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Chapter 3

A Wiener Lemma
for the discrete Heisenberg group

Invertibility criteria and applications to algebraic dynamics1

Abstract

We present a Wiener Lemma for the group algebra `1(H,C) and group C∗-algebra C∗(H)
of the discrete Heisenberg group H. In particular, we reduce the problem of deciding on
invertibility in these Banach algebras to the study of invertibility of associated elements in
rotation algebras.

Moreover, we will apply Wiener’s Lemma to decide on expansiveness of certain princi-
pal algebraic actions of H.

The proof of Wiener’s Lemma for H can be generalised to countable nilpotent groups
Γ. We will analyse invertibility in `1(Γ,C) and C∗(Γ) and explain the important role of
monomial representations for these investigations.

1 This chapter is based on:
M. Göll, K. Schmidt and E. Verbitskiy, A Wiener Lemma for the discrete Heisenberg group: Invertibility
criteria and applications to algebraic dynamics, (2014).
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Chapter 3 A Wiener Lemma for the discrete Heisenberg group

3.1 Introduction

Let Γ be a countably infinite discrete group. The aim of this article is to find a verifiable
criterion – a Wiener Lemma – for invertibility in the group algebra

`1(Γ,C) :=
{

(fγ)γ∈Γ :
∑
γ∈Γ
|fγ | <∞

}
,

in particular for the case where Γ is the discrete Heisenberg group H.

Our main motivation to study this problem is an application in the field of algebraic
dynamics which we introduce first. An algebraic Γ-action is a homomorphism α : Γ −→
Aut(X) from Γ to the group of automorphisms of a compact metrisable abelian group X
[29].

We are especially interested in principal actions which are defined as follows. Let f
be an element in the integer group ring Z[Γ], i.e., the ring of functions Γ −→ Z with
finite support. The Pontryagin dual of the discrete abelian group Z[Γ]/Z[Γ]f will be
denoted by Xf ⊆ TΓ, where T = R/Z (which will be identified with the unit interval
(0, 1]). Pontryagin’s duality theory of locally compact abelian groups tells us that Xf can
be identified with the annihilator of the principal left ideal Z[Γ]f , i.e.,

Xf = (Z[Γ]f)⊥ =
{
x ∈ TΓ :

∑
γ∈Γ

fγxγ′γ = 0 for every γ′ ∈ Γ
}
. (3.1.1)

The left shift-action λ on TΓ is defined by (λγx)γ′ = xγ−1γ′ for every x ∈ TΓ and
γ, γ′ ∈ Γ. Denote by αf the restriction of λ on TΓ to Xf . The pair (Xf , αf ) forms an
algebraic dynamical system which we call principal Γ-action – since it is defined by a
principal ideal (cf. (3.1.1)).

Since a principal Γ-action (Xf , αf ) is completely determined by an element f ∈ Z[Γ],
one should be able to express its dynamical and topological properties in terms of prop-
erties of f . Expansiveness is such a dynamical property which allows a nice algebraic
interpretation. Let (X,α) be an algebraic dynamical system and d a translation invariant
metric on X . The Γ-action α is expansive if there exists a constant ε > 0 such that

sup
γ∈Γ

d(αγx, αγy) > ε ,

for all pairs of distinct elements x, y ∈ X . We know from [7, Theorem 3.2] that (Xf , αf )
is expansive if and only if f is invertible in `1(Γ,R). This result was proven already in the
special cases Γ = Zd and for groups Γ which are nilpotent in [29] and in [8], respectively.
Although, this result is a complete characterisation of expansiveness, it is general hard to
check whether f is invertible in `1(Γ,R) or not.
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3.2 Wiener’s Lemma

3.1.1 Outline of the article

In Section 3.2 we will recall known criteria for invertibility in symmetric Banach algebras
A. In particular, we will discuss the equivalence of the existence of an inverse a−1 of a ∈
A, and the invertibility of the operators π(a) in theC∗-algebra of bounded operators on the
representation spaceHπ for every unitary representations π (up to unitary equivalence) of
A. Moreover, we will describe the dual of H (cf. Section 3.2 for a definition) and discuss
how its complicated structure makes the study of invertibility in the group algebras of H
so tremendously difficult.

Theorem 3.2.11 is the main result of this paper which will allow us to restrict the at-
tention to certain ‘nice’ canonical irreducible representations for questions concerning
invertibility in the group algebra of the discrete Heisenberg group H.

The proof of Theorem 3.2.11 can be found in the Sections 3.3 and 3.4.
In Section 3.5 we will generalise Theorem 3.2.11 to countable discrete nilpotent groups.
The Sections 3.6 and 3.8 contain applications of Theorem 3.2.11, in particular:

• invertibility of f ∈ Z[H] in `1(H,R) can be verified with the help of the finite-
dimensional irreducible unitary representations of H;

• criteria for non-invertibility for ‘linear’ elements in f ∈ Z[H].

In Section 3.7 we will explore a connection to Time-Frequency Analysis and give an
alternative proof of Wiener’s Lemma for twisted convolution algebras, which only uses the
representation theory of H. Theorem 3.7.4 – which is based on a result of Linnell (cf. [22])
– gives a full description of the spectrum of the operators π(f) acting on L2(R,C), where
π is a Stone-von Neumann representation (cf. (3.7.1) for a definition) and f ∈ Z[H].

3.2 Wiener’s Lemma

We start our discussion with a survey of Wiener’s Lemma in its classical form. Let us
denote byA(T) the Banach algebra of functions with absolutely convergent Fourier series
on T.

Theorem 3.2.1 (Wiener’s Lemma). An element f ∈ A(T) is invertible, i.e. 1/f ∈ A(T),
if and only if f(s) 6= 0 for all s ∈ T.

This result appears in a seemingly unrelated context. The convolution algebra `1(Z,C)
is isomorphic to A(T) and hence `1(Z,C) can be embedded in C(T,C) in a natural way.
Let f ∈ `1(Z,C) and Cfh = f ∗ h be the convolution operator on `2(Z,C). Then the
following holds:
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Chapter 3 A Wiener Lemma for the discrete Heisenberg group

Theorem 3.2.2. If f ∈ `1(Z,C), then the convolution operator Cf is invertible on
`2(Z,C) if and only if f is invertible in `1(Z,C). Moreover, if f is invertible, then Cf
is invertible on all `p-spaces with 1 ≤ p ≤ ∞.

Before we start our review of more general results let us mention the concept of inverse-
closedness which originates from Wiener’s Lemma as well. The fact that f ∈ A(T) is
invertible in A(T) if and only if f is invertible in the larger Banach algebra of continuous
functions C(T,C) leads to the question: for which pairs of nested unital Banach algebras
A,B with A ⊆ B and with the same multiplicative identity element does the following
implication hold:

a ∈ A and a−1 ∈ B =⇒ a−1 ∈ A . (3.2.1)

In the literature a pair of Banach algebras which fulfils (3.2.1) is called a Wiener pair.
Wiener’s Lemma was the starting point of Gelfand’s theory of commutative Banach

algebras. Gelfand’s theory links the question of invertibility in a commutative Banach
algebraA to the study of its irreducible representations and the compact space of maximal
ideals Max(A). We collect in the following theorem several criteria for invertibility in
unital commutative Banach algebras.

Theorem 3.2.3 (cf. [10]). Suppose A is a unital commutative Banach algebra. The set of
irreducible representations of A is isomorphic to the set of multiplicative functionals, and
isomorphic to the compact space of maximal ideals Max(A). Furthermore, the following
statements are equivalent

1. a ∈ A is invertible;

2. a 6∈ m for all m ∈ Max(A);

3. Φm(a) is invertible in A/m for all m ∈ Max(A), where Φm : A −→ A/m ∼= C is
the canonical projection map;

4. Φm(a) 6= 0 for all m ∈ Max(A);

5. π(a)v 6= 0 for every one-dimensional irreducible representation π of A and v ∈
Cr{0}.

In this article we concentrate on the harmonic analysis of rings associated with a count-
ably infinite group Γ furnished with the discrete topology. Beside Z[Γ] and `1(Γ,C) we
are interested in C∗(Γ), the group-C∗-algebra of Γ, i.e., the enveloping C∗-algebra of
`1(Γ,C).

We write a typical element f ∈ `∞(Γ,C) as a formal sum
∑
γ∈Γ fγ · γ, where fγ =

f(γ). The involution f 7→ f∗ is defined by f∗ =
∑
γ∈Γ f̄γ−1 · γ. The product of f ∈
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3.2 Wiener’s Lemma

`1(Γ,C) and g ∈ `∞(Γ,C) is given by the convolution

fg =
∑

γ,γ′∈Γ
fγgγ′ · γγ′ =

∑
γ,γ′∈Γ

fγgγ−1γ′ · γ′ . (3.2.2)

Let A be a Banach algebra with multiplicative identity element 1A. The spectrum of
a ∈ A is the set of elements c ∈ C such that a − c1A is not invertible in A and will be
denoted by σ(a).

3.2.1 Representation theory

We recall at this point some relevant definitions and results from representation theory,
which will be used later. Moreover, we will recall results for symmetric Banach-∗-algebras
which are in the spirit of Wiener’s Lemma.

Unitary Representations

Let H be a complex Hilbert space with inner product 〈·, ·〉. We denote by B(H) the
algebra of bounded linear operators on H, furnished with the strong operator topology.
Further, denote by U(H) ⊂ B(H) the group of unitary operators onH. If Γ is a countable
group, a unitary representation π of Γ is a homomorphism γ 7→ π(γ) from Γ into U(H)
for some complex Hilbert space H. Every unitary representation π of Γ extends to a
∗-representation of `1(Γ,C), which is again denoted by π, and which is given by the
formula π(f) =

∑
γ∈Γ fγπ(γ) for f =

∑
γ∈Γ fγ ·γ ∈ `1(Γ,C). Clearly, π(f∗) = π(f)∗.

The following theorem was probably first published in [11] but we refer to [26, Theorem
12.4.1].

Theorem 3.2.4. Let Γ be a discrete group. Then there are bijections between

• the class of unitary representations of Γ;

• the class of non-degenerate2 ∗-representations of `1(Γ,C);

• the class of non-degenerate ∗-representations of C∗(Γ).

