

The role of homologous recombination in mitotic and meiotic doublestrand break repair

Vries, Femke Adriana Theodora de

Citation

Vries, F. A. T. de. (2007, January 17). *The role of homologous recombination in mitotic and meiotic double-strand break repair*. Retrieved from https://hdl.handle.net/1887/8784

Version:	Corrected Publisher's Version
License:	Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from:	https://hdl.handle.net/1887/8784

Note: To cite this publication please use the final published version (if applicable).

Appendix

Selected coloured figures

Chapter 3 Figure 2

Figure 2: Survival of mice following mitomycine C treatment. Animals were injected intraperitoneally with 5, 7.5, 10 or 15 mg/kg bodyweight MMC. Total numbers of individually treated mice are indicated per dose. Control **(A)** *RAD52^{-/-}* **(B)**, *RAD54^{-/-}* **(C)** and *RAD52^{-/-}* **(P)** mice.

Chapter 3 Figure 4

Figure 4: X-ray survival of wildtype and single, double and triple mutant S. *pombe* strains. Exponentially growing cells were harvested, irradiated and appropriate dilutions were plated in triplicate on YES media. After 3 days of incubation at 30°C the colonies were counted. Each survival experiment was repeated at least twice.

Figure 4: Survival of *S. pombe* strains after irradiation with X-rays. After irradiation of exponentially growing cells, appropriate dilutions were plated and colonies were counted after incubation of the plates for 3 days at 30°C. Each survival experiment was repeated at least twice. Strains used in this experiment: wildtype (Y4), rad22B^{-/-} (rad22B mutant), and double mutant rad22A^{-/-}rad22B^{-/-} strains containing expression vectors without insert (AB/pREP-), with Rad22A insert (AB/pREP22A), with Rad22B insert (AB/pREP22B) and with Rad22A inserts in which the putative SUMO acceptor site has been mutated (AB/pREP135 K>R, AB/pREP135,136 KK>RR). For details see Materials and methods.

Chapter 5 Figure 2

Figure 2: Morphology, histology and TUNEL analysis of testes from $Sycp1^{-/-}$ mice. The histological sections were stained with haematoxilin and eosin. **(A-F)** Testicular histology of adult $Sycp1^{-/-}$ (-/-, **A,C,E**) and $Sycp1^{+/-}$ (+/-, **B,D,F**) mice. Note the total absence of postmeiotic germ cells in $Sycp1^{-/-}$ sections. Pachytene nuclei are abundant, but show aberrant nuclear morphology. **(G-J)** TUNEL analysis of testis sections of $Sycp1^{-/-}$ (-/-, **G,I**) and $Sycp1^{+/-}$ (+/-, **H,J**) mice. Tubule sections with numerous TUNEL-positive nuclei occur only in $Sycp1^{-/-}$ mice. A few apoptotic nuclei are visible in tubule sections from $Sycp1^{+/-}$ mice. **(K)** Testes from $Sycp1^{+/-}$ (+/-) and $Sycp1^{-/-}$ (-/-) mice. Bars: **(A-D,I,J)** 50 µm; **(E-F)** 25 µm; **(G-H)** 100 µm; **(K)** 2 mm.

Figure 3: Assembly of AEs in *Sycp1^{-/-}* mice.

(A-B) Electron micrograhs of AEs and SCs from wildtype (+/+) and $Sycp1^{-/-}(-/-)$ male mice; **(A)** wildtype SC with closely apposed axial elements (AE) and a central element (CE); **(B)** homologously aligned axial elements (AE) from a $Sycp1^{-/-}$ spermatocyte, connected by axial associations (AA). **(C-J)** Components of AEs and SCs in wildtype (+/+) and $Sycp1^{-/-}$ (-/-) diplotene **(C-D)** or pachytene **(E-J)** spermatocytes; LE/AE protein SYCP3 and all analyzed cohesins are present in LEs/AEs of wildtype and mutant, whereas SYCP1 is not detectable in mutant spermatocytes. **(K-T)** formation of AEs/LEs, as shown by REC8/SYCP3 double labelling, in wildtype (+/+) and $Sycp1^{-/-}$ (-/-) spermatocytes; **(K,L)** early leptonema; **(M,N)** late leptonema; **(O,P)** zygonema; **(Q,R)** pachynema; **(S,T)** diplonema; note the XY bivalent (XY) in wildtype cells **(Q,S)**, and separate X and Y chromosomes in the $Sycp1^{-/-}$ cells **(R,T)**. Bars in **(A-B)** 1 µm; bars in **(C-T)** 10 µm.

