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CH A P T E R 6

M a r g in a l S u r v iv a l Cu r v e E s t im a t e s in

U n b a la n c e d G r o u p e d F a ilu r e T im e

D a t a

A b s t r a c t

In biomedical studies more and more examples of grouped failure times data are en-

countered. T h e analy sis of th is k ind of data is complicated by th e censoring and by

th e dependence of th e related failure times, for instance, w ith in one patient. M oreov er,

often th e number of measures per patient is different for each patient. T h is is called un-

balanced data. In th is ch apter different approach es, parametric as w ell non-parametric

to analy z e th ese censored, grouped and unbalanced data h av e been dev eloped. W e

proposed tw o classes of models, w eigh ted models and frailty models. B oth models

y ield consistent estimates for (unbalanced) clustered data w ith independent censoring.

F ocussing on assessing th e marginal surv iv al curv e w e compared th e tw o modelling

approach es for estimating th is curv e. T h e specifi c aim w as to assess th e sensitiv ity of

both meth ods to unbalanced data w ith dependent censoring and th e robustness against

a misspecifi ed model for th e random effect. T h is w as studied in simulated data.

This chapter has been submitted for publication as: C. M. A. Wintrebert, A. H. Zwinderman and

J . C. v an Houweling en . Marg inal S urv iv al Curv e E stimates in U nbalanced G rouped F ailure Time D ata.
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6.1 Introduction

More and more ex amples of repeated failure times data are encountered in biomedical

research (Hougaard, 2 0 0 0 ; V aida and X u, 2 0 0 0 ; Wintrebert et al., 2 0 0 4 ) . The analy sis of

such data is complicated by the censoring and by the dependence of the related failure

times within one patient. Indeed for one patient, one failure time infl uences the risk of

the others. In addition to the censorship and to the correlation between repeated failure

times within patients, an other diffi culty of many of repeated failure time data is that

they are often unbalanced (Wintrebert et al., 2 0 0 4 ) ; this is the case when patients have

different numbers of repeated measures.

To analy z e this k ind of data, different approaches, parametric as well as non-

parametric, have been developed in the setting of clustered data. In this framework , two

classes of models have been proposed; in weighted models observations in a specifi c

patient are weighted according to the number of observations in that patient (B inder,

1 9 9 2 ) , and in mix ed-effec ts models, also called frailty models, a non-observed random

effect is introduced in the model to account for the correlation between the repeated

failure times (Clay ton, 1 9 78 ; Hougaard, 2 0 0 0 ; K lein and Moeschberger, 1 9 9 7b). In the

fi rst approach, the unbalance is tak en into consideration by specify ing different weights

for the various observations in the same patient. The dependence structure between

repeated measures is not specifi ed but is adjusted for it in the inference by the way of

weights. O n the other hand, the frailty approach formulates an ex plicit model for the

dependency between the repeated measurements in a patient; the unbalance problem is

not specifi cally addressed in frailty models.

In this chapter, we focussed on estimating the marginal survival curve, and we com-

pared the two modelling approaches for estimating this curve. The marginal survival

curve gives the cumulative survival probability for a random period in a random patient.

The specifi c aim was to assess the sensitivity of both methods to unbalanced data, and

the robustness against a misspecifi ed model for the random-effect. This was studied in

simulated data. The rest of this chapter is organiz ed as follows. In section 6.2, the two

models that we used, are described in detail; fi rst the weighted model, and afterwards

the mix ed-effects model. In section 6.3 , the simulations and their results are given.

Finally , some concluding remark s are given in section 6.4 .

6.2 Meth ods

Standard methods to estimate a marginal survival curve were developed by K aplan and

Meier (1 9 5 8 ) , and by Aalen (1 9 78 ) ; N elson (1 9 69 ) , amongst others. These approaches,

however, do not tak e the structure of repeated measures, nor unbalance into account. For

such data weighted models, and mix ed-effects models have been suggested, which will

be described below. We therefore considered the situation of n patients (i = 1 , ..., n) in

which ki (j = 1 , ..., ki) repeated measures of a failure time Tij have been observed. The
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number of repeated measures (ki) may vary considerably between patients, for instance

due to differences in mortality. Also the number of available observations may depend

on Tij: when patients are followed for a fixed time-period, the number of observations

will be larger when Tij were small than when they were large.

