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CHAPTER 1

Introduction: Survival Analysis and
Frailty Models

This dissertation consists of a general introduction on survival analysis and frailty mo-

dels, followed by three accepted and two submitted papers which can be read as self-

contained papers. It will end with a general summary.

1.1 Introduction: survival analysis

This thesis is about survival analysis, which is the statistical analysis of survival data.

Survival data is a term used for describing data that measure the time to a given event

of interest. The name survival data arose because originally events were most often

deaths. The term survival data is now used for all kind of events. In all cases, the event

can be seen as a transition from one state to another. In medical studies, often the main

emphasis is the timing of this event.

1.1.1 Probability tools

In this section, the probability tools usually encountered in survival analysis and their

properties are described.

Let T be the time variable, considered as a positive real valued variable, having a

continuous distribution with finite expectation. For applications, this variable repre-

sents the time being in a given state or the time between two events. Several functions

characterize the distribution of T:

• f (t), t ≥ 0 is the probability density of T;

• S(t) = P(T > t) =
∫ ∞

t f (x)dx = 1 − F(t), is the survival function, which is

the probability of an individual surviving beyond time t (F(t) is the cumulative

distribution function);

• the hazard function defined for t > 0: λ(t) = f (t)/S(t) =
limδt→0

P(t≤T<t+δt|T≥t)
δT = −∂S(t)/∂t

S(t) = −∂
ln S(t)

∂t , which represents the proba-

bility that an individual alive at t experiences the event in the next period δt.
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• The cumulative hazard function Λ(t) =
∫ t

0 λ(x)dx is a useful quantity in sur-

vival analysis because of its relation with the hazard and survival functions:

S(t) = exp(−Λ(t)).

1.1.2 Censored and truncated data

Survival data are also distinguished from other data because the survival time is not

always observed. This peculiar feature, often present in survival data, is known as

censoring. This means that sometimes it is only known that T is larger than some time

(censoring time) C. In that case, we say that the data are right censored. Analogously,

the data are said to be left censored if it is only known that the survival time T is smaller

than C. The data are interval censored if it is only known that the survival time falls

in some known interval. In this thesis, we only consider right and/or interval censored

data and make the assumption that the censoring time C and the survival time T are

independent.

Some survival studies may contain truncated data. Left truncated data occur when

individuals enter a study at a particular time-point and are followed from this entry time

until the individual is censored or the event occurs. Right truncated data occur when

only the individuals having experienced the event of interest are observable.

1.1.3 Common estimators of the survival function

Many parametric models (Weibull, lognormal, normal etc..) can be used to estimate the

survival function (Klein and Moeschberger, 1997b). The non-parametric approaches:

Kaplan and Meier (1958) and Aalen (1978) or Nelson (1969) are more often used in

medical applications. The Kaplan-Meier estimator is written as the following product-

limit estimator:

Ŝ(t) = ∏
ti≤t

(
1 − di

Ri

)

where (ti, di) are the data of individual i, ti representing the time to event or the time

to censoring and di is the corresponding censoring indicator (di = 1 in case of event

and di = 0 in case of censoring); Ri is the number of individuals still at risk at time ti
(still alive and uncensored just before ti). The variance of the Kaplan-Meier estimator

can be estimated by the Greenwood’s formula:

V̂[Ŝ(t)] = Ŝ(t)2 ∑
ti≤t

di
Ri(Ri − di)

.

As an alternative, Nelson (1969) and in an other context Aalen (1978) estimated the

cumulative hazard by the formula:

Λ̂(t) = ∑
ti≤t

di
Ri

.
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The estimated variance of the Nelson-Aalen estimator is due to Aalen (1978) and is

estimated by:

σ2
Λ(t) = ∑

ti≤t

di

R2
i

.

When treating survival data and thus censored or truncated data extra care is needed

to construct likelihood functions. Suppose we have a random sample of pairs (Ti, di),

i = 1, ..., n the likelihood function is written as

L =
n

∏
i=1

Pr[ti, di] =
n

∏
i=1

[S(ti)]1−di [ f (ti)]di .

