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6
Classification and Visualization Based on
Derived Image Features: Application to

Genetic Syndromes 1

Summary
Data transformations prior to analysis may be beneficial in classification tasks. In this
article we investigate a set of such transformations on 2D graph-data derived from facial
images and their effect on classification accuracy in a high-dimensional setting. These
transformations are low-variance in the sense that each involves only a fixed small number
of input features. We show that classification accuracy can be improved when penalized
regression techniques are employed, as compared to a principal component analysis (PCA)
pre-processing step. In our data example classification accuracy improves from 47% to
62% when switching from PCA to penalized regression. A second goal is to visualize the
resulting classifiers. We develop importance plots highlighting the influence of coordinates
in the original 2D space. Features used for classification are mapped to coordinates in the
original images and combined into an importance measure for each pixel. These plots assist
in assessing plausibility of classifiers, interpretation of classifiers, and determination of the
relative importance of different features.

6.1 Introduction
In clinical genetics, syndrome diagnosis presents a classification problem, namely whether
and if so which syndrome is to be diagnosed for the presenting patient. We here focus on
facial image data in order to facilitate this diagnosis. Facial features play an important role in
syndrome diagnosis [Winter, 1996]. We have previously demonstrated that information from
2D images can help in this classification problem [Boehringer et al., 2006; Vollmar et al.,

1Published in PLoS One.
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86 CLASSIFICATION AND VISUIALIZATION BASED ON DERIVED FEATURES

2008; Boehringer et al., 2011]. Similar work in 3D confirms this assessment [Hammond
et al., 2005; Hennessy et al., 2007; Hammond et al., 2012].

This classification problem tends to be high-dimensional, i.e. the number of covariates
is bigger than the number of observations. Previously, we employed classical dimension
reduction by principal component analysis (PCA) and showed that PCA has a large con-
tribution to classification errors [Boehringer et al., 2011]. This can be seen by comparing
cross-validation (CV) runs used to estimate error once including a PCA within each fold
and once performing PCA prior to CV. It is well-known that feature selection must occur
within CV to accurately estimate prediction error [Molinaro et al., 2005] and indicates that
this step plays a crucial role in our application. Principal components (PCs) can exhibit
high variation in small data sets [Jolliffe, 2005] which is a possible explanation for our re-
sults. To test this assumption, PCA is compared to low-variance transformation and their
classification performance is evaluated.

We here pursue penalized regression techniques that are applicable in the high-dimensional
setting and can be applied to data directly without preceding dimension reduction [Tibshi-
rani, 1996]. The process of fitting the regression model itself ensures that the final model is
low dimensional and asymptotically only contains true predictors. Furthermore, in the low-
dimensional setting, a trade-off between variance of predictors and their unbiasedness leads
to improved accuracy (such as measured by classification accuracy or the mean-squared-
error) as compared to least-squares regression [Hastie et al., 2001]. One advantage of being
able to directly work with high-dimensional data is that the dimensionality of data can be
even increased further prior to performing classification. We combine these ideas with ge-
ometric properties of our data set by applying low-variance transformations on coordinates
that represent features in 2D images. For example, distances are computed between graph
vertices depending on only two of them. By contrast, PCs in general depend on all vertices
derived from a given 2D image. We evaluate the performance of classifiers resulting from
such a strategy.

A second goal is to visualize resulting classifiers. If PCA is used together with a linear
classification technique such as linear discriminant analysis (LDA) all transformations leading
from one group to another in a two-class classification problem can be represented by a
single direction in the original feature space. This can be used to create caricatures by
moving data points or means away from each other along this direction [Boehringer et al.,
2006]. If non-linear transformations are involved visualization becomes more challenging.
We develop a general framework that allows to create visualizations that indicate importance
of neighborhoods in the original 2D space. We apply this methodology to the original
syndrome data.

6.2 Materials and Methods
6.2.1 Ethics statement
Written informed consent was received from all patients or their wardens and the study
was approved by the medical ethical committee of the Universitätsklinikum Essen, Germany.
Consent was documented on forms which were reviewed and approved by the medical ethical
committee of the Universitätsklinikum Essen, Germany.

6.2.2 Data
Frontal 2D images of 205 individuals each diagnosed with one of 14 syndromes were included
in the study. This data set was used in a previous study and is described in detail elsewhere
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Table 6.1: Description of data set with numbers per class.

