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Abstract

The chemokine receptor CCR5 regulates trafficking of immune cells of the lym-
phoid and the myeloid lineage (such as monocytes, macrophages and immature 
dendritic cells) and microglia. Because of this, there is an increasing recognition of 
the important role of CCR5 in the pathology of (neuro-) inflammatory diseases such 
as atherosclerosis and multiple sclerosis. Expression of CCR5 is under the control 
of a complexly organized promoter region upstream of the gene. The transcrip-
tion factor cAMP-responsive element binding protein 1 (CREB-1) transactivates the 
CCR5 P1 promoter. The cell-specific expression of CCR5 however is realized by us-
ing various epigenetic marks providing a multivalent chromatin state particularly 
in monocytes. In this chapter the transcriptional regulation of CCR5 is discussed, 
with a focus on the epigenetic peculiarities of CCR5 transcription.
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Introduction

The CC chemokine receptor 5 (CCR5) regulates trafficking of lymphoid cells 
such as memory/effector Th1 lymphocytes, or cells of the myeloid lineage (e.g. 
monocytes, macrophages, immature dendritic cells) and microglia. As such, CCR5 
is implicated in the pathogenesis of various inflammatory diseases such as ath-
erosclerosis and multiple sclerosis.1–4 Furthermore, CCR5 also functions as a 
co-receptor for HIV-1.5–7 Notably, CCR5 expression is markedly upregulated upon 
T cell activation,8–11 which allows the activated T cells to migrate towards site(s) of 
inflammation.8,12

Upon encountering a pathogen, antigen presenting cells will present the anti-
genic peptide to resting naïve T cells which results in the generation and activation 
of antigen-specific T cells.13,14 After activation, the T cells migrate to the site of in-
flammation, guided by chemokine receptors.15 Similarly, circulating monocytes are 
also attracted to inflammatory sites by chemokine receptors, where they then can 
differentiate into e.g. macrophages or microglia.16–18 Multiple sclerosis and ather-
osclerosis are greatly characterized by inflammatory lesions, consisting of T cells 
and macrophages or microglia.19–21 The chemokine receptor CCR5 has been shown 
to be implicated in the pathogenesis of both of these diseases.22–25

Expression of CCR5 is under the control of a complexly organized promoter re-
gion upstream of the gene. The main transcriptional activity of the CCR5 promoter 
region is contained within the downstream promoter P1.9,11,26 A number of tran-
scription factors have been shown to play a role in CCR5 transcriptional regulation 
(see Wierda et al.27 and references therein). A graphical representation of the CCR5 
promoter organization and transcription factor binding sites is shown in figure 4–2. 
We have previously shown however that the transcription factor cAMP responsive 
element binding protein 1 (CREB‑1) is the main transactivating factor for the CCR5 
P1 promoter.26 However, considering the ubiquitous expression of CREB‑128, we 
argued that epigenetic mechanisms are also involved in the cell type-specific regu-
lation of CCR5 transcription. In line with this notion is the observation that transient 
promoter-reporter studies in CCR5-deficient Jurkat T leukemia cells revealed that 
the CCR5 promoter-reporter was activated upon transfection.9 This observation 
infers that Jurkat T  leukemia cells contain all the transcription factors required 
for CCR5 transcription, and demonstrates that CCR5 transcription is additionally 
controlled by epigenetic mechanisms.
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Epigenetic mechanisms control the accessibility of DNA for transcription factors 
and are thought to form the basis for cell-to-cell inheritance of gene expression 
profiles.29 Epigenetic mechanisms as such play an essential role in the regulation 
of gene transcription. Epigenetic modifications include methylation of DNA at CpG 
residues and posttranslational modifications of histone tails such as acetylation 
and methylation.30 Together these modifications form a ‘histone code’ – like the ge-
netic code – that controls transcription levels of genes.31 Importantly, modifications 
to DNA and to histone tails have been shown to be functionally linked.32

Well-studied mechanisms that underlie gene repression by histone methyla-
tion involve tri-methylation of histone H3 at lysine 9 (H3K9Me3) and at lysine 27 
(H3K27Me3), and of histone H4 at lysine 20 (H4K20Me3). These modifications are 
catalysed respectively by the lysine methyltransferases (KMTases) SUVAR39H1 
(hKMT1A), Enhancer of Zeste homolog 2 (EZH2, hKMT6), a subunit of the Polycomb 
Repressive Complex 2 (PRC-2), and SUV4-20H1/H2 (hKMT5B/C).33–36 The KMTase 
hSet1 and the MLL genes (hKMT2A/G) catalyses tri-methylation of K4-H3 
(3MeK4H3) and this modification is associated with gene transcription.36,37

