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ABSTRACT 
 

Celiac disease is caused by an immune response to gluten. As gluten proteins are pro-

line-rich they are resistant to enzymatic digestion in the gastrointestinal tract, a prop-

erty that likely contributes to the immunogenic nature of gluten. In this study we have 

determined the efficiency of gluten degradation by a post- proline cutting enzyme, 

prolyl endoprotease from Aspergillus niger (AN-PEP), in a dynamic system that closely 

mimics the human gastrointestinal tract (TIM-system). Two experiments were per-

formed. In the first, a slice of bread was processed in the TIM system with and without 

co-administration of AN-PEP. In the second, a standard fast food menu was used. Sam-

ples of the digesting meals were taken from the stomach, duodenum, jejunum and 

ileum compartments at time zero until four hours after the start of the experiment. In 

these samples the levels of immunogenic peptides from gliadins and glutenins were 

assessed by monoclonal antibody based competition assays, Western blot analysis and 

proliferation T-cell assays. AN-PEP accelerated the degradation of gluten in the stom-

ach compartment to such an extent that hardly any gluten reached the duodenum 

compartment. AN-PEP is capable of accelerating the degradation of gluten in a gastro-

intestinal system that closely mimics in vivo digestion. This implies that co-

administration of AN-PEP with a gluten containing meal might eliminate gluten toxici-

ty, thus offering patients the possibility to (occasionally) abandon their strict gluten-

free diet. 
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INTRODUCTION 
 

Celiac disease (CD) is a small intestinal disorder characterized by an abnormal immune 

response to gluten proteins. In CD patients ingestion of gluten evokes an immune re-

sponse in the small intestine that eventually results in T cell infiltration and flattening 

of the mucosa (1). Patients experience malabsorption, diarrhea and failure to thrive, 

leading to fatigue, osteoporosis and/or neurological symptoms. Gluten proteins are 

the storage proteins of wheat and contain high percentages of proline (20%) and glu-

tamine residues (38%).  Because of their unusual high content of proline (2) gluten is  

poorly degraded by enzymes present in the gastrointestinal tract (GI-tract). After in-

gestion, partially degraded gluten proteins reach the small intestine. Such fragments 

are good substrates for the enzyme tissue transglutaminase which can convert the 

amino acid glutamine in gluten into the negatively charged glutamic acid. These modi-

fied gluten fragments can bind with high affinity to the disease-associated HLA-DQ2 or 

HLA-DQ8 molecules and induce inflammatory T cell responses (3-6).  

Gluten is composed of two different protein families, the gliadins and glutenins. 

The gliadins can be further subdivided in α-, β-, γ-, and ω-gliadins and the glutenins 

into low molecular weight (LMW-) and high molecular weight (HMW-) glutenins. T cell 

stimulatory epitopes have been identified in all these proteins (7-13),(8;14;15).  

For patients with CD the only cure is a lifelong strict gluten-free diet (GFD), which 

in practice excludes all foods that contain wheat, barley, rye and oats. Because of the 

widespread use of gluten and gluten-like proteins in food products, a GFD has a great 

impact on the lifestyle of CD patients. For this reason the search for new treatments, 

which are compatible with a normal social lifestyle, is of great importance. In this re-

spect several lines of research have been proposed. Studies are performed in which 

wheat varieties are screened for the level of T cell stimulatory epitopes. Wheat varie-

ties with a low toxicity might form the basis for future breeding programs to generate 

wheat varieties suitable for generation of food products that can be consumed by CD 

patients (16-18). Another option is the use of enzymes that degrade the proline-rich 

gluten molecules before they reach the small intestine. In this context prolyl oligopep-

tidases were investigated. Such enzymes are not only effective in degrading gluten, the 

generation of smaller gluten fragments also improves the digestibility of gluten pro-

teins by rendering them more accessible to brush border enzymes (19-25). However, 

to avoid T cell recognition gluten must be degraded before it reaches the small intes-

tine and the prolyl oligopeptidases investigated are not active under the conditions 

found in the stomach. These enzymes are thus not suitable for oral supplementation as 

an alternative treatment for CD. 

