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The fundamental difference between lower and higher life forms is the ability for 
individual cells to interact and communicate with each other, forming a multicellular 
organism. The most complex organisms consist of a multitude of organs and tissues, 
which function in concert to support the body as a whole. However, while these 
differences are obvious at the surface, there is also a high degree of specialization 
within the individual cells that make up the entire organism. In general, the further 
up the evolutionary ladder, the more complex cells are. This complexity stems from 
increased cellular size, a wider range of cellular components, specialized cellular 
functionality, and increased ability to adapt to the environment. To fuel all of this 
potential, a larger and more complex genome is required.
 The human genome contains over 20,000 genes [1], encoding proteins 
which possess widely different properties and functions. The structure, concen-
tration and localization of these proteins are the main drive behind virtually all 
biological processes and molecular mechanisms. Depending on the cellular circum-
stances, different genes are transcribed and messenger ribonucleic acid (mRNA) 
is generated [2, 3]. Due to the effects of alternative promoters [4], alternative 
splicing [5], and editing of mRNA [6, 7], the 20,000 genes can be transcribed into 
well over 100,000 different transcripts [8, 9]. Subsequently, ribosomes read the 
nucleotide-based mRNA transcripts, and translate the contained information by 
coupling amino acids into proteins; essentially huge polypeptides [10, 11]. While 
this provides the basic framework for the regulation of all cellular functions, an 
additional level of complexity is required in order to provide all life with its ability to 
rapidly adapt to environmental changes.

Post-translational modifications
To further expand upon the functional repertoire of the proteome, many proteins 
are subject to post-translational modification (PTM) [12, 13]. These modifications 
can alter the biochemical properties of a protein, and regulate its biological activity 
(Figure 1)[14, 15]. For example, a protein may be able to interact with a partner 
protein after being modified by a PTM, and on the other hand, such a modification 
may abolish interaction between two proteins [16-18]. As a result, a protein’s local-
ization within the cell may be altered after attachment of a PTM [19, 20]. Conversely, 
a protein may also be subject to PTM depending on its localization in the cell [21]. 
The presence of a PTM can change the structural properties of a protein, altering 
its biological activity [22]. Additionally, certain PTMs can mark a protein for destruc-
tion by the proteasome [23]. Certain PTMs may sequentially modify target proteins, 
relying on each other’s presence, which is commonly referred to as crosstalk [24]. 
Conversely, other PTMs may compete over the same modification site [25].
 Mature proteins may be modified in numerous different ways, and many 
hundreds of different PTMs exist [26](pir.georgetown.edu/resid). Some of the most 
abundant and well-known modifications of proteins involve various biochemical 
functional groups, such as acetyl [27, 28], phosphate [29, 30], methyl [31, 32], 
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glycosyl [33, 34] and adenosine diphosphate (ADP) ribose [35, 36]. Additionally, 
proteins may be modified by covalent linkage of small modifier proteins, occurring 
primarily in eukaryotes. These include ubiquitin [37, 38] and other ubiquitin-like 
family members (Ubls) [39], which, in humans, include SUMO-1, SUMO-2, SUMO-3 
[40-42], Neural precursor cell expressed developmentally down-regulated protein 
8 (NEDD8) [43, 44], Ubiquitin D (FAT10) [45, 46], Interferon-induced 15 kDa protein 
(ISG15) [47, 48], Ubiquitin-fold modifier 1 (UFM1) [49, 50] and Ubiquitin-like protein 
FUBI (FAU) [51, 52]. Even though the Ubls often have a widely differing amino acid 
sequence, they all share similar structural properties (Figure 2).
 Modification of proteins by virtually all modifiers is a reversible process, 
and dedicated enzymes exist which can reverse the modification process. Surpris-
ingly, the amount of enzymes responsible for reversal of a PTM may be as numerous 
as the amount of enzymes involved in the initial modification, with over a dozen 
of demethylases being responsible for reversal of methylation [54], and almost 
one-hundred deubiquitylating enzymes taking charge of ubiquitylation removal [55, 
56]. The cellular ability to edit proteins in such a fashion provides limitless potential 
for dynamic regulation. Ultimately, the amount of complexity and heterogeneity 
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Figure 1. Schematic examples of PTMs influencing the functionality of proteins.
PTMs can potentiate an interaction between two proteins, or alternatively prevent or disrupt an 
interaction. Modification of a protein may predispose it to localization towards another part of 
the cell, or alternatively a protein may be modified depending on its subcellular localization. PTMs 
can directly affect the structure of a protein, and alter its activity. Proteins modified by PTMs may 
be marked for degradation. In case of crosstalk, different types of PTMs modify the same protein, 
in a sequential fashion. PTMs may also compete with each other for the same modification site, 
differentially regulating the protein they modify.
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within the cellular system is vastly expanded by the existence of PTMs, which allow 
for fine-tuning of many pivotal cellular processes (Figure 3).

