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Chapter 3. Joint Modelling of Breeding and Survival in the Kittiwake Using Frailty
Models

Abstract

Assessment of population dynamics is central to population dynamics and conserva-
tion. In structured populations, matrix population models b ased on demog raph ic data
h ave b een w idely used to assess such dynamics. Alth oug h h ig h lig h ted in several stu-
dies, th e influence of h eterog eneity among individuals in demog raph ic parameters and
of th e possib le correlation among th ese parameters h as usually b een ig nored, mostly
b ecause of difficulties in estimating such individual-specific parameters. In th e k itti-
w ak e (R issa tridactyla), a long -lived seab ird species, differences in survival and b ree-
ding prob ab ilities among individual b irds are w ell documented. S everal approach es
h ave b een used in th e animal ecolog y literature to estab lish th e association b etw een sur-
vival and b reeding rates. H ow ever, most are b ased on ob served h eterog eneity b etw een
g roups of individuals, an approach th at seldom accounts for individual h eterog eneity.
F ew attempts h ave b een made to b uild models permitting estimation of th e correlation
b etw een vital rates. F or ex ample, survival and b reeding prob ab ility of individual b irds
w ere jointly modelled using log istic random effects models b y C am et al. ( 2 0 0 2 ) . T h is is
th e only ex ample in w ildlife animal populations w e are aw are of. H ere w e adopt th e sur-
vival analysis approach es from epidemiolog y. W e model th e survival and th e b reeding
prob ab ility jointly using a normally distrib uted random effect (frailty). C onditionally
on th is random effect, th e survival time is modelled assuming a log normal distrib ution,
and b reeding is modelled w ith a log istic model. S ince th e death s are ob served in year-
intervals, w e also tak e into account th at th e data are interval censored. T h e joint model
is estimated using classic freq uentist meth ods and also M C M C tech niq ues in W inb ug s.
T h e association b etw een survival and b reeding attempt is q uantified using th e standard
deviation of th e random frailty parameters. W e apply our joint model on a larg e data
set of 8 6 2 b irds, th at w as follow ed from 1 9 8 4 to 1 9 9 5 in B rittany (F rance). S urvival
is positively correlated w ith b reeding indicating th at b irds w ith g reater inclination to
b reed also h ad h ig h er survival.

3.1 I ntroduction

Assessment of the dynamics of populations is central to population ecology. Matrix
population models have been widely used to investigate the dynamics of structured
populations (e.g., L inacre and Keough (2003)) in studies with management and conser-
vation implications or in studies of life history evolution (Caswell, 2001). Specifi cation
of such models req uires demographic data and estimation of relevant demographic pa-
rameters (O li, 2003). As emphasiz ed by G rist and des Clers (1999) or Pitt et al. (2003)
population models have often been criticiz ed because of unrealistic assumptions (e.g.,
identical individuals). There has been an increasing awareness of the importance of in-
dividual heterogeneity in the life history process to population dynamics (Holmes and
Sherry, 1997 ; Pontier et al., 2000).

30



Chapter 3. Joint Modelling of Breeding and Survival in the Kittiwake Using Frailty
Models

Age- and stage-based matrix population models have enhanced our ability to ac-
count for such heterogeneity. However, the mathematical diffi culties raised by complex
models partly explain why the population-level consequences of individual variability
has seldom been investigated. The importance of individual heterogeneity should not
be underestimated. Simulation studies have shown that individual heterogeneity may
enhance the viability of small populations, which is likely to have consequences in
terms of conservation (Conner and White, 1999). In addition, several researchers have
emphasized that observable heterogeneity (i.e., individual characteristics that can be di-
rectly assessed or measured) seldom accounts for individual heterogeneity in a satisfac-
tory manner in demographic models (e.g., Hougaard (1991)). This led to the develop-
ment and use of random effects models accounting for individual heterogeneity without
grouping individuals (e.g., Cam et al. (2002); Link et al. (2002); Service (2000)).

