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3 The CosmoGrid Simulation:
Statistical Properties of Smali
Dark Matter Halos

Based on:

Tomoaki Ishiyama, Steven Rieder, Junichiro Makino, Simon Portegies Zwart, Derek
Groen, Keigo Nitadori, Cees de Laat, Stephen McMillan, Kei Hiraki and Stefan Harfst
The Cosmogrid Simulation: Statistical Properties of Small Dark Matter Halos
Published in Ap]

We present the results of the **CosmoGrid" cosmological N-body simulation suites based
on the concordance Lambda Cold Dark Matter (ACDM ) model. The CosmoGrid sim-
ulation was performed in a 30Mpc box with 2048? particles. The mass of each particle is
1.28 x 10° M, which is sufficient to resolve ultra-faint dwarfs. We found that the halo
mass function shows good agreement with the Sheth and Tormen (1999) fitting func-
tion down to ~ 107 M. We have analysed the spherically averaged density profiles of the
three most massive haloes which are of galaxy group size and contain at least 170 million
particles.

'The slopes of these density profiles become shallower than —1 at the inner most radius.
We also find a clear correlation of halo concentration with mass. The mass dependence of
the concentration parameter cannot be expressed by a single power law, however a simple
model based on the Press-Schechter theory proposed by Navarro, Frenk, and White (1997)
gives reasonable agreement with this dependence. The spin parameter does not show a cor-
relation with the halo mass. The probability distribution functions for both concentration
and spin are well fitted by the log-normal distribution for haloes with the masses larger
than ~ 108 Mg,. The subhalo abundance depends on the halo mass. Galaxy-sized haloes
have 50% more subhaloes than ~ 10! M, haloes have.
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3.1 Introduction

According to the present standard ACDM model, the universe is thought to be
composed primarily of Cold Dark Matter (CDM) and dark energy (White and
Rees 1978; Peacock 1999). Structure formation of the universe proceeds hierar-
chically in this model. Smaller-scale structures collapse first, and then merge into
larger-scale structures.

There is serious discrepancy between the distribution of subhaloes in galaxy-
sized haloes obtained by numerical simulations and the observed number of dwarf
galaxies in the Local Group (Klypin et al. 1999; Moore et al. 1999a). This " missing
dwarf problem" is still considered to be one of the most serious problems in the
CDM paradigm (e.g., Kroupa et al. 2010). In order to understand the origin of
this discrepancy, it is necessary to perform high-resolution cosmological N-body
simulations and obtain unbiased sample of galaxy-sized haloes with resolution high
enough to obtain reliable statistics of subhaloes since the subhalo abundance shows
large halo-to-halo variations (Ishiyama et al. 2009a).

Cosmological N-body simulations have been widely used to study the non-
linear structure formation of the universe and have been an important tool for a
better understanding of our universe. In order to study the spatial correlation of
galaxies, the first cosmological N-body simulations were performed in the 1970s
using approximately 1000 particles (e.g., Miyoshi and Kihara 1975; Fall 1978;
Aarseth et al. 1979; Efstathiou 1979). Since then, the development of better sim-
ulation algorithms and improvements in the performance of computers allow us to
use much larger numbers of particles and have drastically increased the resolution
of cosmological simulations.

Today, it is not uncommon that the number of particles exceeds 10? in high-
resolution simulations. In these works, the size of the simulation volumes is typ-
ically [O(Gpc)]® and populations of galaxy clusters, gravitational lensing, and the
baryon acoustic oscillation are studied (e.g., Evrard et al. 2002; Wambsganss et al.
2004; Teyssier et al. 2009; Kim et al. 2009; Crocce et al. 2010). The simulation
results are also used to construct mock halo catalogues for next generation large
volume surveys. Others use simulations of [O(100Mpc)]® volumes to study the
internal properties of galaxy-sized dark matter haloes, their formation, evolution,
and statistical properties (e.g., Springel et al. 2005; Klypin et al. 2011; White et al.
2010).

Using the results of high-resolution simulations of small-scale structures, we
can study the fine structures of galactic haloes, the distribution of subhaloes, their
structures, and their dependence on the nature of dark matter. This information
has a strong impact on the indirect search for dark matter since gamma-ray flux
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by self-annihilation is proportional to local density if we consider neutralino as
the candidate of dark matter. Thus, we can restrict the nature of dark matter us-
ing the results of high-resolution simulations of small-scale structures and indirect
searches of dark matter. In addition, galaxies are considered to form in dark matter
haloes with a mass larger than a critical value (Strigari et al. 2008; Li et al. 2009;
Maccio et al. 2009; Okamoto and Frenk 2009). The structure of the smallest haloes
which can host galaxies is important for the understanding of the galaxy formation
processes.

"The simulation of smaller-scale structures of dark matter haloes is not a trivial
task since a very wide dynamic range of space, mass, and time must be covered. In
particular, the number of time steps of such simulations is significantly larger than
that of larger-scale simulations since the dynamical time-scale is proportional to
1.0/v/Gp, where p is the local density. Structures of smaller scales form earlier,
and thus have higher densities, therefore, simulations of smaller scales are compu-
tationally more expensive.

Recently, simulations with galactic haloes of very high-resolution have been
performed (Diemand et al. 2008; Springel et al. 2008; Stadel et al. 2009). These
works used the re-simulation method, where one selects one or a few haloes at
z = 0 from a simulation which covers a large volume (typically a cube of size
O(100Mpc)) with a relatively low-resolution. The corresponding regions of these
haloes are then identified in the initial particle distribution, and the particles in
these regions are replaced by a larger number of smaller particles. After this is
done, the entire volume is simulated to z = 0 again.