Recently, we described a prolyl endoprotease from Aspergillus niger (AN-PEP) 

(39). This enzyme was found to efficiently degrade gluten peptides and intact gluten 

proteins. Moreover, the pH optimum of the enzyme is compatible with that found in 

the stomach and the enzyme is resistant to degradation by pepsin. These results indi-

cate that this enzyme might be suitable for oral supplementation to degrade gluten 

proteins in food before they reach the small intestine. To test this we determined the 
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efficiency of gluten degradation under near in vivo conditions. To predict the efficacy 

of enzymes and drugs for therapeutic use in the GI-tract of humans, a dynamic, multi-

compartimental in vitro system was developed (26). Validation studies demonstrated 

that this system, called TIM (TNO gastro-Intestinal Model), allows a close simulation of 

in vivo dynamic physiological processes that occur within the lumen of the stomach 

and small intestine of humans and reliably predicts in vivo data (27-29). The system is 

fully computerized and based on parameters obtained from data of healthy volun-

teers. The main parameters of digestion, such as pH, body temperature, peristaltic 

mixing and transit, salivary, gastric, biliary, and pancreatic secretions, as well as ab-

sorption of small molecules (e.g. nutrients and drugs) and water are simulated. GI 

passage and successive conditions can be adjusted in order to mimic parameters in 

humans at different stages (infant, adult, and elderly), different food intakes and phys-

iological or pathological conditions (such as gastric hyperacidity or pancreatic failure) 

(29;30). 

The result of the present study demonstrates that gluten degradation was strong-

ly accelerated by the presence of AN-PEP in the stomach compartment. AN-PEP was 

capable of degrading all T cell stimulatory epitopes of gluten tested for to levels below 

the detection limit of the methods used. Co-administration of AN-PEP with a gluten 

containing meal may thus be a feasible approach to detoxify gluten before it can do 

harm in the small intestine of CD patients. This may offer patients an alternative to the 

strict GFD and thereby improve their quality of life. 

 

 

MATERIALS AND METHODS  
 
Enzyme prolyl endoprotease from Aspergillus niger (AN-PEP) 

Prolyl endoprotease from Aspergillus niger (AN-PEP) was produced and purified by 

DSM Food Specialties (Delft, The Netherlands) according to established procedures 

(31). Activity of the protein is expressed in Proline Protease Units (PPU). A PPU is de-

fined as the quantity of enzyme that releases 1 µmol of p-nitroanilide per minute at 

37
0 

C in a citrate/disodium phosphate buffer pH 4.6 and at a substrate concentration of 

0.37 mM Z-Gly-Pro-pNA (Bachem, Bubendorf, Switserland) and represents 10 mg of 

pure protein. The reaction products were monitored spectrophotometrically at 405 

nM.  

 
TIM experiments  

The TIM has been described in detail previously (26-30). This model has compartments 

for the stomach, duodenum, jejunum and ileum (Figure 1). Each compartment has a 

flexible inner wall surrounded by water at 37º C. Changing water pressure squeezes 

the walls to simulate peristaltic mixing of the food with the ‘secreted’ electrolytes and 

enzymes. The transport of the chyme is regulated by the peristaltic valves that connect 

the successive compartments. Using various sensors in the compartments, the pH 

values, temperature, volumes, and pressure, as well as the gastric emptying and small 

intestinal passage of the food are computer-controlled according to pre-set curves. For 
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the present experiments all parameters in TIM were adjusted to simulate the average 

physiological conditio

type of meal as described below. During 2.5 h the gastric content was gradually deli

ered into the small intestine via the ‘pyloric valve’. After 5 h approximately 80% of the 

small

bottle) via the ‘ileo

 
Figure 1. 

small intestine (TIM system).