Small ubiquitin-like modifier (SUMO)
Small ubiquitin-like modifiers (SUMOs) are a ubiquitin-like modifier, possessing the 
characteristic ubiquitin globular β-grasp fold [57], and have been reported to modify 
in the range of hundreds of proteins in mammalian cells [58, 59]. SUMO has been 
implicated in the regulation of many cellular functions, ranging from transcriptional 
regulation and chromatin remodeling to deoxyribonucleic acid (DNA) repair and 
control of cell cycle progression (Figure 4)[60-64].
 Like other Ubls, SUMOs are covalently attached to lysines in target proteins 
through an isopeptide bond, chemically linking the carboxyl-terminal di-glycine to 
the ε-amino groups of lysines in target proteins (Figure 5). The enzymatic cascade 
responsible always involves the dimeric E1 activating enzymes SUMO-Activating 
Enzyme Subunit 1 and 2 (SAE1/2) and the E2 conjugation enzyme Ubiquitin Carrier 
Protein 9 (Ubc9) [66-70]. The E1 is responsible for activation of the SUMO carbox-
yl-terminus through means of adenosine triphosphate (ATP) hydrolysis, where 
SUMO is adenylated and coupled to SAE2 through a thioester bond. Ubc9 plays 
an important role in targeting of SUMOylation to the intended sites, and enables 
activated SUMO to reach and couple to its target. Whereas the presence of E1 and 
E2 is sufficient for SUMOylation of target proteins in vitro [71], a number of E3 ligases 
exist, which confer context-specificity and greatly enhance efficiency of the SUMO 
conjugation [60, 72-75]. Unlike other PTMs, SUMOs display an extent of specificity 
in their conjugation, and are often targeted to the canonical consensus motif [VIL]
KxE [76, 77], although SUMOylation can occur on alternate or non-consensus motifs 
[78, 79].

Ubiquitin

NEDD8 UFM1

Overlay

SUMO-1

Figure 2. Structural comparison of various Ubl proteins.
Ubiquitin, SUMO-1, NEDD8 and UFM1 all share the same ubiquitin β-gasp fold, despite differences 
in amino acid sequence. When overlaying the 4 Ubls, their structural similarity becomes obvious. 
α-helices are indicated in red, β-sheets are indicated in green. Image adapted from Ha and Kim, 
2008 [53].
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 SUMOylation of proteins is a reversible process, since SUMO-specific 
proteases are capable of efficiently removing SUMO from target proteins [80, 81]. 
SUMO-specific proteases are also essential for the maturation of SUMO, cleaving 
additional residues off the SUMO carboxyl-terminus and exposing the di-glycine. 
All in all, the conjugation and deconjugation of SUMO allows cells to rapidly and 
dynamically respond to a wide range of cellular stresses and growth conditions [82, 
83].
 In humans, SUMO is often classified into two families, SUMO-1 and 
SUMO-2/3. Mature SUMO-2 and SUMO-3 are virtually identical [84], only differing 
by three amino acids in the amino-terminus, including a serine in SUMO-2, although 
there is no evidence for amino-terminal phosphorylation of SUMO-2. No functional 
difference between the two has ever been reported, and no antibody exists that can 
differentiate between them. Conversely, SUMO-1 is only 47% similar to SUMO-2/3, 
and can be classed as a truly separate PTM. Surprisingly, all forms of SUMO are 
conjugated by the same machinery, and while an overlap exists between their targets 
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Figure 3. Complexity of the proteome.
The human genome includes 20,000 genes, which are transcribed into over 100,000 different 
transcripts. The transition from the genome to the transcriptome significantly increases cellular 
complexity. After translation into proteins, PTMs inflate the system’s complexity by another order 
of magnitude, with over a million of differentially modified proteins existing within the cell.
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of conjugation, there are also differences [85, 86]. Whereas SUMO-1 is predom-
inantly conjugated to Ran GTPase-Activating Protein 1 (RanGAP1), SUMO-2/3 is 
more dynamic and much more abundant [87], with the free unconjugated pool of 
SUMO-2/3 functioning as a reservoir to allow the cell to respond to environmental 
changes and cellular stresses [58, 88, 89]. In fact, it could be argued that one of the 
main purposes of SUMO-2/3 is to provide the cell with this adaptability mechanism.
SUMO, like ubiquitin, is able to modify itself, forming polymeric chains [90-92]. 
The formation of these SUMO chains is substantiated by cellular stress conditions 
such as heat shock [58]. In humans, SUMO-2/3 is primarily modified on lysine-11, 
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Figure 4. An overview of SUMO’s involvement in key cellular processes.
SUMOylation of proteins has widespread regulatory roles within the cell, including nuclear pore 
complex shuttling, transcriptional regulation, cell cycle control, chromatin remodeling, the DNA 
damage response, protein-protein interactions, formation of nuclear bodies, and various other 
nuclear functions (SUMO is involved at least in the processes boxed in green). Nucleus image 
adapted from Spector, 2001 [65].
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although other internal lysine residues may be targeted for chain formation in vitro 
[93]. With SUMO-1 lacking an internal consensus motif, it is considered to be inef-
ficiently SUMOylated, and thus serves as a chain terminator [90, 91, 93]. Polymeric 
SUMO chains are important in replication, proteasomal degradation, and during 
the cell cycle [91]. In yeast, SUMO chains are important for maintenance of high-
er-order chromatin structure [94].