With this re-simulation method, we can resolve the structures of selected haloes
with extremely high resolution (Diemand et al. 2008; Springel et al. 2008; Stadel
et al. 2009). However, this method cannot be used for the study of halo-to-halo
variations. Different haloes are born in different environments and grow differ-
ently. The difference in the environment and growth history must be the cause of
halo-to-halo variations. Therefore, in order to study variations, we need a bias-free
set of a large number of haloes. Clearly one cannot obtain a large number of haloes
with re-simulation method in practical time.

In principle, one can improve the statistics by increasing the number of haloes
selected for re-simulations. In order to avoid the selection bias, we need to apply
random, bias-free selection, and the most reliable bias-free selection is to select all
haloes, in other words, to simulate the entire simulation box with uniformly high
mass resolution. Ishiyama et al. (2009a) performed the first bias-free high resolu-
tion simulation of small-scale structures. They analysed the statistics of the subhalo
abundance using the complete set of haloes in the simulation box. The number of
particles was 16003 in a 46.5Mpc cubic box and the mass of a particle was 109 M.
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'The subhalo abundance showed large halo-to-halo variations (see also Ishiyama
et al. 2008; Boylan-Kolchin et al. 2010). The concentration parameter and the ra-
dius at the moment of the maximum expansion showed fairly a tight correlation
with the subhalo abundance. Halos formed earlier have a smaller number of sub-
haloes at present. This correlation suggests that the difference in the formation
history is the origin of the variation of the subhalo abundance (see also Gao et al.
2004; van den Bosch et al. 2005; Zentner et al. 2005).

'The Millennium-II simulation (Boylan-Kolchin et al. 2009) used a 137Mpc
cubic box and the particle mass of ~ 9.45 x 106 M. Its result is suitable for the
analysis of the statistics of galaxy-sized dark matter haloes, because the number of
haloes is larger than that of Ishiyama et al. (2009a). However, due to the lack of
the mass resolution, it cannot be used to study the statistics of dwarf-galaxy-sized
haloes and the statistics of subhaloes with the size larger than faint dwarf galaxy.

In this paper, we describe the first result of our CosmoGrid simulation. We
simulated the evolution of haloes in a 30Mpc cubic box using 20483 particles. The
mass of one particle is 1.28 x 10° M. The resolution reaches down to ultra-faint
dwarf-galaxy-sized haloes (~ 10"M) and is more than eight times better than
that of our previous simulation (Ishiyama et al. 2009a). We focus on the halo mass
function with the mass down to 107 M, the structures of most massive haloes, and
statistics of the internal properties of dwarf-galaxy-sized haloes. We describe our
initial conditions and numerical settings in Section 3.2, and results in Section 3.3.
We discuss and summarize our results in Section 3.4.

3.2 Initial Conditions and Numerical Method

The cosmological parameters adopted are based on the concordance ACDM  cos-
mological model (29 = 0.3, Q25 = 0.7, h = 0.7, 0g = 0.8, n = 1.0). These values
are the same as those used in our previous simulation (Ishiyama et al. 2009a). We
used a periodic cube of the co-moving size of 30Mpc. The number of particles for
the largest run is 20483 which corresponds to a mass resolution of 1.28 x 10° M.
To generate the initial particle distributions, we used the MPGRAFIC package
(Prunet et al. 2008), which is a parallelised variation of the GRAFIC package
(Bertschinger 2001). The initial redshift was 65.

In order to investigate the effect of the mass and spatial resolution, we per-
formed two simulations with lower resolution. We generated the initial conditions
for these low-resolution runs (CG1024 and CG512) by replacing 8 or 64 particles
in the high-resolution initial condition (CG2048) with a single particle 8 or 64
times more massive. We did not use any smoothing filter for density and velocity
spaces. The massive particles were picked up at regular intervals before perform-



3.2 Initial Conditions and Numerical Method 23

Table 3.1: Run Parameters. Here, N, L, €, and m are the total number of particles, the box
length, the softening length, the mass resolution.

Name N L(Mpc)  e(pe) m(Me)

CG2048 20483 30.0 175 1.28 x 10°
CG1024 10243 30.0 350  1.03 x 10°
CG512 5123 30.0 700 8.21 x 10°

TFM2009 (Ishiyama et al. 20092)  1600°  46.5 700 1.00 x 10°

Table 3.2: Global Parameters of Three Most Massive Group Sized Halos at z = 0. Here, M,
N, Ry, Riumax, and Vi are the mass, the number of particles, the virial radius in which the
spherical overdensity is 101 times the critical value, the radius where the rotation velocity is
maximum, and the maximum rotation velocity, respectively.

Name Run M (105 M) N Rur(kpe)  Rumax(kpc)  Vinax(kms 1)
GP1 CG2048 5.24 408499843 969 200 596
CG1024 5.19 50632942 966 186 589
CG512 5.22 6361253 968 184 596
GP2 CG2048 3.58 279382586 854 305 476
CG1024 3.57 34836692 853 279 472
CG512 3.57 4347651 852 294 475
GP3 CG2048 2.25 175752770 731 178 434
CG1024 2.26 22072073 732 187 431
CG512 2.25 2746874 731 192 434

ing the Zel'dovich approximation. This procedure introduces some aliasing noise
in the high frequency limit of CG1024 and CG512 runs. The corresponding halo
contains less than a few hundred particles. However, here we use CG1024 and
CG512 runs for only convergence studies, and analyse haloes with the particles
larger than ~ 1000. Thus, the effect of the aliasing noise should be negligible. In
Table 3.1, we summarize parameters used in our simulations.

We used a leapfrog integrator with shared and adaptive time steps. The step
size was determined as min(2.0+/¢/|@;|, 2.0¢/|7;|) (minimum of these two values
for all particles). All particles have the same time-steps. The gravitational Plummer
softening length € was 175pc at z = 0. 'The softening was constant in co-moving
coordinates from z = 65 (initial condition) to z = 10. From z = 10 to z = 0,
it was constant in physical coordinates. This procedure is similar to that used in
Kawai et al. (2004).