Moreover, these bijections respect unitary equivalence and irreducibility.

Hence the representation theories of Γ, `1(Γ,C) and C∗(Γ) coincide. In considera-
tion of this result we will use the same symbol for a unitary representation of Γ and its
corresponding ∗-representations of the group algebras `1(Γ,C) and C∗(Γ).

2A representation π of a Banach ∗-algebra A is called non-degenerate if there is no non-zero vector v ∈
Hπ such that π(a)v = 0 for every a ∈ A.
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Chapter 3 A Wiener Lemma for the discrete Heisenberg group

States and the GNS construction

Suppose that A is a unital C∗-algebra. A positive linear functional φ : A −→ C is a state
if φ(1A) = 1. We denote by S(A) the space of states of A, which is a weak∗-compact
convex subset of the dual space of A. The extreme points of S(A) are called pure states.

A representation π of A is cyclic if there exists a vector v ∈ Hπ such that the set
{π(a)v : a ∈ A} is dense in Hπ, in which case v is called a cyclic vector. The Gelfand-
Naimark-Segal (GNS) construction links the cyclic representations of A and the states of
A in the following way. If π is a cyclic representation with a cyclic unit vector v, then
φπ,v, defined by

φπ,v(a) = 〈π(a)v, v〉

for every a ∈ A, is a state ofA. If π is irreducible, then φπ,v is a pure state. Moreover, for
every state φ of A there is a cyclic representation (πφ,Hφ) and a cyclic unit vector vφ ∈
Hφ such that φ(a) = 〈πφ(a)vφ, vφ〉 for every a ∈ A. The pure states of A correspond to
irreducible representations of A (up to unitary equivalence) via the GNS construction.

Type I groups

The commutant of a subset N of B(H) is the set

N
′ := {T ∈ B(H) : TS = ST for all S ∈ N} .

A von Neumann algebra N is a ∗-subalgebra of B(H) which fulfils N = (N ′)′ . The von
Neumann algebraNπ generated by a unitary representation π of a group Γ, is the smallest
von Neumann algebra which contains π(Γ).

We call a representation π a factor if Nπ ∩ N
′

π = C ·1B(Hπ). A group is of Type I if
every factor representation is a direct sum of copies of an irreducible representation.

Induced and monomial representations

Let Γ be countably infinite and H a subgroup of Γ. Let σ be a unitary representation
of H with representation space Hσ. The induced representation IndΓ

H of σ is the set of
functions in L2(Γ,Hσ) which satisfy:

f(hγ) = σ(h)f(γ) ,

for every h ∈ H and γ ∈ Γ and where Γ acts via the right regular representation.
A representation of Γ is called monomial if it is unitary equivalent to a representation

induced from a one-dimensional representation of a subgroup of Γ.

Theorem 3.2.5 ([14]). If Γ is a nilpotent group of Type I, then all its irreducible represen-
tations are monomial.
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3.2 Wiener’s Lemma

3.2.2 Symmetric Banach-∗-algebras

In order to study invertibility in `1(Γ,C) and C∗(Γ) in the non-abelian setting we will try
to find criteria similar to those described in Theorem 3.2.3. For this purpose the following
definition will play a key role.

Definition 3.2.1. A unital Banach-∗-algebra A is symmetric if for every element a ∈ A
the spectrum of a∗a is non-negative, i.e., σ(a∗a) ⊆ [0,∞).

Typical examples of symmetric Banach-*-algebras are C∗-algebras.
We turn to the study of nilpotent groups and their associated group algebras.

Theorem 3.2.6 ([16]). Let Γ be a countably infinite discrete nilpotent group. Then the
Banach-∗-algebra `1(Γ,C) is symmetric.

The reason why it is convenient to restrict to the study of invertibility in symmetric
unital Banach-∗-algebra is demonstrated by the following three theorems, which show
similarities to Wiener’s Lemma and Theorem 3.2.3, respectively.

Theorem 3.2.7 ([24]). An element a in a symmetric unital Banach-∗-algebra A is not left
invertible in A if and only if there exists a pure state φ with φ(a∗a) = 0. Equivalently, a
is not left invertible if and only if there exists an irreducible representation π of A and a
unit vector u ∈ Hπ such that π(a)u = 0.

This result should be compared with Gelfand’s theory for commutative Banach algebras.
Wiener’s Lemma for `1(Z,C) says that an element f ∈ `1(Z,C) is invertible if and only
if the Fourier-transform of f does not vanish on T, i.e., (Ff)(s) 6= 0 for all s ∈ T.3 The
Fourier-transform of f , evaluated at the point θ ∈ T, can be viewed as the evaluation of
the one-dimensional irreducible unitary representation πθ : n 7→ e2πinθ of Z at f , i.e.,

(Ff)(θ) =
(∑

n∈Z
fnπθ(n)

)
1 = πθ(f)1 .

For symmetric Banach-∗-algebras one obtains an important result concerning inverse-
closedness.

Theorem 3.2.8 ([26, Theorem 11.4.1 and Corollary 12.4.5]). If `1(Γ,C) is a symmetric
Banach-∗-algebra, then

1. `1(Γ,C) is semisimple, i.e., the intersection of the kernels of all the irreducible
representations of `1(Γ,C) is trivial.

3 To fix notation: for f ∈ L2(T, λT) (where λT is Lebesgue measure on T), the Fourier transform
f̂ : Z −→ C is defined by f̂n =

∫
T f(s)e−2πins dλT(s). The Fourier transform (Fg) : T −→ C

of g ∈ `2(Z,C) is defined by (Fg)(s) =
∑
n∈Z gne

2πins.
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Chapter 3 A Wiener Lemma for the discrete Heisenberg group

2. `1(Γ,C) and its enveloping C∗-algebra C∗(Γ) form a Wiener pair.

We now turn to the spectral invariance of convolution operators. We already saw in the
introduction of Wiener’s Lemma that invertibility of f ∈ `1(Z,C) can be validated by
studying invertibility of the convolution operator Cf acting on the Hilbert space `2(Z,C).
Moreover, the spectrum of Cf is independent of the domain, i.e., the spectrum of the
operator Cf : `p(Z,C) −→ `p(Z,C) is the same for all p ∈ [1,∞]. As the following
theorem shows, this result is true for a large class of groups, in particular, for all finitely
generated nilpotent groups.

Theorem 3.2.9 ([3]). Let f ∈ `1(Γ,C) and Cf the associated convolution operator on
`p(Γ,C). For all 1 ≤ p ≤ ∞ we get σB(`p(Γ,C))(Cf ) = σB(`2(Γ,C))(Cf ) if and only if Γ
is amenable and `1(Γ,C) is a symmetric Banach-∗-algebra.

Finally, let us state a very general form of Wiener’s Lemma for `1(Γ,C), where Γ is an
arbitrary discrete countably infinite group.

Theorem 3.2.10 ([7, Theorem 3.2]). Let f ∈ `1(Γ,C), then f is invertible in `1(Γ,C) if
and only if

K∞(f) := {v ∈ `∞(Γ,C) : Cfv = 0} = {0} .

This theorem says that it is enough to check if 0 is in the discrete spectrum of the left
convolution operator Cf : `∞(Γ,C) −→ `∞(Γ,C) in order to determine whether f is
invertible or not (cf. (3.2.2)).

3.2.3 The discrete Heisenberg group

The discrete Heisenberg group H is generated by S = {x, x−1, y, y−1}, where

x =

1 1 0
0 1 0
0 0 1

 , y =

1 0 0
0 1 1
0 0 1

 .

The center of H is generated by

z = xyx−1y−1 =

1 0 1
0 1 0
0 0 1

 .

The elements x, y, z satisfy the following commutation relations

xz = zx, yz = zy, xkyl = ylxkzkl, k, l ∈ Z. (3.2.3)

The discrete Heisenberg group is nilpotent and hence amenable.
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3.2 Wiener’s Lemma

The dual of a discrete group

Let Γ be a countable discrete group. In this subsection we will discuss what kind of
problems can occur when Γ is not of Type I. Denote by Γ̂ the dual of Γ, i.e., the set of all
unitary equivalence classes of irreducible unitary representations of Γ.

Definition 3.2.2. Let A be a C∗-algebra. A closed two-sided ideal I of A is primitive if
there exists an irreducible representation π of A such that kerπ = I. The set of primitive
ideals of A is denoted by Prim(A).

Suppose that the group Γ is not of Type I. Then certain pathologies arise:

• The map Γ̂ −→ Prim(C∗(Γ)) given by π 7→ ker(π) is not injective. In other words,
if π1, π2 ∈ Γ̂, then kerπ1 = kerπ2 does not necessarily imply that π1 and π2 are
unitary equivalent.

• Γ̂ is not behaving nicely neither as a topological space nor as a measurable space
in its natural topology or Borel structure, respectively (cf. [10, Chapter 7] for an
overview).

Furthermore, there are examples where the direct integral decomposition of a repre-
sentation is not unique, in the sense that there are disjoint measures µ, ν on Γ̂ such that∫ ⊕

Γ̂ πdµ and
∫ ⊕

Γ̂ πdν are unitary equivalent. Moreover, we cannot assume that all irre-
ducible representations are induced from one-dimensional representations of finite-index
subgroups like it is the case for nilpotent groups of Type I by Theorem 3.2.5.

The discrete Heisenberg group H does not possess an abelian normal subgroup of finite
index, and is therefore not of Type I (cf. [30]). In fact, one is able to construct uncount-
ably many unitary inequivalent irreducible representations of H for every irrational θ ∈ T.
These representations arise from a special class of measures. This fact is well-known to
specialists, but details are not easily accessible in the literature. Since these results are im-
portant for our understanding of invertibility, we present this construction in some detail
for the convenience of the reader. We would like to mention first that Moran announces
in [23] a construction of unitary representions of H using the same approach as presented
here. These results were not published as far as we know. Moreover, Brown gives exam-
ples of unitary irreducible representations of the discrete Heisenberg group which are not
monomial in [5].

Let (X,B, µ) be a measure space, where X is a compact metric space, B is a Borel
σ-algebra, and µ a finite measure.