Furthermore, as emphasized by Tienderen (1995) population models need to ac-
count for the possible covariation among demographic parameters, which highlights
the need for models permitting estimation of the correlation among these parameters
(e.g. Cam et al. (2002)). Such models can prove diffi cult to fi t using classical ap-
proaches (Link et al., 2002), but very few attempts have been made. Parameter esti-
mation has long been recognized as central to ecological modelling (Jorgensen, 1997;
Salinger et al., 2003; Williams et al., 2002). Our main objective is to develop a new
parametrization for a model to estimate the survival and breeding probability jointly
using data from a long-lived species (the kittiwake). We also assess two approaches to
fi tting the model (a frequentist and an objective Bayesian approach).

In the kittiwake (Rissa tridactyla), a long-lived seabird species differences in sur-
vival and breeding probabilities among individual birds are well documented (Cam
et al., 1998 , 2002; Cam and Monnat, 2000; Coulson and Thomas, 198 5; Coulson and
Wooller, 1976 ; Thomas and Coulson, 198 8 ). Several approaches have been used in the
animal ecology literature to establish the association between survival and breeding.
The vast majority of these approaches use discrete groups of individuals. In addition,
survival and breeding probability of individual birds were jointly modelled applying
logistic random effects models (Cam et al., 2002). This is the only example of such a
model in wildlife animal populations, we are aware of. As emphasized by the authors,
fi tting these models can prove diffi cult (see also Link et al. (2002)). In human epi-
demiology a number of technical and more complicated methods have also often been
used to estimate the correlation between survival and a repeated measured covariable
(Henderson et al., 2000; Hogan and Laird, 1997; Wulfsohn and Tsiatis, 1999). Here,
we adopt these survival approaches from human epidemiology to assess the correlation
between the survival of the birds and repeated breeding attempts of the birds. We model
the association between survival and breeding probability jointly using a normally dis-
tributed random effect (frailty). We use this approach with data from a long-term study
of kittiwakes. Since the death events are observed in yearly intervals, we also take into
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account that the data are interval or right censored. The joint model is estimated using a
classic frequentist method and also MCMC samplings in WinBugs (Spiegelhalter et al.,
1996). As emphasized by Link et al. (2002) MCMC has widely been used in the statisti-
cal literature, but there are still relatively few examples in wildlife-related applications.
Here we use this statistical tool to fi t a model designed to assess the correlation bet-
ween reproduction and survival that has never been used with data from wild animal
populations. Estimation of the correlation between vital rates is of central interest in
evolutionary ecology (Stearns, 1992), and in studies with conservation management
implications (Tienderen, 1995).

This chapter is organized as follows. In Section 3.2 we give a description of the data
set and develop the methods. The classic frequentist method and the Bayesian approach
are given in detail. Section 3.3 describes the results and we conclude with a discussion
in Section 3.4 .

3.2 Material and Methods

3.2.1 The data set

D ata from 862 individually marked birds were collected in Brittany (France) from 1984
to 1995, and truncated capture-recapture histories of all individuals birds were gathe-
red including survival and breeding attempt in each year during the breeding season.
Since recapture probability is very close to one (Cam et al., 1998), we assumed that
individuals that were missing at recapture died. So we need not to take the recapture
probability into account in our analysis. In our analysis, we retained the individuals
that have been recruited and bred at least once, adult birds. This is because young (not
yet breeders) birds are more diffi cult to capture and to count, and so their recapture
probability is not equal to one.

3.2.2 Methods

Cam et al. (2002) modelled jointly survival and breeding probability of individual birds
applying logistic models. They used individual random effects for the survival in year
t and for the conditional breeding probability in year t + 1 and they assumed that these
two random effects were bivariate normally distributed to assess the correlation bet-
ween the survival and the breeding probability. We consider the survival in another way
and show that only one frailty, the same for the survival model and for the breeding
attempt model is needed to assess this correlation and explain why. Conditionally on
this single random effect, the survival time is modelled assuming a parametric distribu-
tion, and breeding is modelled with a logistic model. We select the lognormal survival
distribution, but several parametric models are fi tted. In WinBugs we also use the semi-
parametric Cox model. Since the deaths are observed in yearly intervals, we take into
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account that the data are interval or right censored: an individual alive in year x, and
dead in year x + 1, is interval censored between x and x + 1, and an individual alive at
the last recapture is right censored in that year.

