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Abstract

The climatic signal of Marine Isotope Stage (MIS) 11 is well-documented in marine and ice-sheet isotopic records and is known to

comprise at least two major warm episodes with an intervening cool phase. Terrestrial records of MIS 11, though of high resolution, are

often fragmentary and their chronology is poorly constrained. However, some notable exceptions include sequences from the maar lakes

in France and Tenaghi Philippon in Greece. In the UK, the Hoxnian Interglacial has been considered to correlate with MIS 11. New

investigations at Hoxne (Suffolk) provide an opportunity to re-evaluate the terrestrial record of MIS 11. At Hoxne, the type Hoxnian

Interglacial sediments are overlain by a post-Hoxnian cold-temperate sequence. The interglacial sediments and the later temperate phase

are separated by the so-called ‘Arctic Bed’ from which cold-climate macroscopic plant and beetle remains have been recovered. The later

temperate phase was deposited during an episode of boreal woodland and is associated with the artefacts, a diverse vertebrate fauna and

molluscs. New amino acid geochronological data and biostratigraphical considerations suggest that the post-Hoxnian sequence

correlates with late substages of MIS 11. The paper further investigates the correlation of the sequence at Hoxne with the palynological

sequences found elsewhere in Europe and adjacent offshore areas.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, the complexity and structure of Marine
Isotope Stage (MIS) 11 has been a focus of research, in part
driven by the similarity of orbitally forced insolation
changes during MIS 11 and the Holocene (Oppo et al.,
1998; Droxler et al., 2003; Loutre and Berger, 2003;
Ruddiman, 2005; Wu et al., 2007). MIS 11 is therefore
important as an analogue for current and future climate
scenarios. An important aspect of this work is how global
temperature changes affect terrestrial biota, which can be
addressed through the correlation of marine and terrestrial
records (Tzedakis et al., 1997; Desprat et al., 2005; Wu
e front matter r 2008 Elsevier Ltd. All rights reserved.
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et al., 2007). It has become increasingly clear that there is a
much more complex relationship between the often
fragmented terrestrial record and the marine and ice
records. The complexity of MIS 11 has now been shown
through marine and ice-sheet isotope records (e.g. Bassinot
et al., 1994; EPICA Community Members, 2004) and long
palynological records from marine cores (Desprat et al.,
2005). These all indicate a sharp warming at ca 425 ka with
what appears to be a relatively stable climate through to ca
390 ka. Thereafter, the records are characterised by a series
of warm–cold oscillations until ca 360 ka with the onset of
more extreme cold.
Two conventions have been established for the naming

of isotopic and therefore climatic fluctuations within
numbered isotope stages. MIS 11 has been divided into
substages 11c, 11b and 11a (e.g. Tzedakis et al., 2001).

dx.doi.org/10.1016/j.quascirev.2008.01.003
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Fig. 1. Structure and sub-division of MIS 11 as shown by isotopic records from ocean and ice cores. Isotope substages after Tzedakis et al. (2001), isotopic

events after Bassinot et al. (1994). Sources: Insolation, Berger and Loutre (1991); EPICA deuterium record, EPICA community members (2004); LR04

benthic stack, Lisiecki and Raymo (2005); SPECMAP stack, Imbrie et al. (1984); MD900963, Bassinot et al. (1994).
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However, in other records (e.g. MD900963, Bassinot et al.,
1994) a more complex pattern can be seen with additional
warm–cold oscillation (Fig. 1). Therefore, an alternative
system identifies negative and positive isotopic events,
which are numbered using a decimal system (Imbrie et al.,
1984; Bassinot et al., 1994; Desprat et al., 2005). This has
the advantage of allowing additional isotopic events to be
incorporated. These two conventions are different because
the first denotes periods of time, whereas the second
identifies specific isotopic events, and therefore the
terminology should not be used interchangeably. An
additional short-lived warm episode has been recognised
in some records (e.g. Prokopenko et al., 2001) and referred
to as 11e, but this is not prominent in either SPECMAP or
MD900963. The structure and terminology for MIS 11 is
used in this paper are shown in Fig. 1.

Only recently has it been possible to recognise these
complex changes in the terrestrial record, particularly in
southern Europe where pollen sequences have enabled
correlation with marine isotope substages (Reille and de
Beaulieu, 1995; Tzedakis et al., 1997; de Beaulieu et al.,
2001; Desprat et al., 2005; Tzedakis et al., 2006). In Britain,
such sequences have not been found, and most palynolo-
gical records are of relatively short duration (cf. Thomas,
2001). Although there is now widespread agreement that
the Anglian glaciation correlates with MIS 12 and the
Hoxnian Interglacial broadly with MIS 11 (Bridgland,
1994; Bowen, 1999; Rowe et al., 1999; Grün and Schwarcz,
2000; Preece and Penkman, 2005; Preece et al., 2007),
individual substages of MIS 11 have not been convincingly
identified (but see Schreve (2001a, b)). The climatic record
of the Hoxnian has been largely based on palynology
(West, 1956; Turner, 1970), but it is still not clear whether
the Hoxnian encompasses the whole of MIS 11 or just one
substage. One site that has the potential to provide
information of this kind is the site of Hoxne, Suffolk,
UK (TM176767), where recent fieldwork has shown a more
complex sequence of climate fluctuations that may be
attributable to marine isotope substages.
The sequence at Hoxne forms the stratotype of the

Hoxnian Interglacial (Mitchell et al., 1973) which, based on
the analysis of West (1956) of the lacustrine sediments,
spans pollen zones HoI-III. However, the stratigraphy also
includes an important series of sediments that post-date
this lacustrine sequence. These are of particular importance
because they contain abundant palaeoenvironmental evi-
dence and also a rich Palaeolithic archaeological record
(Singer et al., 1993). Despite the long history of research at
Hoxne, it remains unclear how the primary context human
industries relate to the environmental record and the
correlation of this part of the succession with the marine
isotope sequence is uncertain (Bowen et al., 1989;
Gladfelter et al., 1993; Turner and West 1994; Ashton
et al., 1995; West and Gibbard, 1995; Grün and Schwarcz
2000; Schreve 2001a, b). The current research has focussed
on these issues as part of a wider investigation of human
presence during MIS 11 under the auspices of the Ancient
Human Occupation of Britain Project (Stringer and AHOB
Project Members, 2003; Ashton et al., 2006).
Since the discovery at Hoxne of Lower Palaeolithic