Syndrome Number of Individuals
Microdeletion 22q11.2 [22q] 25
Wolf-Hirschhorn syndrome [4p] 12
Cri-du-chat syndrome [5p] 16
Cornelia de Lange syndrome [CDL] 17
Fragile X syndrome [fraX] 9
Mucopolysaccharidosis Type II [MPS2] 6
Mucopolysaccharidosis Type III [MPS3] 7
Noonan syndrome [Noon] 13
Progeria [Pro] 5
Prader-Willi syndrome [PWS] 13
Smith-Lemli-Opitz syndrome [SLO] 15
Sotos syndrome [Sot] 15
Treacher Collins syndrome [TCS] 10
Williams-Beuren syndrome [WBS] 42

[Boehringer et al., 2006]. Table 6.1 summarizes the number of individuals available per syn-
drome. In this study, we used coordinate from 48 manually placed landmarks (vertices) that
were registered on 2D greyscale images (Figure 6.1). These landmarks represent anatomical
features in the face. The process of picture pre-processing and landmark registration is
described elsewhere [Boehringer et al., 2006].

6.2.3 Data pre-processing
Vertices were standardized according to translation, rotation and size analogously to a Pro-
crustes analysis [Gower, 1975] (graphs were rotated so that the average angle of symmetric
points was 0, the center of the graph was 0 (as defined by the sum of x and y coordinates,
respectively) and the size of the graph was scaled to unit size; as defined by the bounding

Figure 6.1: Illustration of data set with example of registered nodes.
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rectangle). On this data, all possible pairwise distances between vertices were computed (D
= 1128). To avoid multicollinearity problems, pairs of symmetric distances were averaged
(Figure 6.2.a) reducing the number to 778 distances. Using a Delaunay triangulation of
the set of averaged vertex positions, we constructed 41 triangles for which 41 areas and
123 angles were computed. Again, symmetric features were averaged. To assess the role
of symmetry in syndrome discrimination, asymmetry scores for coordinate pairs, triangle
areas and distances were calculated as the sum of squared residuals resulting from the av-
eraging procedure between symmetric information. In order to be able to estimate possible
non-linear effects, the square of each feature was also computed. In total, 2x1044=2088
covariates were derived per individual from the initial 96 values.

6.2.4 Statistical Analysis
We performed both simultaneous classification and pairwise classification of syndromes.
Simultaneous classification serves to evaluate the problem of assigning a syndrome to a
given face, that is, the problem of diagnosis. Pairwise comparisons of syndromes can be
used to evaluate similarity of syndromes and to compare the performance achieved with the
current data set to other data sets published thus far.

Due to the high dimensionality of the data set (number of individuals = 205 << number
of covariates = 2088), dimension reduction techniques need to be employed. For simulta-
neous classification we trained classifiers using regularized multinomial regression with an
elastic net penalty [Friedman et al., 2010]. Multinomial regression is a generalization of lin-
ear logistic regression model to a multi-logit model, when the categorical response variable
has more than 2 levels. For pairwise classification we used regularized logistic regression
with an elastic net penalty. Elastic net penalty is a penalized least squares method using a
convex combination of the lasso and ridge penalty (with mixing parameter α). In contrast
to the LASSO component, which as a general rule selects only one covariate from a group
of correlated covariates, the ridge penalty has the effect of distributing effects over covari-
ates that are highly correlated, entering them together into the model. Parameter α can
therefore be chosen to control the sparsity of the final model.

We do not consider α to be a tuning parameter but instead consider twenty values of
α between 0 and 1 as alternative models. To evaluate model performance, leave-one-out
CV was performed. For each of the twenty elastic net models and the PCA analysis, four
different covariate sets were used: coordinates of points only, points and their squares, all
features and all features and their squared values. Comparisons between these covariate
sets allow determining the trade-off between introducing more variation into the data by
additional transformations and being able to potentially use more accurate features for the
purpose of classification. Fitting an elastic-net model involves choosing a tuning parameter
λ for the L1-penalty, which was chosen by a nested loop of leave-one-out CV. Likewise,
PCA uses an inner CV-loop to estimate principal components (PCs) and train a regression
model based on these PCs. In the outer loop, data was mapped to these PCs onto which the
prediction model was applied.To directly compare classification performance with a classical
PCA approach, the outer CV loop was identical for the elastic net and PCA models, i.e.
outer CV-folds were computed and identically used for all models.