Model description

The probability that a bird, indexed i, attempted breeding in year j (Yij = 1) is modelled
using a logistic model

pij = P r (Yij = 1 | Xij, wi) = (e x p (βTXij + wi))(1 + e x p (βTXij + wi))
−1,

where Xij is a vector of covariate values associated with year j, β is a vector of
(unknown) regression weights. wi is a random effect representing the inclination of bird
i to attempt breeding. Statistically, wi, random effect of bird i is assumed to account
for the correlation between his repeated breeding attempts. This correlation can be
explained by important unknown covariates of the breeding attempts.

We assume that given wi, Yij and Yik for any j and k are independent. Our set of
covariates is limited to gender of the bird, the animal’s age, age-squared in year j, and
calendar year.
The date of death (failure time) of bird i, Ti , is modelled using a frailty model, and
given the frailty wi, lo g (Ti) is assumed to be normally distributed with expectation
µi = βT∗Xi + αwi, and variance-parameter σ2

T . We choose the lognormal model for
sake of convenience, but we check its marginal fi t, and that is satisfactory. We include
wi in the model for survival to evaluate the association between survival and breeding.
We assume that the breeding attempts of animal i are independent of its survival given
w, and we further assume that w is normally distributed with expectation zero, and
variance σ2

w. The parameter α determines the association between the survival and the
breeding processes: if α equals zero survival is independent of the breeding inclination.
In this part of the model, the set of covariates we consider was gender and year of birth
of the birds.

We also estimate the logistic model and the lognormal model apart. In that case the
frailty term in the lognormal model is not identifi able, since a bird dies only once and
we need repeated measurements to be able to identify random effects.

O nly one frailty estim able

In the lognormal-frailty model only one frailty parameter is estimable. This is easily
understood as follows. Suppose we consider two frailty parameters, wi1 and wi2, to
model the association between survival and breeding:
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log(Ti | Xi, wi1) = β?TXi + wi1 + fi

fi ∼ N(0 , σ2
T)

logit(pij) = βTXij + wi2

(wi1, wi2) ∼ N((0 , 0 ), Σ)

where

Σ =

(

σ2
1 σ12

σ12 σ2
2

)

.

We then rewrite wi1 as wi1 = αwi2 + ei, where ei and wi2 are independent. It is
always possible to fi nd a constant α such that ei = αwi2 −wi1 and wi2 are independent.
This is achieved when α = σ12/σ2

2 . Then, the formulation of the survival component
of the model becomes

log(Ti|Xi, wi2, ei) = β?TXi + αwi2 + ei + fi

illustrating the fact that ei and fi are fully confounded and consequently that the
frailty wi1 is not attainable in its entirety. However, one can still estimate α and σ2

2 and
thus the covariance σ12 = ασ2

2 between the two frailties. Thus, writing the survival part
of the model as

log(Ti|Xi, wi2, ei) = β?TXi + αwi2 + f ′i

as we will do in the sequel is in no way restrictive. It is merely acknowledging
that part only of the general model is estimable. In particular it by no means implies
that the survival and breeding frailties are proportional (because αwi2 is just one part
of the wi1 frailty, the other part being absorbed in f ′i ). We may also remark that the
choice of a one-parameter distribution for log(Ti) (e.g. the exponential distribution)
renders the wi1 frailty identifi able. However, we would rather opt for a distribution that
better describes the phenomenon and be content with the estimation of the covariance
between the two frailties.

For the semi-parametric Cox regression model Elbers and Ridder (1982) showed
that a frailty parameter is identifi able in some cases. This can, however, be interpreted
as a reflection of violation of the proportionality assumption of the model (Keiding
et al., 1997), and need not reflect individual differences in the underlying hazards.