Further, we will also consider a parametric model (Weibull) for the survival curve.

6.2.1 Weighted Model

Before applying a weighted model (non-parametric or parametric) to the data we first

apply the corresponding non-weighted model. In the case of the non-parametric ap-

proach, we use the Nelson-Aalen model, and in the parametric approach the Weibull

model.

First, we ignore heterogeneity between patients. In this case, the simplest non-

parametric estimates of the marginal survival function are the Kaplan-Meier and

Nelson-Aalen estimates. When using the Kaplan-Meier or the Nelson-Aalen function,

we implicitly assume the Tij to be all mutually independent.

With balanced data the estimate is approximately correct. When the number of

failure times in a patient is fully random, then the estimate is not too bad either; this is

similar to the Missing-Completely-At-R andom situation in the missing data literature

(L ittle and R ubin, 1987). But when the Missing-Completely-At-R andom situation does

not hold, the estimate may be seriously biased. A possible correction for the unbalance

is to weight each observation such that each patient contributes eq ually to the marginal

survival function. Weighted estimates can be understood in the setting of clustered

data where the surv iv al function and the number of observ ations v ary from p atient to

p atient and the number of observ ations may be related to the surv iv al function of the

p atients (but does not dep end on the actual observ ations) . This is not q uite the practical

situation we have in mind, but it gives a rationale for the weighted approach. Whether

this weighting works in practice will be studied by simulation.

L et the survival function in a patient i be eq ual to Si(t) = P r (Ti > t), hi(t) its

corresponding hazard function and ki the number of independent (within the patient)

observations of patient i. L et also C(t) be the survival function of the censoring time,

which does not vary between patients. Moreover, we suppose that each observation

of each patient is censored independently in the same way. The marginal survival is

then eq ual to S(t) = 1
n ∑

n
i=1 Si(t) and the marginal hazard is eq ual to h(t) = f (t)

S(t)
=

∑
n
i=1 hi(t)Si(t)

∑
n
i=1 Si(t)

.

Our aim is to estimate these marginal survival and hazard functions. L et Tij

be the jth failure time of patient i and Dij the corresponding censoring indicator

(Dij = 1 if a failure occurred, Dij = 0 if not). Since the observations are in-

dependent (within patients) we can act as if all observations start at the same time

t = 0. For each patient, we define Yi(t) = ∑
ki
j=1

Yij(t) = ]{j : Tij ≥ t}, which
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represents the number of ” observational units” within a patient at risk at time t and

Ni(t) = ∑
ki
j=1 Nij(t) = ]{j : Tij ≤ t, Dij = 1} which represents the total number of

events at before or at time t for patient i. Following martingale theory (Fleming and

Harrington, 1991), the expectation of dNi at time t given the observed history in patient

i is written by E[dNi(t)|his to ry ] = hi(t)Yi(t)dt and the expectation of Yi at time t

by E[Yi(t)] = kiSi(t)C(t). Since S(t) = e x p (−H(t)) where H(t) is the marginal

cumulative hazard function, we would first compute several Nelson-Aalen estimates

(Andersen et al., 1993) of the cumulative hazard. A naive estimate of H(t) is

Ĥna iv e (t) =
∫ t

0

d(∑
n
i=1 Ni(u))

∑
n
i=1 Yi(u)

,

which estimates

∫ t

0

∑
n
i=1 hi(u)kiSi(u)C(u)

∑
n
i=1 kiSi(u)C(u)

du =
∫ t

0

∑
n
i=1 hi(u)kiSi(u)

∑
n
i=1 kiSi(u)

du.