handaxes by Frere (1800), the site has been the subject
of several investigations, providing often radical re-
interpretations of previous work. This work has focussed
on two pits, either side of the Hoxne to Eye road (Figs. 2 and
3). The Old Brick Pit to the east of the road was the subject of
the earliest investigations, and these were supplemented by
work in the Oakley Park Pit when this was first opened in the
mid-19th century. The two pits were opened for gravel and
clay extraction from the infillings of a basin that is now
located on the interfluve between the Goldbrook stream and
River Dove, which flow into the River Waveney. The current
research has involved investigation of archive material
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together with cutting and sampling of key sections (between
2000 and 2003; Ashton et al., 2003) and has enabled a re-
evaluation of the palaeoenvironmental and archaeological
evidence from the site.
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Fig. 4. Stratigraphical interpretation of (a) Reid (Evans et al., 1896) in

comparison to that of (b) West (1956). Modified from West and

McBurney (1954, Fig. 2) and from West (1956, Fig. 15).
2. Previous interpretations

The basis for much of our understanding of the site
comes from the work of Clement Reid (Evans et al., 1896).
He provided detailed and clear descriptions from boreholes
and open sections of all the major sediment units and
undertook the first palaeobotanical investigations at the
site. Reid’s work demonstrated that a basin, formed in the
surface of the ‘boulder clay’ (till), was infilled with
interglacial lacustrine sediment (Bed E). Drying out of
the lake was indicated by the formation of peat (Bed D),
prior to the re-establishment of the lake under cold
conditions (‘Arctic Bed’: Bed C). These lacustrine sedi-
ments were overlain by a fluvial, shelly, gravel (Bed B),
and the artefact-bearing sediment or ‘Palaeolithic Loam’
(Bed A). The latter extended beyond the confines of the
basin (Figs. 4 and 5).

In the 1950s, detailed fieldwork was undertaken by West
(1956), who also examined the palynology of the lake
sediments. West argued for important modifications to the
stratigraphy offered by Reid. Other than the addition of a
cold lacustrine sediment (Stratum F) above the till (now
Stratum G), he argued that the lower part of Reid’s Bed A
had been misinterpreted and was in fact decalcified Bed
(now Stratum) E. This implied that the human occupation
of the site was associated with the lacustrine sediments of
the newly defined Hoxnian Interglacial, rather than in the
later sediments at the site (Figs. 4 and 5). No archaeology
was discovered in Stratum E during West’s work, other
than two flakes from sections 40 and 100 on the west of the
Oakley Park Pit (West, 1956; Fig. 3). However, it is clear
from re-examination of the section drawings and the
heights of the objects in comparison to those found in the
1970s and during the recent excavation that they were
actually recovered from sediments overlying Stratum D.
West (1956) defined pollen zones at Hoxne, which were
subsequently modified following work on the more
complete sequence at Marks Tey, Essex. The Hoxne lake
sediments (Strata E–D) were assigned to pollen zones HoI
through to HoIIIa, with HoIIIb and HoIV being absent
from the sequence (Turner, 1970).

Major archaeological excavations by the University of
Chicago in the 1970s (Singer et al., 1993) in the Oakley
Park Pit and in the field to the west of this pit (Fig. 3),
provided the first properly excavated artefact assemblages
from the site and led to further re-interpretation. It was
argued that there were two significant phases of human
occupation. The first or ‘Lower Industry’ consisted of
primary context handaxes, cores and knapping debitage in
association with a temperate faunal assemblage, and
occurred in a single horizon towards the base of Stratum
C. A new bed nomenclature was introduced for a sequence
of fluvial, alluvial and solifluction sediments (Beds 1–9)
that lie above Stratum D (Gladfelter, 1993). These had
formerly been attributed to Strata B and A. The key units
were a chalky gravel (Bed 4), which was overlain by a
fine-grained alluvial sediment (Bed 5) and a further gravel
(Bed 6). The ‘Upper Industry’, consisting of pointed
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handaxes, flake tools, cores and debitage in variable
condition, was recovered from the top of Bed 5 and in
secondary context in the lower part of Bed 6. The ‘Lower
Industry’ was associated with a temperate vertebrate fauna.
However, this conflicts with the palaeobotanical evidence
of Reid (in Evans et al., 1896) and West (1956) who
attributed Stratum C (‘Arctic Bed’) to a cold stage.

The dating of the site and its correlation with the marine
isotope record was also unclear from this work (Gladfelter
et al., 1993; Turner and West, 1994). Amino acid D/L
ratios on Valvata shells from Stratum E suggested a
correlation of the lacustrine sequence with MIS 9 (Bowen
et al., 1989), with the implication that either there is a
major hiatus between the Lowestoft Till (MIS 12) and the
lake beds, or that the glacial sequence dates to MIS 10.
Dating of the overlying Lower Industry (interpreted as
lying in Stratum C) was assessed through thermolumines-
cence dating on two burnt flints, which yielded a mean date
of 210720 ka, suggesting an MIS 7 age. However, the
dosimeter readings (taken several years after the excava-
tion) were from different locations and also demonstrated
considerable variation across the site. This suggested that
there were likely to be considerable errors in the TL age
estimates (Bowman, 1993). Initial ESR dates on enamel
from two horse (Equus ferus) teeth also associated with the
Lower Industry gave an average age of 319738 ka,
suggesting that Stratum C was attributable to MIS 9
(Schwarcz and Grün, 1993). However, subsequent remo-
delling of the data has suggested an MIS 11 age with dates
of 404733/42 and 437738 ka (Grün and Schwarcz, 2000).
Finally, assessment of the mammalian fauna that is
associated with the Lower Industry and from Bed 4 has
been argued to show marked similarities with that from
Swanscombe (Stuart et al., 1993), and both faunal
assemblages have been attributed to the first post-Anglian
warm stage and assigned to the Swanscombe Mammal
Assemblage Zone (MAZ) by Schreve (2001a, b).

