Universiteit

4 Leiden
The Netherlands

The effects of UML modeling on the quality of software
Nugroho, A.

Citation
Nugroho, A. (2010, October 21). The effects of UML modeling on the quality of software.
Retrieved from https://hdl.handle.net/1887/16070

Version: Corrected Publisher’s Version

Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/16070

License:

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16070

Chapter 4

The Effects of Using UML on
Defect Density and
Defect-fixing Effort

The contribution of modeling in software development has been a subject of de-
bates. The proponents of model-driven development argue that big upfront model-
ing requires substantial investment, but it will payoff later in the implementation
phase in terms of increased productivity and quality. Other software engineers
perceive modeling activity as a waste of time and money without any real con-
tribution to the final software product. In this chapter we explore the benefits of
using UML in an industrial project. In particular, we report on an empirical in-
vestigation on the impact of UML modeling on the quality of the implementation
(measured in defect density) and on the effort spent on fizing defects.

4.1 Introduction

The proponents of model-driven software development believe that the use of modeling will
deliver benefits in software development [58,87,116]. The benefits, which can materialize
in terms of improved quality and productivity, are based on some key assumptions. First,
modeling provides techniques to design solutions to the problem domain that need to be
addressed by software systems. Second, having modeled a system in a systematic manner
assures that it has gone through a technical review process, thus ensuring the correctness
of the implementation. Finally, the use of modeling ensures that design decisions captured
in the software models are well documented. The availability of good documentation is

This chapter is an extended version of the paper entitled ” Evaluating the Impact of UML Modeling
on Software Quality: An Industrial Case Study”, published in the proceedings of the 12th International
Conference on Model Driven Engineering Languages and Systems (MODELS) 20009.

48 Chapter 4. The Effects of Using UML on Defect Density and Fizing Effort

believed to minimize loss of information and misinterpretation in communicating decisions
taken during development. Additionally, it might increase productivity during software
maintenance [11].

On the other hand, many software engineers have started to question the role of modeling
in software development. This phenomenon is marked by the emergence of a software
development methodology that advocates spending more time and effort on creating and
testing working software as early as possible rather than investing on upfront modeling [63].
Creating software models is seen as an expensive investment (both effort and tools) without
a clear contribution to quality or productivity. The role of software models as a mean of
communicating design decision is substituted by intensive communication and collaboration
amongst team members and with the customers. This so-called agile methodology is believed
to increase agility of projects in dealing with the-presumably-inevitable uncertainties in
software development.

This chapter is not going to discuss evidence about the superiority of one methodology
over the other. Rather, this chapter aims to answer whether there is empirical evidence
that supports the assumed benefits of modeling in software development. Investigating the
benefits of modeling is important because they are unclear or, at best, weakly supported by
empirical evidence.

Therefore, in this chapter we evaluate the impact of modeling in a real software project.
More specifically, we investigate the effect of UML modeling on defect density (defects per
source lines of code) in software modules and on the effort spent on fixing defects. The
results of this study show that the use of UML modeling potentially reduces defect density
and defects-fixing effort.

The rest of this chapter is organized as follows. In section 2, we discuss some related
works. In section 3, the design of this study will be discussed. Section 4 discusses the case
study and the results of the analyses. In section 5 and 6, we discuss the hypothesis testing.
Section 7 discusses the interpretation of the results, their implications, and limitations.
Finally, in section 8 we outline some conclusions and future work.

4.2 Related Work

To the best of our knowledge, there has not been any research that investigates the use of
UML modeling and its relation to the quality of the final implementation. Plenty of works,
however, have been focused on investigating the impact of using certain styles, rigor, and
UML diagram types on model comprehension and software maintenance.

Many studies that investigate the impact of modeling styles on model comprehension
have been looking at the use of stereotypes. The work of Staron et al. for instance, suggests
that UML stereotypes with graphical representation improve model comprehensibility [120].
Ricca et al. also found that stereotypes have a positive impact on diagram comprehension
[111]. However, this finding was particularly true for inexperienced subjects—the impact
was not statistically significant for experienced subjects. Genero et al. studied the influence
of using stereotypes in UML sequence diagrams on comprehension [53]. While this study

4.8 Design of Study 49

revealed no significant impact, it suggested that the use of stereotypes in sequence diagrams
was favored to facilitate comprehension. Another study was conducted by Cruz-Lemus et al.
to evaluate the effect of composite states on the understandability of state-chart diagrams
[40]. The authors stated that the use of composite states, which allows the grouping of
related states, improves understandability efficiency when reading state-chart diagrams.
Nevertheless, subjects’ experience with state-chart diagrams was considered as a prerequisite
to gain the improved understandability.

A previous study that looked into the formality of UML models and its relation with
model quality and comprehensibility is from Briand et al. [27]. In their experimental study,
Briand et al. investigated the impact of using OCL (object constraint language) in UML
models on defect detection, comprehension, and impact analysis of changes. Although the
overall benefits of using OCL on the aforementioned activities are significant, they have
found that the benefits for the individual activities are modest.

Other studies investigated the effect of using different UML diagram types (e.g., sequence
and collaboration diagrams) on model comprehension. The work of Otero and Dolado
for instance, looked into three UML diagrams types, namely sequence, collaboration, and
state diagrams, and evaluated the semantic comprehension of the diagrams when used for
different application domains [106]. A similar study comes from the work of Glezer et al.
They evaluated the comprehensibility of sequence and collaboration diagrams, and finally
concluded that collaboration diagrams are easier to comprehend than sequence diagrams in
real-time systems [56]. Another study conducted by Torchiano [124] investigated the effect
of object diagrams on system comprehensibility. In two of the four systems used in the
experiment, the use of object diagrams to complement class diagrams was found to have
significant effects on the comprehensibility of the systems.

A previous work that is closely related to this study is conducted by Arisholm and Briand
[11]. In the paper the authors evaluate the impact of UML documentation on software
maintenance in a controlled experiment. The results show that for complex tasks and after
certain learning process, the availability of UML documentation may result in significant
improvements in terms of functional correctness of changes and the design quality of the
changes.

Different from most of the aforementioned works, in this chapter we analyze whether
the use of modeling, represented using UML, has any effect on the quality of the final
implementation—measured in defect density. Furthermore, this work complements the ex-
perimental study of Arisholm et al. [11] in that we further investigate the effect of UML
modeling on the effort spent on fixing defects in an industrial case study.

4.3 Design of Study

In this section, we discuss underlying aspects of this study, which include study objective,
hypothesis formulations, and measured variables.

50 Chapter 4. The Effects of Using UML on Defect Density and Fizing Effort

4.3.1 Objective
Using the GQM template [130], we can formulate the goal of this study as follows:

Analyze the use of UML modeling

for the purpose of investigating its effect

with respect to defect density of Java classes and defect-fixing effort
from the perspective of the researcher

in the context of an industrial Java system

As stated in the above template, this study essentially attempts to investigate the effects
of UML modeling on downstream software development, and we focus on the following two
questions:

1. What is the effect of modeling system structure on the quality of the implementation?

2. What is the effect of modeling system behaviors on the effort spent on fixing defects
related to those behaviors?

4.3.2 Hypothesis Formulation

In the first research question, we aim to investigate the effect of UML modeling on the
quality of software. We use defect density as a measure of software quality, and assess
whether there is a significant difference in defect density between software modules that are
modeled using UML and modules that are not modeled at all.