In this study we show that induction of CCR5 transcription – upon CD4+ T cell 
activation – correlates with reduced levels of DNA methylation as well as chang-
es in specific histone modifications within the CCR5 promoter. To establish 
whether the found epigenetic profiles are T cell specific, we also determined the 
epigenetic profile in CD14+ monocytes, being of the myeloid instead of the lymphoid 
lineage. It is shown that the CCR5 chromatin status in primary CD14+ monocytes 
correlates with the intermediate transcription levels of CCR5. Furthermore, the 
T-lymphoblastic cell lines studied (Jurkat, Molt‑4, HSB‑2) do not express CCR5 and 
show a transcriptionally repressive chromatin environment. Moreover, we show 
that pharmacological interference in these epigenetic silencing mechanisms in the 
CCR5-deficient T leukemia cell lines results in the induction of CCR5 expression. 
Together, these data reveal that epigenetic mechanisms play a pivotal role in the 
control of CCR5 transcription.

Materials & Methods

Cell culture and activation

Naïve human CD4+  T  cells were sorted from freshly isolated PBMC using a 
FACSAria Flow Cytometer (Becton Dickinson). Sorted cells were directly used for 
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chromatin immunoprecipitation (ChIP) analysis, RNA extraction and DNA isolation 
for bisulphite analysis. Naïve CD4+ T cells were also activated in vitro as described 
earlier.38 In brief, naïve CD4+ T cells were stimulated with 1 µg/mL phytoheamag-
glutinin (PHA, Remel Europe Ltd.) and 20 U/mL IL-2 in the presence of irradiated 
allogeneic PBMCs (3000 Rad). After 11 days of culture, cells were restimulated the 
same way and after 12 days cells were harvested for ChIP analysis and bisulphite 
sequencing analysis. For RNA-extraction naïve CD4+ T cells were stimulated with 
anti-CD3 and anti-CD28 for 30 min. Thereafter CD4+ T cells were cultured for 48h 
in CFU-EC medium (Stemcell technologies). RNA was isolated with the RNA-Bee 
extraction method (see page 98).

The leukemic T cell lines Jurkat (Clone E6-1; American Type Culture Collection 
(ATCC)) and MOLT‑4 (ATCC) were cultured in RPMI-1640 medium (Gibco, Invitrogen) 
supplemented with 10% heat-inactivated foetal calf serum (FCS; PAA), 100 IU/mL 
streptomycin, 100 IU/mL penicillin (both Lonza) and 2 mM L-glutamine (Gibco). 
The HSB‑2 cell line was cultured in Iscove’s modified Dulbecco’s medium (IMDM; 
Lonza), supplemented with 10% heat-inactivated FCS, 100 IU/mL streptomycin, 100 
IU/ml penicillin, and 2 mM L-glutamine.

To obtain CD14+  monocytes, PBMCs were freshly isolated from the blood of 
healthy volunteers by density gradient centrifugation using Ficoll-Paque™ PLUS 
(GE Healthcare). Monocytes where enriched from the PBMC fraction by magnetic 
separation with CD14 magnetic beads (MACS; Miltenyi Biotec).

Flow cytometry

CCR5 expression on Jurkat, HSB‑2, Molt‑4 and primary T cells was determined 
by flow cytometry, using the mouse monoclonal antibody MC-5 (kind gift of Prof. 
M. Mack, University of Regensburg, Regensburg, Germany) and a PE-conjugated 
anti-mouse IgG secondary antibody (Becton Dickinson) and the appropriate con-
trols. Data acquisition was performed on a FACSCalibur flow cytometer (Becton 
Dickinson) using Cell Quest programming. Data was analyzed using the FlowJo 
software package.

