R is a continuous function, v(t) > 0 for t > 0;

(vii) there exists a continuous function q such that

/tu a(s,u)ds

-1

<q(u) for t—r(t)<u<t

(viii) a positive number a < w(l)[W (1)]™" ewxists such that

t
/t—r(t)
t + s
+/ e s vl dujy (s)] +/ a(s,u)ds
0 s—r(s)
t r(s)
+/O e Jav(w)du v(s—r(s)) + / a(u, s —r(s))du

Then there exists a § € (0,1) such that, for each continuous initial function ¢ : [ro,0] — (=9,0),
there is a unique solution x : [0,00) — R with x(t) = ¢(t) on [ro,0] of (4.3) such that |x(t)| is
bounded by | on [ro,00). This implies that the zero solution of (4.3) is stable.

du

v(u) + /tu a(s,u)ds

duds

1—7'(s)|ds < a.

Remark 4.1.6. The proof is based on a generaliztion of some ideas of Jin and Luo [64] who
discussed the case when g(s,x) = g(x). We eliminate the condition that t — r(t) is strictly
increasing and obtain weaker conditions in Theorem 4.1.5 than those obtained in Theorem 4.1
of Becker and Burton [8]. See Example 4.1.22.

A simple example is the scalar equation
t
2 (t) = —/ a(s)x(s)ds, t>0,
t—r(t)
where r(t) is a variable delay, 7o = inf;>o{t — r(t)}, a : [ro, 00) is a continuous function.

The third class consists of nonlinear delay differential equations of the form

2(t) = —a(t)f(x(t — () + b(t)g(x(t — r2(t))), =0, (4.4)

where 71,72 : [0,00) — [0,00) are continuous functions, ro = min{inf;>o{t — r1(¢)}, infi>0{t —
ra(t)}}. The coefficients a,b : [0,00) — R and f,g : R — R are continuous functions. We
have the following result. Suppose, in addition, that r(t) is differentiable, t — r;(t) — oo
as t — 0o, j = 1,2, and that there exists a continuous function a : [0,00) — R such that
a(t) = a(t)(1—r}(t)) and, finally, that the inverse function h(t) of ¢t —r;(¢) exists. We then have
the following result.

Theorem 4.1.7. Consider the nonlinear delay differential equation (4.4) and suppose that
(i) v(t) : [ro,00) = R is a continuous function, v(t) > 0 ast > 0;

(ii) there exists a constantl > 0 such that f(x),x— f(x), and g(x) satisfy a Lipschitz condition
with constant L > 0 on the interval [—1,1];
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4.1. Stability results for nonlinear neutral delay differential equations

(iii) the functions f and g are odd, increasing on [0,1], x — f(x) is nondecreasing on [0,1];
(iv) there exists an o € (0,1) with ag(l) < (1 — «)f(l) such that for t > 0,

t t
/effv<">dU|a(h(s))|ds+/o e~ v du (o) ds

0

+ /Ot e f:”(“)d“|v(s —7r1(8))(1 = ri(s))|ds + /tt la(h(s)) +v(s)|ds

—r1 (t)

t ‘ s
+/ ! v(u)duv(s)/ @(h(w)) + ()| duds < a.
0 s—r1(s)

Then the zero solution of (4.4) is stable.

Remark 4.1.8. Burton [13] studied the special case when b(t) = 0 and r1 is a constant. Fol-
lowing the technique of Burton [12|, Ding and Li |31] studied stability properties of (4.4) as
well. However, the condition (iv) in Ding and Li [31] is restrictive. By introducing a continuous
function v(t) for constructing a fized point mapping argument, the alternative condition (iv) in
Theorem 4.1.7 is obtained. Note that the condition that the functions t — ri(t) and t — ro(t) are
strictly increasing is not needed in Theorem 4.1.7.

A simple example is the scalar equation
2'(t) = —a(t)x(t —ri(t)) + b(t)x(t — ro(t)), t>0,

where 7;(t), j = 1,2, are variable delays, a,b : [0,00) — R are continuous functions.

If we consider the impulsive effect on the solutions of equation (4.1), we come to our fourth
class of equations

2(t) = e(t)2'(t = ri () = =b(O)a(t — r2(t)) + [, ) 9(tx(s) dult, ), t# ti,
(4.5)
x(t;) - x(tk) — dk$(tk), k= 1,2,

Suppose that the following conditions are satisfied
(H1) 0<0<t; <tg--- <t <--- are fixed points with ¢ — oo as k — oo.

(H2) b,c: [rg,00) = R, and 7;(t) : [0,00) = [0,00), j = 1,2,, 3, are continuous functions, where
ro = min {inftzo{t — T (t)}, inftzo{t — Tg(t)}, inftzo{t — T3(t)}}.

(H3) w(t,s) is of bounded variation for each ¢, and ¢ : [rg,00) x R — R is continuous function,
g(t,cx) = cg(t,z) for positive ¢, xzg(t,z) > 0 if = # 0 is sufficient small. We assume that
g satisfies:

(G) g(t,0) = 0, there exists an [ > 0 such that g satisfies Lipschitz condition with re-
spect to  on [rg,00) X [—1,1], that is,

lg(t, ) —g(t,y)| < |z —y| for t>ry and z,y€[-1,1].

(H4) dj, € (—1,00) are constants for k = 1,2, ....
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Chapter 4. A fixed point approach to stability of delay differential equations

(H5) limtﬁt; = x(t, ) and hmtﬁt: =z(t}) for k=1,2, ...

Definition 4.1.9. For the initial function ¢ € C([ro,0],R), we denote by z(t) := z(t,$) the
solution of (4.5) with initial condition (4.2), which satisfies the following conditions

(i) x(t) is absolutely continuous on [0,t1) and each interval (tg,tr11);
(i) x(t;) and x(t)) exist and x(t;) = z(tx) for any ty € [0,00);

(iii) =(t) satisfies (4.5) almost everywhere in [0,00), and may have a discontinuity of the first
kind at ty fork=1,2, ...

Theorem 4.1.10. Consider the impulsive nonlinear neutral integro-differential equation (4.5)
and suppose that the following conditions are satisfied

(i) the delay ro(t) is differentiable, the delay r1(t) is twice differentiable with v (t) # 1, and
t—ri(t) 200 ast—o00, j=1,23;

(ii) there exists a constant o € (0,1) and continuous functions h; : [ro,00) — R (j = 1,2)

such that
"o 1~ [E(h(u)+tha(u)) du  c(tr)
=1 ltlle(tz)Stk<tl .
1 c(?) - '
HO I ara O [
t—r1(t)<tr.<t ! J=1 b= (1)

t 2 s
+ / e~ Je ) ha(w) du () 4 py(s)] Y / | (w)| duds
0 - s—r;(s)
Jj=1 J

+/tef!<h1<">+h2<“>>du hi(s—ri(s)A=7i(s) = [ (+dn)"k(s)|ds

0 s—r1(s)<tp<s

ds

t t
o [ e B g s 1) (1 = 1 (5) — (14 di)~b(s)

s—r2(s)<tx<s

t t
+/ e Js ()t () du | | (1 + dk)_l (‘/[3—7“3(3),5] (,u(sa ))) ds < a. (46)
0

s—ra(s)<tx<s

where k(s) = ((1 — r1(s))?) " ([e(s)(h1(w) + ho(u)) + ¢(s)](1 — ri(s)) + c(s)r{(s)) and
Vis—ra(s),s] (11(8, ")) denotes the total variation of u(s,-) on [s —r3(s), s];

(iii) and such that

lim inf /Ot(hl(s) + ha(s))ds > —o0.

t—o00
(iv) there exists a positive constant M > 0 such that [, (1 +dg) < M.

Then the zero solution of (4.5) is asymptotically stable if and only if
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4.1. Stability results for nonlinear neutral delay differential equations

(v)

/Ot(hl(s) + ha(s))ds - 00 as t— .

Remark 4.1.11. The proof is based on the ideas in [144]. Our result is a generalization of [144].

The organization of this section is as follows. In Subsection 4.1.2, we present a proof of Theorem
4.1.3. The proof the Theorem 4.1.5 is presented in Subsection 4.1.3. The proof of Theorem 4.1.7
and the proof of 4.1.10 are given in Subsection 4.1.4 and Subsection 4.1.5, respectively.

