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Chapter 3

Credible bands

3.1 Introduction and main results

We consider estimating the regression function f in the fixed design regression
model, introduced in Chapter 1. We observe a vector Y⃗n := (Y1,n, . . . , Yn,n)

T

with coordinates

Yi,n = f(xi,n) + εi,n, i ∈ {1, . . . , n}. (3.1)

Here the parameter f is an unknown function f : [0, 1] → R, the design points
(xi,n) are a known sequence of points in [0, 1] and the (unobservable) errors
εi,n are independent standard normal random variables.
When visualising the uncertainty of an estimate of the function f at a point or
several points, credible intervals around the estimated function value or even
credible bands might be considered to be the most intuitive. The credible
balls relative to the Euclidian norm in the space of function values of f at
the design points studied in Chapter 2 are more complicated to interpret or
represent graphically. Therefore, in this chapter we focus on a uniform bound
for the width of the credible intervals for f at the design points (or at all
x), rather than bounding an average. We return to the setting of Chapter 1,
taking the design points xi,n to be equally spaced and equal to xi,n = i/n+
with n+ = n + 1/2 and f ∈ Cα[0, 1] for some α ∈ (0, 2]. It will turn out to
be essential to assume some “local” smoothness of the function f , since we are
studying the behaviour of this function and its estimators at specific points. In
particular, assumptions on the behaviour of f in terms of its Fourier coefficients
or variants thereof, such as the polished tail condition or a Sobolev smoothness
considered in Chapter 2, will turn out to be insufficient to fully determine this
local behaviour.



3. Credible bands

We take scaled Brownian motion
√
cW = (

√
cWt, t ∈ [0, 1]) as a prior for f ,

independent of the sequence (εi,n). In the Bayesian setup the observations are
then distributed according to the model

Yi,n =
√
cWxi,n + εi,n, i ∈ {1, . . . , n}. (3.2)

When estimating the function at a fixed point x ∈ (0, 1) and constructing a
credible interval for given c, one considers the posterior distribution

f(x) | Y⃗n, c ∼ N
(
f̂n,c(x), σ

2
n(x, c)

)
. (3.3)

The posterior mean is a linear combination of the observations and was studied
in detail in Chapter 1:

f̂n,c(x) =
n∑
i=1

ani (x, c)Yi,n, a⃗n(x, c) = Σ−1
n,ccv⃗n(x), v⃗n(x) = (i/n+ ∧ x)i.

Here Σn,c = I + cUn, where Un is the covariance matrix of standard Brownian
motion at the design points. Recall that the eigenvalues λj,n of this matrix
satisfy λj,n ≍ n

j2 . The behaviour of the posterior variance was studied in the
same chapter and can be seen to have exact asymptotic behaviour 1

2

√
c
n , uni-

formly for c ∈ [logn/n, n/ logn] and independently of x. The natural pointwise
credible interval of level η for f is

Cn,η(x) = {f : |f(x)− f̂n,c(x)| < ζησn(x, c)},

where ζη is a standard normal quantile such that P (|Z| < ζη) = η for Z ∼
N (0, 1).
In order to obtain a credible band rather than a credible interval, one considers
functions such that the supremum of |f(x) − f̂n,c(x)| over x is bounded. For
this we need a uniform result on the coefficients ani , which generalises the
results from Chapter 1. Throughout we will use results from this chapter with
k = n+/c. The following proposition shows that the result from Theorem 1.3
still holds for x = xn tending to zero sufficiently slowly.

Proposition 3.1. Let in = max{i : xi,n < x} and λ+ = 1 + c/(2n+) +
1
2

√
c/n+

√
4 + c/n+. If we take x = xn to be a sequence of design points jn/n

such that jn tends to infinity no slower than n+/
√

logn, then the coefficients
ani satisfy

ani ≍
√
c

n

{
λ−in+

[
λi+ − λ−i+

]
for i ≤ in

λin+
[
λ−i+1
+ + λ−2n+i−1

+

]
for i ≥ in.

84



3.1. Introduction and main results

The proof of this proposition can be found in Section 3.5.
Throughout, we will use that results on bias and variance from Chapter 1,
which are based on the behaviour of the ani , hold uniformly in both c and x.
For c, this follows since close inspection of the proofs reveals that it is sufficient
that we have c/n → 0 and this holds on [logn/n, n/ logn]. The same result
follows for x by arguments similar to those used in (3.9) in the appendix. It
follows that σ2

n(x, c) ≍
√

c
n uniformly in x ≥ 1/

√
logn and hence the diameter

of a credible band is close to the width of a credible interval for a fixed x.
However, we will see that in order to obtain favourable coverage η, one should
blow up the radius by

√
logn, c.f. [Stone, 1982].

We have seen in Chapter 1 that when we consider the performance of the
Bayesian credible sets under the frequentist model (3.1), the optimal scaling c
depends on the smoothness of the function f . Since this is generally unknown,
we will here estimate c from the data using either the likelihood-based or risk-
based estimator ĉn defined in Chapter 2. Recall that for the Brownian motion
prior it was proved in Chapter 2 that in both settings, the estimator ĉn behaves
similar to the minimiser of a deterministic function Dn that is the sum of a
decreasing bias function D1,n depending on the unknown function f and an
increasing variance function D2,n, defined in (2.23) and (2.23). We then study
the credible sets given by