SUMO is indispensable for eukaryotic life
All eukaryotes express at least one family member of SUMO, with most mammals 
expressing three copies, and up to eight copies exist in Arabidopsis thaliana [95]. 
While in some cases there is functional redundancy between multiple SUMO copies, 
the process of SUMOylation is essential for nearly all eukaryotic life [60, 96]. Only 
some forms of yeast [97] and fungi [98] are able to survive without SUMO, while 
still displaying severe growth defects. The conjugating enzyme Ubc9 is essential for 
viability of higher eukaryotic, with its depletion leading to chromosomal damage 
and induction of apoptosis [99]. Furthermore, the importance of the SUMO 
pathway was clearly demonstrated by mice deficient for Ubc9, which perish at the 
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Figure 5. The SUMO cycle.
Precursor SUMO is matured by exposure of its di-glycine motif through the action of SUMO-specific 
proteases. Through an enzymatic cascade of the activating E1 enzyme SAE1/2, the conjugating E2 
enzyme Ubc9, and optionally the involvement of a catalytic E3 enzyme, SUMO is conjugated to a 
lysine residue within the target protein. SUMOylation is a reversible process, since SUMO-specific 
proteases may remove SUMO from a protein, freeing up the SUMO for re-conjugation.
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early post-implantation stage due to aggravated defects in chromosome conden-
sation and segregation [100]. In Arabidopsis thaliana, knockdown of the activating 
enzyme SAE2, the SUMO Conjugating Enzyme 1 (SCE1), or double knockdown of 
SUMO1 and SUMO2 are all embryonic lethal, further underlining the importance 
of SUMO [101].
 SUMOylation has become increasingly implicated as a major player in 
carcinogenesis [102-104], and various key factors involved in cancer are known to 
be functionally SUMOylated, such as Hypoxia-Inducible Factor 1-alpha (HIF1α) [83], 
Hypoxia-Inducible Factor 2-alpha (HIF2α) [105], and Cellular Tumor Antigen p53 
(p53) [106]. SAE1 and SAE2 were identified in a screen for Myc Proto-Oncogene 
Protein (Myc) synthetic lethal genes, showing that Myc-driven tumors are reliant 
on SUMOylation [107]. Thus, SUMO has been gaining popularity as a therapeutic 
target, with its clinical involvement ranging from cancer to Alzheimer’s disease [60, 
108, 109].