This equation can also be simplified as:

L =
n

∏
i=1

exp(−Λ(ti))[λ(ti)]di

1.1.4 Cox-regression model

Important aim in many clinical studies is to investigate the relation between the sur-

vival time and some risk factors called covariates. These risk factors might be fixed

variables, or they may change over time (then called time-dependent covariates). Their

influence on the survival is of great interest for clinicians and bio-statisticians and can

be estimated by statistical models. The usual model for this kind of data is the so-called

Cox-model, or the proportional hazards model. In this model, the relative risk is des-

cribed parametrically and the hazard function non-parametrically. In this model, the

hazard function for individual i is written as:

λi(t) = λ0(t) exp(βTXi).

λ0(t) is a baseline hazard function, left unspecified; exp(βTXi) is the relative risk of

individual i, where Xi is the covariate vector of individual i. Cox (1975) proposed

the partial likelihood method to estimate the β parameter of this model. The partial

likelihood is a product over the uncensored failure times written as:

L(β) =
n

∏
i=1

(
exp(βTXi)

∑j∈Ri
exp(βTXj)

)di

,

where each factor can be interpreted as the conditional probability that individual i dies

at time ti, given the risk set Ri.

An important fact is that λ0(t) cancels out. The first and second derivatives of the

log likelihood of the model can be derived. Parameter estimates can then be obtained

by maximizing L(β) using e. g. the Newton-Raphson procedure. Subsequently the
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cumulative baseline hazard function Λ0(t) is estimated as in Breslow (1972). Several

goodness of fit tests have been developed for the Cox model (Andersen, 1985; Com-

menges and Andersen, 1995; Schoenfeld, 1980). Martingale residuals provide the basis

for a number of procedures that access model adequacy as well as model form see,

e.g. (Barlow and Prentice, 1988; Fleming and Harrington, 1991; Grambsch et al., 1995;

Verweij et al., 1998).

1.1.5 Martingale Residuals and counting process approach

Martingale residuals are useful for survival analysis. The martingale residual of indivi-

dual i is defined as follows:

MRi = di − Λ̂(Ti).

They may be interpreted as the difference between ”observed” and ”expected” number

of events for an individual.

The counting process approach replaces the pair of variables (Ti, di) with the fol-

lowing pair of functions (Ni(t), Yi(t)) where Ni(t) counts the number of events in

[0, t] for unit i and Yi(t) indicates if unit i is at risk of having an event at time t.
Right-censored survival data are also included in this formulation as a special case;

Ni(t) = I({Ti ≤ t, di = 1}) and Yi(t) = I({Ti ≥ t}). In the proportional hazards

model, the intensity process αi(t; Xi) for Ni(t) can be written as

αi(t; Xi) = α0(t) exp(βTXi)Yi(t).

Note that in order to avoid confusions, only in this section the intensity process is called

α.

The estimated martingale residual for unit i at time t for the former model is thus

defined as

M̂i(t) = Ni(t) −
∫ t

0
Yi(s) exp(βTXi)dΛ̂0(s),

where Λ̂0(s) is the Breslow (1972) estimator given by

Λ̂0(t) =
∫ t

0

dN�(s)
∑n

i=1 Yi(s) exp(β̂TXi)

where N�(t) = ∑n
i=1 Ni(t). Finally, denoting the estimated martingale residuals at

t = ∞ as M̂i(∞) = M̂i we come back to the first expression given in this section:

M̂i = Ni(∞) −
∫ ∞

0
Yi(s) exp(β̂TXi)dΛ̂0(s) = ”observed”i − ”expected”i.
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1.2 Frailty models

The concept of frailty provides a suitable way to introduce random effects in the model

to account for association and unobserved heterogeneity. In its simplest form, a frailty

is an unobserved random factor that modifies multiplicatively the hazard function of an

individual or a group or cluster of individuals.

1.2.1 Introduction

Vaupel et al. (1979) introduced the term frailty and used it in univariate survival mo-

dels. Clayton (1978) promoted the model by its application to multivariate situation on

chronic disease incidence in families.

A random effect model takes into account the effects of unobserved or unobserva-

ble heterogeneity, caused by different sources. The random effect, called frailty and

denoted here by Z is the term that describes the common risk or the individual hete-

rogeneity, acting as a factor on the hazard function. Two categories of frailty models

can be pointed out. The first one is the class of univariate frailty models that consider

univariate survival times. The second one is the class of multivariate frailty models that

take into account multivariate survival times.

1.2.2 Univariate frailty models

Univariate frailty models take into account that the population is not homogeneous.