4.1.2 Proof of Theorem 4.1.3

In this subsection, we will prove Theorem 4.1.3. We start with some preparation. First define

Sl = {ﬂc |z € C([rg,00),R), ||z|| = sup |z(t)| <1, z(t) = ¢(t) for t € [ro,0],

t>ro

and z(t) - 0 as t — oo}.

If we define the metric p(x,y) = sup;>,,{|z(t) —y(t)|}, then Sé becomes a complete metric space.

If we multiply both sides of (4.1) by efot(hl(s)“'b(s))ds, integrate from 0 to t, and perform an
integration by parts, we obtain

2
o(r) = {¢<o>—1ff,l)@¢<—n<o>>—z /

j=1"-ri(0)

0
hj(s)é(s) dé}e_ i (ha(s)+ha(s)) ds

t

2
+&x(t —ri(t) + Z/t hj(s)x(s)ds

1—ri(t) = e

* / "o O tha ) iy (4 () (1 — r(s)) — a(s)a(s — ra(s)) ds
0

! /0 e ) Bl (s — 1y (5)(1 = 74 () = k()]s = r1(s)) ds

t ¢ s
+/0 e_fs(hl(u)"‘hZ(u))du/ ()g(s,x(u))du(s,u) ds
s—r3(s

2 t ¢ s
= / o= L@ +ha() du(p (6) 4 ho(s)) / () (us) du ds.

j=1 0 s—rj(s)

Lemma 4.1.12. Let p € Sé) and define an operator by Pp(t) = ¢(t) fort € [ro,0] and fort > 0,

C 2 0 t
(Pe)(t) = {¢(0)1_£~%¢(m(0)) / (O)h(s)cb(s)ds}e‘f0<h1(s>+h2<s>>d8
j=1v"Ti
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+/o ¢ Js P tha) dulpy (5 1y(5))(1 = r(s)) — a(s)]p(s — ra(s)) ds

" /o e ittt dufpy (s (5))(1 = ) (5)) — k(s)]p(s — 11(5)) ds

t . s
+/ e s (hl(“)+h2(“>)d“/ 9(s, ¢(w)) dp(s, u) ds
s—r3(s)
_Z/ u)+ha(u ))du(h1(3)+h2(5))/ hj(u)p(u) duds. (4.7)
s—r;(s)

If conditions (i)-(iv) in Theorem 4.1.3 are satisfied, then there exists 6 > 0 such that for any
¢ : [ro,0] = (—0,0), we have that P : S’é) — Sf;s and P is a contraction with respect to the metric
defined on S’é).

Proof. Let J = sup;> {e‘ fot(hl(S)Jrh?(S))ds}, by (iv), J is well defined. Suppose that (iv) holds.

It is clear that Py € C([rg,00),R). Hence, by (ii) and condition (G), we have

+z/

_r]

1—7/(0)

c(t)
1 —=ri(t)

PoOI < ol (1 +
+z{

+/ e~ Jo(lwthatw)dup, (s ry(5))(1 — 1 (s)) — als)| ds
0

rds>e i1 (9)+has) ds

2

+Z/ﬁ (o)l

+/ ¢ SN ey (5 — 1y (5)) (1 = 1 (5)) — k(s)|ds
0

+Z/ f (h1(u)+ha(w)) du‘h ( )_|_h2( )| ()’ j(u)|duds}
< loll{1+ LO,) —|—z2:/0 |hj(s)|ds | J + Lo
1-71(0) j=1-7i(0)

From this estimate, it follows that if

(1+ 7

then ||¢|| < ¢ implies that |(Py)(t)] < L.

(1—a)l
+Z] 1fr(o)|h |d3)

0=

Next, we show that (Py)(t) — 0 as t — oco. Since ¢(t) — 0 and t — r;(t) — oo as t — oo, for
each € > 0, there exists a 77 > 0 such that ¢ > 77 implies |p(t — r;(t))| < € for j = 1,2. Thus
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4.1. Stability results for nonlinear neutral delay differential equations

for ¢ Z Tl,

’IQ’ =

t ¢ s
e SR (1 (5) + i (s)) (/ By (w)p(w) d“) -
0 s5—1;(s)

2

=1
T1 t )
Z/ o [y tha (@) du g (6) 4 hy(s)| /
; s—r;(s)

J

IN

[hj ()] (w)] dU> ds

2

t . s
e s mtha()dup () 4 po(s)] ( / [hj (u)lle(u)| du) ds
s—rj(s)

2 T

8_f;(hl(u)+h2(u))du|hl(s) + ha(s)) (/ . |hj(u)|du) ds
s—rj;(s

6_ft( 1(u)+ha(u d“|h (s )—|—h2(5)’</ |hj(u)|du) ds. (4.8)
s—r;(s)

By the condition (iv), there exists T5 > T} such that ¢t > T5 implies

ZZ/ L(ha (u)+ha(u) d“]h (s) + ha(s)] </ |hj(u)|du> ds < e.
s—rj(s)

Applying (ii), we have |I3] — 0 as t — oo.

Since ¢(t) — 0 and t — r3(t) — oo as t — oo, for each € > 0, there exists a T3 > 0 such
that ¢t > T3 implies |p(t —r3(t))| < e. Thus for ¢t > T3,

‘13‘ =

t S
/ o~ Ji (h(w)+ha(w) du / 9(s, p(u)) dp(s,u) ds
0 s—r3(s)

T3 .
< l/o e~ Js (M1 (u)+ha(w)) du <V[s—r3(s),s] (u(s, ))> ds
t t
—I—s/ e~ Js (1 () +ha(u)) du (V[S_Tg(s),s] (u(s,-))> ds (4.9)
T3
By the condition (iv), there exists Ty > T3 such that ¢t > Ty implies
T o [ @ +ha() d
Z/O e Js Wit e (‘/[5—7"3(5),8] (1(s, ))) ds <e.

Applying (ii), we have |I3| — 0 as t — oo.

Similarly, we can show that the rest terms in (4.7) approach zero as t — oo, which yields
(Pp)(t) — 0 as t — oc.

Finally, we show that P is a contraction mapping with contraction constant «. In fact, for
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Chapter 4. A fixed point approach to stability of delay differential equations

p,n €S,

[(Po)(t) — (Pn)(?)]

s{ c(t)

(0

2 t

t t
+ Z/t ® ’hj(5)| ds —1—/0 e S5 (h1(w)+ha(u)) du (V[S—rg(s),s} (N(S’ ))) ds
—r;

J=1

t t
4 [ e RO s ()1~ 13(s)  alo)] ds
0

t t
4 [ e By (5 (5)(1 = 14 (5) ~ k()] ds
0

2 t
+Z/ e~ S +ha(w) du| (b (5) 4 ho(s))
=170

t
| %WWM@PW—M

s—rj(s
< alle —nll.

Thus, P : Sfﬁ — Sé) and P is a contraction mapping. O

We are now ready to prove Theorem 4.1.3.

Proof. Let P be defined as in Lemma 4.1.12. By the contraction mapping principle, P has a
unique fixed point x in Sé) which is by construction a solution of (4.1) with z(t) = ¢(¢) on [rg, 0]
and z(t) — 0 as t — oo.

Let € > 0 be given, then we choose m > 0 so that m < min{l,e}. By considering S7*, we
obtain that there is a 6 > 0 such that ||¢|| < ¢ implies that the unique solution of (4.1) with
x(t) = ¢(t) on [ro, 0] satifies |x(t)| < m < e for all t > ry. This shows that the zero solution of
(4.1) is asymptotically stable if (iv) holds.

Conversely, we suppose that condition (iv) fails. Then by (iii), there exists a sequence {t,}

with t, — 0o as n — oo such that lim, f(f" (h1(s) + ha(s))ds = v for some v € R. We may
choose a positive constant M such that

tn
—M</(mgwmmm<m for all n>1. (4.10)
0

To simplify our expressions, we define
w(s) = Jrals = rals))(L = r5) = a)] il =i =l (s) ~ KC6)
Vorinab )+ 0n(6) £ Y [ w20
j= i
By (ii) we have
/Otn e f;n(hl(“HM(“))d“w(s) ds<a for al n>1. (4.11)
Combining (4.10) and (4.11), we have

tn ,
/ efdg(hl(")+h2(“))d“w(s) ds < aedo™ (h(uw)+ha(w)) du <ae™ for all n>1,
0
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4.1. Stability results for nonlinear neutral delay differential equations

which yields that the sequence fot" eJo (i (w)+ha(w) duy, 6y 45 is bounded. Therefore, there exists
a convergent subsequence and without loss of generality, we can assume that

klim ’ ef()s(hl(“)+h2(“))d“w(s) ds =~ for some ~v¢€RT.
—0 J0

We choose a positive integer k so large that

tn
im [ el (tn@ha@) duyy ) gg < 00

k—o0 tn
k

for all ng > ng, where dp > 0 satisfies 260JeM +a < 1.

