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Chapter 2

Adaptive global credible sets

2.1 Introduction and main result

We consider the fixed design regression model, where we observe a vector Y⃗n :=
(Y1,n, . . . , Yn,n)

T with coordinates

Yi,n = f(xi,n) + εi,n, i ∈ {1, . . . , n}. (2.1)

Here the parameter f is an unknown function f : X → R on some set X ,
the design points (xi,n) are a known sequence of points in X , and the (unob-
servable) errors εi,n are independent standard normal random variables. We
are interested in the performance of a nonparametric Bayesian approach that
uses a scaled Gaussian process

√
cW as a prior on f . We investigate its effi-

ciency to reconstruct the true regression function, and its ability to quantify
the remaining uncertainty in the statistical analysis through the full posterior
distribution. Our main interest is in the dependence of the posterior distribu-
tion on the scaling factor

√
c in the Gaussian process, which can be viewed as

a bandwidth parameter that can adapt the prior and posterior distributions
to the unknown regularity of the regression function. We consider empirical
and hierarchical Bayes methods to determine this scaling factor, and study the
properties of the resulting plug-in or full posterior distributions.
We denote the prior process for f =

(
f(x) : x ∈ X

)
by W c = (W c

x : x ∈ X ),
where c is the scaling factor, and it is assumed that the process W c is equal
in distribution to the process

√
cW 1. The index set X may possess a special

structure, but the general results allow it to be arbitrary. These results cover
both one-dimensional and multidimensional domains X .
As a particular example we consider the case that X = [0, 1] and W 1 is a



2. Adaptive global credible sets

standard Brownian motion. In this case W c is a mean-zero Gaussian process
with covariance function EW c

sW
c
t = c (s∧t), and can also be obtained by taking

a standard Brownian motion on the transformed time scale ct. More generally,
for every self-similar process W 1 of order α the process (

√
cW 1

t : t ≥ 0) is equal
in distribution to (W 1

tc1/(2α) : t ≥ 0) and hence our present sense of scaling is
equivalent to changing the length scale of the standard process. This applies in
particular to multifold integrals (indefinite integrals) of Brownian motion, as
considered in [Kimeldorf and Wahba, 1970] in connection to spline smoothing.
For a given scale c the Bayesian model is then described by

f | c ∼W c,

Y⃗n | f, c ∼ Nn(f⃗n, I), f⃗n =
(
f(x1,n), . . . , f(xn,n)

)T
.

(2.2)

The posterior distribution given c is by definition the conditional distribution
of f given (Y⃗n, c) in this setup. As Y⃗n depends on f only through f⃗n, the
conditional distribution of f given (Y⃗n, f⃗n, c) does not depend on the data Y⃗n
and is the same as the conditional distribution of f given (f⃗n, c), which is
determined by the prior only. Thus we focus on the posterior distribution of
f⃗n, which by standard Gaussian calculus can be seen to satisfy

f⃗n | Y⃗n, c ∼ Nn

(
f̂n,c, I − Σ−1

n,c

)
,

f̂n,c = (I − Σ−1
n,c)Y⃗n, Σn,c = I + cUn,

(2.3)

for Un the covariance matrix of the unit scale process W 1 restricted to the
design points xi,n. For instance, for scaled Brownian motion (Un)i,j = xi,n ∧
xj,n.

If Y⃗n follows the model (2.1) with a continuous function f , then for fixed c the
posterior mean f̂n,c tends to f⃗n and the posterior covariance matrix I − Σ−1

n,c

tends to zero as n→ ∞ (see [Cox, 1993, van der Vaart and van Zanten, 2008]).
This remains true if c = cn is made dependent on n and allowed to tend to zero
or infinity at polynomial rates. Thus the posterior distribution given c = cn
contracts to the Dirac measure at f for reasonable cn. The rate of contraction
depends on cn and the regularity of the function f jointly. A smaller value
of c corresponds to less variability in the prior process, and yields a posterior
distribution with a less variable mean function and a smaller covariance. This is
advantageous if the true regression function f is fairly regular, but will lead to
a suboptimal contraction rate and a too optimistic quantification of remaining
uncertainty in the opposite case (see [van der Vaart and van Zanten, 2007]
and Chapter 1). It is therefore important to adapt c to the data. We discuss
three methods, which turn out to have similar behaviour, both in terms of
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2.1. Introduction and main result

contraction rate and uncertainty quantification, although the sets of functions
for which they work differ.
In the hierarchical Bayes setup the parameter c is equipped with a prior, and an
ordinary Bayesian analysis is carried out with the resulting mixture of normals
prior for f . We shall consider the situation that c follows an inverse Gamma
distribution.
In the empirical Bayes setup an estimator ĉn of the length scale is plugged into
the posterior distribution for given c. We consider two methods of estimation:
a likelihood-based and a risk-based method.
The likelihood-based empirical Bayes method defines ĉn as the maximum like-
lihood estimator of c within the marginal Bayesian model Y⃗n | c ∼ N (0,Σn,c),
which follows from (2.2). In this marginal model c is the only parameter, and
its maximum likelihood estimator is

ĉn = argminc∈In
[
log detΣn,c + Y⃗ Tn Σ−1

n,cY⃗n

]
. (2.4)

The restriction of c to an interval In away from the extremes 0 and ∞ is
convenient. Throughout the chapter we shall use

In = [logn/n, nm−1],

wherem is chosen large enough so that the minimax scaling rates for all smooth-
ness levels are included. (If (2.12) holds, then it is chosen equal to the m in
this equation.) The likelihood-based empirical Bayes procedure ought to be
close to the hierarchical Bayes procedure, as the posterior density for c is pro-
portional to the marginal density of Y⃗n given c times the prior density by
Bayes’s rule, and hence ought to concentrate around ĉn in (2.4). Thus the
posterior distribution with a likelihood-based empirical Bayes plug-in for the
scale parameter is sometimes viewed a computationally cheaper version of a
true Bayesian analysis.
The risk-based empirical Bayes method uses an alternative estimator for c that
tries to minimize the risk of the posterior mean f̂n,c, which is given by

Ef
∥∥f̂n,c − f⃗n

∥∥2 = ∥ − Σ−1
n,cf⃗n∥2 + tr

(
(I − Σ−1

n,c)
2
)
. (2.5)

The first term on the right depends on the unknown function f , and hence
cannot be used in a criterion to estimate c. An obvious estimate for this term
is ∥ − Σ−1

n,cY⃗n∥2, but it is biased, as

Ef∥ − Σ−1
n,cY⃗n∥2 = ∥Σ−1

n,cf⃗n∥2 + Ef∥Σ−1
n,cε⃗n∥2 = ∥Σ−1

n,cf⃗n∥2 + tr(Σ−2
n,c).
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2. Adaptive global credible sets

This motivates the estimator for c given by

ĉn = argminc∈In
[
tr
(
(I − Σ−1

n,c)
2
)
− tr(Σ−2

n,c) + Y⃗ Tn Σ−2
n,cY⃗n

]
. (2.6)

In the special case that W c is an (m−1)-fold integral of Brownian motion, this
estimator was introduced in the context of regression by spline-smoothing. The
posterior mean in our setup is then equal to a penalized least squares estimator
for the penalty λ

∫
f (m)(x)2 dx, with smoothing parameter λ equal to 1/(cn).

See [Wahba, 1983, Cox, 1993].
In Bayesian inference the posterior distribution is used both to reconstruct the
regression function f , typically by the posterior mean, and to quantify the
uncertainty in this construction, using the spread of the posterior distribution.
In this chapter we are interested in the accuracy of these procedures within
the so-called frequentist setup, which assumes that the data Y⃗n are generated
according to model (2.1) for a given “true function” f . The accuracy of the
posterior mean as a point estimator of f can be measured by its risk function
or the contraction rate of the full posterior distribution (see [Ghosal et al.,
2000]), as usual. The accuracy of the uncertainty quantification can be studied
through the coverage and size of credible sets, which are data-dependent sets of
prescribed posterior probability. In connection to the empirical Bayes methods
we shall first study credible sets of the form

Ĉn,η,M =
{
f : ∥f⃗n − f̂n,ĉn∥ < Mrn(ĉn, η)

}
, (2.7)

with ∥ · ∥ the Euclidean norm. Here rn(c, η) is for given η ∈ (0, 1) determined
such that the ball of radius rn(c, η) centred at the origin receives probabil-
ity η under the posterior law of f⃗n − f̂n,c given a fixed c, which by (3.3) is
the normal law Nn(0, I − Σ−1

n,c). In the hierarchical Bayes setup we augment
the Bayesian model (2.2) with a prior on c. We then take η1, η2 ∈ (0, 1) and
select a pair of (nontrivial) quantiles ĉ1,n(η1) < ĉ2,n(η1) in the posterior dis-
tribution of c, i.e. such that the posterior c | Y⃗n assigns mass η1 to the interval[
ĉ1,n(η1), ĉ2,n(η1)

]
. We then consider as credible sets for f :

Ĉn,η,M =
∪

ĉ1,n(η1)<c<ĉ2,n(η1)

{
f : ∥f⃗n − f̂n,c∥ < Mrn(c, η2)

}
. (2.8)

This two-step construction can exploit that the credible sets for fixed c have a
simple description through the radii rn(c, η). An alternative would be a ball
around the hierarchical posterior mean

∫
f̂n,cΠn(dc | Y⃗n).

The uncertainty quantification, by either (2.7) or (2.8), is deemed accurate if
the sets Ĉn,η,M cover the true parameter f with high probability, if the data
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2.1. Introduction and main result

are generated according to the model (2.1). In particular, the credible sets are
honest confidence sets at level η for a given class of functions F if

inf
f∈F

Pf
(
f ∈ Ĉn,η,M

)
≥ η.

The number rn(c, η) is the natural radius of the credible set for fixed c at level
η in the Bayesian framework. The additional constant M in the definitions
(2.7)–(2.8) of the credible sets is required because the Bayesian and frequentist
notions of coverage are not the same, and c is estimated.
It is well known that the size of an honest confidence set for a given model F is
determined by “worst case” members of F [Low, 1997, Juditsky and Lambert-
Lacroix, 2003, Cai and Low, 2004, 2006, Robins and van der Vaart, 2006,
Genovese and Wasserman, 2008, Hoffmann and Nickl, 2011]. For instance, if
F contains a Hölder ball of regularity α, then the (random) diameter of the
confidence set cannot be of smaller order than

√
nn−α/(2α+1), even if the true

function is much smoother. In other words, the size of honest confidence sets
cannot adapt to the unknown smoothness of the true regression function. On
the other hand, the posterior contraction rate of the hierarchical Bayes method
is known to adapt to unknown regularity, in that the rate is faster if the true
function is smoother. We show below that the empirical Bayes methods adapt
in a similar manner. Since the corresponding credible sets will have diameter
of order the contraction rate, it follows that these sets cannot be honest over a
“full” set of functions, such as a Hölder ball. Following [Giné and Nickl, 2010,
Bull, 2012, Szabó et al., 2015] we lower our expectation and investigate honesty
over a reduced parameter space, with certain “inconvenient” true parameters
cut out, as follows.
The distribution of the data depends on the function f only through the vector
f⃗n. A convenient way to describe this vector is through its coordinates relative
to the eigenbasis of the covariance matrix Un. Write f1,n, . . . , fn,n for the
coordinates of f⃗n relative to this basis, i.e.

fj,n := f⃗Tn ej,n, j ∈ {1, . . . , n},

for e1,n, . . . , en,n the orthonormal eigenbasis of Un. Let λ1,n, . . . , λn,n be the
corresponding eigenvalues.

Definition 2.1 (Discrete polished tail). We say that the function f , or the
corresponding array (fj,n), satisfies the polished tail condition if there exist
constants L and ρ such that for all c > 0 and sufficiently large n it holds that

L
∑

j:ρ≤cλj,n≤1

f2j,n ≥
∑

j:cλj,n≤1

f2j,n. (2.9)
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2. Adaptive global credible sets

The condition may be paraphrased as requiring that the “energy” of the signal
f in the “large frequencies” {j : ρ ≤ cλj,n ≤ 1} is at least a fraction L−1

of the “energy” in the “frequencies” {j : cλj,n ≤ 1}. Perhaps a better name
would be “self-similar”, but this name is already taken in the literature for
a more special property. The following example shows that the condition is
similar to the polished tail condition introduced in [Szabó et al., 2015] when
the eigenvalues decrease polynomially in j.

Example 2.2 (Polynomial eigenvalues). If λj,n ≍ Kn/j
k, for some constants

Kn and k > 0, then the discrete polished tail condition is equivalent to the
existence of constants L and ρ such that, for all sufficiently large m (and hence
sufficiently large n),

n∑
j=m

f2j,n ≤ L

ρm∧n∑
j=m

f2j,n. (2.10)

Indeed, the condition cλj,n ≤ 1 is equivalent to j ≥ (cKn)
1/k =: J , whence the

right side of (2.9) is bounded above by
∑
j≥J f

2
j,n, which is bounded above by

L
∑
J≤j≤Jρ f

2
j,n by (2.10). This is the left side of (2.9), with ρ−k instead of ρ.

In [Szabó et al., 2015] a condition similar to (2.10) is introduced in a continuous
time setup. We comment on the relationship of these conditions in Section 2.4.

The main result of this chapter is that all three types of credible sets are honest
confidence sets over polished tail parameters, of diameter that adapts to the
smoothness of f . We measure smoothness through the square norms, for α > 0,

∥f∥2n,α =
1

n

n∑
j=1

j2αf2j,n,

∥f∥2n,α,∞ =
1

n
sup

1≤j≤n
j1+2αf2j,n.

(2.11)

These norms are in terms of the restriction of f to the grid (xj,n). We comment
on their relationship to norms on the full function f in Section 2.4. (In general
the coefficients fj,n cannot be directly related to an infinite sequence of Fourier
coefficients of f , but for many functions the numbers fj,n/

√
n, which include

the scaling factor
√
n, is close to the jth Fourier coefficient.)

In the following theorem we assume that there exist constants 0 < δ ≤ δ <∞
and m ≥ 1 such that the eigenvalues λ1,n, . . . , λn,n of Un satisfy

δ
n

jm
≤ λj,n ≤ δ

n

jm
. (2.12)
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2.1. Introduction and main result

Since W⃗n is distributed as
∑n
j=1

√
λj,nZj,nej,n for i.i.d. standard normal ran-

dom variables Zj,n, we have E∥W∥2n,α = n−1
∑n
j=1 j

2αλj,n. For the eigenval-
ues (2.12) this is uniformly bounded if and only if α < (m− 1)/2. Thus these
eigenvalues correspond to modelling the regression function a-priori as “almost
(m− 1)/2-smooth”.
Let Fn,L be the set of all functions that satisfy the discrete polished tail con-
dition (2.10) for given L and satisfy

∑n
j=1 f

2
j,n ≤ dn for some sufficiently small

constant d (that may depend on δ and m).

Theorem 2.3. Assume that (2.12) holds. For sufficiently large M and any
η > 0 the credible sets (2.7), with ĉn given by (2.4) or (2.6), and the credible
sets (2.8) satisfy

inf
f∈Fn,L

Pf (f ∈ Ĉn,η,M ) → 1.

Furthermore, for any α ∈ (0,m/2), the diameter of the credible sets Ĉn,η,M
relative to the scaled Euclidean norm ∥ · ∥n,0 is of the order OPf

(
n−α/(1+2α)

)
,

uniformly in f with ∥f∥n,α . 1 or ∥f∥n,α,∞ . 1. For the risk-based empirical
Bayes method this is even true for α ∈ (0,m).

