
The effects of UML modeling on the quality of software
Nugroho, A.

Citation
Nugroho, A. (2010, October 21). The effects of UML modeling on the quality of software.
Retrieved from https://hdl.handle.net/1887/16070
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/16070
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16070


Summary

As the de facto industry standard for software modeling, the Unified Modeling Language
(UML) is used widely across various IT domains. UMLs wide acceptance is partly because
the language offers flexibility and freedom in modeling software systems: 1) UML provides
an extensive set of modeling notations that can be used to model various concepts; 2) UML
can be used both in a casual and formal manners.

In the context of model-driven software development, the degree of freedom in which
UML is used raises an important issue related to model quality. Different styles and rigors
in using UML affect the quality of the resulting models. It is then logical to think that the
level of quality of the UML model may affect the quality of the resulting software.

Notwithstanding the increasing role of UML in model-driven software development, there
is still little effort devoted to investigate the effects of UML modeling on software develop-
ment. This issue is particularly interesting if we take into account the way in which UML is
used in practice. One of the big questions is: does the way in which UML is used affect the
quality of the resulting software? This thesis reports on a series of empirical studies that are
aimed at answering such a question. These studies employ different research strategies (i.e.,
survey, experimentation, and case studies) as to approach the subject matter from different
perspectives.

A survey was conducted to investigate the way in which UML is used in practice from
software engineers point of view. The results indicate that software engineers generally con-
sider the completeness and level of detail in UML models rather low. Moreover, software
engineers consider incompleteness in UML models as a driver to deviate in the implementa-
tion. The effect of model completeness was further investigated in an industrial case study.
By comparing the quality between components (measured in defect density) that are mod-
eled using UML and those that are not modeled, we have learnt that modeled components
have significantly higher quality than unmodeled ones. This finding suggests that complete-
ness in UML models is crucial to achieve a certain level of quality in the implementation.
Additionally, the use of UML was found to reduce the effort required to fix defects. These
results are observed after controlling for the effects of potential confounding factors, namely
class coupling and complexity.

In practice, the level of detail in UML models varies. Level of detail (LoD) represents the
amount of information that is used to specify models. The effect of LoD was investigated
in an experimental setting involving 53 master students. The results of the experiment



194

show that higher LoD in UML models increases model comprehension in terms of compre-
hension correctness and comprehension efficiency. Furthermore, a set of UML metrics was
defined to measure LoD in UML models. These metrics were applied to an industrial case
study, and the result shows that LoD in the UML model correlates with the quality of the
implementation: the higher the LoD, the higher the quality of the implementation. In par-
ticular, LoD of messages in sequence diagrams is a significant factor that drives components
quality. Another interesting finding is related to the use of UML design metrics as predic-
tors of component fault-proneness. LoD of messages and import coupling (IC) measured
from sequence diagrams are significant predictors of class fault-proneness. Furthermore, the
prediction model built only using these UML design metrics demonstrates better accuracy
compared to the prediction model that was built only using code metrics.

To conclude, this series of empirical studies attempts to address a pivotal question con-
cerning the benefits of UML modeling in software development, particularly from a quality
perspective. The results of these empirical studies show that the use of UML provides bene-
fits in terms of increased quality and productivity in software development. The availability
of UML models also allows early prediction of defects in software systems. Such prediction
is potentially useful for identifying and fixing defects early during software development,
and for prioritizing testing.