We have learnt in Chapter 3 that complex or critical components are more often included
in a UML model, and thus they are expected to have higher defect density. However, regard-
less of their complexity or criticality modeled components presumably have the following
characteristics. First, they are generally well thought of and better designed. Second, they
are generally well described and well documented. Finally, all else being equal, modeled
components should be easier to implement than the not modeled ones.

Having the above assumptions in mind, it is interesting to investigate whether such ben-
efits materialize in terms of improved implementation correctness. We translate the first
research question into the following hypothesis:

Hypothesis 1

e Null hypothesis (H1,,,;):
There is no significant difference in defect density between implementation classes that
are modeled using UML and those that are not modeled.

e Alternative hypothesis (H1,;):
The use of UML significantly reduces defect density of implementation classes.

4.8 Design of Study 51

We formulate the first hypothesis as a one-tailed hypothesis because we have a specific
assumption about the direction of the cause-effect relationship between the independent and
dependent variables: the use of UML reduces defect density.

In the second research question, we aim to evaluate whether the use of UML modeling
significantly reduces the effort spent on fixing defects. This question is based on assumptions
quite similar to those of the first hypothesis—that is, we expect that modeled behaviors are
well thought of, better designed, and well documented. Using a UML model as a guide,
software engineers can quickly identify the root cause of a problem in a system. Additionally,
the UML model helps software engineers in identifying linked components that need to be
fixed or changed relatively quickly. As a result of a faster defect assessment and impact
analysis, fixing defects related to behaviors that are modeled is also expected to be much
faster than in those that are not modeled.

Similar to the first hypothesis, we formulate the second hypothesis as a one-tailed hy-
pothesis:

Hypothesis 2

e Null hypothesis (H2,,,;):
There is no significant difference in fixing effort between defects related to modeled
behaviors and defects related to unmodeled behaviors.

e Alternative hypothesis (H2,;:):
Defects related to modeled behaviors require significantly less effort to fix than defects
related to unmodeled behaviors.

Notice the difference in the unit of analysis between hypothesis 1 and 2. The unit of
analysis of hypothesis 1 is implementation classes, and we assess the effect of using UML for
modeling these classes. On the other hand, the unit of analysis of hypothesis 2 is defects, in
which we examine the effect of using UML for modeling system behaviors or functionality
related to the defects.

4.3.3 Measured Variables

In Table 4.1 we provide all variables measured in this study. In the following passages we
discuss the measured variables in further details.

Measured Variables in Hypothesis 1

The independent variable of Hypothesis 1 is the use of UML modeling. The use of modeling
is defined as the presence or availability of UML diagram(s) that describe a given implemen-
tation class (i.e., Java class). The use of UML modeling is measured in a nominal scale with
two categories: Modeled Classes(MC) and Not Modeled Classes (NMC). Two UML diagram
types are considered, namely class diagram and sequence diagram. As such, the modeled
classes can be of the following categories: 1) modeled in class diagrams; and 2) modeled

52 Chapter 4. The Effects of Using UML on Defect Density and Fizing Effort

Table 4.1: Measured Variables
Independent Variable Dependent Variable Covariates

Hypothesis 1 The use of UML Defect density Code complexity
Code coupling

Hypothesis II The Use of UML Defect-fixing Effort Total modified files
Total coupling
Total complexity
Total size (KSLoC)
Defect priority
Total person involved

in class- and sequence diagrams (as instances/objects of classes). We hereafter refer to the
independent variable as UMLforCLASS.

The dependent variable of Hypothesis 1 is the quality of the final implementation, which
is measured in defect density. Defect density of an implementation class is determined by the
number of defects found in that class (defect-count) divided by the class size (in kilo SLoC).
Defect-count, in this respect, is measured from the number of times a class is modified to
solve distinct defects. Hence, if a class is modified five times to solve the same defect, it
would be considered as having only one defect-count. We hereafter refer to defect density
as DDENS.

In addition to the independent and dependent variables, we selected two significant
factors that might confound the main factor of the first hypothesis, namely code complex-
ity, which is measured using the McCabe’s cyclomatic complexity metric (MCC) [84], and
coupling between objects (CBO) [35]. MCC and CBO metrics are well-known for their
significant relations to class fault-proneness [71,121]. Considering their potential influence
on defect density, we consider MCC and CBO as co-factors (covariates) and control their
effects on defect density. Having controlled these confounding factors, we expect to see the
true effect of using UML modeling on the defect density of system classes.

Measured Variables in Hypothesis 2

The independent variable in hypothesis 2 is, similar to the first hypothesis, the use of UML
modeling. However, as mentioned earlier, in the second hypothesis we are concerned with
the use of UML for modeling system behaviors or functionality that are found to be faulty
(defective) during the verification or testing phase. We consider the relation of a defect to
a sequence diagram(s) to determine whether it is modeled or not modeled. A defect is said
to be modeled if it is caught within a functionality or behavior that has been modeled in
a sequence diagram(s). We only consider sequence diagrams because sequence diagram is
the UML diagram type that was used most frequently to specify system functionality in the
software project that we used for a case study. Thus, the independent variable is measured
in a nominal scale with two categories: Modeled Defects (MD) and Not Modeled Defects
(NMD). We hereafter refer to the independent variable as UMLforDEFECT.

The dependent variable in hypothesis 2 is effort to fix defects (hereafter referred to

4.4 Case Study 53

as FixEffort). FixEffort is defined as the amount of time (hours) that is required to fix a
particular defect. More specifically, we consider FixEffort as time duration from the moment
a defect is assigned to a particular person until the moment it is declared as solved.

We also identify several confounding factors that we suspect might influence FixEffort:

e Modified files (ModFile). Represents the total number of Java files that are mod-
ified to solve a particular defect.

e Total coupling (TCBO). Represents the sum of coupling between objects (CBO)
of Java files that are modified to solve a particular defect.

e Total complexity (TMCC). Represents the sum of complexity (McCabe’s measure)
of Java files that are modified to solve a particular defect.

e Total size (TKSLOC). Represents the total size (in KSLoC) of Java files that are
modified to solve a particular defect.

e Defect priority (DPRIO). Represents the priority scale assigned to defects. Defect
priority is determined by a responsible engineer in the project. Its scale is as follows:
1: Resolve Immediately; 2: Give High Attention; 3: Normal Queue; 4: Low Priority.

e Total persons involved (TPERS). Represents the total number of people involved
in the course of fixing a particular defect.

e Defect type (DTYPE). Represents the type of defects. The taxonomy of defect
types will be discussed shortly.

Considering the above confounding factors, it is logical to think that FixEffort can
be significantly influenced by MoDFile, TCBO, TMCC, and TKSLOC in that the higher
the values of these confounding factors, the higher is FixEffort. Additionally, DPRIO is
also essential because it might correspond to the speed of fixing defects. TPERS might
either increase or decrease the speed of fixing defects depending on the effectiveness of
the collaboration amongst the persons involved. Finally, the types of defects might have
significant influence on defect-fixing effort.