SUMO, the guardian of the nucleus
When comparing the machinery involved in the conjugation of SUMO to that of 
ubiquitin, which employs hundreds of enzymes for effective conjugation [110, 111], 
it becomes clear that SUMO employs only a small subset of enzymes in order to 
modify its targets. Furthermore, whereas ubiquitin, acetylation and phosphoryla-
tion modify proteins all throughout the cell, SUMOylation is an event that occurs 
predominantly in the nucleus [112, 113]. Within the nucleus, there is a further 
enrichment of SUMOylation that occurs at the chromatin [114-116] and in nuclear 
bodies [117, 118]. These bodies are chiefly Promyelocytic Leukemia (PML) bodies, 
and SUMO plays a critical role in the regulation of this subcellular domain [117, 119, 
120], which are clusters containing many factors important in the cellular response 
to DNA damage and various stresses [121, 122].
 As SUMO is intrinsically focused in the nucleus and around the DNA, it 
provides an effective method for regulation of proteins that are involved in the 
cellular response to DNA damage. Not surprisingly, the coordination of the DNA 
damage response by SUMO has been subject of extensive study over the last 
decade [61, 63, 123]. There have been multiple reports on the regulation of single 
DNA damage response proteins by SUMOylation, including G/T mismatch-specific 
thymine DNA glycosylase (TDG) [22], Proliferating cellular nuclear antigen 1 (PCNA) 
[124, 125], Breast cancer type 1 susceptibility protein (BRCA1) [126, 127], and 
Mediator of DNA damage checkpoint protein 1 (MDC1) [128-130]. Entire functional 
clusters of proteins may also be modified in concert by SUMOylation, for example 
in order to orchestrate an efficient response to DNA damage [21, 131].

SUMO and ubiquitin in concert
While one PTM by itself is innately interesting, the combination of two or more 
PTMs acting together becomes highly intriguing. Crosstalk between PTMs allows 
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virtually limitless combinations in regulatory potential, but moreover allows for 
multiple cellular functionalities to be directly connected to each other. One such 
example are the SUMO-targeted Ubiquitin Ligases (STUbLs), which are a subset 
of ubiquitin E3 ligases that specifically recognize and ubiquitylate SUMOylated 
proteins [132-135].
 In yeast, the E3 ubiquitin-protein ligase complex SLX5-SLX8 subunit SLX5b 
(Slx5) and E3 ubiquitin-protein ligase complex SLX5-SLX8 subunit SLX8 (Slx8) 
proteins form a heterodimeric ubiquitin ligase, which specifically recognizes 
SUMOylated proteins. Deletion of either of these proteins in yeast leads to accu-
mulation of SUMOylated proteins [136, 137], and hypersensitivity to certain types 
of DNA damage as well as accumulation of spontaneous damage during replication 
[138, 139]. The specific recognition of SUMOylated proteins occurs through SUMO 
interaction motifs (SIMs), which are present in Slx5, whereas interaction between 
Slx5 and Slx8 occurs through a RING-RING (Really Interesting New Gene) interaction 
[133]. Canonical SIMs are short hydrophobic sequences containing or being flanked 
by an acidic residue, which allow for interaction with the hydrophobic pocket and a 
basic surface on SUMO, respectively [140-142]. The overall strongest SIM has been 
defined as [VILFY]-[VI]-D-L-T [141].
 In humans, the main STUbL is RING Finger Protein 4 (RNF4) [143], which 
has been identified to play a pivotal role in arsenic-induced degradation of PML 
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Figure 6. SUMO-Targeted Ubiquitin Ligases.
STUbLs, such as RNF4, recognize poly-SUMOylated target proteins, and may subsequently ubiq-
uitylate these proteins. One common result of poly-ubiquitylation of proteins is targeting to the 
proteasome and subsequent proteolytic destruction. Alternatively, the combined SUMOylated and 
ubiquitylation of a protein may have non-proteolytic functions.
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[144-147](Figure 6). Like in yeast, RNF4 has been implicated to have functions in 
the DNA damage response [148], where RNF4 promotes efficient DNA repair by 
regulating the turnover of repair proteins [128-130, 149]. A more recently discov-
ered STUbL is RING Finger protein 111 (RNF111) [141], which has been linked to 
important non-proteolytic roles in the DNA damage response [150](Figure 6). 
RNF111 has additionally been implicated to increase neddylation at DNA damage 
sites [151], although overexpressed NEDD8 has been known to mimic ubiquitin due 
to extremely high fold similarity.
 Whereas SUMO and ubiquitin may act together in a sequential fashion, there 
is also the intriguing possibility of an inversed regulation. Instead of ubiquitin being 
conjugated to SUMOylated proteins, there could also be an opposing mechanism, 
where ubiquitylation of SUMOylated proteins is removed. There are examples in 
the literature of ubiquitin ligases interacting and functioning together with ubiq-
uitin-specific proteases, where the ligases are protected by these proteases from 
being proteolytically degraded through auto-ubiquitylation [152, 153]. Ubiquitin 
chain remodeling has also been implicated, where interacting ligases and proteases 
oppose each other’s chain-editing functions [154].
 Thus, it is not unimaginable that STUbLs have associated ubiquitin-spe-
cific proteases that could protect them from auto-degradation. Alternatively, such 
proteases could counterbalance the function of the STUbLs by reverse-editing 
SUMO-ubiquitin chains or removing ubiquitin from poly-SUMOylated targets, 
thereby protecting these proteins from proteolytic degradation. Such an associa-
tion, however, has yet to be discovered.