Now, we consider the solution z(t) = x(t,t,,¢) of (4.1) with z(t, ) = do and x(s) < do
for t, —ro < s <t,_, and we may choose ¢ such that |z(t)| <1 for t > ¢, _and

(tn;) tny

(tn,) — mx(t%— (tn;)) Z/t )a(s) ds > 50 (4.12)

ng -y tnf

So, it follows from (4.12) with z(t) = (Pz)(t) that for k > k,

C(tn ) /tnk
x(tn,) — ————u(ty, —11(tn (s)x(s)ds
2 1 =71 (tn,) (b 2 Z trg =T tnk )
tn n .
> Lo Jung () hat) e / " o R ) R 0) gy )
2 b
tn tn
> . ftng(hﬂu)—i-hz(u))du (;50 B J/ k efos(hl(“)+h2(“))duw(s) ds)
tn—
1 — [ hi(u)+ha(u))du 1
> e Jing: () tha(u) Z00e™2M > 0. (4.13)

On the other hand, suppose that z(t) = x(t,t,, ¢) — 0 as t — oo. Since t,, — 1j(tn,) — 00 as
k — oo, 7 = 1,2 and (i7) holds, this would imply that

c(tn,) tny
z(tn,) — ml’(tnk (tn) Z/t )x(s)ds -0 as k — oo,

- t”k

which contradicts the estimate. Hence condition (iv) is necessary for the asymptotic stability of
the zero solution of (4.1). O

Corollary 4.1.13. Consider the equation

2'(t) —c(t)'(t —r(t)) = —a(t)z(t) + /t o g(t,z(s)) du(t,s). (4.14)

Assume that r(t) is twice differentiable, r'(t) # 1, t — r(t) — oo as t — 00, g satisfies condition
(G). Suppose that there exists a constant o € (0,1) and a continuous function v : [rg,00) — R
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Chapter 4. A fixed point approach to stability of delay differential equations

such that liminf;_, fo s)ds > —o0 and

t t " S
/ |v(s)—a(s)\ds+/ e v(“>d“yv(s)y/ lv(u) — a(u)| duds
t—r(t) 0 s—r(s)

<t) te_fst”(“)d“ v(s—r(s)) —a(s—r(s —17'(s)) — k(s)| ds
il [o(s — 7() — als — 1)L~ () ~ k()| d

+

t ¢
+/0 e Js v du‘/[s—r(s),s] (:U'(Sv )) ds < a,

where

b(s) — A(E) + S0~ () + el (), W

Then the zero solution of (4.14) is asymptotically stable if and only if fo s)ds — 00 ast — 0.
Corollary 4.1.14. Consider the equation

/(1) — e(t)a'(t — ri(t)) = —a(t)z(t — ra(t)) + b(t)g(t, x(t — r3(t))). (4.16)

Assume that ro(t) is differentiable, r1(t) is twice differentiable, v (t) # 1, t —r;(t) — oo as
t — o0, j = 1,2,3, g satisfies condition (G). Suppose that there exists a constant o € (0,1)
and a continuous functions h; : [rg,00) — R such that liminf; fot(hl(s) + ha(s))ds > —o0,
j=1,2, and

+Z/ s)| ds

[ e BRI s ()1~ r4(6) — ()] s
0

t
b [ e O (5 (9)(1 = 11 (5) = k()] + (5] s
0
2 t + s
430 [ e B oy () 4 ) ()| duds < a,
— Jo

s—7;(s)

where k(s) and hj(s) (j =1,2) are deﬁned as in Theorem 4.1.3. Then the zero solution of (4.16)
is asymptotically stable if and only if fo (h1(s) + ha(s))ds - o0 as t— co.

Corollary 4.1.15. Consider the equation
2'(t) —c(t)z'(t — r(t)) = —a(t)z(t) + b(t)g(z(t — r(t))). (4.17)

Assume that r(t) is twice differentiable, v'(t) # 1, t —r(t) — 00 ast — co. g satisfies condition
(G). Suppose that there exists a constant o € (0,1) and a continuous function v : [rg,00) — R
such that liminf;_, fo s)ds > —oo and

c(t)
1—7r'(t)

+/O e~ Jo v du [|(v(s = r(s)) —a(s = r(s)))(1 = r'(s)) — k(s)| + [b(s)|] ds < «,

t t s
+/ |v(s)—a(s)|ds+/ e~ o v du gy, lv(u) — a(u)| duds
t—r(t) 0 s—r(s)
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4.1. Stability results for nonlinear neutral delay differential equations

where k(s) is deﬁned as in (4.15). Then the zero solution of (4.17) is asymptotically stable if
and only szo s)ds — o0 as t — 00.

Example 4.1.16. Consider the neutral differential equation

1
#/(1) = — g a(t) + 5t — 0.05) +0.05'(t — 0.050) (4.18)
Define a(t) = tj%l, b(t) = ﬁ, c(t) =0.05, r(t) = 0.05¢ and v(t) = t+1 Then

e 005 1

= = — =~ 0.0526.
IL—7(t)) 1-0.06 19

Since |v(s) — a(s)| = S%, k(s) = m, we have

t t
1
v(s ds-/ ds < 0.0513,
/ o) —alds= [ —
/ = JS vl dupy ) / (u)|duds < 0.0513,

/ e 18] (s — r(s)) — als — r(s))](1 —1"(s)) — b(s) + b(s)] } s
0
1

t . 2
= ) ds < —— + = < 0.697.
/Oe 0955 +1 196+1) 26+ “ 2x19 4
Hence, we have

'%‘ +/;(t) Iv(S)—a(S)IdH/Ote—f.: Jdujy(s)| lv(u) — a(w)| duds

s—r(s)

+/0 e~ Jiv(w) d“{ Hv(s —7r(s)) —a(s—7r(s)](1 —7"(s)) — k(s) + b(s)‘ }ds <1,

and since fo s)ds = g JQFI ds = 2In(t + 1), the conditions of Corollary 4.1.15 are satisfied.
Therefore, the zero solution of (4.18) is asymptotically stable.

Example 4.1.17. Consider the following differential equation

() = —3% (i - ;sint—i—el(t)) z (t - (1 - ;cost+a2(t)>) + %g( (t — r5(t))), (4.19)

where |ej(t)] <e < &, 5(t)] <e < 2 j=1,2, r3(t) € C(RT,RY) is an arbitrary continuous
Junction which satisfies t — r3(t) — 0o as t — oo, g satisfies condition (G).

Define a(t) = 35 (5 — $sint +e1(t)), b(t) = S=L, ra(t) = 1— 4 cost+e2(t), and v(t) = 35. Then

/t lv(s)|ds /t 1 ds L (1 1cost+5 t) < ! 4
= S5 ds = 5 (1 — < 2 S 5Tt o
t—ra(t) t—1+1 cost—ea(t) 32 32 3 24 32

bl /8 1 1«
— [ 35 du
e Js 32 —duds < + —,
\/O 32 S*l+%COSS+€2(S) 32 24 32
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/ e v du (145 — ry(8)) (1 = h(s)) — a(s)| + [b(s)|) ds

0

t t 1 1 3 € 1 1 7
du
s ,_|_7_|_7 ds < — +¢.
/Oe = (32 32 32 X8> =g TE

t t S
/ lu(s)| ds + / e~ Jo v du ()] v(u)| duds
t—ra(t) 0 s—ra(s)

+ / e U B (u(s — ry(s))(1 = rh(s)) — als)| + b(s)]) ds
0

1+ +1+ +7+ 23+175 1
_24 32 24 32 8 24 16 ’

Hence,

and since fo s)ds = fo 3 ds = 35t, the conditions of Corollary 4.1.14 are satisfied. Therefore,
the zero solutlon of (4.19) is asymptotically stable.

Example 4.1.18. Consider the following differential equation
1
2/ (t) = —a(t)x (t -1+ 3 cos t> +b(t)g(z(t —r3(t))), (4.20)

where 0 < my < a(t), |b(t)| < My, r3(t) € C(RY,R") is an arbitrary continuous function which
satisfies t — r3(t) — oo as t — 00, g satisfies condition (G).