Definition 3.2.3. A probability measure µ is quasi-invariant with respect to a homeomor-
phism φ : X −→ X if µ(B) = 0 if and only if µ(φB) = 0, for B ∈ B. A quasi-invariant
measure µ is ergodic if

B ∈ B and φB = B =⇒ µ(B) ∈ {0, 1} .
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Chapter 3 A Wiener Lemma for the discrete Heisenberg group

In [20] uncountably many inequivalent ergodic quasi-invariant measures for every irra-
tional rotation of the circle were constructed. Later it was shown in [19] that a homeo-
morphism φ on a compact metric spaceX has uncountably many inequivalent non-atomic
ergodic quasi-invariant measures if and only if φ has a recurrent point x, i.e., φn(x) returns
infinitely often to any punctured neighbourhood of x.

We use the measures found in [20] to construct unitary irreducible representations of H.
Let Z act on T via rotations

Rθ : t 7→ t+ θ mod 1 (3.2.4)

by an irrational angle θ ∈ T. Let µ be an ergodic Rθ-quasi-invariant probability measure
on T. Let Tθ,µ : L2(T, µ) −→ L2(T, µ) be the unitary operator defined by

(Tθ,µf)(t) =

√
dµ(t+ θ)
dµ(t) f(t+ θ) =

√
dµ(Rθt)
dµ(t) f(Rθt) , (3.2.5)

for every f ∈ L2(T, µ) and t ∈ T. The operator Tθ,µ is well-defined because of the
quasi-invariance of µ. Consider also the unitary operator Mµ defined by

(Mµf)(t) = e2πitf(t) , (3.2.6)

for every f ∈ L2(T, µ) and t ∈ T.
We will show that the representation πθ,µ of H defined by

πθ,µ(x) := Tθ,µ , πθ,µ(y) := Mµ and πθ,µ(z) := e2πiθ (3.2.7)

is irreducible. Obviously, Tθ,µMµ = e2πiθMµTθ,µ = πθ,µ(z)MµTθ,µ.

Lemma 3.2.4. The unitary representation πθ,µ of H given by (3.2.7) is irreducible.

Proof. Every element in L2(T, µ) can be approximated by linear combinations of ele-
ments in the set

{Mn
µ 1 : n ∈ Z} = {t 7→ e2πint : n ∈ Z} .

A bounded operator A on L2(T, µ), which commutes with all operators of the form Mn
µ ,

n ∈ Z, and hence with multiplication with any L∞-function, must be a multiplication
operator, i.e., Af(t) = g(t) · f(t) for some g ∈ L∞(T, µ).

Indeed, if A commutes with multiplication by h ∈ L∞(T, µ), then

Ah = h ·A1 = hg ,

say. Denote by ‖ · ‖op the operator norm, then

‖hg‖L2(T,µ) = ‖Ah‖L2(T,µ) ≤ ‖A‖op‖h‖L2(Tµ) , (3.2.8)
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3.2 Wiener’s Lemma

which implies that g ∈ L∞(T, µ) (otherwise one would be able to find a measurable setB
with positive measure on which g is strictly larger than ‖A‖op, and the indicator function
1B would lead to a contradiction with (3.2.8)).

The ergodicity of µ with respect toRθ implies that only constant functions in L∞(T, µ)
are Rθ-invariant µ-a.e.. Hence, if A commutes with Tθ,µ as well, then we can conclude
thatA is multiplication by a constant c ∈ C. By Schur’s Lemma, the operators Tθ,µ,Mµ ∈
B(L2(T, µ)) define an irreducible representation πθ,µ of H.

Suppose that θ ∈ T is irrational, and that µ and ν are two ergodic Rθ-quasi-invariant
measures on T. Let πθ,µ and πθ,ν be the corresponding irreducible unitary representations
constructed above.

Lemma 3.2.5. The representations πθ,µ and πθ,ν are unitary equivalent if and only if µ
and ν are equivalent.

Proof. Assume πθ,µ and πθ,ν are unitary equivalent. Then there exists a unitary operator
U : L2(T, µ) −→ L2(T, ν) such that

Uπθ,µ(γ) = πθ,ν(γ)U (3.2.9)

for every γ ∈ H.
Denote multiplication by a function h ∈ C(T,C) by Ah. The set of trigonometric

polynomials, which is spanned by {Mn
µ 1 : n ∈ Z}, is dense in C(T,C). This implies

that (3.2.9) holds for all h ∈ C(T,C), i.e., that UAh = AhU for any h ∈ C(T,C).
Since U is an isometry we get that∫

|h|212dµ = 〈Ah1, Ah1〉µ (3.2.10)

= 〈AhU(1), AhU(1)〉ν (3.2.11)

=
∫
|h|2|U(1)|2dν , (3.2.12)

where 〈·, ·〉ρ is the standard inner product on the Hilbert space L2(T, ρ). Using the same
argument for U−1 we get, for every h ∈ C(T,C),∫

|h|212dν =
∫
|h|2|U−1(1)|2dµ . (3.2.13)

Define, for every positive finite measure σ on T, a linear functional

Iσ : C(T,C) −→ C by Iσ(h) =
∫
h dσ .

Since Iµ(h) = I|U(1)|2ν(h) and Iν(h) = I|U−1(1)|2µ(h) for all positive continuous func-
tions h by (3.2.10) – (3.2.13), we conclude from the Riesz representation theorem that µ
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Chapter 3 A Wiener Lemma for the discrete Heisenberg group

and ν are equivalent.
Conversely, if µ and ν are equivalent, then the linear operator

U : L2(T, µ) −→ L2(T, ν) given by Uf =
√
dµ

dν
f

for every f ∈ L2(T, µ), is unitary and satisfies that Uπθ,µ(γ) = πθ,ν(γ)U for every
γ ∈ H.

In this way one obtains uncountably many inequivalent irreducible unitary representa-
tion of H for a given irrational rotation number θ ∈ T.

Theorem 3.2.7 states that in order to decide on invertibility of f ∈ `1(H,C), one has to
check invertibility of π(f) for every irreducible representations π of H, and in particular,
for every πθ,µ as above. (In fact, every irreducible unitary representation π of H is uni-
tary equivalent to πθ,µ for some probability measure µ on S which is quasi-invariant and
ergodic with respect to some circle rotation.)

Since the space (of equivalence classes) of probability measures, which are quasi-
invariant and ergodic under rotations, is extremely complicated and has no nice Borel
structure, the problem of deciding on invertibility of f via Theorem 3.2.7 becomes im-
practical. However, the problem becomes easier if one is able to restrict oneself to unitary
representations arising from rotation invariant probability measures. This is exactly our
main result.

Before formulating this result we write down the relevant representations explicitly.

3.2.4 The representations π(s,t)
θ .

Take θ ∈ T, and consider the corresponding rotation Rθ : T −→ T given by (3.2.4). If
θ is irrational, the Lebesgue measure λ = λT on T is the unique Rθ-invariant probability
measure, and the representation πθ,λ on L2(T, λ) defined in (3.2.7) is irreducible. One
can modify this representation by setting, for every s, t ∈ T,

π
(s,t)
θ (x) = e2πisπθ,λ(x), π

(s,t)
θ (y) = e2πitπθ,λ(y), π

(s,t)
θ (z) = e2πiθ . (3.2.14)

Then π(s,t)
θ is obviously again an irreducible unitary representation of H on H

π
(s,t)
θ

=
L2(T, λ).

If θ is rational we write it as θ = p/q with 0 ≤ p < q and gcd(p, q) = 1 and consider
the unitary representation π(s,t)

θ of H onH
π

(s,t)
θ

= Cq given by

π
(s,t)
θ (x) = e2πis

(
0 Iq−1
1 0

)
, (3.2.15)
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3.3 Local principles

π
(s,t)
θ (y) = e2πit


1 0 ... 0 0
0 e2πiθ ... 0 0
...

...
. . .

...
...

0 0 ... e2πi(q−2)θ 0
0 0 ... 0 e2πi(q−1)θ

 and π
(s,t)
θ (z) = e2πiθIq ,

(3.2.16)

with s, t ∈ T, where Iq−1 is the (q − 1)× (q − 1) identity matrix.
Every Rθ-invariant and ergodic probability measure µ on T is uniformly distributed on

the set {t, 1/q + t, . . . , t+ (q − 1)/q} ⊂ T for some t ∈ T; if we denote this measure by
µt then µt = µt+k/q for every k = 0, . . . , q − 1.

With this notation at hand we can state our main result, the proof of which will be given
in the following Sections 3.3 – 3.4.

Theorem 3.2.11. An element a ∈ `1(H,C) is invertible if and only if the linear operator
π

(s,t)
θ (a) is invertible on the corresponding Hilbert spaceH

π
(s,t)
θ

for every θ, s, t ∈ T.

The main advantage of Theorem 3.2.11 over Theorem 3.2.7 is that it is not necessary
to check invertibility of π(a) for every irreducible representation of H, but that one can
restrict oneself for this purpose to the ‘nice’ part of the dual of the non-Type I group H.
As we shall see later, one can make a further reduction if θ is irrational: in this case one
only has to check invertibility of πθ(a) = π

(1,1)
θ (a) on L2(T, λ).

3.3 Local principles

Let Γ be a countable discrete nilpotent group. In this section we will discuss so-called
local principles in order to check invertibility of an element a in `1(Γ,C) or C∗(Γ). The
idea is to study invertibility of projections of a onto certain quotient algebras of `1(Γ,C)
or C∗(Γ) and to conclude from this information whether a is invertible or not. Therefore,
the main task is to find a sufficient family S of ideals of `1(Γ,C) or C∗(Γ) such that one
can deduce the invertibility of a from the invertibility of the projections of a on `1(Γ,C)/I
for all I ∈ S .

3.3.1 Allan’s local principle

We have used Allan’s local principle already in [12] to study invertibility in `1(H,C).
However, in that paper we were not able to prove Theorem 3.2.11 with this approach.

Suppose A is a unital Banach algebra with non-trivial center

C(A) :=
{
c ∈ A : cb = bc for all b ∈ A

}
.