3. Stratigraphic re-interpretation

A revised stratigraphy is proposed, based on the curent
re-investigation of the site that focussed on the relationship
between Stratum C and the sediments containing the
Lower and Upper Industries (Fig. 5; Table 1). This has
resolved the confusion in Singer et al. (1993) in their varied
interpretations of the relationship between Stratum C and
Bed 4 (see Bridgland, 1994; Turner and West, 1994). The
stratigraphic interpretations and nomenclature of Singer
et al. (1993) can now be reconciled with that of West (1956).
This paper uses the Reid/West nomenclature, with some
modifications based on the current research (Table 1).
Fig. 3 shows the location of the recently excavated

sections (Areas I–VII) and boreholes. The most significant
information comes from Areas III and IV. The latter was a
narrow trench, previously excavated in 1978 that was re-
opened and widened to allow detailed investigation and
sampling. The trench linked the locations of the Lower and
the Upper Industries in the field to the west of the Oakley
Park Pit (Figs. 3 and 6). This section is critical to
understanding the relationship of the Upper and Lower
Industries to Stratum C and Beds 4–6.
Stratum E was exposed at the base, overlain by a near-

continuous horizon of Stratum D, which reached a
maximum thickness of 35 cm at the southern end, but
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Table 1

New bed names and descriptions with interpretation of climate and context of archaeology

Bed name Bed description Pollen zone Climatic interpretation Archaeology

Stratum A1 Coversand Cold

Stratum A2(i) Cryoturbated sand and gravel Cold

Stratum A2(ii) Solifluction gravel Cold Derived Upper Industry

Stratum A2(iii) Alluvial sandy clay Warm Upper Industry

Stratum B1 Fluvial sand, silt and clay Warm Lower Industry

Stratum B2 Fluvial chalky gravel Warm

Stratum C Lacustrine sands and silts Cold

Hiatus

Stratum D Peat HoIIIa Warm

Stratum E Lacustrine clay HoI–IIc Warm

Stratum F Lacustrine clay lAn Cool

Stratum G Till Cold

NS

S

A1 
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Fig. 6. Schematic cross-section through the Hoxne lake basin (after West, 1956) with a detailed section through Area IV.
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thinned to o1 cm black stained clay at the northern end
(Fig. 6). Overlying this was a thin horizon of Stratum C,
50-cm thick over most of the exposure, but cut out at the
southern end by fine sand and chalky gravel of Stratum B.

Above this, a concave-up erosional lower bounding
surface is incised into Strata C and B, forming a broad
(430m), shallow (ca 2m) channel feature, infilled with
bedded sands, silts and clays. These are interpreted as a
lateral accretion facies and indicate lateral movement to
the north. The orientation of bone long axes and their
distribution with that of the artefacts also suggest a fluvial
deposit and indicate a NE–SW orientation of the channel.
This channel feature was not recognised by previous
workers and the sediment was thought to be part of the
lacustrine sequence. It is here assigned to Stratum B
because it is a fluvial deposit and is referred to as Stratum
B1. The underlying chalky gravel is therefore assigned to
Stratum B2 (Fig. 5).
Stratum A was sub-divided into A1 and A2 by West

(1956). As a result of the current work, Stratum A2 is
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further sub-divided into A2(i–iii). Stratum A2(iii), a sandy
clay unit, is interpreted as alluvium. Above this, a coarse
flint gravel with a sandy clay matrix (Stratum A2(ii)) and a
series of laminated sands and silts (A2(i)) are capped by
gravely sands (Stratum A1). Post-depositional disturbance
and downslope movement have affected the uppermost
part of the succession.
4. Palaeoenvironmental context for human occupation at

Hoxne

The sedimentary succession at the site contains pa-
laeoenvironmental data indicating a fluctuating climate.
The depositional environment, vegetational and faunal
character, and thermal conditions can be considered for
each stratum in turn.
4.1. Stratum G

The ‘boulder clay’ of Reid was assigned to the Lowestoft Till
by West (1956) and represents widespread glaciation of eastern
England by a British-based ice-sheet depositing the character-
istic chalk and flint-rich tills of the Lowestoft Formation
(Perrin et al., 1979; Bowen, 1999; Clark et al., 2004). This
glaciogenic unit is attributable to the Anglian Stage (MIS 12).
4.2. Stratum F

This lacustrine clay lies at the bottom of the basin and
contains pollen and beetles (West, 1956; Coope, 1993). The
beetle remains indicate a rapid amelioration of climate to
near interglacial conditions during the late Anglian.
4.3. Stratum E

These lake sediments form the major filling of the basin
and contain a pollen sequence that has been attributed to
pollen zones HoI—HoIIc of the Hoxnian Interglacial. The
pollen indicates development of fully temperate deciduous
woodland (West, 1956; Turner, 1970). The prominent non-
arboreal pollen phase at the top of Stratum E is
characteristic of a number of sites in the region (Turner,
1970; Thomas, 2001, 2002). Its origin is unclear, though it
is not thought to show a cooling in climate (Turner, 1970).
4.4. Stratum D

This peat horizon indicates drying out of the lake basin
and encroachment of terrestrial vegetation over the lake bed.
The arboreal pollen contains significant quantities of alder,
suggesting an alder carr environment developed during
pollen zone HoIIIa. (West, 1956). Beetles indicate mean July
temperatures of between 15 and 19 1C (Coope, 1993).
4.5. Stratum C

A return to lacustrine deposition is shown by the
laminated sediments of Stratum C, which record fluctuat-
ing flows, with influx of coarser sands and silts, together
with pellets of reworked lacustrine sediments and organic
material. These were well exposed in Area VII. This
stratum was originally assigned to pollen zone HoIIIb on
the basis of the high counts of Abies, which is characteristic
of this pollen zone (Turner, 1970). The occurrence of Abies

and other thermophilous plants is, however, at odds with
the presence of leaves of Arctic/Alpine plants, notably
dwarf birch (Betula nana) and three species of dwarf willow
(Salix myrsinites, S. herbacea and S. polaris) (Evans et al.,
1896). Leaves of these species were recovered during the
current work and are almost certainly contemporary with
the unit, as they are fragile and would not survive
reworking. This suggests that some of the pollen (including
Abies) has been reworked into this unit (West, 1995) and
furthermore indicates a hiatus between the deposition of
Strata D and C.
The interpretation of a cold climate is also supported

by the analysis of the beetles. Altogether, 72 coleoptran
taxa have been recognised of which 42 can be named
to species. Of these, 10 do not now live in the British Isles.
There is little change through the sequence, so the
species have been grouped together as a single assemblage
in Table 2. The local environment suggests a pool of
standing water with much marginal emergent vegetation
such as the aquatic grass Glyceria and a surface which was
at least in part covered with Lemna. The immediate
surroundings of the pool were dominated by sedges and
other reedy plants. The low numbers of dung beetles
suggests that there were few large herbivorous mammals
present at this time.
Taken as a whole, the coleopteran assemblage indicates