For the largest simulation, we used four supercomputers. Three of them are
Cray XT4 machines at the Center for Computational Astrophysics of National
Astronomical Observatory of Japan, the Edinburgh Parallel Computing Centre in
Edinburgh (United Kingdom) and I'T Center for Science in Espoo (Finland). The
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fourth machine is an IBM pSeries 575 at SARA in Amsterdam (the Netherlands).
Part of the calculation was done in a “*grid" computing environment, in which we
used more than one machine simultaneously for one run (Portegies Zwart et al.
2010a).

For the time integration we used the GreeM code (Ishiyama et al. 2009b) for
single supercomputer runs and the SUSHI code (Groen et al. 2011) for multi-
supercomputer runs. The GreeM code is a massively parallel TreePM code based
on the parallel TreePM code of Yoshikawa and Fukushige (2005) for large cos-
mological N-body simulations. The long range forces are calculated by the PM
method (Hockney and Eastwood 1981), and the short range forces are calcu-
lated by the Barnes-Hut-Tree method (Barnes and Hut 1986). Yoshikawa and
Fukushige (2005) used a 1-D slab decomposition, but in GreeM we use a 3-D
multi-section decomposition (Makino 2004) to improve its scalability. In addition,
the decomposition is based on CPU time measurement, so that near ideal load bal-
ance is archived. The SUSHI code is an extension of the GreeM code which can run
concurrently on multiple supercomputers. It uses the MPWide communication li-
brary (Groen et al. 2010) running on Global Lambda Integrated Facility (GLIF)
(DeFanti et al. 2003) to facilitate message passing between distributed supercom-
puters. We used 5123 PM grid points for PM calculations, the opening angle for
the tree method was 0.3 from initial to z = 10, and 0.5 from z = 10 to z = 0.

'The calculation time was ~180s per step with 1024 CPU cores for the largest
run on the Cray XT4 in Japan and ~140s per step with 2048 CPU cores on the
IBM pSeries 575 in the Netherlands. We spent about 3.5 million CPU hours to
perform all the 60,283 steps in our simulation.

We used the spherical overdensity method (Lacey and Cole 1994) to identify
haloes and calculated the halo virial radius Ry;,. The virial radius of a halo is defined
as the radius in which the spherical overdensity is A(z) times the critical value. The
overdensity A(z) is given by the analytic formula (Bryan and Norman 1998),

A(z) = (1872 + 82x — 392%) /Q(2), 3.1)

where z = Q(z) — 1. The mass of a halo is defined as interior mass within the
virial radius.

The mass of the most massive halo is 5.24 x 103 M. It contains 4.08 x 10%
particles. Via Lactea I, IT (Diemand et al. 2007, 2008), and Aquarius simulations
(Springel et al. 2008) used ~ 108, ~ 5 x 108, and ~ 10° particles for the largest
halo. Table 3.2 shows the properties of the three most massive haloes in our sim-
ulation.

'The subhalo finder is the same as that described in Ishiyama et al. (2009a).
Our method is based on the idea of finding all local potential minima. Initially, all
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particles are candidates for the centres of haloes. We then search for the particle
with the smallest (most negative) potential and regard it as the centre of a halo.
We then exclude nmin neighbour particles of this particle from the list of remaining
particles, and search the particle with the smallest potential from the list. At this
time, we again search 7y, neighbour particles from the list of originally selected
particles, and if the potential of one neighbour is smaller, we do not add this particle
to the list of haloes. However, we remove nmyi, neighbours no matter whether
the particle is added to the list or not. We repeat this procedure until there is no
remaining particle. We set npin so that ngmy, x m = 1.0 X 107 M, where m is the
mass of each particle.

Figure 3.1 shows the snapshots at z = 0. In Figure 3.2, we also present the
time evolution of the whole box and that of the most massive halo. The three most
massive haloes in simulations with three different resolutions are shown in Fig-
ure 3.3. The positions of subhaloes agree very well in three simulations. Of course,
there are some discrepancies near the centres of haloes. In particular, whereas there
is only one core in the centre of the second massive halo (GP2) of CG2048, there
are two cores in GP2 of CG1024 and CG512.

'The reason of this difference is that the formation history of this halo is rather
violent. It experienced many mergers near z = 0 in the centre of the halo and is far
from the relaxed state. The difference of the accuracy of integration changed the
time-scale of the mergers of the haloes with three different resolutions. At z = 0,
the halo GP2 has just completed the merger in the CG2048 run, whereas the same
merger event is still on-going in CG1024 and CG512 runs. If we consider the
spherically averaged density profile of the halo, the difference becomes important
(see Section 3.3.2).

3.3 Results

3.3.1 Mass Function

Press and Schechter (1974) established a recipe to derive the number of dark matter
haloes based on the hierarchical clustering model. Since then, a number of analytic
formulae for the mass function have been proposed. Many of them are designed to
give a good agreement with results of high-resolution N-body simulations (e.g.,
Sheth and Tormen 1999; Jenkins et al. 2001; Reed et al. 2003; Yahagi et al. 2004;
Warren et al. 2006; Tinker et al. 2008, and references therein).

These formulae can reproduce the mass function between 10'° M, and cluster
scale very well. Here, we examine the mass function of mass below 10'° M, down
to 107 M. The mass function of this range has been studied only in high redshift
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™

Whole region

Figure 3.1: Projected density of dark matter at z = 0 in our largest simulation (2048*
particles). Top panel shows the whole region with the volume of (30Mpc)3. Bottom panels

show the projected density of the two most massive group sized haloes. These volumes are
(2Mpc)3.
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Figure 3.2: Evolution pictures of our largest simulation. Top six panels show the evolution
of the whole region. Bottom six panels show the evolution of the most massive halo.
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GP1 CG2048 GP1 CG1024 " GP1 CG512

GP2 CG2048 GP2 CG1024 GP2 CG512

GP3 CG2048 GP3 CG1024 GP3 G512

Figure 3.3: Projected density of dark matter at z = 0. Each row shows one of the three most
massive haloes with mass decreasing from top to bottom. Columns show different resolution
from highest (left) to lowest (right).
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Figure 3.4: Mass function of our largest simulation (CG2048). The results of z = 0.0 (left),
z = 3.0 (middle), and z = 5.4 (right) are shown. Solid curves are the Sheth and Tormen
(1999) function. Error bars are Poisson errors.