The theorem is a summary of the main results of the chapter as valid for all
three methods. More specific results for the individual methods, with relax-
ations of the polished tail condition tailored to the specific method, as well as
results that do not assume the eigenvalue condition (2.12), are described below.
For example, these results cover functions f on a two-dimensional domain with
eigenvalues of the forms (2.19) or (2.20), as introduced below.
The second and third assertions of the theorem show that the diameter of the
credible sets adapts to the regularity of the true regression function. The re-
strictions to regularity levels α < m/2 or α < m in the likelihood-based and
risk-based methods stem from the prior, through the rate of decrease (2.12) of
its eigenvalues, and the method used. The range (0,m) is bigger than could
be expected from the existing literature on Gaussian process priors. For in-
stance, (m/2 − 1)-fold integrated Brownian motion satisfies (2.12) and has
sample paths of regularity m/2 − 1/2. It has been documented to be an ap-
propriate prior for functions of exactly regularity m/2 − 1/2, and to become
appropriate for functions of regularities α ∈ (0,m/2] after appropriate (de-
terministic) scaling (see [van der Vaart and van Zanten, 2007, Knapik et al.,
2011] and Chapter 1). The latter property is retained under random scaling by
likelihood-based empirical Bayes and hierarchical Bayes methods considered in
the present context (although for α = m/2 an extra logarithmic factor may
come in; see Example 2.23; the definitions of regularity in the various papers
are also not directly comparable). Surprisingly the risk-based method performs
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2. Adaptive global credible sets

better than the likelihood-based methods, in that it enlarges the good range to
α ∈ (0,m). This is caused by the closer connection of the risk-based empirical
Bayes method to the diameter of the credible set, yielding a more appropriate
scaling factor ĉn for minimizing this diameter.
The diameter of the credible sets is linked to the posterior contraction rate.
The rates OPf

(n−α/(1+2α)) are attained irrespective of f satisfying the polished
tail condition, the latter condition being important only for the coverage.
The credible sets (2.7) and (2.8) are obtained by considering balls in the space
of function values of f at the design points. An alternative are (sets based on)
pointwise intervals of the form

Ĉn,η,M (x) =
{
f : |f(x)− f̂n,ĉn(x)| < Mrn(ĉn, η, x)} (2.13)

or

Ĉn,η,M (x)=
∪

ĉ1,n(η1)<c<ĉ2,n(η1)

{
f : |f(x)− f̂n,c(x)| < Mrn(c, η2, x)}, (2.14)

where f̂n,c(x) denotes the mean of the marginal posterior distribution of f(x)
given c and rn(c, η, x) is determined so that

P
(
|f(x)− f̂n,c(x)| < rn(c, η, x) | Y⃗n, c

)
= η.

Since this marginal posterior distribution of f(x) given c is normal with mean
f̂n,c(x), these intervals are easily determined. In particular, for a design point
x = xi,n the radius rn(c, η, x) is equal to zη(1−(Σ−1

n,c)i,i)
1/2, for zη the (1+η)/2-

quantile of the standard normal distribution. When used simultaneously for
multiple values of x, these intervals form a credible band.
The study of the coverage of such pointwise intervals and bands requires differ-
ent techniques from those in this chapter, and appears to be tractable only for
concretely specified prior processes. However, the methods developed here are
suitable when measuring coverage in an averaged fashion that focuses on the
fraction of the design points at which the intervals (2.13) or (2.14) cover the
true function. A similar point of view was taken by [Wahba, 1983, Cai et al.,
2014]. The following corollary gives such a result for a subset of design points
xi,n that are spread evenly relative to the prior process. More precisely, let

s2n(c, xi,n) := inf
a∈Rn

[
cE
(
W 1
xi,n

− aT W⃗ 1
n

)2
+ ∥a∥2

]
denote the posterior variance at the design point xi,n and set

Jn :=
{
i : s2n(c, xi,n) ≥

C

n

n∑
j=1

s2n(c, xj,n)
}

(2.15)
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2.1. Introduction and main result

for some constant C that is independent of n. Then the corollary holds when
considering the design points in this set.
In Corollary 1.11 of Chapter 1, we have seen that Brownian motion satisfies
this condition for the set of all design points that satisfy xi,n ≥ C/

√
logn.

The following corollary shows that the uncertainty quantification through the
intervals Ĉn,η,M (xi,n) is correct at the design points in the set Jn as long this
set is large enough, except possibly a fraction.

Corollary 2.4. Assume that (2.12) holds and that the set Jn given in (2.15)
satisfies |Jn| ∼ n. Fix γ ∈ (0, 1), η > 0 and let ĉn be given by (2.4) or (2.6).
Then for sufficiently large M the credible sets defined in either (2.13) or (2.14)
satisfy

inf
f∈Fn,L

Pf

( 1
n

∑
i∈Jn

1
{
f ∈ Ĉn,η,M (xi,n)

}
≥ γ

)
→ 1.

Furthermore, if for some constant C ′ > 0 it also holds that s2n(c, xi,n) ≤
C′

n

∑n
j=1 s

2
n(c, xj,n) for i ∈ Jn, then for any α ∈ (0,m/2) the length of the

intervals Ĉn,η,M (xi,n) is of the order OPf

(
n−α/(1+2α)

)
uniformly in i ∈ Jn,

uniformly in f with ∥f∥n,α . 1 or ∥f∥n,α,∞ . 1. For the risk-based empirical
Bayes method this is even true for α ∈ (0,m).

The proof of this corollary can be found in Section 2.6.
The multiplicative constant n in (2.12) is motivated by comparison with the
continuous time setup. If the covariance function K(s, t) = EW 1

sW
1
t of the

continuous time process W 1 has eigenfunctions ej satisfying∫
K(s, t)ej(t) dt = λjej(s),

then for equidistant design points one may expect that
n∑
i=1

K(x, xi,n)ej(xi,n) ≈ nλjej(x).

This suggests both that λj,n ≈ nλj and that the “discrete” eigenvectors ej,n
should be close to the eigenfunctions restricted to the design points. This is a
suggestion only, which already makes little sense when counting the numbers
of eigenvalues involved: n versus ∞. Nevertheless, for the Brownian motion
prior the correspondence is exact.

Example 2.5 (Brownian motion). The Brownian motion prior permits explicit
formulas for eigenbasis and eigenvalues, provided the design points are taken
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2. Adaptive global credible sets

equal to xi,n = i/(n + 1/2) for i ∈ {1, . . . , n}, a slight shift from the usual
uniform grid. The formulas are interesting as they allow to make a connection
to the Fourier basis (see Section 2.4).
The eigenvectors of the covariance matrix Un of standard Brownian motion
scaled to unit length are given by

ej,n =
1√

n+ 1/2

(
ej(x1,n), . . . , ej(xn,n)

)T
,

ej(x) =
√
2 sin

[(
j − 1

2

)
πx
] (2.16)

for j ∈ {1, . . . , n}. Here the functions ej are an orthonormal basis of {f ∈
L2[0, 1] : f(0) = 0}, and happen to be eigenfunctions of the covariance kernel of
continuous Brownian motion. A similar correspondence is valid for Brownian
bridge, but we are not aware of other examples where the continuous and
discrete setups match up so closely.
The eigenvalues of Un are given by

λj,n =
1

(4n+ 2) sin2
(
(j − 1/2)π/(2n+ 1)

) .
As the argument of the sine is in [0, π/2], for which 2x/π ≤ sinx ≤ x, there
exist numbers (δ, δ) such that

δn

j2
≤ 1

(4n+ 2)π2

(2n+ 1

j − 1
2

)2
≤ λj,n ≤ 1

16n+ 8

(2n+ 1

j − 1
2

)2
≤ δn

j2
, (2.17)

where this inequality holds for all n and j ≥ 1 if we take (δ, δ) = (π−2, 3) and
for j > 2 and n sufficiently large if we let δ = 4/10.
Standard Brownian motion has sample paths of regularity 1/2, and has been
documented to become an appropriate prior for functions of regularities α ∈
(0, 1) after appropriate scaling (see Chapter 1 and [van der Vaart and van
Zanten, 2007, Knapik et al., 2011]). We show in this chapter that the good
range is enlarged to α ∈ (0, 2) provided that the scaling by the risk-based
empirical Bayes method is used.

Example 2.6 (Discrete priors). Although it often helps intuition to model
a function f a-priori by a Gaussian process on a “continuous” space that en-
compasses the design points, nothing in the preceding setup requires this. In
fact, we may turn the construction around, by starting with an arbitrary or-
thonormal basis e1,n, . . . , en,n and eigenvalues λ1,n, . . . , λn,n, and next define
the prior covariance matrix Un to be the matrix that has this as its eigenbasis
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2.1. Introduction and main result

and eigenvalues, that is, its spectral decomposition is

Un =
n∑
i=1

λi,nei,ne
T
i,n. (2.18)

Given arbitrary points x1,n, . . . , xn,n the vector f⃗n is then a-priori modelled by
its coefficients fi,n relative to e1,n, . . . , en,n, which are independent N (0, cλi,n)-
variables.
One particular example is to retain the eigenvectors of Brownian motion, but
to change the corresponding eigenvalues to (2.12) for a general m. The inter-
pretation of the norms ∥·∥n,α and ∥·∥n,α,∞ would be the same as for Brownian
motion (as discussed in Section 2.4), but the good rates relative to these norms
would now be attained for α up to m (or m/2) rather than 2 (or 1). Our
theoretical results show only advantages to taking a larger value of m, but one
might guess that a deeper analysis could change this picture.

Example 2.7 (Discrete Laplacian). The discrete Laplacian is a useful tool to
construct “smooth priors” on a discrete set of design points. For a univariate
grid it is closely connected to the Brownian motion prior of Example 2.5. For
a countable set X equipped with a neighbourhood relation ∼ the Laplacian is
the operator acting on functions f : X → R, defined by

L(f)(x) =
∑
y:y∼x

[
f(y)− f(x)

]
.

Small values of |Lf | indicate that f changes little across its neighbourhoods,
whence L can be used to model smoothness relative to the given neighbourhood
structure.
Identification of a function f :X →R with the infinite vector

(
f(x) : x ∈ X

)
gives an identification of L with an infinite matrix (with (x, y)th element equal
to 1 if y ̸= x and y ∼ x; equal to −#{y ∼ x} if y = x; and equal to 0 otherwise).
The restriction of this matrix to the rows x ∈ {x1,n, . . . , xn,n} will have nonzero
elements in columns y /∈ {x1,n, . . . , xn,n} with y ∼ xi,n for some i, and hence
a restriction of Lf to the design points may not correspond to simply taking
the appropriate (n × n)-submatrix of L. This is typically solved by imposing
boundary conditions, much as when considering a continuous partial differential
operator.
In the example of X = Z with the design points x1,n, . . . , xn,n identified with
the points 1, . . . , n and the neighbourhood system: i ∼ j if and only if |i−j| = 1,
the discrete Laplacian is

L(f)(i) =
∑

j:|j−i|=1

[
f(j)− f(i)

]
= f(i+ 1) + f(i− 1)− 2f(i).
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The restriction of L(f) to the design points 1, . . . , n also involves the points
0 and n + 1, and there are various ways of imposing boundary conditions.
The natural choice f(0) = f(n + 1) = 0 is known as the Dirichlet boundary,
while the other natural choice given by f(0) = f(1) and f(n + 1) = f(n) is
the Neumann boundary. The eigenvectors and eigenvalues corresponding to
these boundary conditions are known explicitly, and so they are for the mixed
Dirichlet-Neumann conditions: f(0) = 0 and f(n + 1) = f(n). In fact, in the
latter case the eigenvectors are exactly equal to ej,n as given in (2.16) and the
eigenvalues are −1/((n+ 1/2)λj,n) for λj,n as given in (2.17). This close con-
nection to Brownian motion is not obvious, but also not entirely surprising as
minus the inverse Laplacian (the twofold primitive) is the covariance operator
of Brownian motion (restricted to the orthogonal complement of the constant
functions) and standard Brownian motion is tied at zero. The connection in-
vites to interpret the eigenvectors (2.16) as modelling smoothness in a discrete
sense, an interpretation that also makes sense if the design points xi,n are lin-
early ordered and roughly equally spaced, but not exactly equal to i/(n+1/2)
as in Example 2.5. For the special grid of the latter example the norm in (2.11)
corresponds exactly to the size measured by the Laplacian, in that

1

n
∥(n2L)α/2f⃗n∥2 = n2α−1

n∑
i=1

f2i,n(
(n+ 1/2)λi,n

)α ≍ ∥f∥2n,α.

(The norm on the left side is the Euclidean norm of Rn and the leading factor
1/n stabilises the sum involved in this norm; the factor n2 preceding L corre-
sponds to 1/h2, for h ∼ 1/n the mesh width of the grid.) Although the eigen-
values (2.17) come naturally with the discrete Laplacian, when defining the
prior they might be replaced by eigenvalues (2.12) for a general m. This would
correspond to describing a-priori smoothness by a power of the Laplacian. In-
deed, as noted following (2.12), for these eigenvalues we have E∥W∥2n,α <∞ for
α < (m− 1)/2. In view of the preceding display, this is equivalent to finiteness
of 1

n E∥(n2L)α/2W⃗n∥2. So the prior with covariance matrix (2.18), for eigenval-
ues (2.12) and eigenvectors (2.16), corresponds to modelling f by a Gaussian
process W with finite discrete Laplacian (n2L)α/2W for α < (m− 1)/2.

Example 2.8 (Integrated Brownian motion). Once integrated Brownian mo-
tion W 1

t =
∫ t
0
Bs ds, for B standard Brownian motion, possesses covariance

function cov(W 1
s ,W

1
t ) = s2(3t − s)/6 for s ≤ t. The eigenfunctions are given

by

ej(t) ∝(sin θj + sinh θj)
(
cos(tθj)− cosh(tθj)

)
− (cos θj + cosh θj)

(
sin(tθj)− sinh(tθj)

)
,
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where the θj are the positive roots of the equation cos(θ) cosh(θ) = −1, for j ∈
{1, 2, . . .}. See [Freedman, 1999], Theorem 7. The corresponding eigenvalues
are λj = θ−4

j and are of the order ((2j − 1)π/2)−4.
Thus this example appears to satisfy (2.12) with m = 4. However, exact
expressions for the discrete eigenvectors and eigenvalues appear not known.

Example 2.9 (Functions of two arguments). Functions f : [0, 1]2 → R on
the unit square may be modelled a-priori by the product W 1

s,t = B1,sB2,t

of two independent standard Brownian motions B1 and B2. The covariance
function EW 1

s,tW
1
s′,t′ is the product K(s, s′)K(t, t′) of the covariance functions

K(s, s′) = s∧ s′ of the Brownian motions. While this process is not Gaussian,
we can replace it by a Gaussian process with the same covariance structure.
For a rectangular grid consisting of points (xi,n, xj,n) constructed from a given
univariate grid 0 ≤ x1,n < · · · < xn,n ≤ 1, the covariance matrix of the n2-
dimensional vector (Wxi,n,xj,n), for (i, j) ∈ {1, . . . , n}2, with its coordinates
ordered appropriately, is the Kronecker product of two copies of the covari-
ance matrix of the n-dimensional vector (Bxi,n). The eigenvectors are the ten-
sor products ei,n ⊗ ej,n of the univariate eigenvectors ei,n, with corresponding
eigenvalues the products λi,j,n = λi,nλj,n of the univariate eigenvalues λi,n.
Even though in this case the eigenfunctions and eigenvalues are more naturally
viewed as a two-dimensional array than a sequence, they may of course be
ordered in a sequence. Then this example fits the general setup, except that n
has been changed into n2.
In particular, for the grid in Example 2.5 the eigenvectors are the discretisations
of the tensor products of the sine-basis given in (2.16) and the eigenvalues
satisfy

λi,j,n ≍ n2

imjm
, (i, j) ∈ {1, . . . , n}2 (2.19)

for m = 2. Theorem 2.3, which assumes (2.12), does not apply to this example.
However, the assumptions of the general results below are satisfied, also for a
general value of m ≥ 1, and hence the message of the theorem goes through.
The set of polished tail functions can be defined in the same manner by (2.10),
after ordering the array of coefficients fi,j,n in a sequence by order of decreasing
eigenvalues λi,j,n (that is, increasing values of ij).
The square smoothness norm ∥ · ∥n,α as in (2.11) now becomes
n−2

∑n
i=1

∑n
j=1(ij)

2αf2i,j,n. While the eigenbasis is essentially the natural
two-dimensional Fourier basis, the restriction imposed by this norm is a bit
unusual, in its focus on the cross product ij. As the smoothness norm de-
scribes the prior process, this may be unsatisfactory. More natural “Sobolev
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norms” n−2
∑n
i=1

∑n
j=1(i

2 + j2)αf2i,j,n correspond to the eigenvalues

λi,j,n ≍ n2

(i2 + j2)m
, (i, j) ∈ {1, . . . , n}2. (2.20)

The Gaussian process W 1 corresponding to these eigenvalues has E∥W 1∥2n2,α <
∞ for every α < m− 1, and hence may be considered “Sobolev smooth almost
of order m− 1”.
For these eigenvalues the discrete polished tail condition (2.9) can be written
in the form

n∑
i=1

n∑
j=1

i2+j2≥m

f2i,j,n ≤ L

n∑
i=1

n∑
j=1

m≤i2+j2≤ρm

f2i,j,n,

for sufficiently large m. The theorems below show that the credible sets corre-
sponding to this prior cover functions that satisfy this condition.

Organisation of the chapter
We give an outline of the argument as presented in Section 2.2. Firstly, the
various parts of the criterion functions used to define the estimators ĉn in (2.4)
and (2.6) are studied. The behaviour of these estimators is then quantified
by Theorem 2.12. This result is applied in Theorem 2.17 to obtain our main
result on the coverage of the credible sets as defined in (2.7). We follow up
with results about contraction rates of oracle type and over various concrete
models (Section 2.2). The argument in the hierarchical case in Section 2.3 has
the same structure: first we quantify the behaviour of the posterior c | Y⃗n in
Theorem 2.25 and this is then applied in Theorem 2.27 to obtain coverage.
Again this is followed by a discussion of the contraction rates in Section 2.3.
The rest of the paper is structured as follows. Section 2.4 concerns the inter-
pretation of the polished tail condition, which is related to a similar condition
on the Fourier coefficients of f . It is shown to be satisfied with probability
one under the prior. This section also discusses various alternative smoothness
assumptions on the function f . Section 2.5 is a closing discussion, which ad-
dresses conditions, interpretations, and generalisations of our results. Finally
Sections 2.6 and 2.7 gather technical proofs and technical lemmas.