very cold and continental climatic conditions with a
number of species now found living today no nearer than
arctic Russia (e.g. the closest locality for Helophorus

obscurellus is on the Kanin Peninsula, the closest locality
for Holoboreaphilus nordenskioeldi is central Novaya
Zemlya). However, there are three species whose presence
in this assemblage seems to be climatically anomalous.
First, Stenoscelis submuricatus is a Mediterranean beetle
that lives in dead wood. It was very common in Stratum D.
This species could have been derived from Stratum D,
having been incorporated into Stratum C (sealed from
agents of decomposition inside reworked pieces of wood).
On a less extreme scale, Eledona agricola lives in
various fungi growing on deciduous trees, chiefly Polyporus

sulphuraeus growing on Salix. In northern Europe,
this beetle reaches only as far north as latitude 601N.
Species of Throscus inhabit leaf litter but again their
geographical ranges only reach as far north as latitude
621N. Both these records are based on single fragments
and it is likely that they were also derived from the
eroded deposits of the lacustrine sequence of Stratum D
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Table 2

Coleoptera from Stratum C, Hoxne

Carabidae

Notiophilus cf. aquaticus (L.) 2

Dyschirius globosus (Hbst.) 3

Trechus secalis (Payk.) 1

Bembidion hasti Sahlb.a 1

Bembidion cf. mckinleyi Fall.a 1

Bembidion guttula (F.)/unicolor Chaud. 2

Bembidion sp. 4

Patrobus cf atrorufus (Ström) 2

Pterostichus nigrita (Payk.) 1

Amara sp. 2

Dytiscidae

Potamonectes griseostriatus (de Geer) 3

Agabus bipustulatus (L.) 1

Ilybius sp. 2

Rhantus sp. 1

Colymbetes dolabratus (Payk.)a 2

Colymbetes sp. 5

Graphoderus sp. 1

Dytiscus sp. 1

Gyrinidae

Gyrinus aeratus Steph. 1

Gyrinus sp. 2

Hydraenidae

Hydraena sp. 5

Ochthebius minimus (F.) 7

Helophorus obscurellus Popp.a 6

Helophorus cf. aquaticus (L.) 1

Helophorus small spp. 5

Hydrophilidae

Cercyon convexiusculus Steph. 4

Enochrus sp. 2

Hydrobius fuscipes (L.) 7

Orthoperidae

Orthoperus sp. 2

Ptiliidae

Ptenidium sp. 2

Acrotrichis sp. 2

Staphylinidae

Pycnoglypta lurida (Gyll.)a 1

Olophrum fuscum (Grav.) 7

Olophrum boreale (Payk.) 2

Eucnecosum brachypterum (Grav.) 24

Geodromicus kunzei Heer 1

Boreaphilus henningianus Sahlb.a 5

Holoboreaphilus nordenskioeldi (Makl.)a 6

Trogophloeus sp. 4

Oxytelus rugosus (F.) 1

Bledius sp. 1

Stenus spp. 7

Euaesthetus laeviusculus Mannh. 1

Lathrobium sp. 1

Tachyporus sp. 1

Tachinus rufipes (de Geer) 1

Tachinus cf. corticinus Grav. 1

Alaeocharinae gen. et sp. indet. 59

Elateridae

Agriotes sp. 1

Throscidae

Throscus sp. 1

Table 2 (continued )

Helodidae

gen. et sp. indet. 7

Dryopidae

Dryops sp. 3

Byrrhidae

Simplocaria metallica (Sturm.)a 6

Coccinellidae

Hippodamia arcticaa 1

Tenebrionidae

Eledona agaricola (Hbst.) 1

Scarabaeidae

Aphodius spp. 2

Chrysomelidae

Donacia dentata Hoppe 2

Donacia semicuprea Panz. 5

Donacia aquatica (L.) 1

Donacia thalassina Germ. 9

Donacia cinerea Hbst. 2

Plateumaris affinis (Kunze) 4

Chrysomela sp. 1

Curculionidae

Apion sp. 1

Sitona sp. 1

Stenoscelis ( ¼ Brachytemnus) submuricatus (Schönh.)a 3

Bagous sp. 2

Tanysphyrus lemnae (Payk.) 9

Notaris bimaculatus (F.) 4

Notaris acridulus (L.) 1

Notaris aethiops (F.) 2

Thryogenes sp. 1

aIndicates species not now native to the British Isles.
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immediately beneath. Other than the probable derived
elements, the insects indicate mean temperatures in July
of, or below 10 1C and in January and February of
about �15 1C.

4.6. Strata B2 and B1

The chalky sandy gravel of Stratum B2 is a fluvial
sediment and contains a rich vertebrate fauna. The sands,
silts and clays of Stratum B1 are also fluvial and rest in a
channel cut into Stratum B2. The ‘Lower Industry’ in
association with the vertebrate fauna was recovered along
the northwest margins of this channel.
The vertebrate faunal assemblages from Strata B2 and

B1 are very similar in composition (Stuart et al., 1993). The
larger mammalian fauna is dominated by Eguus. ferus

(horse), Cervus elaphus (red deer), Dama dama (fallow
deer), together with occasional remains of Macaca sylvanus

(macaque), Ursus sp. (bear), Lutra lutra (otter), Panthera

leo (lion), Stephanorhinus sp. (extinct rhinoceros) and
Capreolus capreolus (roe deer). Insectivores and rodents
dominate the smaller mammals, which include Castor fiber

(European beaver), Trogontherium cuvieri (extinct giant
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beaver), Talpa minor (extinct mole), Microtus (Terricola)

cf. subterraneus (pine vole) and lemming (identified as
Lemmus lemmus (Norway lemming) by Stuart et al., 1993).
Remains of birds, amphibians, reptiles and fish were also
recovered, including the articulated skeleton of a rudd
(Scardinius erythrophthalmus) (Brian Irving, personal com-
munication), the latter suggesting water temperatures were
relatively warm during the summer months (cf. Stuart,
1982).