Define ro(t) = 1 — £ cost, if we choose v(t) = v is a constant satisfying v > M1 e have
t t 1 4
/ lv(s)|ds = / vds =v(l — = cost) < =w,
t—ra(t) t—l—i—% cost 3 3
t + s 4
/ e~ Js v duy ()| lv(u)|duds < —w,
0 s—r2(s) 3

/0 e S A (o5 — 15(s)) (1 = 74(5)) — als)] + b(s)]) ds

t 5v 5 mi — M2
< —(t=s)o 2 My)ds < = — —— =2
< /0 e Y( L M + M) ds 1 -
Hence,
t t ¢ s
/ lvu(s)|ds +/ e~ Ja v dujy (g |v(u)| du ds
t—ra(t) 0 s—ra(s)
t
+/ e S A (o5 — 15()) (1 = 74(s)) — als)] + b(s)]) ds
0
< §v 5 w
-3 4 v
Next, choose v such that Jv+ 2 — =i M2 < 1, and since fo s)ds = fo vds = vt, then the con-

ditions of Corollary 4.1.14 are satlsﬁed Therefore, the zero solutlon of (4.20) is asymptotically
stable.

mi—Ms __ 5
> _6<1'

For instance, if we choose v = 2 =+ My=24

_ 8 5 _
355 M1 = 35, 610 We have U+ 3

74



4.1. Stability results for nonlinear neutral delay differential equations

100 200 300 400 500

Figure 4.1: Numerical solution of (4.21).

Example 4.1.19. Consider the following differential equation

() = —% (1 - 281n152> 2(t—1), (4.21)

Define a(t) = 135 (1 — 2sin 2) ,v(t) = 35, we obtain that

¢ 1 1
/ lu(s)|ds = —, / = JS o) dujy ) |/ w)| duds < —,
1 32 32’

t

t 1/t
/0 e~ Jo v(w)du lv(s —1) —a(s)] ds = 138 e V=) ds 1 — e*v(tfs) sin (1568> ds < 0.104.

64
Hence,
t t
/ v(s)ds+/ I dupy ) y/ )| du ds
t—1 0
¢
—i—/ e~ Js v(w) du lv(s —1) —a(s)| ds < 0.9165.
0
Since fo 5)ds = 35 — 00 as t — 00, the conditions of Corollary 4.1.14 are satisfied. Therefore,

the zero solutlon of (4 21) is asymptotically stable.

Remark 4.1.20. Zhao [145] investigated the case for which ‘ t)‘ < 1 does not hold by

considering the following neutral differential equation

2/ (t) = =b(t)x(t — 7(t)) + c(t)x' (t — 7(t)),
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Chapter 4. A fixed point approach to stability of delay differential equations

and presented a new criteria for asymptotic stability of the zero solution by employing an auziliary
function p(t), but there seems to be a mistake in his computation for the transformations on page
6. We obtain that (4.12) in [145] actually should be

(1) b(t)p(t — 7(t)) — c(t)p'(t — 7(t))
z't:—lizt— Zt—7()) + —————2 (t —7(1)),
(1) = -2 70 (t () + L (®)
which is a special form of (4.17). By using the condition in Corollary 4.1.14, the correct condition
(iii) #n Theorem 3.1 on page 6 of Zhao [145] should be

Al —7(0)

| [ 5
+/Ot efﬁv(u)duw(s)\/;(s) v(u)—g((g))‘ du ds

/

+/Ot o= Il v(w) du {)_5(5) + <U(s —7(s)) — M) (1—17(s)) = k(s)

where

and

k‘(S) _ [C(S)’U(S) + C/((Sl)]_(l,]_,_(;;(;)) + C(S)T”(s) ’ C(S) _

4.1.3 Proof of Theorem 4.1.5

In this subsection, we will prove Theorem 4.1.5. We start with some preparations. First we
write (4.3) in the following form

2'(t) = B(t,t —rt) (1 —r'(t)g(t —r(t), z(t —r(t))) + % /t o B(t,s)g(s,z(s))ds, (4.22)

where

s t—r(t)
B(t,s) = /t a(u,s)du, with Bt — r(t)) = /t a(ut—r(®)du.  (4.23)

If we multiply both sides of (4.22) by eJo v(s) s then integrate from 0 to ¢, and then perform an
integration by parts, then we obtain

z(t) = {¢(O)—/ [U(S)+B(O,s)]g(37¢<3>)ds}efgv(s)ds

—7(0)

+ /t_T(t) [v(s) + B(t,5)]g(s, d(s))ds

_/ e f:v(u)duv(s) /i [v(u) + B(s,u)}g(u,x(u))du ds

0 s—r(s)
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4.1. Stability results for nonlinear neutral delay differential equations

By (ii), we choose a common Lipschitz constant L for g(s,z) and x — g(s,z) on [—[,l]. For
t € [rog,00) and a constant k > 4, we define

t
W(t) = kL / o) + () + p(u)] du, (4.24)
0
where ¢ is as defined in (iv) of Theorem 4.1.5 and

p(u) = [v(u—r(u) + Blu,u - r(w))](1 = r'(u)).

Now, let C' be the space of all continuous functions ¢ : [rg,00) — R such that
|o|p := sup {|ap(t)|e_h(t) (te ['ro,oo)} < 00,

where h is given by (4.24). Then (C,|-|p) is a Banach space, which can be verified by Cauchy’s
criterion for uniform convergence. Thus (C,d) is a complete metric space, where d denotes the
induced metric: d(p,n) = |¢ —n|p for ¢,n € S. Define

ch={e 10 eC, loll=suploto) <1 ple) = 60) for t € [ro01
2T0

where ¢ : [ro,0] — [—[,[] is a given continuous initial function. Then Cé) is a closed subset of C
and hence a complete metric space with the metric inherited from C.

Lemma 4.1.21. Define the operator by Po(t) = ¢(t) for t € [ro,0] and for t >0,

—7(0)

0 t
(Po)(t) = {¢<o>— / [”(3)+B(O,S)]g(37¢(8))d8}e_fo“(S)ds

+ /t_r(t) [v(s) + B(t, 5)lg(s, 6(s))ds

_ / e~ Ji v duy ) / _ [v(u) + B(s,u)]g(u, z(u)) duds (4.25)

0 s—r(s)

+ [ty ) a(s) (s, 2(s)))
+/O o= JLv(w) Wiy(s —1(s)) 4+ B(s,s —r(s)](1 —1'(s))g(s — r(s), x(s — r(s))) ds.

If the conditions (1)-(viii) in Theorem 4.1.5 are satisfied, then there exists & > 0 such that for
any ¢ : [ro,0] — (—6,0), we have that P : Cé — C’é and P is a contraction.

Proof. First of all, given ¢ € Cé we show Py € C’é). Let ¢ : [ro,0] — (—6,0) be a continuous
function, where § > 0 satisfies

0
0+ W(5)/ o lv(u) + B(0,u)] du < w(l) — aW(I). (4.26)

Such 0 exists since W(0) = 0 and W is continuous on [0,!]. Note that w(l) — aW(l) > 0 by
(iii) and (viii). By (iv), w(l) < 1. For any ¢ € C%, by (4.26), we have |(Py)(t)| = |¢(t)| < I for
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t € [ro,0]. Now we consider (Py)(t) for ¢t > 0. By (i) and (iii), |g(s,z)| < W() for = € [—1,]
and t > rg, thus using (iii) and (v), we obtain
0
PO < 6+W6) [ o+ BOw)du
—7r(0)

() /t o0+ Bl du

() /0 o= L1 o) duyy g / " o(u) 4+ B(s,u)| duds

s—r(s)

t

WD) [ HrOB s = r(9) 4+ Blss — r(s)][1 - 1'(5) ds

0
t t
+( —w(l)) / e~ Ja v dug gy gs
0
< w(l) —aW )+ aW () +1—w() =1 (4.27)
So [P(p)(t)] <l for t € [rg,00). Therefore, Py € Cé).
Next, we show that P is a contraction mapping on C’é). Suppose that ¢,n € C%,
IPy(t) — Prt)]e®

t t
= / e L LA |y (u) 4 B(t, u)| Ll (u) — n(u)le ™™ du
t—r(t)

t t $ s
—i—/ e Js v d“v(s)/ e FL i @+a@1d0), () + B(s, u)|L|p(u) — n(u)|e ™™ duds
0 s—r(s)
t
+/ e LS Ay () Liip(s — 1(s)) — (s — 7(s)) e ds
0

t
N / e~ (EAD [o@) duy () o (s) — n(s)|e ) ds,
0

since |v(u) + B(t,u)| <wv(u) + q(u) for t — r(t) <u < t, we have

1 1 1

1 4
Po—Pnly <|—+—4+— 4 —VLlo=nl) = —|o— —
|Py nh_<kL+kL+kL+kL> lo —nln klw nln < le = nln,

since k > 4. Therefore, P is a contraction mapping. O
We are now ready to prove Theorem 4.1.5.