Bisulphite sequencing

Total genomic DNA was isolated from naïve and activated T cells, Jurkat T leu-
kemia cells, and CD14+ monocytes. One µg of genomic DNA was used to bisulphite 
convert unmethylated CpGs using the EZ DNA Methylation kit (Zymo Research). 
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CCR5 promoter DNA was then amplified using primer sets for specific CpG contain-
ing regions (Table 4–1, Figure 4–2). PCR products were purified using the NucleoSpin 
Extract II kit (Macherey-Nagel), cloned into pGEM-T easy vector (Promega), and in-
dividual clones were sequenced at the Leiden Genome Technology Center. Results 
of at least 10 individual clones are represented as pie charts for each CpG analyzed. 
The percentage of methylated clones is depicted in black.

Table 4–1: �Primers used for ChIP, bisulphite sequencing and qPCR.

Gene Promoter 
region

Region spanning, 
relative to CDS Primer sequence, 5’-3’ Application

CCR5

B1 -3509 to -3090a
F: TGTTATTGAGTTTTGTTGTAGTATAGATA

Bisulphite

R: ACCAAACTTAAAACCTATCTTACCC

B3 -2625 to -2434a
F: TTTAGAAAAAGATGGGAAATTTGTT

R: TCCTAAACTTCACATTAACCCTATATC

B4/5 -2210 to -1866a
F: TTAATAGATTTTGTGTAGTGGGATGAGTA

R: CTCATCTCAAAAACTAACTAACAAAC

-2277 to -1932a
F: TGTGGGCTTTTGACTAGATGA

ChIP
R: TAGGGGAACGGATGTCTCAG

-47 to +188b
F: CTGAGACATCCGTTCCCCTA

qPCR
R: GCTCTTCAGCCTTTTGCAGT

RPII +3993 to +4172c
F: CAGGAGTGGATCCTGGAGAC

qPCR
R: GGAGCCATCAAAGGAGATGA

CREB‑1

+276 to +609 
(isoform a)d

+276 to +659 
(isoform b)e

F: AACCAGCAGAGTGGAGATGCAGCT

semi-quantitative PCR
R: CTGTAGGAAGGCCTCCTTGAAAGA

ICER +150 to +750f
F: CAGATCCGAGCTCCTACTGC

semi-quantitative PCR
R: CAACTCGGCTCTCCAGACAT

a: Based on accession number NC_000003.10 
b: Based on accession number NM_000579.3 
c: Based on accession number NM_000937.2 
d: Based on accession number NM_004379.3 
e: Based on accession number NM_134442.3 
f: Based on accession number NM_182717.1

Chromatin immunoprecipitation (ChIP)

ChIP was performed as described earlier.26 One µg of cross-linked DNA was im-
munoprecipitated with antibodies (5 µg) directed to specific histone modifications 
(Table 4–2), or no antibody as background control. Quantitative PCR (qPCR) of the 
immune-precipitated chromatin was performed using the primer pairs shown in 
table 4–1.



Chapter 4

98

Table 4–2: �Antibodies used for ChIP.

Antibody 
reactivity

Manufacturer Catalogue #:

H3Ac Millipore 06-599
3MeK4H3 Cell Signalling Technology 97510
H3K9Me3 Abcam ab8898
H4K20Me3 Abcam ab9053
H3K27Me3 Millipore 07-449
CREB‑1 Rockland 100-401-195; [62]
RNA pol II Santa Cruz sc899x

Zebularine, DZNep and MS275 treatment

For induction of expression of CCR5, Jurkat, HSB‑2 and Molt‑4 cells were ex-
posed to 100 μM of Zebularine (V.E. Marquez) for 96 hours followed by an additional 
treatment with 2 μM of 3-Deazaneplanocin A (DZNep, V.E. Marquez) for 72 hours 
and 0.5 μM MS275 (Sigma-Aldrich) for 48 hours in IMDM (HSB‑2) or RPMI-1640 
(Jurkat and Molt‑4) with supplements as described above.

RNA isolation and (quantitative) RT-PCR

Total RNA was isolated using the RNA-Bee extraction method (TelTest) from 
naïve and activated CD4+ T cells, from CD14+ monocytes and from Jurkat, HSB‑2 
and Molt‑4 cells prior to and after treatment with Zebularine, DZNep and MS275. 
From 1µg of RNA, cDNA was synthesized using 250ng random hexamers (Promega) 
and Superscript III reverse transcriptase (Invitrogen).