The range of species suggests a mix of environments. The
dominance of horse indicates areas of open landscape,
whereas forest is indicated by fallow deer, beaver and
macaque. Although lemmings are only found in cold,
northern latitudes today, they may have had a different
distribution and habitat requirements in the Middle
Pleistocene. For example, they occur at Boxgrove, West
Sussex (Parfitt, 1999), during the latter part of an
interglacial where they are associated with mammals and
Mollusca typical of temperate deciduous woodland (e.g.
Myotis bechsteinii (Bechstein’s bat), Muscardinus avellanar-

ius (common dormouse), D. dama (fallow deer), Acanthi-

nula aculeata, Spermodea lamellata and Aegopinella pura).

4.7. Strata A2 and A1

The alluvial silt of Stratum A2(iii) contains a sparse fauna
including an indeterminate species of elephant, extinct
rhinoceros, horse, red deer, roe deer and fallow deer, again
all suggesting a temperate climate. There is a possibility,
however, that this fauna is derived from the lower units. The
overlying sands and gravels of A2(ii), A2(i) and A1 contain
no biological remains other than mixed pollen (Mullenders,
1993; Turner and West, 1994). Stratum A2(i) displays
contemporaneous ice-wedge casts, indicating a permafrost
environment (Singer et al., 1993). Periglacial structures in
Stratum A1 also suggest a return to a cold climate.

4.8. Palaeoclimatic summary

The complete succession at Hoxne indicates a complex
pattern of climatic fluctuations and changes in depositional
regime. Following deglaciation, the lake basin began to
infill under cool conditions (Stratum F) followed by rapid
amelioration to full interglacial conditions which persisted
throughout the accumulation of Stratum E. After a phase
of non-lacustrine conditions when peat formed across the
former lake basin (Stratum D), there is a hiatus and then a
return to lacustrine conditions is indicated by Stratum C.
By this time, climate had deteriorated with plant macro-
fossils and beetles indicating deposition under much colder
conditions. In Area VII of the recent excavations, the top
of Stratum C interdigitates with and is overlain by sand
and fine, chalky gravel indicating increased flow into the
basin and the establishment of a fluvial environment across
the site (Stratum B2). This is incised by a further fluvial
channel, which is infilled with fine-grained sediments
(Stratum B1). The faunal elements within Stratum B
suggest climatic amelioration, though probably not to the
same extent as indicated by Strata E and D. Temperate
climate also prevailed during deposition of Stratum A2(iii).
The remainder of Strata A2 and A1 accumulated under
cold climate conditions.
The archaeological assemblages of the Lower and Upper

Industries and their associated mammalian assemblages can
now be placed within this stratigraphic and environmental
framework. No archaeological material can be securely
attributed to Strata F–D. The Lower Industry is associated
with the base of the channel-fill represented by Stratum B1
(Fig. 6). The Upper Industry was recovered from the upper
part of Stratum A2(iii) and in a secondary context within
overlying gravel, Stratum A2(ii). The critical consideration
here is that both the Lower and Upper Industries can now
be shown to post-date the ‘Arctic Bed’ of Stratum C.
The cold event represented by Stratum C and the

temperate event represented by Stratum B have so far
not been successfully dated or correlated with other
terrestrial sequences or with the marine isotope record.
Given the climatic complexity of MIS 11 (e.g. Bassinot
et al., 1994; Tzedakis et al., 1997; Petit et al., 1999; Desprat
et al., 2005) they could be correlated with later cold and
warm events in MIS 11, or alternatively with even younger
cold and warm episodes.

5. Amino acid geochronology

Amino acid racemization (AAR) analyses were under-
taken on 12 Bithynia tentaculata opercula using the
methods outlined in Penkman (2005) and Penkman et al.
(2008). The method is based on the extent of protein
decomposition, which increases with time, although there is
an increased rate of breakdown during warm stages and a
slowing in cold stages.
The samples were from Stratum E (NEaar 0498–0500,

2446–2447) and Stratum B2 (NEaar 3143–3150). The
results show levels of protein decomposition higher than
those from sites correlated with MIS 9, but lower than
those from sites of pre-Anglian age (Fig. 7; Table 3).
Furthermore, the levels of protein decomposition are
similar to those from sites correlated with MIS 11,
including Elveden (Ashton et al., 2005), Beeches Pit (Preece
et al., 2007), Barnham (Preece and Penkman, 2005),
Clacton (Penkman et al., in press), Woodston and
Swanscombe (Penkman, 2005). This indicates an age for
Hoxne between the Anglian (MIS 12) and early MIS 9. The
opercula samples from Stratum E tend to have slightly
greater protein decomposition than those from Stratum B2
and less degraded protein than found in opercula from the
Lower Freshwater Bed at Clacton, which was deposited
early in MIS 11 (Bridgland et al., 1999).
The opercula from Stratum B2 have some of the lowest

levels of protein decomposition determined from MIS 11
sites. This therefore suggests an age for the opercula
between mid-MIS 11 and early MIS 9. While the values
obtained from the opercula from Stratum B2 generally
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Fig. 7. D/L values of Asx, Glx, Ala, Val and [Ser]/[Ala] for the (A) Free (FAA;F) and (B) Total Hydrolysable amino acid (THAA;H) fractions of bleached

Bithynia tentaculata opercula from Hoxne (Strata E and B2), compared with shells from sites correlated with MIS 9 (Cudmore Grove, Grays, Hackney,

Purfleet) and sites correlated with MIS 11 (Elveden, Ebbsfleet Southfleet Road, Swanscombe, Woodston, Clacton, Beeches Pit). For each group, the base

of the box indicates the 25th percentile. Within the box, the solid line plots the median and the dashed line shows the mean. The top of the box indicates

the 75th percentile. Where more than nine data points are available, the 10th and 90th percentiles can be calculated (shown by lines at the bottom and the

top of the boxes, respectively). The results of each duplicate analysis are included in order to provide a statistically significant sample size. The y-axes for

the [Ser]/[Ala] data are plotted in reverse, so that the direction of increased protein degradation for each of the indicators remains the same. Note: different

scales on the y-axes.
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show higher levels of protein decomposition than those
obtained from the MIS 9 sites analysed, the separation
between the Stratum B2 samples and those deposited early
within MIS 9 is small. As so little decomposition occurs in
the cold stages, and because of the extent of natural
variability in biological samples, it can be difficult to
discriminate the end of one warm stage from the beginning
of the next. Although an age late in MIS 11 is more likely,
it is not possible to rule out an early MIS 9 age, given the
level of resolution currently obtainable from the technique.
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Table 3

Amino acid data on opercula of Bithynia tentaculata from Strata E and B2 at Hoxne