4.4 Case Study

The software project that we selected for the case study should meet two conditions. First,
the projects must use UML modeling to certain extent. Further, the UML models should
be used for guiding the implementation and are modeled in machine-readable forms (e.g.,
utilizing UML CASE tools). We also required the UML CASE tools to have an XMI export
facility, which allowed us to export the models to the measurement tool. Second, the project
must utilize a bug tracking system with which it is possible to trace back source files that
are modified to solve defects. Having selected the projects to be studied, we performed data
collection to obtain data of UML models, source code, defect registration, and change sets
(source files modified to solve defects). The collected UML data and source code are the

54 Chapter 4. The Effects of Using UML on Defect Density and Fizing Effort

Table 4.2: Project Summary
Projects # staff Duration Off-shored Status Model Size SLoC

104 UCs

IPS 25 people 2.3 years India finished 266 classes 152,017
34 CDs
341 SDs

latest version of project data that could be found in the CVS (Concurrent Versions System)
repository.

In Chapter 6 and 7 the same case study will be used, thus the same case study descrip-
tions apply. In those chapters, additional information about the case study will be given
when necessary.

4.4.1 Project Context

The system under study is an integrated healthcare system for psychiatrists in the Nether-
lands, hereafter referred to as IPS (not a real name). The project was started in 2002, and
it was built as a web service using Java technology. In the IPS project, the RUP (Rational
Unified Process) methodology was used, and this project involved off shoring to India. The
modeling of the system was done in the Netherlands, while approximately 60 percent of the
implementation and testing activities were done in India. For creating the UML models, the
project used Rational XDE, and for the version control system and bug tracking system,
the project used Rational ClearCase and Rational ClearQuest respectively.

In the IPS project, the UML model was used as an implementation guide, thus the model
was created before writing the implementation code. The UML model was created by the
designers and was later implemented by the developers in India and the Netherlands. In
addition to the UML models, textual specifications were also used to guide the implemen-
tation of the system. These specifications are textual and are mainly in the form of detailed
use case descriptions. From our observation, most functional requirements generally have
corresponding use case descriptions. Additionally, a software architecture document that
provides a high level description of the system is available. Hence, regardless of whether cer-
tain parts were modeled or not modeled using UML, there exists some textual specifications
that describe how the system should be implemented.

Testing of the system consisted of the following test types: unit test, system test, regres-
sion test, integration test, user acceptance test, and production acceptance test. While the
user acceptance test and production test were done by the customer, the rest of the tests
were the responsibility of the project team. The basis for the tests is derived from artifacts
such as use case specifications, supplementary specifications, and user interface documen-
tations (e.g., screen designs). Furthermore, testing was done iteratively. For each iteration,
the parts of the system that were going to be tested were defined in advance.

When this study is conducted, the IPS project was already finished. The system was
used by the client for sometime, but was later abandoned because of business economical

4.4 Case Study 55

reasons. The characteristics of the project are provided in Table 4.2.

4.4.2 Data Collection and Preprocessing

To obtain data about UML classes and other metrics, the UML model first had to be
exported from the UML CASE tools into an XMI format. Using a tool called SDMetrics
[4], the XMI file was read and model information, such as classes and other structural
diagrams, could then be easily extracted. However, due to a limitation of the UML CASE
tool, sequence diagram information could not be exported to XMI. Therefore, we needed to
manually inspect every sequence diagram to register the instances/objects of classes that
were modeled in sequence diagrams.

The processing of source code was mainly aimed at calculating code metrics from the
implementation classes. In this study we are mainly interested in the size, coupling, and
complexity metrics. These code metrics were calculated using an open source tool called
CCCC (C and C++ Code Counter), which in fact is also able to calculate metrics from Java
files.

Processing defect data mainly involved two steps. The first step was to obtain registered
defects from the ClearQuest repository and store them in the analysis database. The second
step was to obtain change sets. This step was performed automatically using a Perl script
that recovers change sets associated with every defect. Because change sets are registered in
a ClearQuest textual format and they contain other information, text parsing was performed
to mine data of the modified files (note that only Java files were taken into account). Further,
defect-count of each Java file was determined based on the frequency it was corrected to
solve distinct defects. Java files that were modified to solve defects are hereafter referred to
as faulty classes.

We employ a relational database to store the above data. This database can be accessed
via a web interface to enable remote collaboration for data collection and analysis. Once the
data of defects, UML classes, implementation classes, and faulty classes were stored in the
analysis database, we could query various information, which include: 1) implementation
classes that are modeled, and the diagrams in which they are modeled; 2) implementation
classes that are not modeled; 3) code metrics of the implementation classes; 4) defect density
of the implementation classes—if they were found to be faulty during testing.

To test the second hypothesis, we needed to collect the change history of every defect.
Change history essentially records the states or phases in solving defects. The states in
fixing defects are defined in the defect solving procedure.

Figure 4.1 shows an activity diagram depicting the adopted procedure for solving defects.
Activities are represented using rounded rectangles, and the arrows indicate transition be-
tween activities. The diamonds are decisions (conditional branch), and the arrows connected
to them are marked with the conditions. Roles that perform the activities are depicted us-
ing swimlanes (represented by the rectangles). The initial state in an activity diagram is
indicated by the black circle, while the final state is the encircled black circle.

In the simplest path of the procedure, issues are first submitted and examined (an issue

56 Chapter 4. The Effects of Using UML on Defect Density and Fizing Effort

Submitter Member of (issue) Board Issue Solver Tester

Open
rrered
Issi
// ue
Assess . >/
Issue [accepted]
Solve Validate

[rejected] Issue / Solution

New Issue Wait (Issue

on hold)

[rejected]
[accepted]

Figure 4.1: Defect solving procedure

refers to a general problem reported during testing). If a reported a issue is accepted as
defect (i.e., they deserve fixes), then it is assigned to a developer(s) to be solved. The
assigned developer will then open and solve the defect. Solved defects will be retested and
closed if they pass the test—otherwise, defects will have to be again fixed. Any of these
activities (i.e., whenever they are performed) are registered in the change history, and the
information that was available includes the time a certain activity takes place and the person
who performs it. Please bear in mind that FixEffort was calculated as time duration from
the moment a defect was assigned to a particular person (i.e., activity Open Issue in Figure
4.1) until the moment the defect was closed. We exclude earlier activities because they are
not related to the main effort in fixing defects.

To test the second hypothesis we also needed to determine whether behaviors that are
found to be defective are modeled or not modeled using sequence diagrams. To this aim,
for each defect we performed a careful analysis to check whether a defect was related to
behavior(s) that are modeled using sequence diagrams. This analysis was done manually,
by looking at the description of defects. Tracing defects to the sequence diagrams was
sometimes a quite straightforward process if information about use case numbers related
to defects was mentioned in the defect report. However, because such information was not
always available, we frequently needed to carefully determine the context of a particular
defect, and subsequently find the corresponding sequence diagrams in which the behavior
was modeled. If we could find at least one sequence diagram that matched a defect, then
the defect is said to be modeled, but otherwise it is said to be not modeled.