(e.g., Reed et al. 2007; Luki¢ et al. 2007).

Figure 3.4 shows the halo mass functions at three different redshifts for the
CG2048 run and the prediction of Sheth & Tormen formula (ST, Sheth and Tor-
men 1999). The agreement is very good for the mass from ~ 10" Mg to M =
1.0 x 10'3 My, at z = 0. The difference is less than 10% for M = 5.0 x 10" M,
to M = 2.0 x 1012My at 2 =0, M = 5.0 x 10"My, to M = 5.0 x 1019M, at
z=23,and M = 8.0 x 10" My to M = 4.0 x 10°M, at z = 5.4.

Our results imply that the mass function is well represented by the ST func-
tion down to 107 M. However, our simulations have a slightly larger number of
haloes than the number predicted by the ST formula in particular at the high-mass
end of the 2 = 5.4 mass function. Note that the finite volume of our simulation
(the box length is 30Mpc) might affect the mass function in some degrees. The
absence of long-wavelength perturbations might increase the number of interme-
diate mass haloes by about 10% (Bagla and Prasad 2006; Power and Knebe 2006).
In order to test the effect of the box size, we performed additional simulations of
30, 45, and 60Mpc boxes with 5123 particles. The left panel of Figure 3.5 shows
mass functions of these simulations at z = 5.4 relative to the ST formula. The
difference becomes larger as the halo mass and the box size increase. The right
panel of Figure 3.5 shows mass functions relative to the 30Mpc simulation. We
can see that the number of haloes of the 30Mpc box simulation is systematically
larger than those of the 45Mpc and 60Mpc box simulations. The mass functions of
the 45Mpc and 60Mpc box simulations are well converged for haloes larger than
2.0 x 10'° M, which is the limit of resolution for the 60Mpc box simulation. We
can conclude that the larger number of haloes seen in CG2048 at the high-mass
end is caused by the absence of long-wavelength perturbations.
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Figure 3.5: Left panel shows three mass functions at z = 5.4 derived from 512% simulations
of 30, 45, and 60 Mpc boxes, relative to the Sheth and Tormen (1999) function. Right panel
shows mass functions of 45 and 60 Mpc boxes simulations, relative to that of the 30 Mpc
box simulation.

3.3.2 Denisity Structures of Most Massive Halos

Many groups have studied the density profile of dark matter haloes using high-
resolution cosmological N-body simulations (e.g., Navarro et al. 1997; Fukushige
and Makino 1997; Moore et al. 1999b; Ghigna et al. 2000; Jing and Suto 2000;
Jing 2000; Fukushige and Makino 2001; Klypin et al. 2001; Taylor and Navarro
2001; Jing and Suto 2002; Power et al. 2003; Fukushige and Makino 2003; Fuku-
shige et al. 2004; Diemand et al. 2004; Hayashi et al. 2004; Navarro et al. 2004;
Diemand et al. 2005; Reed et al. 2005; Kazantzidis et al. 2006; Merritt et al. 2006;
Diemand et al. 2008; Gao et al. 2008; Stadel et al. 2009; Navarro et al. 2010).
In most of recent works, the slopes of radial density profiles were around —1 in
the inner region and around —3 in the outer region. The slope of density became
shallower as the radius becomes smaller. Thus, the central slope is not described
by any single power. Furthermore, the density profile was not universal. In other
words, the slope showed a significant halo-to-halo scatter.

Recent studies (Stadel et al. 2009; Navarro et al. 2010) based on high-resolu-
tion simulations of galactic haloes showed that the slopes of density became less
than —1 at the radius 0.001 times the virial radius of the halo as predicted by early
works (e.g. Graham et al. 2006). Einasto profile showed better agreement than
the NFW profile which has been widely used for modelling dark matter haloes

because of its simplicity.
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Figure 3.6: Spherically averaged
radial density profiles of largest
three haloes at z = 0. Two of
three profiles (middle and bottom)
are vertically shifted downward by
1 and 2 dex. Vertical dashed lines
show the softening length of three
simulations. Upside short vertical
bars indicate the reliability limit
of the most massive halo calcu-
lated using criterion proposed by
Fukushige and Makino (2001) and
Power et al. (2003). Red, blue, and
green correspond to the CG2048,
CG1024, and CGb12 simulations,
respectively.

Figure 3.7: Slopes of radial den-
sity profiles of largest three haloes
at z = 0. Top panel shows those of
the largest halo for three different
resolutions. Bottom panel shows
those of the largest three haloes for
the largest simulation (CG2048).
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Almost all recent high-resolution simulations of single haloes used galaxy-
sized haloes. Therefore, little is known if these finding can be applied to haloes
of different masses. Here, we present the density profiles of three most massive
haloes in our simulation. These haloes are galactic group-sized ones, with the mass
of 5.24, 3.58, and 2.25 x 103 M. They contain 408, 279, and 176 million parti-
cles.

Figure 3.6 shows the spherically averaged density profiles of these haloes at
z = 0. We can see that the results of three simulations with different resolution
are indistinguishable for radii larger than the reliability limits, except for the second
massive halo. We calculated the reliability limits using criterion proposed by Fu-
kushige and Makino (2001) and Power et al. (2003). We cannot ignore the effects
of the local two-body relaxation for radii smaller than these limits. As can be seen
in Figure 3.3, the slight difference of the merging epoch of the central cores caused
this difference.