Parameter estimation: classic method and likelihood

Let G(w) be the distribution function of the normal distribution, then the likelihood of
the data of animal i equals
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Li = Pr(Ti ≥ ti, Yi1 = yi1, ..., Yiti
= yiti

)

=
∫

Pr(Ti ≥ ti, Yi1 = yi1, ..., Yiti
= yiti

| wi)dG(w) =

=
∫

(F(log(ti)) − F(log(ti−1)))
di (1 − F(log(ti)))

1−di ?

ti

∏
j=1

exp(yij(βTXij + wi))(1 + exp(βTXij + wi))
−1dG(w)

where ti is the age of the bird i at the last observation time, and di is an indicator-
variable indicating whether bird i dies (di = 1) between ti−1 and ti or is still alive at ti

(di = 0), and F(.) are the cumulative distribution function associated with log(ti). The
unknown parameters of this joint model (β, β∗, σ2

T , α, σ2
w) are estimated in two ways,

namely (1) by maximisation of the loglikelihood using Gauss-Hermite approximation
of the integral involved, and (2) by a MCMC approach using WinBugs.

We fi rst give some details of the maximum likelihood approach. The likelihood
contribution of animal i can be written as

Li =
∫

(F∗
w(log(ti)) − F∗

w(log(ti−1)))
di (1 − F∗

w(log(ti)))
1−di ?

ti

∏
j=1

(exp(yij(βTXij + wi)))(1 + exp(βTXij + wi))
−1g(w)dw,

where g(w) is the density function of the normal distribution with mean zero and
standard deviation σw, and F∗

w(.) is the distribution function of the normal distribution
with expectation µi = β∗TXi + αwi and variance σ2

T . The integral could be approxi-
mated to any desired degree of precision using the Gauss-Hermite rule:

Li = ∑
l

(F∗
w(log(ti)) − F∗

w(log(ti−1)))
di (1 − F∗

w(log(ti)))
1−di ?

ti

∏
j=1

(exp(yij(βTXij + σwql)))(1 + exp(βTXij + σwql))
−1rl ,

where ql and rl are fi xed known constants (Abramowitz and Stegun, 1965). The
unknown parameters (β, β∗, σ2

T , α, σ2
w) can be easily estimated by maximizing the cor-

responding loglikelihood. This was done by the Gauss routine maxlik (GAUSS, 2002).
Since (σ2

T , σ2
w) are required to be positive we estimate (log(σ2

T), log(σ2
w)).

35



Chapter 3. Joint Modelling of Breeding and Survival in the Kittiwake Using Frailty
Models

Bayesian approach and modelling

We also take a Bayesian approach to estimate the unknown parameters of this joint
model (β, β∗, σ2

T , α, σ2
w). We use Monte Carlo Markov Chains techniques with the

WinBugs package (Spiegelhalter et al., 1996). For each quantity of interest, a stream of
simulated values is generated which converges to the posterior distribution, instead of
calculating exact or approximate estimates.

First, we construct a graphical representation of the model where the specifi ca-
tions of the model quantities and their qualitative conditional independence structure
are given.

j

i

µi
Xi,j

Yi,j

pi,j

wi

β τ β∗ α σ

Ti

Xi

FIG URE 3.1: Directed acyclic graph

Figure 3.1 shows a directed acyclic graph (DAG) representing the model assump-
tions and structure. Circles represent all unknown quantities, little rectangles indicate
observed data. Then, to provide the likelihood terms in the model, we specify the para-
metric form of the direct relationships between the model quantities. These likelihood
terms in our model are :
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Yij ∼ B ern ou illi(pij)

logit(pij) = βTXij + wi

Ti ∼ logn orm a l(µi, 1/σ2
T)

µi = βT∗Xi + αwi

wi ∼ n orm a l(0, 1/σ2
w)

Finally, to complete our Bayesian model specifi cations, we choose the following
prior distributions. The fi xed effects β, β∗, α are assumed to follow vague independent
N ormal distributions with mean zero and low precision of 0.001. The precision of the
frailty (1/σ2

w) and the precision of the lognormal distribution (1/σ2
T) are assumed to

arise from non-informative gamma priors, namely

β, β∗, α ∼ Norm a l(0, 0.0001)