Chapter 5 Figure 3

Legends figure 3: see page 175

Chapter 5 Figure 4

Figure 4: γ H2AX and ATR in wildtype (+/+) and Sycp1^{-/-} (-/-) spermatocytes.

(A-I) γ H2AX ; (A,F) leptonema; (B,G) zygonema; (C) early pachynema; (D,H) midpachynema; (E,I) diplonema; the sex chromosomes (XY) form an XY-body in wildtype spermatocytes (C-E), but not in $Sycp1^{-/-}$ spermatocytes, even though the X and Y chromosomes are associated in the cells in (H) and (I). (J-Q) ATR; (J,N) leptonema; (K,O) zygonema; (L) early pachynema and (M) and (P) mid-pachynema; (Q) diplonema; ATR is present throughout the chromatin of the XY bivalent in wildtype spermatocytes (M), but forms foci and distinct domains along the X and Y chromosomes in $Sycp1^{-/-}$ cells (P-Q). Insets in (J) and (N) show the close association of ATR with the ends of AE fragments in wildtype (+/+) and $Sycp1^{-/-}$ leptonema. Bars 10 µm.

Chapter 5 Figure 5

Legends figure 5: see page 179

Figure 5: Recombination-related proteins along AEs and SCs in wildtype (+/+) and $Sycp1^{-/-}(-/-)$ spermatocytes.

(A-D) RAD51/DMC1; **(A,C)** late zygonema; **(B,D)** late pachynema. **(E-H)** RPA; **(E,G)** late zygonema; **(F,H)** diplonema. **(I-L)** MSH4; **(I,K)** late zygonema; **(J)** mid-pachynema; **(L)**, diplonema. **(M-N)** MSH4/SYCP2/ γ H2AX triple labelling of a zygotene *Sycp1^{-/-}* spermatocyte; the number and localization of MSH4 foci appears normal, but the persistence of γ H2AX throughout the chromatin is abnormal. **(O-P)** MSH4/ SYCP3/ γ H2AX triple labelling of a late pachytene *Sycp1^{-/-}* bivalent, to show that part of the γ H2AX domains co-localize with an MSH4 focus. **(Q-R)** RAD51/SYCP2/ γ H2AX triple labelling of a late pachytene *Sycp1^{-/-}* bivalent, to show that part of the γ H2AX domains co-localize with an MSH4 focus. **(Q-R)** RAD51/SYCP2/ γ H2AX triple labelling of a late pachytene *Sycp1^{-/-}* bivalent, to show that part of the γ H2AX domains co-localize with a RAD51 focus. **(S)** Counts of RAD51, RPA and MSH4 foci in successive stages of meiotic prophase; the vertical axes represent the number of AE or SC associated foci per cell; the vertical bars represent the observed range of the number of foci per cell in a given spermatocyte stage. For more details of the counts, see Supplementary Information, Fig. S4. Bars in (A-N) 10 µm; bars in **(O-R)** 1 µm.

Chapter 5 Figure 6

Figure 6: Formation of crossovers and chiasmata.

(A,B) MLH1 labelling and (C,D) MLH3 labelling of wildtype (+/+) or Sycp1^{-/-} (-/-) pachytene spermatocytes. The Sycp1^{-/-} spermatocytes do not assemble MLH1 or MLH3 foci. (E,F) A natural (E) and an okadaic acid-induced (F) metaphase I spermatocyte of Sycp1^{-/-}. In the cells shown here, only univalents can be identified; the inset in (F) shows a bivalent found in another OA-induced *Sycp1^{-/-}* metaphase I. Bars in (**A**-**F**) 10 $\mu m;$ bar in the inset in (F) 1 $\mu m.$