Observe that the number of periods in patient i (ki) does not cancel from the preceding

equation and when ki varies between patients, then Hna iv e (t) may be inconsistent, espe-

cially when ki depends on hi(u) or Si(u). To avoid this we choose to use a weighted

estimate equal to:

Ĥw e ig hte d(t) =
∫ t

0

d(∑
n
i=1

1
ki

Ni(u))

∑
n
i=1

1
ki

Yi(u)
,

which estimates, by the same reasoning, to the marginal cumulative hazard function:

∫ t

0

∑
n
i=1 hi(u)Si(u)

∑
n
i=1 Si(u)

du =
∫ t

0
h(u)du = H(t),

and should therefore be a consistent estimate of H(t), and be robust against unbalanced

data. Notice that the explicit object of this approach is to estimate the marginal survival

or hazard functions, and that the dependence between the different repeated survival

times within a patient is not specifically addressed.

When a parametric model is used for H(t) it can be easily estimated by maximizing

the weighted log likelihood

l =
n

∑
i=1

1

ki

ki

∑
j=1

lij(Θ)

where lij(Θ) is the log likelihood contribution of the jth failure time of patient i:

lij(Θ) = −HΘ(tij) + Dijln(hΘ(tij)),

and Θ is a vector of model parameters. Again, if the number of observations within a

patient varies and is independent of the observations themselves, but might be related
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to the patient’s survival function, this weighted log-likelihood leads to a consistent es-

timate of the marginal H(t), provided it belongs to the parametric class. Notice that

the weighted Nelson-Aalen is also obtained by maximizing this log likelihood in a non-

parametric way.

6.2.2 Mixed-effects model

In the former model no attempt was made to model the heterogeneity. When we choose

to consider the patients to be a random sample from an undefined population this means

that we suppose a distribution function for the Si’s. The use of frailty models is one way

to do this. More generally, one speaks of mixed-effects models.

The conditional hazard function of patient i given his/her frailty, Zi, is specified as

λ(Tij | Zi) = Ziλ0(Tij)

where λ0(Tij) is the unspecified baseline hazard function. The frailties are assumed

to be sampled from some distribution g(Z). For sake of convenience, g(Z) is usually

chosen to be the gamma density, g( 1
γ , 1

γ ) (γ > 0), with expectation EZi = 1 and

variance V Zi = γ. In case g(Z) is taken to be the gamma distribution, the marginal

survivor curve is given by

S(t) =
(

1 + γΛ(t)
)− 1

γ (6.1)

where Λ(t) is the cumulative hazard function.

The difficulty is that the choice of the frailty distribution determines also the depen-

dence, so when the model doesn’t fit well or when the specifications of the model are

not correct, the marginal survival curves could be badly estimated.

This approach does not have problems with varying number of observations. In-

deed, given the frailty Zi for patient i the Tij are independent meaning that there is

no difficulty with different number of repeated measures per patient apart from the ac-

curacy of the (conditional) survivor curve estimate. However, it might still run into

trouble if the censoring depends on the preceding observations. In that sense, it is not

guaranteed to work properly for the unbalanced data we want to consider.

Extensions of the model of Huang and Wolfe (2002) might help to remedy this.

However, that is beyond the scope of this chapter.

In this approach we also fit several models. First, the semi-parametric gamma frailty

model where the baseline hazard is estimated in a non-parametric way. In order to

compute the marginal survival curve of this gamma frailty model, we use functions

from the Splus package, developed by Therneau and Grambsch (2000). These functions

enable us to estimate γ and Λ(t) from formula (6.1) above. Then, we also fit the

gamma-weibull frailty model, where in that case the baseline hazard is supposed to

follow a Weibull distribution.
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6.2.3 Simulations

B alanced data

We first studied a situation with balanced data, i.e. where all patients had the same num-

ber of repeated measurements. We considered 4 situations with relatively few patients

(8 0) or relatively many patients (200), each with relatively few repeated failure times

(3), or relatively many failure times (30). Failure times (Tij) were simulated using a

TAB L E 6.1: Overview of simulations

data number of patients number of measures per patient

balanced 80 3

80 30

200 3

200 30

unbalanced 80 max= 12

80 max= 30

200 max= 12

200 max= 30

Weibull-gamma frailty model; failure times (T∗
ij) were sampled from a Weibull distri-

bution (α = 1; β = 0.05 ), and for each patient a frailty Zi was sampled from a gamma

distribution with mean= 1 and a variance of 4. Failure time Tij was then calculated as

Tij = T∗
ij/Zi.