1/σ2
w, 1/σ2

T ∼ Ga m m a (0.001, 0.001)

We choose the gamma priors for sake of convenience since σ2
w > 0, and σ2

T > 0.
In the analysis we take into account right and interval censored data with the help

of the WinBugs function I(u pper, lower).
To improve convergence and stability of the samples, good parameterizations of the

parameters are found to be important. The convergence of the algorithm is checked by
using the Gelman and Rubin (Gelman and Rubin, 1992a,b) convergence test. Their test
is based on two or more parallel chains: each started from different initial values which
are overdispersed with respect to the true posterior distribution.

Using a Bayesian approach, lead also to pay attention for the burn-in. The burn-
in represents how many initial iterations need to be discarded in order that remaining
samples are drawn from a distribution close enough to the true stationary distribution to
be usable for inference and estimation.

3.3 Results

3.3.1 D escription of the sample

Data from 862 animals are used for analysis: 395 females, and 434 males and of 33
birds gender can not be ascertained. Age at fi rst observation varies from 2 to 8 years
with mean 4.1 (SD= 0.92), and age of fi rst reproduction also varies from 2 to 8 years
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with mean 4.0 (SD=0.92). Observation period starts in 1984 and continues until 1995;
there are 98 birds observed in 1984, 162 in 1985, and between 200 and 305 in the other
years.

3.3.2 Survival

A total of 249 (29.9% ) birds are still alive at the end of the follow-up period: median
live-lengths is 6 years (Figure 3.2).

Age(years)

P
ro

po
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0.
0

0.
2
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8

1.
0

Kaplan-Meier
log-normal

FIGURE 3.2: Lognormal model and Kaplan-Meier.

Several parametric models are fi tted using classic methods, see Table 3.1.
The lognormal model shows a satisfactory fi t to the survival data when compared to

the non-parametric Kaplan-Meier (Andersen et al., 1993) estimate (Figure 3.2).
There is no signifi cant difference between male and female birds: expected life-

length is 1.02 times larger for female birds with 95% confi dence interval CI : [0.9 4 −

1.11], p = 0.5 8 . This is consistent with the results of a previous study of the infl uence
of sex on survival (Cam and Monnat, 2000). There are small (p = 0.02) differences
among animals that are observed for the fi rst time in the different calendar years. The
deviance of the lognormal survival model is 2260. Model comparison can be done
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TABL E 3.1: Loglikelihood of several parametric models for the survival

model loglikelihood df AIC ∆ AIC 1

Kaplan-Meier -1172.0 12 2368 –
weibull -1175.8 2 2355.6 12.4
extreme -1273.9 2 2551.8 183.8
normal -1189.9 2 2382 14
logistic -1196.5 2 2397 29

lognormal -1129.9 2 2263.8 104.2
loglogistic -1140.8 2 2285.6 82.4

1 ∆ AIC is the difference of the AIC compared to the fully
non-parametric model of Kaplan-Meier.

using Akaike Information Criterion (AIC): the lognormal survival model outperforms
the others. Using breeding as a time-dependent covariate, we fi nd that breeding attempt
in the previous year is signifi cantly (p < 0.001) associated with death-risk at age t with
relative risk 0.67 ( 95% CI: 0.52 - 0.86 ).

3.3.3 Breeding attempts

Out of 2373 observation-years in total, breeding attempts are made in 2086 cases
(87.9%). There is a highly signifi cant effect of age (p<0.001), and this effect is il-
lustrated in Figure 3.3.

In addition, there are signifi cant differences between calendar years; in particular
breeding is attempted much less in 1988 when compared to other years: 68% of the
birds attempted breeding in 1988 while this percentage varied from 85% to 93% in
other years. There is no signifi cant difference between male and female birds. The
standard deviation σw is estimated as 1.12 (p=0.001), which corresponds to a correlation
of about 0.3 between the repeated breeding attempts of the same bird. The deviance of
the logistic breeding frailty model is 1569.3.

3.3.4 The joint model

The aim of this joint model is to estimate the correlation between the survival and the
breeding attempts of the birds.