CCR5 and RNA polymerase II (RPII) transcripts were quantified on an iCycler 
IQ system (BioRad Laboratories) using the IQ SYBR Green Supermix (BioRad 
Laboratories). Relative transcript levels of CCR5 were calculated with the compar-
ative Ct method (or ΔΔCt method) and related to RPII transcript levels. The induced 
levels of CCR5, after treatment of Jurkat, Molt‑4 and HSB‑2 cells with Zebularine, 
DZNep and MS275, are also depicted relative to the CCR5 expression level in in vitro 
activated primary T cells. The primers used in the qPCR reactions are shown in 
table 4–1.

CREB‑1 and inducible cAMP early repressor (ICER), the inducible isoform of 
cAMP-responsive element modulator (CREM) transcripts were analyzed in triplicate 
by semi-quantitative PCR as previously described.26 PCR products were separated 
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by gel electrophoresis on a 1.5% agarose gel, run at 90V for 45min, and visualized by 
ethidium bromide staining. Densitrometric analysis was performed in ImageJ (U.S. 
National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/).

Results

DNA methylation patterns of the CCR5 P1 promoter.

Using flow cytometry we found that only a few naïve primary CD4+ T  lympho-
cytes express low levels of CCR5 at the cell surface, whereas CCR5 cell surface 
expression is markedly upregulated after in vitro activation of these cells (Figure 
4–1A). The CCR5 cell surface expression pattern of activated CD4+ T cells is accom-
panied by relatively high levels of CCR5 transcripts (Figure 4–1B). In naïve T cells 
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Figure 4–1. �(A) Cell surface expression of CCR5 in Jurkat T leukaemia cells, naïve and activated 
CD4+ T cells as determined by flow cytometry. Numbers indicate percentage of CCR5 
positive cells. (B) Relative transcript levels of CCR5 in various cells types. Numbers 
indicate expression percentage relative to RNA polymerase II (RPII). N.D. indicates 
transcript levels were below the detection threshold.
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CCR5 transcripts were detected at low levels (Figure 4–1B). Myeloid cells, such as 
monocytes express CCR5 at low to intermediate levels.39 When compared with ac-
tivated and naïve CD4+ T cells, CD14+ monocytes indeed show intermediate levels 
of CCR5 transcripts (Figure 4–1B). In contrast, most established tumour T cell lines 
completely lack CCR5 surface expression, including the human CD4+ leukemic 
T cell lines Jurkat, Molt‑4 and HSB‑2 (Figure 4–1A and Figure 4–5A). Furthermore, 
these leukemic T  cell lines show only very low or undetectable CCR5 transcript 
levels (Figure 4–1B).

Evaluating the role of epigenetic mechanisms in the regulation of CCR5 expres-
sion we first assessed the CpG methylation status of three subregions regions of 
the CCR5 downstream promoter P1 (Figure 4–2). The most downstream subregion 
(B4/5), which is known to be transactivated by CREB‑1,26 appears to be mostly un-
methylated and displays only marginal differences in DNA methylation between 
the various cell types (Figure 4–2). The upstream subregions B1 and B3 display 
remarkable differences in DNA methylation status. In activated T cells, the CpG 
residues in these subregions of the P1 promoter display low levels of DNA methy
lation. In monocytes, which express intermediate levels of CCR5, the promoter 
subregions B1 and B3 are highly methylated, while the B4/5 region displays low 
levels of DNA methylation (Figure 4–2). By contrast, in naïve CD4+ T cells these sub-
regions are mainly methylated and almost completely methylated in Jurkat T cells. 
Together, these data reveal that the intermediate, low and lack of CCR5 transcrip-
tion levels, in monocytes, unstimulated CD4+ T cells and in Jurkat T leukemia cells 

Jurkat

Monocytes

Activated T Cells

Naive T Cells

B1 B3 B4/5

Exon 2a / 2bExon 1 Exon 3
P1

P2

CREB-1
OCT-1KLF-2

YY KLF-2KLF-2NF-AT
OCT-2

GATA-1

ChIP Region

Figure 4–2. �Methylation analysis of the CCR5 promoter of several cell types. Each circle 
represents a single CpG residue. The percentage of clones methylated at a specific 
residue is indicated by the black colour. The distance between each circle represents 
the relative distance between CpG residues on the genomic sequence. Horizontal 
arrows indicate the relative position of primers used to amplify bisulphite modified 
DNA. The CREB‑1 binding site most likely involved in CCR5 transactivation is indicated 
with a vertical arrow.26 Other transcription factors that have been attributed to CCR5 
transcription regulation are indicated with grey arrows. The region investigated by 
chromatin immunoprecipitation is annotated as “ChIP region”.
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respectively, are associated with high levels of DNA methylation in the subregions 
B1 and B3 of the P1 promoter but not in the B4/5 subregion.