The commutative Banach subalgebra C(A) is closed and contains the identity 1A. For
every m ∈ Max(C(A)) (the space of maximal ideals of C(A)) we denote by Jm the
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Chapter 3 A Wiener Lemma for the discrete Heisenberg group

smallest closed two-sided ideal of A which contains m and denote by Φm : a 7→ Φm(a)
the canonical projection of an element a ∈ A to the quotient algebra A/Jm. The algebra
A/Jm, furnished with the quotient norm

‖Φm(a)‖ := inf
b∈Jm

‖a+ b‖A (3.3.1)

becomes then a unital Banach algebra.

Theorem 3.3.1 ([1] Allan’s local principle). An element a ∈ A is invertible in A if and
only if Φm(a) is invertible in A/Jm for every m ∈ Max(C(A)).

3.3.2 Local principles in C∗-algebras

In this section we will describe how the representation theory and local principles of a
C∗-algebra are related.

As we have seen earlier, `1(Γ,C) is inverse-closed in C∗(Γ). Hence we concentrate on
the group C∗-algebra C∗(Γ).

Let A be a unital C∗-algebra. For every two-sided closed ideal J of A, denote by ΦJ
the canonical projection from A to the C∗-algebra A/J .

Lemma 3.3.1. An element a in A is invertible if and only if the projections of a on A/I
are invertible for every two-sided closed ideals I of A contained in some primitive ideal
of A.

Corollary 3.3.2. If π(a) is not invertible for an irreducible representation π, then for
every two-sided closed ideal I ⊆ ker(π) of C∗(H), the element ΦI(a) is non-invertible
in A/I.

Proof of Lemma 3.3.1. If a ∈ A is not invertible, then by Theorem 3.2.7 there exists an
irreducible unitary representation π of A such that π(a)v = 0 for some non-zero vector
v ∈ Hπ. For every two-sided closed ideal I ⊆ ker(π) of A the representation π induces
a well defined irreducible representation πI of the C∗-algebra A/I, i.e.,

πI(ΦI(a)) = π(a) .

Moreover, for every two-sided closed ideals I ⊆ ker(π) of C∗(H), the element ΦI(a) is
not invertible in A/I, since the operator πI(ΦI(a)) has a non-trivial kernel inHπ.

Suppose now that π is an irreducible unitary representation of A. Let us assume that
ΦI(a) is not invertible in the C∗-algebra A/I for some two-sided closed ideal of A with
I ⊆ ker(π). Hence, there exists an irreducible representation ρ of A/I such that

ρ(ΦI(a))v = 0
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3.4 Wiener’s Lemma for the discrete Heisenberg group

for some vector v ∈ Hρ. The irreducible representation ρ can be extended to an irreducible
representation ρ̃ of A which vanishes on I and which is given by ρ̃ = ρ ◦ ΦI . Therefore,
a is not invertible in A.

From the proof of Lemma 3.3.1 we get the following corollary.

Corollary 3.3.3. If Γ is a discrete nilpotent group, then a ∈ `1(Γ,C) is invertible if and
only if ΦI(a) is invertible for every I ∈ Prim(C∗(Γ)).

For the next corollary we only have to recall two facts:

1. For an arbitrary unital C∗-algebra A and an irreducible representation π of A, the
C∗-algebras π(A) and A/ kerπ are isomorphic.

2. Every two-sided maximal ideal is primitive (cf. [25, Theorem 4.1.9]).

We denote by Max(A) the set of two-sided maximal ideals of A.

Corollary 3.3.4. An element a in a C∗-algebra A is invertible if and only if π(a) has a
bounded inverse (or equivalently, if Φkerπ(a) is invertible) for every irreducible represen-
tations π of A which fulfils kerπ ∈ Max(A).

3.4 Wiener’s Lemma for the discrete Heisenberg group

Let us apply the general observations made in the previous section to study invertibility
in `1(H,C) and C∗(H). By Schur’s Lemma, if π an irreducible unitary representation of
H, then π(z) = e2πiθ1B(Hπ) for some θ ∈ T. Since the two-sided closed ideal Jθ =
(z − e2πiθ)C∗(H) is a subset of ker(π) for every irreducible unitary representation π of
H with π(z) = e2πiθ1B(Hπ), by Lemma 3.3.1 and Corollary 3.3.2 we have to check
invertibility only in Qθ = C∗(H)/Jθ for all θ ∈ T. This is exactly the conclusion
which one obtains when applying Allan’s local principle to C∗(H). Indeed, C(C∗(H)) '
C(T,C), and the maximal ideals of C(T,C) are given by the sets

mθ := {F ∈ C(T) : F (θ) = 0}

and Jmθ = Jθ. Hence, Allan’s local principle can be viewed as an effective way to apply
Lemma 3.3.1 in order to check invertibility.

If θ is rational the irreducible unitary representations vanishing on Jθ are given by
(3.2.15) – (3.2.16) and were determined in [4].

Now suppose θ is irrational. In order to study the representation theory of the C∗-
algebra Qθ we have to understand the link to one of the most studied non-commutative
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Chapter 3 A Wiener Lemma for the discrete Heisenberg group

C∗-algebras — the irrational rotation algebras. We call a C∗-algebra irrational rotation
algebra if it is generated by two unitaries U, V which fulfil the commutation relation

UV = e2πiθV U , (3.4.1)

for some irrational θ ∈ T. We already saw examples of irrational rotation algebras above,
namely, the C∗-subalgebras of B(L2(T, µ)) which are generated by Mµ and Tθ,µ, where
µ is a Rθ-quasi-invariant and ergodic measure. The reason why we call all C∗-algebras
which fulfil (3.4.1) irrational rotation algebras with parameter θ is the following striking
result which can be found in [6, Theorem VI.1.4].

Theorem 3.4.1. If θ ∈ T is irrational, then all C∗-algebras which are generated by two
unitaries U, V satisfying (3.4.1), are ∗-isomorphic.

We will denote the irrational rotation algebra with parameter θ byRθ and will not distin-
guish between the different realisations ofRθ because of the universal property described
in Theorem 3.4.1. Let us further note that the proof of Theorem 3.4.1 is deduced from the
simplicity of the universal irrational rotation algebra.

The C∗-algebra Qθ is clearly a rotation algebra with parameter θ. The simplicity ofRθ
implies that Jθ is a maximal two-sided ideal of C∗(H). Hence, there exists an irreducible
representation π of H such that kerπ = Jθ, since every two-sided maximal ideal is prim-
itive (cf. [25, Theorem 4.1.9]). Moreover, all the irreducible representations π vanishing
on Jθ have the same kernel: otherwise we would get a violation of the maximality of
Jθ. These representations are not all in the same unitary equivalence class (as we saw in
Section 3.2), which is an indication of the fact that H is not of Type I.

Proof of Theorem 3.2.11. Combine Lemma 3.3.1 (i.e., Allan’s local principle) for C∗(H)
with Theorem 3.4.1. Obviously, if θ is irrational, any representation of H which vanishes
onJθ can be used to check invertibility inQθ. In particular we may use the representations
π

(1,1)
θ as in (3.2.14).

Remark 3.4.1. We should note here that for all realisations of the irrational rotation algebra
the spectrum of a ∈ Rθ is the same as a set. But this does not imply that an eigenvalue
(or an element of the continuous spectrum) of a in one realisation is an eigenvalue (or an
element of the continuous spectrum) of a in all the other realisations.

3.5 Invertibility in C∗(Γ) for discrete nilpotent groups

In this section we aim to find results for countable discrete nilpotent groups similar to
those presented in the previous section for the discrete Heisenberg group.
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3.5.1 Monomial representations

The Heisenberg group

Denote by IndHN (σθ,s) the representation of H induced from the normal subgroup

N :=


1 a b

0 1 0
0 0 1

 : a, b ∈ Z


and the character σθ,s which is defined by

σθ,s(z) = e2πiθ and σθ,s(x) = e−2πis .

For the convenience of the reader we will write down IndHN (σθ,s) for every θ, s ∈ T
explicitly (

IndH
N (σθ,s)(xkylzm)F

)
(n) = e2πi(mθ−k(nθ+s))F (n+ l) (3.5.1)

for all k, l,m, n ∈ Z and F ∈ `2(Z,C).

The representations IndHN (σθ,s) play a special role since they can be extended to the
Stone-von Neumann representations of the real Heisenberg group HR consisting of all
unipotent upper triangular matrices in SL(3,R). The Stone-von Neumann representations
of HR are obtained from Mackey’s induction procedure from the real analogue of N , i.e.,

NR :=


1 a b

0 1 0
0 0 1

 : a, b ∈ R


and its characters. The Stone-von Neumann representations are defined by modulation
and translation operators on L2(R,C).

It is easy to see that for irrational θ the representation π(1,1)
θ in (3.2.14) is unitary equiv-

alent (via Fourier transformation) to the representation IndHN (σθ,1). Moreover, every ir-
reducible finite dimensional representation of a nilpotent group Γ is induced from a one
dimensional representation of a subgroup of Γ (cf. [5, Lemma 1]). Hence, for the discrete
Heisenberg group the knowledge of the monomial representations is enough to decide on
invertibility.

The natural question arises, whether one can always restrict oneself to the class of mono-
mial representations of Γ when analysing invertibility in the corresponding group algebras,
in case Γ is a countable discrete nilpotent group. We will show that the answer is positive.
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Chapter 3 A Wiener Lemma for the discrete Heisenberg group

The general case

Let Γ be a countable discrete nilpotent group. Define an equivalence relation on Γ̂ as
follows:

π1 ∼ π2 ⇐⇒ kerπ1 = kerπ2 ,

where π1, π2 are irreducible unitary representations of Γ. This equivalence relation is the
same as the notion of weak equivalence according to [9].

The next theorem was established by Howe in [15, Proposition 5].

Theorem 3.5.1. Suppose that Γ is a countable discrete nilpotent group. Then every irre-
ducible unitary representation is weakly equivalent to an irreducible monomial represen-
tation of Γ.

Combining this result with Lemma 3.3.1 leads to the following theorem:

Theorem 3.5.2. An element f ∈ C∗(Γ) is non-invertible if and only if there exists an
irreducible monomial representation π such that π(f) has no bounded inverse.

For convenience of the reader we explain the ideas once more.