NEaar no. Sample name Asx D/L Glx D/L Ser D/L Ala D/L Val D/L [Ser]/[Ala]

0498bF HoBto1bF 0.76970.000 0.36670.001 0.74570.000 0.48070.003 0.26170.000 0.35970.001

0498bH* HoBto1bH* 0.68670.001 0.29370.000 0.74370.002 0.42470.002 0.23670.002 0.30870.001

0500bF HoBto2bF 0.78270.001 0.36970.029 0.99070.002 0.53170.001 0.28570.008 0.28370.004

0500bH* HoBto2bH* 0.69270.002 0.29670.001 0.75070.004 0.44470.003 0.23570.002 0.28170.003

2446bF HoBto3bF 0.77770.002 0.37470.000 1.05170.006 0.48370.003 0.27170.003 0.30270.002

2446bH* HoBto3bH* 0.68970.002 0.28370.001 0.75470.006 0.41370.005 0.21670.002 0.28770.000

2447bF HoBto4bF 0.76370.014 0.39570.002 1.04470.005 0.48570.003 0.28570.003 0.29670.004

2447bH* HoBto4bH* 0.68970.000 0.29070.000 0.74870.013 0.41270.001 0.22370.014 0.28270.008

3143bF Ho64Bto1bF 0.74570.006 0.33270.003 1.02870.004 0.43470.008 0.25670.002 0.31070.006

3143bH* Ho64Bto1bH* 0.68970.001 0.30570.000 0.80570.013 0.39070.000 0.22070.006 0.31070.002

3144bF Ho64Bto2bF 0.75270.004 0.34670.004 1.03070.007 0.45770.002 0.28770.001 0.30070.003

3144bH* Ho64Bto2bH* 0.69070.002 0.31170.000 0.80770.001 0.39570.001 0.22370.003 0.31570.001

3145bF Ho64Bto3bF 0.77570.005 0.33470.006 1.03770.001 0.49870.007 0.28670.003 0.28670.002

3145bH* Ho64Bto3bH* 0.69670.002 0.31170.000 0.78370.009 0.43570.000 0.23670.002 0.28970.001

3146bF Ho64Bto4bF 0.74970.001 0.30070.005 1.01370.003 0.44070.001 0.26970.000 0.30670.000

3146bH* Ho64Bto4bH* 0.68070.002 0.27970.000 0.76470.001 0.38370.003 0.21070.002 0.30070.000

3147bF Ho50Bto1bF 0.74870.005 0.34270.002 1.02870.011 0.43970.015 0.26470.003 0.29870.008

3147bH* Ho50Bto1bH* 0.70970.001 0.33270.001 0.83370.000 0.41570.000 0.24070.001 0.29370.009

3148bF Ho50Bto2bF 0.76770.002 0.33770.005 1.01270.032 0.50370.001 0.30370.001 0.28970.003

3148bH* Ho50Bto2bH* 0.70370.003 0.32170.001 0.78470.000 0.45070.003 0.25770.002 0.28670.000

3149bF Ho50Bto3bF 0.75970.006 0.32770.007 1.02670.000 0.48270.002 0.27570.001 0.29770.001

3149bH* Ho50Bto3bH* 0.67970.003 0.30670.003 0.75470.011 0.41970.004 0.22370.003 0.29870.001

3150bF Ho50Bto4bF 0.77170.000 0.32170.002 0.77170.001 0.49670.000 0.29470.001 0.31070.001

3150bH* Ho50Bto4bH* 0.70170.003 0.31270.006 0.68670.005 0.43770.005 0.24270.003 0.28670.002

Error terms represent 1 S.D. about the mean for the duplicate analyses for an individual sample. Each sample was bleached (b), with the free amino acid

fraction signified by ‘F’ and the total hydrolysable fraction by ‘H*’. NEaar 0498-0500 and 2446-2447 are from Stratum E, and NEaar 3143-3150 are from

Stratum B2.
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6. Biostratigraphy

The mammalian fauna from Strata B1 and B2 also
provides an indication of age. Three species are of possible
biostratigraphic significance. The most important of these
is Microtus (Terricola) cf. subterraneus. Although it is
widespread in Europe today, it appears to have been absent
in Britain after MIS 11 (Parfitt, 1998). Of particular
significance is its absence from the very rich faunal
assemblages from Cudmore Grove, Grays and Purfleet,
all of which have been attributed to MIS 9 and from any
younger sites (Bridgland, 1994; Schreve et al., 2002).

Of lesser significance is the presence of Trongontherium

cuvieri and Talpa minor. Although they are thought to have
become extinct after the Hoxnian in Britain, and possibly
the Holsteinian in Europe, their remains are so rare that
any apparent absence in sites attributed to MIS 9 or later
might be due to insufficient sampling.
7. Discussion

Both the amino acid geochronology and the biostrati-
graphy, together with the reassessment of the ESR dates
(Grün and Schwarcz, 2000; see above), suggest that Strata
B1 and B2 are most likely to be attributable to MIS 11.
This therefore implies that the underlying Strata E and D
(Hoxnian) date to the first prolonged temperate substage in
MIS 11, and that Strata C and B are later cold and warm
substages, respectively, within MIS 11.
This correlation of the sequence at Hoxne with substages

of MIS 11 has wider implications for its correlation with
other terrestrial sites in the UK and further afield.
Although the full Hoxnian Interglacial sequence is not
found at Hoxne, a complete succession is found at Marks
Tey (Fig. 2), where pollen zones HoI-IV are represented
(Turner, 1970). Furthermore, the palynology suggests that
there is no evidence for a hiatus between the Anglian till
and the lacustrine sediments at either Hoxne or Marks Tey.
The Hoxnian record at Marks Tey is an overlapping
composite sequence from two main cores. The interpreta-
tion of these cores is of a continuous temperate sequence
through the Hoxnian without any indication of a cold
event. Together with the evidence from Hoxne of a later
MIS 11 cold substage, this suggests that the Hoxnian
Interglacial can be equated with the first major temperate
substage within MIS 11.
Palynology has also been used to correlate the lacustrine

deposits at Hoxne and Marks Tey with the organic
channel-fills at Clacton and Tillingham, which form part
of the Thames/Medway sequence (Fig. 2). At Clacton, the
Freshwater Beds and Estuarine Bed (Pike and Godwin,
1953) have been correlated with HoIIb–HoIIIb (Kerney,
1971; Bridgland et al., 1999), while at Tillingham, the silty
sands and organic silts are attributed to HoIII (Roe, 2001)
(Fig. 8). On the basis of their lithology, terrace stratigraphy
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and molluscan assemblages (Bridgland, 1994; Roe, 2001;
Preece et al., 2007), both these sites are argued to be part of
the same terrace aggradation as the Lower Gravel, Lower
Loam and Middle Gravels at Swanscombe (Fig. 2). All
three sites record the immigration of the ‘Rhenish’ fauna,
probably in late HoII (indicating a confluence of the
Thames with the Rhine). Furthermore, the presence of
estuarine molluscs indicates a high sea-level stand, argued
from the evidence at Clacton and Tillingham to occur
during HoIIIb (Fig. 8).