A. stomach compartment; B. pyloric sphincter; C. duodenum compartment; D. peristaltic valve; E. 
jejunum compartment; F. peristaltic valve; G. ileum compartment; H. ileo
electrodes; J. pancreatin, bicarbonate; L. secretion of bicarbo
pre
tem; P. closed dialysing system. 
For 2.5 hours the gastric content was mixed by peristaltic movements with added saliva and 
gas
KU/L (Sigma, P
Throughout the transit in the duodenum compartment the content w
movements with bicarbonate up to pH 6.4 ± 0.2 and with ‘secreted’ bile and pancreatic juice. 
Also in the jejunum and ileum compartments the content was mixed with bicarbonate up to pH 
6.8 ± 0.2 and pH 7.1 ± 0.2, respectively.  The d
from the jejunum and ileum compartments via semi
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Two experiments were performed. In the first experiment 70 g of white bread 

(containing 5 g of gluten) and 110 ml drinking water was homogenized together with 

110 ml of artificial saliva in the absence or presence of AN-PEP (200 mg pure enzyme/g 

protein). After 40 seconds of homogenization the mixture was added to the stomach 

compartment of the TIM-system containing 10 ml of simulated gastric juice and the 

experiment was started. In the second experiment a quarter of a commercial fast food 

menu consisting of a bread bun, a hamburger, ketchup, French fries, and supplement-

ed with additional bread (50 g in total), was homogenized with 110 ml soda and 110 ml 

of artificial saliva in the presence or absence of AN-PEP (200 mg pure enzyme/g pro-

tein) and introduced in the TIM-system. 

 
Sampling and analysis 

During the transit of the homogenized food products through the compartments of the 

TIM-system, samples of 2 ml were taken at time points: 0, 15, 30, 45, 60, 90, 120, 150, 

180 and 240 minutes from the stomach, duodenum, jejunum and ileum compart-

ments. The samples were snap frozen in dry ice to stop enzymatic activity. 

Before analysis, the samples were thawed and AN-PEP activity was stopped by in-

creasing the pH to 11-12 using 1 M NaOH, followed by neutralization with 1M HCl. 

Hereafter the samples were kept at 85° C for 10 minutes to inactivate any residual 

enzymatic activity. Identical volumes from each sample were centrifuged for 10 

minutes at 14.000 rpm to separate the water-soluble and water-insoluble components. 

The water-insoluble fractions were solubelized in the same volume of 6x protein sam-

ple buffer (60% glycerol, 300 mM Tris (pH 6.8), 12 mM EDTA pH 8.0, 12 % SDS, 864 mM 

2-mercaptoethanol, 0.05% bromophenol blue). From these solutions 2 μl from each 

sample was used for the protein and Western blot analysis.  

 
Synthetic peptides 

Peptides were synthesized as described previously (32). 

 
MAb against the Glia-αααα20, Glia-α9, Glia-γ1, LMW and HMW glutenin T cell 
stimulatory epitopes 

The specificity and the IgG subclass of the antibodies used in this study are presented 

in Table 1. 

For the generation of a mAb specific for the α-gliadin derived T cell stimulatory 

epitope Glia-α20, mice were immunized with peptides chemically cross-linked to teta-

nus toxoid (TTd-DDDXPFRPQQPYPQP-amide). Fusion and screening of the hybridomas 

was performed as described (32). The minimal epitope of the anti-Glia-α20 mAb 

(FRPQQPYP) was determined using a set of partially overlapping 17-mer synthetic 

peptides.  
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Table 1. Overview of mAbs specific for T cell stimulatory epitopes involved in celiac disease. 

Specificity T- cell epitope mAb specificity mAb subclass 

α-Gliadin Glia -a9 QLQPFPQPQLPY IgG1 (k light chain) 

  Glia-a20 QPQPFRPQQPYPQPQP IgG1 (k light chain) 

γ-Gliadin Glia-γ1 QPQQPQQSFPQQQRPFI IgG1 (k light chain) 

LMW- glutenin Glt-156 QPPFSQQQQSPFSQ* IgG3 (k light chain) 

    QPPFSQQQQSPFSQ** IgG1 (k light chain) 

HMW-glutenin   QQGYYPTSPQQSG IgG1 (k light chain) 

* antibody used for staining western blots 

** antibody used in competition assays experiments 

 

 
Competition assays for the quantitative detection of T cell stimulatory 
epitopes 

Competition assays were performed as described earlier (16;32). Microtitre plates 