Proof. If f is not invertible, then there exists an irreducible unitary representation π and a
non-zero vector v ∈ Hπ such that π(f)v = 0. This implies that Φkerπ(f) is not invertible
in C∗(Γ)/ kerπ. Moreover, there exists an irreducible monomial representation ρ with
ker ρ = kerπ (cf. Theorem 3.5.1) and hence

π(C∗(Γ)) ' C∗(Γ)/ kerπ = C∗(Γ)/ ker ρ ' ρ(C∗(Γ)) .

Therefore, Φker ρ(f) and ρ(f) are not invertible.
On the other hand, if π(f) is not invertible for an irreducible monomial representation

π, then Φkerπ(f) is not invertible in the C∗-algebra C∗(Γ)/ ker(π). Hence there exists
an irreducible representation ρ of C∗(Γ)/ ker(π) such that ρ(Φkerπ(f)) has a non-trivial
kernel. Moreover, ρ can be extended to a representation ρ̃ of C∗(Γ) vanishing on kerπ.
Therefore, f is not invertible.

3.5.2 Maximality of primitive ideals

In the previous subsection we saw that we can restrict our attention to irreducible mono-
mial representations for questions about invertibility. Unfortunately, this subclass of irre-
ducible representations might still be quite big. We will use another general result about
the structure of Prim(C∗(Γ)) to make the analysis of invertibility in C∗(Γ) easier.

Theorem 3.5.3 ([27]). Let Γ be a discrete nilpotent group. Then

Prim(C∗(Γ)) = Max(C∗(Γ)) ,
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3.5 Invertibility in C∗(Γ) for discrete nilpotent groups

i.e., every primitive ideal of C∗(Γ) is maximal.

The simplification in the study of invertibility in C∗(H) was due to the simplicity of
the irrational rotation algebras Rθ, which is equivalent to the maximality of the two-
sided closed ideal Jθ. We should note here that Theorem 3.4.1 is usually proved by the
construction of a unique trace onRθ, which is rather complicated. Alternatively, let θ ∈ T
be irrational. Then it easily follows from Theorem 3.5.3 and the fact that π(s,t)

θ is an
irreducible representation (cf. Lemma 3.2.4) with ker(π(s,t)

θ ) = Jθ that Jθ is maximal.
This is exactly the statement of Theorem 3.4.1.

3.5.3 Examples

The first example shows how to establish a Wiener Lemma for H from the general obser-
vation made in this Section.

Example 3.5.1. Consider the monomial representations IndHN (σθ,s) of H as defined in
(3.5.1) for irrational θ and arbitrary s ∈ T. Obviously, one has ker(IndH

N (σθ,s)) = Jθ for
all s ∈ T.

We will show that there is no bounded operator on `2(Z,C) which commutes with
IndH

N (σθ,s)(x) and IndH
N (σθ,s)(y) except multiples of the identity operator. Let {δk : k ∈

Z} be the standard basis of `2(Z,C) and C = (cn,k)n,k∈Z an operator which commutes
with IndHN (σθ,s)(x) and IndHN (σθ,s)(y). From the equations

e−2πis
∑
n∈Z

cn,ke
−2πiθnδn = C

(
IndH

N (σθ,s)(x)δk
)

= IndH
N (σθ,s)(x)(Cδk)

= e−2πise−2πiθk
∑
n∈Z

cn,kδn

and the fact that θ is irrational we can conclude that cn,k = 0 for all n, k ∈ Z with n 6= k.
On the other hand, for k ∈ Z

ck,kδk+1 = IndH
N (σθ,s)(y)(Cδk)

= C
(

IndH
N (σθ,s)(y)δk

)
= ck+1,k+1δk+1 .

Therefore, the only operators in the commutant of IndHN (σθ,s)(H) are scalar multiples of
the identity, which is equivalent to the irreducibility of the representation IndH

N (σθ,s) by
Schur’s Lemma. Hence, the kernel of the irreducible monomial representation IndH

N (σθ,s)
is a maximal two-sided ideal (cf. Theorem 3.5.3) given by Jθ.
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For every irreducible representation π of H with Jθ ⊆ ker(π) one has ker(π) = Jθ due
to the maximality of Jθ which we deduce from the irreducibility of IndHN (σθ,s).

Consider θ = n
d with relatively prime n, d ∈ N. We note that analysing invertibility in

Qθ reduces to the study of monomial representations as well. Set

H /Z(d) :=


1 a b̄

0 1 c
0 0 1

 , a, c ∈ Z and b̄ ∈ Z /dZ

 , d ∈ N ,

and note the isomorphism Qθ ∼= C∗(H /Z(d)). The nilpotent group H /Z(d) is of Type I
since H /Z(d) has normal abelian subgroups of finite index, e.g.,

1 ad b̄
0 1 c
0 0 1

 , a, c ∈ Z and b̄ ∈ Z /dZ

 .

Hence, all irreducible representations are monomial by Theorem 3.2.5.
A Wiener Lemma can now be deduced from Corollary 3.3.4.
Note that in the general study of invertibility in this example we have not used Allan’s

local principle or any results from Section 3.4 explicitly.

We give another example of a group where Theorem 3.5.3 simplifies the analysis.

Example 3.5.2. Let us denote by D the group


1 a c f
0 1 b e
0 0 1 d
0 0 0 1

 : a, b, c, d, e, f ∈ Z

 .

One can easily verify that the center of this group is given by


1 0 0 f
0 1 0 0
0 0 1 0
0 0 0 1

 : f ∈ Z

 ' Z

and that we have a localisation like in the Heisenberg case.
Let us choose a monomial representation. First note that D can be identified with a

semi-direct product D1D2 of the normal abelian subgroup

D1 :=




1 0 c f
0 1 b e
0 0 1 0
0 0 0 1

 : b, c, e, f ∈ Z

 ' Z4
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and the closed abelian subgroup D2 which is given by


1 a 0 0
0 1 0 0
0 0 1 d
0 0 0 1

 : a, d ∈ Z

 ' Z2 .

In such a situation the construction of induced representation becomes very easy. We
refer to [18, Section 2.4] for all the details. Now let σθb,θc,θe,θf be the one-dimensional
representation of D1 given by

σθb,θc,θe,θf




1 0 c f
0 1 b e
0 0 1 0
0 0 0 1


 = e2πiθbbe2πiθcce2πiθeee2πiθff .

The inclusion map from D2 toD will serve as a cross-section. The induced representation
IndDD1

(σθb,θc,θe,θf ) (is unitary equivalent to a representation which) acts on the Hilbert
space `2(Z2,C) and is given byIndDD1

(σθb,θc,θe,θf )




1 0 c f
0 1 b e
0 0 1 0
0 0 0 1




1 a 0 0
0 1 0 0
0 0 1 d
0 0 0 1


F

 (k, l)

= e2πiθbbe2πiθc(c−kb)e2πiθe(e+lb)e2πiθf (f+lc−ke−klb)F (k − a, l − d) ,

(3.5.2)

for every a, b, c, d, e, f, k, l ∈ Z and F ∈ `2(Z2,C).
The localisation fibres are indexed by θf . It is clear that for every irrational θf and

arbitrary θb, θc, θe,
ker
(

IndDD1
(σθb,θc,θe,θf )

)
= Jθf .

In the case of irrational θf , the commutant of IndDD1
(σθb,θc,θe,θf )(D) in B(`2(Z2,C)) is

trivial which is equivalent to irreducibility by Schur’s Lemma. Hence, for irrational θf the
two-sided closed ideal Jθf is maximal by Theorem 3.5.3 and one has to consider only a
single representation, e.g., the one given in (3.5.2) for fixed parameters θb, θc, θe, to study
invertibility on these fibres.

3.6 Finite dimensional approximation

The following proposition follows from Theorem 3.2.11 and might be useful for checking
invertibility of f ∈ Z[H] via numerical simulations.
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Proposition 3.6.1. Let f ∈ Z[H]. Then αf is expansive if and only if there exists a con-
stant C > 0 such that π(f) is invertible and ‖π(f)−1‖ ≤ C for every finite-dimensional
irreducible representation π of H.

For the proof of the Proposition we work with the representations π(1,1)
θ in (3.2.14). For

irrational θ,

(π(1,1)
θ (x)h)(t) = h(t+ θ), (π(1,1)

θ (y)h)(t) = e2πith(t) , (3.6.1)

for every h ∈ L2(T, λT) and t ∈ T. For rational θ of the form θ = p/q with (p, q) = 1,
and for s, t ∈ T, we replace the Lebesgue measure λ = λT in (3.6.1) by the uniform
probability measure νq concentrated on the cyclic group {1/q, . . . , (q − 1)/q, 1} ⊂ T.

Proof. One direction is obvious. For the converse, assume that αf is non-expansive, but
that there exists a constant C > 0 such that π(f) is invertible and ‖π(f)−1‖ ≤ C for
every finite-dimensional irreducible representation π of H.

Since αf is non-expansive, there exists an irrational θ (by our assumption) such that the
operator π(1,1)

θ (f) has no bounded inverse due to Theorem 3.2.11 and its proof. Therefore,
π

(1,1)
θ (f) is either not bounded from below or its range is not dense in the representation

space or both.
We consider first the case where π(1,1)

θ (f) is not bounded from below. Then there exists,
for every ε > 0, an element hε ∈ L2(T, λT) with ‖hε‖2 = 1 and ‖π(1,1)

θ (f)hε‖2 < ε. By
approximating the hε by continuous functions we may obviously assume that each hε is
continuous.

Let q be a rational prime, and let p satisfy |θ − p/q| < 1/q. Then∫
|hε|2dνq and

∫
|π(1,1)
θ (f)hε|2dνq

are Riemann approximations to the corresponding integrals with respect to λ. Hence,

lim
q→∞

∫
|hε|2dνq = 1 and lim

q→∞

∫
|π(1,1)
θ (f)hε|2dνq ≤ ε2 .

Furthermore, as q → ∞, π(1,1)
p/q (f)hε converges uniformly to π(1,1)

θ (f)hε. From this we
deduce that

lim sup
q→∞

∫
|π(1,1)
p/q (f)hε|2dνq ≤ ε2 .

