

The role of homologous recombination in mitotic and meiotic doublestrand break repair

Vries, Femke Adriana Theodora de

Citation

Vries, F. A. T. de. (2007, January 17). *The role of homologous recombination in mitotic and meiotic double-strand break repair*. Retrieved from https://hdl.handle.net/1887/8784

Note: To cite this publication please use the final published version (if applicable).

Appendix

and the state of the

۳

and the control of the control of the

Selected coloured figures

Chapter 3 Figure 2

Figure 2: Survival of mice following mitomycine C treatment. Animals were injected intraperitoneally with 5,7.5,10 or 15 mg/kg bodyweight MMC.Total numbers of individually treated mice are indicated per dose. Control (A) $RAD52^{-/-}$ (B), $RAD54^{-/-}$ (C) and RAD52^{-/-} / RAD54^{-/-} (D) mice.

Chapter 3 Figure 4

Figure 4: X-ray survival of wildtype and single, double and triple mutant S. pombe strains. Exponentially growing cells were harvested, irradiated and appropriate dilutions were plated in triplicate on YES media. After 3 days of incubation at 30° C the colonies were counted. Each survival experiment was repeated at least twice.

Figure 4: Survival of S. pombe strains after irradiation with X-rays. After irradiation of exponentially growing cells, appropriate dilutions were plated and colonies were counted after incubation of the plates for 3 days at 30ºC. Each survival experiment was repeated at least twice. Strains used in this experiment: wildtype (Y4), rad22B^{-/-} (rad22B mutant), and double mutant rad22A^{-/-}rad22B^{-/-} strains containing expression vectors without insert (AB/pREP-), with Rad22A insert (AB/pREP22A), with Rad22B insert (AB/pREP22B) and with Rad22A inserts in which the putative SUMO acceptor site has been mutated (AB/pREP135 K>R, AB/pREP136K>R, AB/pREP135,136KK>RR). For details see Materials and methods.

Chapter 5 Figure 2

Figure 2: Morphology, histology and TUNEL analysis of testes from Sycp1^{-/-} mice. The histological sections were stained with haematoxilin and eosin. (A-F) Testicular histology of adult Sycp1^{-/-} (-/-, A,C,E) and Sycp1^{+/-} (+/-, B,D,F) mice. Note the total absence of postmeiotic germ cells in Sycp1^{-/-} sections. Pachytene nuclei are abundant, but show aberrant nuclear morphology. (G-J) TUNEL analysis of testis sections of Sycp1^{-/-} $-$ (-/-, **G,I**) and Sycp1^{+/-} (+/-, H,J) mice. Tubule sections with numerous TUNEL-positive nuclei occur only in Sycp1 *^í*/*^í* mice. A few apoptotic nuclei are visible in tubule sections from Sycp1^{+/-} mice. (K) Testes from Sycp1^{+/-} (+/-) and Sycp1^{-/-} (-/-) mice. Bars: (A-**D,I,J**) 50 μ m; (**E-F**) 25 μ m; (**G-H**) 100 μ m; (**K**) 2 mm.

Figure 3: Assembly of AEs in $Sycp1^{-/-}$ mice.

(A-B) Electron micrograhs of AEs and SCs from wildtype $(+/+)$ and Sycp1^{-/-} (-/-) male mice; (A) wildtype SC with closely apposed axial elements (AE) and a central element (CE); (B) homologously aligned axial elements (AE) from a Sycp1^{-/-} spermatocyte, connected by axial associations (AA). (C-J) Components of AEs and SCs in wildtype $(+/+)$ and $Sycp1^{-/-}$ (-/-) diplotene (C-D) or pachytene (E-J) spermatocytes; LE/AE protein SYCP3 and all analyzed cohesins are present in LEs/AEs of wildtype and mutant, whereas SYCP1 is not detectable in mutant spermatocytes. (K-T) formation of AEs/LEs, as shown by REC8/SYCP3 double labelling, in wildtype $(+/+)$ and $Sycp1^{-/-}$ (-/-) spermatocytes; (K,L) early leptonema;(M,N) late leptonema;(O,P) zygonema;(Q,R) pachynema;(S,T) diplonema; note the XY bivalent (XY) in wildtype cells (Q, S) , and separate X and Y chromosomes in the $Sycp1^{-/-}$ cells (R, T) . Bars in $(A-B)$ 1 μ m; bars in $(C-T)$ 10 μ m.