Histone modifications of the CCR5 P1 promoter

Next we determined the association of specific histone acetylation and methy
lation modifications within chromatin of the CCR5 P1 promoter by chromatin 
immunoprecipitation (ChIP) (Figure 4–2 and Figure 4–3A–C). CCR5 expressing, ac-
tivated, CD4+ T cells display relative high levels of H3Ac (Figure 4–3A). Interestingly, 
monocytes display H3Ac levels in chromatin of the CCR5 P1 promoter, which are 
similar to activated T cells (Figure 4–3A). This is in contrast to the non-CCR5 ex-
pressing naïve T cells and Jurkat T cells, which display markedly lower levels of 
H3Ac in CCR5 P1 chromatin.

CCR5-expressing activated T cells display relatively high levels of the permis-
sive 3MeK4H3 mark in CCR5 P1 chromatin. Interestingly, naïve T cells expressing 
low levels of CCR5 show similar levels of the permissive 3MeK4H3 mark (Figure 
4–3A). In contrast, CCR5-deficient Jurkat T cells display low levels of the permis-
sive 3MeK4H3 modification (Figure 4–3A).

The repressive marks H3K9Me3 and H3K27Me3 are only present at very low 
levels in chromatin of low CCR5-expressing naïve T cells (Figure 4–3B). In contrast, 
the repressive mark H4K20Me3 is highly enriched at the CCR5 P1 promoter region 
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Figure 4–3. �Chromatin environment at the CCR5 promoter as determined by ChIP analysis. CCR5 
expressing activated CD4+  T  cells clearly show higher levels of transcriptionally 
permissive chromatin marks H3Ac and H3K4Me3 (A) whereas there is an opposite 
association with transcriptionally repressive chromatin marks H3K9Me3, H3K27Me3 
(B) and H4K20Me3 (C). These non-permissive marks are clearly present in higher 
amounts in CCR5 non-expressing cells (Jurkat T leukaemia cells, naïve CD4+ T cells) 
versus expressing activated CD4+ T cells. Naïve T cells and CD14+ monocytes show 
a poised chromatin state, encompassed by both transcriptionally permissive and 
non-permissive marks. Whereas naïve T  cells show relatively low levels of H3Ac, 
monocytes have high levels of H3Ac.
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of naïve T cells (Figure 4–3C). The presence of both an activating mark (3MeK4H3) 
and a repressive mark (H4K20Me3) indicates a bivalent, so-called ‘poised’ state of 
the CCR5 promoter chromatin of naïve CD4+ T cells.

Activated CD4+ T cells show a twofold higher CCR5 transcription level as com-
pared to monocytes. Assessing the chromatin status of CD14+ monocytes, we 
observe the presence of relative high levels of the repressive marks H3K9Me3 
and H3K27Me3 in the monocytic CCR5 P1 promoter (Figure 4–3B). Conversely, 
the repressive mark H4K20Me3 is only slightly enriched in monocytes as com-
pared to activated T cells (Figure 4–3C). Furthermore, hardly any of the permissive 
3MeK4H3 mark could be detected, yet monocytes show high levels of H3Ac in the 
CCR5 promoter (Figure 4–3A). This indicates that also monocytes display a chroma-
tin state in which repressive and permissive histone modification marks co-exist. 
Compared to naïve CD4+ T cells however the chromatin state of CD14+ monocytes, 
is markedly different, permitting transcription of CCR5.

CCR5-deficient Jurkat T  cells show relative high levels of the repressive 
H3K9Me3 and H3K27Me3 histone marks, when compared with naïve and activated 
T cells (Figure 4–3B). Like naïve T cells, Jurkat T  leukemia cells also show high-
er levels of the repressive H4K20Me3 modification when compared to activated 
T cells (Figure 4–3C). The presence of these repressive marks in the absence of ac-
tivating histone modifications clearly shows a repressive chromatin conformation 
encompassing the CCR5 P1 promoter in Jurkat T cells.