Notation
The notation an ≍ bn means that an/bn is bounded away from 0 and infinity, as
n→ ∞, and an ∼ bn means that an/bn tends to 1. If an and bn are functions,
then we say that an ≍ bn or an ∼ bn uniformly over a domain if the constants
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2.2. Empirical Bayes

away from 0 and infinity can be chosen the same for every value in the domain,
or the convergence to 1 is uniform. The notation a . b means a ≤ Cb for a
universal constant C.
For a function g : X → R, the vector

(
g(x1,n), . . . , g(xn,n)

)
is denoted

by g⃗n. The same notational device is used for a vector ε⃗n composed of
variables ε1,n, . . . , εn,n. Unless stated otherwise the set In is the interval
In = [logn/n, nm−1].

2.2 Empirical Bayes

By substituting the model equation Y⃗n = f⃗n + ε⃗n, we can decompose the
quadratic forms in the empirical Bayes criteria (2.4) and (2.6) as

Y⃗ Tn Σ−k
n,cY⃗n = f⃗Tn Σ

−k
n,cf⃗n + ε⃗TnΣ

−k
n,cε⃗n + 2f⃗Tn Σ

−k
n,cε⃗n, k ∈ {1, 2}. (2.21)

We next express both f⃗n and ε⃗n relative to the orthonormal eigenbasis
e1,n, . . . , en,n of Un. The coefficients of f⃗n are by their definition the num-
bers fj,n, while the coefficients of ε⃗n are i.i.d. standard normal variables Zj,n.
The matrix Σn,c = I + cUn and its inverses Σ−1

n,c and Σ−2
n,c have the same

eigenbasis as Un, with eigenvalues (1 + cλj,n), (1 + cλj,n)
−1 and (1 + cλj,n)

−2,
respectively, for λj,n the eigenvalues of Un. It follows that the two types of
empirical Bayes estimators ĉn minimize criteria LLn and LRn of the form

Ln(c, f) := D1,n(c, f) +D2,n(c) +R1,n(c, f) +R2,n(c) (2.22)
= Dn(c, f) +Rn(c, f).

For the risk-based empirical Bayes estimator (2.6) the functions and processes
D1,n, D2,n, R1,n and R2,n on the right side are defined by

DR
1,n(c, f) = f⃗Tn Σ

−2
n,cf⃗n =

n∑
j=1

f2j,n
(1 + cλj,n)2

,

DR
2,n(c) = tr

(
(I − Σ−1

n,c)
2
)
=

n∑
j=1

(cλj,n)
2

(1 + cλj,n)2
,

RR1,n(c, f) = 2f⃗Tn Σ
−2
n,cε⃗n = 2

n∑
j=1

Zj,nfj,n
(1 + cλj,n)2

,

RR2,n(c) = ε⃗TnΣ
−2
n,cε⃗n − tr(Σ−2

n,c)−
n∑
j=1

(Z2
j,n − 1)

=
n∑
j=1

(Z2
j,n − 1)

[ 1

(1 + cλj,n)2
− 1
]
,

(2.23)
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whereas for the likelihood-based empirical Bayes estimator (2.4) these functions
and processes are given by

DL
1,n(c, f) = f⃗Tn Σ

−1
n,cf⃗n =

n∑
j=1

f2j,n
1 + cλj,n

,

DL
2,n(c) = log detΣn,c − tr

(
I − Σ−1

n,c

)
=

n∑
j=1

[
log(1 + cλj,n)−

cλj,n
1 + cλj,n

]
,

RL1,n(c, f) = 2f⃗Tn Σ
−1
n,cε⃗n = 2

n∑
j=1

Zj,nfj,n
1 + cλj,n

, (2.24)

RL2,n(c) = ε⃗TnΣ
−1
n,cε⃗n − tr(Σ−1

n,c)−
n∑
j=1

(Z2
j,n − 1)

= −
n∑
j=1

(Z2
j,n − 1)cλj,n

1 + cλj,n
.

In general discussions we shall leave off the superscripts R and L, for “Risk”
and “Likelihood”, and denote both the risk- and likelihood-based functions by
D1,n, D2,n, R1,n, R2,n. In both cases we have shifted the criteria by the factor∑n
j=1(Z

2
j,n− 1), which does not depend on c, in order that the remainder term

R2,n be smaller.
The functions D1,n and D2,n are deterministic, whereas R1,n and R2,n are
random processes. The processes D1,n and R1,n depend on f , whereas the
other processes are free of the parameter. Even though the functions and
processes differ in the risk- and likelihood-based cases, for instance by the
power of 1+ cλj,n in the denominators, the two estimators ĉn can be analysed
by similar methods. In Lemma 2.14 it will be seen that under (2.12) the
two functions D2,n, even though quite different in form, are asymptotically
equivalent. The following proposition shows that in both cases the stochastic
process Rn is negligible relative to the deterministic process Dn.

Proposition 2.10. If (2.12), (2.19) or (2.20) holds, then for R1,n and R2,n

as given in (2.23) or (2.24) and the corresponding Dn = D1,n + D2,n in the
same display it holds that

sup
c∈In

|R1,n(c, f)|+ |R2,n(c)|
Dn(c, f)

Pf→ 0. (2.25)

The proof of the proposition can be found in Section 2.6. In case of the eigen-
values (2.19) or (2.20), it should be understood that n is replaced by n2 in the
assertion (and the single sums in (2.23) or (2.24) by double sums).
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We may view the stochastic process Rn = R1,n + R2,n in (2.23) or (2.24) as
an “estimation error” when estimating an “ideal” criterion Dn = D1,n +D2,n.
The preceding proposition essentially says that this error can be ignored. As
a consequence the minimizer ĉn of Ln = Dn + Rn will behave similarly to
the (deterministic) minimizer of Dn. The latter functions consists of a part
D1,n(·, f) that is decreasing in c, from D1,n(0, f) =

∑n
j=1 f

2
j,n to D1,n(∞, f) =

0, and a part D2,n that is free of f and is strictly increasing in c, from D2,n(0) =
0 to D2,n(∞) ≥ n. Minimizing the sum Dn of these functions can be viewed
as an attempt to balance these two terms.
In the case of the risk-based empirical Bayes method D1,n(c, f) is exactly the
square bias of the posterior mean at the true regression function f , given a
fixed scale c, and D2,n(c) is its variance, which is independent of f (see (2.5)).
The square bias is decreasing in the scale c, while the variance is increasing,
and hence the empirical Bayes estimator ĉn tries to balance the square bias
and variance by minimizing an estimate of their sum. The likelihood-based
empirical Bayes estimator is not as strongly tied to the risk, but we shall see
that it performs in a similar manner. Here the essence will be that its bias term
D1,n is bigger than the bias term of the risk-based method, while its variance
term has the same order of magnitude.
For minimizing the risk the empirical Bayes methods always do the right thing.
However, the coverage of the credible sets depends not on the sum of square
bias and variance, but on their relationship, or rather the relationship between
square bias and the posterior variance

s2n(c) = E
(
∥f⃗n − f̂n,c∥2 | Y⃗n, c

)
= tr(I − Σ−1

n,c) =
n∑
j=1

cλj,n
1 + cλj,n

. (2.26)

If for a particular f the square bias exceeds the posterior variance, then the
empirical Bayes method will put a too narrow credible set too far from the
truth, which it will not cover in that case. The posterior variance, although
not equal to the variance terms D2,n, has the same order of magnitude as these
quantities (see Lemma 2.14). Thus a lack of coverage is caused by too small
a value of ĉn, giving too small a prior variance and posterior variance, i.e. by
“oversmoothing” the truth.
Notwithstanding the nice properties of the functions D1,n and D2,n for a
given n, such oversmoothing may occur for f for which the “bias” function
c 7→ D1,n(c, f) changes haphazardly with n. (We describe this here in an
asymptotic framework, with n → ∞, but a problem will arise for every given
n, albeit possibly for different f .) The point is that at different sample sizes,
different aspects of f determine the behaviour of the empirical Bayes estima-
tors ĉn. The assumption that f satisfies the polished tail condition prevents

41



2. Adaptive global credible sets

such haphazard behaviour for both empirical Bayes methods. When consider-
ing a given method, good behaviour can also be more precisely characterised
through the corresponding function D1,n, as follows.

Definition 2.11 (Good bias condition). We say that the function f , or the
corresponding array (fj,n), satisfies the good bias condition relative to D1,n if
there exists a constant a > 0 such that, for c ∈ In,

D1,n(Kc, f) ≤ K−aD1,n(c, f), for all K > 1. (2.27)

As a pendant to this condition we call D2,n good variance functions if there
exist constants b,B,B′ > 0, independent of n, such that for c ∈ In we have

BkbD2,n(c) ≤ D2,n(kc) ≤ B′kbD2,n(c) for all k < 1. (2.28)

Since the functions D2,n do not depend on f , the good variance condition
merely refers to the prior process. Priors satisfying (2.12) give D2,n(c) ≍
(cn)1/m (see Lemma 2.14) and hence yield good variance functions with b =
1/m.
The essence of these “good conditions” is captured in the purely analytical
Lemma 2.42 in Section 2.7, which is the basis of the proof of the second assertion
of the following theorem.

Theorem 2.12. Suppose the remainder terms R1,n and R2,n satisfy (2.25).
Then for any f and ε > 0 the empirical Bayes estimators ĉn given in (2.4) and
(2.6), with the corresponding function Dn = D1,n + D2,n as given in (2.23)
and (2.24), satisfy

Pf

(
Dn(ĉn, f) ≤ (1 + ε) inf

c∈In
Dn(c, f)

)
→ 1.

Furthermore, if f satisfies the good bias condition with constant a, D2,n are good
variance functions with constants b,B,B′ and

∑n
j=1 f

2
j,n ≤ supc∈In D2,n(c),

then also
Pf

(
D1,n(ĉn, f) ≤ B−1(2 + 2ε)1+b/aD2,n(ĉn)

)
→ 1.

Proof. Let cn ∈ In be a minimizer of Dn and set Λn = {c ∈ In : Dn(c, f) ≤ (1+
ε)Dn(cn, f)}. For the first assertion it suffices to show that Pf (ĉn ∈ Λn) → 1.
By the definition of ĉn, this is the case if infc/∈Λn

Ln(c, f) is with probability
tending to one strictly bigger than Ln(cn, f). Since Ln = Dn + Rn, relation
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(2.25) gives

inf
c/∈Λn

Ln(c, f) = inf
c/∈Λn

[
Dn(c, f)

(
1 +

Rn(c, f)

Dn(c, f)

)]
≥ inf
c/∈Λn

Dn(c, f)
(
1− sup

c/∈Λn

∣∣∣Rn(c, f)
Dn(c, f)

∣∣∣)
≥
[

inf
c/∈Λn

Dn(c, f)
](
1− oP (1)

)
.

By the definition of Λn the infimum on the right side is at least equal
to (1 + ε)Dn(cn, f). Moreover, again by Proposition 2.10 we have that
Ln(cn, f) ≤ Dn(cn, f)

(
1 + oP (1)

)
. The desired result follows, as Dn(cn, f)

is strictly positive.
For the proof of the second assertion we define c̃n as the unique point of inter-
section of the graphs of the functions D1,n and D2,n, i.e. the unique solution
of the equation D1,n(c, f) = D2,n(c). If c̃n ∈ In, then by the first assertion
Dn(ĉn, f) ≤ (1+ε)Dn(c̃n, f), whence the assertion follows from Lemma 2.42(i).
If c̃n falls to the left of In, then D1,n(c, f) ≤ D2,n(c) throughout In by the
monotonicity of the two functions and the assertion is trivially true. The as-
sumption that D1,n(0, f) =

∑n
j=1 f

2
j,n is below the maximum value of D2,n

prevents that c̃n falls to the right of In.

The good-bias condition on f is dependent on the prior and the method through
the function D1,n, which can be DL

1,n or DR
1,n. For both methods the condition

is implied by the discrete polished tail condition.

Lemma 2.13. Any f that satisfies the discrete polished tail condition also
satisfies the good bias condition, for both the risk-based and likelihood-based
bias functions D1,n(·, f).

Proof. If f satisfies the discrete polished tail condition, then

∑
j:cλj,n≤1

f2j,n
(1 + cλj,n)2

≤
∑

j:cλj,n≤1

f2j,n ≤ L
∑

j:ρ≤cλj,n≤1

f2j,n

≤ 4L
∑

j:ρ≤cλj,n≤1

f2j,n
(1 + cλj,n)2

,

since 1+cλj,n ≤ 2 for j in the range of the sum. The left side is part of the sum
that defines the function DR

1,n. Splitting this sum in the parts with cλj,n ≤ 1
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and with cλj,n > 1 and noting that ρ ≤ 1, we see that

DR
1,n(c, f) ≤ (1 + 4L)

∑
j:ρ≤cλj,n

f2j,n
(1 + cλj,n)2

≤ (1 + 4L)(1 + ρ)

ρ

∑
j:ρ≤cλj,n

f2j,ncλj,n

(1 + cλj,n)3
,

since cλj,n/(1 + cλj,n) ≥ ρ/(1 + ρ) for j in the range of the sum. The sum on
the right side becomes even bigger if we let the sum range from 1 to n and is
then equal to − 1

2c (D
R
1,n)

′(c, f). It follows that there exists a > 0 such that

(DR
1,n)

′(c, f)

DR
1,n(c, f)

≤ −a
c
.

Integrating this from c to Kc we find that logDR
1,n(Kc, f) − logDR

1,n(c, f) is
bounded above by −a logK, and the good bias condition (2.27) follows.
The proof for the likelihood-based function DL

1,n differs only in that the power
of the factors (1 + cλj,n)

2 in the denominator must be decreased from 2 to
1.

The following lemma gives the behaviour of the three variance functions if the
eigenvalues satisfy (2.12), (2.19) or (2.20). The lemma implies that these three
functions are good variance functions in the sense of (2.28).

Lemma 2.14. The functions DR
2,n given in (2.23), DL

2,n given in (2.24) and sn
given in (2.26) are strictly increasing on [0,∞). Furthermore, if (2.12) holds,
then

DR
2,n(c) ≍ DL

2,n(c) ≍ s2n(c) ≍ (cn)1/m,

uniformly in c in In as n→ ∞. The same is true (with n2 instead of n) under
(2.20). Moreover, if (2.19) holds, then

DR
2,n2(c) ≍ DL

2,n2(c) ≍ s2n2(c) ≍

{
(cn2)1/m

(
1 + log(cn2)

)
if cn2 ≤ nm

(cn2)1/m
(
1 + log

(
n2m

cn2

))
if cn2 ≥ nm

uniformly in c in In2 .

Proof. The monotonicity of DR
2,n and sn is clear. Under (2.12) the function

DR
2,n satisfies

(cnδ)2
n∑
j=1

1

(jm + cnδ)2
≤ DR

2,n(c) ≤ (cnδ)2
n∑
j=1

1

(jm + cnδ)2
,
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where in the second inequality we use that x 7→ x/(1 + x) is increasing. By
Lemma 2.43 in the appendix the sums are of the order (δcn)−2+1/m for c ∈ In.
The function sn can be treated analogously.
The derivative of DL

2,n is given by

(DL
2,n)

′(c) =
n∑
j=1

(
λj,n

1 + cλj,n
− λj,n

(1 + cλj,n)2

)
=

n∑
j=1

cλ2j,n
(1 + cλj,n)2

.

The monotonicity of DL
2,n is a consequence of the positivity of this function.

The value of DL
2,n at c is the integral of this derivative over the interval [0, c].

If (2.12) holds, then

δ2
∫ c

0

n∑
j=1

sn2

(jm + δsn)2
ds ≤ DL

2,n(c) ≤ δ
2
∫ c

0

n∑
j=1

sn2

(jm + δsn)2
ds.

By Lemma 2.43 the integrands are asymptotic to a multiple of
(sn2)(δsn)−2+1/m = n1/ms−1+1/m uniformly in s ∈ [ln/n, n

m−1], for any
ln → ∞ and δ = δ and δ = δ respectively. The integral of the latter function
over [0, c] is equal to a multiple of (cn)1/m, while its integral over [0, ln/n] is
of the order l1/mn . The integral of (DL

2,n)
′ over [0, ln/n] is bounded above by a

multiple of
∫ ln/n
0

sn2
∑n
j=1 j

−2m ds ≍ l2n. Hence both remainders are of lower
order than (cn)1/m for c ∈ In if ln is chosen equal to, for instance, log logn.
The proof under (2.20) is the same, except that we use Lemma 2.45 instead
of Lemma 2.43. The final assertion also follows along the same lines, but now
employing Lemma 2.44. The details are deferred to Section 2.6.