Ĉn,η =

{
f : sup

x∈[1/
√

logn,1]
|f(x)− f̂n,ĉn(x)| <

√
ℓn logn

(
ĉn
n

)1/4}
, (3.4)

where ℓn is a sequence of numbers tending to infinity.
A main result we will prove is that these credible sets are honest confidence sets
for a certain class of functions. This result is in some sense surprising, since
many previous results on coverage of credible sets in the fixed design model
are negative in the sense that the obtained credible sets have zero frequentist
coverage, see e.g. [Cox, 1993, Freedman, 1999, Johnstone, 2010]. Previous work
on pointwise credible sets and credible bands can be found in for example [Bull,
2012]. Here adaptive confidence bands are constructed for functions satisfying
a self-similarity condition defined in terms of a wavelet basis of L2[0, 1]. Sim-
ilarly, [Hoffmann and Nickl, 2011] treats adaptive credible bands in density
estimation for Hölder smooth functions which satisfy some additional condi-
tion. In [Wahba, 1983] credible intervals at the design points are discussed;
simulations and heuristic arguments are given that suggest promising results,
but no formal proofs are provided. Positive results for the Gaussian white noise
model are for example the papers [Cai and Low, 2004] and [Ghosal, 2015]. In
the latter, L∞-credible sets with asymptotic coverage one and a nearly optimal
size are obtained when the Hölder regularity of the true function is known. The
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3. Credible bands

same paper also includes a heuristic discussion that indicates that the same re-
sult holds when instead an empirical Bayes estimate of the smoothness is used
for functions that satisfy the polished tail condition. The same applies here:
we need an extra assumption to ensure that the empirical Bayes credible sets
capture the truth with high probability.
Recall that we call a function self-similar of order β > 0 if its sequence of
Fourier coefficients (fj) with respect to the eigenbasis of Brownian motion
satisfies

sup
j≥1

j1/2+β |fj | ≤M, and
ρm∑
j=m

f2j ≥M2Lm−2β

for some positive constants M,ρ, L and every m. Let Fα,β,M be the set of all
functions that are self-similar of order β for a given M and satisfy a Hölder
condition with constant M , i.e. |f(x)−f(y)| ≤M |x−y|α if α ≤ 1 and |f ′(x)−
f ′(y)| ≤M |x− y|α−1 if α ∈ (1, 2].

Theorem 3.2. Let α ∈ (0, 2] and consider the credible sets given in (3.4). For
both the risk-based and likelihood-based empirical Bayes methods we have the
following result. If α ≥ β > 1

2 , we have

inf
f∈Fα,β,M

Pf (f ∈ Ĉn,η) → 1

for any sequence ℓn → ∞. Furthermore, for β < 1 the diameter of the credible
band Ĉn,η is OP

(√
ℓn lognn− β

1+2β
)
. For the risk-based empirical Bayes method

this is even true for β < 2.

The theorem shows that empirical Bayes works if the Hölder smoothness of
the function is at least the order of self-similarity. As we shall see later in
the proof, this is due to the fact that the behaviour of the estimator ĉn is
completely determined by this latter order. A value of β > α is equivalent
to overestimating the Hölder smoothness of the function, which leads to poor
coverage, as was already shown in Chapter 1. For functions that are Hölder
smooth of the order α, the minimax rate of estimation is known to be of the
order (n/ logn)− α

1+2α , see [Stone, 1982]. The theorem shows that the diameter
of the credible band is determined by the order of self-similarity and in order
to obtain a (nearly) optimal diameter, we need equality α = β. In particular,
the size of the credible set adapts to the unknown Hölder smoothness if this is
equal to the self-similarity, which can be viewed as a global smoothness index.
In the next section we will prove this main result and give an example where
we suspect the theorem fails. We then proceed to derive another assumption
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3.2. Coverage for self-similar functions

on the function f for which the empirical Bayes procedure leads to coverage,
for a slightly weaker version of the credible band. Here we consider

Ĉn,η =

{
f : max

i∈{1,...,n}
|f(xi,n)− f̂n,ĉn(xi,n)| < L

√
ℓn logn

(
ĉn
n

) 1
4
}
, (3.5)

where L is a sufficiently large constant, and derive a set of conditions under
which this credible set has favourable coverage. We then show that these
conditions are satisfied for a large class of Gaussian-generated functions:

Theorem 3.3. For given α > 0 and δ ∈ R set

Wt =
∞∑
j=1

Zj
(j + δ)1/2+α

ej(t), t ∈ [0, 1],

where Z1, Z2, . . . are independent standard normal random variables. Then for
both the risk-based and likelihood-based empirical Bayes methods, for almost
every realisation of W , we obtain coverage tending to one for the credible sets
defined in (3.5), where ℓn ≥ L̃ logn and L̃ is sufficiently large. For the risk-
based method this holds if α < 2 and for the likelihood-based method if α < 1.
Furthermore, for the appropriate values of α, the diameter of the credible sets
is of the order OP

(√
ℓn lognn− α

1+2α
)
.

Note that this results holds in particular for Brownian motion, by the
Karhunen-Loève expansion.
The third section deals with the proof of this main result. Finally, the
last section contains technical proofs. Throughout, we denote the interval
[logn/n, n/ logn] by In and [1/

√
logn, 1] by Jn.

3.2 Coverage for self-similar functions

Before we prove the first main result, we recall some facts about the two types
of empirical Bayes estimators ĉn. Both minimise a criterium of the form

Ln(c, f) = D1,n(c, f) +D2,n(c) +Rn(c, f) = Dn(c, f) +Rn(c, f),

where Dn is deterministic and Rn a stochastic remainder. We add the super-
script R when we specifically refer to the risk-based functions and the super-
script L for the likelihood-based functions. The functions D1,n are dependent
on the vector of function values f⃗n through its coefficients fj,n with respect to
eigenbasis e1,n, . . . , en,n of the covariance matrix of Brownian motion, given by

ej,n =
1√

n+ 1/2

(
ej(x1,n), . . . , ej(xn,n)

)T
, ej(x) =

√
2 sin

[(
j − 1

2

)
πx
]
.
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3. Credible bands

The functions D2,n do not depend on f . They are increasing and behave
asymptotically like

√
cn. In Chapter 2 it was proved that for both methods

the estimator ĉn is close to the minimiser of the deterministic part Dn. More
precisely, we have

Pf (ĉn ∈ Λn) → 1,

where
Λn = {c ∈ In : Dn(c, f) ≤ (1 + ε) inf

c∈In
Dn(c, f)}

for some ε > 0. In the following we will use an even more precise result on the
location of ĉn. For this, we need an assumption on f , expressed in terms of the
function D1,n, that was first introduced in the previous chapter.

Definition 3.4 (Good bias condition). We say that the function f , or the
corresponding array (fj,n), satisfies the good bias condition relative to D1,n if
there exists a constant a > 0 such that for c ∈ In

D1,n(Kc, f) ≤ C−aD1,n(c, f) for all C > 1.