Chapter 5 Figure 3

Legends figure 3: see page 175

Chapter 5 Figure 4

Figure 4: γ H2AX and ATR in wildtype $(+/+)$ and $Sycp1^{-/-}$ (-/-) spermatocytes. $(A-I)$ γ H2AX ; (A,F) leptonema; (B,G) zygonema; (C) early pachynema; (D,H) midpachynema; (E,I) diplonema; the sex chromosomes (XY) form an XY-body in wildtype spermatocytes (C-E), but not in $Sycp1^{-/-}$ spermatocytes, even though the X and Y chromosomes are associated in the cells in (H) and (I) . $(J-Q)$ ATR; (J,N) leptonema; (K, O) zygonema; (L) early pachynema and (M) and (P) mid-pachynema; (Q) diplonema; ATR is present throughout the chromatin of the XY bivalent in wildtype spermatocytes (M), but forms foci and distinct domains along the X and Y chromosomes in Sycp1^{-/-} cells (P-Q). Insets in (J) and (N) show the close association of ATR with the ends of AE fragments

in wildtype (+/+) and Sycp1^{-/-} leptonema. Bars 10 μ m.

Chapter 5 Figure 5

Legends figure 5: see page 179

Figure 5: Recombination-related proteins along AEs and SCs in wildtype $(+/+)$ and $Sycp1^{-/-}$ (-/-) spermatocytes.

(A-D) RAD51/DMC1; (A,C) late zygonema; (B,D) late pachynema. (E-H) RPA; (E,G) late zygonema; (F,H) diplonema. (I-L) MSH4; (I,K) late zygonema; (J) mid-pachynema; (L), diplonema. (M-N) MSH4/SYCP2/_YH2AX triple labelling of a zygotene Sycp1^{-/-} spermatocyte; the number and localization of MSH4 foci appears normal, but the persistence of γ H2AX throughout the chromatin is abnormal. (O-P) MSH4/ SYCP3/ γ H2AX triple labelling of a late pachytene Sycp1^{-/-} bivalent, to show that part of the _YH2AX domains co-localize with an MSH4 focus. $(Q-R)$ RAD51/SYCP2/ γ H2AX triple labelling of a late pachytene Sycp1^{-/-} bivalent, to show that part of the _YH2AX domains co-localize with a RAD51 focus. (S) Counts of RAD51, RPA and MSH4 foci in successive stages of meiotic prophase; the vertical axes represent the number of AE or SC associated foci per cell; the vertical bars represent the observed range of the number of foci per cell in a given spermatocyte stage. For more details of the counts, see Supplementary Information, Fig. S4. Bars in $(A-N)$ 10 μ m; bars in $(O-R)$ 1 μ m.

Chapter 5 Figure 6

Figure 6: Formation of crossovers and chiasmata.

(A,B) MLH1 labelling and (C,D) MLH3 labelling of wildtype (+/+) or ${\sf Sycp1}^{\not\sim}$ $(-/-)$ pachytene spermatocytes. The *Sycp1^{-/-}* spermatocytes do not assemble MLH1 or MLH3 foci. (E,F) A natural (E) and an okadaic acid-induced (F) metaphase I spermatocyte of Sycp1^{-/-}. In the cells shown here, only univalents can be identified; the inset in (F) shows a bivalent found in another OA-induced Sycp1^{-/-} metaphase I. Bars in (A-F) 10 μ m; bar in the inset in (F) 1 μ m.