For each Tij a censoring time Cij was sampled from a log normal distribution with

parameters (µ, σ2) and Tij was observed if Tij ≤ Cij and was censored at Cij if Tij >

Cij. The parameters µ and σ2 were chosen such that approximately 5 0% of observations

was censored.

To construct a slightly more complex frailty distribution example, we also conside-

red a situation where ln(Zi) was sampled from a mixture of two normal distributions:

p = 0.116 percent of ln(Zi) was sampled from the normal distribution N(0.9 11, 0.8 8 ),

and (1 − p) (p = 0.116), percent from N(−0.9 11, 0.8 8 ). We have made this choice

since in that case we again have a frailty distribution with mean 1 and a variance of 4.

Note that in this situation, the longitudinal aspect does not come into play. The

repeated data can be considered to be clustered data and the methods described above

can be expected to work properly.
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Unbalanced data

To simulate unbalanced data we removed a random number of (censored and uncen-

sored) observations per patient from a balanced data set. In order to construct a com-

plicated situation that mimics the longitudinal data that we meet in practice, we also

removed those observations in a patient coming after the one for which the cumulative

sum of (possibly censored) failure times is bigger than 4 times the median of the sur-

vival times. In this way the number of available repeated observations depends on the

size of the first few failure times; patients in whom the first failure time is large will

have a few repeated observations while patients of whom the first failure time is small

will have many repeated observations. The fact that each measure of a patient can be

censored introduces an extra censoring process and also influences the independence

of the censoring process. The situation gets really complicated, we do not intend to

analyze it theoretically, but hope that the simulations can give some insight about the

validity of the different approaches.

For every simulated data set we subsequently estimated the weighted and un-

weighted Nelson-Aalen estimate of the marginal survival curve, and the marginal sur-

vival curve of the gamma-frailty model. In addition, we calculated weighted and un-

weighted marginal survival curves assuming that the baseline hazard function was the

hazard function of a Weibull distribution.

Comparison of the models

For each data set we calculated the marginal survival curve using the Nelson-Aalen es-

timator (exp(−Ĥnaive)), using the weighted Nelson-Aalen estimator

(exp(−Ĥweighted)), and using the gamma-frailty Cox model. We also estimated para-

metrically the marginal survival curves according to the Weibull, the weighted Weibull,

and the gamma-frailty Weibull models.

Since the true survival function was known in the simulations, we evaluated the

different estimates of the marginal survival curve by calculating the mean Bias (M B ),

and the mean integrated squared errors (M I SE) for each of the different models and for

each data set. Let [0, t] be the interval on which we want to evaluate the performance

of the estimated survival distribution. The mean Bias is defined as

M B =
1

t

∫ t

0
(Ŝ(u) − S(u))du,

where Ŝ is the estimated marginal survival curve and S the simulated survival curve.

The mean integrated squared error is defined as

M I SE =
1

t

∫ t

0
(Ŝ(u) − S(u))2du.
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These quantities are only well defined if t is smaller than the largest observation.

In our simulation study we take t = 160 when the frailty is sampled from a gamma

distribution and we take t = 90 when the frailty is sampled from a mixture of two log

normal distributions. In all our simulations the largest observation is larger than these

values of t.

6.3 Results

Mean Bias(MB) and mean integrated squared errors (MISE) of the models with non

parametric baseline hazard estimates (gamma Weibull simulated data) are given in Table

6.2.

TABLE 6.2: Mean Bias(MB) and mean integrated squared errors(MISE) of the models

with non parametric baseline haz ard estimates.