'The slopes of density profiles become gradually shallower as the radius becomes
smaller. The top panel of Figure 3.7 shows the slopes of density profiles of the most
massive halo. As in the case of the density profile itself, the slopes also agree well
with each other. The bottom panel of Figure 3.7 shows the slopes of the three most
massive haloes in the CG2048 run.

'These profiles are significantly different from those of galactic haloes in recent
other high-resolution simulations, even if the halo mass is scaled to be the same.
The mass of the haloes of Aquarius simulation (Springel et al. 2008) or GHALO
simulation (Stadel et al. 2009) is ~ 10'2M,, which is an order of magnitude
smaller than our three haloes. The slope at 0.001R.;; is —0.9 ~ —1.0 for our
three haloes. This value is in excellent agreement with the result of both simu-
lations. Both of them gave the slope —1.0 for 7 = 0.001rgqp. This agreement
does not mean the density profile obtained by these simulation and those by our
simulation are identical. The concentration parameter, which we define here as
Cymax = Ryir/ Rymax, is 4.8, where Ry;; and Ry, are the halo virial radius and the
radius of the maximum rotational velocity. This value is significantly smaller than
that of Aquarius A-1 halo. Thus, the Aquarius halo is significantly more centrally
concentrated, and yet the slope at 7 = 0.001Ry; is the same. Thus the rate of
the shallowing of the slope is somewhat faster for the Aquarius halo than for our
CG2048 haloes. Most likely, this difference is due to the difference in the mass of
the halo.

3.3.3 Concentration Distributions

The concentration parameter has been widely used to describe the internal struc-
ture of haloes since it is tightly correlated with the formation epoch (Wechsler
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et al. 2002). Usually, the concentration is parametrised assuming that the density
profiles of haloes can be fitted by the NFW profile (Navarro et al. 1997),

Po
p(r) = CAETIG (3.2)
where pg is a characteristic density and ry is a scale radius. The concentration
enFw = R/7s is widely used (e.g., Bullock et al. 2001b; Zhao et al. 2003; Maccid
et al. 2007; Neto et al. 2007; Maccio et al. 2008; Zhao et al. 2009; Mufioz-Cuartas
et al. 2011). It is known that enpw depends weakly on the halo mass. Halos with
higher mass have smaller concentration, since the average density of a halo reflects
the cosmic density at its formation time. The dependence is weaker for higher
redshift (Zhao et al. 2003).

'The concentration based on the NFW profile is affected by fitting ranges and
resolution (Neto et al. 2007). Furthermore, recent high-resolution simulations

showed that the density profile is significantly different from the NFW profile
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Figure 3.10: The probability distribution functions of the concentration at z = 0. These
panels show the results of different mass ranges. Dashed curves are the best fits of the
log-normal distribution.

(Stadel et al. 2009; Navarro et al. 2010, also see Section 3.3.2). Thus, the use of
Cofiy Might cause some systematic bias (Gao et al. 2008; Reed et al. 2011).

We use the concentration cymax defined in Section 3.3.2, which is a simpler
quantity to measure the concentration. Note that Rymay can be easily determined
directly from spherically averaged mass distribution without the need of any fitting
tormulae. If the density profile is represented by the NFW profile, either concen-
tration can be converted to the other.

First, we determine the minimum number of particles in a halo necessary to
reliably determine the concentration. Figure 3.8 shows the normalized difference
of average concentration between the G2048 run and the CG512 run as the func-
tion of halo mass. We can see that the difference is ~ 0.05 for the halo mass larger
than 3.0 x 101° M. For halo mass less than 3.0 x 1019 M, the difference is larger.
In the CG512 run, a halo of mass 3.0 x 10'° M, contains ~ 4000 particles. So we
conclude that we need ~ 4000 particles to reliably determine the concentration.
For the CG2048 run, the reliability limit is 5.0 x 10%M,.

Figure 3.9 shows the median, and first and third quantiles of the concentration



3.3 Results 35

as a function of the virial mass of the halo. We can see a clear correlation between
the halo mass and the concentration. Apparently, the dependence is weaker for
smaller mass. Therefore, the fitting functions with a single power (e.g., Bullock
et al. 2001a; Neto et al. 2007; Maccio et al. 2007; Klypin et al. 2011) cannot be
used for haloes of the size of dwarf galaxies.

Theoretically, the concentration of a halo reflects the cosmic density at the
formation time of the halo (Bullock et al. 2001a). The concentrations of haloes
formed earlier are higher than that of haloes formed later. However, the depen-
dence should be weak for small haloes since the dependence of the formation epoch
to the halo mass is small for small (smaller than 10% M) haloes. The slope of the
power spectrum of initial density fluctuations approaches to —3 for small mass
limit.

In Figure 3.9, we also plot an analytical prediction of the mass--concentration
relation, obtained by the method used in Navarro et al. (1997) assuming that all
haloes have the NFW profile. The formation redshift z¢ of haloes with the mass
M is defined as the epoch at which progenitors with the mass larger than fM first
contained the half of the mass M. It is estimated by using the Press-Schechter
formalism (e.g., Lacey and Cole 1993),

erfc { erit(26) — Oere(0) } = 1 (3.3)
V2[03(FM) — 53 (M)]

where 8i¢(2) is the critical overdensity for the spherical collapse at z¢, and o2 (M)
is the variance of the density fluctuation at 2 = 0 smoothed by a top-hat filter on
a mass scale of M. Here, we used f = 0.01. The characteristic density pg of a halo
should reflect the cosmic density at the formation time. Thus, we assume

£0 = Pnorm (]- + Zf)3 5 (34)

where ppom i chosen to fit the simulation results. The mass of a halo with the

NFW profile is given by
M = 47pord [In(1 4 ¢) — ¢/(1 +¢)]. (3.5)