Coverage of the empirical Bayes credible sets
The function f is contained in the empirical Bayes credible sets (2.7) if ∥f⃗n −
f̂n,ĉn∥ ≤Mrn(ĉn, η). In view of (3.3) and (2.1), the square of the left side can
be decomposed for any c as

∥f̂n,c − f⃗n∥2 = f⃗Tn Σ
−2
n,cf⃗n − 2f⃗Tn Σ

−1
n,c(I − Σ−1

n,c)ε⃗n + ε⃗Tn (I − Σ−1
n,c)

2ε⃗n

= DR
1,n(c, f) +DR

2,n(c) +R3,n(c, f) +R4,n(c), (2.29)
where the first two processes on the right are defined in (2.23) and (2.24) and

R3,n(c, f) = −2f⃗Tn Σ
−1
n,c(I − Σ−1

n,c)ε⃗n = −2
n∑
j=1

(cλj,n)Zj,nfj,n
(1 + cλj,n)2

, (2.30)

R4,n(c) = ε⃗Tn (I − Σ−1
n,c)

2ε⃗n − tr
(
(I − Σ−1

n,c)
2
)
=

n∑
j=1

(cλj,n)
2(Z2

j,n − 1)

(1 + cλj,n)2
.
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2. Adaptive global credible sets

The following proposition shows that the remainder R3,n + R4,n is negligible
relative to the deterministic process Dn, for both the likelihood-based and
risk-based functions.

Proposition 2.15. If (2.12), (2.19) or (2.20) holds, then for R3,n and R4,n

given in (2.30) and Dn = D1,n +D2,n given in (2.23) or (2.24) we have

sup
c∈In

|R3,n(c, f)|+ |R4,n(c)|
Dn(c, f)

Pf→ 0. (2.31)

The proof of the proposition can be found in Section 2.6.
The radius rn(c, η) of the Bayesian credible set is the η-quantile of the posterior
distribution of ∥f⃗n − f̂n,c∥ given c. As the distribution of f⃗n − f̂n,c does not
depend on Y , the radius rn(c, η) is deterministic. Since the posterior distribu-
tion of f⃗n − f̂n,c is multivariate normal with mean zero and covariance matrix
I − Σ−1

n,c (see (3.3)), the square norm is equal in distribution to the variable

Nn(c) =
n∑
j=1

cλj,nZ
2
j,n

1 + cλj,n
, (2.32)

where the Zj,n are independent standard normal random variables. The mean
of this variable is by its definition the posterior variance s2n(c), given in (2.26).
The following proposition shows that the variables Nn degenerate to their mean
as n→ ∞.

Proposition 2.16. If (2.12), (2.19) or (2.20) holds, then

sup
c∈In

∣∣∣∣Nn(c)s2n(c)
− 1

∣∣∣∣ P→ 0. (2.33)

The proof of the proposition can be found in Section 2.6.
We are ready for our main result on coverage. The result applies to discrete
polished tail functions and under every of the three eigenvalues conditions, but
we give a more general statement, which takes the output of the preceding
propositions as its conditions.

Theorem 2.17 (Coverage). Suppose the following conditions hold:

1. the remainders R1,n and R2,n behave as in (2.25) and R3,n and R4,n

behave as in (2.31),

2. (2.33) is satisfied,
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2.2. Empirical Bayes

3. DR
2,n(c) ≍ DL

2,n(c) ≍ s2n(c) uniformly in c ∈ In,

4. the function f satisfies the good bias condition and
∑n
j=1 f

2
j,n ≤

supc∈In D2,n(c).

Then Pf (f ∈ Ĉn,η,M ) → 1, for both the risk-based and likelihood-based credible
sets (2.7) and sufficiently large M . In particular, this is true if (2.12), (2.19)
or (2.20) and condition 4 above hold.

Proof. Since Nn(c)/s2n(c) → 1 in probability uniformly in c ∈ In, the quan-
tities r2n(c, η)/s2n(c), which are the η-quantiles of the variables Nn(c)/s2n(c),
tend to 1 as well, uniformly in c. In order to see this, suppose that
supc∈In |r2n(c, η)/s2n(c) − 1| ̸→ 0. Then there exist a subsequence r2nk

/s2nk
and

points ck ∈ In such that |r2nk
(ck, η)/s

2
nk
(ck)− 1| > ϵ. We may assume that we

either have r2nk
(ck, η)/s

2
nk
(ck) > 1+ ϵ for all k or r2nk

(ck, η)/s
2
nk
(ck) < 1− ϵ for

all k. In the latter case, we see that along this subsequence we have

P

(
Nnk

(ck)

s2nk
(ck)

<
r2nk

(ck, η)

s2nk
(ck)

)
≤ P

(
sup
c∈Ink

Nnk
(c)

s2nk
(c)

< 1− ϵ

)
→ 0

by (2.33). The case that rnk
(ck) > 1 + ϵ can be treated similarly, where now

this probability tends to one. In either case, this contradicts the definition of
rn(c, η).

It follows that f is contained in the set Ĉn,η,M if ∥f̂n,ĉn − f⃗n∥2/s2n(ĉn) ≤
M2
(
1 + oP (1)

)
. By the decomposition (2.29) this is equivalent to

DR
1,n(ĉn, f) +DR

2,n(ĉn) +R3,n(ĉn, f) +R4,n(ĉn)

s2n(ĉn)
≤M2

(
1 + oP (1)

)
.

By assumption s2n(ĉn) has the same asymptotic behaviour as bothDR
2,n(ĉn) and

DL
2,n(ĉn), up to a multiplicative constant. If f satisfies the good bias condition

for the risk-based procedure, then DR
2,n(ĉn) & DR

1,n(ĉn, f) with probability
tending to one by Theorem 2.12, whence DR

n (ĉn, f) ≍ DR
2,n(ĉn) ≍ s2n(ĉn). It

then follows that the first two terms in the display are bounded above, while
the remainder terms tend to zero by (2.31).
By definition we always have DR

1,n(c, f) ≤ DL
1,n(c, f). If f satisfies the good

bias condition for the likelihood-based procedure, then DL
1,n(ĉn, f) . DL

2,n(ĉn)

with probability tending to one by Theorem 2.12, while DL
2,n(ĉn) ≍ DR

2,n(ĉn)

by assumption. It follows that again DR
1,n(ĉn, f) . DR

2,n(ĉn), and the proof is
analogous to the risk-based case, where for the last two terms we use the fact
that DL

n (ĉn, f) ≍ DL
2,n(ĉn) ≍ s2n(ĉn).
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2. Adaptive global credible sets

The final assertion of the theorem follows by Propositions 2.10, 2.15 and 2.16
and Lemma 2.14, which show that all assumptions hold under (2.12), (2.19) or
(2.20) and the conditions on f .

Contraction rates of the empirical Bayes posteriors
We first consider the risk-based setting. If the remainder processes in (2.29)
are negligible relative to DR

n = DR
1,n +DR

2,n uniformly in c ∈ In, which is true
under our three eigenvalue conditions by Proposition 2.15, then

∥f̂n,ĉn − f⃗n∥2 = OP
(
DR
n (ĉn, f)

)
. (2.34)

For the estimator ĉn the right side is by the first assertion of Theorem 2.12 of
the order (in probability)

inf
c∈In

DR
n (c, f)

with probability tending to one. Since DR
n (c, f) is exactly the risk of the

estimator f̂n,c for a given c, these two assertions combined can be viewed as
an oracle type inequality for the risk-based empirical Bayes plug-in posterior
mean f̂n,ĉn : the empirical Bayes estimator manages to choose the best value
of c for each possible f . The family of estimators f̂n,c, where c ∈ In, turns
out be rich enough to give an optimal estimation rate for the usual regularity
classes. Thus the estimator f̂n,ĉn adapts to unknown regularity in the usual
sense. We formalize this in the next theorem, together with the observation
that the posterior variance also adapts correctly. From this we deduce that the
full posterior distribution contracts adaptively.
Write Πc

(
· | Y⃗n

)
for the posterior distribution of f⃗n given c and let Πĉn

(
· | Y⃗n

)
be the same object, but with c replaced by ĉn.

Theorem 2.18 (Contraction, risk-based EB). Suppose the following conditions
hold:

1. the remainders R1,n and R2,n behave as in (2.25) and R3,n and R4,n

behave as in (2.31),

2. DR
2,n(c) ≍ s2n(c) uniformly in c ∈ In.

Then for ĉn given by (2.6) and any sequence Mn → ∞,

Πĉn

(
w : ∥w⃗n − f⃗n∥2 ≥Mn inf

c∈In
Ef∥f̂n,c − f⃗n∥2 | Y⃗n

)
Pf→ 0.

In particular, this is true if (2.12), (2.19) or (2.20) holds.
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2.2. Empirical Bayes

Proof. Let W denote a variable that given Y⃗n and c is distributed according to
the posterior distribution of f . Then we have by Markov’s inequality

M2 Πc
(
w : ∥w⃗n − f⃗n∥2 ≥M2 | Y⃗n

)
≤ E

[
∥W⃗n − f⃗n∥2 | Y⃗n, c

]
≤ ∥f̂n,c − f⃗n∥2 + E

[
∥W⃗n − f̂n,c∥2 | Y⃗n, c

]
for any M and c. The second term on the far right is the posterior variance
s2n(c), which by assumption is bounded by a multiple of DR

2,n(c) ≤ DR
n (c, f)

uniformly in c ∈ In. The first term on the far right evaluated at c = ĉn is
bounded above by DR

n (ĉn, f) with probability tending to one, in view of (2.29)
and (2.25) and (2.31). It follows that with probability tending to one

Πĉn
(
w : ∥w⃗n − f⃗n∥2 ≥M2 | Y⃗n

)
. 1

M2
DR
n (ĉn, f) .

1

M2
inf
c∈In

DR
n (c, f)

by the first assertion of Theorem 2.12. Since DR
n (c, f) = Ef∥f̂n,c − f⃗n∥2, the

proof is complete.

Thus the risk-based empirical Bayes method attains a rate of contraction equal
to the best estimator in the class of estimators f̂n,c, for c ∈ In. In standard
models this class contains a rate-minimax estimator.

Example 2.19 (Sobolev norm). Denote by Sαn the set all functions f for
which the discrete Sobolev norm ∥f∥n,α, defined in (2.11), is bounded by 1.
For eigenvalues satisfying (2.12) and f ∈ Sαn for α ≤ m we have

DR
1,n(c, f) .

n∑
j=1

j2mf2j,n
(jm + cn)2

. 1

(cn)2

(cn)1/m∑
j=1

j2mf2j,n +
n∑

j=(cn)1/m+1

f2j,n

. (cn)(2m−2α)/m

(cn)2

(cn)1/m∑
j=1

j2αf2j,n +
1

(cn)2α/m

n∑
j=(cn)1/m+1

j2αf2j,n

≤ n(cn)−2α/m.

In combination with Lemma 2.14 we find that
1

n
DR
n (c, f) . (cn)−2α/m + n−1(cn)1/m.

The argument c = nm/(1+2α)−1 equates the two terms and gives a value of
the order n−2α/(1+2α). By Theorem 2.18 this is the square contraction rate of
the plug-in posterior distribution with the risk-based empirical Bayes estimator
(2.6) relative to the scaled Euclidean norm ∥ · ∥n,0.
For α > m the order of the square bias DR

1,n(c, f) does not improve beyond the
rate n(cn)−2 found for α = m and hence nor does the contraction rate.
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2. Adaptive global credible sets

Example 2.20 (Hyperrectangles). Denote by Θαn the set all functions f for
which the discrete Sobolev norm ∥f∥n,α,∞, defined in (2.11), is bounded by 1.
For eigenvalues satisfying (2.12) and f ∈ Θαn we have

DR
1,n(c, f) ≤

n∑
j=1

nj−2α−1

(1 + cλj,n)2
. n

n∑
j=1

j2m−2α−1

(jm + cn)2
.


n

(cn)2α/m if α < m
n log(cn)
(cn)2 if α = m
n

(cn)2 if α > m.

The first case follows directly by Lemma 2.43, the second by writing

n
n∑
j=1

j2m−2α−1

(jm + cn)2
= n

(cn)1/m∑
j=1

j2m−2α−1

(jm + cn)2
+ n

n∑
j=(cn)1/m+1

j2m−2α−1

(jm + cn)2

and applying a variant of the lemma to the second sum. The third case fol-
lows immediately by using jm + cn > cn. For α < m and α > m this is the
same result as in Example 2.19, leading to the same conclusions on the con-
traction rate. For α = m the additional logarithmic factor leads to the square
contraction rate n−2α/(2α+1)(logn)1/(2α+1).

The likelihood-based empirical Bayes method also satisfies an oracle type in-
equality, but relative to a loss function that is not as closely linked to the
L2-risk of the posterior mean. Because its “bias term” DL

1,n is bigger (the in-
equality DL

1,n ≥ DR
1,n is immediate from definitions (2.23) and (2.24)), while

its “variance term” DL
2,n has the same order of magnitude, in its attempt to

balance bias and variance the likelihood-based empirical Bayes method may
choose a bigger estimator ĉn than the risk-based method. This may have an
adverse effect on the contraction rate of the plug-in posterior distribution.

Theorem 2.21 (Contraction, likelihood-based EB). Suppose the following con-
ditions hold:

1. the remainders R1,n and R2,n behave as in (2.25) and R3,n and R4,n

behave as in (2.31),

2. DL
2,n(c) ≍ s2n(c) uniformly in c ∈ In.

Then for ĉn given by (2.4) and any sequence Mn → ∞ we have

Πĉn

(
w : ∥w⃗n − f⃗n∥2 ≥Mn inf

c∈In
DL
n (c, f) | Y⃗n

)
Pf→ 0.

In particular, this is true if (2.12), (2.19) or (2.20) holds.
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Proof. Since DL
n & DR

n we obtain as in the proof of Theorem 2.18 that

∥f̂n,ĉn − f⃗n∥2 = OP
(
DL
n (ĉn, f)

)
.

Next we can use the first assertion of Theorem 2.12 to replace the right hand
side by the infimum of DL

n (c, f) over c. The posterior variance is of the same
order as DL

2,n and hence the proof can be concluded as the proof of Theo-
rem 2.18.

Even though the loss function of the likelihood-based empirical Bayes estimator
does not relate correctly to the risk in general, the method does give optimal
contraction rates on the models in the preceding examples, albeit for a smaller
range of regularity levels.

Example 2.22 (Sobolev norm). For f ∈ Sαn for α ≤ m/2 and eigenvalues
satisfying (2.12) we have

DL
1,n(c, f) .

n∑
j=1

jmf2j,n
jm + cn

. 1

cn

(cn)1/m∑
j=1

jmf2j,n +

n∑
j=(cn)1/m+1

f2j,n

. (cn)(m−2α)/m

cn

(cn)1/m∑
j=1

j2αf2j,n +
1

(cn)2α/m

n∑
j=(cn)1/m+1

j2αf2j,n

≤ n(cn)−2α/m.

The upper bound has the same form as for the risk-based empirical Bayes
method. Since DL

2,n ≍ DR
2,n, we obtain the same contraction rate results. The

difference is that the rate does not improve for α ≥ m/2.

Example 2.23 (Hyperrectangles). For eigenvalues satisfying (2.12) and f ∈
Θαn we have

DL
1,n(c, f) ≤

n∑
j=1

nj−2α−1

1 + cλj,n
. n

n∑
j=1

jm−2α−1

jm + cn
.


n

(cn)2α/m if α < m/2

c−1 log(cn) if α = m/2

c−1 if α > m/2.

This leads to the contraction rate n−α/(2α+1) relative to the scaled Eu-
clidean norm ∥ · ∥n,0 if α < m/2 and the square contraction rate
n−2α/(2α+1)(logn)1/(2α+1) if α = m/2.
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Diameter of the empirical Bayes credible sets
The empirical Bayes credible sets inherit their diameter from the contraction
rate.

Corollary 2.24. Under the conditions of Theorems 2.18 and 2.21 the square of
the diameter Mrn(ĉn, η) of the credible sets (2.7) is of the order infc∈In DR

n (c, f)
and infc∈In DL

n (c, f) for the risk-based and likelihood-based empirical Bayes
procedures respectively with probability tending to one.

Proof. By Theorems 2.18 and 2.21 the empirical Bayes posterior distributions
concentrate all their mass on a ball of radius of the same order as the given
rate. Since the posterior distribution is Gaussian, the balls Bn of the same
radius centred at the posterior mean must also have mass tending to one. By
definition the credible sets are balls of posterior mass η ∈ (0, 1) around the
posterior mean, and hence are contained in the Bn.
Alternatively, the square radius r2n(ĉn, η) was seen to be of the same order as the
posterior variance s2n(ĉn), which was in turn seen to have the given order.