If f is discrete polished tail, then it also satisfies this good bias condition. For
the Brownian motion prior this is equivalent to the existence of constants L
and ρ such that

n∑
j=m

f2j,n ≤ L

ρm∧n∑
j=m

f2j,n

for all sufficiently large m. Now let c̃n be the unique solution to D1,n(c, f) =
D2,n(c). We have the following result on the location of ĉn for functions that
satisfy the good bias condition and hence for self-similar functions by Exam-
ple 2.34 in Chapter 2.

Lemma 3.5. Let f satisfy the good bias condition and c̃n ∈ In. Then there
are positive constants k < K such that

Pf (ĉn ∈ [kc̃n,Kc̃n]) → 1

for both the risk-based and likelihood-based empirical Bayes estimators ĉn.

Proof. Since Pf (ĉn ∈ Λn) → 1 and c̃n ∈ In, it follows that Dn(ĉn, f) ≤ (1 +
ε)Dn(c̃n, f) with probability tending to one. Recall that for the Brownian
motion prior it holds that D2,n(c) ≍

√
cn. Combining this with the fact that

f satisfies the good bias condition, the result follows by Lemma 2.42 from
Chapter 2.
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3.2. Coverage for self-similar functions

The function f is contained in Ĉn,η as defined in (3.4) if and only if
supx∈Jn |f(x)− f̂n,ĉn(x)| <

√
ℓn logn (ĉn/n)1/4. Writing

Tn(x, c) := f̂n,c(x)− Ef f̂n,c(x) and µn(x, c) := f(x)− Ef f̂n,c(x),

we can decompose the square of the left side as(
f(x)− f̂n,ĉn(x)

)2
=
(
Tn(x, c))

2 + 2Tn(x, c)µn(x, c) +
(
µn(x, c)

)2
for any c and x. Here µn(x, c) is the bias of the posterior mean for fixed x and
the expectation of

(
Tn(x, c)

)2 is equal to the variance of the posterior mean:

E
(
Tn(x, c)

)2
= E

(
n∑
i=1

ani (x, c)εi,n

)2

=
n∑
i=1

ani (x, c)
2 =: t2n(x, c).

These quantities were studied in detail in Chapter 1. The following proposi-
tion shows that the random term Tn is negligible if f satisfies the good bias
condition.

Proposition 3.6. Let f satisfy the good bias condition and c̃n ∈ In. For both
the risk-based and likelihood-based empirical Bayes estimators ĉn it holds that

sup
x∈[1/n,1]

|Tn(x, ĉn)|
√
ℓn logn

(
ĉn
n

)1/4 Pf→ 0,

for any sequence ℓn → ∞.

The proof of this result is given in Section 3.5. We now have a sufficient
understanding of the credible set Ĉn,η to be able to prove our main result.

Proof of Theorem 3.2. A function f is contained in Ĉn,η if and only if
supx∈Jn |f(x) − f̂n,ĉn(x)| <

√
ℓn logn (ĉn/n)1/4. Since for all fixed c it holds

that

sup
x∈Jn

|f(x)− f̂n,c(x)| ≤ sup
x∈Jn

(
|f̂n,c(x)− Ef f̂n,c(x)|+ |f(x)− Ef f̂n,c(x)|

)
= sup
x∈Jn

(
|Tn(x, c)|+ |µn(x, c)|

)
,

we obtain coverage if

supx∈Jn |Tn(x, ĉn)|+ supx∈Jn |µn(x, ĉn)|
√
ℓn logn (ĉn/n)1/4

< 1 (3.6)
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3. Credible bands

with probability tending to one.
If f is self-similar of order β > 1

2 , then the array (fi,n) is discrete polished tail
and hence f satisfies the good bias condition (see Example 2.34 of Chapter 2).
Moreover, we have

n

(
1

cn

)β
& D1,n(c, f) =

n∑
i=1

f2i,n
(1 + cλj)δ

&
n∑

i=
√
cn

f2i,n & n
(

1

cn

)β
by the last display of Example 2.34, where we take δ = 1 for DL

1,n and δ = 2

for DR
1,n. The first inequality holds if β < 2 for the risk-based empirical Bayes

method and if β < 1 for the likelihood-based method (see Examples 2.20 and
2.23 in Chapter 2). Since c̃n balances D1,n and D2,n, it follows that it satisfies(

1

c̃nn

)β
≍
√
c̃n
n
,

hence c̃n ≍ n
1−2β
1+2β . Noting that c̃n ∈ In, it follows by Proposition 3.6 that the

first term of (3.6) converges to zero in probability. Moreover, by Lemma 3.5
there are positive constants k < K such that Pf (ĉn ∈ [kc̃n,Kc̃n]) → 1. Con-
sider the second term in (3.6). Since f ∈ Cα[0, 1], we have

|µn(x, c)|2 .
(

1

cn

)α
uniformly for c ∈ [kc̃n,Kc̃n] and x ∈ Jn by Corollary 1.7 in Chapter 1. We see
that for α ≥ β we have

sup
x∈Jn

|µn(x, ĉn)|2 .
(

1

ĉnn

)α
.
(

1

ĉnn

)β
≍
(

1

c̃nn

)β
≍
√
c̃n
n

≍
√
ĉn
n

with probability tending to one. It follows that Pf (f ∈ Ĉn,η) → 1. Finally, note
that since (c̃n/n)

1/4 ≍ n−
β

1+2β , the diameter of the credible band is bounded
by

√
ℓn lognn− β

1+2β with probability tending to one.

The theorem gives an example of a class of functions for which the empirical
Bayes credible band is an honest credible set. Although this positive result
is encouraging, it is not clear how rich this class of functions is. It follows
by inspection of the proof that the Hölder and self-similarity conditions are
both essential, since the former determines the bias and the latter the location
of the empirical Bayes estimator. If the two measures of smoothness do not
match, the bias and variance are not balanced, which can result in zero coverage
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3.2. Coverage for self-similar functions

or credible bands that are too wide. Unfortunately, one of these types of
smoothness typically does not imply the other. The following is an example
of a nicely behaved function of Hölder smoothness α, for which the order of
self-similarity is greater than the Hölder exponent for a whole range of values
of α. This suggests that the coverage will tend to zero for all possible values
of α in this range.