Proof. By contraction mapping principle, P has a unique fixed point = € C%, which is by con-
struction a solution of (4.3) on [0, 00) and |z(t)| < for t > ro. Hence x(¢) is the only continuous
function satisfying (4.3) for ¢ > 0 with x(¢) = ¢(¢) on [ro, 0].

Let € > 0 be given and choose m > 0, such that m < min{e, [}, replacing | with m in (4.27),
we see that there is 0 > 0 such that || < m < ¢ for t > 9. Hence, the zero solution of (4.3) is
stable. O
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4.1. Stability results for nonlinear neutral delay differential equations

Example 4.1.22. Consider the following integro-differential equation

t : 4 1
2 (t) = —/ 20 J < + — sin? s) 23(s) ds. (4.28)
04635t -+ 1 \9 10

We check the condition (vii) of Theorem 4.1 in Becker and Burton [8]. Since f(¢)
obtain that

_ t
= 0.4635° W€

$/0.4635 () g 0.9(s/0.4635 — t
G(t, 8) — / 5 du = (8/ 5 )
: s +1 5% +1

for ¢ > 0 and 0.4635¢t < s < t. Consequently,
t In0.4635 + 1
lim 2/ Gt u) du b = 0.9 x 2 (D045 T 0N 9097,
t>0 0.4635¢ 0.4635
Then there exists some ty > 0 such that for ¢t > ¢y, we have

t
2 / IG(t, w)| du > 0.9020.
0.4635t

1

Since VI;(@)) — 8 — 0.8889 < 0.9020. This implies that condition (vii) of Theorem 4.1 in Becker
2

and Burton [8] does not hold. Thus Theorem 4.1 of Becker and Burton [8] can not be applied

to equation (4.28). However, by (4.23),

S
. . —1
B(t,s):/ 09 gy = 091
;. 241 5241

Choosing v(t) = 9%

t2+17
t ¢ 2u —t
/ o) + B(t,w)|du = o.9></ 24t g
t—r(t) 04635t u”+1
0.5t t
t—2 2u—t
= 0.9></ Zudu—i—0.9></ L ldu
0.4635¢ U° + 1 05t u”+1

= 09x [t (2arctan 0.5t — arctant — arctan 0.4635¢)
+1In(t? 4+ 1) + In(0.4635%2 + 1) — 21n(0.25t> + 1)
= w(t).
Since the function w(t) is increasing on [0, c0) and

lim w(t) = 0.9 x (1/0.4635 — 3+ 2In2 + 21n 0.927) = 0.3530,

t—o0

we have

t
/ lo(u) + B(t,u)| du < 0.3530,
t—r(t)

/0 e SV Ay (s (5)) + B(s,s — r(s))I[1 = r'(s)| ds

t
B —J! 1?»9“ du 0.9s
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and fg e~ I v duyy (o) [2 o lv(w) + B(s,u)| duds < 0.3530. Hence, we have

s—r(s)
t t ‘ s
/ |v(u) + B(t, u)| du + / e Js v duy () / |v(u) + B(s,u)| duds
t—r(t) 0 s—r(s)
t

+/ e S oWy (s — 1 (s)) + B(s, s — r(s))|[1 — 7/(s)|ds

0
w(3)
W(3)
By Theorem 4.1.5, the zero solution of (4.28) is stable. Together with Remark 4.1.6, this shows
that our results extends the result of Becker and Burton [§].

< 0.8635 <

8
= — = 0.8889.
9

4.1.4 Proof of Theorem 4.1.7

In this subsection, we will prove Theorem 4.1.7. We start with some preparation. Equation
(4.4) can be written in the following equivalent form

2'(t) = —a(h(t)) f(x(2)) + % /t a(h(s))f(x(s)) ds +b(t)g(z(t —r2(t)))- (4.29)

-7 (t)

If we multiply both sides of (4.29) by eJo v(s) s integrate from 0 to t, and perform an integration
by parts, then we obtain

0 t
2(t) = {¢<0>— / Wh(s))+v(s>]f<¢<s>>ds}e—fov<s>ds

—r1(0)

teffst”(“)d“vs x(s) — f(xz(s s — teffst”(“)d"& s z(s)) ds
+/0 (8)[(s) — F((s))]d /0 (h(s))f (x(s)) d

_ / o= o) duy ) / (@(h(w)) + v(w))f (2(u)) duds
0

s—r1(s)

+/ e J v Ay (5))(1 = 4 (s)) f(2(s — r1(s))) ds
0

t t ¢
+/t [a(h(s)) + v(s)]f(2(s)) ds + /0 e I h(s)g(w(s — ra(s))) ds.

—r1 (t)

Let C be the weighted space of all continuous functions ¢ : [rg,00) — R with
ey = sup{lp(t)le™ : 1 € [ro, 00)} < oo

The weight function ¢ : [rg,00) — R is here defined as follows

{ 1 for t € [ro,0],

dl [T[v(s) + |a(h(s))] + [b(s)| + w(s)]ds for t€ [0,00),

q(t) =
where d > 5 is a constant, and

w(s) =

{ 0 for s € [rop,0],

[v(s —r1(s))(1 —ri(s))] for se€[0,00).
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4.1. Stability results for nonlinear neutral delay differential equations

The space (C, | - |;) becomes a Banach space, which can be verified with Cauchy’s criterion for
uniform convergence. Define

ch={eleec, lol=swplel <1 olt)=6(0) for te 0]}
]

where ¢ : [rg,0] — [—[,] is a given continuous initial function. Then Cés is a closed subset of
(C,|-|) and hence a complete metric space with the metric inherited from C.

Lemma 4.1.23. Let ¢ € C'(lb. Define the operator by P : Cé) — Cé by (Pp)(t) = ¢(t),t € [ro, 0],
and fort >0,

0 t
(POt) = {¢<o>— / [a<h<s>>+v<s>]f<¢<s>>ds}e—ov<s>d8

—r1(0)

¢ o [ o(u) du, (o s) — s 5 — ' e~ JEv(u) dug(h(s s))ds
- (B)ele) =~ el as = (h(s))f((s)) d
- [fe g [ () + o) (p(w) duds

0 s—r1(s)

+/ e v duy (s (5))(1 — () f (s — r1(s))) ds
0

t t .

+ 0D + (o) (ple) ds + et s)g ot = rats)) s
t—r1(t

If the conditions (i)-(iv) in Theorem 4.1.7 are satisfied, then there exists § > 0 such that for any

¢ [ro,0] = (=9,9), we have that P : Cfb — Cé and P is a contraclion wilth respect to the metric

we defined on C’é.

Proof. Since f is odd and satisfies a Lipschitz condition on [—[,[], and f(0) = 0, we choose a
0 < [ that satisfies
0

4 10) [ A+ v(s) ds < (- ) S0~ aglh)
-
Let ¢ : [ro,0] — (—9,d) be a continuous function. Thus |¢(¢)| < I for t € [rg,0]. Now we show
for such ¢, P : C’é — Cé. In fact, for arbitrary ¢ € CL, it follows from the conditions in Theorem
4.1.7 that we have for ¢t > 0,

0

(PO®] < 6+ 1(6) / a(h(s)) + v(s)| ds

—r1(0)
t

/e—f§v<U>dU|a(h(s))|ds+/ la(h(s)) +v(s)|ds

0 t—ri(t)

t t
+ / e Js v dujy ()
0

+f(1)

T ) + o) du ds

s—r1(s)

0

+/ e fstv(“)d“]v(s —7r1(8))(1 = r(s))] ds]

+g(1) /Ot e~ f;v(u)du|b(s)| ds+ (1 — f(1) /t e~ N v(u)duv(s) ds

0
< (1= a)f()) — agll) + af(l) + agll) + 1 — f() = 1.
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Chapter 4. A fixed point approach to stability of delay differential equations

Hence |(Py)(t)| < for t € [rg,00). Therefore Py € C(lb.