Taken together, these data show that there is a differential pattern of chromatin 
conformation of the CCR5 P1 promoter region in the different cell populations in-
vestigated in this study. Our observations also indicate that the CCR5 transcription 
profiles could not be explained by a single epigenetic modification, but rather the 
sum of modifications appears to determine the level of CCR5 transcripts in the var-
ious cell types investigated.

Re-expression of CCR5 through pharmacologic interference in epigene-
tic mechanisms in Jurkat, Molt‑4 and HSB‑2 T cell lines

To show that DNA methylation, and histone acetylation/methylation mechanisms 
control CCR5 transcription, we aimed to induce CCR5 transcription in non–CCR5-
expressing cells through pharmacologic interference in the catalytic activities of 
the various enzymes involved in these epigenetic regulatory processes. Figure 4–4 
presents a schematic overview of the working mechanisms of the agents used for 
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this purpose. Zebularine is a potent inhibitor of DNA-methylation showing much 
lower toxicity then the widely used inhibitor 5-Aza-dC.40,41 First recognized as an 
inhibitor with specificity for the KMTase EZH2, DZNep is now regarded as a more 
general lysine methyltransferase inhibitor, with a high affinity for the enzymes that 
triple-methylate K20H4 and K27H3 (Miranda et al. (2009),42 Tan et al. (2007)43 and 
own observations). Finally, MS275 is a potent inhibitor of histone deacetylase activ-
ities (HDACs), with high affinity for the class I HDACs 1 and 3.44

Originally we found that inhibition of DNA-methylation by 5-Aza-dC treatment 
resulted in only a modest and time-dependent induction of CCR5 mRNA expression 
levels in Jurkat cells (results not shown). However, combining inhibition of DNA and 
histone methylation by inclusion of DZNep resulted in a clear synergistic induction 
of CCR5 mRNA expression, whereas inhibition of histone methylation alone was 
found only marginally effective (results not shown). Additional treatment with the 
HDAC inhibitor MS275 mainly potentiated the effect obtained by the other inhibitors 
(results not shown).

We therefore combined all of the above-mentioned inhibitors to induce CCR5 
expression in Jurkat, Molt‑4 and HSB‑2 T leukemia cells and included Zebularine 
rather than 5-Aza-dC for the aforementioned reasons. After treatment with 
Zebularine, in combination with DZNep and MS275, 67.7% of Jurkat cells are CCR5 
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Figure 4–4. �Schematic representation of the working mechanism for the pharmacological 
intervention in CCR5 transcription. Zebularine inhibits DNMTs, whereas MS275 
inhibits HDACs. DZNep is a more general KMTase inhibitor.42
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positive as determined by flow cytometry (Figure 4–5A). In untreated Jurkat cells, 
only 0.83% of the cells stain positive for CCR5 (Figure 4–1A). Correspondingly, after 
treatment the levels of CCR5 transcripts found in Jurkat T cells increased to 43% 
of the CCR5 transcript levels found in activated CD4+ T cells (Figure 4–5B). HSB‑2 
and Molt‑4 were more refractory to this combined epigenetic treatment, however 
still 49.4% and 18.2% of the cells respectively were expressing CCR5 at the cell 
surface after treatment (Figure 4–5A), whereas transcript levels were 20% and 
4.8% relative to activated T cell transcript levels in HSB‑2 and Molt‑4 respectively 
(Figure 4–5B).

Next we evaluated the effect of the epigenetic drug treatment on the expression 
characteristics of CREB‑1 and ICER in Jurkat cells by semi-quantitative RT-PCR 
as we have previously explored.26 ICER, the inducible cAMP early repressor, which 
is induced by forskolin, competes with CREB‑1 for DNA binding. We and more re-
cently also others have shown that induction of ICER by forskolin treatment indeed 
reduces CCR5 expression.26,45 In figure 4–6 it is shown that pharmalogical induction 
of CCR5 expression did neither result in the induction of CREB‑1, nor in a reduction 
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Figure 4–5. �(A) Restoration of CCR5 expression in Jurkat, HSB-2 and Molt- 4 T  leukaemia cell 
lines following exposure of cells to Zebularine, DZNep and MS275 determined by flow 
cytometry. Numbers indicate the percentage of CCR5 positive cells; filled histograms 
represent the non-treated cells and open histograms the treated cells. (B) Levels of 
CCR5 transcripts in treated Jurkat, HSB-2 and Molt-4 T  leukaemia cells relative to 
CCR5 transcript levels in activated CD4+ T cells. The transcript level data of activated 
T cells are the same as shown in figure 4–1B.
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of ICER in Jurkat T  cells. Notably, when compared with naïve or activated CD4+ 
T cells, Jurkat cells do express CREB‑1, but hardly any ICER could be detected. In 
contrast, naïve T cells show low levels of CREB‑1, with relatively high levels of ICER. 
Upon activation, the levels of ICER are reduced while on the other hand CREB‑1 
levels are induced (Figure 4–6). These observations indicate that in Jurkat T cells 
induction of CCR5 expression most likely is not resulting from alterations in the 
interplay of CREB‑1 and ICER.