4.5 Testing Hypothesis 1: The Effect of UML Modeling on Defect Density 57

4.4.3 Analysis Methods

The formulated hypotheses essentially aim at comparing two groups of subjects, namely
modeled and not modeled implementation classes, and defects. Therefore, in the analysis
we used statistical techniques to compare mean difference between groups.

To test the hypotheses, we use the ANCOVA (Analysis of Covariance) test [115] because
it would allow us to control the effects of covariates on the outcome variable. However,
as we later found out the data set we use to test Hypothesis 1 violated the assumptions
of normality. Hence, for testing the first hypothesis we finally decided to use the Mann-
Whitney test [83] as the main statistical test. Nevertheless, the ANCOVA test would still
be used for the sake of result validation. Furthermore, because we could not use ANCOVA
as the main statistical test for testing the first hypothesis, we needed to perform a pair-wise
sampling to account for the effect of the covariates (in Section 4.5.2 we discuss the pair-wise
sampling in further detail). In testing Hypothesis 2, we use both the Mann-Whitney and
ANCOVA test.

In this study we have a specific assumption about the direction of the hypothesis—that
is, we hypothesize that the use of UML modeling will reduce both the defect density of
classes in the implementation and the effort spent on fixing defects. Consequently, testing
of the mean difference between groups will be performed as one-tailed test. Further, in the
analyses and hypothesis testing we considered a significance level of 0.05 level (p < 0.05) to
indicate true significance.

4.5 Testing Hypothesis 1: The Effect of UML Modeling
on Defect Density

In this section, we discuss the main analysis to test the effect of UML modeling on the defect
density. We start by describing some descriptive statistics.

4.5.1 Descriptive statistics

The core part of the IPS system (excluding framework classes) consisted of 812 Java classes.
Table 4.3 shows the descriptive statistics of defect density, coupling, complexity, and size of
all classes across groups. One notable trend that we can see in Table 4.3 is that MC classes
generally have higher complexity, coupling, and size than NMC classes—this confirms the
survey result reported in Chapter 3. However, we can also see in the table (the mean value)
that there is only a slight difference in defect density between the two class groups. Statistical
tests confirm that except for defect density, the differences in complexity, coupling, and size
between MC and NMC classes are statistically significant.

It is interesting to note that MC classes, which are generally rank higher in terms of
complexity, size, and coupling are in fact having a quite similar defect density as NMC
classes. This is particularly true if we consider previous studies that report positive cor-
relations between complexity, coupling, size and module fault-proneness (see for example

58 Chapter 4. The Effects of Using UML on Defect Density and Fizing Effort

Table 4.3: Descriptive statistics of all Java classes

Not Modeled Classes (NMC) Modeled Classes (MC)
N Median Mean St.Dev N Median Mean St.Dev

DDENS 638 0.000 0.016 0.032 174 0.000 0.012 0.029
CBO 638 6.000 7.123 6.303 174 11.000 13.459 11.359
MCC 638 1.000 11.747 72.034 174 10.500 26.770 45.932
KSLOC 638 0.039 0.103 0.290 174 0.179 0.312 0.689

Measures

in [71,74,121]). The results in Table 4.3 raise a question whether modeled classes, which
are notoriously more complex, have lower defect density because they are modeled using
UML, or because defects in larger and complex classes are more difficult (hidden) to find
[48]. This discussion shows that several factors might influence defect density, and thus it
is important to identify them and control their effects in order to evaluate the true effect of
UML modeling on defect density.

4.5.2 Controlling for the Confounding Factors

In testing the first hypothesis, we consider class coupling and complexity as the main
confounding factor because both metrics have been considered influential to class fault-
proneness. Ideally, we would use the ANCOVA test to analyze the main effect of a treatment
when several confounding factors are accounted for. With this analysis we could control the
variance of the confounding factors, hence providing us with a pure effect of the main treat-
ment if there is one. However, because the defect density data set violated the assumption
of normal data distribution and transforming the data did not fix the normality problem,
we could not rely on ANCOVA for the main statistical test.

An alternative way to do the analysis is to perform a pair-wise sampling in which we
selected classes of comparable complexity and coupling, and subsequently used a parametric
test, i.e., Mann-Whitney, as the primary test to compare the defect density between groups.
However, selecting classes that are comparable in terms of complexity and coupling left us
with too few data points for a meaningful statistical test. Therefore, we decided to perform
a pair-wise sampling based on coupling, and the effect of complexity would subsequently be
assessed using the ANCOVA test.

To obtain classes of comparable coupling, we performed a pair-wise sampling by sys-
tematically selecting classes from both NMC and MC that have coupling values from 8 up
to 10. This range of coupling values is selected mainly because 1) the range is reasonably
small; and 2) within this coupling range we obtained the best proportion of NMC and MC
groups (note that we aimed to obtain balanced groups when possible). In other range of
coupling, the difference in size between NMC and MC group is too large. The pair-wise
sampling has reduced the amount of classes from 812 to 113 Java classes, of which 68 and
45 belong to NMC and MC groups respectively. The CBO values of these 113 classes have a
standard deviation value of 0.8, which means coupling values of these classes are very close
to the mean value (+/- 0.8). A standard deviation value this small suggests that we have
controlled the variance of class coupling to a minimum level.

4.5 Testing Hypothesis 1: The Effect of UML Modeling on Defect Density 59

Table 4.4: Descriptive statistics of the randomly sampled Java classes from the IPS project
comparing NMC and MC

Variabl Not Modeled Classes (NMC) Modeled Classes (MC)
arables N Median Mean St.Dev. N Median Mean St.Dev
DDENS 59 0.002 0.011 0.019 37 0.000 0.003 0.010
CBO 59 9.000 9.000 0.809 37 10.000 9.270 0.902
MCC 59 23.000 41.440 47.656 37 30.000 35.297 36.153
KSLOC 59 0.180 0.267 0.233 37 0.230 0.251 0.184
0.120
*
0.100

Defect Density
g e e
o o o
N [} [
T § 8

0.020

T
0.000

l
NMC MC

Figure 4.2: Box-plots of defect density in NMC and MC group

4.5.3 Assessing the Effect

The main question we wanted to answer is whether the use of UML helps reduce defect
density of software modules in the implementation. In Section 4.5.2 we have discussed how
we performed a pair-wise sampling based on class coupling to control its effect on defect
density. Therefore, in this section we discuss the main hypothesis testing based on the
sampled data set.

To mitigate bias during the pair-wise sampling, we further performed a random sampling
on the sampled data set, in which we randomly selected 80 percent of the 113 Java classes
for the analysis. Having done the random sampling we obtained 96 classes, of which 59
and 37 are NMC and MC classes respectively. Table 4.4 shows the descriptive statistics of
these classes. If we look at the mean values in the table, we can see that after coupling is
accounted for, NMC classes remained having a higher defect density than MC classes.

