Universiteit

w4 Leiden
The Netherlands

Content-based retrieval of visual information
Oerlemans, A.A.].

Citation
Oerlemans, A. A. J. (2011, December 22). Content-based retrieval of visual
information. Retrieved from https://hdl.handle.net/1887/18269

Version: Corrected Publisher’s Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/18269

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/18269

Chapter 8

Texture Classification:
What Can Be Done with 1
or 2 Features?

For real-time imaging, pattern classification with short feature-vectors is desirable.
One well-known and effective method used for texture classification is the use of
statistical information on 3x3 pixel blocks. Our method is an extension of this
method to larger and non-square features, which we call ’constructed features’.
The standard 3x3 features are very usable for real-time imaging, because the
resulting feature space can only contain 512 elements and the vectors can be
created very quickly. However, larger or non-square features might give better
classification results. Our proposed method searches for small sets of constructed
features, with arbitrary size and shape, which will give the best results for a
classifying a specific texture, and still keeping the feature vectors as short as
possible. In this chapter, we show the selected features and the performance of
our method with a minimum distance classifier and with a neural network on a
texture classification task.

8.1 Introduction

In many applications such as video analysis, computational efficiency is of criti-
cal importance. Thus, in certain contexts, the maximum allowed computational
complexity is known beforehand and the algorithm must therefore be designed to
accommodate the computational requirements.

Furthermore, the novel aspect of this chapter is in exploring binary pattern ori-
ented features which are not simply 3x3 templates. We attempt to find more

86 Chapter 8

general template shapes which could give better performance and accuracy than
the traditional 3x3 features.

Our texture classification method generates features for a specific texture and
iteratively selects the best features to use. In this way, a feature set of any size
can be created, that will give the best classification results for that specific texture.

8.2 Related work

In 1990, Wang and He have introduced the Texture Unit (TU) [93], which is
generally considered as the basis for texture analysis based on the distribution of
3x3 pixel blocks.

A variant of the TU was introduced by Ojala et al. [60], which they named the
local binary pattern (LBP). They showed that classifying textures using LBP
features turned out to be very effective, especially when combined with a local
contrast measure. Later they have improved the LBP feature by creating a rota-
tion invariant version of it [62].

Other texture unit variants include multiscale selected local binary features by
Raja [64] or the simplified texture unit by Madrid-Cuevas [45]. Variants of local
image features have also been applied to other fields, for example face detection
[33] or facial expression recognition [26].

In 1996, Huijsmans et al. [30] showed that using frequencies of 3x3 binary patterns
is very helpful in copy-locating in image databases. In their experiments, they
showed that using a subset of all features or non-equal weighing yielded better
results than using the entire set of features with equal weights. Mé&enpéé later
found the same results for the LBP features [46].

In line with these findings, we expect that non-square features or larger features
might also improve better classification results over the use of the entire range of
3x3 features.

8.3 Owur method

We define a ” Constructed” feature as a binary pattern of NxN in size. An example
is shown in Figure 8.1. All these constructed features are tested for classification
accuracy.

In general, the method applies to arbitrarily large features. For computational
efficiency reasons, we note that the space of all potential features is exponential,
which is not feasible for straightforward searching. To make the problem tractable,
we record all possible features within the training set up to a certain size and then
we select features which appear in all images of the training set. These features
form the space for candidate features.

Our method 87

Figure 8.1: Constructing a feature. Starting with a 3x3 feature in a), we can then
create a new feature in by joining several 3x3 features together to ’construct’ a
5x5 feature as in b).

For our first experiments, we used an even more restricted set of features: each
of the features in the candidate set for a specific class was required to be present
in every image from that class. We wanted to make sure we were using the most
descriptive features, which are probably those features that can be found in every
positive example.

To get binary images for our feature construction, we create edge-detected ver-
sions of our textures with the Marr-Hildreth algorithm. This method detects
intensity changes in an image by convolving it with the V2@ filter, where V2 is

the Laplacian operator
%z 0%y
=5t 8.1
(axQ + 8y2) (8.1)

and G stands for the two dimensional Gaussian distribution

7m2+y2

G(z,y) = e 2no? (8.2)

In effect, this is a 'mexican-hat’ operator. The zero-crossings in the output of
this convolution mark the intensity changes. Pixels with an intensity change, or
zero-crossing, are set to 1 in the resulting image and the rest of the pixels are set
to 0. Figure 8.2 shows an example of this edge detection method.

The sigma parameter that is used for the Marr-Hildreth algorithm selects the
scale the method works on, or the size of the mexican hat. Higher values yield the
detection of less detailed structures in the images. In our experiments we used a
fixed value of 2.0 for sigma, but by varying this parameter, the search space for
the best features could even be extended.

For each feature, we keep track of the number of times it is found within each
image. Note that the number of features that can be found for each class is sig-
nificantly less than the maximum number of possible features. For computational
purposes, the features are stored in hash tables for fast lookups.