We also investigated whether the pharmalogical induction of CCR5 expression 
was associated with alterations in the histone acetylation/methylation profile and 
recruitment of CREB‑1 and RNA polymerase II in CCR5 promoter chromatin. As 
shown in figure 4–7A there is a clear increase in the H3Ac mark (associated with 
gene expression) after treatment, whereas histone marks associated with gene re-
pression appear to be more resistant to the treatment. Shown in figure 4–7B is that 
the permissive CCR5 chromatin structure in activated T cells (Figure 4–3) results 
in increased recruitment of CREB‑1 and RNA polymerase II into CCR5 promot-
er chromatin when compared with naïve T cells. Similarly, the induction of CCR5 
expression after epigenetic treatment of Jurkat cells is also accompanied by an 
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Figure 4–6. �Semi-quantitative RT-PCR for CREB‑1 isoforms and ICER were performed in triplicate. 
Activated T  cells show higher levels of both CREB-1 isoforms, when compared to 
naïve T cells, whereas naïve T cells show higher levels of ICER then activated T cells. 
Jurkat T  leukaemia cells show virtually undetectable levels of ICER. Treatment of 
Jurkat cells with Zebularine, DZNep and MS275 does not influence CREB-1 or ICER 
transcript levels.
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increase in the recruitment of CREB‑1 and RNA polymerase II into CCR5 promoter 
chromatin (Figure 4–7B). Together, the pharmalogical inhibition of the activities of 
the various epigenetic enzymes that account for the repressive chromatin state of 
CCR5 in Jurkat T cells has resulted in a shift into a more open chromatin structure. 
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Figure 4–7. �(A) ChIP analysis of histone modification at the CCR5 promoter in Jurkat cells, after 
treatment with Zebularine, DZNep and MS275. The treatment of Jurkat cells results 
in an increase of H3Ac at the CCR5 promoter. Repressive marks at the CCR5 chromatin 
are not influenced much by the treatment, although a minor decrease in H3K27Me3 
can be noted. (B) ChIP analysis of the CCR5 promoter for CREB-1 and RNA polymerase 
II after treatment with SMIs in Jurkat, compared to both naïve and activated T cells. 
Treatment of Jurkat cells with Zebularine, DZNep and MS275 slightly increases CREB-
1 in chromatin of the CCR5 promoter. In both naïve and activated T cells higher levels 
of chromatin-associated CREB-1 can be found. Compared to naïve T  cells, there 
is an increase of CREB-1 in activated T  cells. Treatment of Jurkat cells with SMIs 
increases RNA polymerase II recruitment to the CCR5 promoter to levels similar of 
naïve T cells. In comparison to activated T cells, the levels of RNA polymerase II in the 
CCR5 promoter region of treated Jurkat cells are modest.
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This is accompanied by an increase in promoter association of the transcription 
factor CREB‑1 and recruitment of RNA polymerase II.

Discussion

This study reveals that epigenetic mechanisms involving DNA methylation, his-
tone acetylation and methylation modifications all contribute to the transcriptional 
regulation of CCR5 expression. In CCR5-deficient T  leukemia cells we show that 
the promoter region is mainly characterized by repressive histone marks in the 
presence of methylated DNA. In CCR5-expressing activated T cells this region is 
mainly associated with activating histone marks and low levels of DNA methylation. 
Interestingly, the B4/5 region in the CCR5 promoter, which was previously attribut-
ed to CREB–1-mediated transactivation is mostly unmethylated both in Jurkat and 
activated T cells.