Figure 4.2 shows two box-plots that compare defect density between groups. The box-
plots show a similar result presented in Table 4.4—that is, the defect density of the NMC
group is higher than that of the MC group. We subsequently performed a statistical test

60 Chapter 4. The Effects of Using UML on Defect Density and Fizing Effort

Table 4.5: Mann-Whitney test - Ranks of the measured variables of the NMC and MC
groups

Variables Groups N Mean Rank Sum of Ranks

DDENS Nﬁg ;5{3 3312? ?}1?2:88
CBO MG 7 2291 105450
MCC MG o7 2851 1795.00
KSLOC Nl\l\ﬁg ?f; ‘4*;122 ?Szﬁigg

Table 4.6: Mann-Whitney test - The significance of differences in the measured variables
between the NMC and MC groups

DDENS CBO MCC KSLOC
Mann-Whitney U 770.000 891.500 1091.000 1041.500
Wilcoxon W 1473.000 2661.500 2861.000 2811.500
Z -2.704 -1.607 -.004 -.376
Significance .003** .108 .997 707

(**) indicates significance at 0.01 level (1-tailed)

to assess whether the difference in defect density between the NMC and the MC groups is
statistically significant.

Table 4.5 and 4.6 provide the results of the Mann-Whitney test. We used this parametric
test because the data set (i.e., defect density variable) violated the assumption of normal
data distribution and data transformation could not solve the problem. For the sake of
completeness we also provide the results for coupling, complexity, and size measures.

In Table 4.5, we can see that the mean rank of defect density for NMC is higher than
that of MC. Because the Mann-Whitney test relies on ranking scores from lowest to highest,
the group with the lowest mean rank (i.e., MC) is the one that contains the largest amount
of lower defect density. Likewise, the group with the highest mean rank (i.e., NMC) is the
group that contains the largest amount of higher defect density. Hence, the results show that
classes that are not modeled tend to have higher defect density than the modeled classes.

Table 4.6 provides the actual Mann-Whitney tests. The most important part of the
table is the significance value of the tests. We can see from the table that the difference in
defect density is significant at 0.01 level (p = 0.003; 1-tailed). Note that none of the other
measures are significantly different between the NMC and MC groups. Having obtained
these results, we can conclude that, on average, classes that are modeled using UML have
a significantly lower defect density than those that are not modeled. Therefore, we could
reject the null hypothesis (Hy,,;1), and confirm the alternative hypothesis (Hy;¢): the use of
UML modeling significantly reduces defect density of classes in the implementation.

In addition to the Mann-Whitney test, we performed an ANCOVA test to verify if the
results are consistent. Performing an ANCOVA test regardless of the violation of normal-

4.6 Testing Hypothesis 2: The Effect of Modeling on Defect-fixing Effort 61

Table 4.7: Results of assessing the impact of UMLforCLASS on DDENS using ANCOVA

Source Sum of Squares df Mean Square F Significance
UMLforCLASS 1.869E-03 1 1.869E-03 6.825 .010
CBO 7.562E-08 1 7.562E-08 .000 .987
MCC 1.430E-03 1 1.430E-03 5.224 .025
Error 2.519E-02 92 2.738E-04

ity assumption is justified because ANCOVA is quite robust to violation of the normality
assumption [115]. In the ANCOVA test, we included class coupling and complexity as co-
variates. Class size is not included because it shares the same size factor as defect density.
The results of the ANCOVA test are provided in Table 4.7.

The most important point to note from Table 4.7 is that the effect of using UML modeling
remains significant (p < 0.05) even though coupling and complexity have been included as
covariates in the analysis. This result basically means that the means of defect density
between the groups, i.e., NMC and MC, are significantly different after controlling the effect
of class coupling and complexity. Further, we see that complexity is a significant covariate,
which is not surprising since we did not control its variance in the data set. Another thing
to note is the value of sum of squares, which represents the amount of variation in defect
density that is accounted for by the independent variable and the covariates. We can see
in the table that the independent variable (i.e., the use of UML modeling) has the highest
sum of squares value; hence, it explains the variability of defect density better than the
covariates.

The above discussion shows that the results of the ANCOVA test are consistent with the
results of the Mann-Whitney test—that is, the use of UML modeling significantly explains
the variability of class defect density. Although the ANCOVA test is performed on a data
set that violates the assumption of a normal data distribution, we should consider the results
of the ANCOVA test as a complement to the results of the main statistical test. Overall,
this result further strengthens the evidence about the effect of UML modeling on the defect
density of software modules.

4.6 Testing Hypothesis 2: The Effect of Modeling on
Defect-fixing Effort

This section describes the results of assessing the impact of UML modeling on the effort
spent on fixing defects.

4.6.1 Descriptive Statistics

As discussed earlier, to test the second hypothesis we needed to determine whether behav-
iors that are found to be defective are modeled or not modeled using sequence diagrams.
Thus, for each registered defect we identified the corresponding sequence diagrams—that is,

62 Chapter 4. The Effects of Using UML on Defect Density and Fizing Effort

Table 4.8: Descriptive statistics of sampled defects from IPS comparing NMD and MD

Not Modeled Defects (NMD) Modeled Defects (MD)
N Median Mean St.Dev N Median Mean St.Dev

FixEffort (hour) 52 166.375 489.598 675.861 34 121.160 294.738 504.633

Variables

ModFile 52 2.000 3.730 4.542 34 2.000 2.647 2.072
TCBO 52 36.000 61.961 76.729 34 25.000 44.588 59.496
TMCC 52 72.500 174.000 224.168 34 74.500 150.647 347.948
TKSLOC 52 0.877 2.632 3.697 34 0.845 1.686 2.761
DPRIO 52 2.000 2.130 0.768 34 2.000 2.210 0.845
TPERS 52 4.000 4.115 1.308 34 4.000 4.529 1.673

sequence diagrams that describe the defective behavior.

There are 1546 defects that we considered in this study. These defects are those reported
during testing (i.e., unit test, system test, regression test, and integration test) and represent
60 percent of the total number of defects. The rest of the defects are those reported during
review (771) and acceptance test (212). We do not use these defects in the analysis because
our focus is on pre-release defects found during internal tests.

Out of the 1546 defects, only 566 are traceable to the modified source files. The fact that
there are a large number of defects that is not traceable to the modified source files is due
to the following reasons. First, there are defects that were solved without modifying source
files, which include changes in the database or application server. Second, it is possible that
a finding was solved indirectly, i.e., by solving other defects. Finally, it is often the case that
defects were rejected for some reasons, for instance because they could not be reproduced.
In these cases, no source file was corrected to solve defects.

Since defect-source traceability is a prerequisite for the analyses, defects without this
traceability had to be excluded; thus, the remaining population for the analysis is 566 defects.
Out of these 566 defects a random sampling is performed. The sampling is performed by
assigning a random number to each finding and then sorting the defects based on the random
numbers. The sample is taken from the first 164 defects from the sorted list. The size of
the sample is mainly constrained by the availability of resources to perform defect analysis.