This clearly violates the hypothesis that π(1,1)
p/q (f), q prime, have uniformly bounded in-

verses.
Finally, assume that π(1,1)

θ (f) has no dense image in L2(T, λ). In that case the adjoint
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operator (π(1,1)
θ (f))∗ = π

(1,1)
θ (f∗) is not injective 4. Furthermore, by our assumptions,

‖π(f∗)−1‖ ≤ C for every finite-dimensional irreducible representation π of H. The same
arguments as in the first part of the proof lead to a contradiction.

3.7 A connection to Time-Frequency-Analysis

In this section we explore a connection to Time-Frequency Analysis.

3.7.1 The twisted convolution algebra

In [12] we determined the explicit form of the ideals Jm for the group algebra `1(H,C)
of the discrete Heisenberg group. Let us recall this result. We write a typical element in
`1(H,C) in the normal form: ∑

(k,l,m)∈Z3

f(k,l,m)x
kylzm ,

f(k,l,m) ∈ C and
∑

(k,l,m)∈Z3 |f(k,l,m)| < ∞. We identify the center of `1(H,C) with
`1(Z,C) since the center of the group H is generated by powers of z. The maximal ideal
space Max(`1(Z,C)) is canonically homeomorphic to Ẑ ∼= T. The smallest closed two-
sided ideal in `1(H,C) containing mθ ∈ Max(`1(Z,C)), θ ∈ T, is given by the subset
Jθ ⊂ `1(H,C) which consists of all elements f ∈ `1(H,C) such that

fθ :=
∑

(k,l,m)∈Z3

f(k,l,m)x
kyle2πimθ = 0`1(H,C) .

The next definition plays an important role in the field of Time-Frequency-Analysis. Fix
θ ∈ T. The twisted convolution \θ on `1(Z2,C) is defined as follows. Let a, b ∈ `1(Z2,C),
then

(a\θb)m,n =
∑
k,l∈Z

ak,lbm−k,n−le
2πi(m−k)lθ .

Moreover, define the involution a∗k,l = a−k,−le
2πiklθ for every a ∈ `1(Z2,C). The triple

(`1(Z2,C), \θ,∗ ) forms a Banach-∗-algebra – the so called twisted convolution algebra.
The Banach-algebras Qθ = `1(H,C)/Jθ and (`1(Z2,C), \θ,∗ ) are connected by the

∗-isomorphism κ : Qθ −→ (`1(Z2,C), \θ,∗ ) defined by

κ(Φθ(f)) = fθ .

4 For an operator A acting on a Hilbert spaceH one has (kerA)⊥ = imA∗.
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3.7.2 Wiener’s Lemma for twisted convolution algebras

Principal results were obtained by Janssen [17] and Gröchenig and Leinert [13]. Let α, β
be strictly positive real parameters and let θ = αβ. On the Hilbert space L2(R,C) define
the translation operator Tα and the modulation operator Mβ as follows:

(TαF )(t) = F (t+ α) and (MβF )(t) = e2πiβtF (t) (3.7.1)

where F ∈ L2(R,C) and t ∈ R. The representation πα,β of (`1(Z2,C), \θ,∗ ) on
L2(R,C) is defined as follows: for each a ∈ `1(Z2,C), let

πα,β(a) =
∑
k,l∈Z

ak,lT
k
αM

l
β .

Gröchenig and Leinert established the following Wiener Lemma for twisted convolution
algebras.

Theorem 3.7.1 ([13, Lemma 3.3]). Suppose that θ ∈ T, αβ = θ mod 1 and that a ∈
`1(Z2,C) and πα,β(a) is invertible on L2(R,C). Then a is invertible in (`1(Z2,C), \θ,∗ ).

The representation πα,β of (`1(Z2,C), \θ,∗ ) induces a representation of H, `1(H,C)
and Qθ on L2(R,C) in a canonical way:

πα,β(x) = Tα, πα,β(y) = Mβ , and πα,β(z) = e2πiθ .

The representations πα,β appear in the literature under various names: Stone-von Neu-
mann, Weyl-Heisenberg or Schrödinger representations of HR.

As an immediate corollary of Theorem 3.7.1 one obtains the following Wiener Lemma
for the discrete Heisenberg group.

Theorem 3.7.2. Let f ∈ `1(H,C), then f is invertible if and only if πα,β(f) is invertible
for each non-zero pair α, β ∈ R.

Proof. The result follows by combining Allan’s local principle with Wiener’s Lemma for
twisted convolution algebras.

Finally, we give an alternative proof of Wiener’s Lemma for the twisted convolution
algebra. We need first the following lemmas.

Lemma 3.7.1. The twisted convolution algebra (`1(Z2,C), \θ,∗ ) is symmetric.

Proof. First, recall that the Banach algebras (`1(Z2,C), \θ,∗ ) and Qθ are ∗-isomorphic.
For every a ∈ `1(H,C) the following holds: if Φθ(a) ∈ Qθ is not invertible, then a is not
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invertible in `1(H,C) by Allan’s local principle. Hence, σQθ(Φθ(a)) ⊆ σ`1(H,C)(a) for
every a ∈ `1(H,C). In particular, for every a ∈ `1(H,C),

σQθ(Φθ(a∗a)) ⊆ σ`1(H,C)(a∗a) ⊆ [0,∞)

by the symmetry of `1(H,C).

Lemma 3.7.2. Consider irrational θ ∈ T. Then a ∈ (`1(Z2,C), \θ,∗ ) is invertible if and
only if πα,β has a bounded inverse, where αβ = θ mod 1.

Proof. We just have to show that the non-invertibility of the element a ∈ Qθ (note
(`1(Z2,C), \θ,∗ ) ' Qθ), for irrational θ, implies that a is not invertible in the irrational
rotation algebraRθ. SinceQθ is symmetric (cf. Lemma 3.7.1), there exists an irreducible
unitary representation π of H such that π vanishes on Jθ and π(Φθ(a))v = 0 for some
non-zero vector v ∈ Hπ. This implies that a is not invertible in Rθ and, in particular, not
in its realisation πα,β(C∗(H)) with αβ = θ mod 1.

The proof of Lemma 3.7.2 basically says that for irrational θ the Banach algebra Qθ is
inversed closed inRθ.

The representation πα,β of H can be decomposed in the following way (cf. [2]). Let
ν be the Haar measure on (0, θ], where θ ∈ T with θ = αβ mod 1. There is a unitary
operator

U : L2(R) −→
∫ ⊕

(0,θ]
[`2(Z,C)]t dν(t)

and a family of representations {IndH
N (σθ,s) : s ∈ (0, θ]} such that πα,β is unitary equiv-

alent via U to the direct integral ∫ ⊕
(0,θ]

IndH
N (σθ,t) dν(t) .

This decomposition tells us immediately that

ker(πα,β) =
⋂

t∈(0,θ]

ker
(

IndH
N (σθ,t)

)
= Jθ

and hence that πα,β(`1(H,C)) ' `1(H,C)/Jθ = Qθ. From this observation we get the
following lemma.

Lemma 3.7.3. Let θ ∈ T be rational. Then a ∈ Qθ is invertible if and only if πα,β(a) is
invertible in B(L2(R,C)).

Proof of Theorem 3.7.1. Combine Lemma 3.7.2 and Lemma 3.7.3.
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Remark 3.7.4. The decomposition (3.7.2) of πα,β depends only on the product αβ = θ

mod 1 and hence is independent of the particular choice of α and β. Hence, in Theorem
3.7.1 and Theorem 3.7.2 one has to consider, e.g., α = θ and β = 1 only.

3.7.3 An application to algebraic dynamical systems

As already mentioned in the Introduction the problem of deciding on the invertibility in
`1(H,C) has an application in algebraic dynamics. The following result is important to
check invertibility for f ∈ Z[H] in the group algebra `1(H,C) because it tells us that
πα,β(f) has a trivial kernel in L2(R,C) for α, β 6= 0.

Theorem 3.7.3 ([22]). Let G be a non-zero element in L2(R,C), then for every finite set
A ⊆ Z2 the set {T kαM l

βG : (k, l) ∈ A} is linear independent over C.

The following result is a reformulation of Theorem 3.7.3 and gives a complete descrip-
tion of the spectrum of an operator πα,β(f), for α, β ∈ Rr{0} and f ∈ C[H], where
C[H] is the ring of functions H −→ C with finite support.

Theorem 3.7.4. Let f ∈ C[H] with fθ 6= 0 for θ = αβ 6= 0, α, β ∈ R, then λ− πα,β(f)
is injective and has dense range in L2(R,C) but is not bounded from below for all λ ∈
σ(πα,β(f)).

Proof. Suppose f ∈ C[H] is such that πα,β(f) 6= 0 and λ ∈ σ(πα,β(f)). By Theorem
3.7.3, for every non-zero G ∈ L2(R,C) the finite linear combination

(λ− πα,β(f))G =

λ− ∑
(k,l,m)∈Z3

f(k,l,m)T
k
αM

l
βe

2πiθm

G 6= 0 .

This is equivalent to the injectivity of λ− (πα,β(f)).
Suppose the range of λ− πα,β(f) is not dense in L2(R,C). Then

(πα,β(λ− f))∗ = πα,β((λ− f)∗)

is not injective (cf. the footnote on page 111) which is a contradiction to Theorem 3.7.3
because (λ − f)∗ ∈ C[H]. Hence, λ − πα,β(f) not being invertible on L2(R,C) is
equivalent to λ− πα,β(f) not being bounded from below.

Therefore, non-expansiveness of αf can be checked via two different approaches:

• The dual of H: Does there exists an irreducible representation π of H such that 0 is
an eigenvalue of π(f).
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• Stone-von Neumann representations: For all Stone-von Neumann representations
πα,β , 0 is an eigenvalue of πα,β(f) if and only if πα,β(f) = 0; and πα,β(f) is not
invertible if and only if πα,β(f) is not bounded from below.

Remark 3.7.5. The authors are not aware whether the approach based on Theorem 3.2.7
and the construction of the dual of H via ergodic quasi-invariant measures are well-known
results in the field of Time-Frequency Analysis. It would be interesting to investigate
whether this eigenvalue approach would simplify the problem of deciding on invertibility
– at least – for some examples f ∈ `1(H,C) rC[H].

3.8 Examples

We now demonstrate how to apply Wiener’s Lemma to obtain easily verifiable sufficient
conditions for non-expansivity of a principal algebraic action.