Intermediate or low CCR5-expressing monocytes and naïve T cells respectively 
are characterized by both repressive histone methylation marks and permissive 
histone acetylation marks. In naïve T cells an intermediate level of DNA methyla-
tion accompanies these histone modifications. However, in monocytes the level of 
DNA methylation is markedly higher as compared to naïve T cells, with the B4/5 
region in a mostly unmethylated state in both cell types. Together, the cell types 
investigated here show that the B4/5 region is mostly unmethylated, irrespective of 
CCR5 transcription. This suggests that the B1 and B3 regions could contribute to 
the transcriptional regulation of CCR5 as has been argued previously.26,46,47

Notably, monocytes and naïve CD4+ T cells represent a poised state recognized 
by the presence of both repressive and permissive histone marks. Considering the 
various histone triple-methylation modifications investigated, we conclude that 
acetylation of histone H3 is essential for CCR5 expression as is illustrated in naïve 
T cells and in monocytes. The dominant role of histone modifications is further un-
derscored by the fact that monocytes show high levels of DNA methylation. Although 
DNA methylation is usually interpreted as a repressive chromatin mark, this study 
as well as some recent other studies show that DNA methylation in the absence 
of repressive histone marks permits active gene transcription.48–54 This is also in 
line with previous studies showing that the presence of the H3K27Me3 histone 
modification correlated with lack of transcription despite absence of DNA methy
lation.50,55,56 Interestingly, the monocyte population presented in this study shows 
transcription in presence of DNA methylation, H3K27Me3, H3K9Me3 and H3Ac, 
but notably low levels of H4K20Me3. This underscores – as has been previously 



Chapter 4

108

noted48 – that not all epigenetic histone marks contribute equally to a specific chro-
matin status. Rather, the sum of epigenetic modifications, or “epigenetic profile”, is 
more important than individual modifications to allow gene transcription.

The role of epigenetic regulatory mechanisms in the control of CCR5 tran-
scription is also underscored by the pharmacological interference in the identified 
components of epigenetic regulation. Since the epigenetic modifications were 
observed in both DNA and in histones encompassing the CCR5 promoter, we com-
bined the various inhibitors to induce re-expression. This intervention resulted in 
the re-expression of CCR5 in Jurkat, HSB‑2 and Molt‑4 T leukemia cells, albeit that 
the levels of re-expression differ between the cell lines investigated and were never 
on par with activated T cells. Although the individual epigenetic inhibitors allowed 
marginal induction of CCR5 transcripts (data not shown), combination of inhibitors 
induced much higher transcription levels.

Changing the DNA methylation status through pharmacological disruption with 
Zebularine requires incorporation of Zebularine into the DNA.40,41 Demethylation 
through usage of Zebularine thus requires replication of DNA and therefore prolif-
eration of cells. Jurkat, HSB‑2 and Molt‑4 cell lines show different doubling times. 
The difference in re-expression levels of CCR5 after combined epigenetic therapy 
can therefore be explained by this difference in cell doubling times. Furthermore 
the relative toxicity of MS275 and DZNep may lower the proliferative capacity of 
the cells, thereby influencing the efficacy of Zebularine treatment. Especially since 
DNA methylation and histone modifications are intimately linked,32,57 this may re-
sult in a situation where 100% re-expression of the gene of interest might prove 
to be a challenge. Yet despite these drawbacks, interference in the epigenetic ma-
chinery still results in a dramatic rise of CCR5 transcripts in T leukemia cells.

Together, these data strongly indicate that histone acetylation and methylation 
modification mechanisms contribute to the transcriptional control of CCR5. In 
addition, we show that chromatin in a bivalent state allows for the fine-tuning of 
transcription levels, as has been shown before for other genes.32,58 Moreover, our 
data suggest that epigenetic deregulation could be one of the mechanisms leading 
to enhanced CCR5 expression as observed in a variety of inflammatory condi-
tions. Although we demonstrate in this study the re-expression of CCR5, it could 
be envisioned that the use of lysine acetyltransferase inhibitors (e.g. curcumin or 
garcinol59,60) may have the opposite effect. As such, CCR5-mediated trafficking of 
lymphoid and myeloid cells is a possible target for pharmacological intervention. 
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Interference in these deregulated epigenetic processes may therefore be a prom-
ising therapy for the treatment of inflammatory diseases.
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