Elucidating networks of PTMs at the system-wide level
One of the most effective ways to study how PTMs affect the entire proteome, 
is through system-wide proteomics [155-157], analyzing the PTM straight from 
complex samples derived from cultured cells or mammalian tissues. In the last 
years, there have been massive advances in the field of mass spectrometry and 
supporting bio-informatics [158, 159], allowing for large-scale analysis of PTMs at 
the system-wide level [160, 161]. Modern high-resolution and high-throughput 
mass spectrometers allow for identification of multiple peptides per second, 
even at very low abundance and from complex samples, while generating spectra 
detailed enough to confidently quantify modified peptides [162-164]. Combined 
with optimized methodologies and carefully refined purification methods in order 
to enrich modified proteins or peptides [165], this has greatly accelerated the 
understanding of the modified proteome. Additionally, quantitative approaches 
such as Stable Isotope Labeling of Amino Acids in Culture (SILAC) [166, 167] and 
Isobaric Tag for Relative and Absolute Quantitation (iTRAQ) [168, 169] have made it 
feasible to efficiently monitor the dynamics of PTMs. Several landmark papers have 
been published on several major PTMs, including acetylation [170], phosphoryla-
tion [171, 172], methylation [173], glycosylation [174] and ubiquitylation [175-179]. 
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These studies identified many thousands of sites, and after these landmark papers, 
additional studies have greatly expanded upon the number of known sites. Phos-
phoSitePlus (PSP; PhosphoSitePlus®, www.phosphosite.org, [180]) is one of the 
major databases keeping track of all known modification sites. As of this moment, 
there are over 200,000 known phosphorylation sites, over 50,000 ubiquitylation 
sites, nearly 25,000 acetylation sites, and 7,500 methylation sites. Strikingly, there 
are only just over 700 known SUMOylation sites, with most of these sites originating 
from low-throughput mutagenesis approaches. Only around 150 SUMO sites were 
discovered by tandem mass spectrometry (MS/MS) methodology, with the majority 
being identified in two reported studies (Figure 7)[79, 181].

SUMOylation and mass spectrometry, a great challenge
The stark contrast between the amount of modification sites known for SUMOy-
lation and other PTMs may be attributed to several causes. Firstly, SUMOylation 
occurs at a relatively low stoichiometry, and additionally in low abundant proteins 
[73]. Granted, there are several notable SUMO target proteins such as PML [19] and 
RanGAP1 [40, 41] which are an exception to the rule, and can be found to occur in 
predominantly SUMOylated form. However, the majority of known SUMO target 
proteins cannot readily be visualized in SUMOylated form, and pre-enrichment of 
SUMOylated proteins is required in order to study many of these proteins.
 Secondly, SUMOylation is a reversible process, and there are several highly 
efficient SUMO-specific proteases that can cleave SUMO from its target proteins 
[81]. Under normal cellular growth conditions, the activity of these proteases is 
controlled. However, when processing cells or tissues for analysis, essentially 
mimicking an in vitro system, these proteases are given free reign, and swiftly 
remove all SUMO [182]. Strikingly, these proteases remain active in most standard 
lysis buffer conditions, and remain functional at freezing temperatures. There 
are no known effective and targeted inhibitors for SUMO-specific proteases, and 
many broad-spectrum protease inhibitor cocktails have zero effect. Mostly, copious 
amounts of acetamide are added during the lysis in order to alkylate the active 
cysteine of the SUMO proteases [59], yielding partial protection of the SUMOylated 
proteins. In order to completely counteract the activity of SUMO proteases, prepa-
ration of the sample has to be performed under highly denaturing conditions, such 
as high concentrations of sodium dodecyl sulphate (SDS), urea, or guanidine. While 
successful in preserving the SUMO on the target proteins, lysis in harsh conditions 
greatly complicates subsequent purification of the SUMO when using conventional 
approaches such as immunoprecipitation.
 Thirdly, while SUMO-specific antibodies exist, and these have been applied 
to identify SUMOylated proteins [86], these antibodies are required in great quan-
tities and are not always cost-effective. Furthermore, due to the aforementioned 
reasons, purification of SUMOylated proteins is a complicated procedure when 
using antibodies, because they will likewise be denatured by the stringent buffer 
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conditions. In order to gain respectable yields, a large amount of material – in the 
order of many billions of cells from culture – has to be processed for a singular 
sample. Conversely, only a few thousands of cells are needed in order to detect 
virtually any protein by various biochemical techniques such as Enzyme-Linked 
Immunosorbent Assay (ELISA) [183] or immunoblotting [184].