Estimation of the parameters

The maximum likelihood and Bayesian approaches to the estimation of the parameters
in the joint model are similar. We therefore report, for the estimation of the parameters,
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FIGURE 3.3: Marginal probability of a breeding attempt.

the results of the Bayesian approach only. In the Bayesian approach, we use a 500 burn-
in iterations and 49500 thereafter. Updates takes approximately 2 hours to complete.
The posterior mean with confi dence interval for each regression coeffi cient and for the
frailty parameters are shown in Table 3.2.

The posterior distributions in general are symmetric, both for the regression para-
meters (β, β∗, α), and for the variances (σ2

t , σ2
w). This is illustrated in Figure 3.4 for α

and σw. The process converges beautifully, as illustrated by the traces for α and σw in
Figure 3.4.

Indeed we can observe that the traces follow a normal distribution. The trace also
gives information on the number of iterations it takes to stabilize.

Gelman-Rubin propose a convergence test based on 2 or more parallel chains, each
started from overdispersed initial values. Here we simulated two Markov Chains. Their
method is based on a comparison of the within and between chain variances for each
variable. This comparison is used to estimate the factor by which the scale parameter
of the marginal posterior distribution of each variable might be reduced if the chain
were run to infi nity. Best results are obtained for parameters whose marginal posterior
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densities are approximately normal. This is here the case for the estimated parameters.
These are the median and the 97.5% quantiles (also called Gelman-Rubin diagnostics)
of the sampling distribution for this shrink factor.

In the graphs on Figure 3.5, the Gelman-Rubin diagnostics are plotted. These quan-
tiles are estimated from the second half of each chain only. If both quantiles are appro-
ximately 1.0, effective convergence may be diagnosed. We can observed convergence
on the graphs. (In other words, samples from the second half each chain may be as-
sumed to have arisen from the stationary distribution. In this case, summary statistics
and density estimates may be calculated by combining the latter 50% of iterate from
all chains.) The estimates of the parameters in Table 3.2 show similar conclusions for
effects of age, gender, and birth year on reproduction and survival as are found in the
separate models. Most interesting is that the posterior mean of α is 0.13 with posterior
standard error 0.057. This indicates that birds with a higher inclination to breed also
have a longer life-span.

The classical approach permits us to check the fi t of the joint model versus the
separate models. The loglikelihood of the joint model was -1909.5, whereas the log-
likelihood of the model assuming independence of survival and breeding (H0 : α = 0)
was -1914.3. The likelihood ratio statistic was therefore 9.6 (df=1), and p-value 0.002.

3.4 Discussion

Our analysis provides evidence of a positive correlation between the survival and the
breeding probabilities in kittiwakes. This result is consistent with the one of Cam et al.
(2002) using the same data set but using other models from ecology. In population
ecology of vertebrates survival and breeding probability are usually modelled using
logit models (Williams et al., 2002). This indicates that we can adapt techniques from
human epidemiology to solve ecological problem with an appropriate data set. Up to
now, frailty models have been used in an extremely limited number of cases in popu-
lation ecology, in spite of the growing appreciation of their usefulness in related areas
of research in humans (e.g. demography Hougaard (1991)). An interesting point of
our models is that we use only one frailty in both models for the survival and for the
breeding, resulting in a more parsimonious model than the one employed by Cam et al.
(2002). We assess the fi t of separate models for survival and breeding attempts, as well
as a joint model for both processes, and the best model is the joint lognormal-logistic
model by far. Our results provide evidence of a positive correlation between survival
and reproduction using a model different from those previously used (Cam et al., 1998,
2002).

One of the motivations for the development of our approach to modelling is that
there is growing interest in individual variation in population ecology (Caswell, 2001;
Conner and White, 1999; Grist and des Clers, 1999; Pontier et al., 2000). In addition,
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much of the focus in evolutionary ecology is quantifying and understanding the sources
and consequences of individual variation in fi tness and trait values. Our results pro-
vided unambiguous evidence of substantial heterogeneity in demographic parameters
in this population. One of the explanations for heterogeneity may be the infl uence of
genetic differences on survival and breeding. The relationship between the genetic and
individual effects is an interesting question about which virtually nothing is known.
Approaches based on individual effects are used in agronomics for animal or vegetable
reproduction, as for instance described in the book from Littell et al. (1996). The in-
terpretation of individual differences in evolutionary ecology due to the existence of
genetical differences is still an important question.