After performing analysis of the 164 defects, it turns out that only 86 defects are suitable
for our analysis. The rest of the defects could not be used because they were either solved
by modifying non-Java classes (e.g., xml, Jsp files) or, if Java classes were indeed being
modified, they could no longer be traced in the latest code snapshot. In the latter case, the
reason being that the faulty Java classes might have been changed in names, deleted, merged,
or moved to a different directory. While it might be possible to manually trace faulty classes
that have changed in names or merged using certain features of the bug tracking system, the
effort might have been substantial given the number of untraceable faulty classes (i.e., 77 out
of 361 faulty classes associated with the 164 defects are not traceable to the implementation
classes). Due to this reason, we decided to proceed with the 86 defects for conducting further
analysis.

Table 4.8 provides the descriptive statistics of sampled defects in the NMD and MD
groups. As we can see in the table, all of the measured variables are listed, and their

4.6 Testing Hypothesis 2: The Effect of Modeling on Defect-fixing Effort 63

4000.00
3000.00

2000.00+

*
1000.00

T
NMD MD

FixEffort (Hour)

Figure 4.3: Box-plots of FixEffort in the NMD and MD groups

median, mean, and standard deviation are shown. If we compare the median values of the
variables in both the NMD and MD groups, we can see that only FixEffort and TCBO
seem to have a quite substantial difference. In the main analysis we will assess weather the
differences in the measured variables between the NMD and MD groups are statistically
significant.

Figure 4.3 provides an overview of FixEffort data using a box-plot. We can see that there
are some outliers and extreme values in both the NMD and MD groups. After a careful
check, these data points turn out to be valid, and thus we keep them in the data set. What
is obvious from the figure is that the NMD group has a significantly larger data range (3550
hours), while the data range of the MD group is less than half that of the NMD group (1654
hours). In particular, we can see in the NMD group that the larger data range is caused
by a sparse distribution of 50% of the data points with FixEffort above the median (the
median is indicated by the horizontal line in the grey box).

As discussed earlier, we also consider the effect of defect type on defect-fixing effort.
To this aim, we introduce a defect taxonomy based on surveys in the literature (e.g., [37],
[36,65]) and our own observations. The taxonomy has the following categories:

User Interface. Defects related to static user interface layouts or caused by wrong
or missing user interface navigation.

User Data Input/Output. Defects related to missing or wrong data input/output
from/to user interface.

e Data Handling. Defects caused by missing or wrong data handling, such as input
data validation and session issues. Data access problems also belong to this category.

Computational. Defects caused by missing or incorrect computation.

64 Chapter 4. The Effects of Using UML on Defect Density and Fizing Effort

207 [CINot Modeled
o [IModeled
15
>]
O
c
P
S
o 101
@]
| .
m —
5—
0

BuijpueH eireq-
O/1 ereq
21607
129J9p-UON-] |
Jneis-|n- |
paulwidpun-
uoneindwo)_
MO|4 SS3J04d—
uollpuod aaeu_:lj

Figure 4.4: The distribution of defect types of the 86 sampled defects—also showing the
frequency of modeled and not modeled defect per type

e Logic/Algorithm. Defects caused by missing or poor implementation of business
rules or wrong formulation of conditions.

e Process Flow. Defects caused by missing or wrong process flows (e.g., incorrect order
of operation execution).

e Race Condition. Defects caused by incorrect timing of events (e.g., unanticipated
locking or synchronization).

e Undetermined. Defects do not belong to the above categories.

The above list outlines the general defect types. For example, two defect types, namely

4.6 Testing Hypothesis 2: The Effect of Modeling on Defect-fixing Effort 65

user interface and data handling consist of several sub types. Detailed discussion of each
defect type is beyond the scope of this paper and can be found in the aforementioned papers.

The type of each registered defect is determined primarily based on how it was solved,
which is done by comparing the modified Java classes before and after correction (change
analyses)—this can be done easily using the bug tracking system. In addition, the determi-
nation is based on defect information stored on the analysis database. However, it is possible
that some defects were solved without modifying any files, thus their types are impossible
to be determined.

Figure 4.4 shows the distribution of defect types of the 86 sampled defects that is coupled
with information about the number of modeled or not modeled defect per type. As shown
in the figure, the three defect types that occur most frequently are Data Handling, Data
1/0, and Logic defects respectively. We also see that a large number of the 86 defects
is categorized as non-defect. Defect classified in this category generally are those pertain
to change requests such as change of or additional features requested by the customer.
Additionally, the figure tells us that a large number of defects that are not modeled belong
to Data I/O type. Similarly, we also see that a large number of defects that are modeled
belong to Logic type. By accounting for the effect of defect type we will be able to adjust
any discrepancies or bias of defect type (as shown in Figure 4.4) related to the main factor
(i.e., UMLforDEFECT).

4.6.2 Assessing the Effect

To unveil the effect of UML modeling on the effort spent on fixing defect, we need to
perform statistical analysis to compare the difference in defect-fixing effort between the
NMD and MD groups. However, before performing such analysis we have to assure that the
suspected confounding factors do not confound the relationship between the independent
and dependent variables. It is even better, however, if we can systematically account for and
quantify their influences. To these aims, in this section we perform two types of analysis,
namely Mann-Whitney and ANCOVA tests, with which we can assess and validate the
significance effect of UML modeling on defect-fixing effort after accounting for the effects of
the confounding factors.

The first test is a non-parametric one using the Mann-Whitney test in which we assess
two aspects: 1) the difference in defect-fixing effort between the modeled and not modeled
defects; 2) the difference in terms of the identified confounding factors between the modeled
and not modeled defects. The latter is required to assure that the confounding factors have
no significant influence on the investigated causal relationship. Notice, however, that we do
not take into account DTYPE in the Mann-Whitney test because DTYPE is a categorical
variable. The effect of DTYPE will be accounted for in the ANCOVA test.

Table 4.9 and 4.10 provide the results of the Mann-Whitney test. Table 4.9 provides
comparisons of mean ranks and sum of ranks of the measured variables, while Table 4.10
provides the results of the main statistical test. Table 4.9 shows that the mean ranks of the
measured variables are generally quite similar. However, we can see that the difference in
FixEffort between the NMD and MD groups is quite significant (i.e., nearly 11 points)—that

66 Chapter 4. The Effects of Using UML on Defect Density and Fizing Effort

Table 4.9: Mann-Whitney test - Ranks of the measured variables of the NMD and MD
groups

Variables Groups N Mean Rank Sum of Ranks

FixEffort ng 25%421 g;gg ?;2288
ModFile Nﬁg 2421 ji)(l)g fggggg
Tepo NOp 3 P 1396 50
mice N5 3 113 150050
mstoo NOp 3 P 17030
DPRIO Nﬁg ?j iﬁjiﬁ 333?238
teERs TNp 165 575,00

Table 4.10: Mann-Whitney test - The significance of differences in the measured variables
between the NMD and MD groups

Variables Mann-Whitney U Wilcoxon W Z Significance
FixEffort 671.000 1266.000 -1.881 .030%*
ModFile 801.000 1396.000 -.760 .447
TCBO 801.500 1396.500 -.729 .466
T™MCC 862.500 2240.500 -.190 .849
TKSLOC 875.500 1470.500 -.075 .940
DPRIO 851.500 2229.500 -.308 758
TPERS 788.000 2166.000 -.872 .383

(*) indicates significance at 0.05 level (1-tailed)

is, NMD being the group with higher FixEffort.