Example 3.7. Consider the function f(t) = |x− t|α, where α ∈ (0, 1) and x >
1
2 . We prove below that the Fourier coefficients of this function satisfy fj ≍ j−1

and hence this function is self-similar of the order β = 1
2 , which suggests that

c̃n satisfies c̃n ≍ 1. Since the square bias of this function at the point x is of
the order (cn)−α, it then follows that supx∈Jn |µn(x, c̃n)|2 ≫ logn (c̃n/n)1/2 for
any α < 1

2 and hence supx∈Jn |µn(x, ĉn)|2 ≫ logn (ĉn/n)1/2 with probability
tending to one. This suggests that the credible bands defined in (3.4) will not
have favourable coverage for any α < 1

2 .
Since f ∈ Cα, we have |

∑∞
j=n+1 fjej(t)| . n−α logn by Theorem 10.8 of

Chapter 2 in [Zygmund, 2002] and it can be shown that for α > 1
2 we have

D1,n(c, f) ≍ n(cn)−1/2 on In. From this it follows that the credible sets in (3.4)
have asymptotic coverage one if α > 1

2 , but the diameter is suboptimal; it is of
the order

√
ℓn lognn−1/4 ≫ (n/ logn)− α

1+2α .
We now prove that the Fourier coefficients of f are of the order j−1. Consider

fj+1 =
√
2

∫ 1

0

|x− t|α sin(πrt) dt =
√
2

r

∫ r

0

∣∣∣x− s

r

∣∣∣α sin(πs)ds,

where r = j + 1
2 . We may write

∫ r

0

∣∣∣x− s

r

∣∣∣α sin(πs)ds =
2j∑
k=0

∫ 1
2 (k+1)

1
2k

∣∣∣x− s

r

∣∣∣α sin(πs) ds =:

2j∑
k=0

Ik.

We prove that for r sufficiently large this sum is bounded from above and
below by a positive constant. Note that if k mod 4 is either 0 or 1, Ik is
positive, otherwise it is negative. In the first case and for k+1 < 2xr, we have(

x− k + 1

2r

)α
· 1
π

≤ Ik ≤
(
x− k

2r

)α
· 1
π
.

In the second case and for k + 1 < 2xr, we have

−
(
x− k

2r

)α
· 1
π

≤ Ik ≤ −
(
x− k + 1

2r

)α
· 1
π
.
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3. Credible bands

Similarly, in the first case and for k > 2xr, we have(
k

2r
− x

)α
· 1
π

≤ Ik ≤
(
k + 1

2r
− x

)α
· 1
π
.

Finally, in the second case and for k > 2xr, we have

−
(
k + 1

2r
− x

)α
· 1
π

≤ Ik ≤ −
(
k

2r
− x

)α
· 1
π
.

Setting k0 := ⌊2xr⌋, m0 = k0− 5− (k0 mod 4) and m1 = k0+5− (k0 mod 4)+
2(j mod 2), we may write

2j∑
k=0

Ik =

m0∑
k=0

Ik +

2j∑
k=m1

Ik + o(1).

Note that

m0∑
k=0

Ik =

(m0−3)/4∑
k=0

[
(I4k + I4k+2) + (I4k+1 + I4k+3)

]
.

Set m̃0 = (m0 − 3)/4. Applying the mean value theorem, we see that for b > a
we have

m̃0∑
k=0

((
x− a+ 4k

2r

)α
−
(
x− b+ 4k

2r

)α)

= α

m̃0∑
k=0

(ξk)
α−1 b− a

2r

≤ α(b− a)

2r

m̃0∑
k=0

(
x− b+ 4k

2r

)α−1

≤ α(b− a)

2r

∫ m̃0+1

0

(
x− b+ 4k

2r

)α−1

dk

= −α(b− a)

4α

[(
x− b+ 4(m̃0 + 1)

2r

)α
−
(
x− b

2r

)α]
→ (b− a)

4
xα.

Here we use ξj ≥ x − b+4k
2r , but we can apply the same argument with ξj ≤

x− a+4k
2r to obtain a lower bound (changing the upper limit of the integral to

m̃0), which is asymptotically the same as the upper bound. Using this, we can
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3.2. Coverage for self-similar functions

bound
∑m̃0

k=0 Ik from above by

1

π

m̃0∑
k=0

(
x− 4k

2r

)α
−
(
x− 3 + 4k

2r

)α
+

(
x− 1 + 4k

2r

)α
−
(
x− 4 + 4k

2r

)α
≤ − 3

4π

[(
x− 7 + 4m̃0

2r

)α
−
(
x− 3

2r

)α
+

(
x− 8 + 4m̃0

2r

)α
−
(
x− 4

2r

)α]
→ 3

2π
xα

and from below by

1

π

m̃0∑
k=0

(
x− 1 + 4k

2r

)α
−
(
x− 2 + 4k

2r

)α
+

(
x− 2 + 4k

2r

)α
−
(
x− 3 + 4k

2r

)α
≥ − 1

4π

[(
x− 1 + 4m̃0

2r

)α
−
(
x− 1

2r

)α
+

(
x− 2 + 4m̃0

2r

)α
−
(
x− 2

2r

)α]
→ 1

2π
xα.