Monoisotopic Mass of Tryptic Remnant

Known Modi�cation Sites (MS/MS)
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AcetylationUbiquitylation Methylation

42114 14

SUMOylation

Phosphorylation AcetylationUbiquitylation Methylation SUMOylation
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Human Yeast

Figure 7. A system-wide proteomics overview of all major PTMs, as compared to SUMOylation.
Phosphorylation, ubiquitylation, acetylation and methylation are readily detectable as modifica-
tions on peptides, due to a modest monoisotopic mass increase on the tryptic peptides. Conversely, 
human SUMO-1 and SUMO-2/3 yield a tryptic remnant with masses exceeding 3,000 Dalton, 
preventing efficient identification of modification sites by MS/MS. Yeast SUMO (Smt3) yields a 
tryptic remnant with a mass of 502 Dalton, which is more suitable for proteomic analysis. Not 
surprisingly, the amount of MS/MS-identified SUMOylation sites pales in comparison to the other 
major PTMs. Based on the amount of known SUMOylated proteins, many more SUMOylation sites 
exist, but have yet to be pinpointed by MS/MS. Monoisotopic masses and known modification sites 
are drawn to scale.

 Fourthly, mass spectrometric PTM analysis is most frequently and routinely 
performed on peptide mixtures generated after digestion of proteins by trypsin 
[185, 186]. As trypsin specifically cleaves carboxyl-terminal of arginines and lysines, 
tryptic peptides have a length dependent on the arginine and lysine content of the 
protein. For ubiquitin-like modifiers, besides the tryptic digestion pattern of the 
modified protein, the digestion pattern of the modifier itself also plays an important 
factor. For ubiquitin a tryptic digest results in a remnant di-glycine on the modified 
lysine in the target peptide, which may be readily detected by mass spectrometry 
[187], and antibodies have been developed to specifically recognize peptides 
modified by di-glycine [179, 188]. In case of SUMO-2/3, the tryptic remnant is 
32 amino acids long [79, 189], which is too bulky and prohibits efficient analysis 
by current mass spectrometry (Figure 7). Additional enzymes would have to be 
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employed to shorten this remnant [189, 190], which in turn would also further 
shorten the target peptide, often leading to ambiguous peptide identifications. 
Also, these more exotic proteomics-grade enzymes are prohibitively expensive, and 
often not stable under partially denaturing conditions, whereas commonly applied 
enzymes such as Lysyl Endopeptidase (Lys-C) and trypsin function efficiently in 8 M 
and 2 M urea, respectively.

SUMO proteomics, the current state of affairs
In spite of the difficulties in studying SUMOylation at the site-specific level, several 
advances have been made at the protein level in a system-wide manner. Most 
commonly, SUMO is fused with an amino-terminal epitope tag or tandem tags; 
such as His6 [85, 191], His6-FLAG [192], His6-HA [193], Myc [194], FLAG-TEV [195], 
or protA-TEV-CBP [58], and overexpressed in a cultured cell line or model organism 
(Figure 8). Overexpression of SUMO, in combination with the epitope tags that allow 
for more efficient purification, has allowed for identification of many hundreds of 
SUMOylated proteins [58, 196, 197]. Often, these approaches employ SILAC, in 
order to extract quantitative information about the changes in SUMOylation in 
response to several treatments [58, 64, 89, 198]. Furthermore, several approaches 
have proven successful in identifying proteins putatively modified by endogenous 
SUMOylation, through the use of antibodies [86] or SUMO interacting motif (SIM) 
traps [59](Figure 8).