MB MISE

data NA1 WNA2 GF3 NA1 WNA2 GF3

80∝3 0.0102 0.0102 - 0.0018 0.0011 0.0011 0.0005

80∝30 0.0212 0.0212 0.0309 0.0006 0.0006 0.0011

200∝3 - 0.0083 - 0.0083 - 0.0041 0.0001 0.0001 0.0001

200∝30 0.0234 0.0234 0.0268 0.0006 0.0006 0.0007

80∝max12 - 0.2819 - 0.1466 - 0.2615 0.0890 0.0364 0.0785

80∝max30 - 0.2946 - 0.0380 - 0.2256 0.0914 0.0029 0.0568

200∝max12 - 0.2043 - 0.0223 - 0.1749 0.0465 0.0019 0.0356

200∝max30 - 0.2375 0.0242 - 0.1370 0.0594 0.0022 0.0219

1 Nelson-Aalen
2 Weighted Nelson-Aalen
3 Gamma frailty

In the case of balanced data, MB and MISE of the Nelson-Aalen and weighted

Nelson-Aalen estimators are exactly the same, as they should be since in that case the

two estimates are exactly the same. The Nelson-Aalen and gamma-frailty models work

out equally well, both models giving approximately the same MB and MISE. This is

illustrated in Figure 6.1. In Figure 6.1, several survival curves are plotted: on the one

hand the marginal survival curve of a gamma Weibull frailty model used to simulate

the data set; on the other hand the fitted survival curves of the three non-parametric

models (Nelson-Aalen, weighted Nelson-Aalen and gamma frailty) that are applied to

a simulated balanced data set with 80 patients and 3 measurements per patient.

In the case of unbalanced data, the weighted Nelson-Aalen model clearly fits better

than the Nelson-Aalen and gamma frailty models. The latter two models give approxi-

mately the same results. See Figure 6.2.
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FIGURE 6.1: Survival curves( marginal and fitted) concerning a simulated data set (80 patients,

3 measurements per patient) from a gamma Weibull frailty model.

In Figure 6.2, the same curves are plotted as in Figure 6.1. The difference is that

here the models are applied to an unbalanced simulated data set with 80 patients and

with a maximum of 12 measurements per patient, varying from patient to patient.

Mean Bias(MB) and mean integrated squared errors(MISE) for the models assu-

ming a baseline Weibull hazard function (gamma Weibull simulated data) are given in

Table 6.3. The Weibull model does not give satisfactory results, and this is as expected

since the model assumptions are wrong( in each patient the hazard function has Weibull

form, but the average hazard function over all patients does not). The gamma Weibull

frailty model gives good results because the model assumptions are right. Applied to

unbalanced data sets the weighted Weibull model fits better than the gamma Weibull

frailty model. The gamma Weibull frailty model fits better than the Weibull model.

As an illustration Figures 6.3 and 6.4 are given. These figures are the corresponding

Figures to Figures 6.1 and 6.2 in the parametric situation.

In the case of balanced data, parametric models do not fit better than non-parametric

models.
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FIGURE 6.2: Survival curves( marginal and fitted) concerning an unbalanced simulated data

set (80 patients, between 1 and 12 measurements per patient) from a gamma Weibull frailty

model.

Mean Bias (MB) and mean integrated squared errors (MISE) for the models assu-

ming a non-parametric hazard function (mixture log normal Weibull simulated data) are

given in Table 6.4. When frailty parameters are sampled from a mixture of two log nor-

mal distributions the three models applied to balanced simulated data sets give almost

similar results. The gamma frailty model that does not fit here, has slightly lower MB

and MISE. Applied to unbalanced simulated data sets the unweighted Nelson-Aalen

model fits less well than the two other models. The results of MB and MISE of the

weighted Nelson-Aalen and the gamma frailty models differ slightly from each other.

The survival curves are illustrated in Figure 6.5 with a balanced simulated data set and

in Figure 6.6 with an unbalanced simulated data set.

6.4 Concluding Remark s

In this chapter we compared statistical characteristics of the estimates of the marginal

survivor curve of weighted and gamma-frailty models. We found comparable results
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TABLE 6.3: Mean Bias (MB) and mean integrated squared errors (MISE) of the models

with Weibull baseline hazard estimates.