2.3 Hierarchical Bayes

The hierarchical Bayes method is closely related to the likelihood-based em-
pirical Bayes method, since the posterior density of c is proportional to the
product of the the prior density π for c and the marginal likelihood that de-
fines the latter method. More precisely, in the model (2.2) augmented with
c ∼ π it holds that

πn(c | Y⃗n) ∝ p(Y⃗n | c)π(c) ∝ detΣ−1/2
n,c e−

1
2 Y⃗

T
n Σ−1

n,cY⃗n π(c).

The likelihood-based empirical Bayes estimator (2.4) would be the posterior
mode if the prior density were improper. We shall analyse the hierarchical
Bayes method by exploiting this link.
We start with showing that the posterior distribution of c concentrates on the
interval where the deterministic part of the likelihood-based criterion DL

n =
DL

1,n + DL
2,n is small. This criterion is derived from minus the log marginal

likelihood. On closer inspection it becomes evident that the prior density π,
which we will choose inverse gamma, also plays a role and adds a term 1/c to
this criterion. We truncate the inverse gamma prior to the interval In, so that
c has a prior density so that, for some fixed κ, λ > 0,

π(c) ∝ c−1−κ e−λ/c, c ∈ In.

Theorem 2.25. Suppose the following conditions hold:
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2.3. Hierarchical Bayes

1. the remainders RL1,n and RL2,n satisfy (2.25),

2. the function DL
2,n is a good variance function with DL

2,n(c) ≥ log(nc),

3. there is a minimizer cn(f) of c 7→ DL
n (c, f) + 2λ/c over c ∈ (0,∞) that

satisfies cn(f) ∈ In and 2cn(f) ∈ In.

Then for sufficiently large M

Πn

(
c : DL

n (c, f) +
1

c
≤M inf

c>0

[
DL
n (c, f) +

1

c

]
| Y⃗n
)
Pf→ 1.

Furthermore, if f satisfies the good bias condition relative to DL
1,n, then

Πn

(
c : DL

1,n(c, f) +
1

c
. DL

2,n(c) | Y⃗n
)
Pf→ 1.

Moreover, there exist constants 0 < k < K <∞ such that

Πn

(
c : c ∈

[
kcn(f),Kcn(f)

]
| Y⃗n
)
Pf→ 1.

In particular, these assertions are true if (2.12), (2.19) or (2.20) holds, for
every f satisfying condition 3.

Proof. For every measurable set J ⊆ In we have

Πn

(
c : c ∈ J | Y⃗n

)
=

∫
J
e−

1
2L

L
n(c,f) π(c) dc∫

In
e−

1
2L

L
n(c,f) π(c) dc

=

∫
J
e−

1
2 [D

L
n (c,f)+RL

n(c,f)] π(c) dc∫
In
e−

1
2 [D

L
n (c,f)+RL

n(c,f)] π(c) dc

by the decomposition (2.22). Define ℓn(c, f) = DL
n (c, f) + 2λ/c, so that cn :=

cn(f) is a minimizer of ℓn. In view of (2.25) we have for any δ > 0

ℓn(c, f)(1− δ) ≤ DL
n (c, f) +RLn(c, f) +

2λ

c
≤ ℓn(c, f)(1 + δ),

with probability tending to one. Consequently, we see that

Πn

(
c : c ∈ J | Y⃗n

)
≤
∫
J
e−

1
2 ℓn(c,f)(1−δ) c−κ−1 dc∫

In
e−

1
2 ℓn(c,f)(1+δ) c−κ−1 dc

.

with probability tending to one. Since DL
2,n is a good variance function, we

have that DL
2,n(2cn) ≤ (B′)−12bD2,n(cn). Because DL

1,n is decreasing and DL
2,n

53



2. Adaptive global credible sets

is increasing, we then also have that ℓn(c, f) ≤ (B′)−12bℓn(cn, f) for every
c ∈ [cn, 2cn]. Combining this with the fact that ℓn(c, f) ≥ 2λ/c, it follows that

Πn

(
c : ℓn(c,f) ≥Mℓn(cn, f) | Y⃗n

)
≤
∫
e−

1
4 ℓn(c,f)(1−δ) c−κ−1 dc e−

1
4 (1−δ)Mℓn(cn,f)

e−
1

2B′ 2
b(1+δ)ℓn(cn,f)

∫ 2cn
cn

c−κ−1 dc

. cκne−κℓn(cn,f)
∫ ∞

0

e−
1
2 (1−δ)λ/c c−κ−1 dc

for M(1 − δ) ≥ (4κ + 2(B′)−12b)(1 + δ). If cn → 0, then this clearly tends
to zero. If cn is bounded away from zero, the above also tends to zero, by
the assumption that ℓn(c, f) ≥ log(cn). This concludes the proof of the first
assertion of the theorem.
If f satisfies the good bias condition, then, for K > 1,

DL
1,n(Kc, f) +

2λ

Kc
≤ K−aDL

1,n(c, f) +
2λ

Kc
≤ K−(a∧1)

[
DL

1,n(c, f) +
2λ

c

]
.

In other words, the function c 7→ DL
1,n(c, f) + 2λ/c also satisfies a good bias

condition.
Let Λn =

{
c : ℓn(c, f) ≤ Mℓn(c̃n, f)

}
, for c̃n the solution to the equation

DL
1,n(c, f) + 2λ/c = DL

2,n(c). Since ℓn(cn, f) ≤ ℓn(c̃n, f), we have that Πn(c :

c ∈ Λn | Y⃗n
)
→ 1 by the first part of the proof. Since ℓn is the sum of the

decreasing function DL
1,n(c, f) + 2λ/c and the increasing function DL

2,n, which
are both “good” functions, it follows that DL

1,n(c, f)+2λ/c . DL
2,n(c) for every

c ∈ Λn by Lemma 2.42(i). Furthermore, Lemma 2.42(ii) gives the existence
of constants 0 < k1 < K1 < ∞ with Λn ⊂ [k1c̃n,K1c̃n]. Since cn ∈ Λn, it
follows that also Λn ⊂ [k1/K1cn,K1/k1cn]. This proves the second and third
assertions of the theorem.

The theorem shows that under the posterior distribution the scaling c will
concentrate on the set of small values of the criterion c 7→ DL

n (c, f) + 1/c.
This differs by the term 1/c from the criterion minimized by likelihood-based
empirical Bayes estimator ĉn defined by (2.4), whose behaviour is given in
Theorem 2.12. The additional term is due to the prior distribution. The usual
prior distribution, which we consider here, has very thin tails near 0, and the
extra term 1/c essentially prevents the posterior distribution to concentrate
very close to zero.
Very small values of the scaling parameter c are advantageous for very smooth
functions f . For such functions the bias term DL

1,n(c, f) will be very small
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2.3. Hierarchical Bayes

and the balance between square bias DL
1,n(c, f) and variance DL

2,n(c) will be
assumed for small c. The additional term can be viewed as adding an artificial
bias term of the order 1/c, thus shifting the bias-variance trade-off to bigger
values of c.
In most cases this is not harmful. In particular, the shift will not be apparent
in contraction rates over the usual smoothness models (see Example 2.29). The
following example shows that this is different for very smooth f .

Example 2.26. The smoothest imaginable function f is the zero function.
For f = 0, the bias function DL

1,n(c, f) in (2.24) vanishes. If the eigenvalues
satisfy (2.12), then the variance DL

2,n(c) is of the order (cn)1/m by Lemma 2.14
and the criterion becomes

c 7→ DL
n (c, f) +

1

c
≍ (cn)1/m +

1

c
.

The right side is minimized by cn ≍ (1/n)1/(m+1). Theorem 2.25 shows that
the posterior distribution for the scale parameter c will concentrate on the
set of c that minimize the criterion up to a multiplicative factor. This set is
contained in an interval with boundaries of the order (1/n)1/(m+1).
The fact that this interval shrinks to zero is good, as the variance is smaller
for smaller c, while the bias is negligible. However, it is a bit disappointing
that the shrinkage is not faster than of order (1/n)1/(m+1). In comparison,
the empirical Bayes estimator ĉn will shrink at the order logn/n, the minimal
possible value permitted in our minimization scheme by Theorem 2.12.

Coverage of the hierarchical Bayes credible set
The hierarchical Bayesian credible sets cover true parameters under the same
conditions as the empirical Bayes sets.

Theorem 2.27 (Coverage, HB). Suppose the following conditions hold:

1. the remainders RL1,n and RL2,n behave as in (2.25) and R3,n and R4,n

behave as in (2.31),

2. (2.33) is satisfied,

3. DL
2,n is a good variance function with DL

2,n(c) ≥ log(nc),

4. there is a minimizer cn(f) of c 7→ DL
n (c, f) + 2λ/c over c ∈ (0,∞) that

satisfies cn(f) ∈ In and 2cn(f) ∈ In,

5. DR
2,n(c) ≍ DL

2,n(c) ≍ s2n(c) uniformly in c ∈ In,
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6. the function f satisfies the good bias condition.

Then the hierarchical Bayes credible sets (2.8) satisfy Pf (f ∈ Ĉn,η,M ) → 1 for
sufficiently large M . In particular, this is true if (2.12), (2.19) or (2.20) holds
and conditions 4 and 6 hold.

Proof. The function f is contained in Ĉn,η,M as soon as there exists some
c ∈ [ĉ1,n(η1), ĉ2,n(η1)] for which it holds that ∥f⃗n − f̂n,c∥ ≤ Mrn(c, η2). Since
Nn(c)/s

2
n(c) → 1 in probability uniformly in c ∈ In by (2.33), the quantities

r2n(c, η2)/s
2
n(c), which are the η2-quantiles of the variables Nn(c)/s2n(c), tend

to 1 as well uniformly in c. In view of the decomposition (2.29) it follows
that the function f is contained in Ĉn,η,M as soon as there exists some c ∈
[ĉ1,n(η1), ĉ2,n(η1)] with

DR
1,n(c, f) +DR

2,n(c) +R3,n(c, f) +R4,n(c)

s2n(c)
≤M2

(
1 + oP (1)

)
.

By assumption s2n(c) is equivalent to both DR
2,n(c) and DL

2,n(c), up to a multi-
plicative constant. In particular, the second term on the left is bounded above.
By the second assertion of Theorem 2.25 the posterior probability of the set
Λn :=

{
c : DL

1,n(c, f) . DL
2,n(c)

}
tends to one in probability. Since ĉ1,n(η1) and

ĉ2,n(η1) are nontrivial quantiles of the posterior distribution of c, the interval
[ĉ1,n(η1), ĉ2,n(η1)] must intersect Λn with probability tending to 1. For c = c̄n
in this intersection it holds that DL

n (c, f) ≍ DL
2,n(c) and hence s2n(c) in the

preceding display can be replaced by DL
n (c, f), up to a multiplicative constant.

This shows that the remainder terms tend to zero, in view of (2.31). The
first term DR

1,n(c, f)/s
2
n(c) is bounded by a multiple of DR

1,n(c, f)/D
L
n (c, f) ≤

DR
1,n(c, f)/D

L
1,n(c, f) ≤ 1, by definitions (2.23) and (2.24). This proves the first

assertion of the theorem.
The final assertion of the theorem follows by Propositions 2.10, 2.15 and 2.16
and Lemma 2.14, which show that all remaining assumptions hold under (2.12),
(2.19) or (2.20).

Contraction rate of the hierarchical Bayes posterior
As in Section 2.2 write Πc

(
· | Y⃗n

)
for the posterior distribution of f⃗n given c.

Then the hierarchical posterior distribution can be decomposed as

Πn
(
w : w⃗n ∈ B | Y⃗n

)
=

∫
Πc
(
w : w⃗n ∈ B | Y⃗n

)
πn(c | Y⃗n) dc
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for B ⊆ Rn measurable. Here πn(c | Y⃗n) is the posterior density of c, analysed
in Theorem 2.25.
This hierarchical posterior distribution contracts to the true parameter accord-
ing to an oracle inequality, with the likelihood-based criterion augmented by
the extra term 1/c.

Theorem 2.28 (Contraction rate, HB). If conditions 1, 3, 4, and 5 of Theo-
rem 2.27 hold, then, for any sequence Mn → ∞,

Πn

(
w : ∥w⃗n − f⃗n∥2 ≥Mn inf

c∈In

[
DL
n (c, f) +

1

c

]
| Y⃗n
)
Pf→ 0.

Proof. Let cn ∈ In be a minimizer of c 7→ DL
n (c, f) + 1/c and for given M1

define a set

Cn =
{
c ∈ In : DL

n (c, f) + 1/c ≤M1

[
DL
n (cn, f) + 1/cn

]}
. (2.35)

By Theorem 2.25 the posterior probability that c ∈ Cn tends to 1 in proba-
bility, for sufficiently large M1. Therefore, for any M > 0 we apply the above
decomposition of the posterior to find

Πn
(
w : ∥w⃗n − f⃗n∥ ≥M | Y⃗n

)
≤ sup
c∈Cn

Πc
(
w : ∥w⃗n − f⃗n∥ ≥M | Y⃗n

)
+Πn(c : c /∈ Cn | Y⃗n)

≤ 1

M2
sup
c∈Cn

[
∥f̂n,c − f⃗n∥2 + s2n(c)

]
+ oP (1)

by Markov’s inequality. In view of (2.29), this is further bounded above by

1

M2
sup
c∈Cn

[
DR

1,n(c, f) +DR
2,n(c) +R3,n(c, f) +R4,n(c) + s2n(c)

]
+ oP (1).

Here DR
1,n ≤ DL

1,n, and DR
2,n is of the same order as DL

2,n and s2n. It follows
that the first two terms are bounded by a multiple of supc∈Cn

DL
n (c, f) ≤

M1

[
DL
n (cn) + 1/cn

]
. The remainder terms are of the order DL

n (c, f) uniformly
in c ∈ In with probability tending to one by (2.31) and hence are similarly
bounded.

Example 2.29 (Sobolev). It was seen in Example 2.22 that for eigenvalues
satisfying (2.12) and f ∈ Sαn for α ≤ m/2 we have

DL
1,n(c, f) +DL

2,n(c) . n(cn)−2α/m + (cn)1/m.
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The upper bound on the right side has minimum value n1/(2α+1) at cn ≍
nm/(1+2α)−1. In this point the term 1/cn is smaller than n1/(2α+1) (for α ≤
m/2). It follows from Theorem 2.28 that on the model Sαn the hierarchical
Bayes posterior distribution contracts at the same rate as the likelihood-based
empirical Bayes method.

Example 2.30 (Hyperrectangle). It was seen in Example 2.23 that, for eigen-
values satisfying (2.12) and f ∈ Θαn,

DL
1,n(c, f) +DL

2,n(c) .


n(cn)−2α/m + (cn)1/m if α < m/2,

c−1 log(cn) + (cn)1/m if α = m/2,

c−1 + (cn)1/m if α > m/2,

It follows again that the hierarchical Bayes posterior distribution contracts at
the same rate as the likelihood-based empirical Bayes method.

Example 2.31 (Zero function). The square bias DL
1,n of the function f = 0 is

equal to zero. For eigenvalues satisfying (2.12) the minimum of c 7→ DL
n (c, f)+

1/c is assumed at cn ≍ (1/n)1/(m+1), resulting in a rate of contraction for the
scaled Euclidean norm ∥ · ∥n,0 of the order n−(m/2)/(m+1).
In contrast the empirical Bayes estimators attain a rate of contraction of the
order n−1/2 up to a logarithmic factor.
The same difference between the hierarchical and empirical Bayes methods
exists for (sequences of) functions f with a square bias DR

1,n(c, f) that tends
to zero at an exponential rate.

Diameter of the hierarchical Bayes credible set
The diameter of the credible sets is again of the same order as the contraction
rate.

Theorem 2.32. Under the conditions of Theorem 2.28 the diameter of the
credible sets (2.8) is of the order infc∈In

[
DL
n (c, f)+1/c

]
with probability tending

to one.

Proof. In view of Proposition 2.16, for fixed c the radius of the credible set
{w : ∥w⃗n− f̂n,c∥ < Mrn(c, η2)} is of the order the posterior standard deviation
sn(c) given by (2.26). Thus the triangle inequality gives that the diameter of
Ĉn,η,M is bounded above by a multiple of

sup
ĉ1,n(η1)<c<ĉ2,n(η1)

[
sn(c) + ∥f⃗n − f̂n,c∥

]
.
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The supremum of the function in this display over the set Cn defined in (2.35)
is shown to be of the desired order in the proof of Theorem 2.28. The theorem
would follow if the interval [ĉ1,n(η1), ĉ2,n(η1)] belongs to Cn with probability
tending to one.
By Theorem 2.25 the posterior distribution of c concentrates all its mass on the
sets Cn. Since ĉ1,n(η1) and ĉ2,n(η1) are nontrivial quantiles of this distribution,
we can conclude that they must belong to the convex hull of Cn with probability
tending to one. If this convex hull is [cm, cM ], then for any c in this convex
hull

DL
n (c, f) +

1

c
= DL

1,n(c, f) +
1

c
+DL

2,n(c) ≤ DL
1,n(cm, f) +

1

cm
+DL

2,n(cM )

≤ 2M1

[
DL
n (cn, f) +

1

cn

]
.