For the other sum we have
2j∑

k=m1

Ik =

m̃1∑
k=0

[
(I2j−4k + I2j−4k−2) + (I2j−4k−1 + I2j−4k−3)

]
,

where m̃1 = (2j − 3−m1)/4. Applying the mean value theorem again, we see
that for d > c we have

m∑
k=0

((
2j − 4k − c

2r
− x

)α
−
(
2j − 4k − d

2r
− x

)α)

= α
m∑
k=0

(ξk)
α−1 d− c

2r

≤ α(d− c)

2r

m∑
k=0

(
2j − 4k − d

2r
− x

)α−1

≤ α(d− c)

2r

∫ m+1

0

(
2j − 4k − d

2r
− x

)α−1

dk

= − (d− c)

4

[(
2j − 4(m+ 1)− d

2r
− x

)α
−
(
2j − d

2r
− x

)α]
→ (d− c)

4
(1− x)α.
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Here we use ξj ≥ 2j−4k−d
2r − x, but applying the same argument with ξj ≤

2j−4k−c
2r − x we obtain a lower bound (changing the upper limit of the integral

to m̃1), which is asymptotically the same as the upper bound.
Proceeding as above and treating the cases j even and j odd separately, we
obtain a lower bound for

∑2j
k=m1

Ik that converges to − 1
2π (1 − x)α and an

upper bound that converges to 1
2π (1−x)

α. Since x > 1
2 we have xα > (1−x)α

and the result follows.
By further subdividing each of the 2j parts, we can obtain better upper and
lower bounds for the integral. We believe that it is possible to obtain a more
accurate result this way and that the Fourier coefficients can be shown to satisfy
fj ∼ xα/(2π).

 

3.3 Coverage for Gaussian-generated functions

Since the combined Hölder and self-similar conditions appear to be restrictive,
in this section we discuss another class of functions for which we can obtain
honest coverage. In the previous section we have seen that we obtain coverage
for functions that satisfy the good bias condition, for which c̃n = c̃n(f) ∈ In
and the bias satisfies

sup
x∈Jn

|µn(x, ĉn)| .
√

logn (ĉn/n)1/4

with probability tending to one. For a grid point xj,n we have the representation
f(xj,n) =

∑n
i=1 fi,n(ei,n)j = 1√

n+

∑n
i=1 fi,nei(xj,n). Writing Dn = diag

(
(1 +

cλj,n)
−1
)
j

and denoting the orthogonal matrix with rows the eigenvectors ej,n
by On, we see that we can write the bias in a grid point in terms of the
coefficients (fi,n) as

µn(xj,n, c) = Ef f̂n,c(xj,n)− f(xj,n) = (OTnDnOnf⃗n)j − f(xj,n)

= − 1
√
n+

n∑
i=1

fi,nei(xj,n)

1 + cλi,n
.

Hence we have nonnegligible coverage for all design points if

sup
j∈{1,...,n}

1

n

(
n∑
i=1

fi,nei(xj,n)

1 + ĉnλi,n

)2

. logn
√
ĉn
n
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3.3. Coverage for Gaussian-generated functions

with probability tending to one. Note that this is not enough to obtain a
credible band in the supremum norm. Instead, as stated in the introduction,
we consider credible sets of the form

Ĉn,η =

{
f : max

i∈{1,...,n}
|f(xi,n)− f̂n,ĉn(xi,n)| < L

√
ℓn logn

(
ĉn
n

)1/4}
,

where ℓn is a sequence of numbers tending to infinity and L is a sufficiently
large constant. Since the number of design points increases with n, this gives
an increasingly accurate approximation of a credible band.
We make the above statements precise in the following proposition. Let FN,ℓn
be the set of all functions f that satisfy the good bias condition and c̃n ∈ In for
n ≥ N , for which the bias of the posterior mean at the design points satisfies

|µn(xj,n, c̃n)|2 =
1

n+

(
n∑
i=1

fi,nei(xj,n)

1 + c̃nλi,n

)2

< ℓn logn
√
c̃n
n

(3.7)

for n ≥ N , uniformly for j ∈ {1, . . . , n}. Here ℓn is a sequence of numbers
tending to infinity. Let Fℓn =

∪
N FN,ℓn . Moreover, for β > 0 define the norms

∥f∥2n,β =
1

n

n∑
j=1

j2βf2j,n,

∥f∥2n,β,∞ =
1

n
sup

1≤j≤n
j1+2βf2j,n.

We now have

Proposition 3.8. For both the risk-based and likelihood-based empirical Bayes
methods the credible sets given in (3.5) satisfy

inf
f∈Fℓn

Pf (f ∈ Ĉn,η) → 1.

Furthermore, for β < 1 the diameter of the credible set Ĉn,η is of the order
OP
(√
ℓn lognn− β

1+2β
)

uniformly in f with ∥f∥n,β . 1 or ∥f∥n,β,∞ . 1. For
the risk-based empirical Bayes method this is even true for β < 2.

Proof. We obtain coverage if

maxi∈{1,...,n} |Tn(xi,n, ĉn)|+ maxi∈{1,...,n} |µn(xi,n, ĉn)|
L
√
ℓn logn (ĉn/n)1/4

< 1 (3.8)
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with probability tending to one. The first term tends to zero by Proposition 3.6.
Note that if assumption (3.7) is satisfied, we see that

|µn(xj,n, c)|2 =
1

n+

(
n∑
i=1

fi,nei(xj,n)

1 + cλi,n

)2

. ℓn logn
√
c

n

is satisfied uniformly for c ∈ [kc̃n,Kc̃n] for certain constants K > k > 0. The
second term can then be made arbitrarily small with probability tending to
one by Lemma 3.5, by taking L to be sufficiently large. The assertions on the
diameter of the credible sets follow from Corollary 2.24 and examples 2.19,
2.20, 2.22 and 2.23 in Chapter 2.

The conditions of this proposition seem hard to interpret, but Theorem 3.3
shows that there is a large class of functions for which the coverage is fine,
in particular those generated by the prior. Recall that the Karhunen-Loève
expansion of standard Brownian motion W = (Wt, t ∈ [0, 1]) is given by

Wt =
∞∑
j=1

Zj
(j − 1/2)π

ej(t),

where Z1, Z2, . . . are independent standard normal random variables. The the-
orem shows that we obtain coverage for W almost surely. In fact we even get
this result for any Gaussian series with polynomially decaying singular values
relative to the eigenbasis of Brownian motion.
We may now prove this last main result.