(Nunc Maxisorb, Immunoplate; Nunc, Copenhagen, Denmark) were incubated over-

night with 2–5 µg/ml mAb in 0.1 M sodium carbonate/bicarbonate buffer, pH 9.2, at 

room temperature. Plates were washed in PBS/0.02% Tween-20 and residual binding 

sites were blocked with PBS/ 1% skim milk powder (Fluka, Zwijndrecht, the Nether-

lands). Of the gluten containing samples, different dilutions were made in a buffer 

containing 50 mM Na2HPO4/NaH2PO4 pH 7.0, 150 mM NaCl, 0.1% Tween-20/ 0.1% skim 

milk and a protease inhibitor cocktail (Complete, Roche Diagnostics GmbH, Penzberg, 

Germany). For the detection of gliadins these were mixed with either a biotinylated 

Glia-α9 or Glia-γ1 gliadin T cell epitope encoding peptides (32). For the detection of 

the Glia-α20 T cell stimulatory epitope a biotinylated peptide encoding the Glia-α20 

epitope was used as the indicator peptide (Bio-XKAKAKAKAXPFRPQQPYPQP-amide). 

For quantification, a standard curve was made using the Prolamine working group 

(PWG) gliadin reference material (33) in the concentration range 10 μg/ml-10 ng/ml 

mixed with biotinylated indicator peptides. The assays, specific for the detection of T 

cell stimulatory epitopes of LMW glutenin, were calibrated using a 25-mer synthetic 

peptide as standard that contains the Glt-156 epitope (16). The HMW-glutenin specific 

assay was calibrated using a chymotrypsin digest of six purified HMW-glutenin proteins 

(kindly provided by P. Shewry, Rothamsted Research, Hampenden, United Kingdom) 

Both standards were used in a concentration range from 1 µg/ml-2 ng/ml. 

The mixtures were incubated on plates for 1.5 hours at room temperature. Next, 

plates were washed and incubated for 30 minutes with streptavidin conjugated horse-

radish peroxidase in PBS/ 0.1% skim milk. 

Thereafter, bound peroxidase was visualised by incubation with a solution of 3’, 

3’, 5, 5’-tetramethylbenzidine (Sigma-Aldrich Zwijndrecht, the Netherlands). Finally, 

absorbance at 450 nm was read on a Multiscan plate reader (Wallac, Turku, Finland). 

  



 Gluten degradation by AN-PEP 

93 

 
Protein analysis by 1D SDS-PAGE and Western blotting 

To determine the level of T cell stimulatory epitopes present in the water-insoluble 

fractions, these were solubilized in 6x protein sample buffer (60% glycerol, 300 mM 

Tris (pH 6.8), 12 mM EDTA pH 8.0, 12 % SDS, 864 mM 2-mercaptoethanol, 0.05% bro-

mophenol blue). The samples were separated on a 12.5% SDS-PAGE gels for detection 

of gliadins and LMW glutenins and on 10% SDS-PAGE gels for detection of HMW 

glutenins. The proteins were visualized either directly using Imperial Protein Stain 

(Pierce, Rockford IL, USA), or after transfer to PVDF membranes with the mAbs specific 

for stimulatory T-cell epitopes from α- and γ-gliadin (32)(and this study) and HMW- 

and LMW glutenins (16). 

 
T-cell proliferation assay 

For the T cell proliferation assays the samples were treated with amylglucosidase and 

trypsin. Next the samples were incubated O/N at 37°C with guinea pig tissue transglu-

taminase (200 ug/ml) in the presence of  10 mM CaCl2. Proliferation assays were per-

formed in triplicate in 150 μl Iscove’s Dulbecco’s medium (BioWhittaker, Vervier Bel-

gium) supplemented with 10% human serum in 96-well flat bottom plates (Costar, 

Corning Inc., Corning, USA) using 10
4  

gluten specific T-cells stimulated with 10
5 

irradi-

ated HLA-DQ2-matched allogenic PBMCs (3000 RAD). Of the samples three different 

amounts of the samples were tested: 0.5 ul, 0.16 ul and 0.05 ul respectively. These 

amounts were shown to be none toxic for the T-cells. After 48 h incubation at the 

37°C, cultures were pulsed with 0.5 μCi of 
3
H-thymidine, harvested 18h later and the 

thymidine incorporation was quantified with a liquid scintillation counter (1205 Be-

taplate Liquid Scintillation Counter; LKB Instruments, Gaithersburg, Maryland, USA). 