Thus the convex hull of Cn is contained in a set of the same form as Cn, but
with the constant M1 replaced by 2M1. The proof of Theorem 2.28 still shows
that the supremum over this bigger set is of the desired order.

2.4 On the polished tail condition

The parameter in the regression model (2.1) is a fixed function f , but most of
the results of this chapter are driven by the representation of the restriction
f⃗n of f to the design points in terms of the eigenvectors ej,n of the covariance
matrix Un of the (unscaled) prior restricted to the design points. It is clearly
of interest to relate the “continuous” object f to its discrete counterparts, but
this is more involved than it may seem.
In this section we investigate the relationship between the continuous and dis-
crete setups for the special case of the Brownian motion prior.

Aliasing
For the design points xi,n = i/n+, where n+ = n+1/2, the eigenvectors of the
covariance matrix Un of discretized Brownian motion are given in (2.16) for
j ∈ {1, . . . , n}. The formula shows that they are 1/

√
n+ times the restrictions

of the eigenfunctions ej to the design points. Using this correspondence we
may also define vectors ej,n ∈ Rn for j > n, again by (2.16), by discretizing
the higher frequency eigenfunctions of Brownian motion. Since the vectors
e1,n, . . . , en,n are an orthonormal basis of Rn, these further vectors are redun-
dant. It turns out that their linear dependency on the vectors ei,n for i ≤ n
takes a very special form:
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(i) The vectors ei,n are (2n+ 1)-periodic in i: ei+2n+1,n = ei,n for all i.

(ii) The vectors in the middle of a (2n+ 1) period vanish: en+1,n = 0.

(iii) The vectors within a (2n+ 1) period are anti-symmetric about the mid-
point: e2n+2−i,n = −ei,n for all i.

In particular, every ej,n with j > n is either zero or “loads” on exactly one ei,n
with i ∈ {1, . . . , n} with coefficient 1 or -1. This leads to a simple connection be-
tween the infinite expansion of a function f =

∑∞
j=1 fjej in the eigenfunctions

ej of continuous Brownian motion and the finite expansion f⃗n =
∑n
i=1 fi,nei,n

of the discretized function f⃗n in the eigenvectors ej,n of discretized Brownian
motion, as follows. Assuming that the series f(x) =

∑∞
j=1 fjej(x) converges

pointwise, we can use (2.16), which says that (e⃗j)n =
√
n+ej,n, and (i)-(iii) to

see that the coefficients in f⃗n are given by

fi,n =
∞∑
j=0

fj(ej,n)
T ei,n =

√
n+

∞∑
l=0

(f(2n+1)l+i − f(2n+1)l+2n+2−i). (2.36)

The terms of this last series correspond to the consecutive periods of lengths
(2n + 1). Exactly two of the inner products per period are nonzero and they
yield coefficients 1 and −1 respectively. The formula is an example of the
aliasing effect in signal analysis: the energy of the function f at frequencies j
higher than the Nyquist frequency n, whose fluctuations fall between the grid
points, is represented at the lower frequencies.
The scaling

√
n+ results from the normalisation of the vectors ei,n in Rn.

However, even apart from the normalisation the correspondence between the
discrete and continuous coefficients is imperfect. By writing (2.36) in the form

fi,n√
n+

= fi − f2n+2−i +
∞∑
l=1

(f(2n+1)l+i − f(2n+1)l+2n+2−i),

we see that fi,n/
√
n+ is in general not equal to fi. The “harmonic frequencies”

at periods 2n + 1 add to a frequency at i ∈ {1, 2, . . . , n}, and the frequencies
mirrored around the midpoints of the blocks subtract from it.
It is clear from the preceding display that a given discrete sequence (fi,n) can
be obtained from the infinite sequence (f1,n, f2,n, . . . , fn,n, 0, 0, . . .)/

√
n+ of L2

coefficients, but also from many other infinite sequences (fj). Because the data
model (2.1) depends on f only through the discrete sequence (fi,n), there is
clearly no hope to recover which of these infinite sequences would be the “true”
sequence. Furthermore, for a given fixed infinite sequence the values of the
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array (fi,n) will change with n, and for some reasonable infinite sequences the
series defining the discrete coefficients may not even converge. (We obtained the
preceding display under the assumption that the series

∑
j fjej(x) converges

pointwise.) The following lemma shows that the infinite series is essentially a
Fourier series, and hence this less than perfect correspondence is disappointing.

Lemma 2.33. For a given f : [0, 1] → R in L2[0, 1], the expansion f =
∑
j fjej

is derived from the Fourier series of the function x 7→ eiπx/2f(x) on [0, 2], where
f is extended to [0, 2] by symmetry about 1. In particular, if f ∈ Cα[0, 1] for
some α > 0 and f(0) = 0, then

f(x) =

∞∑
j=1

fjej(x), uniformly in x.

Proof. The function x 7→ eiπx/2f(x), with f extended as indicated, is periodic
(i.e. it has the same value at 0 and 2) and contained in L2[0, 2]. Its Fourier
series can be written in the form

eiπx/2f(x) =
∑
j∈Z

cje
iπjx (2.37)

for some cj ∈ C and hence

f(x) =
∑
j∈Z

cje
iπ(j− 1

2 )x.

Since f is real, the complex part of the right side vanishes, while the real part
can be written in the form

f(x) =
∑
j∈Z

[
aj cos

(
πx(j − 1/2)

)
− bj sin

(
(j − 1/2)πx

)]
,

for aj , bj ∈ R. Since f is symmetric about 1, the antisymmetric cosine part
vanishes, while the terms with j ≤ 0 of the sine part can be united with terms
with j ≥ 1. This gives an expansion in terms of the eigenfunctions ej . By the
orthogonality of these functions the resulting expansion is unique.
If f ∈ Cα[0, 1], then the extended function x 7→ eiπx/2f(x) is contained in
Cα[0, 2] and hence we have uniform convergence in (2.37). The uniform con-
vergence is retained under multiplying left and right with e−iπx/2.

As a consequence of the lemma, the speed at which the fj tend to zero as
j → ∞ can be interpreted in the sense of Sobolev smoothness. However, this
is not easily comparable to the smoothness of the corresponding array (fi,n).
In fact, if f is contained in a Sobolev space of order α for α ≤ 1/2, that is∑
j j

2αf2j <∞, then the aliased coefficients may not even be well defined.
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Polished tail sequences
In [Szabó et al., 2015] a function f , or rather its infinite series of coefficients
(fj) relative to a given eigenbasis, is defined to be polished tail if for some
L, ρ > 0 and all sufficiently large m,

∞∑
j=m

f2j ≤ L

ρm∑
j=m

f2j . (2.38)

This reduces to the “discrete polished tail” condition (2.10) if applied to the in-
finite sequences (f1,n, f2,n, . . . , fn,n, 0, 0, . . .)/

√
n+. For general sequences (fj)

the relationship is less perfect, but for typical examples the two concepts agree.

Example 2.34 (Self-similar sequences). In [Szabó et al., 2015] an infinite
sequence (fj) is defined to be self-similar of order α > 0 if for some positive
constants M,ρ, L and every m

sup
j≥1

j1/2+α|fj | ≤M and
ρm∑
j=m

f2j ≥M2Lm−2α.

Particular examples are the sequences with the exact order |fj | ≍ j−1/2−α.
Self-similar sequences are easily seen to be polished tail for every α > 0 and
arbitrary ρ > 1. For α ≤ 1/2 the corresponding function is not necessarily well
defined at every point and the series (2.36) defining the aliased coefficients may
diverge. However, for α > 1/2 the induced array (fi,n) is well defined and also
discrete polished tail in the sense of (2.10).
To see this, first note that for ℓ ≥ 1 and taking M equal to 1 for simplicity we
have

|f(2n+1)ℓ+i| ∨ |f(2n+1)ℓ+2n+2−i| .
1

n1/2+αℓ1/2+α
.

This shows that the series (2.36) that defines the aliased coefficients converges.
Furthermore, we see that the rescaled coefficients f̃i,n = fi,n/

√
n+ satisfy |f̃i,n−

fi| . n−1/2−α, so that |f̃i,n| . i−1/2−α + n−1/2−α and the left side of (2.10)
satisfies

n∑
i=m

f̃2i,n .
1

m2α
+

1

n2α
. 1

m2α
.

We wish to show that the right side of (2.10) is lower bounded by the expression
on the right, where we may assume that m satisfies ρm ≤ n, because otherwise
there is nothing to prove. First we note that

|f̃2i,n − f2i | = |f̃i,n − fi| |f̃i,n + fi| .
1

n1/2+α

(
|fi|+

1

n1/2+α

)
.
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It follows that for some universal constant C
ρm∧n∑
i=m

f̃2i,n ≥
ρm∑
i=m

f2i − C(ρ− 1)m

n1+2α
− C

ρm∑
i=m

|fi|
n1/2+α

& 1

m2α

(
L− 2C(ρ− 1)

ρ1/2+α

)
.

For sufficiently large L the constant in the last display is positive.

Example 2.35. The sequence fj = j−1/2−α is easily seen to be polished tail
for every α > 0, as is also noted in Example 2.34. We shall show that the
corresponding array (fi,n) is also discrete polished tail in the sense of (2.10),
for any α > 0, thus extending Example 2.34 to the range α ∈ (0, 1/2]. This
refinement is possible by the exact form of the fj , which allows us to exploit
cancellation of positive and negative terms in (2.36).
To prove the claim we first apply the mean value theorem to find that, for
every ℓ ≥ 1,

|f(2n+1)ℓ+i − f(2n+1)ℓ+2n+2−i| .
1

n1/2+αℓ3/2+α
.

This shows that the series in (2.36) defining the discrete coefficients converges.
Moreover,

|f̃i,n| .
2

i1/2+α
+

∞∑
ℓ=1

|f(2n+1)ℓ+i − f(2n+1)ℓ+2n+2−i| .
1

i1/2+α
+

1

n1/2+α
.

Consequently, the left side of (2.10) satisfies
n∑

i=m

f̃2i,n .
1

m2α
+

1

n2α
. 1

m2α
.

Furthermore, since all terms in (2.36) are positive, we also have

f̃i,n ≥ 1

i1/2+α
− 1

(2n+ 2− i)1/2+α
& 1

i1/2+α
,

for i ≤ cn and any fixed c < 1. To bound the right side of (2.10) we may
assume that m satisfies ρm ≤ n, because otherwise there is nothing to prove.
Then choosing c < 1 and ρ > 1 such that cρ > 1, we have

ρm∧n∑
i=m

f̃2i,n ≥
cρm∑
i=m

f̃2i,n &
cρm∑
i=m

1

i1+2α
≥
∫ cρm

m

1

t1+2α
dt & 1

m2α
.

The right side is seen to be bigger than a multiple of the left side of (2.10).
This proves the claim.
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Prior polished tail sequences
According to the Bayesian model the true function f is a realisation of the prior
process W c. In this section we show that almost every such realisation gives
rise to a discrete polished tail array. Consequently, for a Bayesian who believes
in her prior, the polished tail condition is reasonable. For a non-Bayesian the
following proposition is also of interest, as it shows that polished tail functions
are abundant.
The proof of the statement will be based on the Karhunen-Loève expansion.
For standard Brownian motion W 1 = (W 1

t : t ∈ [0, 1]) this is given by

W 1
t =

∞∑
j=1

Zj
(j − 1/2)π

ej(t).

Here Z1, Z2, . . . are independent standard normal random variables. We see
that the priorW c is given by

∑
j fjej , for the infinite sequence fj =

√
cZj/((j−

1/2)π). We shall show that the induced array fj,n defined by (2.36) is discrete
polished tail, almost surely.
In fact a more general result holds for any Gaussian series with polynomially
decaying singular values relative to the eigenbasis of Brownian motion.

Proposition 2.36. For given α > 0 and δ ∈ R set

Wt =
∞∑
j=1

Zj
(j + δ)1/2+α

ej(t), t ∈ [0, 1],

where Z1, Z2, . . . are independent standard normal random variables. Then
almost every realisation of W is both polished tail in the sense of (2.38) and
discrete polished tail in the sense of (2.10).

Proof. The first claim is proved in Proposition 3.5 of [Szabó et al., 2015]. To
prove that W is discrete polished tail, we consider the coefficients given in
(2.36), except the factor √

n+:

W̃i,n=
∞∑
l=0

(
Z(2n+1)l+i

(δ + (2n+ 1)l + i)1/2+α
−

Z(2n+1)l+2n+2−i

(δ + (2n+ 1)l + 2n+ 2− i)1/2+α

)
.

In view of Lévy’s continuity theorem this array consists for each n of indepen-
dent zero-mean normal random variables W1,n,W2,n, . . . ,Wn,n with variances

var
(
W̃i,n

)
≍

∞∑
l=0

(
1

((2n+ 1)l + i)2α+1
+

1

((2n+ 1)l + 2n+ 2− i)2α+1

)
.
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Now let L, ρ > 0 and consider the event

Em =

{ n∑
i=m

W̃ 2
i,n > L

ρm∑
i=m

W̃ 2
i,n

}
.

Setting

X = L

ρm∑
i=m

W̃ 2
i,n −

n∑
i=m

W̃ 2
i,n = (L− 1)

ρm∑
i=m

W̃ 2
i,n −

n∑
i=ρm+1

W̃ 2
i,n,

we see that Em has probability P (Em) = P (X < 0). We then have by Markov’s
inequality that for η > 0

P (Em) = P (X < 0) ≤ P (|X − EX| ≥ EX) ≤ E|X − EX|η

(EX)η
.

We proceed to bound the expectation of X. Clearly the variance of W̃i,n is
bigger than a constant times i−1−2α. Since i ≤ n, it is also smaller than

1

i2α+1
+

3

(2n+ 1)2α+1
+ 2

∫ ∞

1

1

((2n+ 1)x+ i)2α+1
dx ≤ 1

i2α+1
+

L1

n2α+1

for some L1 > 0. It follows that

EX ≥ (L− 1)

ρm∑
i=m

1

i2α+1
−

n∑
i=ρm+1

1

i2α+1
− L1

n∑
i=ρm+1

1

n2α+1

≥ 1

2α

1

m2α

[
(L− 1)(1− ρ−2α)− (1 + L1)ρ

−2α
]
.

We choose L and ρ large enough so that this is positive. Applying the
Marcinkiewicz-Zygmund inequality and next Hölder’s inequality with conju-
gate parameters (η/2, η/(η−2)), we see that E|X−EX|η is for η > 2 bounded
by a constant times

E
( ρm∑
i=m

(L− 1)2
(
W̃ 2
i,n − EW̃ 2

i,n

)2
+

n∑
i=ρm+1

(
W̃ 2
i,n − EW̃ 2

i,n

)2)η/2

. E

( n∑
i=m

|W̃ 2
i,n − EW̃ 2

i,n|ηiη/2
)2/η ( n∑

i=m

i−η/(η−2)

)1−2/η
η/2

=
n∑

i=m

E|W̃ 2
i,n − EW̃ 2

i,n|ηiη/2
(

n∑
i=m

i−η/(η−2)

)η/2−1

.
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Since E|W̃ 2
i,n − EW̃ 2

i,n|η ≍ var(W̃i,n)
η . i−(1+2α)η, we conclude that

E|X − EX|η .
n∑

i=m

i(1/2−(1+2α))η

(
n∑

i=m

i−η/(η−2)

)η/2−1

. m1−(1/2+2α)η+η/2−1−η/2 = m−(1/2+2α)η,

hence the P (Em) are bounded by a multiple of m−η/2 and thus summable over
m for η > 2. It follows by the Borel-Cantelli lemma that the event Em occurs
at most finitely many times with probability one.

2.5 Discussion

The model (2.1) can also be formulated directly in terms of the coordinates
(fi,n) of f⃗n relative to the eigenbasis ej,n of the prior covariance matrix Un. For
On the orthogonal matrix with rows the eigenvectors ej,n of Un, the definition
of fj,n gives

OnY⃗n = Onf⃗n +Onε⃗n =


f1,n
f2,n

...
fn,n

+Onε⃗n.