Proof of Theorem 3.3. We give the proof for the risk-based empirical Bayes
method. The proof for the likelihood-based method is analogous. By Propo-
sition 3.8 it suffices to show that W is in Fℓn almost surely. Denote the
coordinates of W⃗n relative to the eigenbasis of Un by Wi,n. The Wi,n are in-
dependent normal random variables with zero mean and variance satisfying
var(Wi,n) ≍ ni−1−2α, see the proof of Proposition 2.36 in Chapter 2. In the
same proposition it was shown that almost every realisation of W is discrete
polished tail and hence satisfies the good bias condition. We now prove that
almost surely there is an N such that c̃n(W ) ∈ In for n ≥ N . Consider

Vn(c) :=
1

n(cn)−α
(
DR

1,n(c,W )− EDR
1,n(c,W )

)
=

1

n(cn)−α

n∑
i=1

W 2
i,n − EW 2

i,n

(1 + cλi,n)2
.
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This random variable has mean zero and variance

E
[
Vn(c)

]2
= n−2(cn)2α

n∑
i=1

var(W 2
i,n)

(1 + cλi,n)4
≍ (cn)2α

n∑
i=1

i6−4α

(i2 + cn)4

= (cn)2α

√
cn∑

i=1

i6−4α

(i2 + cn)4
+ (cn)2α

n∑
i=

√
cn+1

i6−4α

(i2 + cn)4

≍ (cn)2α−4

√
cn∑

i=1

i6−4α +

√
1

cn

≍


(cn)−1/2 if α < 7/4

(cn)−1/2 log(cn) if α = 7/4

(cn)2α−4 if α > 7/4.

Since EDR
1,n(c,W ) ≍ n(cn)−α, there are constants 0 < γ1 < C1 such that

n(cn)−α
(
γ1 + Vn(c)

)
≤ DR

1,n(c,W ) ≤ n(cn)−α
(
C1 + Vn(c)

)
for c ∈ In. Also recall that there are constants 0 < γ2 < C2 such that

γ2
√
cn ≤ DR

2,n(c) ≤ C2

√
cn.

Set β := 1−2α
1+2α and consider the event En =

{
c̃n(W ) /∈

[
εnβ ,Mnβ

]}
. We have

P
(
c̃n(W ) < εnβ

)
≤ P

(
DR

1,n

(
εnβ ,W

)
< DR

2,n

(
εnβ

))
≤ P

(
ε−αn−

2α
1+2α

(
γ1 + Vn

(
εnβ

))
< C2

√
εn−

2α
1+2α

)
= P

(
Vn
(
εnβ

)
< −a

)
,

where a := γ1 − C2 ε
1/2+α > 0 for ε sufficiently small. Denote by ∥ · ∥ψ1 the

Orlicz norm corresponding to the function ψ1(x) = ex− 1. Applying Markov’s
inequality, we have

P
(
Vn
(
εnβ

)
< −a

)
≤ P

(
ψ1

( |Vn
(
εnβ

)
|

∥Vn
(
εnβ

)
∥ψ1

)
≥ ψ1

(
a

∥Vn
(
εnβ

)
∥ψ1

))

≤ 1

ψ1

(
a/∥Vn

(
εnβ

)
∥ψ1

) .
In order to bound ∥Vn(c)∥ψ1 , we apply Proposition A.1.6 in [van der Vaart and
Wellner, 1996] with Xi = (W 2

i,n − EW 2
i,n)/(n(cn)

−α(1 + cλi,n)
2), Sn = Vn(c)
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and p = 1. Combining this with Lemma 2.2.2 from the same book, we see that

∥Vn(c)∥ψ1 . ∥Vn(c)∥1 +
∥∥∥ max
i∈{1,...,n}

|Xi|
∥∥∥
ψ1

.
√

E
[
Vn(c)

]2
+

logn
n(cn)−α

max
i∈{1,...,n}

∥W 2
i,n − EW 2

i,n∥ψ1

(1 + cλi,n)2
.

Since Wi,n is a mean zero normal random variable with variance of the order
ni−1−2α, it follows by Lemma 2.2.1 from [van der Vaart and Wellner, 1996]
that

∥W 2
i,n − EW 2

i,n∥ψ1 ≤ 2∥W 2
i,n∥ψ1 . ni−1−2α.

We see that

max
i∈{1,...,n}

∥W 2
i,n − EW 2

i,n∥ψ1

(1 + cλi,n)2
. n max

i∈{1,...,n}

i3−2α

(i2 + cn)2

.
{
n(cn)−1/2−α if α ≤ 3/2

n(cn)−2 if α > 3/2.

Combining the above results, it follows that there is a constant C > 0 such
that

∥Vn
(
εnβ

)
∥ψ1

≤

{
Cn− 1

4 (1+β) if α < 7/4

Cn−(2−α)(1+β) logn if α ≥ 7/4

and hence

P
(
Vn
(
εnβ

)
< −a

)
≤


(
e

a
C n

1
4
(1+β)

− 1
)−1

if α < 7/4(
e

a
C log nn

(2−α)(1+β)

− 1
)−1

if α ≥ 7/4.

We conclude that there are constants K, k, γ > 0 such that for α ∈ (0, 2) it
holds that P

(
Vn
(
εnβ

)
< −a

)
≤ Ke−kn

γ . The probability P
(
c̃n(W ) > Mnβ

)
can be treated similarly. We see that

∞∑
n=1

P (En) =
∞∑
n=1

(
P
(
c̃n(W ) < εnβ

)
+ P

(
c̃n(W ) > Mnβ

))
.

∞∑
n=1

e−kn
γ

<∞.

It follows by the Borel-Cantelli lemma that almost surely there is an N such
that c̃n(W ) ∈

[
εnβ ,Mnβ

]
and hence c̃n(W ) ∈ In for n ≥ N .
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Finally, we prove that condition (3.7) is satisfied almost surely. Consider the
normal random variable

Un(x, c) :=
1

√
n+

n∑
i=1

Wi,nei(x)

1 + cλi,n
,

which has mean zero and variance

var
[
Un(x, c)

]
.

n∑
i=1

i3−2α

(i2 + cn)2
. (cn)−α

uniformly for x ∈ (0, 1) and c ∈ In. For a design point x = xj,n this random
variable is exactly the bias at the point x if the “true” function is W . For
s < t ∈ In we have

var [Un(x, s)− Un(x, t)] =
1

n+

n∑
i=1

var(Wi,n)ei(x)
2

[
1

1 + sλi,n
− 1

1 + tλi,n

]2
. (s− t)2

s2

n∑
i=1

i−1−2α

[
sλi,n

(1 + sλi,n)2

]2
. (s− t)2

s2

n∑
i=1

i3−2α

(i2 + sn)2
. (s− t)2

s2
(sn)−α.