Table 4.10 provides the main result of the Mann-Whitney test. It shows which variables
are significantly different between the NMD and MD group. The most important part
to look at is the significance value of the variables. We can see in the table that only
FixEffort has a significant value below 0.05 (p = 0.028)—recall that we consider p < 0.05 as
a threshold to indicate a true significance. The results in Table 4.10 also confirm that none
of the identified confounding factors is significantly different between the two groups. Hence,
we can conclude that the identified confounds have little if any effects on the cause-effect
relationship between UML modeling and defect-fixing effort. Also note that the p-value is
quoted as one-tailed because we formulate the hypotheses as a one-tailed hypotheses—that
is, we have a specific assumption about the direction of the hypotheses.

Given the results of the Mann-Whitney test, we can reject the null hypothesis (H2,,.11),
and accept the alternative hypothesis (H2,;;): the use of UML modeling reduces the ef-
fort spent on fixing defects. Furthermore, we have observed the significant effect of UML
modeling on defect-fixing effort after assuring that some potential confounding factors have
negligible effects on the result.

4.6 Testing Hypothesis 2: The Effect of Modeling on Defect-fixing Effort 67

3.0000 3.0000-

2.0000+
2.0000-

1.0000-

0.0000-

-~1.0000-

1.0000-

FixEffort (normalized)
MoDFile (normalized)

0.0000-

-2.0000-

-3.0000- -1.0000-

NMD MD NMD MD
(a) FixEffort (b) ModFile
3.0000- 3.0000
.
2.00004 o 20000]
§ 1.0000- §
g g 1.0000
g 0.0000 g
2 S 0.0000
% =
¥ -1.0000- g
-1.0000-
-2.0000-
.
-3.0000- ~2.0000-
T T T T
NMD MD NMD MD
(¢) TCBO (d) TMCC

Figure 4.5: Box-plots of FixEffort, ModFile, TCBO, and TMCC in the NMD and MD
groups (after data transformation)

Based on the results of the Mann-Whitney test we can see that the confounding factors
in both the NMD and MD groups are not significantly different. This result has also led us
to believe that the confounding factors have no substantial effect on the relation between
the main variables. Nevertheless, it would be interesting if we can account for the effects
of the confounding factors so that their influence can be quantified and totally controlled.
Additionally, ANCOVA allows us to account for the effect of DTYPE as a co-factor. By
incorporating DTYPE as a co-factor, we will also be able to assess whether there is an
interaction between UMLforDEFECT and DTYPE.

Before we can perform an ANCOVA test, we need to check whether the data set meets
the assumptions of the ANCOVA test such as a normal data distribution and homogene-
ity of variance. As it is generally the case with software engineering data, our data set
violates the normality assumption. To reduce the effects of non-normal data distribution,

68 Chapter 4. The Effects of Using UML on Defect Density and Fizing Effort

3.0000~

2.0000
2.0000-

10000~
1.0000-

4 O

-~1.0000-

0.0000-

TKSLOC (normalized)
DPRIO (normalized)

-1.0000-

-2.0000

-3.0000

(a) TKSLOC (b) DPRIO

3.0000
2.0000-
10000

-1.0000-

TPERS (normalized)

-2.0000-

T
NMD MD

(c) TPERS

Figure 4.6: Box-plots of TKSLOC, DPRIO, and TPERS in the NMD and MD groups (after
data transformation)

we perform data transformation using area transformation [75]. After performing the data
transformation, it turns out that the procedure does not completely solve the non-normal
data distribution. However, considering the robustness of the ANCOVA test to a violation
of normality we are confident that a minor violation would not affect the validity of the
results. Figure 4.5 and 4.6 show box-plots of the measured variables after transformation.

Table 4.11 shows the results of the ANCOVA test, in which the contribution of individual
variables to the variability of defect-fixing effort is quantified. The most important point to
note in the table is the significant values of the variables. The main factor (i.e., UMLforDE-
FECT) remains significant (p = 0.030) after controlling for the effects of the covariates.
These results confirm the results of the Mann-Whitney test performed earlier—that is, the
use of UML has a significant impact on defect-fixing effort. More specifically, the results
show that the use of UML significantly reduces defect-fixing effort.

4.7 Interpretation of Results 69

Table 4.11: Results of assessing the effect of UMLIorDEFECT on FixEffort using
ANCOVA—accounting for the effects of the confounding factors

Source Sum of Squares df Mean Square F Sig.
UMLforDEFECT 3.239 1 3.239 4915 .030
DTYPE 12.107 8 1.513 2.296 .032
UMLforDEFECT * DTYPE 6.498 8 .812 1.232 .296
ModFile .089 1 .089 135 715
TCBO .386 1 .386 .586 447
TMCC .485 1 .485 .736 .394
TKSLOC 1.048 1 1.048 1.589 212
DPRIO 523 1 .523 794 .376
TPERS 17.926 1 17.926 27.198 .000
Error 40.863 62 .659

Table 4.11 also shows that DTYPE is a significant factor that explains the variability in
FixEffort. Nevertheless, we do not observe a significant interaction between DTYPE and
UMLforDEFECT with respect to their effects on FixEffort. Additionally, the table shows
that the number of persons involved in fixing defects (TPERS) is a significant variable that
explains the variability of defect-fixing effort. If we consider the F value, which represents
the ratio of variance explained and variance unexplained, the number of persons involved in
fixing defects appears to have the highest influence on defect-fixing effort. The rest of the
covariates, however, does not have a substantial influence on defect-fixing effort.

4.7 Interpretation of Results

In the last two sections, we have analyzed the effects of UML modeling on defect density and
on the effort spent on fixing defects. Results from the case study show that modeled classes,
on average, have a lower defect density that those that are not modeled. Statistical tests
confirm that the difference in defect density is statistically significant. Furthermore, we have
observed that the effort needed to fix defects related to modeled behaviors is significantly
smaller compared to the effort spent on fixing defects related to unmodeled behaviors. This
result essentially shows how the use of UML might improve productivity of performing
changes or maintenance in software systems. It is also important to underline that we have
accounted for potential confounding factors that could have influenced the results of the
analyses.

To understand why classes that are not modeled have significantly higher defect density,
we first need to consider the nature of these classes. Experience has shown that designers
generally choose classes that are important and complex to be modeled. Hence, it is quite
natural to assume that classes that are not modeled generally are trivial classes or pertain to
straightforward concepts. Nevertheless, this assumption is not always true. In the context of
this study for example, by simply looking at the complexity metric, we could easily observe
that some classes that are not modeled actually have a very high complexity and coupling.
In fact, the one class with the highest complexity is a class that is not modeled. Hence, it is
very likely that some classes that are not modeled are in fact classes that are not trivial and

70 Chapter 4. The Effects of Using UML on Defect Density and Fizing Effort

should have been modeled. Because these significant classes might be involved in complex
operations in the system, the absence of specifications that describe their behaviors might
have led to incorrect implementation.