Next, we will show that P is a contraction mapping in Cé. For ¢,n € CL,
|(Po)(t) = (Pn)(#)] 1)

t . :
< [ e RN u() (b)) lp(s) ~ (e ds
0

t t S t ~ -
_|_/0 e S v(u) du’U(S)/ . edefS [v(s)+|a(h(s))]] ds[|a(h(u))\ + v(u)]
S—T1(S
x L|o(u) — n(u)|e™ 1™ du ds

t t
+/ e~ 4L S w(u) duw(S)L‘SO(S -7y (s)) —n(s—nr1 <3>)’€fq(sfr1(s)) ds
0
t . i
b a9+ o)) Els) —n(e)le” O s
t—ri(t

t
b [ eI b(s) g5 — rafs) = s = ra(s)e 1 s,
0

So, we have

1 1 1 1 1 )
POt — (P (D)e 9 < [ — o+ — &+ — & — 4+ ~ VNLlo—-nl, < Zlo—

for all t > 0. Thus |Pyp — Pn|, < %\gp —1|q. Since d > 5, we conclude that P is a contraction on

We are now ready to prove Theorem 4.1.7.

Proof. By the contraction mapping principle, P has a unique fixed point = in C’é, which is a
solution of (4.4) with z(t) = ¢(t) on [ro,0] and |z(t)| <.

Let € > 0 be given. Then, we choose m > 0 so that m < min{l,e}. By considering C’,
we obtain existence of a 6 > 0 such that ||¢|| < ¢ implies that the unique solution of (4.4) with
x(t) = ¢(t) on [ro, 0] satifies |x(t)| < m < e for all t > ry. This shows that the zero solution of
(4.4) is stable. This completes the proof of Theorem 4.1.7. O

Remark 4.1.24. [t is an open problem whether the zero solution of (4.4) is asymptotically stable.
Our method of proof can not be used to solve this problem. The reason is that if we would add
the condition to Cé) that o(t) — 0 as t — oo, then C’é would no longer be complete under the
weighted metric.

4.1.5 Proof of Theorem 4.1.10

In this subsection, we will prove Theorem 4.1.10. We start with some preparations. First, we
transform (4.5) into a neutral delay differential equation without impuses

2 () — H (1 +dp) te(t) (1 —ri ()2 (t —ri(t)) (4.30)

t—r1 (8)<tp <t

—— I a+d)emat-me)+ ] (1+dk)‘1/t_ 96D dutt)

t—ro(t)<tp <t t—r3(t)<tp <t
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4.1. Stability results for nonlinear neutral delay differential equations

for t > 0 with initial value z(t) = ¢(t), t € [ro,0]. By a solution of (4.30), we mean
z(t) € C([ro, oo], R) satisfying (4.30).

Two fundamental results are esdtablished in the following lemmas.

Lemma 4.1.25. Assume that (H1) — (Hs) hold.

(1) If 2(t,9) is a solution of (4.30), then x(t,v) = [lo<y, <,(1 + di)2(t,¥) is a solution of
(4.5).

(i) If z(t,v) is a solution of (4.5), then z(t,v) = [[o<y, «4(1 + di) "tz (t,%) is a solution of
(4.30).
Proof. Denote by z(t,v) := z(t) and xz(t,v¢) := xz(t). First, we prove (i). It is clear that
z(t) = [o<t,<¢(1 + di)z(t,9) is absolutely continuous on each interval (tj,t41) and for any
t #tr, k=1,2,..., we have that

t

2/(t) — e(t)a’(t — r1(t) + b(t)z(t — r2(t)) — / g(t,2(s)) dp(t, s)

th‘g(t)

= H (1 +dp)2 (t) — c(t) H (14 dg)2'(t —r1(t))
0<tp<t 0<tp<t—ri(t)
Wbty [+ dist - ra(t)) - / TT (1+dig(t, 2(5)) dua(t, )

0<t,<t—ra(t) t=r3(t) 0<t, <s

= I a+an|Zt - JI Q+d)e®t—r)
0<typ<t t—r1 (t) <ty <t
+ H (1+dp) tb(t)2(t — ra(t)) — / o H (1+dy) tg(t, 2(s)) dul(t, s)
t—ro(t) <t <t t=r3(t) s<t) <t

=0.
On the other hand, for every ¢, k =1,2,3-- -,
z(tf) = lim IT a+dpzt)= [ (1+dj)zt)

=t o<t <t 0<t; <ty

and @(tr) = [lo<y, <4, (1 + dj)2(ty). Hence, we obtain
w(6) = (1 -+ di)a(ty), (131)
for k=1,2,...,. From (4.31) and (4.31), we have that x(¢) is the solution of (4.5).

Next, we prove (ii). Since z(t) is absolutely continuous on each interval (tx,tg+1), it follows
that, for any k =1,2, ...,

0= [ +dp) ety = ] +dp) " ats) = 2(t)

0<t; <ty 0<t; <ty
and

2t =[] Q+d) " aty) =2t)

0<t;j<tp_1
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Chapter 4. A fixed point approach to stability of delay differential equations

which implies that z(¢) is continuous on [0,00). It is easy to find that z(t) is also absolutely
continuous on [0,00). and we can easily to check that z(¢) is the solution of (4.30) corresponding
to intial condition z(t) =1 (t), t € [ro,0]. The proof of Lemma 4.1.25 is complete.

Lemma 4.1.26. (Yan and Zhao [134]) Assume that (Hy) — (Hs) hold.

(1) Suppose that there exists a positive constant M > 0 such that for any t >0, [[5<;, (1 +
dy) < M. In addition, if the zero solution of (4.30) is stable, then the zero solution of (4.5)
is also stable.

(ii) Suppose that there exists a positive constant M > 0 such that for any t > 0, [[o<,, (1 +
dy) < M. In addition, if the zero solution of (4.30) is asymptotically stable, then the zero
solution of (4.5) is also asymptotically stable.

Proof. If we multiply both sides of (4.30) by ef()t(hl(s)Jrh?(s))dS, integrate from 0 to ¢, we obtain

t
z(t) = 7J)(O)e_fg(hl(“)J’M(“))d“Jr/ 6_f:(hl(")+h2(u))du(h1(5)+h2(5))2(5)d5
0

+ / Lo Lo hds T (14 d)els)(L— () (s — ra(s)) ds

0 s—r1(s)<tp<s

t t
— / e~ Js (h(w)+ha(u) du H (1+di)"1b(s)z(s — ma(s)) ds

0 s—ra(s)<trp<s

t s
N / e fnwhs@an T (1t dy) / 9(s, 2(w)) dpu(s, u) ds.
0 s—r3(s)

s—r3(s)<trp<s

(4.32)
Defining
t . 2
() = / e~ L) du 3™ g (5)5(5) d
2 2 0
Z / ) du — e~ o (@ Hha(w) du / o (0) (1)
t j=1 =3 (0)
2
o~ J1 (h1(u)+ha(u)) du s) + ho( / du ds
/0 ) + o) 3 (w)
2
" / IO k) 3 5 () (1= 1 (5)) (s — 1y (5)) ds,
(4.33)
we see that (4.32) can be written as
2(t) = P(0)e” fotm+hawdu gy 4 IT @+ di)  (Tat) + Js(t) + Ja(t),

0<tp<t
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4.1. Stability results for nonlinear neutral delay differential equations

where

VIONE / e i) T (1 +d)— (s — ra(s))

0 s<tp<t 1—ri(s)
t
J3(t) = — / e~ Js (W) +ha(w) du [T @+ dp)b(s)z(s — ra(s)) ds
0 s<tp<t

s

Ja(t) = /tefst(hl(“HhQ(“))d“ H (1+dk)/ g(s,x(u))du(s,u)ds.  (4.34)

0 s<tp<t s—r3(s)

Define n(t) := max{k € Z" : t; < t}. Because of the discontinuity of [, _,(1+dx) at t = t,
we obtain that Ju(t) is given by the following

t1 .
D(t) = /0 e Jemothatde TT (1 dy) -7 ) (s — r1(s))

s<tp<t —71(s)
n(t) t + C(S)
+ Z/ e~ Js (ha(w)Fha(w) du H (14 dy)——— dz(s — ri(s))
1=2 Jti-1 I<k<n 1—r(s)
¢ ¢ c(s)
+/ e~ Jsm@utha(u)du 200 g — gy (s)).
- Ty )