'The mass and concentration at z = 0 are related to each other by

4 4
M = gTFRgirA(O)pcﬂt = ng’?"?CSA(O)pCﬂt, (3.6)

where peie is the critical density. From Equations 3.1, 3.3, 3.4, 3.5, and 3.6, we
can analytically estimate the concentration of haloes with the mass M.
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As mentioned by Lacey and Cole (1993), the estimated formation epoch ob-
tained using Equation 3.3 is not necessarily correct. This is because the formation
time defined here corresponds to the epoch at which one of progenitors has a mass
larger than f M. This does not mean that the main progenitor has this mass. Nev-
ertheless, as seen in Figure 3.9, the analytical prediction based on Equation 3.3
shows a very good agreement with the result from CG2048 run for haloes with
mass smaller than 10! M. For haloes with the mass larger than 10'* M, the
difference between CG2048 results and analytical ones are relatively large. How-
ever, these haloes are rare objects in CG2048 run, and the fact might affect the
results in some degrees. We can conclude that the shallowing slope of the mass-
-concentration relation naturally emerges from the nature of the power spectrum
of initial density fluctuations.

'The slope is slightly shallower than that of enpw for larger haloes. For the case
of eNrw, the slope is around —0.10 for relaxed haloes and —0.11 for all haloes
(Neto et al. 2007; Maccio et al. 2007). On the other hand, for the CG2048 sim-
ulation, the slope is around —0.07 for haloes with the mass 101°M, and —0.06
for haloes with the mass 109 M. Note that one overestimates the central density
of haloes if one estimates the concentration of dwarf-sized haloes by extrapolating
the mass--concentration relation of galaxy or cluster-sized haloes.

Figure 3.10 shows the probability distribution functions of the concentration
parameter at z = 0 in three different mass ranges. Both shapes are well fitted by
the log-normal distributions,

1 log? (Cumax
P(log ¢ymax) = 5 exp (—W) . (3.7)

We find log ¢y = 1.050, o = 0.124 for haloes with the mass of 5.0 x 108 M, <
M < 10°Mg, logco = 1.022,0 = 0.128 for haloes with the mass of 109 M, <
M < 10'°M, and logcg = 0.965,0 = 0.125 for haloes with the mass of
101°Mo < M < 10M M.

3.3.4 Spin Distributions

'The dimensionless spin parameter is a good parameter to quantify the rotation of
a halo. One often uses the spin parameter defined in Bullock et al. (2001a),

J

A= BMVE 8

where M, R, V, and J are the virial mass of the halo, radius, rotational velocity at
R, and total angular momentum inside R.



3.3 Results 37

0.15
0.10 - —
g o
2 0.05 + o o 5 o o
¢ 0.00 - ot %0 N
< !
B -0.05 : o o —
010 & 1 cGsiz o |
1 12 o
L 11 \\\: \?‘5160591(\)2) L 11 \?\‘GS L L1 \\H‘ Figure 3.11: ReSiduals Of spin
-0.15 o 0 » » from the largest simulation
10 10 10 10 (CG2048) to lower resolution
M [M:] simulation (CG512).
0.10 [ T T T TTTTT T T T TTTTT T T T TTTTT T \\\HH‘ ]
L Z=0 -
< L |
Figure 3.12: Spin parameter )\
i 7 plotted against the halo virial mass
M at z = 0. Circles show the me-
s W des s s s s s s W de s o 8w dian value on each bin. Whiskers
0.01 Lol Lol | Lol are the first and third quant”es_
10° 10° 10" 10" 10" The number of haloes on each bin
M [M.] is shown below circles.

The distribution, the dependence on the halo mass, and the evolution have
been studied by a number of works (e.g., Bullock et al. 2001a; Bailin and Stein-
metz 2005; Bett et al. 2007; Maccio et al. 2007; Knebe and Power 2008; Maccio
et al. 2008; Antonuccio-Delogu et al. 2010; Mufioz-Cuartas et al. 2011; Wang
et al. 2011). The spin of galaxy-sized haloes is well studied by using the results of
sufficient resolution simulations. However, we do not understand those of dwarf-
galaxy-sized haloes. The spin distribution of those haloes at only high redshifts is
studied by the result of high-resolution simulation (Knebe and Power 2008). Here,
we extend the spin distributions at z = 0 to dwarf-galaxy-sized haloes (down to
10® M) in the same way as the concentration.

First, we determine the minimum number of particles in a halo necessary to
reliably determine the spin as done for the concentration. Figure 3.11 shows the
normalized difference of average spin between the CG2048 run and the CG512

run as a function of halo mass. We can see that the difference is ~ 0.05 for halo
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mass larger than 8.0 x 109 M. For halo mass less than 8.0 x 10° M, the difference
is large.

In the CG512 run, a halo of mass 8.0 x 109 M, contains ~ 1000 particles. So
we conclude that we need ~ 1000 particles to reliably determine the concentration.
For the CG2048 run, the reliability limit is 1.28 x 10% M.

Figure 3.12 shows the median, and first third quantiles of the spin parameter as
a function of the virial mass of the halo. Apparently, we can see the spin parameter
is independent of the mass down to 10%M, as pointed out for larger haloes in
previous works (Maccio et al. 2007; Mufioz-Cuartas et al. 2011). The median value
is 0.0336.

Figure 3.13 shows the probability distribution functions of the spin parameter
at z = 0 in three different mass ranges. The distributions are well fitted by the
log-normal distributions,

P(log \) —10g2(>\/)\0)> : (3.9

- V2o c*p ( 202

We find log A\g = —1.477, 0 = 0.308 for haloes with the mass of 1.28 x 105 M, <
M < 10°Mg, log \g = —1.480, 0 = 0.288 for haloes with the mass of 109 M, <
M < 10™Mg, and log \g = —1.472,0 = 0.277 for haloes with the mass of
1019M, < M < 10 M. Thus, we conclude that there is no mass dependence
of the spin parameter. Otherwise, it is extremely weak.

