
Content-based retrieval of visual information
Oerlemans, A.A.J.

Citation
Oerlemans, A. A. J. (2011, December 22). Content-based retrieval of visual
information. Retrieved from https://hdl.handle.net/1887/18269
 
Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/18269
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/18269


Appendix A

RetrievalLab

A.1 Introduction

RetrievalLab is a tool for illuminating content based retrieval. It can be used
in research and in educational workshops to explore, compare, and demonstrate
the use of features, databases, images and evaluation methods in content based
retrieval tasks. Regarding education, the intention is that students will be able to
learn about content based retrieval without spending numerous months creating
a custom system. In addition, RetrievalLab has a plugin architecture that makes
it possible for users to add new functionality.

A.2 Related work

There has been significant prior work in content based retrieval (CBR) systems.
See Datta et al. [12] for a recent survey. A few examples of such systems include
the the GNU Image Finder and imgSeek.

RetrievalLab was inspired by Matlab [15], except that the native data structures
and functionality are specifically designed toward facilitating content based re-
trieval (CBR) research. For example, in retrieval contexts, we have the notion of
a database of multimedia objects which is common to most CBR systems. The
typical usage in Matlab would be to load the pictorial, feature, and tag informa-
tion into separate arrays. In RetrievalLab, there is the fundamental notion of a
database object so the user can issue a command like

MyDatabaseObject = loaddatabase("MyImageDirectory")

More information will be given in Section A.3, but the fundamental notion is that
databases are now native objects which can be updated, copied, manipulated, and
analyzed or used as sets of positive and negative examples in machine learning.



118 Appendix A

RetrievalLab provides the following:

• Programming interface - Matlab-like algebraic/functional.

• Database data structure is a fundamental and native object.

• Free (unlike Matlab or Mathematica)

• User extendable plug-in architecture with sample plug-ins.

• Basic functionality for all research stages: loading databases, feature ex-
traction, machine learning, visualization of results, and quantitative bench-
marking and evaluation.

While there are many research systems which provide some of the items above,
we are currently not aware of any other system which provides all of them.

A.3 Example usage

This section will demonstrate a few uses of the RetrievalLab program, by showing
the commands that are needed to accomplish certain tasks. A more extensive
description is available at http://press.liacs.nl/researchdownloads/retrievallab/.

A.3.1 Image retrieval

In a typical image retrieval task, a database is loaded into a variable and both
ground truth tags and features are loaded into memory. We added support
for loading ground truth for the MIRFLICKR [31] [32] and IMAGECLEF [55]
datasets.

> db=loaddatabase("D:/MIR-Flickr/")

> loadmirflickrtags(db, "D:/tree_r1.txt")

> loadfeature(db, "hsv")

After that, an image is loaded and the same feature as was used for the database
is calculated.

> im=loadimage("D:/Trees/tree1.jpg")

> updatefeature(im, "hsv")

With the database and the image, a search query can be executed that results in
an index.



Example usage 119

> index=searchimage(db, im)

> displayindex(index)

Figure A.1: Result of the ’displayindex’ function.

Results can be displayed in the form of a standard grid, or a 2D view with results
centered around the best matching image, where the feature distance is used to
determine the distance in the image.

> displayindexmap(index)

Figure A.2: Result of the ’displayindexmap’ function.

Finally, we evaluate the results. In this case, we evaluate the tree r1 tag using:

> evaluateindex(index, "tree_r1")



120 Appendix A

which returns the MAP (mean average precision) value with respect to the ground
truth.

A.3.2 Visual concept detection

In a typical visual concept detection query, two databases with positive and neg-
ative examples are loaded into variables and after that, the images are segmented
and features are calculated. With these two databases, a visual concept can be
created based on the selected classifier.

First, the positive database is loaded and the enhanced wavelet representation
feature [57] is added to the image segments.

> dbpos=loaddatabase("D:/Trees/")

> segmentimage(dbpos, "sift")

> updatefeature(dbpos, "hsv")

> updatefeature(dbpos, "lbp")

> updatefeature(dbpos, "wavelet")

Note that each image segment now has three different features attached to it.
All three features will be used. For the negative examples, we do the same.
(Segmenting and feature extraction is omitted for brevity.)

> dbneg=loaddatabase("D:/NotTrees/")

The concept can then be learned with a selected classifier. Currently, nearest
neighbor, SVM and neural network classifiers are supported.

> concept=learnvisualconcept(dbpos, dbneg, "svm")

After this an image is loaded and segments and features are added. We can now
apply our visual concept to this image.

> findvisualconceptlocations(im, concept, "tree")

> displayimage(im)

Figure A.3: Result of detecting a concept.



Discussion, conclusions and future work 121

A.4 Discussion, conclusions and future work

The current system gives a programming interface to content based retrieval func-
tionality, which is both user extendable and focuses on the typical CBR compo-
nents including diverse features [12] [74] [80], distance measures [76], and classi-
fiers [76]. We think that having a database as a native object facilitates many
typical database operations. In addition, RetrievalLab has built-in support for
the MIRFLICKR [31] [32], IMAGECLEF [55] test sets.

In future work, we will add plug-ins for video database analysis. Note that our
framework was designed for generality regarding media types and should be able
to accommodate most kinds of media.



122 Appendix A