Performing an integration by parts, we have

Jo(t) = 6—f0t(h1(u)+h2(u))du
¢l c(t1) c(0)z(=r1(0))
1+ dy) |efo’ H(w)du t—r1(t)) —
X{zsllln( o [e O 1 _Tll(tl)x( Lot 1—71(0)
+% IT a+dw) [eftfl(hl(“)*hﬂu))duC(m 2(t — (1))
1=2 I<k<n ’ 1—=ri(t) o
o () (w)) du__ C(ti—1) _
elo 1 T‘/l(tl_l)x(tl_l r1(ti—1))
el tha@)da ) ) e
e’o 1—7"/1(tn)$(n Tl( n)) +1—7“/1(t)x( Tl( ))
t
—/ e~ Jo (h(w)+ha(w)) du H (1 +dg)x(s —ri(s))k(s) ds, (4.35)
0 s<tp<t

where

[c(s) (R (s) + ha(s)) + ¢'(s))(L —r1(s)) +e(s)r1(s)

Ho = (0= rf(s))?
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Chapter 4. A fixed point approach to stability of delay differential equations

Combining (4.33), (4.34), (4.35) together with z(t,v¢) = [[o<;, (1 + di)z(t, ), we have

2
p — ¢ fo (h1(u)+ha(u)) du u — C(O) _r
(0 [ > [t D n o)+ M(t)]

+§2:/t hjwz(w)du+ ] (1+dk)_1&Z(t—r1(ﬂ)
j=17t=75(t) ’ t—r1 (8)<tj, <t L=n()
+/0 Sl de (6 () (1 —ri(s) — ] (+ dk)lk(s)]

L s—r1(s)<tp<s

xz(s—r1(s))ds

t t
+ [ s (s o)1 - r5(5)) - L+ d’“)_lb(s)]
0 L s—ra(s)<tx<s
xz(s —ra(s))ds
2
_f (h1(u)+h2(uw)) du h + h / du ds
g s Y
t s
+ [ e (1+dg) / 9(s, 2(u)) dp(s, u) ds,
0 s—r3(s)<tx<s s=73(s)
where
n(t) d; t C(tl)
M(t) = (1+ dk)flefo (h1(u)+h2(u))d“7/2(tl —r1(ty)).
~1+d, 1—ri(t)
= ti—r1 (t )<tk<tl

Define the space
Sh={e 1o € Cllro.00)R), llell = suple(t)] <1, olt) = o(0) for t & [ro, 0],
270
o(t) > 0ast— oo}.

Then Sfb is a complete metric space with metric p(z,y) = sup;>, {|z(t) — y(t)[}-

Lemma 4.1.27. Let ¢(t) € Sé and define an operator by Pyp(t) = ¢(t) for t € [ro,0] and for
£>0,

8
Po(t) =Y Li(t),
=1
where
L) = e — [¥(h1(u)+ha(w)) du 22:/0 (u) du — c(0) W(—r1(0))
S =/, I OM |
&g 1= (u)tha () du c(tr)
L) = > [I Q+d) e et —ri(h)),
144 1—ri(t)
=1 t—r1(t) <tx <t
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4.1. Stability results for nonlinear neutral delay differential equations

I(t) = L rag = o manne =S
0 = T 0ed) e ), 4”_;/w]<t> e

t—r1(t)<tp<t

L) = / e @tk du |y (o ()1 = ()~ ]
0 L s—ri(s)<tx<s
x (s — r1(s)) ds,

Is(t) = /0 e Ji R du | o (5 py(5)) (1 = (s)) -

L s—ra(s)<tx<s

xp(s —ra(s)) ds,

t 2 s
I;(t) = _/ efst(h1(u)+h2(u))du(h1(s)+h2(s))2/ hj(u)p(u) duds,
0 =1 s—r;(s)

(1+ dk)_lk(s)]

(1+ dk)lb(s)]

L(t) = /0 —fmtha@)de T (14 dy) / ()g(s,so(u))du(s,u)ds.

s—r3(s)<tp<s

If conditions (i)-(iv) in Theorem 4.1.3 are satisfied, then there exists 6 > 0 such that for any
¢ : [ro,0] = (—9,0), we have that P : S(lb — Sé and P is a contraction with respect to the metric

defined on S(lz).

Proof. Fisrt, we prove that Py <, for ¢ € Sé). Indeed, we set

J = sup {67 fg(h1(5)+h2(s))ds} 7
t>0

by (iv), J is well defined. Since o € S%, we have

c(0)

[Pl < —
1 —71(0)

1+Z/ )| du +

] o] + ol

Thus, we choose
(1—a)l
1+ 522 [0 lhy(u)ld J
+2 751 20 0) ) du+ | = r’(o)

o] <6 :=

and we obtain |(Py)(t)| <.

Then, we prove that (Py)(t) is continuous. It is clear that [;(t) is continuous for ¢ = 1,4,7
and I»(t), I3(t), I5(t), I(t) are continuous for t € (0,t1) or t € (t;,tj41) for j = 1,2,---.
remains to prove that Io(t) + I3(t), I5(t), I¢(t) and Ig(t) are continuous at t = ¢;. Following the

same discussion as [6] on page 7245, we have

im, [Ia(tj + 1) — Io(tj) + I3(t; + 1) — I3(t;)| = 0

111(1)17 |IQ(LLJ+?”) I (tj)—FIg(tj—l-T)—Ig(tj” = 0.
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Take the lim,_,o, we have

[I5(t; + 1) — I5(t))]

— [ (b1 (u)+ho (w) du

< le ‘%4 -1

t; £
/ o= 12 (ha () ha () du
0

x|hi(s —r1(s))(1 = ri(s)) — (1+di) ™ k() |l(s — r(s))| ds

s—ri1(s)<tx<s

(s —ri(s)1=ri() = [ (L+d)"k(s)

s—ri(s)<tx<s

tj+7‘

ti+r
+ / T e 1 (e w) du
t

J

x|o(s —r1(s))| ds — 0.

In the same way, we can prove that Is(t) and Ig(t) are continuous at ¢ = t;. Therefore, Py is

continuous.

Next, we prove that (Py)(t) — 0 as t — oo. Obviously, we have that I;(¢) — 0 for i = 1,3,4
since fot(hl(u) + ha(u)) du — 0o, t — r1(t) — oo and ¢(t) — 0 as t — 0.

In the following, we prove that I5(t) — 0 as t — oo. Since ¢(t) — 0 and ¢t — r;(t) — oo as
t — oo, for each € > 0, there exists a NV > 0 such that n(t) > N implies | (t,) — 7 (tnw))| <&,
for j = 1,2. Thus, we have

t N t
|12(t)| — e_ ftN (hl(u)+h2(u)) du Z l—ild H (1 n dk)_lei fth(h1(u)+h2(u))du
=1 ! tl—rl(tl)gtk<tl
c(tr)
—0(t; — t
. —-Ti(tﬂ(p(l r1(t))
ntt) d; —1 — [l (h1(w)+ha(w)) du c(ty)
- Z 1+d H (1+dk) e 1_r/(t)90(tl_7“1(tl))
I=N+1 l ty—r1 () <tp <t 1
< e+ e

for t is large enough. In the same way, we can prove that I;(t) — 0 as t — oo for i = 5,6, 7, 8.
Finally, we prove that P is a contraction. In fact, for ¢, 7 € S,
[(Pe)(t) — (Pn)(t)]

)

n(t
du L1 = Jl () +haw) du_c(t)
< [T a+d)te s G
{ =1 L+ d ti—r1(t)<tp <t 1—r1(t)
2 t
t
+ (Hdz&‘l# +Z/ |hj(u)| du
i 1—ri(t) —1 Jt—r;(b)
1 (t) <t <t j=1
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t
+/ e~ @ tha(u)du\p (o (5))(1 = (s)) — [T +d) "k(s)|ds
0 s—r1(s)<tp<s
t
b [ty - = T (1 d) b ds
0 s—ra(s)<tp<s

/ f (h1(u)+ha(u)) dU|h +h2 |Z/ |dud5
0 s rj(s

t
+/ e f;(hl(U)+h2(U))du H (1 + dk’)_l (‘/[5—7”3(5),5] (M(& ))) ds} ||()0 - 77”
0 s—r3(s)<tp<s

< oo =l
Thus, P : S(l]5 — Sé) is a contraction.