Heterogeneity may be explained by covariates, but when important covariates have not

been observed, this leads to unobserved heterogeneity. Vaupel et al. (1979) introduced

univariate frailty models (with a gamma distribution) into survival analysis to account

for unobserved heterogeneity or missing covariates in the study population. The idea

is to suppose that different patients possess different frailties and patients more ”frail”

or ”prone” tend to have the event earlier that those who are less frail. The model is

represented by the following hazard given the frailty:

λ(t|Z, X) = Zλ(t|X).

λ(t|X) can be equal to the baseline hazard function λ0(t), or when we consider co-

variates λ(t|X) may be equal to λ0(t) exp(βTX) (in a Cox regression model). The

baseline hazard function λ0(t) can be chosen non-parametrically, or parametrically

(Weibull, exponential, Gompertz, piecewise constant,...).

An important point is that the frailty Z is an unobservable random variable varying

over the sample which increases the individual risk if Z > 1 or decreases if Z < 1.

The model can also be represented by its conditional survivor function:

S(t|Z, X) = exp(−Z
∫ t

0
λ(u|X)du) = exp(−ZΛ(t|X)),
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where Λ(t|X) =
∫ t

0 λ(u|X)du. S(t|Z, X) represents the fraction of individuals sur-

viving until time t given Z and given the vector of observable covariates X.

Note that until now the model is described at individual level, but this individual

model is not observable. That is the reason why it is essential to consider the model

at a population level. The survival of the total population is the mean of the individual

survival functions.

Many calculations can be done based on the Laplace transform. Hougaard (1984)

demonstrated the importance of the Laplace transform for these calculations. The

Laplace transform of a random variable Z is defined as

L(s) =
∫

exp(−sz)g(z)dz = E[exp(−sZ)]

where g(z) is the density of Z. The integral is over the range of the distribution. The

marginal survivor function can be calculated by

S(t|X) =
∫

S(t|Z, X)g(z)dz = E[S(t|Z, X)] = L(Λ(t|X)).

An important point is the identifiability of univariate frailty models. Univariate

frailty models are not identifiable from the survival information alone. However, El-

bers and Ridder (1982) proved that a frailty model with finite mean is identifiable with

univariate data, when covariates are included in the model.

Many distributions can be chosen for the frailty, but the most common frailty dis-

tribution is the gamma distribution. The gamma distribution has been widely applied

as a mixture distribution (Clayton, 1978; Hougaard, 2000; Oakes, 1982a; Vaupel et al.,

1979; Yashin et al., 1995). From a computational and analytical point of view the

gamma distribution is convenient, because it is easy to derive the closed form ex-

pressions of survival, density and the hazard function. This is due to the simplicity

of the Laplace transform, which is the reason why this distribution has been used in

most applications published so far. The density function of the gamma distribution

gamma(z;θ,β) is given by g(z) = θβzβ−1 exp(−θz)/Γ(β) where θ > 0, β > 0 and

z > 0. θ is a scale parameter and β is called a shape parameter. For identifiability, we

suppose θ = β which implies EZ = 1 and varZ = 1/θ.

An other distribution which can be chosen for the frailty is the positive stable dis-

tribution (Hougaard, 1986a). A distribution is strictly stable if the sum of independent

random variables from the distribution normalized follows the same distribution. Sup-

pose Z1, ..., Zn i.i.d, the distribution of the sum of Z1, ..., Zn is stable if for each n,

there exists a constant cn, with D(Z1 + ... + Zn) = D(cnZ1) where D(Z) means the

distribution of Z. The constants satisfy cn = n1/α, for some α ∈ (0, 2]. For α = 2,

the stable distribution has finite variance and is the normal distribution. For α = 1, the

degenerate distribution is obtained. The stable distribution on the positive numbers has
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α ∈ (0, 1] and apart from scale factors have Laplace transform:

L(s) = E[exp(−sZ)] = exp(−sα)

(s � 0). This distribution is denoted P(α, α, 0). Note that the frailty model using this

distribution is not identifiable in the univariate case, because the mean does not exist.

Unidentifiability is also easily seen from the marginal survival function: S(t|X) =
exp((−Λ0(t) exp(Xβ))α) = exp(−αΛ0(t) exp(Xβ)), where the frailty parameter

(α) acts as a multiplicative factor which is confounded by Λ0(t).