 

 

RESULTS 
 
Digestion of bread and a fast food menu in the TIM-system 

To study the effect of AN-PEP on the degradation of gluten proteins in the GI-tract, two 

experiments were performed. These experiments were designed to represent a small 

meal (e.g. breakfast) and a more complex meal (e.g. dinner). In the first experiment 70 

g of white bread was homogenized together with artificial saliva in the presence or 

absence of AN-PEP. In the second experiment a quarter of a fast food menu consisting 

of a sandwich, a hamburger, ketchup, French fries and a glass of soda was homoge-

nized with artificial saliva in the presence or absence of AN-PEP. Since the quantity of 

bread in this menu was relatively low (16 g), extra bread was added to a total amount 

of 50 g. After homogenization the mixtures were introduced in the TIM-system, mim-

icking the human GI-tract (Figure 1). Samples were collected at time points 0, 15, 30, 

45, 60, 90, 120, 150, 180 and 240 minutes after the start of the experiment from the 

stomach, duodenum, jejunum and ileum compartments.  
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In order to study the degradation of gluten in the TIM-experiments, three types of 

assays were performed. The presence of gluten peptides in the water-soluble fractions 

was measured by monoclonal antibody (mAb) based competition assays specific for T 

cell stimulatory peptides present in gliadin (Glia-α9, Glia-α20, Glia-γ1) and LMW- and 

HMW-glutenin (16;32) (this study). The presence of T cell stimulatory epitopes from 

gluten in the water-insoluble fractions was determined by Western blot analysis. 

Moreover samples of the fast food menu taken at 60 minutes after the onset of the 

experiment were tested by T cell proliferation assays. 

 
AN-PEP accelerates the degradation of gluten present in white bread 

After the introduction of the white bread to the TIM-system, the levels of all gluten 

peptides tested steadily decreased in the water-soluble compartment in the absence 

of AN-PEP. However, even after 120 minutes significant levels of gluten peptides were 

still detectable in the stomach compartment (Figure 2). In contrast, when the white 

bread was introduced together with AN-PEP the digestion of gliadins (Figure 2A and 

2B) and glutenins (Figure 2C and 2D) was accelerated at all time points.  

Samples that were collected from the duodenum, jejunum and ileum compart-

ments contained very low levels of gluten peptides. In the case of digestion in the 

presence of AN-PEP no gluten peptides could be detected in these samples at all (re-

sults not shown). 

Similarly, the Western blot analysis indicated that the degradation of gluten due 

to the addition of AN-PEP was accelerated. In the water-insoluble fractions of the 

stomach compartment α-gliadin, γ-gliadin and HMW-glutenin proteins were detecta-

ble (Figure 3). Although a significant degradation of gluten was seen in the absence of 

AN-PEP, both gliadins (Figure 3A and 3B) and glutenins (Figure 3C) were still present 

after 120 minutes in the stomach compartment. In the presence of AN-PEP, however, 

faster degradation of both the gliadins (Figure 3A and 3B) and the glutenins (Figure 3C) 

occurred. This difference in degradation is already apparent after 45 minutes, and 

after 90 minutes gluten proteins could no longer be detected in the AN-PEP treated 

fractions (Figure 3).  

The duodenum fractions contained only a small amount of water-insoluble mate-

rial. Western blot analysis failed to detect intact gluten proteins in these fractions, 

neither in the absence nor presence of AN-PEP (results not shown).  

 
AN-PEP accelerates the degradation of gluten present in a complex meal 

In the second experiment the digestion of gluten in a fast food menu was monitored. 