By the orthonormality of On the error vector Onε⃗n is equal in distribution to
ε⃗n, whence Ỹn = OnY⃗n can be considered a vector of observations in a normal
mean model with mean vector (fi,n). Under the prior W c on f , given c the
vector (f1,n, . . . , fn,n)

T = O−1
n f⃗n possesses a mean zero normal distribution

with covariance matrix cO−1
n UnOn = diag(cλi,n). Prior and data model both

factorise over the coordinates, and it can be seen that under the posterior
distribution given c the variables f1,n, . . . , fn,n are again independent with

fi,n | Y⃗n, c ∼ N
(

cλi,n
1 + cλi,n

Ỹi,n,
cλi,n

1 + cλi,n

)
.

This gives a representation of the posterior distribution different from, but
equivalent to (3.3).
In this form the model resembles the infinite Gaussian sequence model (or
white noise model). A difference is that presently the sequence is of length n
instead of infinite, and the parameter vector (f1,n, . . . , fn,.n) changes with n,
even it refers to a single true function f . The discussion in Section 2.4 shows
that this difference is not trivial.
Likelihood-based empirical Bayes and hierarchical Bayes estimation of the scale
parameter c in the infinite sequence model were studied in [Szabó et al., 2013].
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Besides considering the finite sequence model, here we also treat the risk-based
empirical Bayes method and allow more general priors. A main difference is
that we have focused on the coverage of the credible sets. Such coverage is
also studied in [Szabó et al., 2015], but only for the likelihood-based empiri-
cal Bayes method in the infinite-sequence model with N (0, i−1−2α)-priors and
α taken equal to the smoothing parameter. The same model is studied in
[Ray, 2015], where exact credible sets are obtained when considering Sobolev
spaces with negative exponent. The focus in this chapter on balls in the space
of the finite vectors f⃗n of function values allows us to make the connection
to the correctness of a fraction of the credible intervals, as in Corollary 2.4.
The present treatment also differs in its technical details and proofs, in that
our results are directly formulated in terms of the criterion that is optimized,
whereas [Szabó et al., 2015, 2013] make the derivative of the criterion intercede.
The present approach gives better insight and allows to state the contribution
of the (discrete) polished tail condition more precisely, with the possibility of
generalisation to the good bias condition (2.27), which is dependent both on
the method and the prior.
Throughout, we limit the estimator to the interval In. This is reasonable, since
the optimal rate of rescaling for functions in a class of smoothness α satisfies
cn ≍ nδ, where δ = m/(1 + 2α) ∈ (0,m] (if α ∈ (0,m) or α ∈ (0,m/2) in the
risk-based and likelihood-based methods).
We consider the hierarchical Bayes only with the usual inverse Gamma prior on
the scaling parameter. From the proof it is not difficult to see that the result
extends to more general priors. For instance if c−r ∼ Γ(κ, λ), for some r > 0,
then the theorem is again true, but with the term 1/c replaced by (1/c)r. A
choice r ≤ 1 does not change much, but the choice r > 1 has an adverse effect
on the rate of contraction for Sobolev classes: optimality is obtained only for
α ≤ (1/r +m− 1)/2.
The assumption that the errors in the regression model are normally distributed
is crucial to define the posterior distribution and credible sets. However, the
derivation of the properties of these objects uses only that the errors have
mean zero and finite fourth moments. Thus the standard normal model may
be misspecified. This is true in particular regarding the assumption of unit
variance, although it would be preferable to extend our results to allow for a
prior on this variance.
The study of credible bands, rather than credible balls or credible intervals
in a fractional sense, would require control of the bias of the posterior mean
in a uniform sense. This involves properties of the eigenvectors of the priors
and goes beyond the “ℓ2-theory” considered in this chapter. The bias in the
example of Brownian motion is considered in detail in Chapter 1. We will
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2. Adaptive global credible sets

employ this in the study of credible bands in the next chapter.

2.6 Technical proofs

In this section we give the proofs of Corollary 2.4 and Propositions 2.10, 2.15
and 2.16.

Proof of Corollary 2.4
In the Bayesian model (2.2) we have Y⃗n = W⃗ c

n + ε⃗n for independent vectors
W⃗ c
n and ε⃗n. The marginal posterior distribution of f(x) given c and Y⃗n is the

conditional law of W c
x given c and Y⃗n. By the assumed Gaussianity, this is a

normal law with mean the conditional expectation f̂n,c(x) = E(W c
x | Y⃗n, c) and

variance equal to

s2n(c, x) = var
[
W c
x | c, Y⃗n

]
= var

[
W c
x − E(W c

x | Y⃗n, c) | c
]

= inf
a

E
[
(W c

x − aT Y⃗n)
2 | c
]
.

When evaluated at a design point x = xi,n, this is equal to the ith diagonal
element of the posterior covariance matrix I − Σ−1

n,c. Hence the sum of the
posterior variances over the design points is the trace of this matrix. It follows
that for all i ∈ Jn we have

s2n(c, xi,n) &
1

n
tr(I − Σ−1

n,c) =
s2n(c)

n
,

where s2n(c) is given in (2.26). It follows that for i ∈ Jn the radius Mrn(c, xi,n)

of the empirical Bayes interval Ĉn,η,M (xi,n) is bounded from below (up to a
universal multiple) of Mzηsn(c)/

√
n.

The function f fails to belong to the empirical Bayes interval Ĉn,η,M (x) if and
only if |f(x)− f̂n,ĉn(x)| ≥Mrn(ĉn, η, x). Therefore, by Markov’s inequality

1

n

∑
i∈Jn

1
{
f /∈ Ĉn,η,M (xi,n)

}
≤ 1

n

∑
i∈Jn

|f(xi,n)− f̂n,ĉn(xi,n)|2

M2r2n(ĉn, η, xi,n)

. ∥f⃗n − f̂n,ĉn∥2

M2z2ηs
2
n(ĉn)

.

As noted in the first paragraph of the proof of Theorem 2.17, s2n(ĉn) is asymp-
totic to the square radius r2n(ĉn, η′) of the credible balls of the form (2.7), for
any η′ ∈ (0, 1). Therefore, if the left-hand is bigger than 1−γ, then f /∈ Ĉn,M ′,η
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2.6. Technical proofs

for M ′ a multiple of Mzη. By Theorem 2.3 this is the case with probability
tending to zero if M ′ is sufficiently large, which it is if M is large. The result
then follows, since

1

n

∑
i∈Jn

1
{
f ∈ Ĉn,η,M (xi,n)

}
+

1

n

∑
i∈Jn

1
{
f /∈ Ĉn,η,M (xi,n)

}
=

|Jn|
n

→ 1.

If the function f fails to belong to the hierarchical interval Ĉn,η,M (x), then
|f(x) − f̂n,c̄n(x)| ≥ Mrn(c̄n, η2, x), for c̄n as defined in the proof of Theo-
rem 2.27. The rest of the proof is similar to the proof of the empirical Bayes
intervals.
The assertions concerning the radii are immediate from the corresponding
assertions of Theorem 2.3 and the equivalences sn(c, xi,n) ≍ sn(c)/

√
n ≍

rn(c, η)/
√
n uniformly for i ∈ Jn under the extra assumption on the poste-

rior variances.

Proof of final assertion of Lemma 2.14
That DR

2,n2 and sn2 behave as claimed is immediate from Lemma 2.44; we only
need consider the behaviour of DL

2,n2 . The derivative of this function is given by
c 7→ c−1DR

2,n2(c) and hence is asymptotic to c−1(cn2)1/mkn(c) uniformly on the
interval [ln/n2, n2m−2], for any ln → ∞. Here kn(c) = 1+log(cn2) for cn2 ≤ nm

and kn(c) = 1 + log(n2m/(cn2)) for cn2 ≥ nm. Now, as cn2 ≥ ln → ∞, we
have for cn2 ≤ nm∫ c

0

s−1(sn2)1/mkn(s) ds =

∫ cn2

0

u1/m−1(1 + logu) du ≍ (cn2)1/m log(cn2),

since
∫ t
0
u1/m−1 logu du = mt1/m log t − m2t1/m. Furthermore, we have for

cn2 ∈ [nm, n2m]∫ c

0

s−1(sn2)1/mkn(s) ds ≍ n logn+

∫ cn2

nm

u1/m−1
(
1 + logn2m − logu

)
du

= n logn+m
(
1 + log(n2m/u)

)
u1/m

∣∣cn2

nm +m

∫ cn2

nm

u1/m−1 du

≍ (cn2)1/m
(
1 + log(n2m/cn2)

)
.

Combining the two displays we see that in both cases the left side is asymptotic
to (cn2)1/mkn(c). This order does not change if we limit the integrals to the
interval [ln/n2, c], for ln → ∞ slowly. It follows that DL

2,n2(c) has this order,
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provided the integral
∫ ln/n2

0
(DL

2,n2)′(s) ds is of lower order. Since (DL
2,n2)′(s) .∑n

i=1

∑n
j=1(ij)

−2msn4, the latter integral is bounded by a multiple of l2n, which
is of lower order again if ln → ∞ sufficiently slowly.

Proof of Proposition 2.10
The proof is based on two lemmas.

Lemma 2.37. For the functions in both (2.23) and (2.24) and any c and s < t
in (0,∞) we have

var
[
R1,n(c, f)

]
. D1,n(c, f),

var
[
R2,n(c)

]
. D2,n(c),

var
[
R1,n(s, f)−R1,n(t, f)

]
. (t− s)2D1,n(s, f)

s2
,

var
[
R2,n(s)−R2,n(t)

]
. (t− s)2D2,n(s)

s2
.

Proof. For the risk-based remainder RR1,n given in (2.23) we have

var
[
RR1,n(c, f)

]
= 4

n∑
j=1

f2j,n
(1 + cλj,n)4

≤ 4DR
1,n(c, f).

The bound on the variance of the likelihood-based remainder RL1,n in (2.24) is
very similar. For RR2,n in (2.23) we have

var
[
RR2,n(c)

]
= 2

n∑
j=1

(2cλj,n + c2λ2j,n)
2

(1 + cλj,n)4
≤ 8

n∑
j=1

(cλj,n)
2

(1 + cλj,n)2
= 8DR

2,n(c).

For the likelihood-based remainder in (2.24) we have

var
[
RL2,n(c)

]
= 2

n∑
j=1

(cλj,n)
2

(1 + cλj,n)2
= 2DR

2,n(c) ≤ 4DL
2,n(c),

in view of the inequality log(1 + x)− x/(1 + x) ≥ x2/(1 + x)2/2 for x > 0.
The third and fourth assertions of the lemma follow by applying Lemma 2.47.
For the risk-based remainder given in (2.23), we use the lemma with the choices:

• for RR1,n: (α, β) = (0, 2), aj = 2fj,n, Uj = Zj,n and (δ, γ) = (0, 2), where
the sum in (2.42) becomes 4DR

1,n,
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• for RR2,n: (α, β) = (0, 2), aj = 1, Uj = Z2
j,n − 1 and (δ, γ) = (2, 2), where

the sum in (2.42) becomes DR
2,n.

For the likelihood-based remainder, given in (2.24), we use the lemma with the
choices:

• for RL1,n: (α, β) = (0, 1), aj = 2fj,n, Uj = Zj,n and (δ, γ) = (0, 1), where
the sum in (2.42) becomes 4DL

1,n,

• for RL2,n: (α, β) = (1, 0), aj = −1, Uj = Z2
j,n−1 and (δ, γ) = (2, 2), where

the sum in (2.42) will become DR
2,n, which is bounded by a multiple of

DL
2,n.

This concludes the proof.

Lemma 2.38. For the functions in both (2.23) and (2.24) and any s < t in
In we have ∣∣D1,n(s, f)−D1,n(t, f)

∣∣ . |t− s|D1,n(s, f)

s
,∣∣D2,n(s)−D2,n(t)

∣∣ . |t− s|s2n(s)
s

.

Proof. By Lemma 2.46 with (α, β) = (0, 2) and DR
1,n as in (2.23) we have

|DR
1,n(s, f)−DR

1,n(t, f)| ≤
|s− t|
s

n∑
j=1

f2j,n
(1 + sλj,n)2

=
|s− t|
s

DR
1,n(s, f).

The function DL
1,n in (2.24) can be treated similarly, with the choice (α, β) =

(0, 1).
Applying Lemma 2.46 with (α, β) = (2, 0) to DR

2,n(c), we find

|DR
2,n(s)−DR

2,n(t)| ≤
|s− t|
s

n∑
j=1

sλj,n
(1 + sλj,n)2

≤
n∑
j=1

sλj,n
1 + sλj,n

.

The right side is s2n(s), by definition (2.26). Applying the mean value theorem
to DL

2,n in (2.24) we find for some s ≤ ξ ≤ t,

|DL
2,n(s)−DL

2,n(t)| ≤ |s− t|
n∑
j=1

ξλ2j,n
(1 + ξλj,n)2

≤ |s− t|
n∑
j=1

λj,n
1 + ξλj,n

≤ |s− t|
s

n∑
j=1

sλj,n
1 + sλj,n

.
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This concludes the proof.

Proof of Proposition 2.10. Applying Lemmas 2.37 and 2.38, we see that for
any s < t in In we have

var
(
R1,n(s, f)

Dn(s, f)
− R1,n(t, f)

Dn(t, f)

)
/2

≤ var
(
R1,n(s, f)−R1,n(t, f)

Dn(s, f)

)
+ var

[
R1,n(t, f)

](Dn(s, f)−Dn(t, f)

Dn(s, f)Dn(t, f)

)2

. (t− s)2

s2Dn(s, f)
+

(t− s)2

s2Dn(t, f)

D2
1,n(s, f) + s4n(s)

D2
n(s, f)

. (t− s)2

s2+1/mn1/m
,

since Dn(s, f) ≥ D2,n(s) & (sn)1/m ≍ s2n(s) by Lemma 2.14. Similarly, apply-
ing Lemma 2.37 we see that

var
(
R1,n(s, f)

Dn(s, f)

)
. 1

Dn(s, f)
. 1

(sn)1/m

by Lemma 2.14. The result for R1,n follows from the preceding two displays,
by application of Lemma 2.48. The assertion for R2,n is proved analogously,
from the other parts of Lemmas 2.37 and 2.38.

Proof of Proposition 2.15

In addition to Lemma 2.38 we need the following lemma.

Lemma 2.39. For any c and any s < t in (0,∞) we have

var
[
R3,n(c, f)

]
≤ 4DR

1,n(c, f),

var
[
R4,n(c)

]
≤ 2DR

2,n(c),

var
[
R3,n(s, f)−R4,n(t, f)

]
.

(t− s)2DR
1,n(s, f)

s2
,

var
[
R4,n(s)−R4,n(t)

]
.

(t− s)2DR
2,n(s)

s2
.
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Proof. For the first two inequalities we compute

var [R3,n(c, f)] = 4
n∑
j=1

(cλj,n)
2f2j,n

(1 + cλj,n)4
≤ 4DR

1,n(c, f),

var [R4,n(c)] = 2
n∑
j=1

(cλj,n)
4

(1 + cλj,n)4
≤ 2DR

2,n(c).

The third and fourth inequalities follow by application of Lemma 2.47 with the
following choices:

• for R3,n: (α, β) = (1, 1), aj = −2fj,n, Uj = Zj,n and (δ, γ) = (0, 2),
where the sum in (2.42) becomes 4DR

1,n.

• for R4,n: (α, β) = (2, 0), aj = 1, Uj = Z2
j,n − 1 and (δ, γ) = (2, 2), where

the sum in (2.42) becomes DR
2,n.

This concludes the proof.

Proof of Proposition 2.15. Using Lemmas 2.39 and 2.38, we have for s < t in
In

var
(
R3,n(s, f)

DR
n (s, f)

− R3,n(t, f)

DR
n (t, f)

)
/2

≤ var
(
R3,n(s, f)−R3,n(t, f)

DR
n (s, f)

)
+ var

[
R3,n(t, f)

](DR
n (s, f)−DR

n (t, f)

DR
n (s, f)D

R
n (t, f)

)2

. (t− s)2

s2DR
n (s, f)

+
(t− s)2

s2DR
n (t, f)

DR
1,n(s, f)

2 + s4n(s)

DR
n (s, f)

2

. (t− s)2

s2+1/mn1/m
,

since DR
1,n ≤ DR

n and DR
n (s, f) ≥ DR

2,n(s) & (sn)1/m ≍ s2n(s) by Lemma 2.14.
Similarly, we have by Lemma 2.39

var
(
R3,n(s, f)

DR
n (s, f)

)
≤ 1

DR
n (s, f)

. 1

(sn)1/m
,

by Lemma 2.14. The proposition with Dn = DR
n follows by an application of

Lemma 2.48.
Since DL

n ≥ DR
n /2, this immediately implies the proposition for the likelihood-

based norming. The assertion for R4,n is proved analogously, from the other
parts of Lemmas 2.39 and 2.38.
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Proof of Proposition 2.16

Lemma 2.40. For s ≤ t we have

∣∣s2n(t)− s2n(s)
∣∣ . |t− s|s2n(s)

s
.