Other distributions which are sometimes applied for the frailty distribution are

the well-known normal, the lognormal (McGilchrist and Aisbett, 1991), the three-

parameter distribution (PVF) (Hougaard, 1986b), the compound poisson distribution

(Aalen, 1988, 1992) and inverse gaussian distribution. The effect of different frailty

distributions is investigated by Congdon (1995).

The role of shared frailty is more useful when we consider multivariate survival

times.

1.2.3 Multivariate frailty models

A very common situation in survival analysis is clustered or repeated data. Clustered

data are for instance data where individuals are divided in groups likes family or study

centres. Repeated data are seen in case of longitudinal data, concerning multiple re-

currences of an event for the same individual. The difficulty of working with this kind

of data is due to the dependence of individuals within groups, or repeated measures

within individuals. The dependence usually arises because individuals in the same

group are related to each other or because of the recurrence of an event for the same

individual. Multivariate frailty models have been used frequently for modelling de-

pendence in multivariate time-to-event data (Clayton, 1978; Hougaard, 2000; Oakes,

1982a; Yashin et al., 1995). The aim of the frailty is to take into account the presence

of the correlation between the multivariate survival times.

Constant shared frailty models

In this situation, individuals j in a group i are supposed to share the same frailty Zi. The

conditional hazard for individual j in group i is:

λ(tij|Zi) = Ziλ(tij),

where λ(tij) = λ0(tij) exp(βXij) in the cox-regression model. The Zi are indepen-

dent identically distributed following a chosen distribution, like in the univariate frailty

models. This model is therefore an extension of the preceding described model.

The model assumes that all time observations are independent given the values of

the frailties. In other words, it is a conditional independence model. The value of Z
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is constant over time and common to the individuals in the group and thus responsible

for creating dependence. The interpretation of this model is that the between-groups

variability (the random variation of Z) leads to different risks for the groups, which

then show up as dependence within the group. In the case of gamma distribution for

Z, I remember that EZ = 1 and varZ = 1/θ. So, small value of θ reflect a greater

degree of heterogeneity among groups and a stronger association within groups. The

association between group members as measured by kendall’s τ is τ = 1
1+2θ , and large

value of θ corresponds to the case of independence.

Note that the frailty models with multivariate survival data are identifiable in almost

all cases.

It is assumed that there is independence between groups and between the times for

the same value of i, owing to the common value Zi of Z. Thus if the Z’s do not vary

then there is independence between the time observations.

Example of constant shared frailty model: the gamma frailty model

A first and common approach is to define the hazard function as:

λ(tij | Zi) = Ziλ0(tij) exp(βtXij), i = 1, ..., n; j = 1, .., ki

which is the hazard function of the jth individual of group i given the frailty of group

i (Zi), where λ0(tij) is an arbitrary baseline hazard rate and Xij is the corresponding

covariate vector. The frailty Z is supposed to follow a gamma distribution g(z; θ, θ).

The joint survival function for the ki individuals within the ith group is easily written

by:

S{ti1, .., tiki
} = Pr(Ti1 > ti1, ..., Tiki

> tiki
)

=
∫ ∞

0

ki

∏
j=1

Pr(Tij > tij | Zi)g(zi)dzi

= [1 +
1
θ

ki

∑
j=1

Λ0(tij) exp(βtXij)]−θ .

(1.1)

In this model, the estimates of β, θ, Λ0(t) are obtained by using the EM (Expectation-

Maximization) algorithm (Dempster et al., 1977). The EM algorithm is the main tool

for estimation in frailty models in a frequentist framework and provides a means of

maximizing complex likelihoods. The likelihood considered is the full likelihood we

would have if the frailties were observed. This likelihood is easily manipulable and

written as follows: l f ull = l1(θ) + l2(Λ0) where

{
l1(θ) = n[θlogθ − logΓ(θ)] + ∑n

i=1[(Di + θ − 1)logZi − θZi]
l2(Λ0, β) = ∑n

i=1 ∑ki
j=1 dij[βtXij + logλ0(tij)] − ZiΛ0(tij) exp(βtXij).
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In the E step the expected value of the full likelihood is completed given the current

estimates of the parameters and the observable data. In the M step the estimates of the

parameters which maximize the expected value of the full likelihood from the E step

are obtained. For more details see Klein and Moeschberger (1997b).