We can see that there are small deviations from the log-normal distributions
at high spin regions as seen in previous works for larger haloes (Bett et al. 2007;
Antonuccio-Delogu et al. 2010). We will discuss the effect of the dynamical state
of haloes in Appendix 3.A.

3.3.5 Subhalo

'The statistics of the subhalo abundance of galaxy-sized haloes have been well stud-
ied (e.g., Ishiyama et al. 2009a; Boylan-Kolchin et al. 2010; Busha et al. 2011).
The subhalo abundance shows large halo-to-halo variations and depends on the
concentration parameter. Halos with larger concentrations have a smaller num-
ber of subhaloes. This means that the number of subhaloes should increase as the
halo mass increases since the concentration decreases. However, little is known
on how the subhalo abundance depends on the halo mass. The reason is that we
need a number of well-resolved haloes in a wide mass range to determine the mass
dependence and it is computationally expensive to perform simulations for this
purpose.

Contini et al. (2012) analysed the fraction of halo mass in subhaloes for group-
sized to cluster-sized haloes and showed that the fraction increases with increasing
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mass. For group-sized haloes, it is approximately 5%, and for cluster-sized haloes
approximately 10% (similar results are obtained in Gao et al. 2011, for a slightly
different mass range). However, the number of particles per halo of their group-
sized haloes is 10, which is insufficient to robustly estimate the subhalo abundance
(see also Ishiyama et al. 2009a). Therefore, it is possible that they have underesti-
mated the subhalo abundance.

Our high-resolution simulations are suitable for the study of the statistics of
the subhalo abundance for haloes with smaller mass. Therefore we can address a
key question, how the subhalo abundance depends on the halo mass. Hereafter,
we define N~ as the subhalo abundance, which is the number of subhaloes with
rotation velocity larger than « times that of the parent halo. Figure 3.14 shows the
normalized difference of average subhalo abundance between the CG2048 run and
the CG1024 run as a function of halo mass for z = 0.10, 0.125, 0.15. We can see
that both results are well converged for haloes with more than one million particles
for all values of 2. For haloes with less particles, the difference becomes larger as
the halo mass decreases. Thus, we can conclude that we need about one million
particles to reliably determine the subhalo abundance. For the CG2048 run, the
reliability limit is 1.28 x 10* M, for z = 0.1.

The reliability limit should be smaller for larger subhaloes (larger values of x)
since they consist of more particles than smaller ones. As seen in Figure 3.14, the
residual of the subhalo abundance is systematically smaller for larger subhaloes
(larger x). However, for simplicity, we use the same reliability limit for all values
of z. Thus, our choice of the reliability limit is quite conservative.

Figure 3.15 shows the mean and the standard deviation of the subhalo abun-
dance as a function of the virial mass of the halo. We can see clearly that the subhalo
abundance depends on the halo mass for all values of x. The average number of
subhaloes N~¢.10, N~0.125, N~0.15 are 30.1, 16.5, 9.3 for haloes with the mass of
~ 2x 10" M, and 47.0, 23.8, 13.7 for haloes with the mass of ~ 1 x 1012 M. For
haloes with the mass of larger than ~ 1 x 102 M, we can see that the dependence
becomes weaker and gradually approaches to a constant value.

This trend has not been observed in previous works (Gao et al. 2011; Contini
et al. 2012), since they analysed haloes with larger mass. However, our result is
limited by the box size of the simulation. Since the number of subhaloes with the
mass larger than 1 x 1012, in our simulation is only 82, our haloes within this
mass range might be a biased sample. In order to clarify the dependency, larger
box simulations are needed.
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3.4 Discussions and Summary

We present the first scientific results of the CosmoGrid simulation. Because of
unprecedentedly high-resolution and powerful statistics, the simulation is suitable
to resolve internal properties of haloes with the mass larger than dwarf galaxy and
subhaloes whose scales are comparable to ultra-faint dwarf galaxies.

We summarize the main results of this paper as follows.

* 'The halo mass function is well described by the Sheth and Tormen (1999)
fitting function down to ~ 107 Mg, from 1.0 x 103 M. The differences are
less than 10% at z = 0 from M = 5.0 x 10" Mg, to M = 2.0 x 102 M.

* We analysed the spherically averaged density profiles of the three most mas-
sive haloes which contain more than 170 million particles. Their masses are
5.24, 3.58, and 2.25 x10'¥ M. We confirmed that the slopes of density
profiles of these haloes become shallower than —1 at the inner most radius.
'The results are consistent with the recent studies based on high-resolution
simulations for galactic haloes.

* We studied internal properties of haloes at z = 0 with the mass more than
~ 10® M. The concentration parameter measured by the maximum rota-
tional velocity radius is weakly correlated with the halo mass. We found that
the dependence of the concentration parameter with halo mass cannot be
expressed by a single power law, but levels off at small mass. The slope of
the mass--concentration relation is around —0.07 for haloes with the mass
1019 M), and —0.06 for haloes with the mass 10 M. The shallowing slope
naturally emerges from the nature of the power spectrum of initial density
fluctuations. A simple model based on the Press-Schechter theory gives rea-
sonable agreement with the simulation result. The spin parameter does not
show a correlation with the halo mass. The probability distribution functions
of concentration and spin are well fitted by the log-normal distribution for
haloes with the mass larger than ~ 108 M.

* 'The subhalo abundance depends on the halo mass. Galaxy-sized haloes have
50% more subhaloes than ~ 10! M, haloes have. We find a new result that
the dependence becomes weaker for more massive haloes.
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3.A The Effect of Dynamical State of Halos

There are large variations in the dynamical state of haloes. Halos which formed in
an early epoch tend to be dynamically relaxed, whereas haloes which experienced
a recent major merger tend to be dynamically unrelaxed. The relaxation state of
haloes might have some eftect on properties of haloes such as the concentration
and the spin. Here, we analyse these properties for only dynamically relaxed sample
of haloes and discuss the effect of the relaxation state.