Let f ∈ Z[H] be of the form

f = g1(y, z)x− g0(y, z) (3.8.1)

with g1(y, z), g0(y, z) ∈ Z[y, z] ' Z[Z2].
We set

U(gi) = {(ζ, χ) ∈ S2 : gi(ζ, χ) = 0}, i = 0, 1 .

In [21] (cf. [12, Theorem 2.6] for a proof) the following result was established. For
linear f ∈ Z[H] of the form (3.8.1) with U(gi) = ∅ for i = 0, 1, the action αf is
expansive if and only if∫

S

∫
S

(log |g1(ζ, χ)| − log |g0(ζ, χ)|)λS(dζ)λS(dχ) 6= 0 ,

where λS is the Lebesgue measure on S. Equivalently, αf is expansive if and only if

m(g0) 6= m(g1) ,

where m(h) is the so-called logarithmic Mahler measure of a polynomial h ∈ C[Zd]
defined by

m(h) =
∫
Td

log |h(e2πiθ1 , . . . , e2πiθd)| dθ1 · · · dθd .

In this section we use results on invertibility to derive criteria for non-expansiveness of
principal actions of elements f in Z[H] of the form f = g1(y, z)x−g0(y, z) in cases when
the unitary varieties U(g0) and U(g1) are not necessarily empty.
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For every χ ∈ S, consider the rational function ψχ on S:

ψχ(ζ) = g0(ζ, χ)
g1(ζχ−1, χ)

and consider the map ψ : N×S −→ C given by

ψχ(n, ζ) =
{

1 if n = 0∏n−1
j=0 ψχ(ζχ−j) if n ≥ 1.

3.8.1 Either U(g0) or U(g1) is a non-empty set

We fix the following notation. For every χ ∈ S and i = 0, 1, put

Uχ(gi) = {ζ ∈ S : gi(ζ, χ) = 0} ,

and
gi,χ(y) = gi(y, χ) ,

which we will view as a Laurent polynomial in y with complex coefficients, i.e., gi,χ ∈
C[Z] for every χ and i = 0, 1. Note also that the set Uχ(gi) is infinite if and only if gi,χ is
the zero polynomial.

For notational convenience we put

φχ(ζ) = log |ψχ(ζ)| and φχ(n, ζ) = log |ψχ(n, ζ)| ,

for every ζ ∈ S and n ≥ 0.

Theorem 3.8.1. Let f ∈ Z[H] be of the form f = g1(y, z)x − g0(y, z). Suppose there
exists an element χ ∈ S of infinite order which satisfies either of the following conditions.

(i) Uχ(g0) = ∅, Uχ(g1) 6= ∅ and
∫
φχdλS < 0.

(ii) Uχ(g0) 6= ∅, Uχ(g1) = ∅ and
∫
φχdλS > 0.

Then αf is non-expansive.

Proof. We will prove only the first case, the second case can be proven similarly.
Suppose f is such that (Xf , αf ) is expansive and the conditions in (i) are satisfied. We

will now show that certain consequences of expansivity of αf are inconsistent with the
conditions in (i). Hence, by arriving to a contradiction, we will prove that under (i) αf is
not expansive.
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We know that (Xf , αf ) is expansive if and only if f is invertible in `1(H,C). Hence
(Xf , αf ) is expansive if and only if there exists a w ∈ `1(H,C),

w =
∑
k,l,m

wk,l,my
lxkzm ,

such that
f · w = w · f = 1`1(H,C) .

Suppose θ ∈ (0, 1] is irrational and that χ = e2πiθ ∈ S satisfies condition (i). Consider
the following representation π1,θ of `1(H,C) on L2(R,C), defined by

(π1,θ(x)F )(t) = T1F (t) = F (t+ 1), (π1,θ(y)F )(t) = MθF (t) = e2πiθtF (t),
and (π1,θ(z)F )(t) = e2πiθF (t) .

If
f = g1(y, z)x− g0(y, z) and w = f−1 =

∑
k,l,m

wk,l,my
kxlzm ,

then
π1,θ(f) = g1(e2πiθt, e2πiθ)T1 − g0(e2πiθt, e2πiθ)

and
π1,θ(w) =

∑
(k,l,m)∈Z3

wk,l,mM
k
θ T

l
1χ

m

=
∑
l∈Z

[ ∑
(k,m)∈Z2

w(k,l,m)e
2πiθtke2πiθm

]
T l1 .

Set
Pl,θ(t) :=

∑
(k,m)∈Z2

w(k,l,m)e
2πiθtke2πiθm ,

then π1,θ(w) =
∑
l∈Z Pl,θ(t)T l1.

The functions Pl,θ(·) : R −→ C, l ∈ Z, are bounded and continuous. Indeed, for any
l ∈ Z

Pl,θ(t) =
∑

(k,m)∈Z2

w(k,l,m)e
2πiθtke2πiθm

is a Fourier series with absolutely convergent coefficients:∑
k∈Z

∣∣∣∑
m∈Z

w(k,l,m)e
2πiθm

∣∣∣ ≤∑
k∈Z

∑
m∈Z
|w(k,l,m)|

≤ ‖w‖`1(H,C) <∞ .
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For similar reasons, ∑
l∈Z

sup
t∈R
|Pl,θ(t)| ≤

∑
l∈Z

[∑
k,m

|wk,l,m|
]

(3.8.2)

= ‖w‖`1(H,C) <∞ . (3.8.3)

Since w · f = 1`1(H,C) and π1,θ(1`1(H,C)) = 1B(L2(R,C)) – the identity operator on
L2(R,C), one has

1B(L2(R,C)) = π1,θ(w)π1,θ(f)

=
[∑
l∈Z

Pl,θ(t)T l1
]
·
[
g1(e2πiθt, e2πiθ)T1 − g0(e2πiθt, e2πiθ)

]
=
[∑
l∈Z

Pl,θ(t)T l1
]
·
[
g1,χ(e2πiθt)T1 − g0,χ(e2πiθt)

]
=
∑
l∈Z

[
Pl−1,θ(t)g1,χ(e2πiθ(t+l−1))− Pl,θ(t)g0,χ(e2πiθ(t+l))

]
T l1 .

Set

Ql,θ(t) = Pl−1,θ(t)g1,χ(e2πiθ(t+l−1))− Pl,θ(t)g0,χ(e2πiθ(t+l)) . (3.8.4)

Since {Ql,θ(·)| l ∈ Z} are again bounded continuous functions, one concludes that

Q0,θ(t) ≡ 1 and Ql,θ(t) ≡ 0, for every l 6= 0.

Hence, for every t ∈ R, one has

Q0,θ(t) = P−1,θ(t)g1,χ(e2πiθ(t−1))− P0,θ(t)g0,χ(e2πiθt) = 1 , (3.8.5)

and for every l ≥ 1

Ql,θ(t) = Pl−1,θ(t)g1,χ(e2πiθ(t+l−1))− Pl,θ(t)g0,χ(e2πiθ(t+l)) = 0 . (3.8.6)

Since Uχ(g0) = ∅, equations (3.8.6) imply that

Pl,θ(t) = Pl−1,θ(t) ·
g1,χ(e2πiθ(t+l−1))
g0,χ(e2πiθ(t+l))

for every t, and hence for each l ≥ 1 and every t ∈ R, one has

Pl,θ(t) = P0,θ(t) ·
g1,χ(e2πiθt)

g0,χ(e2πiθ(t+1))
· · · g1,χ(e2πiθ(t+l−1))

g0,χ(e2πiθ(t+l))
,
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or
Pl,θ(t) = P0,θ(t)

1
ψχ−1(l, ζtχ)

where ζt = e2πiθt.

Then since Uχ(g0) = ∅, the logarithmic Mahler measure m(g0,χ) is finite, and hence
m(g1,χ) > −∞. Therefore, g1,χ(η) is not identically 0 on S1, and since g1,χ is a polyno-
mial, we can conclude that Uχ(g1) is finite. Therefore, the set of points

B1 =
{
ζ ∈ S1 : ζe2πiθk ∈ Uχ(g1) for some k ∈ Z

}
=
⋃
k∈Z

Rkθ (Uχ(g1))

is at most countable, and hence has Lebesgue measure 0.

Both functions log |g0,χ(·)| and log |g1,χ(·)| are integrable. Moreover, the irrational
rotation Rθ : T −→ T is an ergodic transformation. By Birkhoff’s ergodic theorem there
exists a set B2 ⊂ S1 of full Lebesgue measure such that for any ζ ∈ B2

1
n

n∑
k=1

log|g0,χ(ζe2πiθk)| → m(g0,χ) ,

1
n

n−1∑
k=0

log|g1,χ(ζe2πiθk)| → m(g1,χ) .

Therefore, since m(g1,χ) > m(g0,χ), on the set of full measure Bc1 ∩ B2

Ψn(ζ) = 1
ψχ−1(n, ζχ) 6= 0 ∀n ≥ 1, (3.8.7)

and
lim
n→∞

Ψn(ζ) = +∞ . (3.8.8)

Since θ 6= 0, the set of points

C =
{
t ∈ R : e2πitθ 6∈ Bc1 ∩ B2

}
has full measure, and for every t ∈ C, one has that the sum∑
l≥0
|Pl,θ(t)| = |P0,θ(t)|+ |P0,θ(t)|Ψ1(e2πitθ) + . . .+ |P0,θ(t)|Ψl(e2πitθ) + . . . (3.8.9)

is finite if and only if |P0,θ(t)| = 0. Combining this fact with the uniform bound (3.8.2) –
(3.8.3), we are able to conclude that

P0,θ(t) = 0 (3.8.10)
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on a set of full measure in R. The function P0,θ(t) is continuous and therefore, P0,θ must
be the identically zero function on R.

Finally, consider the remaining equation (3.8.5) for Q0,θ(t). Since P0,θ(t) ≡ 0, one has
that there exists a continuous bounded function P−1,θ such that

P−1,θ(t)g1,χ(e2πiθ(t−1)) = 1 , (3.8.11)

for every t ∈ R. However, since the unitary variety Uχ(g1) is not empty, one can find
t ∈ R such that

g1,χ(e2πiθ(t−1)) = 0 ,

and hence, (3.8.11) cannot be satisfied. Therefore, we arrived to a contradiction with the
earlier assumption that αf is expansive.