Immunoprecipitation A�nity Trapping Epitope-Tag Pulldown
or Immunoprecipitation

SUMO SUMO SUMOSUMOSUMOSUMO

SIM
Antibody

Antibody

A�nity Matrix
Interaction Motif Trap

SIM SIM

TAG TAG TAG
SUMOSUMO

Target Target Target

SUMO

SUMO Expression
Puri�cation Bias Poly Poly Only None Poly 
Bu�er Conditions Mild Mild Harsh Intermediate
Yield
Background Medium High Medium Low

Low Low High High
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IP Trap Tag-PD Tag-IP

Endogenous Exogenous Exogenous

Figure 8. An overview of the various methodologies used to study SUMOylation.
SUMOylated proteins may be directly purified through immunoprecipitation (IP), using of anti-
bodies directed against SUMO. Poly-SUMOylated proteins have been captured using SIM-based 
traps. Both these methodologies allow study of endogenously SUMOylated proteins. More efficient 
purification methods involve pulldown (PD) using affinity matrices and immunoprecipitation using 
antibodies targeted against overexpressed epitope-tagged SUMO, providing a much higher yield 
and less background interference.
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 When comparing the different SUMO purification methodologies, there is 
a clear distinction between endogenous versus exogenous approaches. SUMOy-
lated proteins may be directly purified using immunoprecipitation, through use of 
antibodies directed against SUMO. While allowing studying of proteins modified 
by endogenous SUMO, the yield of this approach is relatively low and mild buffer 
conditions have to be used, giving free reign to SUMO proteases. This necessitates 
the use of large quantities of antibody, and large amounts of starting material, 
while having to cope with a relatively high amount of background. Poly-SUMOy-
lated proteins have been captured using SIM-based traps, also allowing the study 
of endogenously SUMOylated proteins. However, this methodology cannot detect 
mono-SUMOylated proteins efficiently, suffers from high background interfer-
ence due to non-specific interactions with the SIMs, as well as some of the same 
drawbacks from immunoprecipitation.

Epitope-tagged SUMO can be purified far more efficiently, due to special-
ized methodology and commercially available purification tools. Histidine and biotin 
tags allow for pulldown of SUMOylated proteins using affinity matrices, which 
remain functional under the harshest of conditions, completely inactivating SUMO 
proteases. The interaction between the affinity matrices and the tags are among 
the strongest non-covalent interactions known, allowing for rigorous washing 
procedures. The abundance of matrix material allows for total and complete purifi-
cation of all SUMO without any bias. As a slight drawback, the chemical interactivity 
of the affinity matrices may result in some background binding due to high histidine 
content of non-related proteins or endogenous protein biotinylation. Alternatively, 
antibodies directed against common epitope tags such as HA or FLAG can be used 
for immunoprecipitation of tagged SUMO. The quality of the antibodies against 
epitope tags is very high and commercially coupled antibody matrices are very 
robust and of high quality. Compared to antibodies used against SUMO itself, this 
allows for the use of more stringent buffer conditions, and results in a much higher 
yield combined with less background. Regardless, there are still limits to buffer 
conditions during the immunoprecipitation, allowing for some co-purification of 
non-specific proteins. Ultimately, the main drawback of epitope tag approaches 
is the requirement for a model system which allows exogenous expression of the 
tagged SUMO.
 Whereas proteomic studies of SUMOylation over the last decade have 
provided insight into which proteins are subject to SUMOylation, and how they 
may dynamically be increased or decrease in SUMOylation upon cellular stresses, 
they fail to provide knowledge about the exact SUMO acceptor lysines. For efficient 
follow-up study, it is of paramount importance that the exact sites of SUMOyla-
tion are determined, in order to generate separation-of-function mutants which 
may then be used to assess the exact function of SUMO within the target proteins. 
Furthermore, while all SUMOylated proteins are identified by the presence of 
corresponding peptides in the purified fraction, there is a lack of direct evidence in 
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the form of a tryptic-remnant-modified peptide. Modified peptides serve as direct 
proof of modification, and greatly reduce the amount of false positive hits resulting 
from the digestion of background binders sticking to the purification matrices and 
plastic tube walls. Additionally, whereas an entire protein may be identified as being 
regulated by SUMOylation in response to a stress, there is a distinct possibility that 
multiple acceptor lysines within that same protein are differentially or even inversely 
regulated. Knowing in which region of a protein SUMOylation occurs may already 
provide clues as to the potential functionality of the SUMO modification. Lastly, the 
identified SUMOylation sites can be directly matched against other potential lysine 
modifications on the same sites, to investigate any PTM competition for the same 
lysines.
 Some limited progress has been made in mapping SUMO acceptor lysines. 
In order to counter one of the largest issues with identification of SUMO sites – the 
oversized tryptic remnant – a SUMO mutant containing an additional arginine close 
to the carboxyl-terminus is commonly used, in order to generate a mass remnant 
which is small enough to identify reliably. Such approaches have identified 14 sites 
in HeLa cells [199], 17 sites in Human Embryonic Kidney 293 (HEK293) cells [200], 
and 17 sites in Arabidopsis thaliana [201]. One of the carboxyl-terminal arginine 
mutations used in SUMO-2 is Q87R, analogous to the yeast SUMO, Smt3, yielding 
the glutamine-glutamine-threonine-glycine-glycine (QQTGG) remnant. The other is 
T90R, analogous to ubiquitin, yielding the di-glycine remnant. These mutations do 
not significantly alter the behavior of SUMO [202, 203].
 In order to enhance the efficiency of identification, we mutated every 
lysine within SUMO-2 to an arginine, in addition to the Q87R mutation. This grants 
the mutant SUMO-2 immunity to the endopeptidase Lys-C, which only cleaves 
carboxyl-terminal of lysines, whereas all other proteins in the sample will be readily 
digested. Subsequently, SUMOylated peptides can be purified using conventional 
approaches. Because enrichment of the SUMOylated peptides takes place after 
protein digestion, this allows for selection of peptides-of-interest only, greatly 
reducing the complexity of the sample (Figure 9). Using this approach, we identified 
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Figure 9. Site-specific identification of SUMOylation sites using lysine-deficient SUMO.
In order to enrich SUMOylated peptides, the entire total lysate is pre-digested with Lys-C, cleaving 
all proteins except the lysine-deficient SUMO. Subsequently SUMOylated peptides are enriched by 
His-pulldown, and digested with trypsin. Finally, peptides bearing the di-glycine or QQTGG remnant 
(depending on the SUMO mutant used) are analyzed using nanoscale liquid chromatography 
followed by tandem high-resolution mass spectrometry.
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103 SUMOylation acceptor sites on endogenous proteins purified from a complex 
sample [79], making it the most comprehensive SUMOylation site study to date.