Power et al. (2012) argued that the centre-of-mass offset is a robust estimator
of the relaxation state of haloes. The centre-of-mass offset is defined as

|7'cen - rcm‘

Ar = T (3.10)
where r'cen, Tem, and Ry, are the centre of density, mass, and the virial radius of a
halo. They found that Ar < 0.04 is a sufficient condition to pick up dynamically
relaxed haloes at z = 0. We use this condition to construct the relaxed sample of

haloes from our all halo samples.
Figure 3.16 shows the average centre-of-mass offset and the fraction of relaxed
haloes as a function of the halo virial mass. The offset increases with increasing the
halo mass. This trend is in good agreement with the results of Power et al. (2012).
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It is simply because lower mass haloes tend to form earlier than higher mass haloes
from the nature of the hierarchical structure formation. As a result, the fraction of
relaxed haloes becomes large for lower mass haloes. We can see the offset increases
with decreasing the halo mass from ~ 5 x 10®M,. This may be caused by the
resolution effect.

One may wonder whether the dependence of concentrations to the halo mass
is caused by unrelaxed haloes or not. Figure 3.17 shows the median concentration
and spin for all and the relaxed sample of haloes as a function of the virial mass
of the halo. The relaxation state has little impact on the concentration for haloes
smaller than 10 M. This can be interpreted as the fact that the fraction of relaxed
haloes is large for lower mass haloes as we can see in Figure 3.16.

'The spin parameters of relaxed haloes are systematically smaller than those of
all haloes by ~ 8 — 10% for all mass ranges. This result is consistent with early
studies (Maccid et al. 2007, 2008). This is because unrelaxed haloes tend to expe-
rience a recent major merger, giving them higher spin values. Figure 3.18 shows
the probability distribution functions of the spin parameter at z = 0 in three dif-
ferent mass ranges. We can see clearly that the number of haloes with high spin
values in the relaxed sample of haloes is smaller than that in all sample of haloes
for all mass ranges. We find log \g = —1.514, 0 = 0.286 for haloes with the mass
of 1.28 x 108 My < M < 109Mg, log \g = —1.520, 0 = 0.265 for haloes with
the mass of 10°My; < M < 10'%Mg, and log\g = —1.519,0 = 0.265 for
haloes with the mass of 101°M < M < 10 M. The standard deviations are
also systematically smaller for relaxed haloes by ~ 4 — 8%.

Small deviations from the log-normal distributions at high spin regions for
all haloes are also seen for relaxed haloes. The deviations become weaker since
unrelaxed haloes with higher spin are removed.

It is interesting that the spin is relatively influenced by the relaxation state more
than the concentration. This might be because haloes grow in a self-similar way
(e.g., Fukushige and Makino 2001). The self-similar growth means that the inner
region of a halo forms earlier than the outer region. Here, the spin is calculated
using all particles. The concentration is estimated using particles within the radius
of the maximum rotational velocity, which should be more dynamically relaxed
than particles in outer region. Therefore, it is natural that the effect of the relaxation
state on the concentration and spin shows such difference.

In summary, we find that the relaxation state makes small difference on the
concentration and spin distributions.

* The impact of the relaxation state on the concentration is negligible for
haloes smaller than 10! M.
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Figure 3.16: Left: the centre-of-mass offset of all haloes plotted against the halo virial mass
M at z = 0. The median value of each bin is shown by circles. Whiskers are the first and
third quantiles. Right: the fraction of relaxed haloes. Error bars are Poisson errors.

* 'The spin parameters of relaxed haloes are systematically smaller than those of
all haloes by ~ 8 — 10% for all mass ranges. The spin distributions of relaxed
haloes deviate from the log-normal fitting less than those of all haloes.



46

14
12

10

Cvmax

T
o
X

all
relaxed

ox
oxX
o X

z=0

2008112119 7063 4378 2526 1464 814 513 281 180 108 59 24 23

10" 10" 10"

M [M.]

10°

0.10

The CosmoGrid simulation

T \Hm‘a”\ LT

i relaxed  x ]
9900000000000 02X
< FXXX X X X X X o XX e XX x
z=0
0.01 Cocv v il il
8 9 10 11 12
10 10 10 10 10
M [M:]

Figure 3.17: Concentration (left) and spin (right) plotted against the halo virial mass M at
z = 0. The median values of all haloes are shown by circles. Crosses are for the values of only
relaxed haloes. The number of relaxed haloes on each bin is shown below.

1.6 \ T T \ 1.6 \ \ \ \
1.4 | relaxed 1.28x10% < M < 10 1.4 - relaxed 10°<M <10
all all
120 it - - 7 20 fit- - - i
= 1.0 ~log ho=-1.514 4/ \ 1 = 1.0  log o =-1.520 =
2 08 0=0.286 "v‘ \ -4 2 o8 | 0=0.265 |
= /i i =
o 06 J : - % 06 -
0.4 /) v - 0.4 - -
/ ¥
0.2 ; = 0.2 =
0.0 ‘ ‘ — 0.0 =
-30 -25 -20 -15 -10 -05 0.0 -30 -25 -20 -15 -10 -05 0.0
log A log A
1.8 \ \ \ \
1.6 [~ relaxed 10°<M<10"
all il
1.4 fit - - -
12 Vi :
= log %o =-1.519
o 10 o=0265 / 7
= 0.8 =
a
0.6 — —
04 —
0.2 —
0.0 !
-30 -25 -20 -15 -10 -05 0.0
log A

Figure 3.18: Probability distribution functions of the spin parameter at z = 0 for relaxed
haloes (solid) and all haloes (dotted). Dashed curves are the best fits of the log-normal
distribution for relaxed haloes.