MB MISE

data WB1 WWB2 GWB3 WB1 WWB2 GWB3

80∝3 0.0192 0.0192 - 0.0034 0.0020 0.0020 0.0003

80∝30 0.0400 0.0400 0.0334 0.0020 0.0020 0.0012

200∝3 0.0073 0.0073 0.0025 0.0007 0.0007 0.00001

200∝30 0.0371 0.0371 0.0217 0.0021 0.0021 0.0005

80∝max12 - 0.2843 - 0.1428 - 0.2544 0.0913 0.0301 0.0743

80∝max30 - 0.3021 - 0.0273 - 0.2099 0.0985 0.0027 0.0488

200∝max12 - 0.2115 - 0.0354 - 0.1765 0.0526 0.0055 0.0370

200∝max30 - 0.2545 - 0.0033 - 0.1451 0.0713 0.0041 0.0244

1 Weibull
2 Weighted Weibull
3 Gamma Weibull Frailty

TABLE 6.4: Mean Bias (MB) and mean integrated squared errors (MISE) of the models

assuming a non-parametric hazard function (mixture log normal Weibull simulated

data).

MB MISE

data NA1 WNA2 GF3 NA1 WNA2 GF3

80∝3 0.0086 0.0086 - 0.0070 0.0002 0.0002 0.0003

80∝30 0.0016 0.0016 - 0.0027 0.0003 0.0003 2.73 10−5

200∝3 - 0.0251 - 0.0251 - 0.0227 0.0009 0.0009 0.0008

200∝30 0.0209 0.0209 0.0097 0.0005 0.0005 0.0001

80∝max12 - 0.0770 0.0548 - 0.0519 0.0074 0.0070 0.0045

80∝max30 - 0.0931 0.0186 - 0.0425 0.0130 0.0030 0.0035

200∝max12 - 0.1472 - 0.0209 - 0.1068 0.0229 0.0069 0.0131

200∝max30 - 0.1357 0.0096 - 0.0628 0.0213 0.0011 0.0049

1 Nelson-Aalen
2 Weighted Nelson-Aalen
3 Gamma frailty

while using a parametric or a nonparametric form for the baseline survivor curve. With

balanced data we found little difference between the weighted approach and the gamma-

frailty model with -perhaps- slightly smaller mean bias, and mean integrated squared

errors for the gamma-frailty model, even if the true frailty distribution was not like a
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FIGURE 6.3: Survival curves( marginal and parametric fitted) concerning a simulated data set

(80 patients, 3 measurements per patient) from a gamma Weibull frailty model.

gamma-distribution. Bias and squared errors clearly decreased with increasing sample

size, and increasing number of observations per patient/cluster.

With unbalanced data both estimates showed considerable larger bias and squared

errors, but the weighted approach showed clearly less bias and error than the gamma-

frailty model. The gamma-frailty estimate was always lower than the true survivor

curve, and the weighted estimate was lower than the true survivor curve when we sam-

pled the frailties from a gamma-distribution, but it was higher when we sampled the

log- frailties from a mixture of two normal distributions. This is probably due to the

fact that with sampling from the gamma-distribution, most frailties were close to one

with only few high values, while with sampling from the mixture there were both high

but also a considerable (even larger) proportion with very low values. Given the me-

chanism that we used to generate unbalanced data, low frailties correspond to relatively

few and large observed T-values in a patient, while high frailties correspond to relatively

many and short T-values. We conclude that the gamma-frailty model will likely lead to

an underestimate of the true marginal survivor curve, and that the weighted approach
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FIGURE 6.4: Survival curves( marginal and parametric fitted) concerning a simulated data set

(80 patients, between 1 and 12 measurements per patient) from a gamma Weibull frailty

model.

can yield both under- or an overestimation, depending on the mechanism responsible

for the unbalance in the data.

The present simulation is much too simple and too small to derive any conclusions

on when which approach should be preferred. But even with the small simulation study

that we performed it is clear that there exist situations where both estimates show large

differences. There are few tools available to check the validity of both estimates, and

we therefore suggest to use both approaches in practice.
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FIGURE 6.5 : Survival curves( marginal and parametric fitted) concerning a simulated data set

(80 patients, 3 measurements per patient) from a log normal Weibull frailty model.
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FIGURE 6.6: Survival curves( marginal and parametric fitted) concerning a simulated data set

(80 patients, between 1 and 12 measurements per patient) from a log normal Weibull frailty

model.
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