To compute simultaneous accuracy for the PCA, we trained classifiers using multinomial
logistic regression. 70 PCs were extracted from the whole data set. Subsequently, stepwise
forward selection was performed to select PCs relevant for the classification decision based
on the Akaike information criterion (AIC). The selected models were used to predict the
samples in the test set of each CV-fold.

All statistical analyses were performed using the software package R (version 3.0.1)
[R Core Team, 2014]. We used the package geometry for the Delaunay triangulation
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and package glmnet to perform model selection and regularized multinomial and logistic
regression with an elastic net penalty.

6.2.5 Visualization
The aim of our visualization strategy is to assign an importance value to each point in an
average image of a class that represents how important features in that location are to
discriminate the given class. While this strategy does not directly represent changes in, for
example, distances, it allows to combine all features relevant for a classification decision in
a single image. Figure 6.2.b illustrates the process of computing the color coefficient for
a point δ based on the following significant features: a point p1, a distance d1, an area
of triangle t1 and an angle of a traingle a1. We assume that a weight is assigned to each
feature, in our case regression coefficients denoted with βp1 , βd1 , βt1 and βa1 . To calculate
the importance of point δ we define the distances of this point to the significant features.
For p1 we compute the Euclidean distance of δ to p1 , for d1 we compute the Euclidean
distance of δ to m1, the midpoint of d1 , for t1 we compute the Euclidean distance of δ to
c1, the centroid of t1 and for a1 we compute the Euclidean distance to c1, the vertex of a1,
respectively. The importance of each point is then defined as the sum of the weights, in our
case regression coefficients, inversely weighted by the distances. This definition assumes
that all weights are measured on the same scale, which can be assured by standardizing
covariates in the regression setting. Finally, we normalize these importance values to (0,
1) by using the logistic function and we map resulting values to a color palette. As we
symmetrized our data set, we also create symmetrized plots, i.e., one half is computed and
mirrored to the other part. We overlay these maps on average facial images for the class
corresponding to the respective classifier. The procedure of producing average images is
described elsewhere [Günther, 2012].

For glmnet we used the regression coefficient of each feature as weights. To obtain
the coefficients of each feature when PCA was performed, regression coefficients of PCs are
back-calculated to the original feature space using the loadings matrix. The weight for each
feature is the sum of contributions over all PCs.

6.3 Results
6.3.1 Model Selection
Average misclassification error (AME) rate for each choice of the mixing parameter α and
feature set are reported in Table 6.2. In the last row of the table we list the results for the
PCA. In Figure 6.3 we illustrate these results together with the 95% confidence intervals.
The best model for glmnet is obtained for α = .105 when the set of all features was
used with an AME = 0.38 (95% CI: 0.31 - 0.44). PCA performed best when only points
were used with AME = 0.53 (95% CI: 0.46 - 0.60). The AME of glmnet decreased with
increasing number of features. In contrast, the AME of PCA increases. Results from the
inner leave-one-out CV for glmnet models for α = .105 to choose tuning parameter λ that
gives the lowest AME rate are plotted in Figure 6.4. The lowest AME rate was obtained
for λ=0.047.The difference between the best glmnet model for all features and best PCA
model (points) is significant (Z-test for 2 population proportions, p-value=.0015).
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6.3.2 Simultaneous classification
Results for simultaneous classification using the best glmnet model are reported in Table 6.3
and 6.4. Specifically, Table 6.3 shows breakup of AME per syndrome. The best performance
was achieved for WBS (AME=9.5%) and 22q (AME=20%). The lowest performance was
achieved for the syndromes with the smallest sample sizes, MPS2 (AME=100%) and MPS3
(AME=70%). Table 6.4 shows the corresponding confusion matrix, i.e. what were the
classification decisions per syndrome? For example, 22q was confused with 5p, Sot and
WBS, whereas MPS2 was confused with MPS3, 22q, SLO and WBS.

We summarize the number of components used for the classification decision in Table
6.5. Approximately 200 features were selected per syndrome. Distances seemed to be more
important (ca. 150 distances per syndrome) as compared to the other features (points
between 10 and 25, angles between 20 and 40, < 20 for areas and coordinates).

Table 6.3: Simultaneous average misclassification error (AME) per syndrome

Syndromes AME
22q .200
4p .583
5p .500
CDL .529
fraX .333
MPS2 1.000
MPS3 .714
Noon .462
Pro .400
PWS .615
Slo .333
Sot .333
TCS .400
WBS .095

6.3.3 Pairwise classification
Results for pairwise comparisons of syndromic conditions are reported in Table 6.6, which
lists AME. For many pairs, such as FraX/22q or FraX/4p, we achieve an AME of 0% . The
highest AME was observed when discriminating between MPS2/MPS3, two syndromes with
similar facial appearance (38%).