In the absence of AN-PEP, gluten peptides were found to be degraded in the water-

soluble fraction. However, residual gluten peptides were still detectable in the frac-

tions collected from all compartments up to 150 minutes after the start of the experi-

ment (Figure 4). In the presence of AN-PEP, the degradation of gliadins (Figure 4B) and 

glutenins (Figure 4D) was accelerated. In the absence of AN-PEP, gluten peptides could 

be detected in the samples that were collected from the duodenum, jejunum and 

ileum compartments (Figure 4A and 4C). In the presence of AN-PEP much lower 

amounts of gluten peptides could be detected in these samples (Figure 4B and 4D). 
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Again, the analysis of the water-insoluble material collected from the stomach 

and duodenum compartment indicated accelerated degradation of the gluten in the 

meal. In the presence of AN-PEP the amount of α-gliadin is clearly decreased in the 

stomach compared to the digestion in the absence of AN-PEP (Figure 5A). Directly after 

homogenization (t = 0 min) a clear difference is apparent and after 60 minutes no 

more gluten proteins could be detected in the AN-PEP samples while such proteins 

were clearly still present in the control samples. Similarly, the HMW-glutenins were 

degraded faster in the presence of AN-PEP (Figure 5C). After 60 minutes no more 

HMW-glutenins could be detected in the AN-PEP fractions while partially degraded 

HMW-glutenins were still present in the control fractions (Figure 5C). Finally, the deg-

radation of the γ-gliadins and LMW-glutenins was similarly enhanced by the addition of 

AN-PEP (Figure 5B and 5D).  

Similar to the white bread experiment, the amount of water-insoluble material in 

the duodenal fractions was too small to allow detection of gluten proteins (result not 

shown).  
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DISCUSSION 
 

It is well established that CD patients are intolerant to gluten and that a strict gluten-

free diet (GFD) is an effective treatment for CD. The lifelong maintenance of such a 

diet, however, is hard to achieve. First of all, the diet in the western world is heavily 

based on gluten containing foods like bread and pasta. In addition, because of its spe-

cial properties, like its elasticity and capacity to bind water, gluten is often added to 

foods that would otherwise be gluten-free. Finally, many foods that are rendered glu-

ten-free may still contain traces of gluten while naturally gluten-free ingredients are 

often contaminated with gluten. CD patients, therefore, can inadvertently be exposed 

to gluten. Moreover, a GFD can cause social constraints and this can lead to non-

compliance with the diet. For these reasons an alternative to a GFD would be useful to 

patients. Oral supplementation with enzymes to degrade gluten before it causes dam-

age has been suggested for this purpose. Initially this proposition was based on the 

theory that CD is caused by an enzyme deficiency (34) and the use of non-human pro-

teases for gluten detoxification was already proposed in the late fifties (35). Recently a 

clinical trial was performed in which an extract from animal intestines was used. It was 

shown that the enzyme therapy offered better protection than placebo. However, the 

differences between enzyme therapy and placebo were small and no complete protec-

tion was given by the extract. Furthermore, not all patients did benefit to the same 

extent from the enzyme supplementation (36).  

As gluten is rich in the amino acid proline, other recent studies have used post-

proline cutting enzymes. Promising enzymes tested are the prolyl oligopeptidases from 

Flavobacterium meningosepticum, Sphingomonas capsulate, and Myxococcus xanthus. 

These enzymes are capable of degrading proline containing peptides that are other-

wise resistant to degradation by proteases in the gastrointestinal tract in vitro 

(23;37;38). However, the suitability of these enzymes to degrade gluten in vivo is ques-

tionable since the enzymes have a pH optimum between 7 and 8 and do not function 

at the acid pH of the stomach. Moreover, they are efficiently broken down by pepsin 

(23). Finally, due to their structure, in which a β-propeller domain restricts entry into 

the active site of the enzymes, they preferentially cleave short peptides (39). Encapsu-

lation of these prolyl oligopeptidases was proposed to protect them against gastric 

juice (38). However, in a recent ex vivo study, using biopsy-derived intestinal tissue 

mounted in Ussing chambers, it was observed that only high dosages of prolyl oligo-

peptidase tested were capable to eliminate the accumulation of immunogenic pep-

tides in the serosal compartment (21). This indicates that, even if the enzyme is encap-

sulated, due to the relatively low efficiency the prolyl oligopeptidase will not be able to 

degrade gluten before it reaches the proximal part of the duodenum, the site where 

gluten triggers inflammatory T cell responses. To overcome these problems a combina-

tion therapy has been proposed. For this the prolyl oligopeptidase is combined with a 

cysteine endoprotease from barley whose natural function is to degrade the gluten-

like molecules in barley, to the benefit of the germinating seed. While such a combina-
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tion therapy may prove effective, a therapy based on one enzyme would have obvious 

advantages (40).  