Proof. This is immediate from the definition of s2n in (2.26) and Lemma 2.46
with (α, β) = (1, 0).

Proof of Proposition 2.16. It is immediate from the definition of Nn that

E
[
Nn(c)

s2n(c)
− 1

]
= 0, var [Nn(c)] . s2n(c).

Applying Lemma 2.47 with (α, β) = (1, 0), aj = 1, (γ, δ) = (1, 1) and g = s2n,
we find that for s ≤ t

var [Nn(s)−Nn(t)] .
(t− s)2s2n(s)

s2
.

It follows by Lemma 2.14 that

var
(
Nn(s)

s2n(s)
− Nn(t)

s2n(t)

)
≤ 2 var

(
Nn(s)−Nn(t)

s2n(s)

)
+ 2 var

[
Nn(t)

](s2n(s)− s2n(t)

s2n(s)s
2
n(t)

)2

. (t− s)2

s2s2n(s)
+

(t− s)2

s2s2n(t)

. (t− s)2

s2+1/mn1/m
.

The proposition follows by an application of Lemma 2.48.

For Brownian motion, we can gain more insight in the behaviour of (part of)
the function DL

2 .

Lemma 2.41. For the Brownian motion prior and c ∈ [logn/n, n],

log detΣn,c ∼
√
cn.
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Proof. We want to find the determinant of the n× n matrix

Σn,c = c



1
c +

1
n+

1
n+

1
n+

· · · 1
n+

1
n+

1
c +

2
n+

2
n+

· · · 2
n+

1
n+

2
n+

. . . ...
...

... 1
c +

n−1
n+

n−1
n+

1
n+

2
n+

· · · n−1
n+

1
c +

n
n+



∼



2 + c
n+

−1 0 · · · 0

−1 2 + c
n+

−1 · · · 0

0 −1
. . . ...

...
... 2 + c

n+
−1

0 0 · · · −1 1 + c
n+


.

If we denote this determinant by dn, we see that

dn =

(
2 +

c

n+

)
dn−1 − dn−2,

with d1 = 1 + c
n+

and d2 =
(
2 + c

n+

)(
1 + c

n+

)
− 1. Note that this is the

same recurrence relation as (1.3) in Chapter 1. The solution is given by dn =
Aλn+ +Bλn−, where

A =
c2 + cn+(3− λ−) + n2+(1− λ−)

(λ+ − λ−)λ+n2+
, λ± = 1 +

c

2n+
±

√
c

2
√
n+

√
4 +

c

n+
.

Note that λ+λ− = 1. Since θ = c
n+

→ 0 uniformly in c ∈ In, we have λ± → 1

and

A =
(1− λ−)

(λ+ − λ−)
+ o(1) =

1
2

(√
θ(4 + θ)− θ

)√
θ(4 + θ)

+ o(1) → 1

2
.

It is easy to see that B = λ−A ∼ A. Furthermore, we have

log(λn+) = n

[
θ

2
+

√
θ

√
4 + θ

2
− θ

2

(√
4 + θ

2

)2

+O(θ3/2)

]
= n

√
θ +O(nθ3/2).

Finally, we have

log dn − log(Aλn+) = log
(
1 +

B

A
λ2n−

)
→ 0.

The result follows.
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2.7 Technical results

Lemma 2.42. Let D1 : In → (0,∞) be a decreasing function and D2 : In →
(0,∞) an increasing function. Suppose that there exist a, b, B,B′ > 0 such that

D1(Kc) ≤ K−aD1(c), for any K > 1, (2.39)
B′kbD2(c) ≥ D2(kc), ≥ BkbD2(c) for any k < 1. (2.40)

Let c̃ satisfy D1(c̃) = D2(c̃), and for a given constant E ≥ 1, define Λ =
{
c :

(D1 +D2)(c) ≤ E (D1 +D2)(c̃)
}

. Then

(i) D1(c) ≤ B−1(2E)1+b/aD2(c), for every c ∈ Λ.

(ii) Λ ⊂
[
(2E)−1/ac̃, (2EB′)1/bc̃

]
.

Proof. (i). If c ≥ c̃, then D1(c) ≤ D2(c), since D1 and D2 are equal at c̃ and
decreasing and increasing respectively. The inequality in (i) is then satisfied,
since B−1(2E)1+b/a ≥ 1. If c < c̃, then by (2.39) with K = c̃/c we have

(c̃/c)aD1(c̃) ≤ D1(c).

If c ∈ Λ, then also

D1(c) ≤ (D1 +D2)(c) ≤ E(D1 +D2)(c̃) = 2ED1(c̃)

by the definition of c̃. Concatenating these inequalities, we conclude that
(c̃/c)a ≤ 2E, or c ≥ b1c̃ for b1 = (2E)−1/a < 1. Then, by monotonicity
and (2.40),

D2(c) ≥ D2(b1c̃) ≥ Bbb1D2(c̃).

This is equal to Bbb1D1(c̃) ≥ Bbb1/(2E)D1(c) by the second last display. This
concludes the proof of (i).
(ii). The lower bound on Λ in (ii) is equivalent to the inequality c ≥ b1c̃, which
was already obtained in the preceding proof of (i). For the upper bound we first
note that for every c ∈ Λ we have D2(c) ≤ D1(c) +D2(c) ≤ E(D1 +D2)(c̃) =
2ED2(c̃), by the definition of c̃. If c > c̃, then (2.40) gives that the right hand
side is bounded above by 2EB′(c̃/c)bD2(c). Concatenation of the inequalities
gives that 1 ≤ 2EB′(c̃/c)b.

The following lemma is applied throughout to handle the sums that occur in
both the deterministic and stochastic terms of L.
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Lemma 2.43. Let γ > −1, m ≥ 1 and ν ∈ R such that γ −mν < −1. Then

n∑
j=1

jγ

(jm + cn)ν
= Cγ,ν,m(cn)γ/m−ν+1/m

(
1 + o(1)

)
(2.41)

uniformly for c ∈ [ln/n, n
m−1/ln] as n → ∞, for any ln → ∞. The constant

is given by

Cγ,ν,m =

∫ ∞

0

uγ

(um + 1)ν
du.

Furthermore, the left side of (2.41) has the same order as the right side uni-
formly in c ∈ [ln/n, n

m−1] , for any ln → ∞, possibly with a smaller constant.

Proof. If γ ≤ 0, then the function t 7→ g(t) = tγ/(tm + cn)ν is decreasing on
[0,∞), while if γ > 0 the function is unimodal with a maximum at k(cn)1/m
for the constant k = (γ/(mν − γ))1/m. In the first case we have∫ n

1

tγ

(tm + cn)ν
dt ≤

n∑
j=1

jγ

(jm + cn)ν
≤
∫ n

0

tγ

(tm + cn)ν
dt,

while in the second case∫ n

1

tγ

(tm + cn)ν
dt− g(k(cn)1/m) ≤

n∑
j=1

jγ

(jm + cn)ν

≤
∫ n

0

tγ

(tm + cn)ν
dt+ g(k(cn)1/m).

By the change of coordinates tm = (cn)um we have

∫ n

a

tγ

(tm + cn)ν
dt = (cn)γ/m−ν+1/m

∫ n/(cn)1/m

a/(cn)1/m

uγ

(um + 1)ν
du.

If cn→ ∞ with (cn)1/m ≪ n, then for both a = 0 and a = 1 the integral on the
right approaches Cγ,ν,m, which is finite under the conditions of the lemma. The
maximum value in the second display satisfies g(k(cn)1/m) . (cn)(γ/m−ν) and
hence is of lower order than the right side of the preceding display if cn→ ∞.
This proves the first assertion of the lemma. For c as in the second assertion
we still have that cn→ ∞, so that the lower limit of the integral tends to zero,
but the upper limit n/(cn)1/m may remain bounded, although it is bigger than
1 by assumption.
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Lemma 2.44. For γ > −1, m ≥ 1 and ν ∈ R such that γ−mν < −1 we have
n∑
i=1

n∑
j=1

(ij)γ

((ij)m + cn2)ν
≍ (cn2)γ/m−ν+1/m ·

{(
1 + log(cn2)

)
if cn2 ≤ nm(

1 + log
(
n2m

cn2

))
if cn2 ≥ nm

uniformly for c ∈ [ln/n
2, n2m−2] as n→ ∞, for any ln → ∞.

Proof. Since cn2 ≤ (ij)m+cn2 ≤ 2cn2 if (ij)m ≤ cn2 and (ij)m ≤ (ij)m+cn2 ≤
2(ij)m otherwise, the double sum is up to a constant 2ν bounded above and
below by

n∑
i=1

n∑
j=1

(ij)m≤cn2

(ij)γ

(cn2)ν
+

n∑
i=1

n∑
j=1

(ij)m>cn2

(ij)γ−mν .

Since cn2 ≥ ln → ∞, the first sum is never empty; the second is empty if
cn2 = n2m takes it maximally allowed value. To proceed we consider the cases
that N := (cn2)1/m is smaller or bigger than n separately. If N ≤ n, then the
second sum splits in two parts and the preceding display is equivalent to

N∑
i=1

N/i∑
j=1

(ij)γ

Nmν
+

N∑
i=1

n∑
j=N/i+1

(ij)γ−mν +
n∑

i=N+1

n∑
j=1

(ij)γ−mν

≍
N∑
i=1

iγ(N/i)γ+1

Nmν
+

N∑
i=1

iγ−mν(N/i)γ−mν+1 +
n∑

i=N+1

iγ−mν

≍ (logN)Nγ+1−mν + (logN)Nγ−mν+1 +Nγ−mν+1.

If N > n, then the first sum splits into two parts and we obtain the equivalent
expression

N/n∑
i=1

n∑
j=1

(ij)γ

Nmν
+

n∑
i=N/n+1

N/i∑
j=1

(ij)γ

Nmν
+

n∑
i=N/n+1

n∑
j=N/i+1

(ij)γ−mν

≍
N/n∑
i=1

iγnγ+1

Nmν
+

n∑
i=N/n+1

iγ(N/i)γ+1

Nmν
+

n∑
i=N/n+1

iγ−mν(N/i)γ−mν+1

≍ Nγ−mν+1 + (log(n2/N))Nγ−mν+1 + (log(n2/N))Nγ+1−mν .

These bounds can be written in the form given by the lemma.

Lemma 2.45. For m ≥ 1 and ν ∈ R such that −mν < −1, we have
n∑
i=1

n∑
j=1

1(
(i2 + j2)m + cn2

)ν ≍ (cn2)−ν+1/m
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uniformly for c ∈ [ln/n
2, n2m−2] as n→ ∞, for any ln → ∞.

Proof. Since the function (s, t) 7→ 1/
(
(s2 + t2)m + cn2

)ν is decreasing in s and
t, we have

n∑
i=1

n∑
j=1

1(
(i2 + j2)m + cn2

)ν ≤
∫ n

0

∫ n

0

1(
(s2 + t2)m + cn2

)ν dsdt

and
n∑
i=1

n∑
j=1

1(
(i2 + j2)m + cn2

)ν ≥
∫ n

1

∫ n

1

1(
(s2 + t2)m + cn2

)ν dsdt.

Rewriting the double integrals in polar coordinates, we see that
n∑
i=1

n∑
j=1

1(
(i2 + j2)m + cn2

)ν ≤ π

2

∫ √
2n

0

r(
r2m + cn2

)ν dr

and
n∑
i=1

n∑
j=1

1(
(i2 + j2)m + cn2

)ν ≥ π

2

∫ n

√
2

r(
r2m + cn2

)ν dr.

By the change of coordinates r =
(
cn2
) 1

2mu we then have∫ bn

a

r(
r2m + cn2

)ν dr =
(
cn2
)−ν+1/m

∫ bn/(cn2)1/(2m)

a/(cn2)1/(2m)

u(
u2m + 1

)ν du.

Since cn2 → ∞ the lower limit of this integral tends to zero. Combining this
with the fact that the upper limit is bounded from below by b, the result
follows.

The following three lemmas are used to establish uniform bounds on the
stochastic remainder terms.

Lemma 2.46. Consider a function g : (0,∞) → R of the form

g(c) =
(cλj,n)

α

(1 + cλj,n)α+β
,

where α, β ≥ 0 are integers. Then, for 0 < s < t <∞,

|g(s)− g(t)| ≤ |s− t|
s

sλj,n
(1 + sλj,n)2∨(1+β)

.

In particular, if β ≥ 2, then |g(s)− g(t)| ≤ |s−t|
s

1
(1+sλj,n)2

.
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Proof. We apply the mean value theorem to the function h(x) = xα

(1+x)α+β .
Note that for x ≥ 0 we have

|h′(x)| =

∣∣∣∣∣xα−1
(
−βx+ α

)
(1 + x)1+α+β

∣∣∣∣∣ . xα

(1 + x)1+α+β
1β ̸=0 +

xα−1

(1 + x)1+α+β

≤ 1

(1 + x)1+β
1β ̸=0 +

1

(1 + x)2+β
. 1

(1 + x)2∨(1+β)
.

Hence

|g(s)− g(t)| . |s− t| λj,n
(1 + sλj,n)2∨(1+β)

=
|s− t|
s

sλj,n
(1 + sλj,n)2∨(1+β)

.

Lemma 2.47. Consider the stochastic process (U(c) : c > 0) given by

U(c) =
n∑
j=1

aj(cλj,n)
α

(1 + cλj,n)α+β
Uj ,

for some constants aj, i.i.d. mean-zero random variables Uj with variance one
and integers α, β ≥ 0. Suppose that for some γ, δ ∈ {0, 1, 2} and some non-
negative function g we have

n∑
j=1

a2j (sλj,n)
δ

(1 + sλj,n)γ
. g(s). (2.42)

Then for 0 < s < t <∞ we have

var
(
U(s)− U(t)

)
. (s− t)2g(s)

s2
.

Proof. We consider

var
[
U(s)− U(t)

]
=

n∑
j=1

a2j

[
(sλj,n)

α

(1 + sλj,n)α+β
− (tλj,n)

α

(1 + tλj,n)α+β

]2
.

Applying the previous lemma, we see that∣∣∣∣ (sλj,n)
α

(1 + sλj,n)α+β
− (tλj,n)

α

(1 + tλj,n)α+β

∣∣∣∣ . |s− t|
s

sλj,n
(1 + sλj,n)2

.

We conclude

var
[
U(s)− U(t)

]
. (s− t)2

s2

n∑
j=1

a2j (sλj,n)
2

(1 + sλj,n)4

≤ (s− t)2

s2

n∑
j=1

a2j
(sλj,n)

δ

(1 + sλj,n)γ
,
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which holds for any γ, δ ∈ {0, 1, 2}. The result follows.

Lemma 2.48. Let ln → ∞ be a given sequence of numbers. If Un = (Un(s) :
s ∈ In) are continuous stochastic processes such that for all s < t in a closed
interval In ⊂ [ln/n,∞) and some a > 0 we have

E
[
Un(s)

]2 . 1

nasa
, E

[
Un(s)− Un(t)

]2 . (t− s)2

nas2+a
,

then sups∈In |Un(s)| tends to zero in probability.

Proof. Write In = [an, bn]. For a given interval [s0, t0] ⊂ In we have E
[
Un(s)−

Un(t)
]2 . d20(s, t), for d0 the metric

d0(s, t) = K0|t− s|, K0 = n−a/2s
−1−a/2
0 .

The d0-diameter of [s0, t0] is K0|t0 − s0| and the covering number
N(u, [s0, t0], d0) is bounded above by

(
K0|t0 − s0|/u

)
∨ 1. Therefore by Corol-

lary 2.2.5 in [van der Vaart and Wellner, 1996], with ψ(x) = x2, we have

E sup
s,t∈[s0,t0]

[
Un(s)− Un(t)

]2 . K2
0 |t0 − s0|2 =

|t0/s0 − 1|2

(ns0)a
.

Fix M so that 2M−1 < 1/an ≤ 2M and N so that 2N−1 < bn ≤ 2N . Define
s−M = an, sN = bn and si = 2i for i ∈ {−M + 1, . . . , N − 1}. Then s−M <
s−M+1 < · · · < sN partitions In. Since si+1/si − 1 ≤ 1 for every i (in fact,
equal to 1 except for the boundary values), we then have

E sup
s∈In

Un(s)
2 ≤ 2E max

i∈{−M,...,N−1}

[
sup

s∈[si,si+1]

|Un(s)− Un(si)|2 + Un(si)
2

]

.
N−1∑
i=−M

[
12

(nsi)a
+

1

(nsi)a

]

. 1

na

N−1∑
i=−M

2−ia =
1

na
2Ma 1− 2−a(M+N)

1− 2−a

≤ 1

na

( 2

an

)a 1

1− 2−a
≤ 1

lan

2a

1− 2−a
,

by definition of M . This tends to zero, since ln → ∞.
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