These correlations therefore suggest that the sequences
at Clacton, Tillingham and the Lower Gravel to Middle
Gravels at Swanscombe can also be attributed to the first
temperate substage of MIS 11. This is at variance with the
interpretation of Swanscombe proposed by Schreve
(2001a, b) who attributed the Middle Gravels to a later
temperate substage within MIS 11.

The interglacial sequence at Quinton in the West
Midlands has been interpreted as spanning the entire
Hoxnian Interglacial on the basis of its palynology
(Horton, 1989). However, evidence from the Coleoptera
indicates a more complex climatic picture with a ‘cold
interlude’ occurring during the latter part of the interglacial
(Coope and Kenward, 2007). The beetle fauna from this
‘cold interlude’ is very similar to that of the ‘Arctic Bed’ at
Hoxne and suggests a possible correlation. Alternatively,
since the uppermost samples of the Quinton sequence,
attributed to the onset of the succeeding glacial, also
yielded a similar suite of cold-adapted beetle species,
correlation of the Hoxne Arctic Bed with these uppermost
samples at Quinton is a possibility. The beetle evidence for
the ‘cold interlude’ at Quinton is at odds with the
palynological evidence which ‘‘does not appear to show
any response to this cold episode’’ (p. 3284). A similar
discrepancy in the evidence from Stratum C at Hoxne has
been accounted for by reworking of temperate pollen into
Stratum C (see above and Turner, 1970). A comparable
situation may have occurred at Quinton where pollen of
temperate character is reworked from the underlying
deposits and found in conjunction with an autochthonous
coleopteran assemblage indicative of cooler climatic con-
ditions. A re-evaluation of the palynology of the Quinton
succession may help to resolve these problems associated
with correlation of the Hoxne and Quinton sequences.
In Europe, significant advances have been made over the

last decade in relating the vegetational record from long,
continuous sequences from sites in southern Europe to the
marine isotope record. Key to this success has been core
MD01–2447, near the northwest coast of the Iberian
Peninsular (Fig. 2), where the marine isotope record can be
directly compared to pollen that reflects vegetational
changes inland (Desprat et al., 2005). This core is argued
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to span the last 426 ka and has been compared to other
continuous or composite palynological sequences from
Tenaghi Philippon in Greece, and Velay maar sites
(Praclaux, Le Bouchet and Ribains; Fig. 2) in France
(Reille and de Beaulieu, 1995; Tzedakis et al., 1997, 2001,
2006). All these sequences show a similar pattern of
vegetation and climate change with successive interglacial/
glacial cycles. These can be related to records of global
climate change from deep-sea cores (Oppo et al., 1998;
McManus et al., 1999), ice cores (Petit et al., 1999; EPICA
Community Members, 2004) and the changes in the
biogenic silica content in the sequence from Lake Baikal
(Prokopenko et al., 2001) (Fig. 9). Absolute dates from the
terrestrial sites support these correlations with 40Ar/39Ar
dates on trachytic tephra in deposits of the third
interglacial at Velay (Le Bouchet Interglacial) suggesting
an MIS 7 age (de Beaulieu et al., 2001), and palaeomag-
netic analyses and U-series dates on the sequence at
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Holsteinian, Vigo and Praclaux interglacials all correlate
with the first part of MIS 11.

In the later part of MIS 11, three cold/warm cycles have
been recognised in core MD01–2447. These cycles are
similar to a series of short-lived cold/warm phases in the
Velay sites, which occur after the Praclaux Interglacial and
prior to the Bargette cold episode of MIS 10. At Velay, two
stadial/interstadial cycles have been named (Chaconac
stadial/Jagonas 1 interstadial and Coucouron stadial/
Jagonas 2 interstadial).

During the stadials, the pollen from core MD01–2447
indicates that either heath or dry grassland dominated the
local vegetation, while at Praclaux the environment was
open with an abundance of steppe taxa. The interstadials
indicate the re-emergence of forest cover with some
deciduous woodland. In core MD01–2447, Pinus and
Quercus are prominent, with lesser quantities of Carpinus

and Abies. Pine, however, was argued to be over-
represented due to better dispersal ability and buoyancy.
The upland site of Praclaux is characterised during these
interstadials by the dominance of Picea, but also by the
presence of Carpinus, Quercus, Buxus, Fraxinus and Tilia.
It is suggested that the presence of Carpinus (up to 10%)
may indicate that there was a greater abundance of this
taxon at lower altitudes (Reille and de Beaulieu, 1995).

How far north this deciduous woodland stretched is
difficult to gauge, due to the paucity of sites that clearly
correlate with these phases. Although there is no unequi-
vocal palaeobotanical information on the vegetation at
Hoxne from Stratum B, the mammalian fauna includes
obligate woodland species (e.g. beaver, fallow deer and
macaque) providing strong evidence that there must have
been some forest cover.

The evidence from Hoxne, therefore, suggests that the
‘Arctic Bed’ of Stratum C and the temperate phase of
Stratum B correlate with one of the cold/warm cycles in the
later part of MIS 11, although because of the hiatus
between Stratum D and C, it is not clear to which cycle
they should be attributed. The problem of recycled
pollen in both Strata C and B also makes it difficult to
reconstruct their vegetation histories, other than the
survival of leaves of dwarf birch and dwarf willow, in
Stratum C. However, core MD01–2447 and Praclaux
provide clues about the vegetation that might have been
present at Hoxne, despite differences in latitude, and in the
case of Praclaux in altitude (1100m, compared to Hoxne at
30m) between the sites.

Elsewhere in northern Europe, there is little agreement
on the correlation of post-Holsteinian temperate events.
Most authorities would now agree that the Holsteinian is
attributable to MIS 11. If the interpretation favoured here
is correct, that the Hoxnian and Holsteinian both correlate
with the first temperate event of MIS 11, then this still
leaves the question of whether later MIS 11 interstadials
can be recognised in northern Europe.

