
The effects of UML modeling on the quality of software
Nugroho, A.

Citation
Nugroho, A. (2010, October 21). The effects of UML modeling on the quality of software.
Retrieved from https://hdl.handle.net/1887/16070
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/16070
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16070


Chapter 1

Introduction

In this chapter, we present the contexts, motivations, and goal of this study. We
also outline our approach, and summarize the main findings and contributions of
this study. After reading this chapter, readers should have a sufficient background
about the problem domains and how we attempt to address them.

1.1 Quality in Modeling

Modeling is an activity to create representations of the domain of software systems, which
involves creating technical solutions that meet the systems’ requirements. Good software
models perfectly capture user requirements and translate them into technical designs. How-
ever, a perfect match to requirements is not the only aspect that is crucial for software
models. Models of systems are also characterized by their syntactic and semantic quality.

Syntactic quality of models indicates the conformance of models to the standard spec-
ification of the modeling language. This means that the use of symbols or notations to
represent ideas, concepts, or behaviors must comply with their specified usage. On the
other hand, semantic quality concerns the meaning of representations of models. The se-
mantic quality of models can be determined from the degree to which they correctly and
unambiguously represents concepts or behaviors being modeled. In addition to these qual-
ity aspects, Lindland et al. proposes another quality aspect, namely pragmatic quality [82].
The main goal of pragmatic quality is comprehension, which can be achieved by selecting
the most appropriate way of expressing a single meaning.

Paying attention to the quality of software models is important because it might de-
termine the quality of the final software product. This is particularly true, however, when
software models are used as a foundation to develop the actual software system. If a soft-
ware model does not meet the requirements, there is a big chance that a wrong product
will be delivered. The same applies if software models have a poor syntactic or semantic
quality—although in this case wrong interpretation of models would be the main cause of



2 Chapter 1. Introduction

delivering a wrong product.

In practice, the quality of software models is primarily important for software architects,
developers, and maintainers. Software architects, for example, need to assure that high level
design decisions are appropriately translated into detailed designs. Software developers need
comprehensible and consistent models based on which the implementation code is written.
Finally, software maintainers depend on models that have sufficient correspondence with
the actual implementation so that they can perform maintenance activities efficiently.

1.2 Problem Statement

There is no doubt about the premise that technical solutions described in software models
must meet the system requirements. In fact, a seamless match with requirements is the
major concern for software models to have any value. Nevertheless, sound technical solutions
must also be described in manners that leave no room for misinterpretations. In this regard,
the syntactic and semantic quality of models become crucial factors that might determine
whether sound technical solutions will be translated correctly into working products.

The main issue to consider if one wants to perform system modeling—not to mention
good modeling—is that it requires substantial investments. From an economic point of
view, any types of investment must be justified in that they will payback at a later stage.
Therefore, in the context of software projects, investing in modeling should be justified by
benefits that can be gained later during software development or maintenance, such as im-
proved productivity and improved product quality. When such benefits are not foreseeable,
modeling software systems would simply be an expensive luxury without an added value to
the system being developed.

The big issue about software modeling actually lies exactly at the assumption that it
will deliver quantifiable benefits for software projects. Therefore, the problem is how we can
investigate and prove whether or not modeling or quality in modeling brings any benefits
during software development. So long as this question remains unanswered, it would be
difficult to motivate and justify modeling activities in real software projects.

1.3 Objective of the Study

The goal of this thesis is to investigate the benefits of modeling on the quality of software.
In particular, we focus our attention on the Unified Modeling Language (UML) [100] as a
modeling language because UML is the most widely used modeling language in industry.

To achieve the objective, five research questions have been defined during this study. The
research questions outlined below are formulated to look at the impacts of UML modeling
on software quality from different perspectives (e.g., from the point of view of software
engineers and from empirical data obtained from industrial software projects). Apart from
the different perspectives, new insights obtained during the study have also led to the
formulation of new research questions. Several research strategies are employed to address



1.4 Research Methodology 3

these research questions. By considering different angles and conducting multiple research
strategies in answering the grand question, we expect to obtain a more comprehensive
understanding about the impacts of UML modeling on the quality of software.

• RQ1: How is the UML used in practice; and do software engineers perceive any benefits
of using UML?

• RQ2: What is the effect of using UML for modeling a software system on quality and
productivity?

• RQ3: What is the effect of the quality of UML models on model comprehension?

• RQ4: Does the quality of UML models correlate with the quality of the resulting
software?

• RQ5: Can we predict fault-prone software modules or components based on the quality
of the software model?