SUMO, the missing sites enigma
One of the greatest questions in the SUMO field is: where exactly are all the 
SUMOylated proteins being modified? Strikingly, SUMO is the only PTM where 
the amount of known modified proteins surpasses the amount of known sites 
of modification, especially when considering only evidence generated through 
system-wide proteomics approaches. Nearly one thousand SUMOylated proteins 
have been discovered through mass spectrometry and other screening methods, 
compared to a meager 150 SUMOylation sites. Assuming an average frequency of 2 
to 3 modification sites per protein, one could argue that there could easily be a few 
thousand SUMOylation sites. Moreover, the large majority of all currently known 
SUMOylation sites have been mapped through low-throughput methodology, 
involving trial-and-error mutagenesis. In part, the success in identification of these 
sites may be attributed to the KxE consensus motif, which often allows researchers 
to successfully perform a so-called “intelligent guess”.
 Looking at the 103 sites we identified by MS/MS [79], the overall amount of 
SUMOylation sites matching the KxE consensus was nearly 75%. This is consistent 
with the literature, in the sense that Ubc9 targets SUMO to KxE motifs [76, 77]. 
Thus, a high adherence to the KxE consensus motif may be applied as a quality 
control standard for SUMOylation site datasets. However, this dataset is just the tip 
of the iceberg; as it is likely limited to the most abundant SUMOylation sites, and 
pertains to one type of cells under standard growth conditions. There is little known 
about the global specificity certain E3 enzymes grant, and about the specificity of 
SUMO conjugation under cellular stresses. Heat shock and proteasome inhibition 
have been applied to study SUMO, and these treatments have been noted to lead 
to a large accumulation of SUMOylated proteins, in addition to a highly dynamic 
shuffling of SUMO between subsets of targets. Thus, with these dynamics likely 
carrying over at the site-specific level, it is feasible to assume that we are currently 
missing most pieces to the SUMO puzzle.
 Finally, while approaches with mutant SUMO may yield qualitatively sound 
datasets, this methodology does not map truly endogenous SUMO sites, and is 
restricted to application in model systems. Ultimately, investigation of clinically 
relevant samples for aberrant SUMOylation would require an endogenous, quantita-
tive, and site-specific methodology capable of identifying hundreds of modification 
sites. At the moment of writing this thesis, this goal may be years, if not decades, 
away from being achieved.
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