Concerning the effect of using UML (i.e., sequence diagrams) on the effort spent on fixing
defects, we particularly believe that the productivity gain is achieved because having specifi-
cations of defective functionality or behaviors in sequence diagrams helps software engineers
locate the problem and determine which objects (class instances) are going to be affected
by the corrective actions relatively quickly. In the case of defects without corresponding
behaviors modeled using sequence diagrams, software engineers need to examine the code
of the suspected-faulty classes in order to locate the problem. Moreover, finding connected
classes that are going to be affected by the corrective actions might not be trivial when the
problem is located in classes that are central to the system. Yet, the corrective actions tend
to require extra time if performed by someone who is not familiar with parts of the system
that need to be fixed.

The results discussed in this chapter are in line with the findings of a case study reported
in a master’s thesis [50]. The case study investigated the effects of the level of detail and
completeness (model coverage) of a UML model on defect density and defect-repair effort in
an embedded system. The UML designs of two software components were assessed. Similar
to the results discussed here, the results of the case study show that the component with
higher model coverage (uses more modeling) has lower defect density in the implementation
and also lower defect-repair effort. Note, however, that the project used state chart diagram
more than any other UML diagram types (in this respect class- and sequence diagrams).

The implication of the results of this study on research in the area of model-driven
software development is two-fold. First, the result of this study should encourage more
research on how to improve the quality of models, for example by investigating methods
and techniques for a practical quality assurance of software models. More specifically, we
need to investigate which attributes of software models are most influential to the quality
of software systems (note that the attributes should also embrace a model’s behavioral
aspects because they might correlate better with defects in software). Additionally, the
methods for maintaining and evaluating the model should also be investigated. Ideally,
the methods should take into account their practicality and applicability in industry. The
second implication is related to the trade-off of using modeling in software development.
For instance, we need to investigate whether quality improvements and productivity gains
achieved by introducing modeling lead to cost-saving that is higher than the costs invested
in the modeling activities.

We also underline the implications of this study for software development in practice.
First, the result of this study should encourage both project managers and software engi-
neers to evaluate how UML is used in their projects. While we are aware of the fact that
not all system parts needs be modeled, the decisions to model or not model system parts
should be based on informed decisions. For example, components’ complexity and criticality
have been considered by developers as good candidates for more extensive modeling [96].
Second, based on the results of this study we also emphasize the needs for good quality
models, which comprise syntactic and semantic aspects of models. To achieve this qual-
ity goal, practical model quality assurance activities such as design reviews and the use of

4.7 Interpretation of Results 71

modeling conventions should be considered to be incorporated in the software development
process (see the discussion in [95]). These quality assurance activities should help accentu-
ate the impact of modeling on the final software quality. Finally, the evidence also reveals
that modeling system behaviors using behavioral diagrams (e.g., sequence diagrams, state
machine diagrams) can help software engineers identify and fix functional problems faster
than without having UML diagrams at all. This result should encourage software designers
to improve the coverage of their behavioral modeling. Ideally, there should be one-to-one
mapping between use cases and the behavioral diagrams that describe them (e.g., sequence
diagrams). However, if such mapping is not possible then software designers should focus
on modeling critical or complex behaviors or functionality.

4.7.1 Threats to Validity

In this section, we discuss validity threats of this study. These threats to validity will be
presented in their order of importance [130]: internal validity, external validity, construct
validity, and conclusion validity.

The main threat to the internal validity of this study concerns our ability to control
influences from other factors beyond what have been accounted for in this study. Therefore,
more advanced research design is required to address other confounding factors, such as
requirement quality, team composition, and team experience.

External validity threats concerns limitations to generalize the results of a study to a
broader industrial practice. We can not make a strong claim that the results of this study
are generalizable to other projects because every project is unique. Most importantly, the
way UML models are used in a project is very influential to how they might affect the
quality of the final implementation or the productivity in fixing defects. In this respect,
a subset of the analyses discussed in this chapter (i.e., the first hypothesis) was replicated
using two additional case studies, but we did not observe similar results (in Chapter 8, we
discuss this issue in further details). Nevertheless, we believe that the results of this study
is generalizable to projects in which the UML models are used to guide the implementation
(hence, posses a sufficient level of quality), and the developers strictly conform to the models.

With respect to the threats of construct validity, we underline the effect of programming
style on the defect density measure. For example, two supposedly similar classes (in terms
of role and responsibility) might be programmed in different ways. Developers who have
a verbose style of programming tend to produce more lines of code than those who are
more effective in writing code. Thus, with the average defect-count being fairly equal,
classes written by verbose developers will have lower defect density than those written by
efficient developers. Nevertheless, careful analysis of class sizes between the modeled and
not modeled classes shows no indication that verbose programming has distorted the defect
density measure.

We are also aware that calculating defect-fixing time based on change history may not
perfectly reflect the actual effort spent on fixing defect. Defect-fixing effort calculated from
change history tends to over estimate the actual effort because it may contain effort of
activities unrelated to defect fixing. This issue, however, is inevitable and can only be

72 Chapter 4. The Effects of Using UML on Defect Density and Fizing Effort

avoided by introducing an effort registration tool through which engineers can register their
effort whenever they perform defect-fixing activities.

Threats to conclusion validity relate to the ability to draw a correct conclusion from a
study. In this study we have addressed factors that might threaten the conclusion validity
of this study through a careful design of the approach and rigorous procedures in the data
analyses.

4.8 Conclusions and Future Work

In this chapter we empirically investigate the impact of UML modeling on the defect density
of software and on the effort spent on fixing defects. The main question this chapter aims to
answer is whether the use of UML helps improve the quality of the final software product.
Additionally, we seek to answer whether the use of UML significantly reduces the effort
spent on fixing defects.

Using empirical data from an industrial Java system, we carefully evaluate the impact
of using UML on the defect density of Java classes. After controlling for the effects of
class coupling and complexity, we have found that the use of UML modeling remains a
significant predictor that explains the variability of defect density in the implementation.
More specifically, Java classes that are modeled using UML are found to have a significantly
lower defect density than those that are not modeled. This result indicates the potential
benefits of UML modeling for improving the quality of software.

The analyses in this chapter also show that defects related to behaviors modeled using
sequence diagrams require significantly less time to fix than defects related to unmodeled
behaviors. This result remains consistent after controlling for the effects of potential con-
founding factors, which include the number of modified files, the number of person involved
in fixing defects, and defect priority. In essence, this result confirms that the use of UML
might also help increase productivity of performing changes or maintenance in software
systems.

This work is one of the first studies that attempts to investigate the benefits of modeling
in an industrial software project. Hence, more research is needed to foster our understanding
on the subject. We also encourage other researchers to perform similar studies in real
software projects. Furthermore, we underline the importance of identifying and assessing
other confounding factors, such as developers’ experience. Assessing confounding factors
will not only help us observe the pure effects of modeling, but also it might give us more
insights about the circumstances under which modeling can deliver benefits in software
development. Finally, we should also consider conducting this type of study in experimental
settings, which will allow us to control the effects of confounding factors better.