6.3.4 Visualization
Results from the visualization process are depicted in Figure 6.5 and 6.6, for best glmnet
and PCA model, respectively. For these figures, importance below a threshold is ignored to
better show the underlying average image. The same color mapping scheme and scale is used
for all sub-figures, making colors comparable. As a comparison, features were also visualized
by drawing line segments, points, areas, and small triangles to visualize the importance of
distances, coordinates, areas, and angles, respectively. In supplementary images we provide
importance plots for the different data components.
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Figure 6.3: Average misclassification error for glmnet with 95% confidence intervals
across leave-one-out cross-validation for models with different values of mixing pa-
rameter α. (a) all features (red) and only points (blue) were used and (b) all features
and their squares (red) and only points and their squares (blue) were used.

Figure 6.4: Average miclassifcation errors for tuning parameter λ for the L1-elastic
net penalty when α = .105.
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All visualizations show distinct patterns of important regions in the face. In general, the
central part of the face is included for all syndromes. As an example, progeria is described to
exhibit midface hypoplasia and micrognathia (MIM # 17667016) thus featuring a relatively
enlarged forehead. Overall importance is focused around the nose whereas the coordinate
component shows importance in forehead regions as well as the nose (supplementary Figures
S1, S2, and S3), a finding that is discussed below.

6.4 Discussion
Dimension reduction can pose a formidable problem in classification problems if data sets
are small. It is well known that methods like PCA can induce big additional variation in data
sets thereby reducing classification accuracy. Partly in response to problems like this, pe-
nalized regression techniques were developed to estimate classifiers that trade unbiasedness
(i.e., parameter estimates that are correct on average) for more stable estimation of classi-
fiers (as measured by the variance of parameter estimates) [Tibshirani, 1996; Hastie et al.,
2001]. We have used these ideas in the current study and demonstrate that additional data
transformations can even improve classification accuracy. We chose data transformations
with low variance as compared to variation of PCs. If these derived features better describe
differences between groups, the tradeoff (more variation, more accurate features) can result
in a net benefit in terms of classification accuracy, as was the case in this study. As a
conclusion, carefully chosen data transformations that increase dimensionality of data sets
can improve classification accuracy even if a problem is already high-dimensional. Which
transformations to choose is data set specific. As a general rule, each transformation should
only depend on few original features (e.g., distances, angles, areas in our case depend on
maximally 6 coordinates) in contrast to many (PCA at the other extreme).

Table 6.5: Number of non zero coefficients for each syndrome for the best glmnet
model (α = .105 using all features). t: total , p: points, d: distances, ar: areas and
an: angles.

t p d ar an
22q 244 27 157 12 46
4p 204 28 138 9 28
5p 243 26 173 15 28
CDL 200 22 120 13 43
fraX 170 14 106 8 40
MPS2 150 12 99 10 28
MPS3 187 17 118 11 40
Noon 197 17 118 15 46
Pro 150 10 105 6 28
PWS 203 20 144 9 28
SLO 235 20 183 8 21
Sot 220 25 153 9 31
TCS 171 16 111 10 33
WBS 257 19 181 17 38
Total 1045 96 778 41 123



96 CLASSIFICATION AND VISUIALIZATION BASED ON DERIVED FEATURES

Ta
bl
e
6.
6:

Pa
irw

ise
av
er
ag
e
m
isc

las
sifi

ca
tio

n
er
ro
rr

at
e
fo
rt

he
be
st

gl
mn

et
m
od

el.