Recently, we have investigated a prolyl endoprotease of Aspergillus niger, AN-PEP 

(31). We observed that AN-PEP has clear advantages over prolyl oligopeptidases as it is 

much more efficient in degrading gluten peptides, is active at low pH, and resistant to 

pepsin degradation (31;41). Moreover, as AN-PEP is a prolyl endoprotease, it degrades 

gluten peptides as well as intact gluten proteins (31;41).  

These results indicated that AN-PEP may be suitable as an oral supplement for 

gluten degradation but its efficacy in vivo remained to be established. Although this 

can be tested in animal models, as has been carried out for a prolyl oligopeptidase, the 

relevance of this for the human situation is debatable as the gastrointestinal tract of 

animals only partly reflects that of humans. We have therefore chosen to study the 

efficacy of AN-PEP using a dynamic gastrointestinal model that closely mimics the in 

vivo conditions found in the human stomach and small intestine (26-28). Moreover, we 

have tested the capacity of AN-PEP to degrade gluten when present in a relatively 

simple food matrix, e.g. white bread, as well as when gluten is present in complex food 

matrix, e.g. a complete fast food meal. The results of this study show that AN-PEP is 

indeed capable of degrading gluten under conditions found in the human GI-tract. We 

have carried out three types of analysis: competition assays that measure the presence 

of small gluten fragments in the water-soluble fractions, Western blot to measure 

intact gluten proteins and relatively large fragment thereof (> 5 kD) and T cell prolifer-

ation experiments that measure the presence of gluten derived T cell stimulatory pep-

tides. Both the competition assays and the Western blot analysis gave comparable 

results: the disappearance of gluten proteins as indicated by Western blot analysis also 

led to a disappearance of smaller gluten peptides as measured in the competition 

assay. Moreover T cell proliferation assays on samples collected at 60 minutes from 

the digesting fast food menu showed that after the addition of the AN-PEP, the stom-

ach content is no longer capable to induce a T cell proliferation. Taken together, these 

results indicate that AN-PEP completely degrades gluten into harmless fragments with-

in 2 hours, the average passage time of food in the stomach. Besides, during the stay 

of the gluten in the stomach, the level of T cell stimulatory epitopes of α- and γ-gliadin 

HMW-glutenin and LMW-glutenin epitopes in the water soluble fragments were signif-

icantly lower in the presence of AN-PEP than in the absence. This results in much lower 

amounts of T cell stimulatory epitopes that are released from the stomach into the 

duodenum, thereby reducing the exposure of the proximal duodenum with T cell acti-

vating peptides. Moreover, in a previous study we have already demonstrated that AN-

PEP will efficiently cut the alpha-gliadin peptide 31-43 and thus destroy the innate 

stimulatory properties of gluten. 

It is important to note that our results may underestimate the rate of gluten deg-

radation in the human body. Although the TIM-system simulates the lumen of the 

human GI-tract, including peristaltic movements, secretion of juices from the salivary 

gland, the stomach, pancreas and liver, no brush border enzymes are present in the 

model. As brush border enzymes have an additive effect on proteolysis, which is also 

shown for the breakdown of gluten proteins (25), it is likely that the degradation of 

gluten is even more efficient than indicated by our results.  
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In conclusion, we have tested the effect of the addition of AN-PEP on gluten deg-

radation in a system that closely mimics the conditions in the upper human GI-tract. 

Our results demonstrate that within the time span that food is normally present in the 

stomach, co-administration of AN-PEP led to a complete disappearance of T cell stimu-

latory peptides of gliadins and glutenins. Importantly, our results demonstrate that 

AN-PEP is capable of degrading gluten when this is present in a complex food matrix. 

Moreover, AN-PEP is derived from the food grade microorganism Aspergillus niger and 

available on industrial scale. Ultimately, clinical trials will be required to determine if 

oral enzyme supplementation can remove all gluten toxicity. Our results indicate that 

AN-PEP is a very suitable candidate for testing in such trials. 
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