If one assumes a parametric form for λ0(tij), then, ML estimates are available

by maximizing the log likelihood directly. In this following parametric example, the

weibull distribution is chosen. This model is called the gamma-weibull frailty model:

Li = Pr((ti1, di1), ..., (tiki
, diki

))

=
∫

Pr((ti1, di1), ..., (tiki
, diki

) | Zi)g(zi)dzi

=
∫ ki

∏
j=1

[ziλ0(tij) exp(βtXij)]
dij exp(−ziΛ0(tij) exp(βtXij))g(zi)dzi

=
ki

∏
j=1

[λ0(tij) exp(βtXij)]
dij

θθ

Γ(θ)
Γ(Di + θ)

(θ + ∑ki
j=1 Λ0(tij) exp(βtXij))Di+θ

(1.2)

Because in the weibull situation, λ0(tij) = αβtα−1
ij and the corresponding cumulative

baseline hazard Λ0(tij) = βtα
ij the final expression of the likelihood is then easily

derived, and also the log likelihood.

Usually the log likelihood is directly maximized using Newton-Raphson procedures

and estimates of the variability of the parameter estimates are obtained by inverting the

information matrix.

Limitations of the constant shared frailty models

The study and use of the constant shared frailty model confront us with its three princi-

pal limitations.

First, in most of the cases, a one-dimensional frailty can only imply a positive cor-

relation within group. However, there are some situations in which the association is

negative like time to response to treatment and survival.

Secondly, the model constrains the unobserved factors to be the same within a group

of clustered observations implying constant correlation between all individuals in a

cluster, and also to be the same during follow-up. This is unsatisfactory in many situa-

tions, because not always reflecting the reality.

Finally, the dependence parameter and the population heterogeneity are determined

at the same time, and can be confounded. This can lead to difficulty in the interpretation.

These limitations suggest further developments of the frailty approach.

Correlated frailty models

There exists a need for more flexibility in modelling correlation. Most of the correlated

frailty models developed until now are bivariate frailty models and applied for example
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on twin data. Indeed, these models extend the idea of individual frailty to bivariate

case and include shared frailty models as special cases. The novelty and difficulty

in these models is that related individuals have different but dependent frailties. Such

frailties are often constructed using independent additive components with one common

component for both frailties. The identifiability conditions in the case of correlated

gamma frailty models are discussed by Yashin and Iachine (1999).

Yashin et al. (1995) assumed gamma distributed frailties, Vaida and Xu (2000) sug-

gested a bivariate frailty model in a slightly different setting, dos Santos et al. (1995)

used a combination of a shared lognormal and a gamma frailty model on breast cancer

data. Zahl (1997) used several correlated gamma frailty models to model the excess

hazard. Li (2002) proposed a multivariate gamma frailty model in a genetic situation.

1.3 Introduction of the next chapters: Outline of the thesis

The emphasis of this thesis lies on complex survival data and on the modelling of this

kind of data. Statistical models are developed or adapted and applied to five different

real data sets, which all contain repeated censored measurements. To take into account

the correlation between these repeated measurements, a frailty is considered in all sta-

tistical analysis used. Extensions of and alternatives for frailty models are considered.

Special attention is paid to the role of the frailty and the effect of its use.

The centre-effect on survival after bone marrow transplantation is studied in chapter

2. Models which are able to take into account a time-dependent frailty are proposed and

compared.

In chapter 3 survival analysis approaches are used for modelling an ecological

capture-recapture data set. A joint model of breeding and survival on the Kittiwake

bird is developed using frailty models.

In chapter 4, the emphasis lies on the frailty model used in a genetic context. Our

model is applied on age at onset of Huntington disease. Correlation structure between

different kinds of family members such as siblings are tested and estimated with martin-

gale residuals on the Cox regression model including known risk factors as the number

of CAG-repeats.

Chapter 5 concerns the estimation of the correlation between processes with frail-

ties. The approach is applied on the Dutch part of the data set from the Caprie trial,

involving cardiac, cerebral and peripheral atherosclerosis.

In chapter 6, the point of interest is the marginal survivor curve in different simu-

lated balanced and unbalanced longitudinal situations. The frailty approach is compared

to a weighted approach.

Finally, in chapter 7 a general summary can be found.
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