22
q

4p
5p

CD
L

fra
X

M
PS

2
M
PS

3
No

on
Pr
o

PW
S

SL
O

So
t

TC
S

4p
.0
5

5p
.2
0

.1
4

CD
L

.0
5

.0
0

.0
9

fra
X

.0
3

.0
0

.0
4

.1
5

M
PS

2
.1
0

.1
1

.1
8

.0
4

.0
0

M
PS

3
.0
9

.1
1

.2
2

.0
0

.0
6

.3
8

No
on

.1
1

.2
8

.1
4

.0
7

.0
0

.1
1

.0
5

Pr
o

.0
3

.1
2

.0
5

.0
0

.0
0

.0
0

.0
0

.0
0

PW
S

.1
6

.0
4

.2
4

.2
7

.1
4

.1
1

.1
0

.0
4

.0
0

SL
O

.0
5

.1
1

.1
6

.0
6

.0
0

.1
0

.1
8

.0
4

.0
5

.1
1

So
t

.0
2

.1
9

.1
9

.0
0

.0
0

.1
0

.0
5

.1
4

.0
0

.0
4

.0
7

TC
S

.0
6

.1
8

.1
2

.0
4

.0
0

.1
2

.0
0

.1
3

.0
0

.0
4

.0
4

.0
4

W
BS

.0
6

.0
6

.0
9

.0
8

.0
4

.0
8

.0
8

.0
2

.0
0

.0
9

.1
2

.0
0

.0
2



6.4. DISCUSSION 97

Figure 6.5: Importance plots for glmnet. Visualization of simultaneous classification
for syndromes. For each syndrome an importance plot (row I) and a plot visualizing
classification features (row F) is provided. Importance plot assign an importance
with respect to classification to each point as described in the text. Feature plots
visualize absolute regression coefficients by thickness of line segments (distances),
size of points (coordinates), color of areas (areas; dark red more important than light
red) and small triangles (angles; dark red more important than light red).
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Figure 6.6: Importance plots PCA. Visualizations analogous to Figure 6.5 for PCA
based classification.
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Pair-wise classification results can be used to get exploratory insights. For example,
the pair MPS2/MPS3 has an AME close to 40% implying that the features used in this
study do not allow to distinguish this pair of syndromes. In the genetic context, pair-wise
classification accuracies can be used as a descriptive measure of phenotypic distinctness.

Our attempt at visualization has the advantage of being generic. As long as a distance
of a feature with a point can be defined, we can apply this approach and produce images
representing importance of image neighborhoods for the classification decision. At the same
time this is a disadvantage as no distinction is made between different types of features and
it is impossible to derive such information from our images in general. This shortcoming can
be partly addressed by visualizing different data components, which might give important
additional information. For example, in the progeria example mentioned above, the nose
was visualized as the most important feature in this data set. A narrow nose bridge is a
distinguishing feature for progeria in our data set, however, visualizing coordinates alone
also indicates that the size of the forehead is a selected feature for this syndrome and would
be a more expected feature from the genetic perspective. It is therefore possible to get a
better understanding of classifiers by means of such stratified importance plots.

A related problem is that in high-dimensional problems penalized methods have to be
selective and choose few features for the final model from the set of all input features. This
can well lead to the omission of features that are more easily recognized by human raters.
We tried to mitigate this problem by two approaches. First, by using elastic net regression
we tried to create less sparse models, thereby retaining more features as compared to a
pure LASSO. As a striking example, had we not symmetrized our data, the LASSO would
have ignored one of the highly correlated symmetric features whereas elastic net (for an
appropriate value of α) would have split the effect almost equally between the two. Second,
our means of creating importance plots takes into account the locality of features. If two
distances share one vertex, and their vectors are not linearly independent, they are likely to
be correlated. Even if one of the distances would be omitted from the model its importance
would still be mapped through the correlated distance that shares close proximity.

It follows that the best performing classifier is not necessarily the most intuitive to visu-
alize and we accept that our approach has limitations in overcoming all possible difficulties.
Yet, we believe that the visualizations presented here have several merits. First, plausibility
of classifiers can be checked. In our case the more variable positions in the hair should be
less likely to be important as is the case. Second, these visualizations could be used to refine
data pre-processing. In our case we could decide to omit coordinates from the upper rim
of the graph altogether, as they do not appear to be important. Third, these visualizations
can make it more easy to interpret the actual regression models and can potentially lead to
deeper insights for the data expert, in our case the clinical geneticist.

Finally, it is challenging but possible to produce actual caricatures, which would overem-
phasize images features relevant for the classification decisions. Such caricatures would have
to account for the potentially selective nature of the model selection discussed above and
presents a computational problem due to the high dimensionality of the feature space (D =
2088 in our case). We intend to pursue such an approach.

In conclusion, we have demonstrated the importance of small variance transformations in
classification problems of facial data to improve accuracy. Visualization and interpretation
remains challenging and can be guided by importance plots that can summarize highly
complex classifiers in a single figure or few figures.

Supporting Information
The supplementary material can be found online at http://journals.plos.org/plosone/
article?id=10.1371/journal.pone.0109033#s6

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0109033#s6
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0109033#s6
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