Denote by ∥·∥ψ2 the Orlicz norm corresponding to the function ψ2(x) = ex
2−1.

Since Un(x, s) − Un(x, t) has a normal distribution with mean zero, we then
see that for s < t ∈

[
εnβ ,Mnβ

]
∥Un(x, s)− Un(x, t)∥2ψ2

. var [Un(x, s)− Un(x, t)] . n−2βn−α(1+β)(s− t)2

uniformly for x ∈ (0, 1). It then follows by Corollary 2.2.5 in [van der Vaart
and Wellner, 1996] with T =

[
εnβ ,Mnβ

]
that

∥∥∥∥ sup
s,t∈[εnβ ,Mnβ ]

|Un(x, s)− Un(x, t)|
∥∥∥∥
ψ2

. n−β−α
2 (1+β)

∫ nβ

0

√
log
(
1 +

nβ

ε

)
dε

≤ n−β−
α

1+2α

∫ nβ

0

√
nβ

ε
dε = n−

α
1+2α .

Applying Lemma 2.2.2 from [van der Vaart and Wellner, 1996] and noting that
∥Un(x, c)∥ψ2

.
√

varUn(x, c) . n−
α

1+2α for any fixed c ∈
[
εnβ ,Mnβ

]
, we see
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that∥∥∥∥ max
j∈{1,...,n}

sup
c∈[εnβ ,Mnβ ]

Un(xj,n, c)

∥∥∥∥
ψ2

≤ C
√

logn max
j∈{1,...,n}

∥∥∥∥∥ sup
c∈[εnβ ,Mnβ ]

Un(xj,n, c)

∥∥∥∥∥
ψ2

≤ C̃
√

logn · n−
α

1+2α

for some constants C, C̃ > 0. It follows that

E
[
exp

(
maxj∈{1,...,n} supc∈[εnβ ,Mnβ ] U

2
n(xj,n, c)

C̃2 logn · n−
2α

1+2α

)]
≤ 2.

Using this, we see that

P

(
max

j∈{1,...,n}
U2
n

(
xj,n, c̃n

)
> ℓn logn

√
c̃n
n

)

≤ P

(
max

j∈{1,...,n}
sup

c∈[εnβ ,Mnβ ]

U2
n

(
xj,n, c

)
> ℓn logn

√
εn−

2α
1+2α

)

= P

(
exp

(
maxj∈{1,...,n} supc∈[εnβ ,Mnβ ] U

2
n

(
xj,n, c

)
C̃2n−

2α
1+2α

√
ε logn

)
> eℓn/C̃

2

)

≤ 1

eℓn/C̃2
E
[
exp

(
maxj∈{1,...,n} supc∈[εnβ ,Mnβ ] U

2
n

(
xj,n, c

)
C̃2n−

2α
1+2α

√
ε logn

)]

. 1

eℓn/C̃2
.

Hence the result follows by the Borel-Cantelli lemma if ℓn ≥ γC̃2 logn for some
γ > 1.

3.4 Discussion

The previous two sections give conditions under which empirical Bayes works,
when using the estimator ĉn based on the global risk or likelihood introduced in
Chapter 2. However, these conditions appear either restrictive or intractable.
An alternative might be to estimate the scaling parameter with a different
method that might be more natural for the current purpose. A criterion based
on a “local” risk might result in more natural conditions on the function f for
which we obtain coverage and for which the size of the credible sets adapts to
the unknown smoothness of the function.
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3.5 Technical proofs

In this section we give the technical details of the proofs of Propositions 3.1
and 3.6.

Proof of Proposition 3.1. Note that the denominator of bn1 given in (1.6) in
Chapter 1 is independent of in = jn − 1:

DD̃−(αλin+ + βλin− )(α̃λn−in+ + β̃λn−in− ) = αα̃λn+
(
λ2+ − 1

)
+ ββ̃λn−(λ

2
− − 1)

∼ 1
2λ

n
+.

Writing 1
k = c

n+
, the numerator is given by 1

kD = 1
kα(λ

jn
+ − λjn− ). We can see

that λ
√
k

+ → e, hence for jn &
√
k we have bn1 ≍

√
1
kλ

−(n−in)
+ . The coefficient

an1 satisfies

an1 ≍ 2

k
λ−n+ (α̃λn−in+ + β̃λn−in− ) ∼ 1

k
(λ−in+ + λ−2n+in

+ ) ∼ 1

k
λ−in+

for jn &
√
k =

√
n+/c. Since

√
n+/c ≤ n+/

√
logn for any c ∈

[logn/n, n/ logn], the result follows.

Note that for jn ≪
√
k the factor (λjn+ − λjn− ) is decreasing in k and hence bn1

and consequently all the ani are of smaller order.

Proof of Proposition 3.6. Since f satisfies the good bias condition and c̃n ∈ In,
it follows by Lemma 3.5 that Pf (ĉn ∈ [kc̃n,Kc̃n]) → 1. Denote by ∥ · ∥ψ2 the
Orlicz norm corresponding to the function ψ2(x) = ex

2 − 1. We prove that

∥∥∥ sup
x∈[1/n,1]

sup
c∈[kc̃n,Kc̃n]

|Tn(x, c)|
∥∥∥
ψ2

.
√

logn
(
c̃n
n

)1/4

.