The assumption that
∫
φχdλS < 0 cannot be dropped in (i) of Theorem 3.8.1 as the

following simple minded example shows.

Example 3.8.1. Suppose χ is not a root of unity and Uχ(g1) 6= ∅. Set g0(y, z) ≡ K,
where we pick K ∈ N such that

1. K > ‖g1(y, z)‖`1(H,C);

2.
∫
φχdλS > 0.

Then f = g1(y, z)x−K is invertible since

f = K

(
g1(y, z)x

K
− 1
)

and
∥∥∥∥g1(y, z)x

K

∥∥∥∥
`1(H,C)

< 1 .

3.8.2 The sets U(g0) and U(g1) are both non-empty

Let us denote by
Orbχ(ζ) = {ζχn : n ∈ Z}

the orbit of ζ under the circle rotation Rχ : S −→ S with ζ 7→ ζχ, for every ζ ∈ S. We
consider first linear elements f = g1(y, z)x− g0(y, z) for which

1. U(g0) 6= ∅ and U(g1) 6= ∅;

2. and there exists an element (ζ, χ) ∈ U(g0) with

{(η, χ) ∈ S2 : η ∈ Orbχ(ζ)} ∩ U(g1) 6= ∅ .

Theorem 3.8.2. If f is of the form (3.8.1) and for some m ∈ Z

U(g1) ∩
{

(ξχm, χ) ∈ S2 : (ξ, χ) ∈ U(g0)
}
6= ∅ ,
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then αf is non-expansive.

Although, this result could be proven with the help of Stone-von Neumann represen-
tations as well, it is more suitable to use monomial representations. For the following
discussion it is convenient to work with slightly modified versions of the monomial rep-
resentations defined in (3.5.1). For every ζ, χ ∈ S let π(ζ,χ) be the representation of H
acting on `2(Z,C) which fulfils

(π(ζ,χ)(x)F )(n) = F (n+ 1), (π(ζ,χ)(y)F )(n) = ζχnF (n) and (3.8.12)

(π(ζ,χ)(z)F )(n) = χF (n) (3.8.13)

for each F ∈ `2(Z,C) and n ∈ Z.

Proof. Consider the case m ≥ 0 first. Suppose f is invertible and hence π(f) is invertible
for every unitary representations of H and in particular, π(ζ,χ)(f) is invertible for every
pair (ζ, χ) ∈ S2. By the assumptions of theorem there exists a pair (ξ, χ) ∈ S2 such that

g1(ξχm, χ) = 0 and g0(ξ, χ) = 0 . (3.8.14)

Without loss of generality we may assume that m is the minimal power such that (3.8.14)
is satisfied, i.e., g1(ξχl, χ) 6= 0 for each l ∈ Z with 0 ≤ l ≤ m− 1.

Suppose G ∈ `2(Z,C) is in the image of π(ξ,χ)(f), then there exists an F ∈ `2(Z,C)
such that

G(n) = g1(ξχn, χ)F (n+ 1)− g0(ξχn, χ)F (n) (3.8.15)

holds for every n ∈ Z. Given the choice of (ξ, χ) (cf. (3.8.14)), one immediately con-
cludes that

G(0) = g1(ξ, χ)F (1) .

If m = 0, then G(0) = 0, and we arrive to a contradiction with the assumption that
π(ξ,χ)(f) is invertible, and hence has a dense range in `2(Z,C): Indeed, for every F ∈
`2(Z,C) one has that

(π(ξ,χ)(f)F )(0) = 0

and hence, the range of π(ξ,χ)(f) is not dense.
If m > 0, then F must satisfy the following system of linear equations

G(0) = g1(ξ, χ)F (1) (3.8.16)

G(l) = g1(ξχl, χ)F (l + 1)− g0(ξχl, χ)F (l), 1 ≤ l ≤ m− 1 (3.8.17)

G(m) = −g0(ξχm, χ)F (m) . (3.8.18)

We can eliminate F (1), F (2), . . . , F (m) in (3.8.16) – (3.8.18) to obtain an expression
for G(m) in terms of G(0), G(1), . . . , G(m − 1). Indeed, one can easily verify that, for
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each 0 ≤ l ≤ m− 1, F (l + 1) can be written as

F (l + 1) = G(l)
g1(ξχl, χ) + g0(ξχl, χ)

g1(ξχl, χ)F (l) = . . . (3.8.19)

=
l∑
i=0

G(l − i)
g1(ξχl, χ)

i−1∏
n=0

g0(ξχl−n, χ)
g1(ξχl−n−1, χ) (3.8.20)

=
l∑
i=0

G(l − i)
g1(ξχl, χ)ψχ(i, ξχl) (3.8.21)

(we use the convention that the empty product
∏

∅ is equal to 1). Due to our choice of m,
F (l+ 1) in (3.8.19) is well-defined. Moreover, since G(m) = g0(ξχm, χ)F (m), one gets

G(m) = −g0(ξχm, χ)F (m)

= −
m−1∑
i=0

G(m− 1− i)ψχ(i+ 1, ξχm−1) .

Hence, G(m) depends continuously on the values G(0), G(1), . . . , G(m − 1). Again,
this is a contradiction with our hypothesis that π(ξ,χ)(f) has dense range in `2(Z,C).

If m < 0, then we choose π such that

(π(x)F )(n) = F (n− 1) and (π(y)F )(n) = ξχ−nF (n)

for each F ∈ `2(Z,C) and n ∈ Z. Exactly the same arguments as in the case m ≥ 0 can
be used to get a contradiction to the invertibility of π(f).

Corollary 3.8.2. Let f be of the form (3.8.1) which satisfies the conditions of Theorem
3.8.2. Then αf� defined by f� = g0(y, z)x− g1(y, z) is non-expansive.

Proof. Since
U(g1) ∩

{
(ξχm, χ) ∈ S2 : (ξ, χ) ∈ U(g0)

}
6= ∅ ,

there exists a k ∈ Z such that

U(g0) ∩
{

(ξχk, χ) ∈ S2 : (ξ, χ) ∈ U(g1)
}

is non-empty as well. Hence, Theorem 3.8.2 guarantees the non-expansiveness of αf� .

Example 3.8.3. Consider

g1(y, z) = 1− y − y−1 − z − z−1 and g0(y, z) = 3− y − y−1 − z − z−1 .
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3.8 Examples

Figure 3.1: In this Figure the curves corresponding to the solution sets K (thick line) and
K[2] (thin line) are plotted.
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Chapter 3 A Wiener Lemma for the discrete Heisenberg group

We will show that the dynamical systems (Xf , αf ) and (Xf� , αf�), with f = g1(y, z)x−
g0(y, z) and f� = g0(y, z)x− g1(y, z), are non-expansive.

For this purpose we introduce, for m ∈ Z, the ‘m-sheared version’ of g0(y, z) given by

g
(m)
0 (y, z) = g0(yzm, z) = 3− yzm − y−1z−m − z − z−1 ;

and note that

U(g1) ∩
{

(ξχm, χ) ∈ S2 : (ξ, χ) ∈ U(g0)
}
6= ∅ ⇐⇒ U(g1) ∩ U(g(m)

0 ) 6= ∅ .

The Fourier transforms of g1(y, z) and g(m)
0 (y, z) are given by the functions

(Fg1)(s, t) = 1− 2 cos(2πs)− 2 cos(2πt) and(
Fg(m)

0

)
(s, t) = 3− 2 cos(2π(s+mt))− 2 cos(2πt) ,

respectively. Let

K = {(s, t) ∈ T2 : (Fg1)(s, t) = 0} and

K[m] =
{

(s, t) ∈ T2 :
(
Fg(m)

0

)
(s, t) = 0

}
.

Fix m ∈ Z. By solving the equations

(Fg1)(s, t) = 0 and
(
Fg(m)

0

)
(s′, t′) = 0

for s and s′ we get curves s(t) and s′(t′) corresponding to the solution sets K and K[m].
If these curves intersect, then K and K[m] have a non-empty intersection. It is clear that
(s, t) ∈ K if and only if (e2πis, e2πit) ∈ U(g1). For every m ∈ Z the sets K[m] and
U(g(m)

0 ) are related in the same way.
The sets K and K[2] have a non-empty intersection as Figure 3.1 shows; while K ∩

K[0] = ∅ and K ∩K[1] = ∅.
Since the conditions of Theorem 3.8.2 and Corollary 3.8.2 are satisfied, f and f� are

not invertible.

The next result can be easily deduced from the proof of Theorem 3.8.1.

Theorem 3.8.3. Let f ∈ Z[H] be of the form (3.8.1). Suppose there exists an element
χ ∈ S of infinite order such that the following conditions are satisfied

Uχ(g0) 6= ∅ and Uχ(g1) 6= ∅ , (3.8.22)

and
m(g0,χ) 6= m(g1,χ) .
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Then αf is non-expansive.

Proof. Suppose (3.8.22) is satisfied. Let us first treat the trivial cases.
If g0,χ(y) is the zero-element in C[Z], then for every ζ ∈ S

π(ζ,χ)(f) = π(ζ,χ)(g1(y, z)x) .

Fix ξ ∈ Uχ(g1), which is a non-empty set by the assumptions of the theorem. Since one
has (π(ξ,χ)(f)F )(0) is equal to 0, for every F ∈ `2(Z,C), 0 is an element of σ(π(ξ,χ)(f))
and hence f is not invertible. The same conclusions can be drawn for the cases g1,χ =
0C[Z] and g0,χ = g1,χ = 0C[Z].

Next consider the case where g0,χ and g1,χ are not the zero elements in C[Z], which
implies that m(g0,χ) and m(g1,χ) are finite and moreover Uχ(g0) and Uχ(g1) are finite
sets. Suppose that m(g0,χ) < m(g1,χ). We follow the line of arguments in the proof of
Theorem 3.8.1. The only adaption one has to make is to take the countable set

B =
{
t ∈ R : e2πitχk ∈ Uχ(g0) for some k ∈ Z

}
into consideration, i.e., to exclude points in B in the equations (3.8.7) – (3.8.10).

The case m(g0,χ) > m(g1,χ) can be proven analogously.
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