88 Chapter 8

J__J__L_J_._:L_J _.J__l__J&
B l__!__J EDEBEWE .) BER |
R R EET L TE | Y

IE CEE T]
Bl ERUERLR R
1 B T s E RS Y
L)) s Ja S BB R

JREE)t 90 DEE

L) Jo 90 05 B e EE N BE

Figure 8.2: Brodatz texture D1 and the result of the Marr-Hildreth edge detection
applied to it with sigma = 2.0

Since we are trying to find an optimal feature set, in theory every possible combi-
nation of features should be tested for classification accuracy, but the required pro-
cessing time will increase exponentially. We therefore use a greedy hill-climbing
method by iteratively increasing the feature set by adding a feature to the set
that minimizes the training error.

The first feature can be selected directly by using the feature that minimizes the
training error. After that, in case that x features are already found for a specific
class, we test the classification accuracy of all sets of features that consist of these
x features plus one of each of the features that are left. By repeatedly following
this procedure, a best feature set of any length can be found.

8.4 Results

For testing our method, we used 12 textures from the Brodatz database, which
are listed in Figure 8.3. We created a separate classifier for each texture class.

For each of these classes, we have generated random subblocks of size 64x64
and we selected 50 training blocks from the upper half of the image and 50 test
blocks from the lower half. For this experiment, we have limited the size of the
constructed features to 7x7.

Table 8.1 contains the results from our first experiments. We have determined the
best two features for each class, using 3x3 features only and with the constructed
features. Also, we show the comparison between minimum distance classifiers
and neural network classifiers. The neural network is a fully connected 3-layer

Results 89

network that has a hidden layer with 10 nodes and one output node. These values
were determined by empirical testing. The number of input nodes is equal to the
number of features.

Note that for each class, there are 50 positive examples of that class and 550
negative examples in both the training and the test set. The misdetection rates
are given over all test images.

Class Nearest neighbor Neural network
(1st and 2nd feature) (1st and 2nd feature)
3x3 constructed 3x3 constructed
o mom = E ow = E N
0.043 0.002 0.008 0.002 0.035 0.005 0.083 0.005
p wod W o= =N
0.095 0.103 0.070 0.077 0.087 0.102 0.065 0.068
n K #@ E @ Ea M@
0.072 0.047 0.072 0.047 0.052 0.040 0.063 0.042
w mom EE owz H N
0.018 0.023 0.005 0.027 0.027 0.028 0.003 0.032
pp m W = N 4 H 4 =0
0.180 0.107 0.180 0.107 0.047 0.060 0.047 0.060
v mx IEE now o
0.097 0.108 0.080 0.073 0.100 0.098 0.078 0.055
o wmam M s w = N

0.057 0.102 0.057 0.047 0.050 0.053

=
0.042
e E A E = e En

0.060 0.058 0.055 0.058 0.052 0.085 0.047 0.053

0.042

90 Chapter 8

Class Nearest neighbor Neural network
(1st and 2nd feature) (1st and 2nd feature)
3x3 constructed 3x3 constructed

w e He oe H=

0.060 0.008 0.000 0.017 0.060 0.007 0.083 0.007
ey I m A m om N @
0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.020
e 0 W O W @ Em E m
0.088 0.097 0.088 0.097 0.080 0.012 0.083 0.012
o oam Il o=
0.083 0.115 0.097 0.088 0.102 0.090 0.102 0.065

Table 8.1: Misdetection rates and the selected features for 3x3 fea-
tures only and for constructed features, using a minimum distance
classifier or a neural network.

8.5 Discussion, conclusions and future work

The first thing that is noticeable in the results, is that adding a second feature
does not always give a better test result. This is probably caused by the small
number of images in the training and test sets. In general, the training error was
lower with two features.

Also, it is interesting to see that for some textures, the optimal features are still
the 3x3 features, even when all constructed features are considered. The reason
for this could be the fine scale of the texture. The small details might have are
already been captured by the 3x3 features.

For the minimum distance classifiers with one feature, 8 out of 12 selected features
were constructed features. For the neural network classifiers with one feature, 9
out of 12 selected features were constructed features. These features were selected
based on a lower misdetection rate on the training set.

Table 8.2 shows a comparison between constructed features and 3x3 features. It
can be seen that using the constructed features gives an improved classification
result on average.

Discussion, conclusions and future work 91

Table 8.2:
features.

MDC-1 MDC-2 NN-1 NN-2

Underperforming 1 2 4 3
Equal 5 6 2 4
Outperforming 6 4 6 5

The performance of the constructed features compared to the 3x3

For us, this justifies the idea of further experimenting with constructed features
instead of 3x3 features for texture classification.

Our next experiments will focus on the constructed features with what we call
don’t carepixels. After constructing a feature, we will test the same feature with
one or more pixels left out. We expect these features to outperform the features
shown in this chapter.

92 Chapter 8

e
s
SRR
Vay

' D3 D4

D11

1 D17 D20

D21

Figure 8.3: Brodatz textures used in our experiments.