1.4 Research Methodology

Our approach to address the research questions of this study is empirical in nature. Em-
pirical research is a research methodology that relies on direct or indirect observations to
explain phenomena. Empirical studies attempt to compare theories with reality and improve
the theories as a result [107].

Empirical research has been increasingly used by researchers in software engineering
because it allows them to evaluate and improve techniques, methods, and tools in developing
software [14, 132]. The results of such evaluation can then be used to determine the adoption
of the new tools or techniques, and thus reducing the risk of adopting wrong or ineffective
technology [123].

In the context of this study, empirical research methods are useful because they pro-
vide means for us to evaluate our assumptions or hypotheses related to the aforementioned
research questions. As discussed earlier, it is believed that the quality of software models
has positive effects on the quality of the final software products. This assumption or belief
concerning the (causal) relationship between model quality and software quality needs to be
validated empirically—that is, based on data obtained from industry or based on experimen-
tations. Ideally, assessments of assumptions (hypothesis testing) should be done repeatedly
using different observations in order to increase confidence on the obtained findings.

In conducting this study, we use three research strategies, namely survey [109], case
study [114], and experiment [130]. In the survey, we study how software developers’ use
UML. In particular, we are interested to understand the perceived benefits of using UML
during software development (RQ1). The case study strategy is used to address RQ2, RQ4
and RQ5 respectively. The case study is an industrial software project from which we collect
various data to assess the impact of UML modeling on downstream software development.
Finally, we perform an experiment to investigate the effect of the quality of UML models
on model comprehension (RQ3).



4 Chapter 1. Introduction

1.5 Contributions and Outline

In essence, the contribution of this study is two-fold. First, this study provides sound
empirical evidence about the potential benefits of UML modeling in software development.
The findings of this study should also contribute to the body of knowledge, particularly
in the field of software engineering. Additionally, from a research perspective, we consider
this study as a milestone towards a more comprehensive understanding about the role of
modeling in software development.

The second contribution is related to modeling practices. This study provides recom-
mendations concerning best practices of modeling using UML. These recommendations are
based on careful analyses of empirical data from an industrial case study as well as expert
opinions. Therefore, this study essentially serves as a guide and justification for software
engineers to model software systems using UML, and to get the most benefits out of it.

The organization of this work is as follows:

• Chapter 2: Background. In this chapter, we briefly introduce UML as a modeling
language and its notable characteristics. Additionally, we elaborate on some UML
diagram types that are commonly used in practice. Following that, we present some
challenges in modeling using UML. Last but not least, we present the state of the art
in quality assurance of UML models.

• Chapter 3: The Use of UML in Practice. In this chapter, we provide empirical
findings from a survey on the use of UML amongst 80 professional software engineers.
We explore software engineers’ opinions on common styles of using UML and how they
perceive the impact of using UML on productivity and quality in software develop-
ment. One of the results reveals that the impact of using the UML on productivity is
perceived mostly in the design, analysis, and implementation phases.

• Chapter 4: The Impact of UML Modeling on Software Quality. In this
chapter, we explore whether the use of UML helps improve the quality of the resulting
software and productivity in fixing defects. While in the previous chapter the reported
benefits of using UML are those perceived by software developers, in this chapter we
explore the benefits of using UML in an industrial project.

• Chapter 5: The Impact of Level of Detail in UML Models on Comprehen-
sion. In this chapter, the impact of modeling is further explored by introducing the
notion of level of detail (LoD) as a form of style and rigor in modeling. In a controlled
experiment, we investigate whether LoD in UML models affects the correctness and
efficiency in comprehending UML models. Results show that the effect of LoD in UML
models on model comprehension is significant.

• Chapter 6: Level of Detail in UML Models and its Relation to Defect
Density. In this chapter, we propose some measures to quantify LoD. The proposed
measures are applicable to UML class- and sequence- diagrams, and are evaluated
using a significant industrial Java system. Based on the case study we have found that
LoD of messages in sequence diagrams is significantly correlated with defect density
in the implementation.



1.5 Contributions and Outline 5

• Chapter 7: Assessing UML Design Metrics for Predicting Fault-prone
Classes in a Java System. In this chapter, we evaluate the usefulness of UML
design metrics to predict fault-proneness of Java classes. We use historical data of a
significant industrial Java system to build and validate a UML-based prediction model.
Based on the case study we have found that level of detail of messages and import
coupling—both measured from sequence diagrams, are significant predictors of class
fault-proneness.

• Chapter 8: Conclusions. In this chapter, we draw conclusions and discuss future
work. Additionally, we discuss the contributions of this thesis and recommendations
for software engineering practice.



6 Chapter 1. Introduction