One of the best Holsteinian pollen records comes from
the lacustrine sequence at Ossowka in eastern Poland
(Nitychoruk et al., 2005; Fig. 2). This sequence has been
constrained by TL dates of ca 430 ka at the MIS 12/11
boundary, and the estimation of the duration of the
sequence is calculated from annual laminations in the
interglacial part of the record. Like the pollen sequences in
southern Europe, after a stable temperate climate of an
estimated 35–39 ka (the Holsteinian), there follows a series
of climatic oscillations with open, cold vegetation alter-
nating with a boreal environment dominated by pine. If the
estimated timescale of Nitychoruk et al. (2005) is correct,
this would imply that the later temperate events in MIS 11
are characterised by boreal pine forest in central, northern
Europe.
Correlation with other north European sites (e.g.

Bilzingsleben and Schöningen) is as yet uncertain due to
the varying interpretations that are currently put forward
(cf. Mania, 1995; Urban, 1995, 2007; Turner, 1998;
Bridgland et al., 2006). However, it is worth noting some
of the similarities between the Channel II, Level 4b
deposits at Schöningen to Stratum B at Hoxne. Level 4b,
which includes most of the spears, is assigned to the
Reinsdorf B Interstadial (Kolfschoten, 1993). The fauna is
dominated by horse and the pollen indicates boreal forest
predominantly of pine, but with some spruce, birch and
larch (Urban, 2007).
The differences in the vegetational records from south-

ern to northern Europe would suggest quite a marked
climatic gradient between 401 and 501 latitude during the
later interstadials of MIS 11. A similar pattern has also
been identified for MIS 5, where the vegetational records
for substages 5c and 5a at Grande Pile (France; Woillard,
1978) show deciduous woodland, whereas those further
north in the Netherlands, Germany, Denmark and, to a
lesser extent, the UK show that the vegetation was
dominated by boreal forest (Behre, 1989; Turner, 1998).
Turner suggests that either the phases were too short to
allow for the immigration of thermophilous trees, or that
there was a real climatic barrier to the spread of deciduous
woodland to the north. This may be related to circulation
patterns in the North Atlantic Ocean, with a southerly shift
in the Gulf Stream, leading to even cooler temperatures in
northern Europe. There was also likely to have been a
west–east gradient in climate; Zagwijn (1990) has suggested
that summer temperatures during substage 5c showed a
marked decrease from the southwest to the northeast in
Europe, unlike substage 5e, where the gradient was from
southeast to northwest. Although during substage 5c there
seem to be few vegetational differences between sites in
Britain and those further east, where forests of pine, birch
and occasionally spruce were dominant (Behre, 1989), it
has been suggested that Britain had a more continental
climate with cold winters, but warm summers (Coope,
1977). If this can be used as an analogue for the late MIS
11 interstadials, then Hoxne might have had vegetation of
boreal forest, but with warm summer temperatures. This
conclusion is supported by the faunal evidence from
Stratum B at Hoxne.
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8. Conclusions

Hoxne is a key site for understanding the Middle
Pleistocene sequence of northern Europe and understand-
ing how this correlates with sequences from southern
Europe. The site provides a stratigraphic sequence that
includes two post-Anglian temperate phases. The first of
these (the Hoxnian) is argued to correlate with the first
sustained temperate phase in MIS 11 between ca 425–395ka.
The second, as represented by Stratum B, is correlated with a
later interstadial in MIS 11. These two temperate phases may
be tentatively correlated with substages 11c and 11a,
respectively, which are evident in the SPECMAP stack
(Imbrie et al., 1984; Tzedakis et al., 2001). Alternatively, the
acme of the Hoxnian may be correlated with isotopic event
11.3 and Stratum B with either event 11.23 or 11.1 of
Bassinot et al. (1994). The intervening cold episode,
represented by Stratum C is correlated with marine isotope
substage 11b and may equate to either event 11.24 or 11.22 in
the Low Latitude Stack (Bassinot et al., 1994).

Lithostratigraphy, palynology and molluscan data sug-
gest that the sequences at Clacton, Tillingham and the
Lower Gravels to Middle Gravels at Swanscombe can be
attributed to the first temperate event (the Hoxnian).
Comparison with the continuous palynological records
from southern Europe suggests that the Hoxnian correlates
with the Vigo Interglacial of northwest Iberia, the Praclaux
Interglacial of the Velay maars sites and to the Holsteinian
Interglacial of northern Europe. Stratum B is argued to
correlate with either the Jagonas 1 or 2 Interstadial from
the Velay sites. Reconstruction of the vegetation during
these interstadials suggests that in northern Europe they
were dominated by a pine-birch boreal forest, which
supported a diverse large mammal fauna.

Traditionally, these faunas have been interpreted as
indicating fully interglacial conditions. The evidence
from Hoxne, therefore, clearly indicates that similar
faunal assemblages can also occur in environments of
interstadial character. This has implications for the
biostratigraphical subdivision of temperate episodes in
the Middle Pleistocene based on mammalian evidence
(cf. Schreve, 2001a, b).

Hoxne is also an important site for understanding the
Lower Palaeolithic occupation of northern Europe. The
archaeological assemblages at Hoxne can now be shown to
date to an interstadial that has not been previously
recognised in Britain. Although there are several MIS 11
sites where fine-grained, organic sediments allow detailed
environmental reconstruction, they have all suggested that
human occupation was associated with deciduous wood-
land in fully temperate climate (cf. Ashton et al., 2006). At
Hoxne, however, humans can be demonstrated to have
lived in a boreal forest environment and probably with
distinctly cooler winters. This prompts questions about the
technologies required (clothing, shelters, control of fire) or
physical adaptations needed in order to survive these
cooler environments. The range of environments that
humans inhabited during the Middle Pleistocene has long
been the subject of debate (Gamble, 1987, 1992; Roebroeks
et al., 1992). Hoxne now adds to the small list of sites from
the Lower Palaeolithic where the human habitat can be
reconstructed in more detail and indicates human adapt-
ability to a range of different habitats.
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gen open cast lignite mine (eastern Lower Saxony, Germany).

Mededelingen Rijks Geologische Dienst 52, 175–185.

Urban, B., 2007. Interglacial pollen records from Schöningen, north
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