Many classical ecological models are based on the assumption that populations con-
sist of identical individuals or homogeneous groups of individuals. Here for instance,
by including an individual effect in our model, we provide evidence of senescent de-
cline in survival. This cannot be achieved when analyzed using classic approaches to
the effect of age on survival (Cam et al., 2002). In clinical biostatistics, models that take
into account individual variation are extensively used, and research is advanced. This
has been very rarely addressed in wild animal populations. Although senescence has
been well documented in humans and in domestic and laboratory animals, evidence for
its occurrence and importance in the wild remains limited and equivocal. Knowledge
of age-specifi c patterns of variation in survival is usually limited by the small number
of older individuals in populations. Studies of age-related variations in survival also
require large numbers of individuals marked as young, and have to be long in duration.
Our sample was apparently of suffi cient size, and duration. Senescence was also seen
in wild populations of common sterna (Nisbet and Cam, 2002); see Bennett and Owens
(2002) for a review in birds.

In ecology, individual heterogeneity has important implications for population ma-
nagement and conservation. For instance, individual heterogeneity of the demographic
parameters infl uences population viability (Conner and White, 1999). Theoretical and
management implications of individual heterogeneity are explained in details in Link
et al. (2002).
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TABLE 3.2: Estimation of the parameters of the joint lognormal-logistic model.

parameters estimation (CI)
breeding attempt: intercept 3.781 ( 2.776 ; 4.891 )

age 0.4958 ( 0.2746 ; 0.7215 )
age2 -0.2678 (-0.3915 ; -0.1451 )
sexe -0.2488 (-0.5939 ; 0.08651 )

year 1984 0.00 (-)
1985 -0.6156 (-1.619 ; 0.3227 )
1986 -0.6935 (-1.683 ; 0.2214 )
1987 -0.6699 (-1.653 ; 0.227 )
1988 -2.464 (-3.469 ; -1.582 )
1989 -0.4615 (-1.521 ; 0.5401 )
1990 -0.5893 (-1.653 ; 0.401 )
1991 -0.3836 (-1.435 ; 0.5958 )
1992 -0.4623 (-1.5 ; 0.4981 )
1993 -0.457 (-1.496 ; 0.4998 )
1994 -0.4019 (-1.448 ; 0.5666 )
1995 -0.9341 (-1.953 ; -0.007969 )

survival: intercept 2.199 ( 1.882 ; 2.548 )
year 1980 0 (-)

1981 -0.08403 (-0.4254 ; 0.2405 )
1982 -0.1275 (-0.4553 ; 0.1828 )
1983 -0.2225 (-0.5552 ; 0.09107 )
1984 -0.2143 (-0.562 ; 0.1154 )
1985 -0.1957 (-0.5324 ; 0.1221 )
1986 -0.2602 (-0.6082 ; 0.07065 )
1987 -0.005138 (-0.3532 ; 0.3251 )
1988 -0.09743 (-0.4404 ; 0.2296 )
1989 -0.1445 (-0.495 ; 0.1927 )
1990 -0.078 (-0.4693 ; 0.308 )
1991 -0.3662 (-0.7329 ; -0.01282 )
1992 -0.111 (-0.4904 ; 0.2698 )
1993 0.7014 (-0.4621 ; 1.817 )
1994 0.4361 (-1.439 ; 2.324 )
sexe 0.00089 (-0.07586 ; 0.07578 )
σT 0.4135 ( 0.3665 ; 0.4554 )

association between survival α 0.1335 ( 0.04253 ; 0.266 )
and breeding attempt: σw 1.103 ( 0.7795 ; 1.438 )
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FIGURE 3.4: Traces and density of α and σw.
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