First we apply Lemma 2.2.2 from [van der Vaart and Wellner, 1996] to see that∥∥∥ sup
x∈[1/n,1]

sup
c∈[kc̃n,Kc̃n]

|Tn(x, c)|
∥∥∥
ψ2

.
√

logn max
i∈{1,...,n}

∥∥∥ sup
x∈(xi,n,xi+1,n]

sup
c∈[kc̃n,Kc̃n]

|Tn(x, c)|
∥∥∥
ψ2

,

where we define xn+1,n = 1. Now take x1 < x2 ∈ (xi,n, xi+1,n] and c1 < c2 ∈
[kc̃n,Kc̃n]. Since Tn(x1, c1) − Tn(x2, c2) has a normal distribution with mean
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zero, we see that

∥Tn(x1, c1)− Tn(x2, c2)∥2ψ2

. var [Tn(x1, c1)− Tn(x2, c2)]

. var [Tn(x1, c1)− Tn(x1, c2)] + var [Tn(x1, c2)− Tn(x2, c2)]

= ∥a⃗n(x1, c1)− a⃗n(x1, c2)∥2 + ∥a⃗n(x1, c2)− a⃗n(x2, c2)∥2.

For the first term, note that

(
c−1
1 I + U

)
a⃗n(x1, c1) = v⃗n(x1) =

(
c−1
2 I + U

)
a⃗n(x1, c2),

hence

∥a⃗n(x1, c1)− a⃗n(x1, c2)∥2

=
∥∥∥{(c−1

1 I + U
)−1 (

c−1
2 I + U

)
− I
}
a⃗n(x1, c2)

∥∥∥2
≤
∥∥∥(c−1

1 I + U
)−1 (

c−1
2 I + U

)
− I
∥∥∥2 ∥a⃗n(x1, c2)∥2 .

The eigenvalues of the matrix are given by c1−c2
c2(1+c1λj)

. We see that

∥a⃗n(x1, c1)− a⃗n(x1, c2)∥2 . max
j

(c1 − c2)
2

c22
(
1 + c1n

j2

)2 t2n(x1, c2)
. (c1 − c2)

2

c
3/2
2

√
n
. (c1 − c2)

2

c̃
3/2
n

√
n
.

Here we use the fact that t2n(x, c) ≍
√

c
n uniformly for c ∈ In and x ∈ Jn

by Lemma 1.8 in Chapter 1. Note that by the remark following the proof of
Proposition 3.1, we also have t2n(x, c) .

√
c
n for x ∈ [1/n, 1/

√
logn]. In order

to bound the second term, we study the characterisation of the coefficients ani
in the proof of Theorem 1.3 in Chapter 1. They are given by

ani (x, c) =

{
an1 (x, c)

(
αλi+ + βλi−

)
for i ≤ in(x)

bn1 (x, c)
(
α̃λn−i+1

+ + β̃λn−i+1
−

)
for i > in(x),

where in(x) = max{i : i/n+ < x} and an1 (x, c) and bn1 (x, c) are given in (2.5)
and the last display of the proof of Theorem 1.3. Note that for x1 < x2 ∈
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(xi,n, xi+1,n] we have in(x1) = in(x2), hence

|bn1 (x1, c2)− bn1 (x2, c2)|

=

∣∣∣∣ c2D
(
x1 − x2 +

x2−x1

D

(
αλ

in(x1)
+ + βλ

in(x1)
−

))
DD̃ −

(
αλ

in(x1)
+ + βλ

in(x1)
−

)(
α̃λ

n−in(x1)
+ + β̃λ

n−in(x1)
−

) ∣∣∣∣
=

∣∣∣∣ c2D
(
x1 − x2 + (x2 − x1)

(
1 +O(

√
c2
n )
))

DD̃ −
(
αλ

in(x1)
+ + βλ

in(x1)
−

)(
α̃λ

n−in(x1)
+ + β̃λ

n−in(x1)
−

) ∣∣∣∣
. (x2 − x1)

√
c2n b

n
1 (x1, c2).

We also have

|an1 (x1, c2)− an1 (x2, c2)|

=

∣∣∣∣c2(x2 − x1) + (bn1 (x1, c2)− bn1 (x2, c2))(α̃λ
n−in
+ + β̃λn−in− )

D

∣∣∣∣
. (x2 − x1)

c2 +
√
c2n b

n
1 (x1, c2)(α̃λ

n−in
+ + β̃λn−in− )

D
. (x2 − x1)

√
c2na

n
1 (x1, c2).

(3.9)

We then see that

∥a⃗n(x1, c2)− a⃗n(x2, c2)∥2 . (x1 − x2)
2c2n t

2
n(x1, c2)

. (x1 − x2)
2c̃3/2n

√
n.

We conclude that

n1/4 ∥Tn(x1, c1)− Tn(x2, c2)∥ψ2
. d((x1, c1), (x2, c2))

for

d((x1, c1), (x2, c2)) =

√
(c1 − c2)2

c̃
3/2
n

+ n(x1 − x2)2c̃
3/2
n .

For this metric, using the fact that c̃n
n → 0, we can bound the diameter of the

set T := (xi,n, xi+1,n]× [kc̃n,Kc̃n] by

diamT .
√

c̃2n

c̃
3/2
n

+ n
1

n2
c̃
3/2
n . c̃1/4n

and the covering number by

N(ε, d) .
1
n

√
nc̃

3/4
n

ε

c̃n

c̃
3/4
n ε

=
c̃n√
nε2

.

103



3. Credible bands

Applying Corollary 2.2.5 in [van der Vaart and Wellner, 1996], we obtain∥∥∥ sup
(x1,c1),(x2,c2)∈T

|Tn(x1, c1)− Tn(x2, c2)|
∥∥∥
ψ2

. n− 1
4

∫ c̃1/4n

0

√
log
(
1 +

c̃n√
nε2

)
dε ≤ n−

1
4

∫ c̃1/4n

0

√
c̃
1/2
n

n1/4ε
dε =

(
c̃n
n

) 3
8

.

Combining this with the fact that ∥Tn(x0, c0)∥ψ2 .
√

varTn(x0, c0) .
(
c̃n
n

)1/4
for any fixed (x0, c0) in T , we see that

∥∥∥ sup
x∈[1/n,1]

sup
c∈[kc̃n,Kc̃n]

|Tn(x, c)|
∥∥∥
ψ2

.
√

logn
(
c̃n
n

) 1
4

.

The result follows.
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