We are now ready to prove Theorem 4.1.10.

Proof. Let P be defined as in Lemma 4.1.27. By the contraction mapping principle, P has a
unique fixed point z in Sé which is a solution of (4.30) with z(¢) = ¢(t) on [rg,0] and x(t) — 0
as t — oo.

To prove stability at ¢ = 0, let € > 0 be given, then we choose m > 0 so that m < min{l,e}. By
considering S7', we obtain there is a § > 0 such that [¢[| < ¢ implies that the unique solution of
(4.30) with z(t) = ¢(t) on [ro, 0] satifies |z(t)| < m < e for all ¢ > ro. This shows that the zero
solution of (4.30) is asymptotically stable if (v) holds. Combining this fact with Lemma 4.1.26,
we obtain that the zero solution of (4.5) is asymptotically stable.

Conversely, we suppose that (v) fails. Then by (iii), there exists a sequence {t,}, t, — oo as
n — oo such that lim,, fg"(hl(s) + ha(s))ds = v for some v € R. We may choose a positive
constant M such that

M < /Otn(hl(s) 4 ha(s))ds < M (4.36)

for all n > 1. To simplify our expressions, we define

w(s) =

(s =rm(s)(1=ri(s) = [[  (C+d)"k(s)

s—ri(s)<tp<s

Hha(s —ra(s)(L—ri(s)) =[] (L+di)"b(s)

s—ra(s)<tp<s

_th +h2 ’Z/ (s) |du+ H (1+dk)_1 (‘/[5—7"3(3),5](/‘(37')))
—1/s—1j(s)

s—ra(s)<tp<s

for all s > 0. By (ii) we have

tn tn
/ o= Ji () tha(u)) duyy () 4o < g (4.37)
0
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Combining (4.36) and (4.37), we have

ln
/ eJo () tha(u) duyy gy gg < qelo” W Tha(u) du < oM
0

which yields that the sequence fot" eJo (h1.(w)+ha () duy(s) ds is bounded, there exists a convergent
subsequence, we assume that

tn
lim ’ elo (m(wytha(w) duy, () g —

k—o00 0

for some v € RT. We choose a positive integer k so large that

tny,

li eJo (hi(u)+ha(w)) du ds < =2

e twls)ds < 45
'k

for all ng > ng, where dp > 0 satisfies 260JeM + o < 1.

Now, we consider the solution z(t) = z(t, s, 1) of (4.5) with ¥(t,.) = do and ¢¥(s) < do
for s <ty , and we may choose 1) such that lx(t)] <1 fort > tn, and

C(tnz) tng 1
P(tn ) — ﬁl(%)q/}(tnE (tn;)) Z/ hy(s)(s) ds > 500-

n, -7 (tn,

So, it follows from the above inequality combining with z(t) = (Pz)(t) that for k > k,

tn tn
S(tng) — M(t)e~ b @rwbsas T gy g )

1—7(t,,
tnkf"'l(tnk)gti<tnk 1( ’Nk)

2

=S /t o h () () du

j=1"tng —7j(tny)

tn tn tn
> }506— Jen® (k1 () () du _/ E o i () ha () duwgy (63 g
tnf

\V]

tn n
_ e*f F (h1(u)+ha(u)) du ( So— e fO (h1(u)+ha(u)) du /t b eff(f(hl(u)+h2(u))duw(8) ds)
tn

tn
. e_f "k (hy(u)+ha () du (;50 _ J/ fO (h1(u)+ha(u ))duw(s) dS)
tnE

1o ol ((w+ha(w) du

1
> 4(506 & > 150672M > 0. (438)

On the other hand, if the solution of (4.5) z(t) = (¢, s, ¢) — 0 ast — oco. Since tp, —7;(tn,) —
oo as k — oo, 7 = 1,2 and (i7) holds, we have

tn t
Z(tn,) — M(t)e_fo k(h1(u)+he(u) du _ H (1+ di)_ll_C(/k)Z(tnk —71(tn,))
rl(t”k)
tnk _Tl(tnk)gti<tnk
2t
- Z/ hj(uw)z(u)du — 0, as k — oo,

j=1 7 tny =7 (tny)
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4.1. Stability results for nonlinear neutral delay differential equations

which contradicts (4.38). Hence condition (iv) is necessary for the asymptotic stability of the
zero solution of (4.5). O

Remark 4.1.28. When di = 0, Theorem 4.1.10 is Theorem 1.3 in [16] under the same sufficient
conditions.

Corollary 4.1.29. Consider the equation
/(1) — e()2'(t = r(t) = =b()x(t) + [,y 9, 2(5)) dpult, s), ¢ # b,

(4.39)
$(t;) —x(ty) = drx(ty), k=1,2,..,

which can be transformed into a neutral delay differential equation without impuses

- T a4d) e - 1) —rt)) (4.40)

L—r(t)<tp<t

=TI ara w0+ T1 0rd™ [0 ot ducs

t—r(t)<tp <t t—r(t)<tp<t

Assume that the delay r(t) is twice differentiable with v'(t) # 1, and t — r(t) — o0 as t — oo,
g satisfies (G). Suppose that there exists a constant o € (0,1) and a continuous function v :

[ro,00) = R such that lim inf;_, o fo s)ds > —oo and
n(t)
d; H —1 — [ o(u) du C(tl)
(L+dp)" e "u s
=1 1 T dl tr—r(t) <t <t L=r (tl)

”“)d“|v |/ (u)| duds

(v(s =r(s) =bls —r(s)) (L =r"(s) = [ (@ +di)"k(s)|ds

U () du H ( + dk>_1‘/[s—r(s),s] (IU(S, )) ds < a,

—r(s)<tp<s

where

k(s) = [e(s)v(s) + Cl(il)]g;(ggj)) + e(s)r”'(s). (441)

Then the zero solution of (4.40) is asymptotically stable if and only if

t
/ v(s)ds — oo as t — oo.
0

Remark 4.1.30. Suppose that the conditions of Corollary 4.1.29 hold. If there exists o positive
constant M > 0 such that for any t >0, [[y<;, (1 +di) < M, then the zero solution of (4.39)
is asymptotically stable. Furthermore, when dj = 0, we obtain Corollary 2.1 in [16].
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Chapter 4. A fixed point approach to stability of delay differential equations

Corollary 4.1.31. Consider the equation

2/(t) — e(t)a! (¢ — r(t)) = ~b(t)a(t) + a(t)g(a(t — (), t# b,
(4.42)
x(tlj) - x(tk) = dkm(tk), k= 1,2, cesy

which can be transformed into a neutral delay differential equation without impuses

2 (t) — H (1+dp) " te(@)(1 = ' ()2 (t — r(t)) (4.43)

t—r(t)<tp<t
=— JI +aye@=zt)+ [[ O +d) " a()gl=(t—r(1)
t—r(t)<tp<t t—r(t)<tp<t
Assume that r(t) is twice differentiable, v'(t) # 1, t — r(t) — o0 as t — oo. g satisfies (G).
Suppose that there exists a constant o € (0,1) and a continuous function v : [ro,00) — R such
that lim inf;_, o fo s)ds > —oo and

n(t)
d; H —1 = [ o(u) du C(tl)
(1+dg) e 'u —
=1 1 - dl tl—T(tl)Stk<tl L= (tl)
c(t t
4 H (1+dy) 1_(T,)(t) +/t [vu(s) —b(s)| ds
t—r(t)<tp<t —r(t)

(v(s = r(s) =bls —r(s)) L =r"(s) = [ (@ +d)""k(s)|ds

—r(s)<tp<s
t t
+/ e Js v(u) du H (1 +di) a(s)|ds < a, (4.44)
0
—r(s)<tp<s

where k(s) is defined as (4.41). Then the zero solution of (4.43) is asymptotically stable if and
onlyszD s)ds — 00 as t — 00.

Remark 4.1.32. Suppose the conditions of Corollary 4.1.31 hold. If there exists a positive
constant M > 0 such that for any t >0, [[o<y, (1 +di) < M, then the zero solution of (4.42)
is asymptotically stable. Furthermore, when d = 0, we obtain Corollary 4.1.15.

Remark 4.1.33. For the case when g(x) = x, condition (4.44) becomes

n(t)

1 ct)
Z H (1 + d) 11—7"’(75)
t—r(t)<